

author(s)

Maurice Wingbermühle

Venlo, 27 June 2012

version

1.1
 number of pages

1 / 41

Graduation Report
V4 Printer Drivers & Cloud Integration

Graduation Report

version 1.1

page

2 / 41

Table of content
Foreword 4

Summary 5

Glossary 6

1 Introduction 8

2 Creating a V4 Printer Driver 9
2.1 Introduction 9
2.2 Architecture 9
2.3 Test case requirements and pipeline configuration design 10
2.4 Implementation of the filters 11

2.4.1 Print Ticket Parser Filter 11
2.4.2 JDF Insert Filter 11
2.4.3 Configuration files 11
2.4.4 Implementation challenges 11

2.5 Testing the driver 12
2.6 Conclusions and recommendations 12

3 Enhancing with PrinterExtensions 14
3.1 Testing with the Microsoft samples 14
3.2 Background information 15
3.3 Modifying the Sample 15
3.4 Conclusions 16

4 Metro style Apps 17
4.1 Coupling the sample 17
4.2 Background information 18
4.3 Modifying the code 18

4.3.1 Getting SNMP Data 18
4.3.2 Devices & Print Slide-Out 19
4.3.3 Support from Microsoft 19
4.3.4 Progress halted 20

4.4 Changes in Metro & Windows 8 20
4.5 Conclusions 20

5 Researching the Cloud 22
5.1 Collecting in-house sources 22
5.2 Research delineation 23

Graduation Report

version 1.1

page

3 / 41

5.3 The real research 23
5.3.1 What research had been done? 23
5.3.2 What technologies can be used? 23
5.3.3 What existing cloud services can be used? 24
5.3.4 What interaction should there be with the cloud service? 24
5.3.5 Where do we integrate the cloud? 24
5.3.6 What do competitors offer? 25
5.3.7 Can creating our own cloud service help in integrating more services? 25
5.3.8 How can we build our own cloud service? 25
5.3.9 What infrastructure should be used? 25

5.4 Findings and conclusions 26

6 Designing a Proof of Concept Cloud Solution 27
6.1 The Concept 27
6.2 Direct or indirect cloud access 27
6.3 Choosing the service 27
6.4 OCAPI 28
6.5 The Design 28
6.6 The Implementation 30

6.6.1 OCAPI Service 31
6.6.2 OCAPI Client 31
6.6.3 The combined result 32

6.7 Conclusions 32

7 Integrating the Cloud 33
7.1 Designing the integration 33
7.2 Triggering upload 34
7.3 Integrating OCAPI Client into the PrinterExtension 35
7.4 Problems Arise 35
7.5 Further development steps 36
7.6 Conclusions 36

Sources & Installable Binaries 37
First V4 Driver (Consumer Preview Version) 37
Desktop PrinterExtension & Metro Device App 37
Cloud Concept 38
Cloud Integration 38

Evaluation 39

Sources 40

Appendices 41

Graduation Report

version 1.1

page

4 / 41

Foreword
This document is the graduation report of Maurice Wingbermühle, student ICT & Technology at Fontys
University of Applied Sciences. During a period of 20 weeks, I completed my graduation on V4 printer
drivers and cloud integration at Océ Technologies B.V. located in Venlo, The Netherlands.

The main reasons that I chose for this assignment are the flexibility of the assignment and the focus of
the assignment on my graduation. Océ does not pressure me to develop or research anything; they just
want full access to the results of my research and products that I might develop. Océ Technologies B.V.
is a company with a high technological profile and together with Canon, they are a leading company in
the printing industry.

The subject of this report is about the new V4 Printer Driver model, introduced in Windows 8 and
Windows Server 2012, and integrating cloud services into a new printer driver. Because Fontys required
me to do a decent research, the cloud integration part of the assignment would be ideal as a research
subject. Especially because of the environment of the integration, the printer driver, makes this research
interesting. For as far as we know it is a world first attempt of combining the new V4 printer driver
technology with cloud technology.

I have learned a lot from my period at Océ and I have enjoyed working on the project. I would like to
thank all the people that were involved in any way, and helped me to accomplish my goals. It has been a
great experience and a privilege working with them. Special thanks go out to my mentor Johan
Hoogendoorn, Gé Kessels, Christian Luijten, Matthieu Helder and Rob Kersemakers for providing me
with very helpful clues, support and information for my cloud investigation. I would not have been able to
come this far without their help.

Graduation Report

version 1.1

page

5 / 41

Summary
Océ Technologies B.V. is the research & development department of the printer producer Océ N.V.,
which is a part of Canon Group. Because Océ is part of Canon, Océ gets to focus on wide format and
office printers. Before my graduation project started, there already was some knowledge of the V4 printer
driver model and the surrounding technologies, some research had been done on cloud integration, but
there was no working cloud driver for Metro yet. The research that had been done by Océ employees was
accessible for me. There is a need of information about the new V4 architecture and technology, so Océ
would be able to assess the impact on their current code legacy. My primary goal was to build a proof of
concept to combine all these technologies, and show that it can be done, and how it can be done. I
started with creating a basic V4 printer driver, which later on will act as a base to integrate the cloud
concept. The printer driver has to comply with a small number of requirements, to be able to demonstrate
the driver on Océ printers. After building the printer driver, I started building the UI parts that can enhance
the printer driver. I used the samples available on the Microsoft website, modified them and coupled them
to the printer driver. The coupling was the hardest step of all because the documentation was not yet
complete at the time I made the attempts to couple UI with printer driver. I encountered a bug in a sample,
which I reported to Microsoft. Sadly enough the bug vanished while Microsoft was working on the case,
so the problem disappeared. That does not mean that it is solved. Next I started my research for cloud
integration. I investigated a lot of services, and a lot of aspects of integrating the cloud into a printer driver.
I had special focus on networking problems and how to handle / bypass them such as a big corporate
network like at Océ. I investigated the possibility of building our own cloud service and what advantages
that would have. In the research document I eventually came up with a number of conclusions and
advices to help create a concept for cloud integration into a printer driver. With the research complete and
a lot of additional knowledge about the cloud, I started designing and building a concept for cloud access,
that later will be integrated into the existing printer driver from phase one and two. In the design I
combined as much of the advantages that came out of our research as possible. I describe the steps
taken in setting up the design, and implementing the client and server side. The implementation of the
cloud concept is capable of authenticating and with Google and retrieve a list of files from a personal
Google Drive, and with that proves that the concept is working. The next step was to integrate the cloud
concept into the printer driver. The main target of the integration is the Metro style device app, and the
integration should have been no problem, but because of unexpected and seemingly undetectable errors,
I could not continue as I would have wanted. I had to stop investigating the issue because I would have
run out of time to finish my report and other documentation, but after a reboot of the Windows 8
environment, the issue was gone and the app was working fine. At the end of the project I can conclude
that my cloud concept is the most powerful result of my graduation project. The reason for the success of
OCAPI was combining a number of stable, widely used standards to deliver a cloud solution to a cutting
edge and sometimes even bleeding edge technology environment. With the project I have successfully
displayed the opportunities of the V4 Printer Driver model in combination with the latest cloud technology,
and proved that low level cloud integration in the printer driver is not impossible, and it is worth to invest
more time into further investigation.

Graduation Report

version 1.1

page

6 / 41

Glossary
Defenition Meaning / Explanation

.NET
Pronounced “Dot Net". Software framework, developed by Microsoft. Extension to the
Windows API.

API
Application Programming Interface. A collection of definitions on base of which
applications can communicate with other applications or application parts.

App
Short for application. Popular word and mostly used to refer to an application for a
mobile operating system.

ASP.NET
Active Server Pages .NET. Microsoft developed server side application architecture.
Running on the .NET framework

C#

Pronounced "C Sharp", Object Oriented programming language originally developed
by Microsoft within the .NET initiative. One of the programming languages for the
Common Language Infrastructure. Also needs a virtual machine environment to run in.

C++
Pronounced: "C Plus Plus". One of the most versatile and most used programming
languages.

DLL

Dynamic Link Library. Software library that can be distributed seperately, or combined
with other software. Applications can use these libraries, and might even require them
for proper functioning.

DNS
Domain Name System. Hierarchical distributed naming system for computers,
services, or any resource connected to the internet or a private network.

exe
Executable, filename extension that indicates that the file is a executable application
for Windows.

firewall
Software for protecting a computer from unwanted intruders like computer virusses,
hackers, or just unwanted content or behaviour.

HTTP
HyperText Transfer Protocol: Protocol for transmitting text and other internet content
from a server to a client.

HTTPS
Secure version of the HTTP protocol (hence the extra S). The HTTP data stream is
protected by a SSL encryption.

IaaS
Infrastructure as a Service. Form / type of cloud service that provides infrastructure in
the cloud, like virtual machines and virtual networking.

ID
Identifier. ID can also be a shorthand for an identification number or other means of
identification.

INF file
Information, or Setup Information file. Plain text file, containing all information needed
to install specific software.

InterFilter
Communicator
(IFC) Part of the XPSDrv pipeline, that converts and buffers data for pipeline filters.
IP address Internet Protocol address. Identifier for a host in "the internet".

JDF
Job Defenition Format. Data format for PrintTicket, based on XML. Developed by
Adobe.

Metro Design language, created by Microsoft. First real focus in Windows 8 UI.
OS Operating System – In this context: Windows 8

PaaS
Platform as a Service. Form / type of cloud service, that provides a development
platform in the cloud.

PCL6 Printer Command Language version 6. A PDL developed by Hewlett Pakard (HP)

PDF
Portable Document Format. Developed by Adobe. Standard format for exchange of
electronic documents.

PDL
Printer Description Language. Data format for document description, used to
communicate to printers.

PostScript (PS) PostScript. A PDL developed by Adobe.

Graduation Report

version 1.1

page

7 / 41

PrinterExtension
UI extension for a V4 printer driver. Replaces the default Windows Advanded Print
Settings dialog.

PrintTicket Set of (User configured) print settings, specific for one print job.
PropertyBag Part of the XPSDrv pipeline, capable of storing data for as long as the pipeline is alive.

REST
REpresentative State Transfer. Standardized software architecture. Used for
implementations of web and cloud services.

sandbox
A security mechanism to separate running programs. Often used to protect systems
from untrusted code.

SDK
Software Development Kit. Package of software tools and libraries to enable software
development for a certain platform, API or framework.

SNMP
Simple Network Management Protocol. A protocol for retrieving and setting properties
to network devices.

SSL
Secure Socket Layer. Cryptographic protocols for communication security over the
internet.

UI User Interface. A way of letting the user interact with a electronic system.

V4 Printer Driver
A printer driver built according to the specification of the new Microsoft V4 (Version 4)
Printer Driver Model.

Visual Studio Development enviroment for Windows environments, developed by Microsoft.
WDK Windows Driver Kit - Software development package for developing Windows Drivers.

Win32
Windows 32bit API. The Windows API to access system resources, built for 32bit
operating systems.

Windows
Operating System, developed by Microsoft. Numerous versions have been released,
but in this document we mostly talk of the latest version: 8.

Windows Event
Viewer

Tool that displays messages, warnings and errors that happen in the Windows system
software.

WinRT
Windows Runtime. Actually the same as Windows API, but suitable for ARM and Intel
core processors. Windows 8 uses this runtime for all Metro related software.

XAML

eXtensible Application Markup Language. A XML based defenition language to
describe a UI. Can be programmed by a software developer or generated from a
designer tool.

XML eXtensible Markup Language. Human readable data format.

XMPP

eXtensible Messaging and Presence Protocol. Has its origin as Instant Messaging
protocol, but now being adapted for a wider application base. Popular because of its
speed. Uses HTTP or HTTPS as data transport protocol.

XPS XML Paper Specification. A PDL developed by Microsoft.

XPSDrv pipeline

Rendering component of a XPS based printer driver. Software uses the Pipeline
Design Pattern, and the filters in the pipeline can be built by printer driver developers.
The pipeline itself is built and managed by Microsoft.

zip File type. Compressed archive which can contain multiple folders and files.

Graduation Report

version 1.1

page

8 / 41

1 Introduction
Windows 8 Consumer Preview and Release Preview, Visual Studio 11 Beta and 2012 Release Candidate
and Windows Driver Kit Beta; can it get even more bleeding edge? Sure! Throw in some cloud services!
That is where this graduation is about. Using the very latest of technologies to create a proof of concept
and discover new possibilities that never have been done before. Learn about every technology, how it
works, how to use it, and what happens if we were to use in combination with other new technologies, or
even old legacy code.

Océ Technologies B.V. is constantly searching for new technologies and possibilities to enhance their
products. The announcement of the coming of Windows 8 was a trigger to investigate the impact that the
new Printer Driver Model (version 4) will have on their systems. Combined with the personal interest of
Johan Hoogendoorn and rumours of competitors’ activities in the cloud, it resulted in a very interesting
graduation assignment.

The assignment is to build a V4 printer driver, enhance the driver with PrinterExtensions. After that do a
research on cloud services and develop a concept to integrate cloud into the printer driver the best way
possible. In order to accomplish all this, I need a great deal of information and knowledge about a variety
of subjects, and I will document as much of that information as I can. For more information about the
assignment, please see Appendix A: Project Initiation Document.

To give the entire project structure, I made phased planning. This will help to track the process of the
project and all the separate deliverables, and gives me and my mentor the means to act fast when a
phase is running late. The planning and the complete phase description can also be found in appendix A.

The structure of this document follows my process in fulfilling my assignment. Chapter 2 describes the
steps that I have taken to create a basic V4 printer driver, together with bit of background information on
the V4 Printer Driver Model. The third chapter is about the first UI expansion that I have built for the
printer driver: the PrinterExtension for desktop environment. The fourth chapter is still about the same
phase as chapter three, but this time about the Metro style PrinterExtension. I have had a bit more issues
with that part, and the chapter contains the complete story on how I tried to resolve the issue with the help
of Microsoft. The fifth chapter is about the research that I have done on the cloud. I will just discuss the
process of creating the document, and a small summary of the document, and if you want to know more,
you will have to read the research document itself. The sixth chapter is about designing and developing a
concept for cloud access and intermediate cloud solution, as a preparation on chapter 7, which will
describe the steps taken to integrate the concept into the printer driver, and the challenges that I
encountered during that phase.

Graduation Report

version 1.1

page

9 / 41

2 Creating a V4 Printer Driver
2.1 Introduction
This chapter belongs to phase two of my planning, where I create my first own printer driver. We need a
printer driver to integrate the cloud into, and by starting with the printer driver itself, we learn a lot about
the environment of the printer driver and the capabilities that it has.

As a test case vehicle, we need a basic V4 Printer driver, to experiment with. We needed a driver that
should actually output to a Prisma-Sync printer from Océ, with a limited subset of functionality and
configurable options. This involved reading a lot about the driver architecture, the communication
standards in printers and how to build the actual driver. The documents that I have used for this phase
can be found in the Sources, marked with reference MS01 and MS02.

To get started with the V4 Printer Drivers, I started with the templates that Microsoft provides for Printer
Drivers in the WDK. I’ve described how to start with the templates in another document (see Appendix B).
The reason to do this is that I would always have a safe fallback solution if the implementation would not
succeed. This way I always succeed, and the number of features depends on the speed of implementing.

2.2 Architecture
The new V4 architecture uses the XPSDrv pipeline, and Microsoft makes sure that the input for the driver
is XPS. Microsoft also provides two converter filters for the pipeline to convert XPS to PostScript or PCL6.
These filters are developed by Monotype Imaging, and they licensed the use of the filters to Microsoft and
their users. To use those filters, you will have to configure them in a pipeline configuration file, as part of
the driver configuration.

In the image below you can see the V4 rendering choices at high level. This is how the framework
provides the XPS input for the filter pipeline, and how to get XPS or PCL6 / PS output by using different
pipeline configurations. The gray parts are system components that are immutable by us, the printer

driver developers. The
red parts are only
configurable by us, and
the blue parts are the
filters and configuration
files that we can write
completely. It is not
shown what parts are
mandatory and what
parts are optional, but
we will get to that.

Figure 1 - High level architecture rendering choices (See document MS01, Section 4.1.1)

Graduation Report

version 1.1

page

10 / 41

The XPSdrv pipeline backend is provided by Microsoft, and therefore controlled by the Windows
operating system. The lifetimes and starting times of the pipeline and the filters are not within the control
of the developer. You need to use the XPSDrv pipeline when you want different PDL or functionality as
output for your printer driver. For custom functionality, you have to write a filter, and provide a bit of
configuration XML in the pipeline configuration file, to tell the pipeline in what order to execute your filters
and what type of in / output your filters expect.

2.3 Test case requirements and pipeline configuration design
So for our basic driver, we need PostScript output prefixed with a JDF ticket to have the Océ printers
understand our print job. To fill the JDF ticket with actual data, we have to retrieve some data from the
XPS print tickets. The JDF ticket has to be added after the conversion from XPS to PostScript has taken
place. Taking this all in account, the pipeline configuration design looks like this:

Figure 2 - My pipeline configuration design
The design above is the solution to a problem that is introduced by using the XPS to PostScript
conversion filter, which converts the XPS in the pipeline into a other PDL stream. The problem is that
after the conversion, you cannot access the print tickets that are in the original XPS stream. A simple
solution is to extract the print tickets from the XPS stream before converting it to PostScript, store them in
the PropertyBag, and afterwards generate the JDF ticket, and read the needed values from the print
tickets. I could also have generated the JDF ticket in the first filter and stored that, instead of the raw print
ticket, but this is a more equally distributed approach, and allows us to reuse the existing samples from
Microsoft. The first filter extracts and, if needed, merges the print tickets and stores the merged ticket to
the pipeline PropertyBag. The last filter reads the print ticket and extracts only specific values, and injects
them into the JDF ticket.

Graduation Report

version 1.1

page

11 / 41

To realize this design, we have to create 2 filters of our own, and configure the Monotype XPS PostScript
converter filter. Luckily the Microsoft templates for printer drives do a lot of work for us, so the only thing
we need to do is modify the template code and add pieces of our own, and configure the setup properly.

As stated earlier, Microsoft makes sure that the input is XPS, so you don’t have to worry about various
PDL’s and applications that you have to support. Since there is nothing to configure for the start of the
pipeline until our first filter is called, we are already done with that.

2.4 Implementation of the filters
This is only part that involves programming in the making of the entire driver. The technical details of
implementing the pipeline filters and setting up the configuration files are described in Appendix B. In this
section I will only mention the process of creating the filters.

2.4.1 Print Ticket Parser Filter
The first thing to implement according to the dataflow in the design is the print ticket parser filter. In this
filter we extract the raw print ticket from the XPS input stream. I used notepad to generate my print job,
which will result in creating 1 print ticket in the XPS file. It is possible that there are multiple print tickets in
a XPS file and you should merge those print tickets with the main ticket if they exist. I used the pipeline
PropertyBag to store the print ticket so I can retrieve it in the JDF filter.

2.4.2 JDF Insert Filter
At this point the print ticket is safely backed up in the pipeline PropertyBag, and the rest of the XPS
content of the file is converted to PostScript and that stream is ready for us to read. As an intermediate
solution, I have taken a JDF ticket from an Océ printer driver and used that as static string. In that string
I’m injecting some values that I parse from the print ticket from the pipeline PropertyBag. When finished
inserting all values into my ticket, I write it to the output stream, followed with the PostScript content from
the input stream. That concludes the job for the filter and with that, the job for the pipeline.

2.4.3 Configuration files
To let the pipeline know that we want to use filters, we need to supply the pipeline configuration file. This
is mandatory file, and without it, the printer driver will not even install.

Because I used the project that I created from the template, as will be described in the next chapter of this
document, this configuration file should already contain the Monotype XPS – PS converter filter. Now it’s
our job to add our own filters at the right position and with the right input and output parameters.

Also be sure to update the INF file to comply with your pipeline configuration. Visual Studio will check
these files and if there are inconsistencies, it will give build errors.

2.4.4 Implementation challenges
In the previous sections I described the pipeline and we presumed the pipeline filters are executed
sequentially. However, the XPSDrv pipeline is different from other pipelines. It is the pseudo multi-
threaded framework that enables single threaded filters to be executed in parallel with other filters. That

Graduation Report

version 1.1

page

12 / 41

can pose a problem, because we expect the data to be ready (processed and set by the other pipeline
filters), but on many occasions, that is not the case. The filters are instantiated and started in parallel, and
that would mean that if we, for example, would try to access the print ticket in the PropertyBag, it would
not be there yet because the first filter just started executing. The only remedy against this, is trying to
read from the input stream as early as possible. The input stream read statement is blocking, and will halt
further processing to the filter until the input stream is ready and has all the data available. This is
managed by the pseudo multithread framework.

It took me quite a while to figure this out, because it is not mentioned in any of the documentation about
the XPSDrv pipeline. Debugging and tracing my code gave strange results, and eventually Gé helped me
out and said I had to place the read statement at the top of my filter. Apparently he also experienced the
issue when experimenting with XPSDrv and V4.

I also had an issue with the implementation of the JDF Insert filter. I wanted to parse the XML from the
PrintTicket with a decent XML parser, but did not succeed in getting a decent XML parser into C++. In a
printer driver filter, you do not get the full .NET environment as you get in a normal application project,
and it would also be a bit overkill to link the entire BOOST C++ library in the printer driver just for this. I
noticed that I was wasting a lot of time with the issue and decided to set a timebox for fixing a decent
solution and otherwise I would take the less decent route and just use text search and text selection
functions to select certain values from the PrintTicket. Sadly I had to take the latter route, but it did result
in a working solution within the time limits of the phase, and timeboxing helped me to maintain my project
planning.

2.5 Testing the driver
To conclude the driver development of this phase, we tested on a test machine from Océ. At first there
was strange output from my driver, but with a little help from TestGroup (the test team that is working on
these machines) we quickly identified the problem. After a quick fix (setting a different mimetype in the
JDF ticket), I was able to print to the Océ printer with a number of different printer settings, and with that I
had satisfied almost every requirement for the driver.

The result of this phase still holds an issue though. When printing multiple copies, say 5 times, the
MSxpsPS converter prints the document 5 times in PostScript. The printer however is also instructed to
print the document 5 times. This means that I actually get the document 25 times. When I order the
printer to staple every document, I get a staple every 5 documents. To fix this, we need to prevent the
MSxpsPS to print multiple copies. This can be done by modifying the XPS Print Ticket before passing it to
next filter. This way we backup the real number of copies in the PropertyBag, but fool the MSxpsPS filter
to print only once.

2.6 Conclusions and recommendations
The task of building a v4 printer driver requires a lot of knowledge. There are so many mechanisms and
subsystems that you need to take into account. The smallest error in a configuration file can cause the
driver to not install or work properly. We also learnt that the new V4 printer driver model is quite a bit
different from what it was before, and restricts the developer a lot more. On the other hand, it has become

Graduation Report

version 1.1

page

13 / 41

a lot easier to develop a printer driver. An experienced developer should be able to do so in an hour or 2,
according to Microsoft.

For me however, that was obviously not the case. The documentation, especially when I started with the
project, was not complete and sometimes not even correct. This made development and understanding
the mechanisms and architecture a lot harder. In the end it seems that the implementation of the filters is
not that challenging, but the configuration of the driver is harder than it looks. There are a lot of values
that are linked together by the system, and Visual Studio does check a lot of them, but is not able to
validate them all.

The printer driver that I created does not quite satisfy all requirements that were posed. There are a
couple of reasons for that. The biggest factor was time. I did not have enough time in this phase to
complete all the features and fill in all requirements as I would have wanted. The printer driver as it is now
just is capable of having basic printer output with a very limited subset of configurable options. This
makes the printer driver compatible with virtually every Océ printer, but I have not even scratched the
surface of the capabilities of the bigger Océ machines. The features that I did not implement are built-in
constraint handling and Bidi communication. These features do not contribute to having basic output from
the printer driver and therefore had a lower priority to being implemented into the driver. With having time
issues, it is logical that these features would disappear first from the list things to implement. Maybe if I
have time left at the end of the project, I will see if I can take a look at these features.

Graduation Report

version 1.1

page

14 / 41

3 Enhancing with PrinterExtensions
For the next phase, the goal was to create the UI part of the printer driver. When I started this phase I did
not realize that there where actually two environment to do this for. Halfway the phase I realised that the
UI part for the Metro environment is something entirely different. To split the 2 development tracks, I have
divided the phase over two chapters. See Phase 3 in appendix A.

The goal for the next two chapters is to create a UI for a specific environment. This chapter describes the
process of the UI development for the PrinterExtension in the desktop environment of Windows 8, and the
next chapter does the same for the Metro environment. The UI is meant to be as complete as possible,
and it needs to be able to set all available options in the printer driver.

3.1 Testing with the Microsoft samples
Before I start working on my own App, I wanted to test the sample from the Microsoft Developer pages, in
particular the PrinterExtension sample from the website. I started to try to couple that to my printer driver.
This seemed pretty easy, but it took me quite a while to figure this out due to missing, incomplete or
wrong documentation. This is exactly what I was afraid of when I started the phase, and that is why I
deliberately chose to start with the Microsoft samples first. If something already went wrong with those, I
would have spent hours modifying code that in the end would not work anyway.

According to the documentation, the steps to couple the PrinterExtension to the printer driver would be
the following:

1. Install the printer driver, if you have not done so already.
2. Get the printer driver ID, like described in Appendix C, Chapter 1
3. Insert the printer driver ID into the PrinterExtension application code (needed for enabling events)
4. Build (and optionally install) the PrinterExtension
5. Create and execute registry keys as described in Appendix C, Chapter 2 and 3
6. Run the PrinterExtension executable (either from Visual Studio or manually from explorer)
7. Open a desktop application that can print, like notepad and execute a print job to your installed

printer job, click “Preferences” in the print dialog and if you did everything right, your printer
extension should pop up.

If after completing the steps above, the PrinterExtension does not come up, there are a couple of thing
that could be wrong: Either the entered ID or location is wrong. The result is that the PrinterExtension
crashes, or the framework crashes. In all these cases, the default Microsoft Preferences dialog will come
up. To rule out the last option, you have to try again to start the Preferences. If after 2 or 3 times, I’d start
looking in the Event log, to see what went wrong. Because we are working in a complete beta
environment, the supporting frameworks are not completely stable yet, and it might not be our problem.
You will still have to find out what is happening and maybe check if the problem is known with Microsoft.

Graduation Report

version 1.1

page

15 / 41

I have encountered all scenarios that I described above, and at this moment the framework is the only
unstable part. In the Consumer Preview, you are actually quite lucky if you can get the PrinterExtension to
pop up twice in a row without showing the default Microsoft UI. In the Release Preview, this is solved.

3.2 Background information
The PrinterExtension is a substitute UI component for the advanced print dialog. When installed right, this
UI comes up instead of the default Microsoft advanced printer preferences dialog. That means that this UI
should have all functionality of the default dialog. The advantage of this UI is that it can be styled by the
developer according to, a company policy, and add extra features to the printer driver.

When compiled, the PrinterExtension is an .exe, like a normal application on pretty much all current and
previous versions of Windows. It can be accompanied by DLLs, and access system resources like normal
applications do. They run on the Win32 and .NET 4 framework.

3.3 Modifying the Sample
Now that the coupling between the Microsoft PrinterExtension sample and the V4 printer driver is a
success, I started modifying the code in the sample, so that it at least looks like I did a lot. I added some
Océ logos that I took from the website, and styled the UI that it resembled the colours from the website. I
also wanted to show more and different options than the sample did, so I also edited that.

After completing the modifications, I was surprised to see that it already was working, because I did not
touch the control code of the print settings. I saw that the settings in the JDF ticket that came out of my
printer driver resembled the values I chose in the PrinterExtension I just modified. After some more
digging in the code I found out that all settings for the printer driver were available and loaded into the
PrinterExtension, but not all were shown. I deliberately chose to only show the option that I support in the
JDF ticket, because the other options would only affect the PostScript converter filter, and maybe have
unexpected results in combination with other settings.

For showing printer feedback I functionality, I started implementing toner status information. In order to do
that, I had to know how to access that data on an Océ printer. By simply asking my mentor, I found out
that Océ uses the SMNP protocol to do this, and with the SNMP specification for the printer drivers they
are working on, I could easily continue. I downloaded a tool to explore SNMP data from printers and other
devices. To enable my driver to do the same, I downloaded a SNMP C# library which would handle the
protocol for me. This saves me a lot of work, and if I had to implement it myself, I probably would have
spent a lot of time testing and debugging on the connectivity part instead of the real feature.

The most difficult part on implementing the SNMP toner status was how to act with the different printers.
Some of the Océ printers just have black toner, and some also have colour toner. I had to implement
something that could switch between a text based UI for showing errors and availability of the information,
and graphical bars with actual toner status.

A long time after modifying this sample, I discovered that the V4 model also has a built-in implementation
of a SNMP client. The reason that I did not use it earlier is simply that I did not know of its existence.

Graduation Report

version 1.1

page

16 / 41

Comparing the implementations now, I see that both implementations have their own advantages and
disadvantages. Some functionality could have been implemented easier with the built-in client, but with
the external client, I can retrieve information any time, no matter what entry point.

After some testing and debugging the PrinterExtension was ready. I checked if my PrinterExtension
would also show in Metro apps. As I expected there was nothing to see in the Metro applications. Soon I
found out that for Metro, I had to build an entirely different kind of PrinterExtension. The samples are both
called PrinterExtension, but in the documentation, Microsoft describes the PrinterExtension to be desktop
only, and for Metro they define the term Device Companion Apps.

3.4 Conclusions
The PrinterExtension itself is a very simple piece of software, which is easy to produce and to adapt. To
communicate with the printer it uses just one API, and in the sample from Microsoft they have
demonstrated clearly how to use it. The result is just a normal .exe that runs on Win32 with either
the .NET 4.0 or 4.5 framework. The difference with a normal application is that a normal application is
meant to be started by the user, and this PrinterExtension is launched by the Windows system, on behalf
of the user, to enable him to configure advanced printing options. This is the only use of the application
though, and it should not be used for another purpose.

Compared to the V3 printer driver model, this is a really big change. The V4 printer driver model replaces
all printer connectivity possibilities with one API. The other difficulty is that the UI is not able to
communicate with the printer driver at all, other than sending the configuration data through the API. The
UI is shown up front, before even the spool file is generated, so during the setup of the print job, the UI
does not know anything about what is going to be printed. The Windows Print Dialog does have a preview,
but that information is not available through the API. Converting existing V3 UI’s to the V4
PrinterExtension will be a challenge, and the PrinterExtension is the easy part. The Metro app will be
even more challenging.

The SNMP client that I have used in the sample modification is actually a form of Bidi communication.
This is not the real way to implement the communication in the printer driver, because the V4 printer
driver model has standard proficiencies to make this implementation easier.

The requirements of the PrinterExtension have been met, and I have been able to implement even more
than that. The SNMP client is an extra feature that I did not plan to implement in the beginning of the
phase. Also the decorating of the UI was not part of the plan, but a little extra that I have been able to do
because I saved a lot of time with using the sample as a base for my application.

Note: For detailed information see the document marked by MS01 in the Sources section.

Graduation Report

version 1.1

page

17 / 41

4 Metro style Apps
Desktop PrinterExtension done, it is time to get started with Metro. It did not take me long to find another
sample project that was suitable for Metro. I followed the same approach as with the first PrinterExtension:
First try to couple it to the printer driver, and then modify the code to adapt an Océ look and get the app
up to the same functionality level as the desktop version.

4.1 Coupling the sample
The new sample project I found was available in 3 different programming languages: C++, C# (pure) and
C# combined with JavaScript (JS). Since I had to make up for the time I had lost with the development of
my V4 printer driver, I chose to use the C# sample, because I am most comfortable with that language.

Coupling the Metro App with the printer driver is the hardest part of the entire Metro PrinterExtension
development. The documentation is not clear and if not read very carefully, it can be misinterpreted very
easily. This was my downfall for the 2 times that I had to configure my test set up. Getting the Device
metadata right is very tricky, and installing it holds some hidden surprises, like the location where to place
them does not match with the documentation and some of the GUIDs that you have to specify, have to be
made up by you. Since the documentation that was released with the Release Preview, the process of
creating metadata has become a lot clearer. For the document, see source MS03. Be very careful when
reading the documentation. The App ID has to come from the package manifest of the Metro App. The
Package Family name is never needed in the Device metadata, though the document might suggest so.

Where the desktop PrinterExtension uses registry keys to couple to the driver, the Metro Device Apps
need to be coupled by using Device metadata. These are special signed zip archives that contain a
couple of XML files that describe a device. In one of these XML files, directives can be added to couple a
Metro Device App to the device and its driver. This makes it easier to automate the installation of this kind
of apps on a system, because Device metadata files are system independent. They just have to be
placed into the correct folder. The registry keys for the desktop PrinterExtension contain the location of
the .exe, and that can differ for every system, so that makes it a bit more difficult to deploy.

After finishing the device metadata and copying it to the local device metadata store on your machine, go
to “Devices and Printers” in the Windows Control Panel and hit F5. This will trigger the Windows systems
and service to process the Device metadata.

The fastest way to verify the coupling is pretty simple. First open the sample project in Visual Studio
(which you probably have done already), and find the PrinterDriverID1 in the solution. Enter the printer
driver ID from the printer you want to install (see Appendix C, Chapter 1 on how to get the printer driver
ID). With that in place, build the solution and when that succeeds, deploy the solution. This will create an
app tile in your Metro start menu. Open that app and click the “Get Associated Printers” button at the top
of the screen. If your printer shows up in the dropdown box below, the coupling is a success. If not, you
have done something wrong. I have encountered this situation a lot, and unfortunately I have not yet
discovered a reason that it could be the system that does something wrong.

Graduation Report

version 1.1

page

18 / 41

4.2 Background information
For a better understanding about the environment of the Metro Device apps, here is some global
information. Detailed information can be found in the documents marked by MS01 and MS03 in the
Sources section.

Metro apps run in the new WinRT (Windows Runtime) environment, which acts like a kind of virtual
machine / sandbox. Metro apps have to provide capabilities in the appxmanifest file in order to get access
to certain parts of the system. If for example an app requires internet access, the developer has to check
the “Internet (client)” capability in the manifest. This capability will be shown to the user on the first run of
the app or already when installing the app from the app store. This system is very similar to what e.g.
Apple and Google have in their mobile operating systems iOS and Android.

Furthermore, the Metro apps run on the .NET 4.5 framework. When developing Metro apps, you do not
have to pay attention to references, because by default everything is referenced already for you. Because
the entire WinRT and .NET 4.5 environment is referenced, if you get errors on system parts that cannot
be found, it can only mean that you cannot access it because of the sandbox.

4.3 Modifying the code
With the coupling succeeded, we can now start modifying the code to style it a bit to our wishes. Same
as with the desktop PrinterExtension, I added some logos and I modified the splash screen to start with. I
had to create a number of images to replace all the Microsoft logos that are defined in the appxmanifest
file. I also added the control I built earlier for the desktop PrinterExtension to display the toner status.
That is where I discovered a big difference between the 2 environments.

4.3.1 Getting SNMP Data
In order to get SNMP data, I need a printer port name, which serves as a DNS address for the printer. In
the desktop environment I could simply access the registry and with a few lines of code I retrieved the
printer port that was coupled to my printer driver. Because of the Metro sandbox environment, it is
impossible to access the registry directly, so I started looking for a different approach to access the printer
port in Metro. I found a solution that uses the same technique that retrieves the associated printers in the
sample. I successfully retrieved the printer port name, and I could output it to the screen and see it while
debugging, but I could not make a connection to the printer.

That is when I discovered that a complete namespace that I was using in the desktop PrinterExtension
SNMP code was missing. That meant I had to find another way to get the IP address of my DNS name. A
solution was found quickly, but it still did not work. After more searching I discovered that I had to modify
the capabilities to get the Metro environment to grant my app internet and local network access.

If I had used the built-in SNMP functionality, I would have had no SNMP data for one, maybe 2 of the
three entry points in the app. This is not the most elegant solution, but it is the solution that works in all
entry points. It is worth considering both options when developing a commercial printer driver.

Graduation Report

version 1.1

page

19 / 41

4.3.2 Devices & Print Slide-Out
Metro apps have 3 different entry points, and up until now I just tested with the main entry point. The main
entry point is fired when the app is started from the Metro start menu, the second entry point that I can
handle is the More Settings button on the Print Slide-Out. The third entry point is triggered by launching
from notification, but I am not going to use that because I don’t have notifications that I receive from my
printer. Each entry point launches the app with different arguments, and that makes it possible for the
developer to interact differently. Microsoft recommends designing the Print Slide-Out to use a different
resolution than the full screen resolution you get from the main entry point.

However when I tested the sample app through this new entry point, it did not work. I first thought that I
had made an error while coupling the app, but looking at the Windows Event viewer showed that my app
was crashing, among other parts of the underlying system. Debugging the problem showed that the
problem was more severe than initially suspected.

When trying to access a specific property from the entry point arguments, an exception is thrown by the
framework, and when I tried to debug those errors in the Consumer Preview of Windows 8, Visual Studio
and the complete Metro framework crashed. This was the confirmation for me that this error was beyond
my reach and after a short conversation with my mentor we decided to contact Microsoft over this issue.

4.3.3 Support from Microsoft
The Support service engineer called me in the morning with bad news. Microsoft was not going to support
the SDK (from which I took the sample) in the Consumer Preview of Windows 8. I would have to wait on
the release of the Release Preview, test it again with that, and if the issue still is there, contact them with
the same case number. Then they would reopen the case and see what they could do about it.

I downloaded the Release Preview as soon as it was released. Within an hour and a half I had my new
Windows 8 installed but it took me at least 4 more hours to set up the rest of my development
environment (especially Visual Studio took very long to install). It took me a day to install the printer driver
and couple the printer extension and at first glance it looked promising, but when I started debugging the
code with the correct entry point, I was able to reproduce the issue. That meant 2 things: It was not my
Metro code that caused the crash, and the issue was not resolved in the Release Preview, so I could
contact Nicolas again. I mailed the support engineer the bad news, with the differences between the
exceptions that I was getting. He mailed me back that he was going to investigate the issue, since this
was Release Preview, and Microsoft was now supporting the SDK samples as well.

The support engineer reported 2 days later that he could reproduce the issue and that he was going to
track the error. Another 3 days later, he called me, reporting that he could not find any errors in the code,
and that he needed a driver to investigate further. He asked if he could get the driver from me, but I knew
that Océ would not approve that so easily. After discussing with Johan and Gé, as the Microsoft contact
on Océ, we decided that I would send a stripped driver to Microsoft.

I started with stripping the filters from the driver, so it would be a set of configuration files only. When I
started testing the driver, I also tested if the Metro PrinterExtension would still crash. Shockingly I

Graduation Report

version 1.1

page

20 / 41

discovered that it would not crash any more. I made a backup of my current code, and started adding the
filters back in, first with only one filter, and then with all three filters. I could not break the sample any
more, and that meant that I had encountered a dreaded “ghost”-bug which was now vanished.

I reported back to the support engineer that while working on the driver, I could not reproduce the error
any more, and I asked if he still wanted to pursue the issue and receive the driver, or that he would stop
the chase and archive the case again. He wanted to stop the chase, because he already spent a
considerable amount of time on it without any results. He archived the case again so if I found it again, I
would just have to send him an e-mail and provide additional information.

The problem is solved, or gone at least. This is a rather unsatisfying solution, because we do not know
what the problem really was. If it just was my own discovery without intervention from Microsoft, I would
blame it on a faulty build. Because the support engineer confirmed that he could reproduce the issue, but
the sample code was all right, means that it is related to the system, and the fact that it just disappeared
makes me worry that it might come back.

4.3.4 Progress halted
Because the property we want to access in the print slide-out is vital for setting printer properties, I was
blocked by the Microsoft issue. Together with my mentor we decided to continue with the next phase, the
cloud research. When Microsoft would come with a solution or ask something about the, I would handle
that first, before continuing on that phase. Since both PrinterExtensions communicate through the same
API with the system, it should not be hard to implement real functionality in the Metro app, because I have
a working sample with the desktop PrinterExtension. If the issue would still be there now, I would have to
design around the issue in the phase where I create the cloud concept, but since the problem is solved, I
will not take extra precautions.

4.4 Changes in Metro & Windows 8
If you sum it all up, it is quite shocking how many differences I have found with a simple sample. Even for
companies with legacy code in XAML and C#, the restrictions in Metro and Windows RT could become
quite serious issues. According to the Microsoft documentation, the V3 XPSDrv pipeline filters should be
able to be reused without heavy modifications. They did somehow manage to enable the use of DLLs in
Windows 8 that are built under previous version of Windows and .NET. In my experience Visual Studio
just warns you about using non existing namespaces, but lets you continue to use it and the build does
not fail on it.

4.5 Conclusions
The Metro environment needs some time to get accustomed to, but once you are in the flow, you quickly
pick it up and adapt the changes Microsoft has made between the .NET 4 and .NET 4.5 frameworks. The
Metro environment is highly limited by system access restrictions. For instance, as a developer I cannot
access the Windows Registry, for internet or any other network access, I need to enable specific
checkboxes in the Application Manifest file. These are no difficult steps, and they might sound familiar to
Android or iOS developers, but for Windows developers this is new, and can cause confusion in the
beginning. Once I had the correct rights for my app, I did not encounter any further errors and developing

Graduation Report

version 1.1

page

21 / 41

for Metro becomes just as easy as for any other Windows platform. The new .NET 4.5 framework holds
some new and very powerful new components and features and is certainly worth the effort.

In this sample I have discovered that my implementation of the SNMP client that serves as alternative to
the printer driver implementation of Bidi communication holds some unexpected advantages. When I
would have implemented Bidi communication in the driver, I would not have been able to get the Bidi
information from the main entry point in the Metro app. When the Metro app is started from the Metro start
menu, the app does not receive any information about the associated printer driver. Therefore it cannot
access live printer data from the printer driver. This is a restriction in the V4 printer driver model; it is not
possible to access Bidi information when the Windows print system is not active (that is when the user is
actually printing something) to save power. Because my implementation uses a completely separated
SNMP client, I am able to retrieve SNMP data when I want. The only challenge that I had with this
implementation, is that I needed to retrieve the name of the printer port differently from the desktop
PrinterExtension, because the WinRT environment will not let me access the Windows registry.

Also in this chapter, the requirements of the Metro app have been met, and the level of functionality is
very much alike the PrinterExtension from the desktop environment. The SNMP client and the decorating
of the app are also implemented here, but took a little bit more time to complete than with the desktop
version. It took more time because of the challenges that came up with the WinRT environment.

Graduation Report

version 1.1

page

22 / 41

5 Researching the Cloud
A major part of my graduation is research. I am going to investigate the possibilities of cloud integration
into the printer driver and extension that we have already built. The research is documented separately,
and I have added that document as Appendix D.

The goal of this phase is to expand the view that we have about the cloud, see what solutions are already
there, see what we could use and what we would need to fully harvest the power of the cloud. The result
of the research will be used to create a cloud concept that will combine as much of the strengths of the
cloud as possible. The research will aim towards finding as much of these strengths as possible and
finding compatibilities between them.

5.1 Collecting in-house sources
The first step in this research phase was to collect all the in-house sources available. To do that, I
contacted a couple of people of who we knew they had done something with the cloud. I had meetings
with Christian Luijten, Matthieu Helder and Rob Kersemakers, and a short phone conversation with Merijn
Neeleman. One of the first things I noticed was that I was not the only graduate that was involved with the
cloud. Qingwen Chen and Kevin Hoes also made prototypes of cloud concepts. Their work was out of my
scope so I could not use their research as base for my research. Only the report by Christian Luijten was
usable for me, because he collected a lot of data on various cloud services. The only thing that I had to
do was to update the information, because the cloud is always changing, moving and growing. This is
also the case with my own document, so check the sources for updates on my information.

In a meeting with Rob Kersemakers, he told us that they were busy trying to get access through the
corporate firewall to cloud services. Because of the firewall in the Océ network, a lot of these cloud
services are blocked and in order to deploy a product, we have to have access to at least one of these
cloud services. He and his team had a meeting planned with the IT management department of Océ. That
meeting still has to happen at this moment, but any result from that meeting will be communicated
towards me. However, I could not wait for that to happen, because I simply do not have the time to wait 6
weeks on the result of a meeting, and than probably another 6 weeks or more for an actual change in the
firewall or network, so we set that aside and took our own action. More on that will follow in the next
phase. Rob also manages the Amazon server that Océ holds for test purposes, so we might contact him
about that later on again.

Because I got access to a number of Océ documents, I have quite a bit of information at my disposal, but
only a very limited amount can be used as research input. The reason why I first tracked down the
sources that were available is because we do not want to do research twice. It is good that I have chosen
to do so, because otherwise my document would otherwise have shown overlap with the document from
Christian.

All the documents that I have mentioned above are internal Océ reports that I cannot provide as appendix
because of confidentiality issues.

Graduation Report

version 1.1

page

23 / 41

5.2 Research delineation
To delimit the research scope, we have to make some decisions. First we have to choose what side gets
focus; client or server side. Because we already have a V4 printer driver and UI extensions, we have a
pretty good idea of the environment that we are working in. That is why the focus of the research has to
be on the server side of the solution. I will describe the integration environment in a chapter, but I will not
elaborate on the client side technologies that we need to use, or features that we might need to
implement.

The next decision is about the cloud services that we want to integrate. I chose to take in only the cloud
services that “mattered”. That means that I only take in cloud services with a big user base. This makes it
easier for our own customers to use the cloud functionality in the printer driver. Also a cloud service has
to be relevant to our concept. We cannot use a service that has nothing to do with printers or printer
drivers, like a weather service or music player service. The list with cloud services that we do want to
investigate is based on the list of cloud services in Christian’s research. I will use his data where I can
and update some facts if needed, and add some services that have emerged since his research.

Now that we delimited the width of our scope, we need to determine the depth too. Keeping in mind that
we are broadening our view of the cloud, we don’t want to go into too much detail, but enough to
understand the advantages and disadvantages of the technologies that we might want to use. When I
don’t mention certain details, it does not mean that I did not investigate further. You might find additional
details in my sources. I will describe all levels of the cloud service software, and with that, the protocols,
architectures, cloud service types and implementation advices.

5.3 The real research
The first thing that you do when starting a research is asking yourself what you want to learn from the
research. From this you can than construct a number of questions that you are going to answer during the
entire research. For my research I have formulated a number of questions and supporting questions that I
use as chapters and paragraphs in my report. I will now summarize my report here, but for the actual
document, see Appendix D: “Cloud Integration Research”.

5.3.1 What research had been done?
In section 5.1 I already wrote about in-house research resources, but for the research I just used one:
The report of Christian Luijten. In this chapter though, I don’t explicitly mention him, I just notify the reader
that the information of Océ is embedded into my research and I will refer to external document when
external sources are used.

5.3.2 What technologies can be used?
This section covers the basic transfer protocols that are used for cloud communication. HTTP and HTTPS
are of course obvious technologies. XMPP on the other hand is not so obvious, but it is a protocol that
has a broad usability because of its near-real-time properties and origin as instant messaging protocol.
The next part of the question is more important: There are 3 cloud “flavours”, IaaS, PaaS and SaaS.
These abbreviations will be used throughout the rest of the document.

Graduation Report

version 1.1

page

24 / 41

From the collected data, I can conclude that IaaS and PaaS are useable because of their amount of
freedom, and SaaS is not useable because of its lack of freedom. The PaaS services can still be limited
in their freedom and therefore IaaS is the best option, because of the nearly unlimited freedom.

5.3.3 What existing cloud services can be used?
This chapter describes what existing services could be useful for integration into the printer driver. I first
made a list of the interesting services from Christian’s report, updated the information about the services
in his report, and than expanded the list with additional services in the categories cloud file storage and
cloud printing. With a complete list, I investigated the compatibilities between the services in the list. It
would be unnecessary to integrate two cloud services which can already share resource, or it could have
added value to integrate 2 service that combined can do more than when separated.

This part of research resulted in a list of services that might be worth integrating. There are a number of
services that integrate with other cloud services, but except for Google’s services, there are no big cloud
services that are deeply integrated with each other.

5.3.4 What interaction should there be with the cloud service?
We take a look at some scenarios that could be realized with integrating cloud services into a printer
driver. After that we investigate what technologies the cloud services commonly use, and take a closer
look to the API in order to discover what information cloud services normally require. In this part we focus
only on the top 5 biggest cloud services, because those are the only ones with a big enough user base to
be actually eligible for using. After analyzing what the services need, how to get it from the user, and what
existing workflows exist to get data from the user, we take another look at the scenarios. With the
knowledge and understanding of the cloud services and their capabilities and needs, we can now analyze
whether a scenario can be implemented with these services or not.

The result was that there are number of services that can be integrated when we support a combination
of 2 technologies: OAuth and REST. Google Drive and Cloud Print, Dropbox and Microsoft SkyDrive all
work on these technologies and that would result in a big common code base which would simplify
everything. With supporting all these services, we would be able to achieve almost every scenario.

5.3.5 Where do we integrate the cloud?
In this chapter I investigate the client side environment of the integration. This is where the printer driver,
printer extensions and metro applications are. I highlight the frameworks and environments and nothing
more, because we have handled that in earlier chapters of this graduation report.

The Metro environment is a good environment to integrate into. Although the environment has strong
restrictions, it just makes things a bit harder to implement, but not impossible. The .NET 4.5 environment
is very powerful because of the new components and asynchronous call support mechanisms. It might be
possible that we need a little help from the V4 printer driver, but the Metro app will be the main integration
point.

Graduation Report

version 1.1

page

25 / 41

5.3.6 What do competitors offer?
Reading about other products from other companies really strengthened my cloud concept, and the
confidence that I was heading in the right direction. I have seen that some competitors already have
products that are similar to my concept. Some other competitors are involved with the cloud on a
completely different level, like selling cloud software development, and engaging into a cloud knowledge
portal.

5.3.7 Can creating our own cloud service help in integrating more services?
One of my concepts contains the idea of creating our own cloud service. This service will have a REST
API and will be able to access multiple other cloud services, like a relay / proxy service. This should help
integrating the cloud services that we want more easily and securely than when integrating directly into
the driver. In this chapter we investigate whether it is even possible to do this, and how it would be
possible to realize the idea.

After analysing the normal integration method, and the cloud integration method and comparing them to
what competitors have, I can conclude that having a cloud service really does help with the integration
process. I discuss the different possibilities of where to host a cloud service and there it is clear that
having just one real cloud service is preferred over having local servers in the firewall of the corporate
networks, or even hybrid solutions.

5.3.8 How can we build our own cloud service?
This chapter kind of elaborates on the previous chapter. We take a look at the deployment options of a
cloud service, and their advantages and disadvantages. We define a couple of criteria that are vital for
our cloud service to have, and than match the cloud service hosting providers to those criteria, to see
what service would really be suitable.

For the deployment option, the best choice for my proof of concept is to develop on local machine, and
deploy on Amazon EC2. This is because Océ already has a server ready for use there and it will be easy
to use that. It also allows maximal flexibility and extensibility, because we could just order a couple of
extra VM’s. Other options might have worked just as well, but I choose for the existing option, to be safe. I
have also checked if I might have to make any compromises on certain areas for choosing Amazon, but
for as far as I have investigated, I don’t. Amazon comes with total freedom in using operating systems
and underlying hardware, which means that we have total control over everything.

5.3.9 What infrastructure should be used?
Last but not least, we take a look at the infrastructure of our cloud concept. This is not about the cloud
infrastructure like you would see in an IaaS solution, but about the corporate network at for example Océ,
and how to grant the users / printers cloud access without introducing a major security leak. There are a
couple of solutions, but we have to analyze what is best.

There are a few options that are possible here, and most of them contain complicated setups with servers
managed in by the local IT departments and that would make it hard to implement. There is only one
good option, and that is to just make one client and a cloud service. The cloud service would run on the

Graduation Report

version 1.1

page

26 / 41

Amazon servers, so internet access is a prerequisite, but that should not be an issue. Because the
service would be using HTTPS for data transfer, the connection would be secure, and the port would not
be blocked by the IT departments (it is too common to block). The client app would have unhindered
access to the cloud, and that is exactly what I aimed for.

5.4 Findings and conclusions
By taking all conclusions together I get a pretty clear picture of what technologies, methods and services
that I want to combine to create my own cloud concept. The best solution would be to build my own cloud
service and client. The service would run on Amazon EC2, on a Windows 2008 R2 virtual machine, and
would function like a proxy to access multiple cloud service from only one data transfer line to the client.
The concept ensures maximal security, and flexibility. For the proof of concept I will use Google Drive as
demonstrator cloud service, but once that is implemented, other cloud services can be integrated also
very easily, because of the common technologies.

We do have a solid base of technologies, service and methods, but the software design will play a critical
role in ease of scaling up to multiple cloud services, and security of the concept. If I would mess up the
implementation of OAuth by design, I would introduce a major security leak, so I have to avoid that.

Graduation Report

version 1.1

page

27 / 41

6 Designing a Proof of Concept Cloud Solution
With the research I have gathered a lot of knowledge about the cloud, and I can now start to design a
proof of concept. Is it not easy to come up with a concept that will work, and even great ideas have
downsides and you can never be 100% sure that it is going to work. In this section I will guide you
through the design decisions that I have made for my cloud concept solution. The concept is the
deliverable for phase 5 from my planning in appendix A, and this chapter will discuss the complete
process of the development of the concept, so the design and implementation.

6.1 The Concept
The idea for the proof of concept that I am going to implement is quite simple: Print to the cloud. The most
of the time that our Metro style printer extension is used, is when the user want to print something. The
only thing we have to do is to offer other storage possibilities and handle the transaction to them.

The first steps of the implementation will of course involve setting up the communication between the
cloud service and the client. When that is done, I will attempt to implement the capability to send a file to
the cloud, to have it stored there. If that succeeds, I will start integrating my implementation into my V4
printer driver.

If I have any time left, we might consider expanding the concept with letting the client (the printer driver)
download a printed job, and send it to the printer where the driver is installed for. This will enable a
primitive form of one of my original scenarios; printing to any printer in the network with just one printer
driver. When I still have time left after finishing that feature, I might look into fully automating that feature.

6.2 Direct or indirect cloud access
In the research we have come across the idea to create our own cloud service as a intermediate service
to access the cloud. I explained the differences, advantages and disadvantages of having either direct
access to the cloud (direct communication with different cloud services like Dropbox and Google Drive) or
indirect access, and with that implementing our own cloud service. We have seen that a number of
competitors of Océ are already doing such things with success.

I came to the conclusion that having such service would improve the capabilities and flexibility of the
entire solution so much, that I decided to create the service as part of the proof of concept. This decision
has a great impact on the design of our concept, as predicted. From one point of view, we simplify things
for IT management, and on the other side, we introduce the challenge to create our own API to access all
other cloud APIs. Especially authentication and authorization is going to give us some additional
challenges.

6.3 Choosing the service
The second decision that I had to make was what cloud service I was going to implement. There were a
couple of things that needed to be considered. The first requirement was a reasonable customer base.
That meant I had to pick one of the top five cloud services from my research document. A second

Graduation Report

version 1.1

page

28 / 41

requirement was that the service has to be compatible. Almost every cloud service from the top five has a
lot of clients and applications, but one of them had standard integration with a number of other cloud
services, and provided easy steps for developing your own integration, and that was Google Drive.

There are a number of advantages involved in implementing Google Drive. It has a pure REST API, and
uses OAuth for authentication and authorisation. This makes the implementation easy to convert to
another service, because these technologies are big standards in the cloud. A second benefit is the close
integration options with Google Cloud Print, which makes our driver integration of Google Drive more
valuable. A third advantage is that Google provides code samples of Drive clients in various languages
and platforms. There even are SDKs available with a number of libraries that we could use to simplify the
implementation. This is very useful, especially for our proof of concept, but for a commercial product it
might be better to implement the cloud access code without help from libraries, because other cloud
services won’t use the library and might not provide their own. Having common code between those
services is highly recommended.

6.4 OCAPI
The service that we are going to create for the proof of concept is named OCAPI which stands for Océ
Cloud API. OCAPI will run on the Océ cloud server, rented from Amazon, as part of the EC2 (Elastic
Compute Cloud) service. This server is already available within Océ for other projects, and I have access
to the server for test and development purposes of this project. However, for fast development and also to
avoid network issues, I will develop the service on my local development machine, and deploy to the
Amazon server later, if I have time left.

OCAPI will be the name of the protocol. The name of the server side of the concept is OCAPI Service.
We also have a client side of the project, which will be named OCAPI Client. OCAPI Client will have
common code with OCAPI Service. I will try to keep objects, object interfaces and serialisation code
common, for maintainability and readability purposes.

6.5 The Design
With our idea in mind and the components to accomplish that idea ready, we need a design to put the
ingredient together in the right order. I have come up with a high-level architecture design, which is the
optimal solution for our proof of concept and can be expanded to other cloud services very easily. It
combines as much of the strengths and advantages of the researched technologies as possible. Even the
disadvantages and weaknesses are limited to a minimum, there will be some issues. This solution is the
most acceptable compromise to that.

Graduation Report

version 1.1

page

29 / 41

Internal Network

Windows 8 PC

Océ Network

Internet

OAuth

Drive

Cloud Print

Google Cloud Servers

Océ Cloud Server (OCAPI)

Firewall

Figure 3 - Network Architecture of Design
The image above is a simplified depiction of the network architecture that I am going to apply. In the
image, everything is connected to each other but because of firewalling in the Océ network, not
everything is reachable. I shall explain how communication between the servers will run.

The first step from the client in the Océ network (the Windows 8 PC), is to request information about the
available cloud services on the Océ cloud server outside the Océ Network. OCAPI will return a list of
available services for the client to choose from. After receiving the data, the client can let the user choose
what cloud service he wants to use.

The next step is does not involve using OCAPI itself. The client has to authenticate and authorize the use
of OCAPI with Google Drive using OAuth. This is necessary because OCAPI is going to require access to
personal files. By authorizing the access, the client gets a set of tokens. The client will send these tokens
to OCAPI which will store these for later use.

The next step from the client is to request the capabilities of the selected cloud service. Capabilities are
the definition of the cloud service API, and the client can call these capabilities on OCAPI. In the
capabilities is described how to call them on OCAPI, with what parameters, and what type of data they

Graduation Report

version 1.1

page

30 / 41

return. Once called on OCAPI, the cloud server will execute the request by sending data to, or retrieving
data from the selected cloud service, using the authentication tokens that were sent before. The response
from the cloud service can either be translated to OCAPI objects and passed on to the client, or just be
passed on to the client and parsed there.

OCAPI Client OCAPI Google OAuth Google Drive

List Services

Authenticate & Authorize

Authorized tokens

Store OAuth Tokens

Request Capabilities

Call Capability

Request Data

Check Tokens

Figure 4 - Sequence Diagram of full data request
I have added a sequence diagram to clarify the steps that I describe above. In this diagram it becomes
clearer that the client never gets to access the Google Drive APIs directly. The authentication and
authorisation procedure is done in a internet browser, outside the Metro app. That means that I never
have to handle the most sensitive information from the user: The username and password. The metro
app itself never directly communicates with the third party cloud services.

6.6 The Implementation
The challenge in the implementation of the design is in creating OCAPI, our own cloud service with a
custom API that enables us to communicate with all other cloud services. It has to be flexible enough to
handle any kind of cloud protocol, even ones that are to be developed in the future, and any available API.
For our proof of concept I will try to take this into account as much as possible, but I will undoubtedly run

Graduation Report

version 1.1

page

31 / 41

into errors and design mistakes. It is up to Océ to learn from these mistakes as much as I do, before they
start developing a commercial cloud solution.

6.6.1 OCAPI Service
The first part of the implementation was the building the structure of the cloud service, OCAPI, and
getting communication up and running, so I could test. As environment of the service, I at first chose
ASP .NET, with the .NET 4 framework, but when I started implementing the Metro client, I discovered
some very interesting features in the new .NET 4.5 framework that would come in very handy in the
service, so I switched. The reason why I chose ASP.NET is because it is a very powerful platform that
would take a lot of basic implementation of my hands. I would not have to worry about HTTP handling. I
did not yet realize the power of the built-in object serialisation, but I discovered that soon enough. In very
little time I was sending complete objects to the client side, and the ASP framework was automatically
serializing it for me.

With some basic service and capability data ready on the server, I needed to implement a solution for
OAuth. This was the hardest thing to implement, because the Google servers reject anything that is not
according to their specifications, and also here I encountered the problem of documentation not being up
to date. Google Drive is pretty new, and during my development of OCAPI, they silently released V2 of
their Drive API. Is also is quite confusing to be involved with multiple tokens, keys, and IDs, and
requesting one token can lead to invalidating others. I did manage to design and implement a solution
where the session tokens would be stored on the client side, and the app ID and secret would be stored /
hardcoded in the service. The trick was to never let the app ID and secret be passed to the client because
that would introduce a big security leak, but let the client provide the additional request data, and let the
service do the request instead. Since that this solution was also the way that the request mechanism was
going to be implemented, it also was a good practice, and the request mechanism took a little less time to
be completed.

6.6.2 OCAPI Client
For the user side, we needed a client that would communicate with the OCAPI service. The target
environment is a Metro style app, with the .NET 4.5 framework, because this is the same environment as
one of the printer extension environments is, and this would make integrating with the printer driver easier.
I was not aiming for a user friendly UI, just a test tool would suffice, so I built a UI with a couple of test
buttons and some list boxes to retrieve and display data from the service. The buttons trigger a
communication manager to retrieve data from the OCAPI service, and do authorisation through another
OAuth manager. To achieve the communication with the OCAPI service, I use specially decorated
classes. These classes are contained within 2 projects, of which one is a Metro style class library that
uses references to link the sources of the OCAPI class library, which is a real class library (.DLL). These
specially decorated classes are serialized to and deserialized from XML automatically by the ASP.NET
framework. For the Metro app, I needed to develop a solution that would do the same, without putting any
object specific code into the deserialisation. I succeeded in this by using Reflection, and the same
deserializer being used by the ASP.NET framework.

Graduation Report

version 1.1

page

32 / 41

For the authorisation, I needed to open a web URL, to let the user log into a website and approve the
access that we want. The URL is provided by the OCAPI service. I was looking how I could open the
browser from Metro apps, when I found a component that would be able to do this within Metro itself. The
component is actually designed and built for doing this, and this made implementing a lot easier. The only
thing that I would need to do extra is provide a start and end URL. The start URL would of course be the
starting point of the user authentication sequence, and once the end URL would be reached, the
component would automatically close, and I could collect the result, and continue the full OAuth sequence.

6.6.3 The combined result
The result of the combined service and client is quite impressive. It is fast and safe, it requires only one
time authorisation, users can log out and log in with different accounts. It may not look friendly, but for a
proof of concept, it is. The design is even more impressive. I managed to implement Google Drive as
cloud service and access the user files, without laying any knowledge of Google Drive in the client. I am
able to connect multiple other cloud services without modifying the client code, just by adding connection
data to the service. This makes the result very easy to extend. The service does not need any storage,
database, or long lasting connections like sessions, and completely complies with the REST architecture.
This is a very good demonstrator for developers and designers to show off the capabilities and
possibilities with the cloud. Integrating this solution with the printer driver will only enhance the concept
even more.

6.7 Conclusions
The design of the concept is what makes the entire solution so powerful, and the implementation a
success. The concept is designed so that the client does not have any knowledge on specific cloud
services, other than OCAPI. The OCAPI protocol is able to deliver 3rd party cloud services and their
capabilities to the user without the client having direct access to the 3rd party cloud service. Also the app
never gets direct access to the user credentials, but just authorisation keys which can be revoked by the
user. Other authorisation data like the client ID and client secret are hard-coded into the OCAPI service,
so even by decrypting the HTTPS connection, the app credentials will not be revealed.

Implementing the cloud concept went pretty smooth, and I came across some pleasant surprises during
the development of the code. The only difficulty that I encountered was the implementation of OAuth,
because it involved some serious thinking and various considerations were being made towards using
libraries to take care of the OAuth implementation. In the end I chose to implement it myself because of
the complex situation. My cloud service could be seen as a web service and that would involve
implementing another OAuth variant and authentication sequence than when treating the entire solution
as an app. I chose to treat my solution like an app because that way, I could store the tokens on the client
side and the app credentials, which is something different than user credentials, on the service side. This
is the safest solution, and for difficulty it would hardly make any difference.

It was interesting to experience the limitations and also benefits of Metro. The restrictions on the
environment and differences in the .NET 4.5 framework are bothering but manageable, but I would not be
able to complete my concept the way I did now without using the new features of the framework. I would
have been forced to use threading and that would have cost me a lot more time to manage.

Graduation Report

version 1.1

page

33 / 41

7 Integrating the Cloud
This chapter describes the process of realising the deliverable for phase 6 from my planning in appendix
A. The goal of the phase is to take the cloud concept from phase 5 and the printer driver and extensions
from phase 2 and 3 and merge them together. This will result in a cloud capable printer driver.

The idea to make the printer driver access the cloud was pretty simple: Just integrate the cloud concept
that I built into the Metro PrinterExtension. Since both applications run on the same environment (WinRT
and .NET 4.5), it should not be hard to accomplish that. There just were some parts missing that I needed
to fill in before the prototype would be complete.

7.1 Designing the integration
With the cloud access covered by the OCAPI client, I only needed to figure out a way to access the print
output and upload that to the cloud with the configured connection. That is the first challenge of the
integration. The V4 Printer Driver Model requires the UI to only run upfront, configure everything and
when closed, the printer driver would actually start working. The UI instance is killed 500ms after closing
the print slide-out, so that track stops there. I needed to find a solution to this problem, because if it is not
possible to execute anything after the printer driver execution, I would not be able to upload anything,
bringing down one of my most important use cases.

Luckily there are a couple of options to enable execution after the printer driver. The first option is to open
a Metro background task that would check a certain folder for changes, and when a change occurs, act
upon it. That would enable me to check the printer driver output folder, and once the print output would be
done, upload the file with preconfigured options. Another option would be protocol activation of a program.
Metro enables developers to deploy programs that register themselves to defined protocols. There are a
couple more options out there, so I figured that I could accomplish the concept, and I would first start the
real integration before worrying about the implementation route for the upload function.

Graduation Report

version 1.1

page

34 / 41

Figure 5 - Printing Route of the prototype in Windows 8

For clarifying the design, I have added a diagram that contains all software parts, new and existing and
what function they have, and in what order they are executed. As you can see, most of the parts already
exist, and just need to be combined and integrated. The uploader is new though, but should not be a
problem to implement, since I would be able to use a lot of the common code from the OCAPI client.

7.2 Triggering upload
I have done a little research in order to understand the mechanisms of triggering other apps from a
running Metro application (in my case, the Device App, or Metro PrinterExtension). I have come across a
couple of solutions that I would like to explain, before continuing with the rest of the integration.

The first option that I have looked at is the Background task. This seems to be the Metro alternative to a
Win32 process. Microsoft removed the possibility to run background processes from WinRT, probably for
power consumption reasons during sleep. Instead we get background tasks, which are basically event
triggered tasks. The startup of the background process subscribes to system events, and executes code
when the event is fired. This allows the system to go into deep sleep without interruption from running
processes. The only problem that I have left is when I need to start the background task, and would it be
killed or cancelled when my Device app is being killed after doing the print job configuration. This is
implementation detail and I decided to postpone researching further until I actually need to implement the
feature.

Graduation Report

version 1.1

page

35 / 41

Another option that took my attention was app activation through file or protocol association. This means
that I would have a specific file extension or a protocol prefix linked to my app, and by opening such file or
protocol, my uploader would be triggered with the correct location of the file. I might even be able to
integrate that functionality in the existing device app, so I would not need to create a separate application
for that. I have done some short test and I created a app that would trigger be triggered on my protocol,
and that was successful. I have not figured out when I would launch protocol, but also that is
implementation detail, and it might even be that I combine this option with the background task feature.

There still are other options worth investigating, but because of time-boxing, I have not yet done that. I
think that I can accomplish a working solution with the features that I have seen, and if I have any time left,
I will certainly look into the other options.

7.3 Integrating OCAPI Client into the PrinterExtension
For starting of with the real integration process, I first dusted off my existing device app, to see if
everything was still working properly. There were no problems launching the app, and communication
with the driver was also fine, so I started moving source into the app. Because of the structure of the app,
I needed to make a new scenario for the OCAPI client, so I started with that before I actually added the
OCAPI code. To build the structure was easy, because I could mimic a lot of existing code. It might even
have been a little challenge to split the code needed to run the structure from the content code.

As I described earlier, the environment of the code in the device app is the same as the environment of
the OCAPI client. I built the OCAPI client deliberately in this environment to make the integration process
easier. The actual integration went as expected. It only involved copying code to the correct source
folders, and including the sources into the project. I could copy and paste the UI XAML code into the
target project and it ran with almost no modification. At UI level, the C# code was not as clean as I had
wanted, so integration cost a bit more time there, but still no issue. The issues came when I started to test.
The normal entry point was fine, and that was my first reference, but when I discovered the
PrintTaskSettings entry point was failing, the integration process took a turn for the worse.

7.4 Problems Arise
The print slide-out or fly-out as Microsoft calls it, was failing. I had seen this behaviour before so it was
not new for me and I had solved it before. This time it was different though. While debugging, I cannot
find a reason why my app fails to start up properly. The splash screen shows, the initialisation code is
running fine and when the splash screen closes, the app terminates with normal exit codes.

I started adding logging, setting breakpoint throughout the entire program, reversing code changes I had
made, and enabled various debug options to discover any clues where my app would break. At one point
in time I thought that I had fixed the error, because after making a fix the app worked fine, but after
making some UI changes in a completely different software component (only accessible through the
normal entry point), the app broke again, and I have not had it working since. This made me suspect that
there might be something wrong with the platform instead of my code.

Graduation Report

version 1.1

page

36 / 41

After having tried every debugging possibility that I knew, I started to investigate whether the system
could be to blame. I created a new virtual machine, with a fresh installation of Windows 8 Release
Preview, and all supporting software needed to do some tests. I figured out that only the fresh sample,
downloaded from the Microsoft Sample website, would behave correctly and the rest of the apps, even
the slightly modified version of the sample, would not. When I copied the working sample to my normal
VM, the sample behaves just like the rest of the samples: broken.

While testing some more, I rebooted my original environment and now the app was working fine from
both entry points. This means that both test results have become equally unreliable. The good news is
that my code is working fine. Because I ran out of time, I was not able to investigate further.

7.5 Further development steps
Because I am out of time to complete this, I decided that I would first finish my report and other
documentation that I would need to pass for my graduation, and spend the time left on trying to get a
demo for the final graduation presentation.

When I have time left after finishing the obligations for the graduation, I would like to investigate the
device app behaviour further, and see if rebooting on a more regular basis works. I will have to time box
this strictly because I also want to spend a little time to implement the uploader. This way, I would be able
to show the complete use case flow, with or without the Metro print entry point in my app.

My graduation period ends before the official release of the real Windows 8. This means that I cannot test
the device app, or any of my software on the real OS. We have seen drastic changes between the
Consumer Preview and the Release Preview, and I expect that the actual release will also introduce
some changes. There is a chance that the device app will work fine on the release, because of a number
of fixes in the OS. The Release Preview was said to be feature complete, but that does not mean that all
features are working fine. I therefore strongly advise Océ to test the samples again on the real OS, and
see what happens there.

7.6 Conclusions
Again, during this phase I encountered the challenges and risks of bleeding edge technology and
products. For what I have seen now, I can only conclude that my primary development and testing
environment is unstable. It could be anything from an update of some kind to persistence errors in the
framework. With documentation not being there, or not being complete, it makes it even harder to figure
out the errors. Also there are no other people reporting the problem online which makes me wonder if I
am the only one using the sample, or the only one that is having problems with it. The integration works
and the Metro PrinterExtension is cloud capable, just not on the level I would have wanted it to be.

I have done as much as I can to reduce the risk of having problems with integrating the software, but I
could not have prevented the issues that I am having now. I will keep trying to at least implement a demo
solution. Because the normal entry points of the Metro apps are working fine, that should not be an issue.
I could also try to implement the client into the desktop PrinterExtension, and leave Metro for the time
being. There are enough solution routes to accomplish my goal; it only needs a bit more time.

Graduation Report

version 1.1

page

37 / 41

Sources & Installable Binaries
Throughout the project I have made a considerable amount of software. For almost every phase of the
project, there also is a software deliverable. I have added a index of the software deliverables and where
the software can be found.

First V4 Driver (Consumer Preview Version)
This driver is built for x64 Windows 8 systems, and test signed by my Visual Studio 11. If you want to
install the driver, and for some reason the test certificate is rejected by your Windows 8, you will have to
temporarily disable the certification check by following the guide marked by DDE01. You can also build
your own driver using the sources (probably less work if you already installed the development
environment).

The archives are to be found at the following location:

{CD}\Driver – Phase 2\
- V4PSJDFTest_1.0_Stable.zip (Source)
- V4PSJDFTest_Package_1.0_Stable.zip (Installation files)

Desktop PrinterExtension & Metro Device App
These applications are extensions to the V4 printer driver shown above. They will not function (properly)
without it being installed on your system, so do that first if you have not done so.

 Installing the Desktop PrinterExtension requires some extra attention, and involves making changes to
your registry. Backing up your system is advised because doing something wrong here might result in a
corrupt system. I have described the steps to register the PrinterExtension in Appendix C. You have to
place the binary executable of the PrinterExtension at a static location (or leave it on the debug location)
on your harddrive, and fill in the location of the executable into the registry key file.

The Metro Device app also requires some extra attention. I have described the steps to install the Metro
Device App in appendix E. The device metadata is included in the zip.

Because these projects are built using the Consumer Preview version of Windows 8, it is likely that they
will not run properly on next versions of the OS. Please clean and build the projects before using the
binaries. This is also the reason why the binaries are not included. The source can be found on the
following location:

 {CD}\Extensions – Phase 3\

- Metro_Device_App.zip
- Desktop_Printer_Extension.zip

Graduation Report

version 1.1

page

38 / 41

Cloud Concept
This software is built after the research phase and the release of Windows 8 Release Preview. Because
of issues with the Consumer Preview version, this software is developed on the Release Preview and
therefore it will probably not run on the Consumer Preview (I admit that I have not tested it). In order to
run this software, you will have to upgrade to the Release Preview version of Windows 8 and Visual
Studio 2012. If you are already running that or newer versions, you do not have to take any action.

The software for the cloud concept consists of 2 parts: An ASP.NET web / cloud service (OCAPI Service)
and a Metro client app (OCAPI Client). In order to test the software, you will have to first deploy the
OCAPI Service, and then deploy the OCAPI Client (follow the second step in appendix E). When running
the client, do not forget to enter the correct URL of the service. When you are running the service on your
local development machine, the URL might be something like http://localhost:51169/. The URL will be
displayed in a balloon near the system tray for a brief moment when you deploy the OCAPI Service.

There are no binaries to be delivered here, because the software has to be deployed to the system by
Visual Studio. The source project can be found on the following location:

{CD}\OCAPI – Phase 5\
- OCAPI_Service.zip
- OCAPI_Client.zip

Cloud Integration
This software is the result of the integration of the cloud concept that was built in phase 5, into the Metro
Device App that was built in phase 3. Some additional tweaks and modifications were necessary to get
the solution working, but because of errors during the integration process that resulted into time pressure,
the level of the solution is not what I wanted. Nevertheless, I am still proud on what I have achieved with
this, because I have made the first cloud capable Windows 8, V4 printer driver extension.

Again the software solution consists of 2 parts. The OCAPI service is the same from the Cloud Concept
deliverable that you find in the previous section. For further instructions on the installation of the service,
see section 10.3. The other software part is the Metro Device app. For instructions on how to install /
deploy this project, see section 10.2. The project can be found on the following location:

 {CD}\Integration – Phase 6\

- OceAppV2.zip

Graduation Report

version 1.1

page

39 / 41

Evaluation
During this project I have learnt a lot from a broad spectrum of subjects. At the start of the project I was
confronted with a large amount of documentation that I would need to understand before I could start with
printer driver development. I needed knowledge about the new V4 printer driver model, as well as a bit of
knowledge about the legacy V3, to understand the differences between the two models. In the mean time
I had to make a planning for the rest of the project and think of all the steps that I would have to take to
bring the project to a success. I made a planning with phases, and every phase would overlap with the
previous phase. This planning has saved me because without the overlap, I would not have delivered as
many products as I can now. It allowed me to finish the products, or build a quick alternative if I were to
get stuck. Then the development of the printer driver started, and that was for me the real start of the
project. I knew that I did not fully understand the documentation yet, but as soon as I got to work with the
samples from Microsoft, I started filling the gaps in my knowledge. This is also where I proved that my
planning was working as I wanted, because I needed extra time to get my driver working. I was struggling
with the XML parsing and I eventually had to set a timebox for it. After exceeding that timebox, I
implemented a quick alternative. With the printer driver now working correctly, I moved on to building the
PrinterExtensions. This is where I entered more comfortable terrain for me, because I still am more
comfortable with C# than with the C++ of the printer driver. The first extension for the desktop
environment just took me a while to connect to the printer driver. This was caused by the documentation
still being in a preliminary version, being unclear and incomplete. This was also the stage that I found out
that the extension that I was building was not going to work for the Metro environment, and that I had to
build a completely different thing for that. Luckily I had time left in my phase to switch to the Metro apps. It
took me a few days to realise how much different these environments actually were, but that did not
hinder me so much. The real challenges were the coupling of the app to the printer driver, just like with
the desktop version, and the errors that I was getting from one of the app entry points. I reported the
errors to Microsoft and while waiting for their response, I continued with the app, and later with the next
phase: The research of the cloud. The research in the beginning was quite fun, because I had to meet
with a number of people from Océ that had already worked with the cloud. They all showed great
enthusiasm and were glad that they could help, and interested in my result when I would finish. As the
research continued it almost became boring to do because I was working 6 weeks on a document. In the
end the research paid off because it was a great base for my cloud concept design. I did really enjoy
building the design and implementing it because this is where I could apply everything about software
engineering that I have learned in the past 4 years of my study. Despite that I was working on two
different platforms that I hardly knew, I did not run into problems while implementing the design, except
for some small issues that I would have had anyway, no matter what environment. The next phase of the
project was to integrate the cloud concept into the printer driver. In the beginning of the phase everything
went well and without errors, because I made the correct choices during the design of the concept. Soon I
ran into problems though, because I could not launch my app from the Metro print dialog any more. It took
me a week to discover that it was to blame on the operating system and a reboot would solve the problem.
Because of this time loss, I had to timebox the implementation and therefor I do not have the integration
on the level of functionality that I would like, but it does work. The remaining time for my graduation I
mainly spent on updating documentation and getting things ready for my defence. I accomplished all the
goals that I wanted to accomplish and proved that I am ready for the real world of software development.

Graduation Report

version 1.1

page

40 / 41

Sources
Reference: MS01
Name: Developing V4 Print Driver (developing-v4-print-drivers.docx)
Source: http://msdn.microsoft.com/en-us/library/windows/hardware/br259124.aspx
Writer: Microsoft
Reliability: Good

Reference: MS02
Name: XPSDrv Filter Pipeline (XPSDrv_FilterPipe.docx)
Source: http://msdn.microsoft.com/en-us/library/windows/hardware/gg463364.aspx
Writer: Microsoft
Reliability: Good

Reference: MS03
Name: Developing Metro style Device Apps for Printers
Source: http://msdn.microsoft.com/en-us/library/windows/hardware/br259129
Writer: Microsoft
Reliability: Good

Reference: DDE01
Name: Disable Driver Signature Enforcement in Windows 8 Consumer Preview

Source:
http://laslow.net/2012/03/14/disable-driver-signature-enforcement-in-windows-8-
cp/

Writer: Laslow.net
Reliability: Good (Confirmed working solution)

Graduation Report

version 1.1

page

41 / 41

Appendices

Appendix A – Project Initiation Document (PID)
Appendix B – Creating A V4 Printer Driver
Appendix C – Registry Keys For Desktop Printer Extension
Appendix D – Cloud Integration Research
Appendix E – Installing Metro Device App

author(s)

Maurice Wingbermühle

Venlo, 5 April 2012

version

1.0

 number of pages

1 / 13

PID Cloudprinting & Océ
Internship Maurice Wingbermühle

PID Cloudprinting & Océ

version 1.0

page

2 / 13

Table of content

Document History 3

Foreword 4

1 Background 5

1.1 Context & Motivation 5

1.2 The Current Situation 5

2 Project Definition 6

2.1 Project Goals 6

2.2 Chosen Approach 6

2.3 Scope of the project 6

2.4 Products and Deliverables / Result 7

2.5 Limitations 7

2.6 Dependencies 7

2.7 Preconditions 7

2.8 Assumptions 8

3 Project Organisation Structure 9

3.1 Contractor 9

3.2 Executor 9

3.3 Internship Guidance / Judgement 9

3.4 User Group 9

4 Project Control 10

4.1 Reporting 10

4.2 Progress control 10

4.3 Tolerances 11

4.4 Risk Management 11

4.5 Issue Management 11

4.6 Deviation procedure 12

5 Appendices 13

PID Cloudprinting & Océ

version 1.0

page

3 / 13

Document History

Revisions

Version Status Date Changes

0.1 concept 23-03-2012 Set-up document

0.2 concept 29-03-2012 Changes after review from Johan

0.3 concept 2-04-2012 Minor changes to PID, clarification of planning

1.0 Release 5-4-2012 Changes in Planning document

Approval

This document needs the following approvals:
Version Date of

approval

Name Function Check

1.0 Jos Verhagen School Mentor

Distribution

This document has been sent to:
Version Date Sent Name Function

1.0 5-4-2012 Jos Verhagen School Mentor

1.0 5-4-2012 Johan Hoogendoorn Company Mentor

PID Cloudprinting & Océ

version 1.0

page

4 / 13

Foreword

This document is the Project Initiation Document for the internship project of Maurice Wingbermühle at

Océ Technologies B.V.. The purpose of this document is to define the project, serve as a base for the

management of the project and to enable the determination of the success of the project.

During the project he will conduct research to Windows 8, Windows Driver Kit 8 and the new Printer

Driver Model v4, and the possibilities of integrating cloud printing within a new Windows 8 driver.

The main goal of this project is the internship and there no compromises will be made to this target.

However, due to the new technologies and possible interesting new features for Océ Technologies, all

findings, documentation and other products will be shared with Océ Technologies B.V. and adaptations

might be made to the original product to match with their quality standards.

This Project Initiation Document, or PID for short, is a planning document and shall include the following

fundamental aspects of the project:

 What are the goals of the project?

 Why is it important to achieve these goals?

 Who are involved in this project, and what are their roles and responsibilities?

 How and when will consequences, that are described in this PID, be realized?

This document will be used�

 � to be sure that the project has a healthy base.

 � to serve as a document that provides guidelines and targets to check the progress and

success of the project.

This document will contains the following components:

 Background information

 Project definition

 Project organisation structure

 Project control

PID Cloudprinting & Océ

version 1.0

page

5 / 13

1 Background

1.1 Context & Motivation
With the introduction of Windows 8, Microsoft introduced printer driver model v4, allowing use of built-in

constraint handling, Bidi communication, Metro style user interfaces, etc.

We're interested in finding out exactly how we can benefit the most from the new architecture. In

particular we're interested in the Metro style; how this works from an end-user perspective, and if (and

how) this opens up new paths for cloud printing services.

Windows 8 will be suitable for tablets. These mobile devices open up new ways of using our printer

systems. We�re interested in finding out how this can be used best. In this context, one of the questions

that we have is how we can benefit the most of cloud printing, and that question can be divided into

multiple questions:

 What should this interaction to cloud services be?

 What do competitors (Apple, Android) offer?

 Which customer workflow exist?

 Can we support these?

The motivation for the start of the project is the internship of Maurice Wingbermühle at Océ Technologies

B.V.. The project is designed and adapted for Maurice Wingbermühle, so it will fit his profile.

The assignment description and a test case are added as appendix to this document. The contents of the

assignment description are also integrated in this document.

1.2 The Current Situation
At this moment the driver team has everything implemented in the V3 print driver model, and are still

continuing on active development of v3 drivers and supporting current drivers. The team is also working

on a family driver for all the devices. This means that there will be 1 driver for all the devices. Currently

there are separate drivers for all devices.

Since Windows 8 will be suitable for tablets, Microsoft made changes to the print driver architecture to

improve user experience, increase system stability and potentially safe battery life. In order to achieve

that they created a couple of new API�s and removed or limited some other functions. Because of this, it

is likely that current V3 drivers won�t work anymore on Windows 8, so new drivers have to be made to fill

the void.

PID Cloudprinting & Océ

version 1.0

page

6 / 13

2 Project Definition

2.1 Project Goals
The goals of the project are:

 Make a proof of concept printer driver for Microsoft�s print driver model v4 (loosely based on one

of Océ�s printer systems) with a Metro Style UI, built in constraint handling, Bidi communication

for printer status information.

 Using Windows 8 and the v4 Print Driver Model, create a metro-style printer driver with a limited

subset of job settings.

 Investigate how the new V4 model, and with that the created print driver, can be used for cloud

printing purposes.

 Based on the investigation on the printer driver / cloud interaction, extend the driver / job

submitter application to use cloud service functionality the best way possible.

Based on those main goals, we will go through a couple of phases, each phase with its own products and

deliverables.

2.2 Chosen Approach
The project will be divided into phases. Every phase represents a major step towards the end goals.

Every week we will look back at the week and see what we have achieved and what was planned. From

that we will determine if the rest of the planning is still feasible. Phases might be dependent on each other,

so one phase might be research, and the phase afterwards might build a product out of the findings of the

earlier phase(s). Phases might also go parallel or overlap, for example while waiting for feedback or

response of some kind. Phases have goals, actions and deliverables.

Later in this document we will describe more details of the planning.

2.3 Scope of the project
The project will be focussed on Windows 8 and V4 Print Driver Model printer drivers. We might include

research to other operating systems, to see what other systems already have, and how we could

enhance our system. The project will not only be research, but we will be making actual drivers and

possibly additional software to support the driver.

PID Cloudprinting & Océ

version 1.0

page

7 / 13

2.4 Products and Deliverables / Result
This project will render multiple products and deliverables:

 Research report on Cloud printing integration with the V4 print driver model

 Proof of concept V4 and Metro-style print driver with cloud service integration

 Internship Report

Additionally, more documentation on the software or other concepts might be made, but these won�t be

deliverables for school, unless specially requested. These documents are as a support for writing the

internship report and the Océ driver team, for further research.

2.5 Limitations
Since Windows 8, Visual Studio 11, Windows Driver Kit 8 and Print Driver Model V4 are all not final, and

still under active development, it might be possible that we encounter a defect or unimplemented feature

that obstructs our research or development. We might not be able to find a workaround, so this way our

work might be limited. Some of the products above are beta, others are stripped releases.

Océ Technologies B.V. has access to some solutions for these problems. We can contact Microsoft with

our findings and problems and they will check if they have a solution for that which we could use. Océ is

also part of the Tier 2 feedback program for Windows 8, so Microsoft would appreciate if we contact them

with our findings / problems. In the case of actual blocking problems, we will resort to these resources.

This might mess up our planning, and our product might change.

2.6 Dependencies
Due to the experimental nature of the project, with all new technologies and experimental / beta software,

we might encounter defects. Our product might depend on a feature that Microsoft still needs to release

to public, before we can finish our product. Up to now, no reasons have been found to assume we cannot

finish our products, but research during the project might prove otherwise. Also in this scenario we will

contact Microsoft, and they might provide us with a preliminary solution. Worst case scenario is that there

is no solution yet, and we have to develop it ourselves or fall back to older existing technologies.

On the subject of cloud services, there is already knowledge within Océ, and we will search for this

knowledge and go talk to some people of Océ when necessary.

2.7 Preconditions
All software needed for this project has already been released and are available for download. We will not

be needing any other preconditions to start this project.

PID Cloudprinting & Océ

version 1.0

page

8 / 13

2.8 Assumptions
For documentation of the project and it�s products, the assumption will be made that the reader has some

knowledge of the Windows driver development. For the sake of the readability of the document and

relevance to the product, we cannot explain every term and aspect that can be considered known for a

driver developer throughout the entire document. Therefore we will create a terminology and

abbreviations list. We expect the reader to have a ICT background and have at least basic understanding

of programming, and the internals of a operating system, such as drivers and devices.

PID Cloudprinting & Océ

version 1.0

page

9 / 13

3 Project Organisation Structure

3.1 Contractor
Océ Technologies B.V.

Research & Development

Contact:

Johan Hoogendoorn (Company mentor)

Software Engineer

Software Development 1

St. Urbanusweg 43

5914CA Venlo

The Netherlands

+31 (0)77 359 4153

johan.hoogendoorn@oce.com

3.2 Executor
Maurice Wingbermühle (Intern)

Software Development 1

St. Urbanusweg 43

5914CA Venlo

The Netherlands

+31 (0)77 359 2773

maurice.wingbermuhle@oce.com

3.3 Internship Guidance / Judgement
Jos Verhagen (School Mentor)

ICT & Technology

Fontys Hogeschool ICT Eindhoven

Rachelsmolen 1 Gebouw R1 Kamer 4.55

5612MA Eindhoven

The Netherlands

Telefoon: 08778 71189 / 0653175749

j.verhagen@fontys.nl

3.4 User Group
Software Development 1 � Driver Development Team

Océ Technologies B.V. � Department R&D

PID Cloudprinting & Océ

version 1.0

page

10 / 13

4 Project Control

4.1 Reporting
During the internship, there will be several reports from the intern to the mentors. In this section we will

describe how and when this will occur.

Once every 2 weeks, the intern will report to the school mentor, by sending a short e-mail about the

progress and process of the project. This will give the school mentor insight in how the project is running

and check that with how the project should be running. The school mentor could interfere if he thinks the

project is not running well enough, and he will provide feedback to the intern when needed.

When the school mentor will be visiting the company at a minimum of two times. The first time after 2 or 3

weeks from the start of the internship for general internship information and the second time short before

the final session, at which time the presentation will be rehearsed.

If (process) problems occur during the internship, the school mentor can be contacted. He can assist in

finding a suitable solution to the problem so the internship can be completed successfully.

Feedback from the school mentor will be oral, via e-mail or by visiting the company, depending on the

severity of the feedback.

On a more regular basis there will be reporting to the company mentor. There will be a weekly meeting

where the status of the project will be addressed and feedback or input will be exchanged. Apart from that,

when the intern has questions he can pose them directly via e-mail or oral communication.

Every morning, the intern will participate in the daily stand-up, to have a moment of reflection, to discuss

blocking issues, update the rest of the team with his findings of the day before, and activities of that day.

Since the company mentor will also be present there, he also will be updated of that. During this stand-up,

the intern will be updated of the status of the projects of the other team members, and with that, there

might be relevant information for the intern as well.

Documents and report will be made by throughout the internship. These documents have to be approved

by the company mentor and legal department before going outside the company, because of the possible

sensitive information in the documents. The document can be changed after feedback of the company

mentor or legal department. He will assist in determining whether the enclosed information is needed to

assess the document and project.

4.2 Progress control
Because of the regular reporting to both mentors, there are more people involved that can assess the

situation of the project. If either of the mentors feel the project is not progressing as it should, they will

provide feedback to the intern, on which he will take action to improve that. Because of the short intervals,

the damage will not be too severe, and therefore can still be corrected.

PID Cloudprinting & Océ

version 1.0

page

11 / 13

4.3 Tolerances
We will be tolerating some delay or advancements in the project. Since we have no monetary budget, we

can only manage the time aspect of the project.

For the project in total, 1 week delay will be tolerated. A week extra delay of the project would result in a

miss of the final session. Since one week is permitted, sickness or taking a day off should not result in

problems.

Since we will be working in phases, we can introduce tolerances in them as well to create buffers to

reduce the risk of overall delay. Depending on the size and the risks of the phase, we will assess whether

a buffer is needed, and how big the buffer needs to be. A preliminary planning will be added to this

document in a later section.

4.4 Risk Management
For now, we only now that time management might be a risk, but we have caught that with regular

feedback sessions with either mentors. One of the phases, the research phase, might render additional

risks, but have to be handled / resolved after that phase.

At this moment we only have the risk that there are unimplemented features in the current release of

Windows Driver Kit, Windows 8 or Visual Studio 11, or that there are bugs in either of these software

packages. That is the risk of working with beta / bleeding edge software. The likelihood we find such

issue is pretty high since all the software we�re working with is still under active development. The

occasion that such defect will block our research or development is small, so the risk is relatively low. The

result of the risk is that we will lose time searching for a solution for the resulting problems of the defect.

That is the reason to build in a buffer in the planning to catch these problems. Another tool that will help is

time boxing. When a deadline for a task is not met, we should assess whether to continue on the task and

shrink another, or drop it and work around the issue. We will assess how much time we need when a

defect occurs, and determine what to do then. We cannot predict these defects and their time

consumption in our planning.

4.5 Issue Management
Any issues within the project (difficulties with the company or any other problems) should be reported to

the school mentor immediately. The issues have to be handled immediately because postponing the

issue can be devastating to the project. The issue is best to be resolved between involved parties directly,

but when necessary, the school mentor shall intervene.

PID Cloudprinting & Océ

version 1.0

page

12 / 13

4.6 Deviation procedure
When drastic deviations from the planning have to be made, a new planning shall be made, and sent to

the mentors for approval. Severe deviations from any other project related subject has to be handled

accordingly. For example, when the intern is going to deviate from the original project path (like

implementing a totally different product than described in this document), this document has to be revised

and reapproved.

PID Cloudprinting & Océ

version 1.0

page

13 / 13

5 Appendices

Appendix A: Planning

Appendix B: Assignment Description & Test case

author(s)

Maurice Wingbermühle

Venlo, 26 March 2012

version

1.0

 number of pages

1 / 6

Planning
Cloudprinting & Océ

Planning

version 1.0

page

2 / 6

1 Phases

Phase Description Duration

1 Getting started, reading on the subjects, writing PID 3 weeks

2 Developing basic print driver 4 weeks

3 Enhance print driver with Metro-style UI & Submitter app 6 weeks

4 Research cloud service integration 6 weeks

5 Develop cloud service integration concept 4 weeks

6 Implement concept into existing driver 4 weeks

7 Test solution on a population of users 2 weeks

8 Writing Internship Report 12 weeks

9 Finalizing Internship 4 weeks

10 Enhance / Expand print driver with additional features 4 weeks

We will clarify the phasing, describing the goals, activities and deliverables of each individual phase.

1.1 Phase 1 � Getting Started
Goal: Getting started, retrieving context about the subjects. Throughout the project the context will remain

to grow, but there is a certain amount of context needed to get started with printer drivers. The intern has

to learn a lot about printer drivers in general and in particular about the V4 print driver model.

Activities: Reading documentation and examining examples are activities that will done during this

phase. Furthermore, the PID and planning (this document) will be made.

Deliverables: The PID and planning. As a special remark, the school mentor will visit the company in this

period.

Definition of Done: The PID and planning are ready and approved by the school mentor.

1.2 Phase 2 � Developing a basic printer driver
Goal: Build a basic V4 printer driver suitable for one of Océ�s devices, with limited functionality.

Activities: Writing the driver, and documenting the steps made by the intern to accomplish his goal, and

difficulties that occurred in order to get to them.

Deliverables: A working V4 driver, for one of Océ�s devices, Development Environment Installation

Guide, Design Document

Definition of Done: A print job is successfully executed to a Océ printer through the built V4 driver. All

Deliverables are ready & approved.

Planning

version 1.0

page

3 / 6

1.3 Phase 3 � Enhance the printer driver with Metro-style UI &
Submitter App

Goal: Build a metro style UI for the basic print driver.

Activities: Before we can build the UI and submitter, we will investigate if we can use Océ�s new Ocean

look & feel to implement our UI. We might contact some people outside of the driver team in order to

retrieve existing knowledge about this subject, and see if we can adapt the existing Ocean UI to our

needs or we need to invent something of our own. We will first have to research and choose what

technologies we want to use, like C#, Javascript, C++, or a combination of them, running on WinRT or

Win32.

Deliverables: The Metro style UI for the basic print driver, and a description document of the choices

made during the process of developing the UI and submitter

Definition of Done: The UI can be used to issue (submit) a print job, retrieve & change settings with Bidi

and do constraint handling. All deliverables are ready and approved.

1.4 Phase 4 � Research cloud service integration
Goal: Research how cloud services can be integrated into our driver.

Activities: Research how cloud services could enhance our print experience. We will first have to

investigate what customer workflows exist and could be applied. Océ already has knowledge about this

subject and we will contact sources within Océ to see if they can be used in our own research. After that

we will investigate how existing cloud services match with the workflows that are chosen, and if they can

be integrated with our driver, or that we have to build a cloud service of our own.

Deliverables: Research report resulting from the investigations, describing workflows used and

explanation of the choices made. Architectural document on used cloud service(s).

Definition of Done: Completed research report, with enough information that a concept can be built from

it. All deliverables ready and approved.

1.5 Phase 5 � Develop cloud service integration prototype
Goal: Develop a prototype for cloud service integration. This prototype is still decoupled from the driver.

Activities: Developing a prototype for cloud integration. This is just discovering how we could use cloud

services in a print driver. This might involve coding examples and small proof of concepts. From these

examples and prototypes we then choose one or more to implement in the real driver.

Deliverables: The considerations made for making a choice will be documented. That report, together

with the examples and prototypes are the deliverables for this phase.

Definition of Done: We have a cloud printing prototype ready for implementing into the driver, matching

the desired customer workflow(s). All deliverables ready and approved.

Planning

version 1.0

page

4 / 6

1.6 Phase 6 � Implement concept into existing driver
Goal: Create an actual implementation of our cloud printing prototype, developed in phase 5, in the driver

we developed in phase 2 and 3.

Activities: We will use the prototype that already has been written in phase 5 as an example for the

implementation. Depending on the outcome of the research we will also be implementing a cloud service

ourselves, but the focus will be the driver implementation. The steps of the implementation will be

documented.

Deliverables: The report on implementing the prototype (design document), and the finished driver. This

driver will be used as backup demo product for school, in the case the driver will not be expanded any

further.

Definition of Done: A completed, tested driver with cloud service integrated. All deliverables ready and

approved.

1.7 Phase 7 � Test solution on a population of users
Goal: Test our completed driver with cloud integration on a group of users, and document their reactions

and findings.

Activities: We will be submitting the finished driver to a group of users, to test what they find of our

concept. This will be a usability test, to see if our solution is intuitive and easy to use, and if users like the

added functionality of cloud services. The findings of the tests will be documented.

Deliverables: The test report.

Definition of Done: The finished test report, ready and approved.

1.8 Phase 8 � Writing Internship report
Goal: Writing the major part of the internship report. This phase will run throughout almost the entire

internship, to prevent stress at the end of the internship.

Activities: Writing the internship report, as complete as possible. Every phase will be a chapter in the

final report, so every phase, we will actually write the chapter, based on the other documentation made

during that phase.

Deliverables: A preliminary version the internship report.

Definition of Done: Submitting the preliminary version of the report to the company mentor and the legal

department for feedback.

Planning

version 1.0

page

5 / 6

1.9 Phase 9 � Finalizing Internship
Goal: Finishing the internship report and finalizing the internship.

Activities: Processing the feedback given by the company mentor and legal department, and

resubmitting the report for checking. This first step will be repeated as many times as necessary. After

that, the report is sent to the school mentor for review, and also his feedback will be processed, and the

document will go through the first step again. When everyone involved is satisfied with the document, the

final version will be made and offered to the school mentor, as most important deliverable. Based on the

finished report, a presentation will be made, which will be rehearsed during the second visit of the school

mentor to the company. The presentation might also be presented in the Cloud Café within Océ.

Deliverables: Internship report, and presentation for defence of the report.

Definition of Done: Maurice Wingbermühle is ready for his internship assignment defence / final session.

This means that all deliverables are ready and approved, the presentation is ready and there is nothing

more to do other than the final session itself.

1.10 Phase 10 � Optional: Enhance / Expand printer driver
Goal: Enhancing the driver / Expanding the driver with additional functionality.

Activities: After processing feedback on review of documents in phase 9, we extend the printer driver by

implementing more features and functionality to the printer driver. If it is possible we will use the result of

this phase as demo product during the final session.

Deliverables: Updated driver, and if required, updated documents.

Definition of Done: All deliverables, should these exists, ready and approved.

Planning

version 1.0

page

6 / 6

2 Planning Matrix

We have matrix showing the phases and how they are divided over the available weeks:

 Phases

Week 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

author(s)

Maurice Wingbermühle

Venlo, 5 April 2012

version

1.0

 number of pages

1 / 2

Assignment Description & Test Case
& Test Case

Assignment Description

version 1.0

page

2 / 2

1 Assignment Description

With the introduction of Windows 8, Microsoft introduced printer driver model v4 [allowing use of built-in

constraint handling, Bidi communication, Metro style user interfaces, etc...]

We're interested in finding out exactly how we can benefit the most from the new architecture.

In particular we're interested in the Metro style; how this works from an end-user perspective, and if (and

how) this opens up new paths for cloud printing services.

Goal of this assignment is to:

 Make a proof of concept printer driver for Microsoft's model v4 [loosely based on one of our

printer systems], with

o a metro style UI,

o built in constraint handling

o Bidi communication [for printer status information]

 Investigate how this model can be used for cloud printing

2 Test Case

Context: Windows 8 will be suitable for tablets. These mobile devices open up new ways of using our

printer systems. We�re interested in finding out how this can be used best. In this context, one of the

questions that we have is how we can benefit the most of cloud printing services.

 What should this interaction to cloud services be?

 What do competitors (Apple, Android) offer?

 Which customer workflows exist?

 Can we support these?

Test case: Using Windows 8 and the v4 driver architecture, create a metro-style printer driver with a

limited subset of job settings. Investigate if the printer driver application can be extended to make it work

as a metro-styled job submitter application as well as a driver.

Based on your investigations on driver / cloud interaction, extend the driver/job submitter application to

make best use of cloud service functionality.

Optional questions:

 Would it be helpful if we made our own cloud services?

 How could we make this? [prototype]

author(s)

Maurice Wingbermühle

Venlo, 12 April 2012

version

1.0
 number of pages

1 / 22

Creating a V4 Printer Driver
How to start on a V4 Printer Driver - XPS & PS, and JDF tickets

Creating a empty V4 Printer Driver

version 1.0

page

2 / 22

Table of content
Foreword 3

1 V4 XPS Printer Driver 4
1.1 Create from template 4
1.2 Editing files 9

1.2.1 GPD configuration file 9
1.2.2 XPSDrv Filter Pipeline Configuration 9
1.2.3 INF File (Setup Information File) 9

1.3 Building the Driver 11
1.4 Testing the Driver 12

1.4.1 Installing 12
1.4.2 Printing on the virtual printer 14
1.4.3 Results 14

2 V4 PS Printer Driver 15
2.1 Creating from template 15
2.2 Editing the files 16

2.2.1 PPD (PostScript Printer Description) Configuration file 16
2.2.2 XPSDrv Filter Pipeline Configuration 16
2.2.3 Create MSxpsPS.ppd 17
2.2.4 The Manifest file 18
2.2.5 INF File (Setup Information File) 18

2.3 Building the Driver 18

3 Creating Filters 19
3.1 Custom Filter: Print Ticket Parser 19
3.2 The other side: JDF Insert Filter 19
3.3 Configuration of the pipeline 20

4 Debugging the driver 21
4.1 XPS spool file 21
4.2 Common system errors 21
4.3 WPP Logging 21
4.4 Visual Studio Debugger 21

5 Testing 22
5.1 Tools 22

5.1.1 Notepad++ 22
5.1.2 GhostView 22
5.1.3 Open XML Package Editor Power Tool 22

Creating a empty V4 Printer Driver

version 1.0

page

3 / 22

Foreword
This guide describes how to start a printer driver with the Microsoft Printer Driver Model version 4, for
Windows 8, and Windows Driver Kit 8. This guide assumes you have a development environment as
described in the document “Development Environment Installation Guide.doc”.

We will describe how to create an empty V4 XPS printer driver, an empty V4 PS printer driver and how to
install and test them on your development machine.

Creating a empty V4 Printer Driver

version 1.0

page

4 / 22

1 V4 XPS Printer Driver
To create a empty XPS printer driver in the V4 printer driver model, we will use the default V4 Printer
Driver template that Visual Studio 11 has to offer. Because Microsoft has provided us with a lot of default
functionality in the new V4 printer driver framework, our “empty” printer driver will actually print XPS
output by default, and still has a decent set of options in the printer driver. All we to do is set up a project
with the correct configuration files.

1.1 Create from template

Let’s start with Visual Studio 11. Create a new project and select “Printer Driver V4” from the template
options. In the tree menu, click Templates >> Visual C++ >> Windows Driver >> Print:

After selecting your desired project location and entering your project name, click “OK”. A couple of
dialogs will appear.

Creating a empty V4 Printer Driver

version 1.0

page

5 / 22

For the XPS driver, we need a GPD configured driver, as shown in the next screenshot:

I won’t elaborate on any other options than we need. The options as above are default, and that is how
we want them for now. Click “Next”.

Creating a empty V4 Printer Driver

version 1.0

page

6 / 22

In the next dialog we get to choose what provided resources we want to include in the project:

Also in this screen you have to leave everything default, unless you really know what you are doing. Click
“Next”.

Creating a empty V4 Printer Driver

version 1.0

page

7 / 22

In the next dialog we can select additional driver information, a couple of descriptive settings and default
options:

We only want to change 1 option on this page, and that is the Driver Category. I prefer PrintFax.Printer
to any other option, but we will use the printer as a file printer later on. I have not seen any influence on
the behaviour of the printer driver, but it might affect the image Windows displays in the Devices and
Printers screen. Leave everything else as is, and click “Finish”.

Creating a empty V4 Printer Driver

version 1.0

page

8 / 22

After Visual Studio finishes with creating the project, you get a solution with 3 projects. Your Solution
Explorer will show something like this:

Creating a empty V4 Printer Driver

version 1.0

page

9 / 22

1.2 Editing files

1.2.1 GPD configuration file
The current state of the solution will build but it won’t create a installable package, in order to do that, we
have to make some changes to 3 files. Let’s start from the top, with the gpd file.

The GPD file is the main configuration file of the printer driver. It contains information about the
capabilities of the printer and their default options, and the model name. You don’t have to modify much
here, just fill in the model name with anything you like (preferably something descriptive), and remove the
*PrintSchemaPrivateNamespaceURI directive because we don’t have such thing yet. Save the file.

1.2.2 XPSDrv Filter Pipeline Configuration
Next up is the PipelineConfig.xml file. When you open the file, you see that there is an entry for 1 filter.
This filter is included in the project. Because we want the driver to be empty, we have to remove the filter
from the pipeline. Delete the <Filter> entry, so the xml file only contains “<Filters></Filters>”. If you plan
on adding the filter again later on, you probably want to save the <Filter>…</Filter> snippet in a text file
somewhere safe. When done, save the file.

1.2.3 INF File (Setup Information File)
The last file we need to edit, is the most important file, since this is the file Windows reads to determine
what files to copy where, and what printer is installed. It’s the inf file. Open it and start from the top. The
first directive you need to edit, is the driver version DriverVer. For my test drivers I personally use driver
versions under 1.0, so something like 0.1.

Next we skip a few lines and go to the [Standard.NT$ARCH$] indicator. Under this indicator we need to
declare the printer driver models that can be installed with this driver package. For now, just do one, like
this:

I shall explain a bit what we are doing right here. The first section “Clean V4 XPS” is the name of the
model of the printer that Windows will pick up and use as printer name. After the equation sign I have
declared a indicator to the installation instructions, and after the comma, I have placed a fake hardware
ID. You place a Hardware ID here, or a GUID, so when Windows is installing a real printer, it will use
these IDs to match your driver with a certain printer model. Remember that this field is mandatory, and
you will need to enter a complete entry. If you don’t add the Hardware ID, the INF file will not even pass
validation and your driver build will fail.

I have just declared a indicator to the installation instructions for our printer model, but that indicator does
not exist in the file yet. Let’s do that now.

Creating a empty V4 Printer Driver

version 1.0

page

10 / 22

Create a new indicator, and add the CopyFiles directive to it, like this:

It is possible to add a lot more directives to this indicator, but we only need one. As you can see I’ve
made up another new indicator after the CopyFiles directive. The directive instructs the installer to copy
the files mentioned under a certain indicator.

Now also create the file copy indicator, and list all files you need to copy to the DriverStore, like this:

Now the installer knows what files to install, but not where. To make that clear to the installer you have to
add all the files to the SourceDisksFiles indicator, that already exists a few lines up.

You can see I’ve added “ = 1” to all lines. This is a reference to the following lines:

You can leave those lines, they indicate the installer where to put the files. The “1” in the
SourceDisksFiles section refers to the “1” in the SourceDisksNames section. Do not forget the “ = 1” after
the filenames in the SourceDisksFiles section, because that will result in a validation error and the build
will fail.

With that we’re almost finished. You only need to fill in the manufacturer name, in the Strings section, like
this:

Save the file and you are done, concerning the editing. Next step: Building.

Creating a empty V4 Printer Driver

version 1.0

page

11 / 22

1.3 Building the Driver
This should not be difficult. Before you hit the magic button, be sure to select the right processor
architecture. If you are developing and testing on a 64 bit machine, you will have to change the build
target to x64, instead of Win32, in the Solution Platforms box in you toolbar. With that right, hit [F7] or
click Build >> Build Solution. If you did everything right, the solution should build without any further
problems, and you get a package as result. Now we are ready for testing

Creating a empty V4 Printer Driver

version 1.0

page

12 / 22

1.4 Testing the Driver
The test consists of 2 parts, installing and making the first print.

1.4.1 Installing
Hit the Win key on your keyboard (or open start anyway you want), and type Printer. This will invoke
search. Select the “Settings” tab to see the search results in the Settings. Open the Devices and Printers
screen. Click “Advanced printer setup” to install a new printer with our new driver.

Windows will start searching for new printers on your system and the network. Since our printer does not
even exist, click “The printer that I want isn’t listed” on the bottom of the dialog. The next dialog will
appear, asking how you would like to find another printer. Select the last option “Add a local printer or
network printer with manual settings.” and click Next.

 The dialog as in the image above will appear. Since we do not yet have our own printer port yet, select
“Create a new port”. We want to create a new local port, so make sure that is shown in the dropdown box.
Click Next.

Creating a empty V4 Printer Driver

version 1.0

page

13 / 22

The installer will prompt for a port name. You can do 2 things here. Either type a full file path (does not
have to exist yet), like I did, or just type in a short name. The short name will result in a file with that name
in your personal documents folder on the machine you’re testing on. The full path will result in a file on the
location you wish. Note that this file will only exist after the first print job, and not yet after installation.
Make sure you have writing access on the location you enter. Click OK.

In the next dialog, click “Have Disk” because we manually want to select the location of our printer driver.
The installer will prompt for a location. Enter the location of the built driver. This should be the location of
your project, and than in the folder x64 >> Win8betaDebug >> Package. The x64 part is of course only for
x64 machines, Win32 drivers are directly in the Win8betaDebug folder. You will notice that there is also a
INF file in the Win8betaDebug folder, but it is important that you select the one in the package folder. This
is because only the package folder has a signed catalog (.cat) file. Click OK when finished.

Creating a empty V4 Printer Driver

version 1.0

page

14 / 22

In the next dialog you can see that the installer has already read the INF file, because it shows the
printers it can install from the INF file. We have only added 1 printer, so there is not much choice. Click
Next.

The installer will ask for a name, edit the name, or leave it as is. Clicking Next will install the printer. When
the installer is done with the operations and does not encounter an error, it will show the final page of the
installer dialog. Set the driver as default if you want, and finish the dialog.

1.4.2 Printing on the virtual printer
The next step is to print something on the printer we just installed. Open notepad, enter the text “Hello
World!” and hit Ctrl + P or File >> Print. Leave the print options default, and click Print. Make sure you
have selected the correct printer, we don’t want some rubbish to come out of your real printer.

If everything went right, we just made a print with our own driver. Open an explorer and navigate to the
location where your printers local port should output. If everything really did went well, you should see a
file with a very recent timestamp, and 22KB of size. Depending on the name you gave, you might or might
not have a .xps file extension. If you have, go ahead and open it. If not, rename the file so you have, and
then open it. In Windows 8, we have the Windows Reader that can open XPS files. Check if you see a
document with our “Hello World!” text and there should be a header and footer as well.

1.4.3 Results
If you did not make it to the end but got an error during either installation or printing (or no print file
appeared), check if you did not miss a step of the editing of the files and the building section. If you have
verified that all steps are correct, you can check the Windows event and setup logs for any clues.

Windows Event Logs:
Start: Search “event” >> Settings >> View event logs

INF Setup Log:
Notepad: %windir%\Inf\setupapi.dev.log

Creating a empty V4 Printer Driver

version 1.0

page

15 / 22

2 V4 PS Printer Driver
Microsoft provides us with everything to create PostScript or PCL6 printer driver. They have PS and PCL
filters ready for use. The clue is to correctly configure them. Due to the lack of decent documentation at
this moment, I’ve decided to expand my guide to incorporate the PS filter in a empty XPS driver.

Before you start this chapter, you have completed the first chapter, because I will skip through some
steps here, and refer to some steps from that chapter.

2.1 Creating from template
The first 2 steps are the same as in paragraph 1.1, except for the GPD configuration option, now select
the PPD configuration option.

The windows where you select the includes, should look like this:

You have to select all the Pscript files, and the MSXPSINC.GPD file.

The rest of the steps is equal again to the steps taken in paragraph 1.1.

Creating a empty V4 Printer Driver

version 1.0

page

16 / 22

2.2 Editing the files
I will step a bit faster to these steps and not explain the things that I already explained in chapter 1.
There is more to edit here.

2.2.1 PPD (PostScript Printer Description) Configuration file
Instead of a GPD file, we now have a PPD file. Let’s start with that file.

These are the changes that I have made to this file. You should do something similar. Remember to
remove the *MSPrintSchemaPrivateNamespaceURI directive. I have also added the *PSPrintErrors
directive with True.

2.2.2 XPSDrv Filter Pipeline Configuration
First make the same changes to the PipelineConfig.xml file as in paragraph 1.2.2 so we get a empty
<Filters> tag.

Next we will add a new filter tag that adds the PostScript filter to the pipeline. The filter tag is a snippet
that can be taken from “Developing v4 Print Drivers.docx”, paragraph 4.1.5.2.2, a document that Microsoft
provides on their developer website:
<Filter dll="MSxpsPS.dll"

clsid="{8636D90A-5E03-4d62-9269-E06493C57473}"
name="Microsoft XPS to PS">

<Input guid="{4d47a67c-66cc-4430-850e-daf466fe5bc4}" comment="IID_IPrintReadStream" />
<Output guid="{65bb7f1b-371e-4571-8ac7-912f510c1a38}" comment="IID_IPrintWriteStream"
/>
</Filter>

You now have 1 filter in the pipeline again.

Creating a empty V4 Printer Driver

version 1.0

page

17 / 22

2.2.3 Create MSxpsPS.ppd
In order to get the MSxpsPS filter to work, it needs it’s own PPD file with the correct name and
corresponding options to the global configuration. Instead of creating a new file, I copied the existing PPD
file and renamed it. Open a explorer and navigate to your project folder, and look for the main PPD file.
When you find it, copy and paste it in the same folder, and rename the copy to “MSxpsPS.ppd” (and
nothing else!).

Now go back to Visual Studio. We need to instruct Visual Studio that it needs to take the PPD into the
project and output directory when building. First add the file to the project, by right clicking the top project
of the solution, and select Add >> Existing Item. Browse to the file and select it. Now it’s in the project, but
it won’t get copied to the Package folder. To accomplish this, right-click the project again and select
Properties.

Select Driver Install, and add the MSxpsPS.ppd file, like shown below:

When done click Apply first, to see if it’s correctly added, then click OK.

Creating a empty V4 Printer Driver

version 1.0

page

18 / 22

2.2.4 The Manifest file
We also need to make change to the manifest.ini file. This is the file that describes all the includes.

On the RequiredFiles directive, add MSXPSPS.DLL (pay attention, DLL, not PPD). When done, it should
look like this:

2.2.5 INF File (Setup Information File)
You should be able to do this on your own, following the steps from paragraph 1.2.3. You should of
course replace the gpd with ppd and do not forget to include the MSxpsPS.ppd file.

This concludes the editing steps for the PS driver.

2.3 Building the Driver
Same as described in paragraph 1.3

Creating a empty V4 Printer Driver

version 1.0

page

19 / 22

3 Creating Filters
3.1 Custom Filter: Print Ticket Parser
To begin with the first filter, the XPS Print Ticket Parser, we start with the PostScript project that we
prepared in chapter 2. We’ll leave the pipeline configuration for what it is now because we cannot
complete it yet. The default template has a lot of code for parsing PrintTicket, so if you we’re stubborn
enough to actually delete the original code, you’d better start over again. The code that we are looking for
is in the RenderFilter project, inside the solution. There are only 2 files inside this project that are really
interesting for us at this moment and that are PTHandler.cpp and RenderFilter.cpp. To give you a bit of
context: dllentry.cpp handles the start and finish of the DLL calls. It creates a instance of RenderFilter.cpp,
and calls the StartOperation function. RenderFilter.cpp is the real pipeline segment. It has the interfaces
for the input and output and makes further calls to, among others, the Print Ticket handler PTHandler.cpp.

The template “as-is” is actually working pretty good, but we need to modify a few things to make it useful.
For starters, we want our XPS Parser to also have a XPS output, instead of a Stream, so we need to
modify that in code, and in the pipeline configuration, because the writer in the template works with the
Stream interface. When you try to build and install this printer driver, it will probably succeed, but it will not
output any PostScript. That is because the RenderFilter.cpp does not output anything, it just tries to parse
and validate the Print Ticket. To change that, we need to go to the code in RenderFilter.cpp where the
PTHandler is called to do it’s magic on the XPS parts. Apart from sending the XPS parts to the PTHandler,
we also want to output these same parts, to make our filter “pass-through” again. Feed the XPS parts to
the writer with the appropriate send functions to make the filter output again.

Next, we need to add a function to the PTHandler to retrieve the validated PrintTicket. You can choose
how you want to do it, but I made a GetData function which takes a reference to a string and fills that with
the raw XML from the validated print ticket. This should not be to hard.

Back to the RenderFilter. After having fed all the XPS parts to the PTHandler, we retrieve the validated
print ticket with our home made function, put that into the pipeline PropertyBag. The RenderFilter already
has a instance of the PropertyBag interface, so the only thing you need to do is call the AddProperty
function with the right parameters.

3.2 The other side: JDF Insert Filter
With that done, we finished the XPS Parser, so let’s continue with the JDF Insert Filter.

To create the JDF filter, we need to create another project in the solution, again, based on a template.
This time we don’t need the entire printer driver template, but just the Render Filter template. For this filter
we want Stream in and output so modify the interfaces to match that. The reason for that is quite simple:
We’re behind the MSxpsPS converter filter, so we cannot expect XPS output from that. We want to output
JDF, and then place PostScript output of the MSxpsPS filter behind that.

Creating a empty V4 Printer Driver

version 1.0

page

20 / 22

The first thing you want to do in this filter, is reading from the input, and store that in a buffer for a bit. That
is because the V4 architecture is pseudo multi threaded. It will try to do as much as possible in a parallel
way, so initializing the filters and variables will happen parallel if the pipeline does not detect data
requirements. With placing a read statement, we indicate that we first want the data of the previous
pipeline segment to be ready before anything else in our pipeline can happen. This is important because
we want to read from the propertybag, and if the previous filter is not yet finished, it could be that the
value we want to read does not exist yet.

Read the PrintTicket from the propertybag, which we set in the XPS Parser filter. We then need to read
the important value from the XML. We should parse the XML file, but because of time issues, I was forced
to choose for the string search option instead. I injected the retrieved values for stapling, simplex / duplex,
number of copies, and collation into a static JDF ticket that I copied from another Océ printer driver output.
Output the JDF ticket, and than write the saved buffer from the first read, and read and write the rest of
the input. This can all happen in the RenderFilter.cpp, so you don’t need the PTHandler, or any of the
other files here. With this you should already be finished with this filter.

3.3 Configuration of the pipeline
For the configuration part, you should modify the pipeline-config.xml file to include the 3 filters in the right
order as displayed in the previous image. You should also make sure your PPD files configure the
features you want to be using, because otherwise they won’t show up in the Print Preferences window
Microsoft generates for you.

Creating a empty V4 Printer Driver

version 1.0

page

21 / 22

4 Debugging the driver
Of course we needed debug tools to analyze the driver and your system in case something goes wrong.
There are various places to retrieve information about the printer driver. I’ll take you through a couple of
them.

4.1 XPS spool file
It is possible to retrieve the raw unprocessed spool file. You first have to enable a checkbox in Printer
Properties >> Advanced tab >> Keep printed documents. After that, open a explorer and navigate to
C:\Windows\System32\spool\PRINTERS\ and copy the .spl file to, for example, your desktop. You can
either rename the file to .zip and open it with any compatible program, or you can rename it to .xps and
open it with Visual Studio 2010 (yes, not yet 11) with the Open XML Package Editor Power Tool installed.
Get it at http://visualstudiogallery.msdn.microsoft.com/450a00e3-5a7d-4776-be2c-8aa8cec2a75b

4.2 Common system errors
To view common errors with the printer driver, or installation of the driver, you van use the Windows
Event Viewer. Search for “event” in Windows 8 Start, and you will get 1 hit in “Settings”. I usually use the
Custom view “Administrative Events”.

4.3 WPP Logging
To view the WPP logging made by the printer driver, which is a very useful tool, you need a program, that
can view the logging. I’m using ETViewer, a free, standalone executable that can be downloaded from
http://etviewer.codeplex.com/. You have to open the PDB files that match with the DLL’s you built for the
driver, in order to actually see results in the logging.

4.4 Visual Studio Debugger
Probably the most powerful tool is the Visual Studio debugger. To start debugging, you have to create a
registry key that forces the printer driver pipeline to stay alive for a specified amount of time, so you can
attach to the process. The key you have to create is in
“HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Print”, and is called “PipelineHostTimeout”.
It should be a DWORD type, and the decimal value indicates the timeout value in milliseconds. So if you
want a 2 minute timeout, like I did, use 120000 as value. Print a job to your driver to wake up the
printfilterpipelinesvc.exe process, go to Visual Studio, press [Ctrl] + [Alt] + [P] and attach to the process.
Set breakpoints in your code, and print another job to the driver. Now your first breakpoint should be hit (if
your breakpoints are reachable). Remember that is the easiest if you let the installer copy the pdb files
with the dll files. This way you don’t have to tell Visual Studio where to find the files. You do need the pdb
files for debugging, no breakpoints will be hit if they are not present. For more details about this, see
MSDN: http://msdn.microsoft.com/en-us/library/windows/hardware/ff545076(v=vs.85).aspx

Creating a empty V4 Printer Driver

version 1.0

page

22 / 22

5 Testing
To test my driver, I used Notepad++ to just read the print output. Especially for the JDF ticket, it is the
easiest way to see if the output is valid. To make things easier, cut the JDF ticket and paste it to a new
file, and save is with xml extension. This enables the Notepad++ syntax highlighting. To verify the
PostScript, you have to strip the JDF file from the top before opening the .ps file with a program like
Ghostview. As final test, I changed the printer port to a remote port of a Océ printer, managed by
Testgroup. The first time I tested on these machines, it went wrong, and apparently I had the JDF
mimetype directive set to XPS, instead of PostScript.

5.1 Tools
I have used some tools for testing, that are not related to the debugging tools, and I will share them with
you here.

5.1.1 Notepad++
Probably the most popular text editor for programmers, because it can recognize various programming
language and related configuration files. Notepad++ can apply context highlighting and that is particularly
useful for analyzing and validating XML. The JDF ticket is XML, and because that is the part that we are
modifying later on, it can be useful to check for typo’s.

Open the print output file, select the XML and cut and paste it to a new file, and save that as XML.
Notepad++ will that apply highlighting as soon as you safe the file with the right extension (.xml). If you
want to see the PostScript output, you can safe the remaining content of the printer output to a .ps
extension and open that file with another tool: GhostView.

You can download the latest version of Notepad++ at: http://notepad-plus-plus.org/

5.1.2 GhostView
For viewing the PostScript output of the printer driver you need another tool called GhostView. It uses
GhostScript as parser / interpreter, and you will need to install that as well in order for GhostView to work.
You can find the latest version of the tools at http://pages.cs.wisc.edu/~ghost/.

5.1.3 Open XML Package Editor Power Tool
If you have not yet enabled the PostScript converter filter in the pipeline yet, you should be getting XPS
output. If you want to validate that output you can use this tool to browse through the zip structure, and
analyze the raw XML files in Visual Studio. Be sure to strip the JDF from the rest of the output, as
described in section 4.1.1. Is you want to see the visual (rendered) output of the XPS file, you can open
the file with the Metro style Windows Reader app.

See section 3.4 for more info and a download link.

author(s)

Maurice Wingbermühle

Venlo, 5 June 2012

version

1.0
 number of pages

1 / 7

Registry Keys for Desktop
PrinterExtension
Registring a V4 PrinterExtension for Desktop

Registry Keys for Desktop PrinterExtension

version 1.0

page

2 / 7

Table of content
1 Get the Printer Driver ID 3

1.1 From Printer Driver Project 3
1.2 From a preinstalled printer 3

2 Create a Registry Key file 4
2.1 The base of the file 4
2.2 Replacements 4

2.2.1 PrinterExtensionID 4
2.2.2 PrinterDriverID 5
2.2.3 AppPath 5

2.3 Saving the file 5

3 Applying the registry key 6

4 Unregister 7

Registry Keys for Desktop PrinterExtension

version 1.0

page

3 / 7

1 Get the Printer Driver ID
1.1 From Printer Driver Project
If you are developing the entire printer driver package like I am, it is easier to get the printer driver ID
directly from the code. Open your V4 printer driver project and open the manifest file. The printer driver ID
is placed on the second line by default (from the template). If you modified or created this file by yourself,
you will probably know better where to look for it.

The keyword that you are looking for is PrinterDriverID, and you will find it under the [DriverConfig]
directive, in a line like this:

PrinterDriverID={xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}

Copy the entire section after the equation sign, including the curly braces { }.

1.2 From a preinstalled printer
If you did not develop your own printer driver, but have a preinstalled printer driver that you want to test
your PrinterExtension with, you will have to do the following to get the printer driver ID.

1. Open a PowerShell
2. Copy the following text into PowerShell (copy – right mouse click). Replace <printer name> with

the name of the printer queue that you want to use:
$printDriverID = Get-Content ((Get-Printer "<printer name>” | Get-
PrinterDriver).DependentFiles | Where-Object -FilterScript:{$_ -like
"*manifest.ini"}) | Where-Object -FilterScript:{$_ -like "PrinterDriverId*"}
($printDriverID.Split("="))[1];

If you wrote the name of the printer correctly, this should result in a GUID. Copy this GUID, including the
curly braces { }.

Registry Keys for Desktop PrinterExtension

version 1.0

page

4 / 7

2 Create a Registry Key file
To register the application, there are 2 ways to add keys to the registry. To make things easy, I will show
you how to create a registry file (.reg), instead of using the registry editor.

2.1 The base of the file
Open Notepad, or another suitable text editor. Copy and paste the following text into the text editor:

Windows Registry Editor Version 5.00
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Print\OfflinePrinterExtensions]
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Print\OfflinePrinterExtensions\{PrinterExtensionId}]
"AppPath"="c:\\apps\\Printer extension
sample\\C#\\ExtensionSample\\bin\\Debug\\PrinterExtensionSample.exe"
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Print\OfflinePrinterExtensions\{PrinterExtensionId}\{Printe
rDriverId}]
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Print\OfflinePrinterExtensions\{PrinterExtensionId}\{Printe
rDriverId}\{EC8F261F-267C-469F-B5D6-3933023C29CC}]
@="1"
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Print\OfflinePrinterExtensions\{PrinterExtensionId}\{Printe
rDriverId}\{23BB1328-63DE-4293-915B-A6A23D929ACB}]
@="1"

The code above creates a number of registry keys with appropriate values. Before it can be used, you will
have to modify it to fit your printer driver, PrinterExtension and system. That will come in a moment
though. You can modify the base above. The last 2 keys of the base contain 2 different GUIDs. These are
statically defined for interfaces on which your PrinterExtension can be called. The first GUID is for Print
Preferences, and the second is for Driver Events. If you don’t support driver events in your
PrinterExtension, than you can remove the last key (from “[HKEY_” to “@=”1””).

To get more information about the registry keys, see “Developing V4 Printer Drivers”, section 6.4.1.1.2
http://msdn.microsoft.com/en-us/library/windows/hardware/br259124.aspx

2.2 Replacements
You have to replace some values in the text above, to make it suitable for you printer driver and
PrinterExtension. Make sure that the format of your input matches the values that are already in the base.

2.2.1 PrinterExtensionID
First replace {PrinterExtensionID} with a GUID that you have generated yourself. You can generate a
GUID by using Visual Studio. In the Visual Studio, in the toolbar click Tools >> Create GUID. Select the
Registry format option, and click the Copy button to copy the result to your clipboard. Use find and
replace to replace all occurrences of the PrinterExtensionID with your new GUID.

Registry Keys for Desktop PrinterExtension

version 1.0

page

5 / 7

2.2.2 PrinterDriverID
The second step is a bit simpler. Replace all occurrences of PrinterDriverID with the printer driver ID
GUID that you retrieved earlier.

Note: The GUID that you retrieved is probably in lower case, but you have to convert that to upper case in
order to be interpreted right into the registry. I used an online tool to convert my GUID, but you can do it
manually if you want.

2.2.3 AppPath
The last value you will have to replace is the AppPath value. Browse to the physical location of your
project on your hard disk with Windows Explorer. Find the .exe file of your build, which will probably be in
your bin\Debug folder. Copy the address of the folder, appended with the executable name (so the full
application path) to the text editor. Pay attention to the double backslashes in the application path as the
base sample, and apply them to your path.

2.3 Saving the file
Now that we are done with the contents of the file, we are going to save the file. We want to have .reg file,
which in fact is a specially formatted text file. So if you were working with notepad, you can save the file
as a .reg file on a location of your own choice. You can also pick a name of your own, but I advise you to
name it something like “<printer-name>-<printerextension>-install.reg”. Just don’t forget the location
where you put it. If you were working with something else than notepad, you will have to make sure that
the output is correct.

Registry Keys for Desktop PrinterExtension

version 1.0

page

6 / 7

3 Applying the registry key
To complete the registration of the PrinterExtension, we only have to execute the file we just created.
Being a .reg file, Windows will recognize it as a registry key file. When you double click on the file,
Windows will prompt you with safety warnings and maybe even an authorisation dialog (you have to have
Administrator rights to do this).

Please note that after installing the registry key, it can be found using the Windows registry editor
(WIN+R >> regedit) on the location specified in the file:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Print\OfflinePrinterExtensions

However part of the keys will be removed from this location after running the PrinterExtension for the first
time using the Print Preferences button in the print dialog. Pressing Print Preferences will trigger a service
to check the registry key above and parse and apply the new child key(s). So if you think you made an
error, you can fix that before running the PrinterExtension.

Instead of using the print dialog and Preferences button, you can also trigger the service on your own.
The service is called PrintNotify and you have to restart it if it is running, or start it if it is not running yet.
PrintNotify will then walk through the registry keys and process any unprocessed keys.

Registry Keys for Desktop PrinterExtension

version 1.0

page

7 / 7

4 Unregister
To unregister your PrinterExtension, you do not have to do much. Take the install registry key file, open it
with notepad, and replace the 2 occurrences of @="1" with @="0".

Save the file under another name (I advice the same name, but with “uninstall” instead of “install” in the
name) and run the file to apply the key. To have the key processed by Windows, open the Print
Preferences in the print dialog. You do not actually have to print a document by the way, just cancel the
print dialog when done.

author(s)

M. Wingbermühle

Venlo, 21 May 2012

version

1.1
 number of pages

1 / 49

Cloud Integration Research
What technologies and workflows exist in the cloud and how to integrate
them in a V4 printer driver for Windows 8.

Cloud Integration Research

version 1.1

page

2 / 49

Table of content
Foreword 5

1 Research Objective 6
1.1 Supporting Questions 6

2 What research has already been done? 7

3 What technologies can be used? 8
3.1 Data Transfer Protocols 8

3.1.1 HTTP 8
3.1.2 HTTPS 8
3.1.3 XMPP 8
3.1.4 Data transfer: Which protocols should be used? 9

3.2 Cloud Flavours 10
3.2.1 SaaS – Software as a Service 10
3.2.2 PaaS – Platform as a Service 10
3.2.3 IaaS – Infrastructure as a Service 11
3.2.4 SaaS, PaaS or IaaS: Which one to use? 11

4 What existing Cloud Services can be used? 12
4.1 A list of cloud services 12
4.2 Update on Dropbox 12
4.3 Google Drive integrates Docs 12

4.3.1 Comparison with Dropbox 13
4.4 Amazon Cloud Drive 13
4.5 Mimeo Connect Cloud Print 13
4.6 Compatibility between services 14

4.6.1 Google Drive and Cloud Print 14
4.6.2 Box.net and Google Docs 14
4.6.3 HP ePrint and Google Cloud Print 15
4.6.4 HP ePrint and Mimeo Cloud Print 15
4.6.5 AutoCAD WS and Google Drive 15

5 What interaction should there be with the cloud service? 16
5.1 What do we want from a cloud service? 16

5.1.1 Print to Cloud storage 16
5.1.2 Print to PDF 16
5.1.3 Print to PDF and send / share 17

Cloud Integration Research

version 1.1

page

3 / 49

5.1.4 Print to another printer 17
5.2 What are common technologies for cloud services? 19

5.2.1 Dropbox 19
5.2.2 Google Drive 19
5.2.3 Google Cloud Print 20
5.2.4 Box.net 20
5.2.5 Windows Live SkyDrive 21
5.2.6 Conclusion 21

5.3 What information do the cloud services require? 22
5.3.1 What information is commonly needed by the major cloud services? 22
5.3.2 How can we request the needed information from the user or the system? 23
5.3.3 What customer workflows do already exist? 24

5.4 Which scenarios are achievable? 24
5.4.1 Print to Cloud Storage 24
5.4.2 Print to PDF 24
5.4.3 Print to PDF and send / share 24
5.4.4 Print to another printer 25

6 Where do we integrate the cloud? 26
6.1 The Filter Pipeline 26
6.2 The Desktop PrinterExtension 26
6.3 Metro Device App 27
6.4 Combination Approach 27

7 What do competitors offer? 28
7.1 HP ePrint 28
7.2 Xerox 28
7.3 Brother 29
7.4 Konica Minolta 29
7.5 Canon 30
7.6 Kyocera Document Solutions 30
7.7 EFI 30
7.8 Epson 30

7.8.1 Google Cloud Print 31
7.8.2 Windows 8 31

7.9 First steps and stable concepts 31

8 Can creating our own cloud service help in integrating more
services? 32

8.1 The normal way 32
8.2 Examples from the real world 32
8.3 Hosting the service 32

8.3.1 In the local network 33

Cloud Integration Research

version 1.1

page

4 / 49

8.3.2 A real cloud service 33
8.3.3 Hybrid options 33

8.4 The benefits win 34

9 How can we build our own cloud service? 35
9.1 Cloud Deployment options 35

9.1.1 Amazon Elastic Compute Cloud (EC2) 35
9.1.2 IBM SmartCloud Enterprise 35
9.1.3 Joyent 36
9.1.4 CloudFoundry 36
9.1.5 Google App Engine 36
9.1.6 Microsoft Windows Azure 37
9.1.7 Force 37

9.2 Accessibility of third party services 38
9.3 Availability towards clients 38
9.4 Platform dependency 38
9.5 Scalability 39
9.6 Advices and Choices 39

10 What infrastructure should be used? 41
10.1 The active portal 41
10.2 The passive relay 41
10.3 The open gate 42
10.4 The solution 42

11 Glossary 43

12 Sources 45

Cloud Integration Research

version 1.1

page

5 / 49

Foreword
This document describes the research for cloud integration in a V4 printer driver for Windows 8. The
research is focussed on the cloud; its capabilities, existing services, technologies, workflows and
platforms are the main subjects of investigation.

This research is a major part of my graduation on V4 Printer Drivers in Windows 8 and cloud integration.
I am graduating from the study “ICT & Technology”, which I am attending at Fontys University of Applied
Sciences. I am fulfilling my graduation at Océ Technologies B.V. in Venlo, The Netherlands. At the time of
writing this document, I have a basic V4 printer driver working in the Consumer Preview and Release
Preview of Windows 8. I also have Metro applications and desktop printer dialog extensions that can set a
limited number of settings to the printer. The printer driver can output to almost every Océ printer
available.

The world of the cloud is already huge, and still expanding. I highly recommend checking the sources that
I have used when you read this document, because it is very likely that things have changed. This
research has been just a exploration of what is out there, and I have just taken the items, resources and
technologies that could be useful for integration into a printer driver.

My vision about has changed during this investigation, and I now have a better view of the available
technologies and possibilities of the cloud, but also the limitations and problems that you might encounter
while developing for the cloud.

I hope that this document helps you build your own vision on the cloud and get a better perspective on
how to us the cloud in a printer driver. I have enjoyed researching these subjects and I hope you will
enjoy reading my questions, problems, and above all, answers and solutions to that I found.

Cloud Integration Research

version 1.1

page

6 / 49

1 Research Objective
The main question of this research is:

“How can one or more cloud services be integrated with a V4 printer driver to deliver an enhanced
experience in Windows 8 printing?”

The objective of this research is to investigate how Cloud integration in a V4 printer driver for Windows 8
could enhance the printing experience for the user. We will be using the latest techniques in Windows 8
and the new V4 Printer Driver Model to accomplish a rich user experience. To go even further, we want to
integrate cloud services to lift the user experience to the next level.

We already have a basic V4 printer driver in which we want to integrate cloud. The driver can print on
pretty much every Océ printer, because of the limited subset of functionality. Because I already have
experience writing printer drivers and extension software, I will not investigate the integration itself. For
more information, I refer to my other documents about developing printer drivers and extension.

1.1 Supporting Questions
In order to answer the main question, we will compose a set of supporting questions. By answering those
questions, we will be able to build a concept that answers the main question.

 What technologies can be used?
o Which cloud technologies are suitable for our application?
o Which technologies can be combined?
o What are the advantages and disadvantages for each technology?

 What existing Cloud Services can be used?
o Which technologies does the service use?
o What about security and privacy?
o How can we implement / integrate the service into the driver?

 What interaction should there be with the cloud service?
o What information do the cloud services require?
o How can we request the needed information from the user or the system?
o What customer workflows do already exist?

 Where do we integrate the cloud in the printer driver?
 What do competitors offer?
 Can creating our own cloud services help in integrating more services?
 How can we build our own cloud service?
 What infrastructure should be used?

o What infrastructures can be used in the Océ network environment?
 What research has already been done by Océ employees, and could we use that knowledge?

We will handle these questions in a better order, as seen in the table of content.

Cloud Integration Research

version 1.1

page

7 / 49

2 What research has already been done?
The first step that I have taken in my research, is to collect as much information as a possibly can about
the research that has already been done within Océ, to prevent double work. I’ve spoken a couple of
people, and gained access to the report they have written on their own research.

I won’t describe the results of my search for information in detail. The information that I have used is
embedded into my report. There will be no referencing to Océ sources for confidentiality reasons.

Cloud Integration Research

version 1.1

page

8 / 49

3 What technologies can be used?
3.1 Data Transfer Protocols
To really start with our research, we start at the bottom, with technologies. It is hard to precisely define
the term “cloud”, but one thing we know for sure: It has to do something with the internet. That is the most
important part for a cloud concept; possible communication with a lot of other computers, and not only
within your own local network.

3.1.1 HTTP
The most important technology in the internet is HTTP, the Hyper Text Transfer Protocol. The technology
uses TCP as transport layer, and every time you enter a website in your browser, the protocol is used to
send data to a server, retrieve the website, and do so with little overhead. The protocol and its default port
(80) is used so much that almost every firewall has the outgoing port open by default.

3.1.2 HTTPS
There also is a secure version of the protocol, HTTPS, which uses SSL to encrypt the datastream
transported by the protocol. Because HTTPS is more secure than HTTP, it is also open in most firewalls.
Because of the higher overhead on the protocol, it is only used when necessary. Both HTTP and HTTPS
are very good technologies to use in cloud concepts, because of their existing footprint in the internet
world.

3.1.3 XMPP
Based on XML natively using TCP as data carrier, the Extensible Messaging and Presence Protocol
might also be a contender to be used as a cloud protocol. The open source protocol began its life under
another name and purpose: Jabber was a near real-time instant messaging protocol, suitable for chat
clients. Now, it has already found its home in the device communication protocol family and for the future
maybe more. It is still being used in chat clients like Google Talk and Facebook Messenger, but because
of the real-time aspects its use is expanded to a lot more. Google already
uses it for notifications and job control to the printer in their Cloud Print
solution. XMPP can also be transferred over HTTP. A disadvantage of this
is that it usually runs on a webserver that also serves websites, so the port
on which to access the XMPP messaging is different from the default
HTTP port, and might therefore be blocked by a (corporate) firewall. An
opposing advantage is that the XMPP clients do not have a server socket
and therefore can’t receive incoming connections. XMPP tries to use HTTP
binding, and when that fails, it uses simple HTTP polling to communicate
with the server.

Cloud Integration Research

version 1.1

page

9 / 49

3.1.4 Data transfer: Which protocols should be used?
HTTP and HTTPS are without doubt safe to use in the cloud. In fact, they kind of define the cloud and the
internet how they are now. Any technology using these protocols is relatively easy to implement,
compared to using other protocols. XMPP is such a technology. XMPP is a very stable standard at the
moment, but some considerations should be made involving the security of the corporate network. It
would be wise to either use the default HTTP port, but you can also change the port and make
adaptations in the corporate firewall, if needed. The first option is probably the best for most scenarios.

Cloud Integration Research

version 1.1

page

10 / 49

3.2 Cloud Flavours
Apart from protocols, there are also other technologies that are important for cloud. As a matter of fact,
HTTP is the only protocol that is used in virtually every cloud solution somehow. So let’s talk about the
cloud itself. There are three different flavours of cloud: SaaS, PaaS and IaaS.

3.2.1 SaaS – Software as a Service
The first one, SaaS, means Software as a Service. This means that a cloud service provider sells a
software service and maintains that software for its customers. Users can access the application software
from cloud clients. The advantage of this concept is that the application is not installed on a local machine
and so there is no local data that has to be stored securely. Instead everything is installed in the cloud,
and when the local computer crashes, there is no data loss, the computer reboots and the user continues
where he left. If you do that for every application in a laptop, you get a so called thin client. This means
that you have a computer with just enough storage for a operating system, and a decent internet /
network connection. The user can use the system as he is used to, but he won’t be saving any data on
the local system; everything happens in the cloud.

Examples of SaaS are big web-based email providers, like Gmail, Yahoo mail, and Hotmail. There are
also storage services like Dropbox, Google Drive and Apple iCloud.

3.2.2 PaaS – Platform as a Service
With PaaS you buy more than just a managed application in the cloud. The P stands for Platform, and
that is exactly what the cloud service provider is managing for you. Most cloud service providers have
their own PaaS system, since there is no real standard for it yet. The use of PaaS is that users of the
service can write their own cloud applications and host them on the platform. The platform is managed by
the cloud service provider, so the user does not have to worry about that. A PaaS system package
usually consists of a programming language execution environment, database system and / or some

Cloud Integration Research

version 1.1

page

11 / 49

other form of data storage capabilities and a web server. However, because the platform is managed for
the user, the user is bound to use the programming language and APIs of the providers’ choice. For the
provider, making these restrictions is necessary to properly manage their systems, like in every big
network environment.

Two big examples of PaaS are Google’s App Engine and Microsoft’s Windows Azure. With App Engine,
you’re limited to Java, Python and Go (experimental). Windows Azure is a lot more compatible; you can
program in .Net (including C#, C++, and Visual Basic), Java, JavaScript, PHP, Python. Microsoft even
claims that Azure will run nearly everything.

3.2.3 IaaS – Infrastructure as a Service
If you still want more than just a platform to program on, there is one more alternative: IaaS, Infrastructure
as a Service. With this cloud service you rent complete virtual machines, servers and storage space, and
you can do pretty much everything with it. You can install your own operating systems, or create a virtual
machine image and run that parallel on a dozen of virtual machines. Even load-balancers and complete
networks can be rented. With this variant, the sky is the limit. The cloud service provider makes sure that
your machines keep running when they should, and your data is safely stored in multiple data centres,
and is always reachable for the user.

Probably the most popular example of IaaS is Amazon EC2 (Elastic Compute Cloud). Océ has a virtual
machine hosted by Amazon, for test purposes.

3.2.4 SaaS, PaaS or IaaS: Which one to use?
For our small project of integrating cloud into our printer driver, it would be best to keep is as simple as
possible. The less we have to manage, the better, so the best solution for us would be to integrate one or
more SaaS services. However, letting one ore more custom cloud services through the firewall of a
corporate network like Océ’s is a possible security threat. One solution is to create a proxy within the
corporate network that serves as a gateway to the cloud services. An other alternative is to write our own
cloud service, host that on a PaaS system, and integrate all SaaS there, and let our own service pass
through the firewall on a secure connection. There are various other options, including a few hybrid
solutions between the options mentioned earlier. So PaaS is not out of scope yet. IaaS however is. There
simply is no need for a complete infrastructure in the cloud, we just want to use software from the cloud,
and maybe host our own, but that is it, and no self-managed virtual machines will be needed to
accomplish that.

Our primary focus will be on the SaaS services hosted by other companies, or at least existing systems
within Océ. When there is time left, PaaS might come into the picture.

Cloud Integration Research

version 1.1

page

12 / 49

4 What existing Cloud Services can be used?
A lot of this question has already been researched by Christian Luijten from Océ. Although the report is
just a year old, the cloud development has not stopped since then, so I will add and update the
information where needed.

4.1 A list of cloud services
Name Service Type
Dropbox Storage
Box.net Storage
Cortado Storage / Office
Windows Live SkyDrive Storage
Google Drive (previously Google Docs) Storage / Office
AutoCAD WS Storage / Office
Google Cloud Print Print
HP ePrint Print
PrinterShare Print
PrinterOn Print
PrintPOD Print
Amazon Cloud Drive Storage
Mimeo Cloud Print Print

The list you see above is just a small list with cloud services. There are a lot more out there, but the
services mentioned above are relevant to this research, and important / big enough to bother to integrate.
If you take a careful look at the services Christian Luijten mentions in his report (only for internal use by
Océ), you will notice that I have let some services out of my list. Microsoft Sharepoint is mentioned in
Christian’s report because of the PaaS capabilities. The services shown above are all SaaS services, and
therefore they are not in and not relevant for us.

4.2 Update on Dropbox
The only thing I have to update to Christian’s report. The first update is just minor:
Dropbox claims to have more than 50 million users nowadays (may 2012) and they
save 500 million files a day. It is truly astonishing that the company doubled the
number of accounts in about a year.

4.3 Google Drive integrates Docs
The second update is a lot bigger. Google Docs does not exist any more as it did
before. Google launched its own implementation of a file storage service like
Dropbox, called Google Drive. They integrated Docs into Drive, so it still exists,
but the when you go to the original home of Google Docs, you will be forwarded
to the new location of Google Drive. They changed the user interface, to comply
with the rest of their new style services like Gmail and iGoogle.

Cloud Integration Research

version 1.1

page

13 / 49

4.3.1 Comparison with Dropbox
Google Drive could be a serious competitor to Dropbox, especially for businesses. Google offers bigger
amounts of storage space for free, and buying more space is cheaper than with Dropbox. Users that have
Dropbox and are facing space problems with their free account, will probably switch to Drive if they know
about it. Dropbox has the advantage that the user is already accustomed to Dropbox, and the user won’t
bother to move that fast. Another advantage is that they have a client for every major operating system,
and a good web interface for the users that can’t or don’t want to use a regular client. Google of course
offers seamless integration with their Android mobile operating system, and Chrome OS, their netbook
OS. They also have a PC and Mac client, and the iPad and iPhone version are coming soon. The
question is if Drive is really as good, and will become as popular as Dropbox. The integration with their
other services like Google Docs, and Google Cloud Print is a plus, and because of the enormous amount
of existing Google accounts, the registration is hardly noticeable. But if the same happens to Drive as
what happened to Google+ (Google’s version of Facebook), it will have a lot of accounts, but no usage of
the service.

So Dropbox and Google Drive are two big players to monitor and consider for integration into our concept.
Drive has the advantage of the integration with Google Cloud Print, which also is a good service to
integrate.

4.4 Amazon Cloud Drive
Something that Christian did not mention in his report is Amazon’s Cloud Drive storage service. This is a
simple storage service, no way near as extensive as Dropbox, Google Drive, or any other. They do have
a desktop application for Windows and Mac but there are no mobile clients (yet), so they will have to work
with the online web interface. It was of course a matter of time until Amazon would come with its own
cloud service for individual use. They had the capacity long before, because they are hosting Dropbox on
their servers, along with many other big
company’s services. They offer 5GB of storage for
free (per account), and if you want more, there are
several packages you can buy up to 1TB. The
price for all packages is US$1 per GB per year.

4.5 Mimeo Connect Cloud Print
Another unmentioned service is the Mimeo Cloud Print service. This however is something entirely
different from other print services. Mimeo is a print service provider, like an online print kiosk. They print
all kinds of things for individual and business clients, on demand, and send it via postal services. They
provide several APIs for different kinds of printing media, and different customer groups. Is this interesting
for us? No, because we want to keep as many of our clients’ print job on our
machines, and not outsource them to another company. Apart from the APIs,
they also have a Windows Print driver, so you can set up your print on your
PC, and print it directly to Mimeo. That driver will probably make use of the
same APIs, so when interested, it might be smart to look into that first.

Cloud Integration Research

version 1.1

page

14 / 49

4.6 Compatibility between services
So I already mentioned that Google Drive and Google Cloud Print are integrated, but can we combine
more of these services to work together? Well if we address every service separately, there should be no
problem, but we are looking for built-in compatibility or integration within the services themselves. A
common API or protocol can be helpful as well.

4.6.1 Google Drive and Cloud Print
For clarification, I shall describe what the integration between Drive and Cloud Print involves. There is bi-
directional integration in these services. Google Cloud Print has a default printer installed that prints PDF
format to your Google Drive storage. That printer is available from the Cloud Print API, so we can access
both Cloud Print and Drive from one API, without making special modifications in the code. You actually
integrate both services, whether you want it or not.

Drive also has a Print button in the web interface, as you would expect to have inherited from Google
Docs. However, the Drive or Docs API show no sign of a print command or anything like it. The Drive and
Docs APIs are about managing the files inside the storage, and the Docs API adds features like OCR and
some other document specific features. That means that the integration is not fully bi-directional.

4.6.2 Box.net and Google Docs
Box.net claims to have integration with Google Docs. This integration is unidirectional because Google
Docs does not have integration with Box.net. Unfortunately I had to be a developer for Box.net to see the
actual API (that means creating an account and requesting an API key). Luckily there are articles and
publications on Box.net to see how it works
and what it can do. They have made a pretty
deep integration with Docs; The Box.net user
can now create new Google Docs and
spreadsheets and edit existing ones on the
Box.net storage without even leaving Box.net.
All the files that are created and edited are
stored on the user’s storage account.
Considering that they released this
somewhere in June 2011, they then already
made what Google Drive is supposed to be.
Maybe Google copied the concept, and made
a full integration, instead of a partly integration
as Box.net did.

To summarize things: Box.net has a pretty good integration with Google Docs, but they probably won’t
touch each others storage, and it’s not clear whether we van access anything from Google Docs from the
Box.net APIs. For integration purpose, we can probably not profit from this feature in Box.net, but we
don’t have to. It might be enough for the user to access the Box.net files, because the rest will happen
online.

Cloud Integration Research

version 1.1

page

15 / 49

4.6.3 HP ePrint and Google Cloud Print
HP ePrint is HP’s solution to the question that we are also facing: Do we integrate separate third party
services into our application or create our own service and integrate the other services into that? HP
obviously chose the latter. Because HP already had their ePrint cloud solution in place when Google
released the Cloud Print service, HP was able to integrate Cloud Print into their solution very fast. They
also integrated the Apple AirPrint protocol, and with that they have made their printers available to both
Android and iOS, the two biggest mobile operating systems on the market now. The integration is
bidirectional, in the sense that Google can add the HP ePrint capable printers to their cloud printers.
Integrating the HP ePrint service into our printer driver would be a bad move for us though, and probably
one that is impossible to do, because the ePrint API is not available for public. The only ePrint API that is
available is the app API for developing printer apps, but that has nothing to do with the cloud service. So
we can scrap that of our list of possibilities.

4.6.4 HP ePrint and Mimeo Cloud Print
At first glance, it seems like a foolish move for a printing company to integrate a third party printing
company services into your own printers, but there is a catch. Mimeo is a HP Gold Partner, which
probably means that Mimeo uses HP printers and printer supplies for their jobs. That means that HP does
not loose clients or income if they print via Mimeo, but only profit more from it. Printing a poster, for
example, is not possible with a home printer like HP’s ePrint capable printers, and with integrating Mimeo,
they make it easier for the HP user to do so via Mimeo. This is a smart move for HP, but not one that we
can apply as well.

4.6.5 AutoCAD WS and Google Drive
Just new of the shelf is the AutoCAD WS integration for Google Drive. This allows AutoCAD WS users to
save their creations on their personal Google Drive storage, but also lets Google Drive users open the
DWG and DXF (AutoCAD file format extensions) files that are in their storage with the AutoCAD WS app.
This is a nice integration and adds value to the user workflow if we decide to integrate Google Drive into
our driver. As stated before, it is not possible to access any applications from the Google Drive API,
because it is a file access only API. The integration is not complete yet. At the moment the user can only
view drawings from Google Drive. There is no save or export to Google yet, but that will come soon.
There is nothing to blame, because Google Drive is pretty new and the API has just been released not
even a month ago.

Cloud Integration Research

version 1.1

page

16 / 49

5 What interaction should there be with the cloud
service?

To integrate a cloud service into an application, you need to know what you want to do with a potential
service, you need to do what a selection of services can do and what information they need, and you
need to find a match between your needs and the offering services. In this section we will pick up the first
part, and give a general view on cloud service information needs for the second part of the question.

5.1 What do we want from a cloud service?
Because we want to integrate a cloud service into a printer driver, we already have a pretty specific
scenario in which we use the application. The printer driver application is only seen when we want to print
a document, or in a special case for Windows 8, select the app from the start menu. Since we are
developing for the printer driver and not specifically for a cloud service, we leave the start menu entry
point of our app aside for now, and go for the printing scenarios.

So assuming that the user wants to print a document and our interface pops up, what would the user
want to do with the cloud? We have thought of a couple of scenarios which we will list here.

5.1.1 Print to Cloud storage
One of the most obvious scenarios is instead of printing to paper, printing to cloud storage. Most drivers
already have a option to print to file on a local disc. Printing to cloud enables the user to open it again on
his mobile devices and share it with other people. Other than that, cloud storage is in most cases safer
than your local disc drive, because when it is in the cloud, your file will be stored multiple times on
multiple locations.

The downside of cloud storage is that storage providers (especially the ones that provide you with free
storage) always have some kind of access to your files. That makes it very unattractive for businesses to
place any documents in the cloud, because they won’t risk that any sensitive and confidential material will
fall into the hands of a third party without their explicit approval. A lot of users don’t know what their cloud
providers do with their files, and with a bit of awareness, this can be solved for the most part.

The most desired functionality for this scenario is access to the private cloud storage service that the user
might already have, or can easily subscribe for. The contenders being integrated are providers like
Dropbox, Google Drive, being the biggest and most useful / compatible services on the market now.

5.1.2 Print to PDF
There are various PDF printer drivers already in the market, and there also are a couple of programs that
can export to PDF, but an integrated PDF printing functionality in a normal printer driver is something new.
What makes it extra special, is that the PDF conversion will not happen in the driver itself, but in the cloud.
We can use a cloud service to generate the PDF file for us, and if desired, store it in the cloud.

Cloud Integration Research

version 1.1

page

17 / 49

The benefits are that we will not have to maintain the PDF conversion code in our driver. PDF is a very
widely accepted document format and there is a PDF viewer for every major operating system with a
graphical user interface.

The downside might be that again, it might not be used for any confidential documents, because the
documents are handled by a third party service, and it is not clear what rights they have once you order
them to process your document.

There are multiple providers for online PDF conversion, but the most versatile solution might be Google.
By integrating Google Cloud Print and Google Drive, we have the complete functionality needed to
accomplish the scenario described above, and more.

5.1.3 Print to PDF and send / share
The next step after printing to PDF is to send and share the document to other people or devices. This
can be done by placing the document in a certain folder in a storage cloud service, e-mailing, or even
share the file via social media networks.

The benefits from this functionality would be that the user can print and share from one screen. This
means that instead of going to the steps of printing, downloading the file and sharing / sending it to
people, the user will configure everything from start and the system handles the rest.

Again confidentiality is a big issue here. When posting to a social network, the user will have to be extra
careful when selecting the security options, so the document does not go public, but even then it might
not be safe from the social media network itself. E-mailing is safer on the other hand, and that in many
cases is the way that this type of documents is being sent to other people.

In order for this functionality to work, we need the PDF printing functionality. This scenario has lower
priority because it can have added value, but it is not vital for sharing. The user is perfectly capable of
sharing the file with an extra step in third party applications, without the help of the printer driver.

5.1.4 Print to another printer
Within a corporate network like Océ, there are a lot of printers from Océ, for use by every company
employee. They are installed by a lot of PCs and when a user wants to print to another printer, he will first
have to install that printer.

This can be solved by creating a cloud of the printers and PCs that have the printer driver installed. If a
PC does not have the printer installed that user wants to print on, the driver retrieves the printer specific
information from a different PC or from the printer directly, so the user can configure the job for the
desired printer. There are various possibilities to retrieve print settings, and places where to render the
job to the correct PDL. Before implementing it has to be clear which implementation should be used and
in what infrastructure it should be used.

Cloud Integration Research

version 1.1

page

18 / 49

The benefits of this concept are that the user can print on other printers more easily when a printer is
already installed. When implementing this concept, the best solution would be to create a server that
handles traffic and can provide temporary storage. This server can later on be used to integrate other
cloud services and serve as a gateway to cloud service. This would solve the issue of letting the cloud
services through the corporate firewall.

The concept does not have direct disadvantages. All disadvantages are implementation dependent, and
many of these issues can be solved by design.

This concept is quite big, and implementation would consume quite a bit of time. Though current
estimates show that this can be a successful implementation within the provided time, and we would have
time left to integrate other services into the server. When designing the server, the integration of (a lot of)
other cloud services should be taken into account, so one common API to the server can be used to
address as many services as possible.

Cloud Integration Research

version 1.1

page

19 / 49

5.2 What are common technologies for cloud services?
To get by this information we have take a look at the API for every possible service that we want to
integrate, to see what data they want.

We will treat the cloud services that have the most potential to be integrated. These services are Dropbox,
Google Drive, Google Cloud Print, Box.net and Windows Live SkyDrive. I will handle every service
separately, so we can draw conclusions from that.

5.2.1 Dropbox
Dropbox uses a number of open standards to enable you to access their APIs. They use OAuth for
authenticating the user, SSL for encrypting the connection and UTF-8 as character encoding. The
responses that you get on your request are primarily formatted in JSON. The dropbox APIs comply with
the REST architecture, and they have made a few SDKs for a limited set of languages and platforms
(Android, iOS, OSX, Python, Ruby, Java) and they all use those REST APIs. Luckily for us there also are
some third party libraries for C#.NET.

What you would need to communicate with the Dropbox APIs is a “app key” and “secret”. This
combination identifies your app to Dropbox. You have to request the app key from the Dropbox developer
pages. On the first use of your app with a user account, the user will have to authorize your app to have
access to the user’s Dropbox folders and files. This is done by sending the user to a webpage and let him
/ her accept the authorisation proposal. When the user returns from the webpage, you can try to retrieve
the request token. If that fails, the user denied you access and you cannot access the API.

This all means that you don’t need to ask the user for credentials directly, but redirect him to a page that
will handle that for you. This ensures a bit of extra security for your users. However, this could be difficult
to accomplish this from a remote server, because the session will not stretch to a remote server or PC.

The APIs provide simple access to the files and metadata, without the need to send the request token as
a parameter. The request token is embedded in the session and therefore there is no more need for
further authorisation. With some HTTP POST, GET and PUT request you can read and write files to
dropbox.

For the entire REST API, see DBOX03.

5.2.2 Google Drive
To make things easy, Google uses 1 authentication system for all their APIs and they use scopes to let
the developer identify the APIs he wants to use, so Google can prompt that to the user. That system used
OAuth v2 for authentication and authorisation with the user, and the developer only gets tokens to identify
the app and its users to Google. When the authorisation and authentication is complete, your so-called
app has a session with the Google API server and you don’t have to authorize anything again until the
session expires. The API is RESTful, and the server usually replies on the requests in JSON. The

Cloud Integration Research

version 1.1

page

20 / 49

connection with the server (containing the HTTP session) is encrypted with SSL (so in fact HTTPS is
used).

The Google Drive SDKs include a much larger set of supported languages. For example, they do have a
C#.NET implementation for at least the authentication modules, and they try to be platform independent
by only using pure language code, and nothing OS specific like user interfaces.

Once the session is ready, you can access the API, which consist of only 4 commands, through a
RESTful interface. These commands provide basic file access to download and upload the files from and
to Google Drive. That API can be found at sources GDRV02 and GDRV03.

5.2.3 Google Cloud Print
Same as with Google Drive, also Cloud Print is a service from Google that uses the same authentication
and authorisation system, and when authorized you can access the Cloud Print API.

The Cloud Print API is far more extended than the Drive API. They have split the API for job submitting,
and job receiving. Submitting is the interesting and only relevant part for us, because we are not yet
looking at the receiving part, and within Océ there already is a Cloud Print proxy that we might use. There
are only 5 commands, and especially the submit command has a lot more parameters compared to any
Drive command. Of course this API is also RESTful.

The API can be found at source GCP02.

5.2.4 Box.net
While Box.net does not explicitly mention it on their developer website, they provide a REST API,
encrypted with HTTPS and they seem to use a form of OAuth. I see a very similar authentication
mechanism as with Google and Dropbox, but they don’t speak of OAuth on their website, and what
version that it might be. It could be that they have made their own implementation based on OAuth, or it
accidentally resembles it very much. Anyway, the techniques and architecture is pretty much the same as
what we have seen with the services above.

There is a major difference: The Box.net API does not use the session to store the authorisation, just the
authentication of the user. With every request you do to the API, you have to provide your API key and
authorisation token.

The Box.net API relies much more on the parameters in the requests. Their API is pretty complex. At first
sight it does not have a lot of commands, but those are not commands. They show you the URLs of
where to post those request, and every URL can be approached with a variety of HTTP methods and
parameters. The documentation of their V2 API is still in beta phase, but I expect that there will not be any
major changes, and that is a bit worrying because the documentation is weak in readability, and lacks a
clear structure.

Cloud Integration Research

version 1.1

page

21 / 49

For as far as I can decipher, they do give you complete control over all features in Box.net, so they did
not only include the file access, but also things like comments and discussions. They also make a
distinction between folders and files in the request, something that previous services don’t.

The Box.net API documentation can be found at source BOX03.

5.2.5 Windows Live SkyDrive
Also SkyDrive uses REST architecture in their APIs, and they use a similar system like Google does
concerning service authorisation. Using scopes, your software has to identify which resources of the user
account it wants to access. There is a difference: Microsoft requires a app key, or client ID as they call it,
in the Windows Phone environment, but not for all the other environments like Metro or JavaScript. They
don’t seem to force you to use SSL because all their REST call examples use plain HTTP.

Microsoft provided libraries and SDKs for a lot of environments, and they all include a default mechanism
for signing the user in, without letting the developer handle the user credentials. For example, in Metro
XAML you can include the Microsoft Live Controls namespace, which includes complete user controls for
logging in, and preformatted and styled buttons. Though all libraries should cover the same functionality,
the use and naming of the libraries can vary a lot, which can make it very confusing for a developer.

At the bottom of one of the developer pages, it shows that signing in is also possible without help of the
libraries. As developer, you will have to send the user to a certain webpage, with a couple of parameters
like a client ID. Analyzing the URL that has to be used for authentication, we can see that also Microsoft
uses OAuth v2 as authentication and authorisation system. That would explain the use of a session in the
library samples.

The SkyDrive API documentation can be found at source MSSD03

5.2.6 Conclusion
Surprisingly enough, pretty much all selected cloud services use the same technologies. Dropbox,
Google and Microsoft use OAuth, only the version that they use is different for Dropbox. Using another
version of the protocol will only mean an adapted login method, but will not effect the session that is a
result of that login. That means that if we implement the OAuth authentication well enough, it should work
fine with the next step, REST API requests, regardless of the version of OAuth.

Another common technology between Dropbox, Google and Microsoft is the use of the REST software
architecture. This is a complete architecture for both server and client side, and if we follow that
architecture with enough abstraction, it should work fine for all the APIs from Dropbox, Google, Microsoft
and even Box.net. This would make integrating Box.net just a bit more difficult, because we would have
create a new login method and possibly adapt the session code.

Taking the limited time into account, I think it would be the best decision to start with the Google Cloud
Print and Google Drive integration. The combined use of Google Cloud Print and Google Drive enables
the most usability scenarios like PDF Printing, and sharing. Because of the common technologies, we

Cloud Integration Research

version 1.1

page

22 / 49

have to design a implementation that will take into account that maybe in future also Dropbox and the
Microsoft APIs might be integrated. This should not be a problem, but it will take a bit of extra abstraction
in the design.

5.3 What information do the cloud services require?
After taking a look what we would want from a cloud service, it is now time to see what cloud service
would want from us, and how they intend to get by that information. This is to get a better picture of the
possible security issues and it helps in developing a common API for all services.

5.3.1 What information is commonly needed by the major cloud services?
In section 5.2 we took a good look at the APIs from a selection of cloud services. Now we will analyze
what data is needed by those services. We will narrow down the analysis to OAuth and some of the
REST APIs.

OAuth is a commonly used authentication and authorisation mechanism for cloud services. There are a
lot of benefits to OAuth. It is safe to use. It runs on the cloud service provider’s servers, and that means
that third party developers have no need to access the user credentials themselves. The OAuth system is
scalable, and working with scopes enables the user to grant access to only certain parts of his account to
applications. This all helps to sharpen the security and compatibility with third party software. As said,
OAuth serves 2 purposes: Authentication and authorisation. Authentication involves handling the login of
the user and checking the credentials with the account in the cloud service provider’s database.
Authorisation involves letting the user know that the app wants access to his account, and to what parts
of the account. The user can either accept and grant access to the account information, or it can decline
the request and block access to the app.

OAuth needs a few things from the developer side to initiate the authentication and authorisation
sequence. First, as a developer, you need a app key, or client ID to identify your application to the cloud
service provider’s servers. In the case of Google you also need an “app secret”, a sort of password that
accompanies the app key. As result from a successful sequence, you get one or more tokens. One token
is for direct access and can be embedded into the session so you don’t have to worry about that any
more. With Google, you can also get a token that allows you to refresh the access token when the
session expires.

Once we have our access key, we can access the actual API. Most of the REST APIs that we have seen
are very simple, but effective. The information that we can request from them is usually in JSON, or in the
case that we want to download a file, binary.

For file storage services like Dropbox or Google Drive, we can access all information just by accessing
the right URLs and parsing the JSON results properly and use the retrieve information to request more
information about files and folders. You will only need outside information when you are looking for a
certain file, because you will need the location about that file. When uploading a file, the location of the
file on your local drive and the destination of the file in the cloud are needed. All other information can be

Cloud Integration Research

version 1.1

page

23 / 49

retrieved from the file metadata. When renaming, moving or creating empty files or folders, you will also
need little bits of outside information, like new names and destinations.

For the Google Cloud Print service, we would of course need different data than with the file storage
services. API is not as autonomous as the other APIs because it needs much more data from the client /
user. Looking at the submit command in the API, there is just two parameters that have to be filled with
data from a previous request, and that is the printer ID and the capabilities. The rest of the parameters
have to be entered or generated by the user or app. That means that you have to provide the content
type, which can be JPEG, PNG or PDF, the title, which can be anything because it just for internal use in
Google Cloud Print, the content itself of course, and a optional tag to simplify tracking by the code.

We can safely conclude that only the authentication truly uses about the same set of information for all
services. The needed information is too dependent on the API of the provider of the service and the type
of service. File storage services require entirely different information than a print service. Also file storage
service tend to be a lot more autonomous, meaning they need no or nearly none information from the
user or the outside world in order to retrieve information.

5.3.2 How can we request the needed information from the user or the system?
As we have seen, for OAuth we just need to direct the user to a web page and retrieve an access token
afterwards. We do need some keys, but they have to be hardcoded into the software, and they are not
system or user dependent.

That means that the information we need depends on what services we want to integrate, and what the
user wants to do with that service. We have a general picture of what the services can do and what
information they can deliver and need.

For a file storage service, we want access to the hard drive or specified files. In order to upload files, we
have to have access to the file on the hard disk, and after downloading a file, it has to be stored on the
hard drive or some other storage medium. Maybe we also want the user to be able to rename, delete or
move files, and we will need additional information to accomplish that. In that case we need additional
ways to retrieve that information.

For a cloud print service, we need access to a file that is accepted as printer input content. We also need
a print job title, and a printer ID, which can be retrieved from the cloud, but the user has to choose 1 of
the available printers in the cloud. We have to be able to show those available printers to the user and let
him make a choice. This all has to be considered when developing a design for our own cloud protocol /
interface.

Considering that we are developing for Windows 8, with focus on Metro, we have to take into account that
the Metro VM is heavily sandboxed, and it might not be easy to get hard disk access without using an
extra user dialog. The rest of the data exchange with the user has to be done through the user interface,
which should pose any problems.

Cloud Integration Research

version 1.1

page

24 / 49

5.3.3 What customer workflows do already exist?
Apart from delivering a quick and secure implementable solution for developers, OAuth also includes a
rich customer workflow for our users. The workflow is quite simple for the user. It will handle the
authentication if needed. If the user is already logged in, OAuth will initially skip the authentication part. If
the user wants to change the account, he can do that by logging out and back in again. After
authentication, the user is posed the authorisation question, to grant the requesting app access to
(selected parts of) the user’s account. After authorisation, the mechanism will redirect to a specified URL,
on which you possibly could trigger your app to continue working, and try to retrieve the access token.

There are no further standardized customer workflows. The cloud service providers all have their different
ways to let the user interact with their data, and that workflow even varies between mobile, desktop and
web-based clients. For example: The Dropbox mobile client uses a forced dialog to upload a file, while on
the Windows desktop client, you don’t even need the UI to upload the file.

Because we are planning on using a service that uses OAuth for authentication, we are forced to comply
to that workflow, but we don’t have to do much in order to achieve that. In fact, we can’t even control the
UI part of OAuth, let alone the entire workflow. For the rest we will have to design our own workflow. That
workflow has to be suitable for working on a tablet, because that is the main focus for Metro.

5.4 Which scenarios are achievable?
Now we have a lot more information about the cloud services that we might use. If we look back at the
scenarios that we described in section 5.1, we can now start analyzing if the scenarios are achievable.

5.4.1 Print to Cloud Storage
This scenario would be achievable by integrating a file storage service like Dropbox or Google Drive. It
probably is the simplest example possible with a printer driver and cloud services. The difficulty lies in
having different output than XPS. The input stream for the printer driver already is XPS, and we cannot
access the original file. We will either have to convert the XPS to a different format in the printer pipeline,
or accept the XPS output as valid.

5.4.2 Print to PDF
This option seemed viable for a long time until I discovered that there are only 3 valid input formats for
Google Cloud Print (GCP). The idea was that with implementing GCP, we would get access to the GCP
PDF Printer, which of course outputs PDF to a folder in Google Drive. With implementing Google Drive
alongside GCP, we would be able to retrieve that file from the cloud and act like we have converted the
file ourselves. Sadly enough the input formats for GCP do not include XPS or PostScript, so we will have
to come up with something else. If we could convert the XPS to either PNG or JPEG format, this
functionality still has a purpose. When we need to convert the XPS to PDF ourselves in order to feed it to
GCP, the functionality loses is advantage.

5.4.3 Print to PDF and send / share
If we take the PDF out, we get Print and send / share. This would only involve uploading the print output
to a cloud storage service like Google Drive, Dropbox or Microsoft SkyDrive. After that, the user would be

Cloud Integration Research

version 1.1

page

25 / 49

able to use third party software from the cloud service provider to share the file with other cloud users. To
send files, it would also be a possibility to e-mail the file directly, but that would go out of our scope to
implement.

5.4.4 Print to another printer
The main goal of this scenario is to be able to print on all Océ printers within a (corporate) network, with
just having the nearest printer installed. There are several ways to implement a solution like this, but the
best solution would involve creating our own version of a cloud service, to create a cloud of all the printer
drivers and / or printers within the network. There are various other implementation routes that involve
implementing cloud storage services or writing our own server. This makes this scenario very achievable,
it is just a matter of making a design that is expandable and will render a demo solution within the time
boxed 4 weeks.

Cloud Integration Research

version 1.1

page

26 / 49

6 Where do we integrate the cloud?
Up until now we have only been looking at the cloud side of the integration. We do of course also have
software, in this case a V4 printer driver, on which we should integrate the cloud. There are various
software parts in a V4 printer driver, and they all have a different environment. We will discuss these parts
and their environments and the possibilities and the effects of cloud integration.

6.1 The Filter Pipeline
The heart of the V4 printer driver is the XPSDrv filter pipeline. This is where the spooled print job (in this
case always XPS) is converted to a Page Description Language (PDL). In order to do this correctly and to
let the print come out of a printer correctly, we need to configure the job with a number of properties.
These properties are combined into a PrintTicket, and this PrintTicket is created with default values, and
has to be modified by the user before the filter pipeline is even started.

The filter pipeline is however not very suitable for cloud integration. Though it would be able to access the
cloud resources, it is not possible to launch a UI from the filter pipeline any more, so we cannot ask the
user anything, and everything should be entered up front. Since we would be configuring the cloud
access up front, it would be much easier to directly access the resources than and already download the
necessary data. After the print job has passed the pipeline, we might want to upload the result. This is
something that might be done by either a pipeline filter, or a different software component with or without
a UI. Anyway, the use of the filter pipeline for cloud integration remains limited.

The pipeline filters are written in native C++. V4 printer drivers only run in user mode, and cannot have a
kernel part any more, because that is now replaced by Microsoft components.

6.2 The Desktop PrinterExtension
This is a customized piece of software that should replace the Microsoft default dialog for print
preferences. This part of the driver is one of the only 2 software parts where we can have full access of
the UI, and that makes it very suitable for cloud integration. The original goal for this application is to give
the user the opportunity to make advanced adaptations to the print settings because that is not possible
in the default Microsoft print dialog. It gives the developer the opportunity to create a UI that is consistent
along different operating systems and platforms.

The desktop PrinterExtension is a Win32 application, built on the .NET 4 framework. Because of this, the
application can have full access to the computer’s network connection, and all other resources within the
system. The system access combined with the UI capabilities results in having the perfect environment to
deliver a customized user experience that integrates perfectly with the cloud. The only issue might be that
the PrinterExtension runs and closes before the filter pipeline starts, and therefore it might be hard to
handle the output from the printer once the filter pipeline is finished. This might make uploading files
harder than expected, but with a background process, this might already be resolved.

Cloud Integration Research

version 1.1

page

27 / 49

6.3 Metro Device App
Then there is one more option to be eligible for cloud integration and that is the Metro Device App. This is
the Metro style equivalent of the desktop PrinterExtension. Microsoft made 2 different implementations for
this goal because Windows 8 has to run on tablets as well, but tablets will run a special version of
Windows 8, Windows RT, which does not include the Win32 environment. That means that the Metro
Device app is the only way to provide the advanced features on a tablet PC, while desktop PCs running
Windows 8 will be able to run both applications.

Metro apps run on WinRT, and are built on the .NET 4.5 framework. The Metro environment is a sandbox
with a rights management system. An app has to provide capabilities to gain access to for example
system hardware, the internet or the local network. Because of the difference between the frameworks,
the implementation of the desktop and metro PrinterExtension might differ a bit. Also, while the desktop
PrinterExtension is to be designed for desktop usage, with a mouse and keyboard, the Metro Apps have
to be touch compatible.

Despite of all the possible downsides and limitations, this still is the only way to provide a custom UI
experience in Metro printing. This also makes it the only possibility to do cloud integration for Metro, with
a UI for user input and feedback. It might also be harder to handle cloud IO after the print job is finished,
because where the desktop PrinterExtension had a background process by default, the Metro app does
not have that, and it will be harder to implement. The Metro app is not as good for cloud integration as the
desktop PrinterExtension, but it is good enough.

6.4 Combination Approach
So some software components are better suited for cloud integration than others, but we will probably
need a combination of multiple parts in order to make a successful integration between the printer driver
and the cloud. This also means that we probably have to get creative to get certain parts of the integration
work well with all system components. One thing is sure though: We have to treat the Metro app and the
desktop PrinterExtension as 2 completely different things, and they can never depend or use each other.
In the most favourable solution, these 2 applications have as much common code as possible.

Cloud Integration Research

version 1.1

page

28 / 49

7 What do competitors offer?
To come up with some ideas, and have a better sight of where we stand with our products, we also take a
look at what our competitors are doing in the cloud and Windows 8. On the first sight, it looks like there is
just one printer manufacturer that is really involved into either one. The rest of the printer companies are
either busy with developing their own solutions and not showing anything to the outside world, or just are
not interested enough to start developing (mainly for the cloud). The truth is that there are multiple
companies involved in the cloud, but because there are so many ways to do something with the cloud, it
might be difficult to track them down.

On the cloud part, there are a lot of printer producing companies that are involved. Pretty much all big
printer companies have at least one cloud related product. For Windows 8, it is a completely different
story. There is one company that already has gone public with an app, and the rest is either still
researching and developing or waiting for the official release of Windows 8. Let’s see what they have
done already.

7.1 HP ePrint
HP ePrint is a self developed cloud platform that is like the solution that we are thinking of ourselves.
They have made a cloud solution that integrates with their printer directly, and communicates to the cloud
over just one protocol. In order to integrate other cloud services, they use their existing cloud service to
communicate with other services. This is a very powerful solution, because this way HP has total control
over the cloud service access software, and when integrating a new third party cloud service, they don’t
have to update the client software, just the software on their cloud servers.

Along with cloud services, they also implemented a application platform for their printers. That means that
users can download apps onto their printers. These apps can than retrieve data from internet and print
that, or generate puzzles for example and print those.

The third use of the ePrint is mobile printing. HP has created apps that enable mobile devices like tablets
and smartphones to print on ePrint capable printers. This can either be done through existing cloud
printing service like Google Cloud Print or Apple Air Print, or through the app with direct communication to
the ePrint cloud service. They have a broad variety of access possibilities to their services, and
everything is routed to the printers through just one protocol. That is the strength of their solution. This
makes it very manageable, even for business networks. HP did not target businesses for their ePrint
solution though, because all ePrint capable printers are All-in-One printers for home use. It is even
possible to send a e-mail to the printer and the printer will print the contents of the e-mail or attachments if
supported.

7.2 Xerox
Xerox has gone into a completely different cloud segment. Their main focus is on providing infrastructure
to their customers. That means that a customer can rent entire servers, or just backup storage room.
They also have a solution called Mobile Device Management, which manages mobile devices in a

Cloud Integration Research

version 1.1

page

29 / 49

corporate environment by technologies like over-the-air. That is about the complete package of cloud
services that Xerox delivers.

However, they are still developing new services and have their own Cloud Consortium, a group of
developers from several different companies, dedicated to building state-of-the-art cloud solutions and
services for prepress, publishing, printing, print job management, automation, mobility and scanning of
documents. By contacting this group with a specific request, I think they will also do tailored projects.

What is remarkable with Xerox, is that the cloud services have no really clear link to printing. The services
are related to IaaS-like services and data storage hosting, which is pretty strange for a printer producer.

7.3 Brother
Brother has 2 cloud products which are ready for sale. One is a solution for online meetings and video
conferences. It’s called Brother OmniJoin, and it delivers a complete software solution for web
conferences, like Microsoft Office Communicator and Skype. Since such tools already exist, Brother has
to come up with something to compete with the popular alternatives. They have done so by integrating
document and video sharing features. Brother also claims that the quality of the sound and video is higher
than with other tools.

The other service is pointed towards scanning workflow management. This is more like the service we
expect from a printer producer. They are working with third party vendors to implement a simple scan
functions that enables the user to press the scan button, select a cloud location, and the document will be
scanned towards the cloud. Brother is targeting the small and medium businesses separately from the
enterprise level businesses. It is not clear whether Brother has separate solution implementations for
those targets, but more information is coming soon on their website.

7.4 Konica Minolta
Also Konica Minolta has realised that the cloud is a hot topic nowadays and that they have to be in as
soon as possible. They have done so by creating 5 applications for printing from the cloud, and most of
them do so without intervention from a printer driver.

Konica Minolta has defined 2 types of cloud: public and private. The public cloud is a cloud service that
allows multiple companies and persons on the same infrastructure. The data is protected by account
access, but for companies this might not be enough insurance that their data is safe. That is where the
private cloud comes in.

The private cloud is infrastructure managed by a third party, in one or more data centres somewhere in
the world. This infrastructure is specifically created for businesses and tailored to their demands. They
can be scaled up on demand and instead of paying for the infrastructure directly, the customer pays on a
subscription base.

Konica Minolta has 2 applications for printing from public clouds and 3 for private clouds. They think that
most of the companies will choose the private cloud, for the sake of data safety. Exact specifications on

Cloud Integration Research

version 1.1

page

30 / 49

their software and its capabilities are not published on their websites (yet), and you will have to contact
them to get it. The only thing that we can discover from other Google hits, is that they also implemented
Google Cloud Print, and that will most likely fall in the public cloud category.

7.5 Canon
Canon has picked up the cloud in 2 different ways. On the one hand, they have implemented Google
Cloud Print into some of their Pixma desktop printers. Secondly, Canon has equipped a imageRUNNER
Advance, with Cloud Portal. This office grade all-in-one printer can access files from the cloud and scan
to the cloud, without the need of a computer. The user can just access the files from the cloud directly on
the printer system.

7.6 Kyocera Document Solutions
Also Kyocera Document Solutions recently (April 13th, 2012) introduced their new cloud printing
application Kyocera Cloud Connect. This application lets the user print from and scan to Evernote, a
cloud service in which the user can store text, lists, images, sound files and a lot more. It is not like a file
storage service, more like a document management service, but a bit more extended. Evernote is very
cross platform with clients for Windows, Mac, Google Chrome, Android, iOS, and more. They also have a
rich web interface, just in case that a native client app is not installed, not available, or blocked by a
firewall. I suspect that this is merely a first step into the cloud, because there are a lot more interesting
cloud services, and although Evernote has 25 million users, not much of them will have access to a
Kyocera printer.

7.7 EFI
EFI developed something called PrintMe. PrintMe is a cloud printing solution that allows users to print
anywhere, anytime on an internet enabled printer without cables or printer drivers. PrintMe is aimed at
mobile professionals that need 24/7 access to print documents, and businesses that want to increase
revenue streams and customer satisfaction.

PrintMe was launched 9 years ago, and that was well before the cloud era. This means that this might be
one of the oldest cloud printing solutions around. The problem is that despite the age, it still is unpopular
and not many people have heard of it. EFI claims they have 3000 installations worldwide, with tens of
millions printed pages.

I was even more surprised when I found out that PrintMe is also available for Canon imageRUNNER
Advance. That means that EFI is not targeting the PrintMe software just for their own machines, but also
for other companies with printers outside their market segment (EFI builds big printers).

7.8 Epson
Epson is the only company that I found that has software in both cloud printing and Windows 8. They
implemented Google Cloud Print, and made a Metro app for Windows 8, but these are 2 completely
separated solutions. I would have expected that Google Cloud Print would have been integrated with the
Metro app somehow, but that is not the case (yet).

Cloud Integration Research

version 1.1

page

31 / 49

7.8.1 Google Cloud Print
So they implemented Google Cloud Print as cloud solution. Not shockingly new, because other
companies have also done so. The point is that Epson was one of the first to introduce it to their printers,
because the press release stated in August 2011 that their new models from autumn 2011 are Google
Cloud Print ready.

If you take a look at the product pages of Epson, it gives the impression that Epson Connect is not just a
name for the compatibility with GCP, but rather is the name of the intermediate service that provides the
connection to GCP. Details are missing, but if my analysis is correct, than they have built a cloud platform
where they can integrate more services into one own protocol, like HP did.

7.8.2 Windows 8
Epson is the first printer manufacturer that created and published a Metro app for their printers. The app
can show printer ink status when a correct driver is installed and the printer is connected. When that is
not the case don’t worry, because you can see a lot more than that. They can show you how to replace
the ink cartridges in your printer and let you order new cartridges directly from Epson. They also added a
showcase of other products that they build, like beamers and scanners. Everything is wrapped inside a
very nice looking UI, which seems very tablet friendly. This certainly is a good example to other printer
manufacturers, like Océ and Canon.

7.9 First steps and stable concepts
What we have seen from the competitors is that some companies have chosen the same approach when
it comes to cloud solutions. Especially Epson and HP have solutions that very much resemble the wild
ideas that we have. That means that our first steps are going into the right direction and with realizing
such concept correctly, you have a stable base which could be expanded very rapidly if needed.

We also see that some companies are very careful with developing cloud solutions. Canon has some
very small scale solutions with just one printer model. This almost feels like they have taken a proof of
concept solution, worked it out a bit, and put that to the market. It is not really a complete solution. That
feeling is strengthened because it is just one printer with those capabilities, and not an entire line with the
same software. It is like they are not confident that it is going to work, and therefore they start with one,
and if that sells, than they will consider expanding the line.

We cannot really test the solutions by other companies, but the general idea of the concept is sufficient
for our research. Our goal is to develop our own solution, and not implement an existing one.

Cloud Integration Research

version 1.1

page

32 / 49

8 Can creating our own cloud service help in
integrating more services?

During a brainstorm, I had the idea of creating our own cloud service to help integrating other cloud
services. The concept would greatly simplify the integration process, architecture and maintainability and
safety of cloud integration. Now we are going to investigate whether this really would be a better solution,
and what the possible downsides would be.

8.1 The normal way
First we will take a look at the normal integration process. We are integrating cloud services into a printer
driver, and we have selected a number of cloud services that we want to integrate, say Microsoft
SkyDrive, Dropbox and Google Drive. When integrating, we would implement all three cloud services into
the driver, and because their APIs are accessible through the same techniques, this would result in a
common code base, and specific implementation would be derived from that common base.

This all looks pretty nice but there are some risks involved. Regarding network safety, it is a risk to a
corporate network to have 3 outgoing connections, possibly on 3 different ports. In our scenario these 3
outgoing ports would be accessed by all printer drivers that are using the cloud integration and that would
pose a security issue and a potential point of interest for hackers or other cybercriminals. Another issue
would be bugs. When we have a bug fix and release that to the public, it has to be distributed to a lot of
users and computers that are using the driver. Especially when we have a really deep integration into the
printer driver, it can be hard to update the driver.

8.2 Examples from the real world
In the previous chapter we have seen that our competitors already have cloud integration, and especially
2 of them (HP and Epson) have solved this problem in a very similar way that we are looking into now.
They have created their own cloud service and communication protocol to integrate that with their printers
and instead of integrating the third party cloud services into the printers, they integrate the cloud services
into their own cloud service, and the connection to the third party servers is initiated from their own
servers.

By doing this, they reduced the security problem, because their printers only need access to 1 domain,
instead of several. They also reduced the problem when releasing new features or bug fixes. The client
software will only have to be updated with major changes and bug fixes, but the biggest part of the cloud
access code and new features can be implemented into their own service and since they are able to
manage those servers themselves, they can roll out new features completely under their own control,
without losing availability to the users.

8.3 Hosting the service
A downside to having a own cloud service is that it needs to be hosted somewhere. Coming up with a
solution is no simple task. The service can be hosted on several locations, even at the same time. Finding
the right solution, but first we want to explore the possibilities.

Cloud Integration Research

version 1.1

page

33 / 49

8.3.1 In the local network
Hosting in the local network delivers a couple of advantages and disadvantages. Having a local server is
easier to manage for the IT department when in a corporate network. Having the server under their own
control, the IT department can manage which cloud services they want to enable for their users and
which they want to block. They might even implement their own service and integrate local fileserver
storage.

For a home environment, this might be a bit of a hassle to install a complete server just for the couple of
PCs in home to accomplish a bit of advanced printer sharing, and for most home users cloud access is
not a problem because they control their own firewalls. Cloud service providers usually have some
documentation about how to get their synchronisation application running and provide some form of
troubleshooting options in their apps.

Having local installations of these servers does reintroduce the problem with updates and new features.
Because the server is in hands of a third party, those users will probably need to update manually
sometimes or a really tight update implementation should be brought in place, and still than needs to be
rolled out from another location, but that could be a simple file or web server.

8.3.2 A real cloud service
Second option is to make a real cloud service and host them on our own servers. This would give us
complete control over every aspect of the cloud service, down to the hardware and operating services
they run on. Those servers need to be placed in a data centre, with backup management, and colocation
needs to be managed also, because in the event that your data centre goes down, or gets hit by a
disaster, you don’t want to loose all your system capacity and moreover, your stored customer data.

For companies who already have such systems in place, this should not be a problem though, and this
might be the preferred solution for them. For new companies however, this is a completely different story.
The best solution for them might lie in the cloud already. Using a IaaS or PaaS cloud service provider will
solve these issues altogether because they will manage your hardware, availability, backups and
everything else you need. You only need to provide the software.

When we take a look at the advantages and disadvantages of the real cloud option, towards the direct
customers, we see that their side has simplified greatly. Home users will barely notice that there is just
one protocol that communicates with their printer / printer driver. For corporate environments, this is a
solution that takes away the hassle of having a extra server under their management, but possibly
introduces a extra open port. They can firewall this by letting only users connect to the outside instead of
also let them back in, and they could restrict the domains accessible through the open port. This is all
manageable and probably requires less installation configuration and time to maintain than a local server.

8.3.3 Hybrid options
Than there are hybrid options that combine the use of local servers with real cloud services. The local
server could act as a portal towards the real cloud service, or implement a part of the third party cloud
services directly to reduce network loads. Having a local server, as mentioned earlier, has the advantage

Cloud Integration Research

version 1.1

page

34 / 49

that the IT department can completely control what services they want to be available to the user, and
they can apply specific firewalling and virus scans to both outgoing connections to the real cloud and
connections to the clients.

The local server could also be just a relay, like a proxy, without any clever solutions. This could be done
without any software from us, so IT management can do this, maybe just documentation describing how
this needs to be done, or some third party software for creating a tunnel. The best solution would be pure
DNS or proxy solution, without tunnelling, because that could cause a major security leak.

For home users, this also would be a good solution, because they don’t need a local server but can
connect directly to the real cloud server. It would not make any difference between the hybrid solution and
the real cloud solution.

8.4 The benefits win
After looking at a number of scenario’s and even real life examples, we can come to the conclusion that
implementing our own cloud service as some sort of intermediate format will help in implementing third
party cloud services into our printer driver. Whether the final solution has to be a pure cloud solution or a
hybrid solution with or without a separate piece of software for corporate environments has yet to be
determined.

The final cloud solution will most definitely be different from the proof of concept that I will be creating
during this graduation. I will try to incorporate as much of the aspects as possible within the time limits,
but that might involve leaving this ideal path of having our own cloud service and just accessing a third
party cloud service directly.

Cloud Integration Research

version 1.1

page

35 / 49

9 How can we build our own cloud service?
We have discovered that having our own cloud service would greatly increase the possibilities and
flexibility of our cloud integration. Now we are going to have a look at what technologies are suitable for
building such a cloud service. We have a number of things that we have to take into account:

1. Accessibility of third party services
2. Availability towards clients
3. Platform dependency
4. Scalability

Since we don’t have an extensive web server environment with automatic backups and colocation, we are
looking to build a solution targeted towards a cloud deployment environment. Within Océ we already have
an Amazon hosted virtual machine, that I could use, and this seems a suitable environment for
deployment. But let’s not jump to conclusions yet, because we have not seen the rest.

9.1 Cloud Deployment options
The first thing we have to do is to build an index of available IaaS and PaaS services to see what their
capabilities and limitations are. In this first section, we only want to list the services, and not explore the
details of every provider, because that will come later on.

9.1.1 Amazon Elastic Compute Cloud (EC2)
Amazon, the big webshop company, has invested in building their own data centres for cloud services,
and they have become one of the biggest companies in the cloud at the moment. Probably the most
popular service that runs on the Amazon servers is Dropbox. Though Dropbox primarily uses another
Amazon service (S3), it does not change that EC2 is a better option for our cloud service. Especially
since we don’t directly intent to provide storage to our clients, but rather let them use their own storage
through our portals.

EC2 is an IaaS service, which means that Amazon takes care of the hardware, backups, and availability
and we still get a virtual machine with total access to the operating system. Amazon has several
preconfigured Amazon Machine Images (AMI) that we can use, or we could create our own image with
out applications on them, and launch that on the Amazon servers. We can select the network access and
security options for our machine, instance type, the use of colocation or not, and a lot more.

9.1.2 IBM SmartCloud Enterprise
IBM, as one of the worlds leading manufacturer of servers and mainframes, of course also has cloud
infrastructure for rent (IaaS). They guarantee a uptime of 99,9%, which is pretty high, and important for
big companies that rely on internet services for sales and income. With IBM you know your data is safely
stored and distributed over multiple data centers. The cost of this tends to be higher than with Amazon,
but you pay extra for the quality. With IBM you get a couple of (data) security features by default, that
would cost you extra with Amazon.

Cloud Integration Research

version 1.1

page

36 / 49

Setting up a cloud with IBM SmartCloud Enterprise is as simple as with Amazon. Simply select an image
type, configure the hardware and network connectivity and provision the server. Everything can be
managed through an online portal without the intervention of an IBM employee.

9.1.3 Joyent
Joyent is a full blown cloud hosting provider, which serves several types of hosting. The product that
provides the most options and freedom is SmartDataCenter, where you can build a virtual data center of
your own. You can host multiple virtual machines in this environment, and manage their internal and
external networking configuration. Just like having your own server park or room, but virtual, remote and
backed up safely. When you design your solution on this product correctly, it should be easier to scale up
your system and make it more secure than with other products from Joyent.

Another product of Joyent is SmartMachines. This is one step higher than having a data center. You have
full control over your machines and their operating systems, but not over the underlying connection
systems and you have less scalability and security possibilities.

The third product is called SmartOS. This is Joyent’s own operating systems that also power the
SmartDataCenter. According to Joyent, this product combines the best from hardware virtualisation and
operation system virtualisation. It can deliver high quality storage, complete virtualisation and analytics.

Joyents’s SmartDataCenter is a typical IaaS solution, and a rather extended version of it. SmartOS still
balances on the separation line between IaaS and Paas, and SmartMachines is in between those two
products. With these three solutions, Joyent has a very solid cloud service platform as an IaaS business.

9.1.4 CloudFoundry
With CloudFoundry, we enter the world of PaaS. The greatest advantage of CloudFoundry is that
developers can download software that simulates their real cloud environment. This means that
developers can develop their app locally and run and test it within their companies on test systems and
developer machines, and when ready, deploy it to the real servers at CloudFoundry. They claim that they
are the first in the industry that could do that.

CloudFoundry supports a number of standard frameworks for different languages, so you are not bound
to one framework and / or language. They also deliver the possibility to communicate with a number of
third party applications like database engines (PostgreSQL, MySQL). Combine that with some
architecture that makes your apps ready for the future and you have a decent solution for creating your
own cloud service. CloudFoundry also has a open source community that can help you with implementing
your application and integrating other frameworks into CloudFoundry, so if you get stuck, you can take a
look there.

9.1.5 Google App Engine
The next provider is Google, with their App Engine. Being a product from Google, means that it is stable,
powerful and easy to use. This PaaS system leaves no sign of the original operating system, and you are

Cloud Integration Research

version 1.1

page

37 / 49

bound to a limited number of languages (Python, Java and Go). In return to that, you get a number of
powerful APIs from Google and the possibility to have a deep integration with other Google services.

Google does not only allow you to run apps, they can also host your website and store your data.
Combined with Google Apps (which is e-mail, calendar and all other Google services for businesses and
has nothing to do with the Google App Engine), you can host your entire company in the cloud for sharp
prices, or even for free.

9.1.6 Microsoft Windows Azure
Microsoft also has come up with a solution for cloud service hosting: Windows Azure. When we analyze
the name, we see Windows, which would indicate a relation to their operating system family. That would
indicate that Windows Azure would be a PaaS system, but it also provides IaaS solutions.

Microsoft sent an Azure expert here at Océ, to give a presentation and demonstration on Windows Azure.
She mainly talked about the PaaS side of the system and how to manage that. She showed us that
management was really easy, and you could do everything yourself, from deploying your application to a
couple of instances, and how to scale up your system. With Azure, you pay for what you use, and
because the PaaS is so easy to use and fully automated, the cost of using Azure is pretty low. With the
Azure PaaS system also lets you control where (in what countries) your application is available.

There are some limitations though. Up until now, Azure only has a relational database that the developers
can use. They do support a reasonable number of languages like .NET (C#, C++), Node.JS, Java, PHP
and Python. You can even configure custom environments with unsupported languages like Ruby.

The Azure IaaS system lets the consumer control everything from virtual machines, networking, data
storage facilities and even integration with your local Active Directory to provide your users with one-time
login through the entire system. Somewhat surprising is that Microsoft provides Linux as a default
operating system alongside the Windows Server line to run on virtualized servers.

The IaaS solution is not as well promoted on the Microsoft website as the PaaS system, but it almost
seems like they are directing the customer to use the PaaS environment, instead of the IaaS. I would
have expected a hybrid solution too, so customers would be able to host their business in the IaaS
system, and create apps for own use, that integrate with their business software.

9.1.7 Force
Force is a PaaS system from SalesForce. It focuses on enterprise level companies to extend their current
systems to social networks and mobile platforms. They offer integration options for enterprise level
management systems like SAP and cloud systems from Amazon (both EC2 and S3).

A big disadvantage is that the Force environment only supports one programming language for business
logic (Apex, a Java-like language optimized for using databases), and one for user interfacing
(VisualForce, obiously a self developed language). This could be a serious limitation for companies with
legacy code, which is very likely for enterprise level companies.

Cloud Integration Research

version 1.1

page

38 / 49

9.2 Accessibility of third party services
The possibility to access third party services is a very important factor for us, to choose a suitable
deployment environment for a cloud services. Without proper access we cannot integrate the services the
way we want and than we would lose important functionality.

If we take a look at our list above, and match the requirements against the capabilities, we can safely
conclude that all the providers that have provide an IaaS solution, are suitable. For all IaaS solutions, it is
vital that they can have access to a full internet connection. With an IaaS solution, we can exactly control
which machine and which part of our system has what access to the internet.

For a PaaS solution, the level of access to third party services might be limited by a number of factors. A
factor could be the PaaS system itself. To protect the platform, a firewall might be in place that blocks any
unauthorized access to the platform, even from within. This is very system and provider specific, and
before starting development, this has to be clear. Another possibility is a limitation in the APIs of the
platform. If the system does not support the communication resources of a programming language,
framework or API, than we could get into trouble. This is could be hard to figure out, because the API’s
might be sealed for non-developers. It is even possible that only certain domains, ports or content types
are blocked. Therefore it is vital that we know what limitations there are, if we decide to start
implementing on a PaaS system.

9.3 Availability towards clients
Availability to clients is also vital to our cloud service, as for every cloud service. The reason why we are
still looking into this point, is because apart from being online as much as possible, we need to know what
happens if we run out of bandwidth, the data center goes down, or our storage space is full.

With an IaaS system, you have full control of your system resources, but it dependent on the capabilities
of the provider’s systems and your settings what happens when you are (almost) running out of them.
Some systems allow on-demand growth, with or without (user configured) limit. Some providers even
have their billing models adapted for that (pay as you go, pay for what you used). With other providers,
you will have to monitor this yourself and make changes to your system in order to keep it running
smoothly.

With PaaS systems, this is generally done for you, but there are a lot of business models for this, and
every PaaS provider has multiple models for managing resources and billing it to the customers. With
some systems it is even possible to automate the scaling in the app code, so if you are detecting a lot of
traffic, you can spin up a extra instance, and / or report it to the administrator.

9.4 Platform dependency
In order to create a cloud service we have to take in account that we can have a lot of difference in
platforms that we might encounter. From the point of the cloud service, the platform is stable, but the
clients can all be different. This means that we cannot use any platform specific output and have to stick
to either standardized web techniques like HTTP or use a widely supported open source solution. Of

Cloud Integration Research

version 1.1

page

39 / 49

course we can also choose to implement all our clients’ connectivity code ourselves, but that requires a
lot of work, and it the chances of our product becoming a success are diminishing pretty fast.

In this first project we are only focussing on a Windows 8 printer driver as primary cloud client. When this
becomes a success, and development is expanded to a lot of other client platforms like Mac and maybe
even mobile platforms, we do need a common API that is accessible for all the targets.

Fortunately this requirement does not limit the choice of the cloud platform. All cloud platform providers
and systems have the capability to use pure web techniques. Though with IaaS systems, where we have
to implement these ourselves, we do have to pay extra attention to this. With PaaS systems it is more
likely that a standardized communication is part of the platform.

9.5 Scalability
An important term in the cloud business is scalability. A cloud platform provider that does not support or
deliver fast scalability is doomed. Where websites still have static capacity for a month or even a year
subscription, with cloud services it is normal that the capacity can scale up within 15 minutes.

With an IaaS system it is easy to add raw computing power to your system, but you have to design a
system that can cope with dynamic scaling, otherwise you can add a lot of computing power, but it won’t
have any effect. Depending on the chosen provider, you can get APIs to implement dynamic scaling in
the code itself. That would for example enable you to create a master program that monitors load and
traffic, and controls scaling if the load goes outside certain boundaries. And with learning from history
(daily pattern) you could spin up extra instances and create extra capacity before a peak arrives.

With PaaS systems, you don’t need to worry about instances of virtual machines and complex designs to
cope with scaling. A good system will force you to implement certain features to prepare your application
for scaling by the hosting system. Instead of running multiple virtual machines as with IaaS, the PaaS
system will run multiple instances of your program and distribute them over multiple virtual machines
without you noticing anything. Also with PaaS systems it is even more likely that you get mechanisms to
automate the scaling process.

Because we are not hosting data (or at least not permanent but just caching) we don’t need to focus on
data storage space. Computing power and especially bandwidth is our main focus for scalability and we
should pay attention to this when making a decision about the platform we are going to use.

9.6 Advices and Choices
For our test project, we are going to use the Amazon EC2 server that Océ already has for test purposes.
This is the solution with the most possibilities and least costs, and because it is already up and running,
we will be able to use it faster and could start development right away.

This does not mean that when the final concept is ready, the solution above is the way to go. At that point,
it has to be investigated what is the best solution and adapt the design to that hosting solution. Both IaaS

Cloud Integration Research

version 1.1

page

40 / 49

and PaaS have different advantages and disadvantages. IaaS comes with the greatest freedom to
implement whatever you want, but you pay for that freedom as well.

IaaS solutions require more implementation because you only hire virtual machines, storage space and
bandwidth. The complete software system, including the complex aspects of scaling and thread safety
has to be implemented by the customer.

With a PaaS solution, it may vary what is already done for the customer. With closed systems like Force,
it is likely that the implementation part of the customer is considerably lower than with a system like Azure.
The more freedom you get, the more you have to implement, and finding the correct balance between is
difficult and different for every cloud project.

So it may not be much of an advice, but it really is dependent on the final concept of the cloud service,
and the abilities that it needs to have. The concept that we have not is not even sure of implementation of
our own cloud service, but for experimenting and finding the boundaries of the cloud, the IaaS solution of
Amazon EC2 is a great opportunity and we will be able to create a great proof of concept with it.

Cloud Integration Research

version 1.1

page

41 / 49

10 What infrastructure should be used?
For a corporate network we need to take infrastructure very seriously. A corporate network can be seen
as some sort of worst case scenario, and if we are able to deal with it, we can handle every other client as
well.

There are a couple of scenarios to provide cloud access to every client within a corporate network. Some
solutions require extra software for managed servers, and other solutions are just recommendations and
instructions for IT management departments.

10.1 The active portal

In this scenario we are dealing with an extra piece of software that runs on a server in the corporate
firewall environment. Instead of connecting to the real cloud service, the clients connect to the local
server that takes care of the connections to the real cloud. This includes the connection to the own cloud
service, but also integrated cloud services, to relieve load of our own cloud service connection.

The advantages of this solution is that IT management can control what services they want to let through
to their users, load is reduced from our own cloud service, and the speed of the solution is higher. The
disadvantages are that a extra piece of software is needed, we need to take in account that on the client
side, certain cloud service might be blocked, and we lose a bit of purpose of our own cloud service.

10.2 The passive relay
This scenario uses the same infrastructure setup as with the active portal, except the software running on
the systems is different. The server in the corporate firewall serves only as a relay server. This can be
achieved by using a proxy structure, or a tunnel to our own cloud service server combined with simple
DNS rules in the corporate network. This means that we do not need extra software for the local server.

Advantages of this solution are that the server is very manageable and can be monitored and firewalled
strictly by IT management, and there is no need for extra software development by us. Also in the event
of a crash of the server, there is no loss of data, just configure another server and put it back online.
Disadvantages are that the load on our own cloud service is higher than with the active portal, and IT

Cloud Integration Research

version 1.1

page

42 / 49

management cannot control the content of the cloud service stream, and the server needs to be
monitored and configured. The load on the cloud service is just a relative issue though, because
otherwise we would have had the load on the local server. Only with very busy networks and printing
traffic, we would have a problem, but for now that is not the case.

10.3 The open gate

The third scenario is a lot simpler than the other scenarios. IT Management just has to open an outgoing
port and make sure that the domain is not blocked, so the clients can connect directly to the own cloud
service. An incoming port is not needed when the service provides a pure REST API.

Advantages of this approach are that it is pretty safe, virtually no maintenance for the IT department, and
configuration for corporate users would be the same as with home users. As an added advantage the IT
department can decide to block all unnecessary domains from the opened port. This would exclude the
possibility of hackers and viruses using the opened port to sneak data in or out. Disadvantages are hardly
there, except that the load on the cloud service is also higher than when having a local server, but that
issue has been addressed already.

10.4 The solution
The most sensible solution seems to be the last option, where we ask IT management to open a port in
the firewall for the entire network. This option can later always be expanded with an active local server if
the traffic to the cloud service becomes too high, and we want to relieve that connection. This solution
requires the least configuration and maintenance, and no extra software components and is therefore
also the cheapest option. This does require REST technology to be implemented on the service, but that
is a technology that we were going to use anyway.

author(s)

M. Wingbermühle

Venlo, 21 May 2012

version

1.1
 number of pages

43 / 49

11 Glossary
Word / Acronym Meaning / Explanation

V4 Printer Driver
A version 4 printer driver. V4 or version 4 is the latest version of the printer
driver framework / model from Microsoft. Designed and built for Windows 8.

GB Gigabyte, unit for amount of data. Equal to 1.000.000.000 bytes
TB Terabyte, unit for amount of data. Equal to 1.000.000.000.000 bytes

API
Application Programming Interface. A collection of definitions on base of which
applications can communicate with other applications or application parts.

PDF
Portable Document Format. Developed by Adobe. Standard format for
exchange of electronic documents.

PDL
Printer Description Language. Data format for document description, used to
communicate to printers.

OAuth Open protocol to allow secure API authorization.

URL

Uniform Resource Locator, special form of URI (Uniform Resource Identifier).
Structured name that points to a piece of data. The name contains all needed
information to access the data.

JSON
JavaScript Object Notation. Open text data format for human readable data
exchange, derived from the JavaScript scripting language.

JPEG Joint Photographic Experts Group. An image compression method.
PNG Portable Network Graphics. Lossless image compression method.
Metro Design language, created by Microsoft. First real focus in Windows 8 UI.

VM
Virtual Machine. Virtualized computer for running an operating system within
another operating system.

XPS XML Paper Specification. A PDL originally developed by Microsoft
PostScript A PDL developed by Adobe.

XPSDrv
Pronounced: "XPS Drive". Printer Driver architecture, using XPS as main
document format

PrintTicket Set of (user configured) print settings, specific for one print job.
UI User Interface. A way of letting the user interact with a electronic system.

C++
Pronounced: "C Plus Plus". One of the most versatile and most used
programming languages.

Win32
Windows 32bit API. The Windows API to access system resources, built for
32bit operating systems.

.NET
Pronounced “Dot Net". Software framework, developed by Microsoft.
Extension to the Windows API.

WinRT

Windows Runtime. Actually the same as Windows API, but suitable for ARM
and Intel core processors. Windows 8 uses this runtime for all Metro related
software.

app
Short for application. Popular word and mostly used to refer to an application
for a mobile operating system.

DNS
Domain Name System. Hierarchical distributed naming system for computers,
services, or any resource connected to the internet or a private network.

Android
Google Android. Mobile operating system from Google. Mostly used for smart
phones.

iOS
Apple iOS. Mobile operating system from Apple. Used for iPhone, iPad and
iPod.

OSX Apple Mac OSX. The 10th version of the Apple Mac operating system.

Python
High level programming language. Main characteristics are the dynamic type
system and multi paradigm support.

Ruby Programming language with strong resemblance to Python

Cloud Integration Research

version 1.1

page

44 / 49

Java

Object Oriented programming language originally developed by Sun
Microsystems. Mainly runs in a virtual environment called the Java Virtual
Machine (JVM).

C#

Pronounced "C Sharp", Object Oriented programming language originally
developed by Microsoft within the .NET initiative. One of the programming
languages for the Common Language Infrastructure. Also needs a virtual
machine environment to run in.

SDK
Software Development Kit. Package of software tools and libraries to enable
software development for a certain platform, API or framework.

UTF-8

UCS Transformation Format 8bit. Variable width character encoding that can
represent every Unicode character. Designed for backward compatibility with
ASCII

SSL
Secure Socket Layer. Cryptographic protocols for communication security over
the internet.

proxy
Short for Proxy Server. A computer or application that acts as an intermediary
for client seeking resources from other servers.

JavaScript

Scripting language. Dynamic, weakly typed and multi paradigm. Frequently
used in websites, though server side and desktop uses of JavaScript are also
gaining popularity.

sandbox
A security mechanism to separate running programs. Often used to protect
systems from untrusted code.

REST
REpresentative State Transfer. Standardized software architecture. Used for
implementations of web and cloud services.

Cloud Integration Research

version 1.1

page

45 / 49

12 Sources
Source: Google
Location: https://developers.google.com/cloud-print/docs/sendJobs
Shorthand: GCP01

Source: Google
Location: https://developers.google.com/cloud-print/docs/appInterfaces
Shorthand: GCP02

Source: IBM Zurich
Location: http://www.zurich.ibm.com/~cca/talks/metis2011.pdf
Shorthand: IBMZ01

Source: WIkipedia
Location: http://en.wikipedia.org/wiki/Extensible_Messaging_and_Presence_Protocol
Shorthand: XMPP01

Source: Wikipedia
Location: http://en.wikipedia.org/wiki/Cloud_computing
Shorthand: CC01

Source: Dropbox
Location: http://www.dropbox.com
Shorthand: DBOX01

Source: Dropbox
Location: http://www.dropbox.com/static/docs/DropboxFactSheet.pdf
Shorthand: DBOX02

Source: Dropbox
Location: https://www.dropbox.com/developers/reference/api
Shorthand: DBOX03

Source: Silverlight Hack
Location: http://www.silverlighthack.com/post/2011/02/27/IaaS-PaaS-and-SaaS-Terms-Explained-

and-Defined.aspx
Shorthand: SLVH01

Source: Google Drive
Location: http://drive.google.com/
Shorthand: GDRV01

Cloud Integration Research

version 1.1

page

46 / 49

Source: Google Drive
Location: https://developers.google.com/drive/
Shorthand: GDRV02

Source: Google Drive
Location: https://developers.google.com/drive/v1/reference/
Shorthand: GDRV03

Source: Box.net Blog
Location: http://blog.box.com/2011/06/box-and-google-docs-accelerating-the-cloud-workforce/
Shorthand: BOXB01

Source: Google System Blog
Location: http://googlesystem.blogspot.com/2011/06/boxnet-integrates-with-google-docs.html
Shorthand: GSYS01

Source: Box.net
Location: https://www.box.com/
Shorthand: BOX01

Source: Box.net
Location: https://www.box.com/platform/
Shorthand: BOX02

Source: Box.net
Location: http://developers.box.com/docs/
Shorthand: BOX03

Source: Amazon Cloud Drive
Location: https://www.amazon.com/gp/feature.html/ref=amb_link_362776742_2?ie=UTF8

&nav_sdd=aps&docId=1000796931&pf_rd_m=ATVPDKIKX0DER&pf_rd_s=center-
A5&pf_rd_r=0FQJ4EBD2JJ3A8AN0NGA&pf_rd_t=101&pf_rd_p=1364264882&pf_rd_i=5
07846

Shorthand: ACD01

Source: Mimeo
Location: http://developer.mimeo.com/
Shorthand: MIM01

Source: AutoCAD WS
Location: http://www.autocadws.com/blog/autocad-ws-launches-google-drive-integration/
Shorthand: ACWS01

Cloud Integration Research

version 1.1

page

47 / 49

Source: Wikipedia
Location: http://en.wikipedia.org/wiki/Representational_state_transfer
Shorthand: REST01

Source: Microsoft SkyDrive
Location: http://msdn.microsoft.com/en-us/library/live/hh826543.aspx
Shorthand: MSSD01

Source: Microsoft SkyDrive
Location: http://msdn.microsoft.com/en-us/library/live/hh826540.aspx
Shorthand: MSSD02

Source: Microsoft SkyDrive
Location: http://msdn.microsoft.com/en-us/library/live/hh826531.aspx
Shorthand: MSSD03

Source: Xerox
Location: http://www.xerox.nl/digitaal-printen/cloud-services/nlnl.html
Shorthand: XROX01

Source: Xerox
Location: https://acscloud.com/
Shorthand: XROX02

Source: Konica Minolta
Location: http://www.konicaminolta.nl/konica-minolta-business-solutions-nederland-bv/producten-

diensten/applicaties/cloudoplossingen.html
Shorthand: KOMI01

Source: Brother
Location: http://www.brothercloud.com/
Shorthand: BCLD01

Source: Canon
Location: http://www.usa.canon.com/cusa/office/products/software/document_distribution_and_

management/cloud_portal_for_imagerunner_advance
Shorthand: CNON01

Source: Kyocera Document Solutions
Location: http://www.kyoceradocumentsolutions.com/news/apr1213.html
Shorthand: KYDC01

Cloud Integration Research

version 1.1

page

48 / 49

Source: EFI
Location: http://w3.efi.com/en/Fiery/Products/EFI-PrintMe
Shorthand: EFI01

Source: EFI
Location: http://w3.efi.com/Fiery/Products/EFI-PrintMe/EFI-PrintMe-for-Canon
Shorthand: EFI02

Source: HP
Location: http://www8.hp.com/nl/nl/campaign/photosmart/eprint.html
Shorthand: HP01

Source: Epson
Location: http://www.epson.co.uk/Explore-Epson/1228074434969
Shorthand: EPSN01

Source: Epson
Location: http://global.epson.com/newsroom/2011/news_20110831_3.html
Shorthand: EPSN02

Source: Amazon
Location: http://aws.amazon.com/ec2/
Shorthand: AEC201

Source: CloudFoundry
Location: http://www.cloudfoundry.com/
Shorthand: CLFO01

Source: Google
Location: https://developers.google.com/appengine/
Shorthand: GAE01

Source: Joyent
Location: http://www.joyent.com/products/
Shorthand: JOYE01

Source: IBM
Location: http://www-935.ibm.com/services/us/en/cloud-enterprise/
Shorthand: IBMC01

Cloud Integration Research

version 1.1

page

49 / 49

Source: SlideShare
Location: http://www.slideshare.net/sriramk/windows-azure-cloud-service-development-best-

practices
Shorthand: SSWA01

Source: Microsoft
Location: http://www.windowsazure.com/nl-nl/
Shorthand: MSWA01

Source: CloudForge
Location: http://www.cloudforge.com/why-cloudforge/ - cloud-deployment
Shorthand: CLFG01

Source: Force
Location: http://www.force.com/
Shorthand: FRCE01

Source: OAuth
Location: http://oauth.net/
Shorthand: OAUT01

author(s)

M. Wingbermühle

Venlo, 25 July 2012

version

1.0
 number of pages

1 / 5

Installing a Metro Device App
Installation, Deployment & Testing Instructions

Installing a Metro Device App

version 1.0

page

2 / 5

Table of content
1 Installation Components 3

2 Device Metadata 4

3 Metro Device App 5

Installing a Metro Device App

version 1.0

page

3 / 5

1 Installation Components
To install the Metro style device app for Windows 8, you need 3 software components. The component is
the hardware driver, in our case that means the V4 printer driver. I am not going to explain how to install
the driver in this document, because Microsoft has clear documentation on that, and using the wizard is
pretty straightforward.

The second component is the Metro device app project. Yes, you will need the entire project, and Visual
Studio 11 or 2012 as well to deploy it. This is because the Metro apps are actually meant to be delivered
from the Windows App Store, but since this software is confidential and for testing purpose only, you will
have to install it manually.

The third part is the Device Metadata file, and it connects the device app with the driver by providing
Windows with the required data to associate the device app to the printer driver ID.

I have added a diagram showing how the software components are linked together:

The diagram shows which identifiers are used to link the components, and in where the separate software
components are stored in Windows. The stores are actual folders on the Windows system drive, and are
not to be confused with the distribution platforms, though they are related.

Installing a Metro Device App

version 1.0

page

4 / 5

2 Device Metadata
The first step to install the device app, is to provide Windows with the association data in the form of the
Device Metadata file. This is a file that has a GUID as name, with the .devicemetadata-ms file extension.
You can create and edit these files yourself if you have the Windows Driver Kit (WDK) installed, by using
Visual Studio. For more information about that, you will have to look into some Microsoft documentation:

Developing V4 Printer Drivers
http://msdn.microsoft.com/en-us/library/windows/hardware/br259124.aspx
Developing Metro style Device Apps for Printers
http://msdn.microsoft.com/en-us/library/windows/hardware/br259129.aspx
Device Metadata Package
http://msdn.microsoft.com/en-us/library/windows/hardware/gg463157.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/hh833794.aspx

For the installation instructions I will assume that you have a metadata file ready for use, whether you
have made it yourself or the file has been distributed along with the metro device app project.

The devicemetadata-ms file has to be copied to the Device Metadata store folder in Windows 8. This
folder can be found in the Program Data \ Microsoft \ Windows folder. On your machine, you can enter
the following in the address bar of Windows Explorer:

%programdata%\Microsoft\Windows\DeviceMetadataStore\

Depending on the locale of the device metadata, you will have to put the file in a subfolder of the device
metadata store. If the locale is undefined, place the file in the root, otherwise you will have to place it in a
subfolder like “en-US”. You will have to create the folder if it does not exist yet. There are a couple of
ways to figure out the locale of the metadata package. The easiest way is to open it with the Visual Studio
Device Metadata Authoring tool that you get when you have the WDK installed. You could also rename
the file extension to .zip and open it with a tool like 7zip and see if there are any locales defined in the
XML files contained within the zip. Since Windows 8, a device metadata package can contain multiple
locales, while in Windows 7 that is only one.

Placing the file in the correct folder is the only thing that we have to do here, but this step is very
important because doing this wrong will cause the association to fail, and your app will not be linked to
the driver, and your app will be just another Metro app.

Installing a Metro Device App

version 1.0

page

5 / 5

3 Metro Device App
The other thing you have to do to complete the installation is to build the app and deploy it from Visual
Studio. Open the solution file (.sln) with Visual Studio, and confirm that you trust all projects contained
within the solution. Then go to the Build menu, and click “Build Solution” (F6). This will build the app for
you. If there are any errors during the build, check your environment and the project because something
is wrong, and you might be missing some libraries, or references in a project are wrong.

When the build succeeds, select the
Build menu again and click the third
option: “Deploy Solution”. This will
place the app to the local App Store on
your machine, or whatever debug
target that you have defined.

Instead of deploying the application,
you can also choose to Debug the
application. This will have almost the
same effect, except this will also attach
the Visual Studio debugger to the app
on start, and depending on the project
settings even launch the app for you.
The app will be deployed during the
process of setting up the debug
session, and the app will be available
in the Metro start menu from that
moment on.

When you have completed the steps above, the app is ready for use. In the case of a printer driver and a
metro device app for printers, this will mean that you now also can access the app from the “More
Settings” button in the Metro Print fly-out, like displayed in the screenshot on the right. Be sure to validate
this. If it does not work, and you do see the app in the Metro
start menu, you probably have an issue with the device
metadata. When the app loads and you can see a splash
screen, you know that the association is valid. When the
app immediately closes after loading, please try to reboot
your Windows, because something might be broken in the
supporting software framework.

