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Executive Summary
Cause

The Hogeschool Utrecht Centre of Technology and Innovation is currently
researching various applications of multi-agent technology. This research con-
siders the posibilities of developing an agent-based system capable of monit-
oring vital functions and making predictions on a patient’s health to facilitate
early detection of imminent heart failure enabling faster response-times and
preventing loss of quality adjusted life years.

Suggestions

Based on the experiences acquired in the development of a proof-of-concept
medical multi-agent system, this research suggests such a solution is feasible;
though a number of questions remain to be answered, further research by a
larger, multidisciplinary team could continue the prototype’s development into
an extendable, adaptable product.

Motivation

As the prototype demonstrates, the modularity and extendability offered by a
multi-agent solution present a promising base for the design of medical mon-
itoring systems. By dividing the stated problem into three responsibilities
(input, processing, output), an intelligent medical agent supported by a set
of input (sensor) agent and output (communication) agents can use stand-
ard machine learning algorithms to make assessments on available data in a
feature-agnostic way, greatly increasing reusability.

Perceived consequences

Further development of this project will require knowledge outside the field
of computer science in addition to continued involvement of programmers,
technicians and data scientists.
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Glossary
ACL Agent Communication Language, a standardised language for agent

communication developed by FIPA. 6, 31

BGFS Broyden-Fletcher-Goldfarb-Shanno algorithm: a optimisation algorithm
used in machine learning to find the minimum of a cost function. 26

cardiac arrest sudden stop in blood circulation due to the failure of the
heart to contract effectively or at all. 1

cost function A function mapping a possible value for θ to a numerical rep-
resentation of its performance. 24–26

CVA cerebrovascular accident (brain attack): poor blood flow in the brain
resulting in cell death. 1

decision boundary the hyper-surface that partitions the data-points into
two sets. Points on one side belong to one category, points on the other
side belong to the other. Points on the decision-boundary are ambiguous:
both possible categories have a 0.5 probability. 14, 15, 24, 27, 45

Delaunay triangulation A triangulation algorithm where a field of points
in a diagram is connected in such a way that no created simplex’ cir-
cumcircle contains other points. 15

feature A single factor considered by the logistic regression algorithm in clas-
sifying an example, e.g. heart rate or diastolic blood pressure. 12, 14,
21–24, 27, 28, 30–32, 38, 44

feature mapping The process of generating additional features from existing
ones, used to turn linear values into polynomials, thus allowing a more
complex decision boundary. 21, 23, 27–29, 31

feature scaling The process of mapping a real value between a set minimum
and maximum to a value in (−1, 1) and vice versa. Used to ensure all
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GLOSSARY

features are of the same weight when considered by logistic regression.
21, 38

FIPA Foundation for Intelligent Physical Agents: a foundation focused on
the developing standards for agent systems. 6

hypothesis function A function combining the vector θ, found using the
training algorithm, with a vector x, containing a set of observed features,
to calculate a prediction. 23, 24, 27, 45, 47

JADE JAVA Agent DEvelopment Framework: a Java based development
framework for FIPA based agents developed by Telecom Italia in 1998.
6, 12, 29, 37, 41, 42

locus For two vertices, the set of points equidistant from either vertex. 17

logistic regression A classification algorithm used to divide observations
either inside or outside of a category. Outputs a value in (0, 1) rep-
resenting the probability that the observation falls into the category.
21, 23, 24

MAS multi-agent system: a system composed of multiple intelligent agents
interacting within an environment. 2, 4–7, 11, 29, 31, 37, 39–44, 47

MI myocardial infarction (heart attack): cessation of blood flow resulting in
damage to the heart muscle. 1

overfitting An undesirable situation where a hypothesis function becomes
over-specific to the training data and fails to generalise to new observa-
tions. 24, 27, 47

QALY quality-adjusted life years. 1, 2, 42

sigmoid function A function used in logistic regression to convert a real
number into a value in (0, 1). Defined as g(z) = 1

1+e−z . 23, 24

simpex The n-dimensional generalisation of a triangle, tetrahedron, etc. The
most basic n-dimensional object defined by n+1 points in n-dimensional
space. 14–18, 45
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GLOSSARY

training example A set of features collectively representing a single obser-
vation used for training the logistic regression algorithm. 23, 24, 27

underfitting An undesirable situation where a hypothesis function fails to
develop a good fit to the data. 27

vertex A point serving as a corner for a n-dimensional shape. 14, 15, 17, 19,
20, 45

XML eXtensible Markup Language, a document format developed by W3C
designed to be readable to both humans and machines. 6, 31, 34, 38, 44
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1 Introduction
The Hogeschool Utrecht Centre of Technology and Innovation is currently
researching various applications of multi-agent technology. My research sug-
gests a new application of this interesting field of technology, applying lessons
learned to medical support. Multi-agent technology studies the utilisation
of groups of intelligent agents to autonomously perform complex tasks. The
modularity and expandability offered by this approach could benefit medical
support of patients, with limited impact on their daily lives as agents liv-
ing inside a compact device could monitor vital statistics and respond when
necessary, thereby reducing the need for conventional medical surveillance.
This study explores these possibilities and marks the start of a larger project
towards realising better ways of ensuring people’s health.

1.1 Problem to be addressed

As medical science progresses, many debilitating and potentially fatal con-
ditions are becoming easily preventable in the presence of first-world health
care. The success of treatment largely depends on quick action being taken:
as more time passes before adequate care is provided, the chance of recovery
quickly decreases and the loss of quality-adjusted life years (QALY) increases
as lack of oxygen causes brain cells to permanently die. Acute cardiovascular
diseasesi are among the most prevalent diseases in the western world: In the
Netherlands alone, approximately 15 000 people suffer cardiac arrest outside
of hospitals each year (Nederlandse Hartstichting, n.d.-b). In 2012, 29 000
people suffered a Myocardial Infarction (MI) and 44 000 people were affected
by a Cerebrovascular accident (CVA) (Nederlandse Hartstichting, n.d.-a). All
of these show a direct correlation between the time to onset of treatment and
QALY in victims.

i Brain- and heart attacks and related afflictions.
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1. INTRODUCTION

1.2 Proposed solution (hypothesis)

This study aims to explore the possibilities of making monitoring vital func-
tions in “high-risk” individualsii more accessible and affordable by utilising
agent technology to create cheap and replaceable dedicated monitors. By pro-
posing a “medical agent”, this study aims to decrease response-time leading
to increased QALY following an attack. Furthermore, a “medical agent” could
potentially allow people to live independently when without it they would be
forced to rely on a retirement home to provide constant attention. This would
reduce both the costs on society as well as leading to better psychological
health (World Health Organisation, 2013) in patients.

To solve this problem, this research proposes a medical agent or medical Multi-
Agent System (MAS) programmed to monitor relevant vital functions and use
its knowledge of the patients situation to anticipate emergencies, communic-
ating them to the patient, caregivers and/or medical authority. This research
focuses on the above-described cardiovascular diseases, but should in no means
be limited to this kind of ailment. The proposed model could be extended to
watch for a variety of problems, e.g. pulmonary embolism, acute dyspnea,
(chronic) obstructive pulmonary disease, asthma exacerbation, epilepsy and
diabetesmellitus. For the sake of manageability, this research will address a
single area. Should the results be as expected, further research could be initi-
ated to expand the scope. A medical agent should be, by design, extendable:
additional sensors and knowledge could be incorporated into the framework
using a common architecture to address different threats using a single core
design.

1.3 Research questions

The main question this research will aim to answer can be summarised as
“How could agent technology contribute to increase the number of
quality-adjusted life years (QALY) in acute cardiovascular disease?”.
To answer this question, several sub-questions will need to be asked:

RQ1 Which biological factors are indicative of imminent acute cardiovascu-
lar disease?

ii Those with an elevated risk of acute cardiovascular diseases, e.g. elderly and those with
a history of such attacks.
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1. INTRODUCTION

RQ2 How could these factors be discreetly monitored?

RQ3 Considering the results of RQ1 and RQ2, what would be the most
appropriate design for a medical agent?

RQ4 How can a proposed medical agent be trained to recognise and respond
to alarming measurements?

RQ5 What would be the requirements in hardware and software of such an
agent?

RQ6 What is the relation between the product agent suggested by Van
Moergestel et al. and the medical agent suggested in this research?

RQ7 How is important patient information stored and communicated in
current medical care?

RQ8 How could a “medical agent” be securely linked to / incorporated into
existing systems in medical care?

RQ9 How could this agent be tested to ensure sufficient reliability?

I have endeavoured to answer these questions by means of a literature study
and development of a prototype, as documented in the following chapters.
Table 1.1 presents an overview of the chapters in relation to the research
questions. The order of the questions does not conform to the order of the
chapters. I chose to present my work in this order because I believe it should be
easier for my readers to follow. For example, Chapter 2 deals with the overall
design of the system, introducing separation of responsibilities. It makes sense
to discuss this aspect before introducing specific agents starting in Chapter 3.

Chapter RQ1 RQ2 RQ3 RQ4 RQ5 RQ6 RQ7 RQ8 RQ9
1
2 X
3 X X
4 X
5 X X
6 X
7 X
8 X
9 X X X X X X X X X

Table 1.1: Relation between research questions and chapters
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2 Design
As the medical agent should be designed to be as modular as possible, im-
plementation as a distributed problem solving MAS (Wooldridge, Jennings &
Kinny, 2000) seems a logical choice — even though this does make the term
“medical agent” somewhat imprecise. Implementing the medical monitor as
a MAS allows for the division of the product’s responsibilities between spe-
cialised agents, creating a central agent, responsible for the interpretation of
observations, and separate, less complex agents for tasks related to input and
output. In a medical MAS, three sets of responsibilities could be distinguished,
each corresponding to a distinct category of agents:

• Sensor monitoring,

• decision making and

• outside communication.

Each MAS could contain any number of agents from the first and third cat-
egories (collectively known as utility agents), as well as one central agent
capable of mapping observations from sensor agents to actions performed by
communication agents. This design allows for agents to be added and removed
dynamically while keeping core functionality intact. An example medical MAS
is shown in Figure 2.1, including a number of potential utility agents.

2.1 Sensor-monitoring agents

Sensor-monitoring agents are the simplest and most diverse agents in the med-
ical MAS. These agents exist primarily to support modularity: As sensors
do not necessarily produce compatible signals to communicate their results, a
small, dedicated agent could be programmed to read the sensor-data and com-
municate it to the decision-making agent in standard format. This way, the
decision-making agent need not know the way measurements are performed. A
sensor could easily be exchanged for a different kind of sensor, together with its
associated agent, without necessitating mayor changes to the decision-making

4



2. DESIGN

Heart-rate
sensor-agent

Outside 
communications

Sensor monitoring

Blood pressure
sensor-agent

Decision making
agent

VoIP agent

SMS agent

Telegram agent

Display agent

Speaker agent

Decision making

Motion detection
agent

Medical MAS

Figure 2.1: The three types of agents.

agent. Similarly, new sensors could be added to facilitate patients develop-
ing new diseases. Though this would require new data to be added to the
decision-making agent, the process of acquiring the measurements could easily
be added by inserting a new sensor-monitoring agent to the MAS. This part
of the system will be discussed in Chapter 3.

2.2 Decision-making agent

The decision-making agent operates in the middle layer of the medical MAS
architecture. This is where most of the complex mathematics take place. This
part of the MAS will be discussed in detail in Chapter 4.

2.3 Communications agent

Just as there are various ways to acquire data to facilitate the decision-making
agent, there are also myriad methods to communicate its results. These include
telephony, instant messaging, patient-information logs and on-device IOi. The
preferred methods of communication may be subject to change over time as
the patient’s situation changes, as doctors come and go and as new forms
of communication are developed, become widely adopted and are eventually
deprecated. Therefore, MAS communication to the outside world should be

i displays, alarms, etc.
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2. DESIGN

modular. Just like with sensor-reading agents described in section 2.1, meth-
ods of communications could be implemented by small, trivial single-purpose
agents. By abstracting the way information is delivered, the decision-making
agent can communicate its results in a predefined manner indicating the con-
clusions to be sent and the perceived level of panic. Communications agents
can pick up these messages and assume responsibility of relaying the inform-
ation to the appropriate recipients. These agents relate to the seventh and
eighth research question and will be described in Chapter 5.

2.4 Internal communication

The above described categories of agents will operate together in a single MAS.
Though it would be possible to have agents running outside this MAS and still
be able to communicate with the agent within, this aspect falls outside of the
scope of this research and will be briefly discussed as future work in Chapter
9.4.

The gold standard for agent development is the JAVA Agent DEvelopment
Framework (JADE) developed by Telecom Italia. It provides a set of tools
and an extendable framework for creating agents and MAS’ using the Found-
ation for Intelligent Physical Agents (FIPA) standard. Within JADE, agents
exchange information using the Agent Communication Language (ACL) pro-
tocol (Foundation for Intelligent Physical Agents, 2002) developed by FIPA.
The prototype medical MAS has been developed in JADE and as such uses
the ACL protocol for communicating information. The ACL protocol allows
for a number of languages to encapsulate data, including eXtensible Markup
Language (XML); as the XML format provides a means to represent data in a
semantic way that is readable to both humans and computers it appears to be
a good choice for inter-agent communication. A typical exchange of messages
is shown in Figure 2.2. Two sensor-agents send a stream of measurements
to the decision agent, which periodically calculates its assessment of the situ-
ation. When the assessment reaches a certain defined threshold, it starts to
send messages to the communication agents. The communication agents can
respond with a confirmation or a message indicating either failure to relay the
communication or failure to understand the message. If the decision-agent
receives a message indicating failure, it tries to alert an operator using the
designated fallback.

6



2. DESIGN

HeartRateAgent BloodPressureAgent DecisionAgent ScreenAgent MailAgent

INFORM (measurement)

INFORM (measurement)

INFORM (measurement)

INFORM (measurement)

REQUEST (communicate concern)

CONFIRM (message shown)

INFORM (measurement)

INFORM (measurement)

INFORM (measurement)

INFORM (measurement)

REQUEST (communicate alarm)

FAILURE (failure to send message)

REQUEST (notify of broken MailAgent)

CONFIRM (message shown)

Figure 2.2: Message exchange within the medical MAS.
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3 Biological factors and
monitoring
In order for any system to be able to assess a patients health, it needs to know
about a number of biological factors. For heart failure and related problems
— the focus of this research, the patients heart rate and blood pressure seem
to be obvious choices for factors to be monitored. For other diagnoses another
set of variables might contain more meaningful information. However, as a
computer scientist focused on artificial intelligence (AI), I am unqualified to
provide a decisive list of factors to be considered. As such, after consultation
with my company supervisor, I chose instead to design my prototype to be
as factor-agnostic as possible. Each factor to be considered is added during
initialisation as a feature to a n-feature algorithm, and an appropriate sensor
is added to the system to collect the necessary data. By scaling each feature
to a value in the range (−1, 1), as described in Section 4.1.8, the specifics of
each feature are abstracted away from the reasoning process: the product does
not need to know what a given value represents, only how it affects the output
of its prediction-function.

Thus, for the system to work with a given set of variables, three things are
needed to add the desired behaviour to the existing product:

• A sensor capable of measuring the new feature,

• a mapping between sensor-output and a value in the range (−1, 1) and

• a dataset for the prediction algorithm featuring the new factori.

To facilitate the development of sensor-agents, an abstract class has been writ-
ten to minimise the required amount of boilerplate code. All sensor-agents
have a similar structure: a single, repeating behaviour and a standardised
method of communicating measurements to the decision-making agent. The

i the prototype developed as part of this research includes a way to accomplish this; see
Chapter 4.
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3. BIOLOGICAL FACTORS AND MONITORING

<<abstract>>
SensorAgent

# min : Double
# max : Double
# reading : Double
- id : String
- name : String
- unit : String
- pollTime : long = 2000
- bones : AID
(B) pollFeature : TickerBehaviour

+ setup()
# performMeasurement() : Double
+ setup(name : String, amin : Double, amax : Double, aunit : String)
+ takeDown()
# scaled() : Double
# tag(tag : String, value : String) : String
# xmlMsg() : String
# report(String s)

Figure 3.1: The SensorAgent abstract class.

SensorAgent class, as shown in Figure 3.1, provides an abstraction of these sim-
ilarities and only needs a setup() method and a performMeasurement() method
to be implemented to create a concrete class. The setup() method should
set any relevant variables (of which the variables required by the SensorAgent

class can be set by calling the setup(String, Double, Double, String) methods
of the superclass). The performMeasurement() method should contain any code
needed to perform a measurement, and return its results as a Double. The
default behaviour of the SensorAgent is to execute the measurement-method
every 2ii seconds and to send the measurement to the decision-making agent
using an XML message as shown in Listing 3.1. In this example, a subclass
called HeartRateAgent sends a message containing both the raw values of the
measurement (a real number within the range supported by the sensor) and
the same measurement scaled to the range of (−1, 1).

1 <measurement>

2 <feature>HeartRate</feature>

3 <raw>68.950161</raw>

4 <scaled>−0.080665</scaled>

5 </measurement>

Listing 3.1: A typical message sent from HeartRateAgent

ii This frequency can be configured in the variable pollTime which is used by the pollFeature
behaviour.
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3. BIOLOGICAL FACTORS AND MONITORING

The SensorAgent itself contains a number of private and protected attributes to
store its specifics such as the name it uses for communication, the specifics of
the associated sensor such as minimum / maximum / current values, and the
Agent ID of the decision agentiii. A SensorAgent contains a single behaviour,
represent here as (B). As UML was not designed for representing agents and
various “Agent UML’s” are still in their early stages, I chose this representa-
tion as an extension to UML.

As described above, the SensorAgent contains two abstract functions needed to
implement a subclass. In addition, the class contains a few helper-methods to
limit code duplication. scaled() uses the minimum and maximum values to
apply feature scaling (described in more detail in Section 4.1.8), tag(String,

String) and xmlMsg() provide a more readable way to generate the XML and
report(String) is a wrapper around System.out.println(String) prepending the
output with the agent name to make it easier to distinguish messages when
various agents are reporting at the same time.

3.1 HeartRateAgent

As an example, Listing 3.2 provides a template for how a HeartRateAgent would
look as a subclass of SensorAgent. The hardware-specific code can be filled in
when a sensor has been selected to produce a functional sensor-agent.

1 public class HeartRateAgent extends SensorAgent

2 { public void setup()

3 { super.setup(”HeartRate”, 0.0, 150.0, ”bpm”); }

4
5 public Double performMeasurement()

6 { try

7 { // read sensor

8 // calculate heart rate from reading

9 return reading; } // feature scaling happens when a message is sent.

10 catch (Exception e)

11 { // handle exception

12 return reading; } } } // return the old reading

Listing 3.2: A sample SensorAgent subclass

iii The name “bones”, as seen in Figure 3.1, is short for sawbones, signifying its status a
as crude prototype of an actual medical expert.
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3. BIOLOGICAL FACTORS AND MONITORING

3.2 Monitoring features

As there is at present no conclusive answer as to which features to monitor, the
process of monitoring these specific factors is unknown as well. However, as
recent advances in this area allow even laymen to measure an increasing num-
ber of statistics regarding their health using only a smartphone, it is unlikely
that a lack of options for feature-monitoring will present a serious challenge
in the development of a usable medical MAS. As accessible eHealth applic-
ations become more and more ubiquitous (Satchwell, n.d.), it can safely be
concluded a medical MAS would benefit from theses advances as well. For
now, the SensorAgent-class contains the boilerplate on which any future sensor
monitoring agent can be based.

The SensorAgent-class also forms the basis for a number of “mock agents” de-
signed to simulate measurements using small random increments and decre-
ments to an average value. These mock agents obviously do not represent true
sensors, but facilitate testing of various subsystems in the decision agent. For
the purpose of easily testing the decision agent’s behaviour in case of emer-
gencies, a special mock HeartFailureAgent has also been created simulating a
rapidly decaying heart rate.

11



4 Agent Reasoning
This chapter is divided into three parts. The first section focuses on the pro-
cess of gathering data regarding the chosen features by querying an expert
about the expected predictions for a set of measurement-combinations. It also
introduces an intelligent way to suggest which data points to query based on
existing knowledge. The second part describes the learning algorithm used
to formulate a mathematical representation of the knowledge gathered in the
first section. Finally, in the third section a decision-making agent will be
explored to use the gathered knowledge to make predictions. The first and
second sections together describe the methods used to get to train the agent;
this process has been implemented in a prototype using R, a modern language
designed for numerical analysis well suited for this kind of task. As the result
is mathematical vector, it can easily be used in the Java / JADE based agent
as described in the last section. When choosing R for the learning process
I also took into account the existence of Shiny, a library used to provide a
web-interface for R-based applications. Though this library is not used in the
prototype, it should be an asset in facilitating a more user-friendly interface
in a future version.

4.1 Data Entry

In order to interpret the measurements acquired from the sensors and pre-
dict whether the current patient situation constitutes a cause of alarm, the
decision-making agent needs a way to classify potentially high-dimensionali

data. As this information is not guaranteed to be available for various com-
binations of biological features, it makes sense to explore a way for medical
personnel to easily enter such data into the system. Not only does this guar-
antee the required data can be generated, if not available, it also allows for
far greater personalisation, providing the agent with a data-set tailored to its

i Each biological factor considered in the model represents an additional dimension for
data points.
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4. AGENT REASONING

patient. Manual entry, or at least confirmation, also allows an expert intimate
knowledge of the agents decision-making process, potentially increasing trust
by removing the “black box” aspect of machine learning.

Teaching the system to recognise alarming measurements and differentiate
between various levels of threat requires large amounts of information provided
by medical personnel, preferably tailored to the patient as thresholds might
not be the same for every person. Entering this data can be challenging:
as potentially multiple factors need to be taken into account together, it be-
comes progressively harder for humans to visualise and communicate relevant
thresholds. A better way might be to input a set of data-points, together
with appropriate assessments of the situation associated with each data-point.
These data-points could be used, alone or in conjunction with more general
datasets, to train a classification algorithm.

In order to train an agent to make accurate predictions, training data will
need to be entered into the system by a medical expert. This should be as
easy as possible: the focus should be to quickly train an agent without ex-
pending significant time accommodating the system. Unfortunately, entering
possibly poly-dimensional data graphically is a difficult task. For one or two
dimensional data, clicking points in a scatter plot, as pictured in Figure 4.1,
can be a quick way to enter points; for three dimensional data this becomes
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Figure 4.1: Scatter plot in two dimensions of a small random dataset.
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4. AGENT REASONING

harder: a scatter-plot is still possible for data-visualisation, but entry becomes
impossible as a mouse or trackpad and a computer screen are both essentially
two-dimensional. For even more simultaneous features, only a subset of the
features can be plotted at the same time.

An alternative approach would be to require the expert to manually enter all
features, as well as the results that the system should predict. Not only is this
rather work-intensive, but also prone to omissions: as it is hard for the human
mind to visualise all features simultaneously large gaps are a significant risk.

A better solution would be for the system to dynamically suggest data-points
based on the largest knowledge gaps. This section considers an approach to
accomplish this. Each problem will be examined in two dimensions first, as
this makes it easier to visualise and demonstrate the applied methods. After
the solution has been sufficiently exposed a generalisation will be made in
n-dimensions. Triangles and their higher-dimensional analogues (the tetra-
hedron in three dimensions, the 5-cell in four, etc.) are collectively referred to
as n-simplices or just simplices (singular: simpex). As a triangle (2-simpex) is
defined by three vertices of the form (x, y) and and a tetrahedron (3-simpex)
is defined by four vertices of the form (x, y, z), a n-simpex is the most basic
n-dimensional object defined by n+ 1 vertices in n-dimensional space.

4.1.1 Finding the most valuable points for data-querying

When entering data-points to train an agent, some points are more valuable
than others. For example, potential locations completely surrounded by ex-
isting data-points all belonging to the same class are unlikely to add any new
information to the system. Similarly, points in sparse areas are potentially
more valuable, as are points closer to the centre of the point cloud. Figure 4.2
shows the same scatter plot as Figure 4.1, but adds a decision boundary ii and
three possible locations for new data points marked by numbers. Location 1
does not appear to be a good addition, as it is very close to existing points
and is therefore unlikely to add a great deal of information. Location 2 is not
a good suggestion either, as it is very far from the decision boundary — it
will likely have the same category as the points surrounding it, especially if
a large amount of data has been entered. Location 3 is a better spot for a
new data point: it is not a near duplicate of another point, and it lies close

ii The line or multi-dimensional equivalent separating the set of points into two categories.
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4. AGENT REASONING

to the decision boundary. Depending on the category this point will be as-
signed to it may significantly change the decision boundary in either direction.
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Figure 4.2: Three possible locations for a new data-point.

4.1.2 Data-point-distribution

To find sparsely populated areas to add new data-points, we first create a
triangulation containing all data points. For each of these triangles, the cir-
cumcentre is calculated, and the collection is ordered based on the area of the
triangles. These points can now be evaluated in order to find points close to
the current decision-boundary.

4.1.3 Triangulating n-dimensional space in simplices

To triangulate a set of points we utilise the Delaunay triangulation (Eric
W. Weisstein, 2002b). Most mathematical libraries include a function to
quickly get the Delaunay Triangulation of a set of points in n dimensions.
Triangulating the example data from Figure 4.1 yields the triangulation as
shown in Figure 4.3.

4.1.4 Calculating the size of each n-simplex

To find the largest simpex we use the determinant of the matrix constructed
by adding each vector representing a vertex as a single column, and adding a
final row of ones (Stein, 1966). For a triangle, the absolute value of the result is
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Figure 4.3: Triangulation and scatter plot in two dimensions

equal to two factorial times the triangle’s area. For a tetrahedron, the absolute
value equals three factorial times the volume. For higher-dimensional shapes,
this method continues to yield a scalar multiple of the n-hypervolume of the
simpex. As the simpex’ size is only used for sorting, the scalar multiplication
does not influence the ordering and can safely be ignored. As an example, the
size of a triangle described by a = (0, 0), b = (0, 4) and c = (3, 0) is given by

abs


∣∣∣∣∣∣∣∣
0 0 3

0 4 0

1 1 1

∣∣∣∣∣∣∣∣
 = abs

(
0

∣∣∣∣∣4 0

1 1

∣∣∣∣∣− 0

∣∣∣∣∣0 0

1 1

∣∣∣∣∣+ 3

∣∣∣∣∣0 4

1 1

∣∣∣∣∣
)

= abs(3 · 0 · 1− 3 · 4 · 1)

= abs(−12)

= 12,

which is twice the area of the triangle. Listing 4.1 shows an implementation
of the area function in R.

1 area ← function (X)

2 { X ← cbind(t(X), 1)

3 abs(det(X)) }

Listing 4.1: Area function implemented in R.
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4.1.5 Calculating the circumcentre of each n-simplex

Once the largest data-gap has been found, we want to find its centre to suggest
as a new data point. A simpex has multiple definitions of its centre; for this
purpose the circumcentre, the point equidistant from all its vertices (Eric
W. Weisstein, 2002a), seems a logical choice. Given a n-simpex defined by
vertices v(1),v(2), . . .v(n+1) with a circumcentre c, we know that the distance
between any vertex and c must, by definition, be equal. For any two vertices
v(a) and v(b), this means:

‖v(a) − c‖ = ‖v(b) − c‖

‖v(a) − c‖2 = ‖v(b) − c‖2

(v(a) − c) · (v(a) − c) = (v(b) − c) · (v(b) − c)

We translate each vector by −v(1) so that v(1) becomes the origin (denoted
o) and equate the distance to c of each remaining vector with the distance of
c to o, yielding the locus for each translated vertex v and the origin o:

(o− c) · (o− c) = (v − c) · (v − c)

c2 = v2 − 2v · c+ c2

2v · c = v2

v · c = 0.5v2

v1c1 + v2c2 + · · ·+ vncn = 0.5‖v‖2

Doing this for every vertex v(2) to v(n+1) gives us n equations, allowing us to
find the n-dimensional vector c. We can write these equations in matrix form
and solve all equations simultaneously:

Writing

S =


v
(2)
1 − v

(1)
1 v

(2)
2 − v

(1)
2 . . . v

(2)
n − v

(1)
n

v
(3)
1 − v

(1)
1 v

(3)
2 − v

(1)
2 . . . v

(3)
n − v

(1)
n

...
... . . . ...

v
(n+1)
1 − v

(1)
1 v

(n+1)
2 − v

(1)
2 . . . v

(n+1)
n − v

(1)
n



c =


c1

c2
...
cn

 r = 0.5


‖v(2) − v(1)‖2

‖v(3) − v(1)‖2
...

‖v(n+1) − v(1)‖2

 ,
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we have
Sc = r .

Given this, we can multiply both sides by S−1 to get

c = S−1r .

As c was translated by −v(1), all that remains is adding v(1) to find the tri-
angle’s circumcentre. The circumcentre(X) function is implemented in R as
shown in Listing 4.2.

1 circumcentre ← function (X)

2 { origin ← X[,1]

3 vectors ← X[,2:ncol(X)] − origin

4 rhs ← diag(0.5 * t(vectors) %*% vectors)

5 c ← ginv(t(vectors)) %*% rhs

6 origin+c }

Listing 4.2: Circumcentre function implemented in R.

4.1.6 Avoiding suggesting out-of-bounds points

As shown in Figure 4.3, Delaunay triangulations are prone to yielding obtuse
simplices, in particular around the edges. This can be a problem because an
obtuse simpex has a circumcentre outside itself. On the edges, this will res-
ult in the algorithm suggesting points outside the sensor’s bounds. As these
points are meaningless and only serve to distract the user, we would like to
avoid generating obtuse simplices.

We solve this problem by introducing a border of false data-points around the
edge. These data-points are only used to determine the Delaunay triangu-
lation, and are not present in the actual training-data being generated. The
number of data-points is determined by a variable β ∈ N1: For β = 1, only the
corners of the graph are added. For larger values of β, each axis is subdivided
into β parts. As β becomes larger, out-of-bounds points become increasingly
unlikely, and suggestions start to gravitate towards existing data-points.

As Figures 4.4 and 4.5 show, too large a value for β makes the algorithm
increasingly unlikely to suggest points around the edges. Though more central
points are preferred, limiting data-points to a central cluster might not be the
way to go. A solution for this could be to gradually decrease beta over time.

18



4. AGENT REASONING

Figure 4.4: Triangulation for β ∈ {1, 2, 3, 8, 12} alongside original triangula-
tion.

4.1.7 Generating the borders

The set of points to be used as a border constitutes of the following:

• a point for each vertex of the n-cube describing the range of data-points

• (β − 1) points on each edge (1-face)

• (β − 1)2 points on each face (2-face)

• (β − 1)3 points on each cell (3-face)

• …

• (β − 1)n−1 points on each (n− 1)-face

The number of points needed given a dimensionality n and a border-saturation
β can therefore be calculated by

#P (n, β) =

n−1∑
i=0

F (n, i)(β − 1)i

where F (n, i) is the number of i-faces on a n-cube (McCann, 2010):

F (n, i) = 2n−i

(
n

i

)
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Figure 4.5: Scatter plot of the first twenty suggestions for β ∈ {1, 2, 4, 8}.
Note that out-of-bounds points are not plotted, implying that plots with

fewer points have more points located outside the boundaries. Only the last
two show all 32 points.

The actual value of P (n, β) can intuitively be seen as the Cartesian product
of n instances of interval(β), also known as its Cartesian Power, of which only
those points for which at least one of its members is equal to −1 or 1 are kept.
In other words, for which the infinity norm ‖x‖∞ equals 1.

P (n, β) = {x | x ∈ interval(β)n ∧ ‖x‖∞ = 1}

‖x‖∞ = max
i

|xi|

The border(dim, beta) function is shown in Listing 4.3. cart_power is set to the
appropriate Cartesian power of (−1, 1) and subscripted by a list of booleans to
filter out values: any vertex which, after application of the anonymous func-
tion, evaluates to FALSE is removed from the list.
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1 border ← function (dim, beta)

2 { if (beta %% 1 > 0 || beta ≤ 0)

3 { stop(”beta must be a positive integer”) }

4 else if (dim %% 1 > 0 || dim ≤ 0)

5 { stop(”dim must be a positive integer”) }

6 else

7 { interval ← seq(from = −1, to = 1, by = 2/beta)

8 cart_power ← expand.grid(rep(list(interval),dim))

9 cart_power[apply(abs(cart_power) == 1, 1,

10 function (r)

11 { Reduce(function (x,y)

12 { x || y }, r) }) ,]}}

Listing 4.3: Border function implemented in R.

4.1.8 Feature Scaling

The interval-function creates an interval between −1 and 1 in β steps. This is
because all features are scaled to lie between −1 and 1, even though the actual
measurements might range from 0 to some arbitrary maximum. This feature
scaling is applied to make sure that all features are of the same importance
when applying logistic regression later on. As shown in Listing 4.4, the ac-
tual features can easily be converted to scaled features, and vice versa, using
the sensors’ associated minimum and maximum values. All functions are im-
plemented with feature scaling in mind and expect values in the range (−1, 1).

1 funscale ← function(X, sensors)

2 { scale ← (sensors$max − sensors$min) / 2

3 return(as.vector(X) * scale + scale) }

4
5 fscale ← function (X, sensors)

6 { scale ← (sensors$max − sensors$min) / 2

7 return((as.vector(X) − scale) / scale) }

Listing 4.4: Feature scaling implemented in R.

4.1.9 Avoiding symmetry

The algorithm presented above tends to favour generating a symmetrical data-
set: As the range of values is a perfect n-cube, the first point suggested will
be the centre, followed by a group of points equidistant from the first. This is
undesirable, as symmetrical data points features will introduce redundant fea-
tures when multiplied during the feature mapping process, which will not help
in generating a better hypothesis but will slow down the learning algorithm.
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To prevent generating such a duplicate set of data, we will move each sugges-
tion by a small random amount, controlled by a variable δ which represents
the maximal displacement for each point in each dimension. In order to ensure
that this displacement will not place points outside the feature boundaries, this
displacement will be opposite to the sign of the original location. This results
in the data point being moved slightly towards the centre, which generally
is the most interesting area to collect data on. We achieve this by replacing
each vector element ci by the weighted mean of r · 0 and (1 − r)ci, where
r ∼ U([0, δ]) is a random variable uniformly distributed on [0, δ]. Listing 4.5
shows the implementation of this function in R.

1 displace ← function (cc, delta)

2 { for (i in 1:length(cc))

3 { disp ← runif(1, (1 − delta), 1)

4 cc[i] ← cc[i] * disp }

5 return(cc) }

Listing 4.5: Displacement function implemented in R.

4.1.10 Putting it together

The suggest function will be responsible for the suggestion of data points, us-
ing the methods described above. Its source is shown in Listing 4.6

1 suggest ← function (X, beta = 8, delta = 0.05)

2 { b ← border(ncol(X), beta)

3 colnames(b) ← colnames(X)

4 X2 ← rbind(b, X)

5 del ← delaunayn(X2)

6 tris ← split(del, c(row(del)))

7 tris ← lapply(tris, function(tri) t(X2[tri,]))

8 ccs ← lapply(tris, circumcentre)

9 ccs ← lapply(ccs, function(cc) displace(cc, delta))

10 areas ← lapply(tris,area)

11 ordering ← order(unlist(areas))[length(areas)]

12 ccs[ordering] }

Listing 4.6: Suggest function implemented in R.
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4.2 Learning

Once enough data points have been entered, a classification algorithm can be
run on the final X, containing the input (featuresiii), and y, containing the
trained output (associated predictions), to create a hypothesis function. As
this is a relatively simple dataset, we will use logistic regression with feature
mapping and regularisation. If multi-class classification is desired, a one-vs-
many approach may be used to distinguish between a given set of classes. For
now, we will limit the output to two classes (healthy and alarming); as the
output represents the certainty of a set of measurements belonging to either
category, we can still differentiate between readings that might be cause for
alarm, and readings that certainly are. As we are using logistic regression, the
hypothesis function will look as follows:

hθ(x) = g(θTx),

where g is the sigmoid function

g(z) =
1

1 + e−z
.

After logistic regression has converged on the training data, the result will be
the parameter θ to which the hypothesis function can be applied to create
a function h(x) which the agent can use to interpret the data collected by
the sensors. As x is constructed for each measurement by the agent and θ

is a variable determined by the training algorithm and sent to the agent at
creation, The hypothesis function hθ(x) can be hard-coded into the agent. By
separating hθ(x), which is always the same, and θ, which is not, the agent
can be updated with a new hypothesis function (e.g. when a new sensor is
added) by sending a new θ variable, eliminating the need to create and install
an entirely new decision agent.

4.2.1 Training

The θ parameter is determined from the training data by iterating logistic
regression, repeatedly evaluating the current fit for each training-example and
adjusting θ until a good fit has been found.

iii The matrix X contains a row for every training example; the vector x contains a single
set of measured values fed into the finished hypothesis function used to generate a
prediction.
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First, an empty θ is initialised (by convention as a vector of zeros), and a cost
function J(θ) determines the aggregate error for the hypothesis function on
the training data:

J(θ) = − 1

m

(
log(g(Xθ))Ty + log(1− g(Xθ))T (1− y)

)
+

λ

2m
θ′Tθ′

where
θ′ = θ1.....n .

Here, the matrix X is multiplied by the vector θ and the sigmoid function
is applied to the resulting vector, yielding the predictions for every training
example. Applying the log function to every element yields a large negative
number for each example where the prediction is negative, approaching −∞ as
the confidence in the prediction increases. Subsequently, this vector is multi-
plied by y, in which every positive example is marked by a 1 and every negative
example is marked by a 0. This way, the penalty for a negative prediction is
kept for every example which should have been positive, whereas the correct
predictions have their penalty multiplied by zero. The same operations are
applied to the predictions and correct answers a second time after subtracting
each from a vector of ones (denoted here as 1) of size miv. This penalises
every false positive while ignoring every true positive. The resulting cost is
divided by the number of training examples m to get the average error. As
this method yields a negative cost, the result is multiplied with −1.

The second part of the cost function uses the regularisation parameter λ to
penalise large values in θ. By encouraging the algorithm to keep θ small, we
prevent overfitting. Without it, logistic regression can end up finding a good
fit to the training data which is worthless for unseen examples. Figure 4.6
shows an example of an overfitted hypothesis function: the generated decision
boundary is very specific to this training set and would likely misclassify new
measurements. Section 4.2.4 discusses regularisation in further detail.

θ0 is, by convention, not regularised by λ, as it represents the bias term, a
constant in the hypothesis function. Each element of the vector θ is a used to
weigh one of the features of the input x. Listing 4.7 shows the implementation
of sigmoid(z), h_theta(theta, X) and J(thetha, X, y, lambda), together with the
initialisation of theta.

iv m represents the number of training examples.
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Figure 4.6: Overfitting.

1 theta ← matrix(0, ncol=1, nrow=2)

2
3 sigmoid ← function (z) { 1.0 / (1.0 + exp(−z)) }

4
5 h_theta ← function (theta, X)

6 { sigmoid (X %*% theta) }

7
8 J ← function (theta, X, y, lambda)

9 { hx ← h_theta(theta, X)

10 m ← nrow(y)

11 cost ← (−1 / m) * ( t(log(hx)) %*% y

12 + t(log(1−hx)) %*% (1−y) )

13 + lambda / (2*m) * theta[−1] %*% t(theta[−1])

14 colnames(cost) ← c(”cost”)

15 return(cost) }

Listing 4.7: Sigmoid, hypothesis and cost function implemented in R.

4.2.2 Finding a good value for θ

After the cost for the initial θ has been determined, it has to be altered θ in
such as way that it will decrease the cost function, thus finding a better fit.
This is achieved by the calculation of the partial derivative of J(θ) for each
element in the vector. As the derivative represents the slope of the function
J(θ) at point θ, it can be used to find a better value for θ. This process will
be repeated until the derivative approaches zero, signifying a minimum for the
cost function and thus an optimal fit to the training data.
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∂J(θ)

∂θ0
=

1

m
XT (hθ(x)− y)

gives us the derivative for J(θ) for θ0, whereas

∂J(θ)

∂θj
=

1

m
XT (hθ(x)− y) +

λ

m
θj

is the derivative for J(θ) for θ1 . . .θn. Both are combined into a single R
function as shown in Listing 4.8.

1 gradient ← function (theta, X, y, lambda)

2 { hx ← h_theta(theta, X)

3 m ← nrow(y)

4 grad1 = (1/m) * t(X[,1]) %*% (hx−y)

5 gradn = (1/m) * t(X[,−1]) %*% (hx−y)

6 + (lambda / m) * theta[−1,]

7 grad = rbind(grad1, gradn) return(grad) }

Listing 4.8: Gradient function implemented in R.

4.2.3 Hill climbing

Using the cost function, its partial derivative and the variables X, y, λ and
an initial variable θ we can then utilise a hill-climbing optimisation algorithm
to iteratively calculate which direction we need to move θ in to lower our cost
function. For this, many algorithms exist. The Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm is an efficient algorithm (Daumé III, 2004) available
in R (R Foundation, n.d.). Applying this to the mentioned functions and vari-
ables, we can get a good fit for our variable θ. The full logit(X, y, fd, lambda)

function is shown in Listing 4.9. The fd parameter is explained in Section 4.2.5.

1 logit ← function (X, y, fd = 1, lambda = 0.01)

2 { X ← mapfeature(X,fd)

3 th_init ← rep(0,ncol(X))

4 result ← optim(th_init, J, gradient, X, y, lambda, method=”BFGS”)

5 theta ← matrix(result$par, ncol=1)

6 rownames(theta) ← colnames(X)

7 return(theta) }

Listing 4.9: Logistic regression using BFGS in R.
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4.2.4 Regularisation

As mentioned when discussing the learning algorithm, care should be taken
not to overfit the training-examples and produce a hypothesis function that is
specific to a small dataset but fails to generalise. The opposite, however, also
exists: when λ is set too large, we risk underfitting: generating a hypothesis
function which is too general and fails to classify measurements appropriately.
Underfitting can often be solved by using more training examples, and as the
data points are entered manually and a plot of the current decision boundary
is shown during entry, underfitting is more easily avoided than overfitting.
There are, however, other means to ascertain a correct λ parameter has been
chosen for the dataset. A powerful method used in machine learning is cross
validation: A part of the training set is not used during training, but instead
applied to a generated hypothesis function to verify its performance, providing
insight into chosen parameters. Though this method is hard to implement with
limited data available and would require hiding entered data points from the
set for later usage (which may be confusing to the user as data apparently
disappears), this approach does show promise for future inclusion as usage
statistics and old data (both from training and usage) become available.

4.2.5 Feature Mapping

As the current model includes each variable only once, the resulting classific-
ation is limited to a straight divisor between data points. As most biological
functions will have both a minimal and a maximal healthy level, this will not
suffice for most features. To counter this, we will use a technique known as
feature mapping. A set of features x will have features added as such:

x =

(
x1

x2

)
→ fmap(x, d) =



x1

x2

x21
x1x2

x22
x31
...

xd+1
2


This is implemented by first calculating all the combinations with repetition
of the columns, mapping each index to the actual value of the column and
calculating the product. This function is shown in Listing 4.10.
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1 mapfeature ← function (X,deg, unique = T)

2 { combs ← combinations(1+ncol(X), 1+deg, c(0:ncol(X)), repeats.allowed = T)

3 newX ← matrix(0, ncol=0, nrow=nrow(X))

4 for (j in 1:nrow(combs))

5 { newCol ← matrix(1, ncol=1, nrow=nrow(X))

6 for (k in 1:ncol(combs))

7 { if (combs[j,k] > 0) { newCol ← newCol * X[,combs[j,k]] } }

8 colnames(newCol) ← c(paste(colnames(X)[combs[j,]], collapse = ” X ”))

9 newX ← cbind(newX, newCol) }

10 colnames(newX)[1] ← c(”Bias”)

11 return(newX) }

Listing 4.10: Feature mapping implemented in R.

4.3 The Decision Agent

Now that we have a variable θ, it can be used to program a decision-making
agent. In order to make the agent as generalised as possible it will be given a
set of general behaviours dependent on θ, so that its behaviour can be changed
by sending new parameters instead of changing the code. The agent will need
more information than just the θ variable: it will need a list of “plans” telling
it how to react to predictions, the order of the variables within X, the level of
feature-mapping, and which agents to contact.

A UML overview of the decision-agent’s structure is show in figure 4.7. As
shown, the decision agent contains a great amount of variables and opera-
tions. The agent contains matrices (or more precisely, mathematical vectors)
for storing θ and x (the latter both scaled an as raw values). A Map is used
to associate the names of features with their position in x. In addition, it
contains a variable interval controlling how often a prediction is made, an
integer telling the feature mapping function how many polynomials it should
generate, a set of MessageTemplates allowing it to distinguish various kinds of
messages, and a boolean indicating whether the agent is operational (i.e., has
received a valid set of instructions). The list of Plans and the fallback commu-
nication method are described below in Section 4.3.4.

The boolean MDB and the method mdb(String) are short for Math DeBug, and
are used to print all matrices used in calculating the prediction. As this yields
a large amount of multi-line output it has been given its own quasi-log-level.
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Bones
- MDB : boolean = true
- interval : long = 5000
- theta : Matrix
- x : Matrix
- x_raw : Matrix
- features : Map<String, Integer>
- plans : LinkedList<Plan>
- fallbackAgent : AID
- fallbackRecipient : String
- mapping : int = 0
- operational : boolean = false
- instructions : MessageTemplate
- measurement : MessageTemplate
- error : MessageTemplate
(B) handleFailure : CyclicBehaviour
(B) recvMeasurements : CyclicBehaviour
(B) recvTheta : CyclicBehaviour
(B) makePrediction : TickerBehaviour

+ setup()
+ takeDown()
# binomial(n : int, r : int) : int
# numMappedFeatures(n : int, r : int) : int
# combsWithRep(x : LinkedList<Integer>, k : int) : LinkedList<LinkedList<Integer>>
# mapFeatures(x : Matrix, mapping : Integer) : Matrix
# sigmoid(t : Double) : Double
# mdb(s : String)
# report(s : String)
# tag(tag : String, value : String) : String

Figure 4.7: The decision-agent class.

4.3.1 Methods

In addition to the setup() and takedown() methods required by JADE as pseudo-
constructors / destructors, the agent contains a number of utility-functions
serving to make the code (mostly contained in its behaviours) more readable
and to improve maintainability. binomial(..), combsWithRep(..), numMappedFea-

tures(..) and mapFeatures(..) are used to perform and verify the feature
mapping and follow the same principles as described in Section 4.2.5.

4.3.2 Behaviours

As the decision-agent is the central part of the medical MAS, it contains a
large set of behaviours: three cyclic behaviours, which are constantly active,
and a ticker behaviour operating on an interval depending on the interval

variable:

• handleFailure listens for messages indicating failure in any of the commu-
nication agents. In such an event, it will use a designated fallback-agent
to alert an operator that the system might be unable to communicate.
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Plan
- below : Double
- message : String
- recipient : String
- agent : AID
- limit : Integer
- available : boolean = true
- timer : Timer
+ Plan(b : Double, m : String, r : String, a : AID, t : Integer)
+ toString() : String
+ execute(h : Double)
- msg_x() : String
- xmlMsg() : String

Figure 4.8: The plan inner class

• recvMeasurements listens for messages from the sensor-agents and saves
them in x and x_raw for use in predictions.

• recvTheta listens for messages containing instruction sets. This aspect is
explored in Section 4.3.5.

• makePrediction is responsible for periodically multiplying theta and x to
make a prediction regarding the patient’s health. This process is de-
scribed in Section 4.3.3.

4.3.3 Assessing the situation

Every interval milliseconds, the agent uses its then-current knowledge of the
features, represented in x, to construct a feature-mapped column-vector x_mapped.
The inner product of x_mapped and the row-vector theta is passed through the
sigmoid(double)-method yielding a double between zero and one, representing
the probability that the patient is still healthy. As this number decreases, the
probability of something being wrong increases. After a prediction has been
calculated, the value is compared to the thresholds defined for each plan; if
the calculated result is below the threshold for a given plan, the agent will
attempt to execute it by messaging a communication agent.

4.3.4 Executing plans

Plans are represented by a special Plan class, shown in Figure 4.8. Each
time a prediction is made, the agent attempts to invoke the execute(Double)

method for each plan, passing the predicted probability. Each plan contains
a threshold below, which is compared to the prediction when execute(Double) is
called. Execute will send its message to its specified recipient via its specified
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agent, provided two conditions are met: The prediction passed as an argument
to execute(Double) is lower than or equal to the threshold for the plan and the
boolean available is set to true.

The value of available is initialised as true, but is set to false when the plan
is first executed. At the same time, a timer is started for limit seconds, after
which available is reset. This prevents the MAS from flooding its recipients
with messages as a new prediction is calculated, by default, every five seconds;
though it may be meaningful to provide an occasional update, a realistic poll
frequency for the agent to make predictions is likely always higher than a
realistic notification frequency. By using a plan specific interval all frequencies
can be chosen separately.

4.3.5 Receiving instructions

All of the necessary information can be delivered to the agent within a single
ACL message; Listing 4.11 shows a sample XML fragment containing instruc-
tions for two features, second-degree feature mapping and two plans.

1 <instructions>

2 <features>

3 <feature id=”SystolicBloodPressure”>

4 <label>Systolic Blood Pressure</label>

5 <min>0</min>

6 <max>200</max>

7 <unit>mm Hg</unit>

8 </feature>

9 <feature id=”HeartRate”>

10 <label>Heart Rate</label>

11 <min>0</min>

12 <max>200</max>

13 <unit>bpm</unit>

14 </feature>

15 </features>

16 <mapping>2</mapping>

17 <theta>

18 <value>2.402548</value>

19 <value>2.769392</value>

20 <value>3.467782</value>

21 <value>−7.500590</value>

22 <value>−2.189613</value>

23 <value>−11.995721</value>

24 <value>−2.301167</value>

25 <value>2.064028</value>

26 <value>−2.568114</value>

27 <value>−2.736256</value>

28 </theta>
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29 <plans>

30 <plan>

31 <below>0.6</below>

32 <message>Watch out!</message>

33 <via>ScreenAgent</via>

34 <to></to>

35 <limit>30</limit>

36 </plan>

37 <plan>

38 <below>0.4</below>

39 <message>Panic!</message>

40 <via>MailAgent</via>

41 <to>dokter.bernard@example.com</to>

42 <limit>3600</limit>

43 </plan>

44 </plans>

45 <fallback>

46 <via>ScreenAgent</via>

47 <to></to>

48 </fallback>

49 </instructions>

Listing 4.11: An initialisation message as sent to the decision-agent.

The initialisation consists of five parts:

• A features node containing information about each feature. The order
the features are presented in determines the position of values within x,
and must be identical to the order used during the learning process.

• A mapping node containing a single integer value determining the amount
of feature-mapping.

• A theta node containing a series of decimal values representing θ. As
with the features, the order is important here.

• A plans node containing a set of plans used to respond to predictions.
Each plan includes a threshold, below which the plan will be executed,
a message to be sent, the name of the agent responsible for relaying the
message, an optional recipient (whether this is needed depends on the
agent: a mail or SMS agent would require a recipient, whereas a screen
agent would not), and a limit in seconds determining how often a plan
can be executed in order to avoid flooding messages.

• A fallback node containing an agent and a recipient to alert when a
communications agent is not functioning properly and cannot be trusted
to relay important messages.

32



5 Communicating results to the
outside world
The decision-agent as described above relies on other agents to communicate
the results to a medical expert and/or the patients themselves. This choice
is deliberate, as it allow new methods of communication to be added “on the
fly”, without changing the decision-agent’s behaviour. Each communication
agent added to the system represent a new option to communicate the pa-
tient’s health and relay concern. As with the sensor-agents, an abstract class
has been provided to facilitate the development of additional agents. This
class, CommunicationsAgent, shown as UML in Figure 5.1.

Each communication agent has a String variable to hold its name and an AID

representing the decision agent. A variable testInterval controls how often
the agent performs a self-diagnostic. Two behaviours are present: one to
continually listen for requests for communication, and another to perform
the self-tests on an interval dictated by testInterval. The class provides the
methods for setup, agent destruction and reporting to stdout.
Three abstract methods need to be implemented to create a CommunicationsAgent

subclass:

<<abstract>>
CommunicationsAgent

# name : String
# bones : AID
# comReq : MessageTemplate
- testInterval : long = 3600000
(B) testCommunication : TickerBehaviour
(B) relayCommunication : CyclicBehaviour

+ setup()
# testCommunications()
# communicate(msgText : String, to : String)
+ setup(name : String)
+ takeDown()
# report(String s)

Figure 5.1: The CommunicationsAgent abstract class.
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• setup() should set any relevant variables, at the very least including the
agent’s name.

• testCommunications() should include the code needed to run a self-test, if
applicable, and throw an exception if it fails to complete the test. This
exception is caught by the testCommunication behaviour after which a FAIL-

URE message is sent to the decision-agent indicating the communication
agent has become unreliable.

• communicate() should include all code needed to send a message, such as
setting up the necessary objects for IO in Java (provided this needs to
be done each time a message is sent; if the method of communication
features a persistent object that can be trusted to remain operable, it
can be setup in the setup() method) and actually sending the message.
It will send a CONFIRM-message back to the decision agent if the sending
process did not encounter any errors; in case of failure it can send either
a NOT_UNDERSTOOD message to indicate the XML received was illegible, or
a FAILURE indicating some sort of IO error encountered in trying to relay
the message to its recipient.

5.1 Communication Requests

Requests for communication from the decision agent are packaged in a small
snippet of XML, as shown in Listing 5.1. The message-node contains the body
of the email, including the most recent value for each feature.

1 <request>

2 <to>dokter.bernard@example.com</to>

3 <message>Patient health in serious condition!

4 − HeartRate = 54.93483905942176

5 − SystolicBloodPressure = 86.20808412990199

6 </message>

7 </request>

Listing 5.1: A typical message sent to MailAgent

5.2 MailAgent

As a sample, a simple agent relaying messages via e-mail has been provided.
Its source-code it listed in Listing 5.2. It implements the setup() method to
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set a name and to instantiate a Session object. As the actual authentication
needs to be done every time the agent connects to the SMTP server, the code
responsible was put in the communicate method.

1 import java.util.*;

2 import javax.mail.*;

3 import javax.mail.internet.*;

4
5 import java.io.IOException;

6
7 public class MailAgent extends CommunicationsAgent

8 { String from = ”<withheld>”;

9 String pass = ”<withheld>”;

10 Session session;

11
12 public void setup()

13 { super.setup(”MailAgent”);

14
15 Properties properties = new Properties();

16 properties.put(”mail.smtp.auth”, ”true”);

17 properties.put(”mail.smtp.starttls.enable”, ”true”);

18 properties.put(”mail.smtp.host”, ”smtp.gmail.com”);

19 properties.put(”mail.smtp.port”, ”587”);

20
21 SmtpAuthenticator authentication = new SmtpAuthenticator();

22 session = Session.getDefaultInstance(properties, authentication); }

23
24 public void testCommunications() throws IOException

25 { try

26 { Transport gmail = session.getTransport(”smtps”);

27 gmail.connect(”smtp.gmail.com”, from, pass);

28
29 MimeMessage message = new MimeMessage(session); }

30 catch (Exception e)

31 { e.printStackTrace();

32 throw new IOException(); } }

33
34
35 public void communicate(String msgText, String recipient) throws IOException

36 { report(”Mailing! \”” + msgText + ”\” to ” + recipient);

37 try

38 { Transport gmail = session.getTransport(”smtps”);

39 gmail.connect(”smtp.gmail.com”, from, pass);

40
41 MimeMessage message = new MimeMessage(session);

42
43 message.addRecipient(Message.RecipientType.TO, new InternetAddress(recipient));

44 message.setFrom(new InternetAddress(from));

45 message.setSubject(”Medical MAS Alert!”);

46 message.setText(msgText);

47
48 message.saveChanges();
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49
50 gmail.send(message, message.getAllRecipients());

51 report(”Sent message successfully....”); }

52 catch (Exception e)

53 { e.printStackTrace();

54 throw new IOException(); } }

55
56 public class SmtpAuthenticator extends Authenticator

57 { public SmtpAuthenticator()

58 { super(); }

59
60 @Override

61 public PasswordAuthentication getPasswordAuthentication()

62 { return new PasswordAuthentication(from, pass); } } }

Listing 5.2: A sample CommunicationsAgent subclass

Using this abstract class, any method of communication can be added to link
the system up to existing medical care, and an existing system can easily be
extended to include new ways of communicating. Depending on the availability
of usable Java libraries this may be done in relatively small, simple agents.
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6 Requirements
For the prototype, JADE was chosen as the development platform. It was
selected because of its stability, the abundance of Java-libraries facilitating
methods of communication and to conform to the existing product-agent en-
vironment. As the prototype MAS was developed in JADE, it should be pos-
sible to operate the system on any small device capable of running Java such
as the Raspberry Pi (Upton, 2013). My initial aim for this research was to get
the prototype working on such a portable system, but due to time-constraints
this aspect has been reclassified as future work. As the mathematics involved
on the agent side are limited to calculating the inner product of two manage-
able vectors and a few simple operations on integers and doubles, it is unlikely
that the hardware requirements will exceed the capability of small modern
single-board computers.

Though the JADE-platform was selected for the prototype, this does not pre-
clude development of a medical MAS in another language. The concepts
explored here can be implemented in any language, though support for a solid
agent-development framework would be a serious asset. Nevertheless, if better
performance is needed, the same principles could be implemented in a lower-
level language such as C, reducing much of the overhead at the cost of lower
maintainability.
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7 Reliability
At the moment, the prototype constructed in this research is still limited to
a simulation running on a computer. This allows the logic and principles to
be tested, but as actual sensors are yet to be implemented testing these will
need to be done once compatible sensors have been developed.
A number of safeguards have already been included in the prototype; Chapter
9.4 includes a few more suggestions.

• The decision-agent checks incoming sets of instructions for incongruity
and refuses to accept new instructions if various parts of the XML ap-
pear to contradict each other: When the decision-agent receives a set of
instructions, it will confirm whether the length of θ matches the length
of x after feature scaling, throwing an error if the two are incompatible.
As each level of feature-mapping adds a number of features equal to(
n+d−1

d

)
, the following equality must hold:

nθ =

d∑
i=0

(
nx + i− 1

i

)
.

• The communication-agents regularly perform self-checks and report any
failure back to the decision-agent, both when an agent fails to relay a
message and when it detects a fault during a self-test. Communication
agents also send confirmations when a message has been relayed suc-
cessfully; keeping track of undelivered messages, however, is described
in Chapter 9.4 as future work.

• Each measurement is sent both as a “raw” measurement and scaled to
the (−1, 1) interval. At present, the decision-agent just uses the scaled
value, but as the sensors’ minimal and maximal values are presented
in the instructions XML, the agent could verify the two measurements
match as an extra verification.
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8 Relation to product-agent
During development of the prototype it became clear that I overestimated the
level of overlap between the product-agent (van Moergestel, 2014) and the
medical agent. Though the product-agent, in particular the “use-phase”, was
the inspiration for utilising multi-agent technology to monitor the vital stat-
istics of a patient, this phase has not yet been researched to the same level as
the product-agent’s production phase. At this time, several ideas are being
developed but a clear standard has not yet emerged. The approach used by
the medical agent, i.e. using a classification algorithm to provide meaning
to numerical data regarding a patients well-being, might be adapted to suit
the purpose of the product agent in interpreting statistics collected during a
product’s use-cycle. In doing so, it can provide an early warning of compon-
ents’ failure, given sufficient data can be collected for a classifcation algorithm
to find correlation between those statistics and the condition of the product’s
components.

The groundwork laid in the development of the product agent could, however
provide a serious asset in realising the medical agent system. As the medical
MAS has been developed with modularity in mind, there is no such thing as a
“standard medical MAS”. Each medical MAS can be tailored to the individual
patient and personnel, incorporating a varying subset of agents to provide the
desired functionality. Many of these agents require a certain level of hardware-
support: sensor-agents can not function without the specific sensor for which
they were programmed. Various communications agents require various hard-
ware interfaces to relay information: for most forms of communication this
means a mobile internet connection, for others a cellular connection would
be more appropriate. Communication to the patients and their surroundings
could be done using a visual or auditory interface, each of which requires
specific hardware to function. As such, the production of medical agent sys-
tems would benefit from agile production technologies as described by Van
Moergestel to collect and assemble the necessary pieces of equipment.
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9 Results
The result of this research as presented in this thesis is the basis of a long
term project. At the conclusion of this research period, the following results
have been achieved:

• The concept of a medical MAS consisting of three types of agents working
together to monitor the patient and communicate the result.

• A method of collecting data from medical experts and utilising this know-
ledge to teach an agent to evaluate readings provided by sensors.

• The beginnings of a generalised framework upon which to build agents
for inclusion in a medical MAS.

9.1 Answers to research questions

RQ1 Which biological factors are indicative of imminent acute car-
diovascular disease? Since acquiring sufficient knowledge of medical sci-
ence proved to be out of the scope of this research, this question remains
unanswered; as my supervisor suggested, I instead restructured my resarch to
focus on other questions. The prototype developed as part of this research
was therefore designed to be agnostic of the actual meaning of the features it
considers; a follow-up research with the means to acquire the relevant medical
expertise should be considered to provide information usable in the develop-
ment of sensor agents.

RQ2 How could these factors be discreetly monitored? This question
depends on RQ1 and thus remains open as well. As eHealth applications on
smartphones and consumer electronics become more prevalent and accessible
even to laymen, it can however safely be postulated that the continued de-
velopment of a medical MAS is unlikely to suffer from lack of possibilities on
the subject of discreet monitoring. The rise of ubiquitous eHealth appliances
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marks a promising development and a field for further investigation. As an-
swers to RQ1 become available, it will become possible to explore this question
further.

RQ3 Considering the results of RQ1 and RQ2, what would be the
most appropriate design for a medical agent? The design of the med-
ical MAS has been the subject of Chapter 2. As the specifics of the features
monitored were left out of the picture, an adaptable, modular design has been
realised capable of supporting relevant features as they are found. The design
presented is adaptable to features unrelated to heart-disease as well, and could
easily be adapted into a more generalised intelligent eHealth monitor provided
relevant medical knowledge is available.

RQ4 How can a proposed medical agent be trained to recognise
and respond to alarming measurements? Using machine learning al-
gorithms, the decision-making agent of the medical MAS can be successfully
trained to monitor a diversity of features and recognise alarming situations.
Using a set of plans, appropriate responses to these situations can be defined
allowing the agent to perform its designated task.

RQ5 What would be the requirements in hardware and software of
such an agent? The selection of the JADE platform has made it possible
to run a medical MAS on any device capable of running a JVM. Mathematics
involved in assessing a patients health have been kept as simple as possible,
keeping the system requirements limited. Performance testing on small devices
is still required and will be a focus of future research.

RQ6 What is the relation between the product agent suggested by
Van Moergestel et al. and the medical agent suggested in this re-
search? Despite my preconceptions, the substantive similarities between the
two concepts are limited. The product agent does, however, provide a prom-
ising method of production for a medical MAS: the latter’s focus on modularity
and adaptability can greatly benefit from the agile principles the product agent
promises to provide.

RQ7 How is important patient information stored and communic-
ated in current medical care? Like RQ1, this question is left unanswered
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and the subject of further research, preferably by a researcher with a back-
ground in medical science.

RQ8 How could a “medical agent” be securely linked to / incor-
porated into existing systems in medical care? Though the previous
question failed to yield an answer about existing systems in medical care spe-
cifically, the prototype medical MAS was designed to be able to support a
large diversity of communication methods. As new methods can easily be
provided by the creation of a new agent, it should not be a problem linking a
medical MAS with an existing system. Chapter 9.4 provides a suggestion for
increasing the security of communications by using asymmetric encryption.

RQ9 How could this agent be tested to ensure sufficient reliability?
In chapter 7, some methods of error detection and prevention are discussed.
Chapter 9.4, on future research, contains a number of additional suggestions
for error detection and handling. Further testing is required once the prototype
incorporates actual sensors and reaches the maturity required to warrant a
test-phase outside of laboratory-conditions.

The main question or problem statement was: “How could agent
technology contribute to increase the number of quality-adjusted
life years (QALY) in acute cardiovascular disease?” This research has
provided a basic prototype upon which to base further research in realising
an agent-based monitoring system capable of detecting and reacting to acute
cardiovascular disease and potentially other acute risks to a patients health.

9.2 Prototype (proof of concept)

During this project, one of my primary research methods has been the de-
velopment of a prototype medical MAS. In addition to the answers presented
above, this research has yielded an R-based application capable of querying an
expert user for information, collecting the necessary data to train a learning
algorithm and provide parameters to a medical agent. In addition, a number of
JADE-based agents have been developed: The aforementioned decision-agent
forms the central part of the medical MAS and is supported by a number
of sensor-agents (providing data to the decision agent) and communication
agents (providing a means to communicate the decision agent’s results). A
number of “mock” sensor-agents have been developed for testing purposes,
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simulating measurements collected by a real sensor-agent. Additionally, two
communication agents have been provided, the first for printing to a console,
the latter capable of sending an e-mail. Collectively, these agents form a pro-
totype medical MAS which demonstrates all the relevant principles detailed
in this thesis, and can form the foundation for further development. Figure
9.1 provides a schematic overview of the prototype’s subdivisions and flow of
information.

Sensor
Agents Bones

Communication
Agents

Prototype Medical MAS

R Medical
MAS generator

Knowledge
(training data)

Measurements DiagnosisXMLXML

(creates)

XML
- Sensors
- Theta
- Feature Mapping
- Plans
- Fallback

Figure 9.1: Prototype Overview

9.3 Conclusion

Though the prototype produced during this research can not yet be considered
“ready-to-market”, the foundation laid here provides a promising base for fu-
ture development. The solution presented in this thesis provides the following
advantages:

• Modularity. By separating the mathematical foundation from the input
and output and providing a standardised way of connecting the parts
into a working MAS, a medical system can be assembled tailored to a
patients needs.

• Adaptability. By utilising machine learning to create a feature-agnostic
way of assessing dangerous situations, the medical MAS can be adapted
to other medical purposes.

• Testability. Because the functionality is separated into small, logical
units, each part can be tested in an isolated environment.

• Robustness. The modularity of the product allows for duplicate agents,
sensors or other hardware, providing a fallback for broken units.
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9.4 Future Work and Recommendations

A proof of concept has been realised, but further development is required
before it can be considered “ready to market”. This section lists a number
of improvements and features recommended for the continued development of
the prototype into a finalised product.

9.4.1 Actual sensors

For testing the prototype, a small set of “mock sensor agents” has been pro-
grammed to provide random measurements for the decision making agent to
consider. The first step towards turning the prototype into a usable product
is the addition of actual sensors and their respective measurement functions.
More medical knowledge is required to determine valuable features, after which
sensors will need to be acquired for these features; in order to use these with
the prototype a sensor-agent needs to be developed for the sensor capable of
reading the measurement and sending the scaled results to the decision making
agent.

9.4.2 Initialisation interface

The prototype uses a very basic command line interface to collect data points
and assemble the hypothesis parameter θ. For production use, a web-interface
or GUI would be preferable.

9.4.3 Partial / cumulative instruction sets

Right now, the agent expects its instructions in a single XML message contain-
ing θ, a list of features, a set of plans to execute on prediction thresholds and
a fallback communication. A new XML message would overwrite all existing
instructions. A better approach would be to replace parts of the instruction-
set only when a new XML message actually contains a replacement for that
specific part.
For sets of parameters (such as plans or sensors), another option would be to
define instructions as adding / removing items from the set.

9.4.4 Performance testing on smaller systems

The current prototype runs on a PC and serves as a proof-of-concept of the
mathematical foundations and design choices regarding a medical MAS. Future
research is still needed as to its performance running on smaller devices.
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9.4.5 Agents running outside of the platform

• Sensor-agents running on their own hardware, communicating via FIPA
messages provided a TCP/IP connection exists.

• Communications-agents running on a cellphone, using SMS to commu-
nicate errors.

• Communications-agents running on a server in the hospital, logging or
graphing data.

• A doctor communicating instructions to the medical MAS to alter its
behaviour.

9.4.6 Trust

Messages to and from the medical agent could be encrypted and signed us-
ing public-key encryption to verify the identity of a medical authority before
accepting new instructions and protect the users privacy by communicating
encrypted data only.

9.4.7 Improved plans

The current prototype only supports plans executed when a set threshold is
reached: If the medical agent determines the current set of measurements
warrants alert, it will communicate those measurements to medical authority.
Future versions of the agent could support communicating when an upper limit
is reached (good news) and timed plans like sending an overview of measured
data every 24 hours. Timed plans could also be used to implement a “dead
man’s switch”, where the agent communicates its continued operation on a
specified interval. Failure to do so could be interpreted as a sign the agent has
become non-operational and should be checked immediately.

9.4.8 Improved point suggestion

Presently, new points are suggested based on perceived holes in the information
continuum. A future version could take into account the closeness of new
points to the decision boundary, by multiplying the determinant of a simpex
with a value based on how close the associated suggested vertex is to the
boundary. As the hypothesis function for the vertex will output a value in
(0, 1) and values are more interesting as they get closer to 0.5, a translation
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function will be needed. Functions of the form f(x) = 1−|x− 0.5| or f(x) =

1− 2(x− 0.5)2 appear to be good candidates for this purpose.
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Figure 9.2: Two candidate functions

9.4.9 Detecting malfunctioning sensors

At present, the decision agent accepts measurements from any sensor-agents
it knows, but it does not notice an absence of new measurements coming in.
A future version should include a timer for each sensor-agent which counts
down from the last message received. If no new measurements are received
before the timer runs out, the decision-agent should report the sensor as likely
inoperable using its fallback communications method.

9.4.10 Verifying sent messages

Though communication agents send a confirmation when a message has been
sent, the decision-agent at present does not verify if said confirmation has
been received. The agent should include a data-structure listing sent-but-
not-confirmed messages and periodically verify no message remains in this
structure for too long.

Methods of communication capable of letting a sender know whether his mes-
sage has been received and/or read (e.g. WhatsApp, Telegram) could warrant
multiple levels of confirmation; the communication agent could send a se-
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quence of labelled CONFIRM-message when a message has been sent, reported as
received by the server, reported as received by the remote client, and reported
as being read by the remote client. The decision-agent could keep track of the
status of any message sent, and use the designated fallback communication
agent in case a message does not advance to a new confirmation-level within
a specified amount of time.

9.4.11 Configurable λ parameter

The learning process includes a variable λ used to prevent overfitting, as de-
scribed in Section 4.2.4. Making this parameter configurable during data-point
entry would allow the user more control over the “smoothness” of the gener-
ated hypothesis function.

9.4.12 Smarter learning

As described in Section 4.2.4, cross-validation could be used to allow the com-
puter to determine whether the λ parameter used results in a good fit. To
accomplish this, past training-sets and usage statistics (including measure-
ments, made predictions and false positives / negatives) should be logged and
saved in persistent storage for usage in cross-validation. This principle could
then be applied to the data itself as well, cross-referencing added data points
with existing knowledge. As the medical MAS gets tested and used, more data
becomes available allowing the agent to learn not only from its own training-
set, but from agents past as well.
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10 Evaluation
Looking back at this project, I can safely assert that a lot did not go as I
expected, both for better and for worse. I learned a lot about new subjects,
especially concerning the more mathematical part of this research: before
starting this research, I did not have any prior knowledge regarding the sub-
ject of Machine Learning, and though I had successfully finished my math
classes I did not regard myself as very knowledgeable on the subject of Lin-
ear Algebra. If someone had told me then that these subjects would form
an integral part of my project, I probably would not have believed them. In
fact, someone did. Following a quick pitch during a road trip, I started out to
investigate this new subject and now, six months later, I finished a course in
Machine Learning, taught myself two new programming languages and used
my newly gathered knowledge in my bachelor thesis project.

An aspect I am less happy about, however, is planning. Though this was never
my forte, I set out resolving to try and keep a schedule. For the first few months
this worked, although I had a habit of getting ahead of schedule researching
while getting behind on the required documents. After these were out of
the way, things went rather smoothly until I was confronted by tragic family
circumstances and I was forced to delay my thesis from January-February to
March-April. After I picked myself back up and resumed my research, most of
my planning had gone out of the window and I found it increasingly hard to
get back on track. I was making progress, but focusing on perfecting details
instead of getting the rest of the work done. During the last sprint my teacher,
Ir. Kaldeway, gave me some stern advice on this subject and suggested I drop
perfecting the prototype until after finishing my thesis, getting me back on
track.
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1 Motivation and context
This document details the steps necessary for the successful completion
of my bachelor thesis. The study it entails is sponsored by the Hogeschool
Utrecht Centre of Technology and Innovation (HU-CTI) and based on
my own research proposal. Dr. Leo van Moergestel will represent the
HU-CTI as “mandator”. Ir. Joop Kaldeway will be my supervisor for
this project, and together with Henk van Nimwegen will be responsible
for my examination as well.

Dr. Leo van Moergestel
Nijenoord 1
3552 AS Utrecht
leo.vanmoergestel@hu.nl
+31 88 481 88 00

Ir. Joop Kaldeway
Nijenoord 1
3552 AS Utrecht
joop.kaldeway@hu.nl

This research can be considered part of the larger research conduc-
ted by HU-CTI regarding agent-technology and multi-agents systems,
specifically the product agent by Dr. Van Moergestel.

1.1 Problem to be addressed

As medical science progresses, many debilitating and potentially fatal
conditions are becoming easily preventable in the presence of first-world
healthcare. The success of treatment largely depends on quick action
being taken: as more time passes before adequate care is provided, the
chance of recovery quickly decreases and the loss of quality-adjusted life
years (QALY) increases as lack of oxygen causes brain cells to perman-
ently die. Acute cardiovascular diseases1 are among the most preval-
ent diseases in the western world: In the Netherlands alone, approx-
imately 15 000 people suffer cardiac arrest outside of hospitals each

1 Brain- and heart attacks and related afflictions.
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1. MOTIVATION AND CONTEXT

year (Nederlandse Hartstichting [NH], 2014b). In 2012, 29 000 people
suffered a Myocardial Infarction (MI) and 44 000 people were affected
by a Cerebrovascular accident (CVA) (NH, 2014a). All of these show a
direct correlation between the time to onset of treatment and QALY in
victims.

1.2 Proposed solution (hypothesis)

This study aims to explore the possibilities of making monitoring vi-
tal functions in “high-risk” individuals2 more accessible and affordable
by utilising agent technology to create cheap and replaceable dedicated
monitors. By proposing a “medical agent”, this study hopes to decrease
response-time leading to increased QALY following an attack. Further-
more, a “medical agent” could potentially allow people to live independ-
ently when without it they would be forced to rely on a retirement home
to provide constant attention. This would reduce both the costs on so-
ciety as well as leading to better psychological health (World Health
Organisation [WHO], 2013) in patients.

To solve this problem, this research proposes a medical agent or med-
ical Multi-Agent System (MAS) programmed to monitor relevant vital
functions and use its knowledge of the patients situation to anticipate
emergencies, communicating them to the patient, caregivers and/or med-
ical authority. This research focuses on the above-described cardiovas-
cular diseases, but should in no means be limited to this kind of ailment.
The proposed model could be extended to watch for a variety of prob-
lems, e.g. pulmonary embolism, acute dyspnea, (chronic) obstructive
pulmonary disease, asthma exacerbation, epilepsy and diabetesmellitus.
For the sake of manageability, this research will address a single area.
Should the results be as expected, further research could be initiated to
expand the scope. A medical agent should be, by design, extendable:
additional sensors and knowledge could be incorporated into the frame-
work using a common architecture to address different threats using a
single core design.

2 Those with an elevated risk of acute cardiovascular diseases, e.g. elderly and
those with a history of such attacks.
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2 Analysis and research
statement
To verify the proposed solution described above, a number of questions
will need to be addressed after which a proof-of-concept can be designed
to ascertain the validity of the envisioned model.

2.1 Research questions

The main question this research will aim to answer can be summarised as
“How could agent technology contribute to increase the number
of quality-adjusted life years (QALY) in acute cardiovascular
disease?”. To answer this question, several sub-questions will need to
be asked:

RQ1 Which biological factors are indicative of imminent acute cardi-
ovascular disease?

RQ2 How could these factors be discreetly monitored?

RQ3 Considering the results of RQ1 and RQ2, what would be the most
appropriate design for a medical agent?

RQ4 How can a proposed medical agent be trained to recognise and
respond to alarming measurements?

RQ5 What would be the requirements in hardware and software of
such an agent?

RQ6 What is the relation between the product agent suggested by Van
Moergestel et al. and the medical agent suggested in this research?

3



2. ANALYSIS AND RESEARCH STATEMENT

RQ7 How is important patient information stored and communicated
in current medical care?

RQ8 How could a “medical agent” be securely linked to / incorporated
into existing systems in medical care?

RQ9 How could this agent be tested to ensure sufficient reliability?

4



3 Method of approach
In order to find a conclusive answer to my research questions, several
forms of research will need to be utilised. This section outlines the various
methods I plan on applying on a per-question basis.

Proof-of-concept

In order to accurately judge the validity of the answers acquired during
these research steps, several questions will also entail furthering devel-
opment of a proof-of-concept: As soon as questions are deemed to be
acceptably answerered the results will be incorporated into the proto-
type, and thus tested before being fully accepted. This approach implies
a substantial amount of intertwining between research and the develop-
ment of the proof-of-concept. Therefore, my planning on advancement
of the prototype will closely follow the research process.

3.1 Biological factors

Which biological factors are indicative of imminent acute
cardiovascular disease? (RQ 1)

To answer this question, a degree of medical knowledge is required. In
order to acquire sufficient knowledge on the subject, I plan on conducting
expert interviews at the Hogeschool Utrecht Centre for Innovation in
Healthcare1 and the Hogeschool Utrecht Faculty of Healthcare. Dr. Van
Moergestel has offered to help me find (a) suitable expert(s).

1 http://www.research.hu.nl/Kenniscentra/Innovatie-van-Zorgverlening.
aspx
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3. METHOD OF APPROACH

3.2 Monitoring

How could these factors be discreetly monitored? (RQ2)

Sensors for this purpose are being researched by the Hogeschool Utrecht.
Specifically, I plan on interviewing Remko van der Lugt2 (lectorate co-
design) and Franc van der Bent3 (microsystem-technology) because of
their extensive knowledge on the subject.

3.3 Design

Considering the results of RQ1 and RQ2, what would be the
most appropriate design for a medical agent? (RQ3)

After my first two questions have been answered, a clear image should
have emerged on what to monitor and how to do it. In this phase, I plan
to compare various architectural choices for the agent(s) and come up
with a functional design for the system. As a clear “golden standard”
for agent-based software design does not appear to have emerged yet, I
expect I will need to try various methodologies to see which one works
best for this project. Dr. Van Moergestel has suggested I look into the
Gaia methodology (Wooldridge, Jennings & Kinny, 2000) to provide a
starting point.

3.4 Reasoning

How can a proposed medical agent be trained to recognise
and respond to alarming measurements? (RQ4)

Depending on the monitored factors and their relation and relevance,
a mathematical or logical model should be established for the agent to
properly utilise acquired data. As at this point in time the prerequisites
are unknown so it would be premature to make a definitive suggestion
for a model. Multi-variate statistical analysis and machine-learning could
likely be utilised to ascertain the current and projected situation, after
which plans will then be required to react to the perceived situation.

2 http://www.research.hu.nl/Onderzoekers/Remko-van-der-lugt.aspx
3 http://www.research.hu.nl/Onderzoekers/Franc-van-der-Bent.aspx
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3. METHOD OF APPROACH

To accomplish this, a literature study should provide an answer to the
stated question.

3.5 Requirements

What would be the requirements in hardware and software of
such an agent? (RQ5)

After a mathematical model is agreed upon, an agent platform can be
selected to support a prototype agent. This part of the research process
will define requirements for a platform to be applicable, and a specific
platform will need to be selected for the proof-of-concept. Further de-
velopment could easily be moved to another platform if required (e.g. to
lessen hardware-requirements); the specific platform selected will primar-
ily concern the development of the proof-of-concept.

Once an agent platform is selected, a hardware platform can be chosen
based on the agent platform dependencies. As the mathematical model
will likely exist outside of the agent platform (unless, of course, a plat-
form happens to support it), this choice could yield additional require-
ments. For example, multi-variate statistical analysis will require vector-
calculations, which might benefit from a dedicated graphics processing
unit. These factors will need to be taken into account when selecting a
preliminary hardware-platform for development of a proof-of-concept.

At this point, development of a prototype will commence implement-
ing the chosen mathematical model on the selected platform and starting
support for the sensors decided upon in phase 2.

3.6 Relation to product-agent

What is the relation between the product agent suggested by
Van Moergestel et al. and the medical agent suggested in this
research? (RQ6)

During the previous steps of this research, similarities and differences
between the product agent and the medical agent will present itself.
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3. METHOD OF APPROACH

Based on the level of similarity, development of the two concepts could
be coordinated to support each other. These interdependencies will need
to be researched by comparing design decisions and finding common
ground.

In addition to overlap between the two projects, this question will also
aim to find and/or confirm possibilities for the application of the product-
agent in supporting the medical agent. The fact that the medical agent
is an example of a patient-tailored product suggests that a product agent
could handle assembly and maintenance of medical agents. As at this
stage the design and requirements of the medical agents should become
progressively more perceivable, an assessment can be made as to the
applicability of this approach.

3.7 Incorporation into existing medical care

How is important patient information stored and
communicated in current medical care? (RQ7)

The medical agent could use a myriad of ways to communicate to the
user, (family) caregivers and a medical authority. Potentially specific
forms of communication with medical authority could be chosen to con-
form to pre-existing standards used in the medical world to facilitate easy
adoption and incorporation. Alternatively, new methods developed will
need to be supported from both sides (i.e. both from the medical agent
and from medical care organisations). This question aims to determine
the current standards to which the agent should confirm, and will be
answered by expert interview earlier in this research: As this question
does not build upon any previous questions, it can be asked in an expert
interview when RQ1 is being answered.

How could a “medical agent” be securely linked to /
incorporated into existing medical care? (RQ8)

Depending on which standards emerge when answering RQ7, some lit-
erature study might be required to familiarise myself with the subject.
The results will then be implemented into the prototype.
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3.8 Reliability

How could this agent be tested to ensure sufficient reliability?
(RQ9)

Several parts of the medical agent system will need to be tested to en-
sure reliability. Firstly, the knowledge of a medical agent will need to be
verified on creation, and at regular intervals during operation. Secondly,
hardware and software operating the medical agent will require regular
monitoring for defects and flaws. Lastly, the communication channels
used by a medical agent will require attention to ensure vital messages
are delivered and acknowledged. All of this should be implemented into
the proof-of-concept.

With the final functionality implemented, the remaining step is to test
the reliability of the prototype. For this, the system will be considered
to consist of two separate entities, each to be tested in its own way. The
reasoning behind this split is mostly ethical and is described in Section
6.1. Testing is split in the following categories:

Sensor testing: unit tests and simulations

The sensor-related code will be tested by applying sensors to healthy
individuals and comparing the measurements to the actual values as
measured by calibrated sensors.

Logic testing: expert consultation

The logic behind the agent will be tested by feeding it simulated measure-
ments and comparing its assessments to those made by trained medical
personnel.

9
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3.9 Overview of research methods used

This table summarises the planned methods and expected results for
every research question:

RQ Method Expected results
1 Expert interviews Know biological factors to

monitor; relations between
factors; indication of cut-off
values

2 Expert interviews Know which sensors to use; how
to read those sensors

3 Literature study and
functional design

Specify agent design and
architecture

4 Literature study and
implementation in POC4

Settle on required mathematics /
logic

5 Implementation in POC Choose a platform; determine
hardware requirements;
implement architecture and logic
in prototype

6 Functional analysis and
comparative study

Comparison of approaches;
assessment how both projects
can benefit each other; determine
possibility of code sharing

7 Expert interviews Overview of present medical
infrastructure

8 Literature study and
Implementation in POC

Determine on communicating
measured values

9 Unit testing and
simulations (sensors);
expert consultation (logic)

Verify validity of proposed
solution

4 proof-of-concept
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4 Goal and expected results
The primary goal of this research project is determining the applicability
of agent-technology in medical monitoring. To validate the stated hypo-
thesis, a working proof-of-concept is to be developed. To accommodate
the prototype, further research will be required. In addition to answers
to the above-stated questions, this research aims to deliver a prototype
medical agent demonstrating the following capabilities:

• Ability to reliably monitor a number of vital statistics1.

• Ability to determine a valid assessment of the patients health based
on these measurements.

• Ability to formulate a plan based on the perceived patient-condition.

• Ability to carry out these plans.

The prototype medical agent should be executable both in a simulated
environment (providing a safe way to conduct tests and observe agent be-
haviour) and on real hardware connected to real sensors (demonstrating
the validity of the concept).

1 The number and identity of which will be determined by answering the first
research question
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5 Preconditions and risks
In order to successfully complete the above-described steps, a number of
preconditions must be met. This chapter lists those preconditions and
their associated risks.

5.1 Contact with knowledge sources

Dr. Van Moergestel, FG

As this research depends upon medical knowledge not available at the
Faculty of Nature and Technology, outside sources are required to find
an answer to the first three research questions. At the Utrecht Univer-
sity of Applied Science (HU, Hogeschool Utrecht) this subject is taught
by the Faculty of Healthcare (FG, Faculteit Gezondheidszorg). Dr. Van
Moergestel has offered to mediate on my behalf. Failure to acquire or in-
terpret knowledge at this point would have a large impact on the success
of the entire project and can be considered a risk. Should a situation
arise where the required information can not be acquired, an alternat-
ive course should be considered focussing on the technical aspect of the
agent while substituting assumptions for medical knowledge. The result
would then be a prototype unfit for its designed purpose, but potentially
usable as a basis for further research when the missing information can
be procured.

5.2 Hardware availability

Dr. Van Moergestel

As a prototype medical agent will be required for a conclusive valida-
tion of the stated hypothesis, a potential problem could arise if required
hardware should prove (temporarily) difficult to procure. As long as
hardware requirements are determined and communicated at an early
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5. PRECONDITIONS AND RISKS

stage this should not prove a problem, however last-minute alterations
or additions could prove a risk and should therefore be avoided.

5.3 Relation to the product agent

Dr. Van Moergestel

The medical agent-research is a subsidiary to the product-agent research
efforts, its continuation is directly dependent on the continuation of its
parent. At this point, these risks appear to be very small, but should
nonetheless be considered in a conclusive assessment of risks.

5.4 Personal risks

Brian van der Bijl

Lastly, my personal situation constitutes a risk to the successful con-
clusion of this research project. As the past few years have shown
me, my own mental health is not infallible and could therefore be con-
sidered a risk. Additionally, my mother could be considered a “terminal”
Parkinson-patient; twice in the past half year, drastic changes in her
situation have cost me a lot of time and energy and severely limited my
professional and academic capabilities. This too should be considered a
valid risk in the success of this research project.

13



6 Further considerations
6.1 Ethics

The intended result of this research will need to be able to take medical
responsibility to satisfy its set conditions. As such, a consideration of
ethics is of great importance — most importantly in the testing phase. To
ensure an ethical approach here, the testing will be split in two separate
topics:

• Sensor testing

• Logic testing

Sensor testing

The sensors and the code required to read them can easily be tested on
healthy subjects, as there is no requirement to trust the unfinished proto-
type to make any critical assessments regarding subject health. For nor-
mal (healthy) measurements, monitored values can be compared to val-
ues acquired by trusted secondary sensors. Values outside of the healthy
range will need to be a) simulated or b) extrapolated from healthy meas-
urements .

Logic testing

The actual agent interpreting the measurements can be fully tested on
generated results, as the source of its input should be irrelevant to the
logic applied to assess the situation and respond to it. The agent’s re-
action to different simulated measurements can safely be observed and
evaluated by sufficiently skilled medical personnel.
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7 Planning
7.1 Weekly planning / communication

To ensure sufficient communication for the research to progress I have
an appointment with Dr. Van Moergestel twice a week to discuss my
goals and results. These meetings are planned on Tuesday afternoon
and Thursday afternoon, though this is not a hard rule because of Dr.
Van Moergestel’s busy schedule.

To discuss my progress, I meet with Ir. Kaldeway at least once a
week. As I also help him out as TA in one of his classes thrice a week I
can easily get in an extra appointment should this be required.

7.2 Milestones

2015-09-25 RQ1 - Medical knowledge
2015-09-25 RQ2 - Sensors
2015-09-25 RQ7 - Communication in medical care
2015-10-02 Final version Project Plan
2015-10-09 RQ3 - Design
2015-10-09 RQ4 - Mathematical foundation
2015-10-16 RQ5 - Requirements
2015-10-16 First thesis draft
2015-10-20 RQ6 - Relation to product agent
2015-10-23 RQ8 - Incorporation
2015-11-06 Proof-of-concept
2015-11-20 RQ9 - Testing
2015-11-20 Second thesis draft
2015-12-15 Final thesis version
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7.3 PERT chart of milestones
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Glossary
cardiac arrest sudden stop in blood circulation due to the failure of

the heart to contract effectively or at all. 1

CVA cerebrovascular accident (brain attack): poor blood flow in the
brain resulting in cell death. 2

MAS multi-agent system: a system composed of multiple intelligent
agents interacting within an environment. 2

MI myocardial infarction (heart attack): cessation of blood flow result-
ing in damage to the heart muscle. 2

QALY quality-adjusted life years. 1–3
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