	Graduation Report
	Log Analyzer Tool for the NYCe4000 Motion Control System

	Log Analyzer Tool for the NYCe4000 Motion Control System

	[image: image38.png]Rexroth
Bosch Group

[image: image1.png]A
Cl-"onty's

University of Applied Sciences

GRADUATION REPORT

FONTYS UNIVERSITY OF APPLIED SCIENCES

HBO-ICT: English Stream
	Data student:

	Family name , initials:
	Panuju, I.S.R.

	Student number:
	2129825

	project period: (from – till)
	01.02.2012 – 30.06.2012

	Data company:

	Name company/institution:
	Bosch Rexroth

	Department:
	Application Engineering

	Address:
	Luchthavenweg 20, 5657 EB Eindhoven

	Company tutor:

	Family name, initials:
	Niessen, H.

	Position:
	Project Leader Customer Projects

	University tutor:

	Family name , initials:
	Dirks, G.

	Final report:

	Title:
	Log Analyzer Tool for NYCe4000

	Date:
	08.06.2012

Approved and signed by the company tutor:

Date:

[image: image39.png]Eile Stop Options

Msghi | TmeStamp ThieadD | Message
Sa72 0020021007221 2984 PRI PAR: obiect=O0D00530, tieout=30000

573 0020021007221 2984 FUNCEXIT: DsalwaiorSingleDbiect - RETVAL: NYCE_OK
574 0020021007221 2984 FUNCENTAY: NesCheckHande

575 0020021007221 2984 PRI PAR: handle=00000000, sisNumber=-1

576 0020021007221 284 FUNCENTRY: OsahwatForSingleDbiect

577 0020021007221 2984 PRI PAR: obiect=D0000128, timeout=1

578 0020021007221 2984 FUNCEXIT: DsalwaiorSingleDbiect - RETVAL: NYCE_OK
5579 0020021007221 2984 FUNCENTAY: OsaMutesRelease

S0 0020021007221 2984 PRI PAR: muler-00D00128

581 00200:21:007221 2984 FUNCEXIT: DsalbluesRelease - RETVAL: NYCE_OK
SR 0020021007221 2988 FUNCEXIT: NesCheckHandle - RETVAL NYCE_DK.

583 0020021007221 2984 FUNCENTAY: OsaMutesRelease.

S84 0020021007221 2984 PRI PAR: muler-00D00S30

585 0020021007221 2984 FUNCEXIT: DsablulerRelease - RETVAL: NYCE_OK
585 0020021007221 2984 FUNCENTAY: NesReadData

587 0020021007221 2984 PRI PAR: hande=00000000, datald=235154772

588 0020021007221 2984 OUT PAR: pialue=

589 0020021007221 2984 FUNCEXIT: NesReadData - RETVAL: NYCE_OK

530 0020021007221 2984 OUT PAR: meuersion: major=10, minor=2, micro=0, buidNi=0
5891 00200:21:007221 2984 OUTPAR sloMask=Di

S 0020021007221 2984 OUT PAR: diveHwh/ersior] 0} major=40, min

593 0020021007221 2984 OUTPAR

5834 0020021007221 2984 OUTPAR

535 0020021007221 2984 OUT PAR: gatewsreersion: major=D, minor=0,

53 0020021007221 2984 FUNCEXIT: NhiGelVersioninfo - RETVAL NYCE_DK

i

Signature:
Document History

Revisions
	Version
	Status
	Date
	Changes

	1.0
	Draft
	09.03.2012
	Document creation

	1.1
	Reviewed draft
	10.04.2012
	Added Introduction and Project Overview section

	1.2
	Reviewed draft
	24.04.2012
	Included remarks from reviewers and added Approach section

	1.3
	Reviewed draft
	15.05.2012
	Included remarks from reviewer and added Research & Design Considerations chapter

	1.4
	Completed document
	29.05.2012
	Included remarks from reviewer and added the remaining chapters

	1.5
	Reviewed completed document
	30.05.2012
	Included remarks from reviewer (University Tutor)

	1.6
	Final document
	07.06.2012
	Final version to be handed in to the Internship office

Distributions

This document was sent to:

	Version
	Sending Date
	Name
	Job Title

	1.0
	21.03.2012
	Geert Dirks
	University Tutor

	1.1
	10.04.2012
	Geert Dirks
	University Tutor

	1.1
	11.04.2012
	Hans Niessen
	Company Tutor

	1.2
	01.05.2012
	Geert Dirks
	University Tutor

	1.3
	15.05.2012
	Geert Dirks
	University Tutor

	1.4
	21.05.2012
	Geert Dirks
	University Tutor

	1.4
	29.05.2012
	Hans Niessen
	Company Tutor

	1.5
	30.05.2012
	Geert Dirks
	University Tutor

	1.6
	08.06.2012
	Amina Mouahbi
	Internship office

	1.6
	08.06.2012
	Hans Niessen
	Company Tutor

Executive Summary
The log data generated by a motion control system contains valuable information about the system’s behavior. When a problem or error arises while the system is running, the log data can be a good source of information to pinpoint and, eventually, resolve the problem in the motion control system. However, depending on the size and complexity of the NYCe4000 application, the log data can be very large and complex to process manually. Therefore, in this graduation project, a software tool was developed to analyze and visualize the log data generated by the NYCe4000 application in order to assist the internal engineers of Bosch Rexroth in interpreting the information contained in the log data.
During the project, it was found that there are different types of log data generated by the NYCe4000 motion control system. Although different, these data do have connections with each other, e.g. the NYCe log data records the function calls on the host software, and the trace data records the real time physical values, e.g. temperature, position, currents, etc, as well as internal variables on the nodes, e.g. position error, setpoints, axis states, etc. By examining and linking these data, the behavior of the NYCe4000 system as part of the overall customer’s application can be understood in more detail. Thus, the idea to combine the different log data for analysis in the log analyzer tool came up.

The end result of this project is the LogAnalyzer, a software tool independent of the NYCe4000 software architecture that is able to take the different log files generated by the NYCe4000 motion control system as inputs and then visualize the log data contained in it.
Because of the time constraints of the project, the LogAnalyzer has not yet been tested to solve an actual problem in the NYCe4000 application. Therefore, the LogAnalyzer leaves several areas for potential improvement. The following list describes enhancements that can be considered for the future releases of the LogAnalyzer tool:

1.
Creation of parser plugins for log data other than the NYCe log and the trace data.

2.
Additional functionality that allows the users to choose possible translations of the NYCe log’s values.

3.
Additional translation functionality for the internal event IDs in the NYCe log data.

4.
Proper alignment of the trace data timeline with setpoints timeline.

5.
Possibility to build a knowledge base to be accessed by the LogAnalyzer.
Additionally, some issues with the logging system that needs some attention in the future releases of the NYCe4000 software were encountered during the project, such as:

1.
The accuracy of timestamps in the NYCe log data.

2.
The correctness of the calculation results for data IDs on the NYCe log data.

3.
The possibility of missing log data when all available subsystems are logged.
4.
The connection between the logged parameters and their owning function calls data.
Preface & Acknowledgement
This report was created to finalize the graduation internship project that I have done in the period of February 2012 until June 2012. The project is an important requirement for the completion of my Bachelor-level study in the field of Information and Communication Technology at Fontys University of Applied Sciences Eindhoven. The project itself was carried out at Bosch Rexroth Electric Drives and Control B.V. in Eindhoven, the Netherlands.
The main function of this report is to give insight to the assignment of the project, which is about the creation of a log analyzer software tool for Bosch Rexroth’s NYCe4000 motion control system, as well as the processes that were executed in order to fulfill the assignment. In doing this project, I hope to provide solutions for assisting the engineers of Bosch Rexroth in analyzing the log data for diagnosing the NYCe4000 system.
The information provided in this report is mainly intended for Fontys’ and Bosch Rexroth’s archive, and is to be assessed by the examination board of Fontys University of Applied Sciences for the academic year of 2012.

The creation of this report is impossible without the contribution of several people. Thus, I would like to warmly thank:
· The Head Department of Application Engineering Department of Bosch Rexroth Electric Drives and Control B.V., Menno Haring, for giving me the opportunity to do a graduation internship project at Application Engineering Department of Bosch Rexroth Electric Drives and Control B.V.
· The company tutor at Bosch Rexroth, Hans Niessen, for his advice, support, and guidance during the fulfillment of the project, especially for his inputs in the project and requirements management.

· The university tutor from Fontys University of Applied Sciences, Geert Dirks, for his advice, support, and guidance during the fulfillment of the project, especially on his feedbacks on the content and structure of this report.

· My “contact persons” for technical questions and support, Ronald Hiemstra, Marc van Hulsen, and Paul Broertjes, for their support and advice on technical aspects during the project period, especially during the designing, testing, and deployment phases.

· The technology development manager of Bosch Rexroth, Wilco Pancras, and also Richard Kooijman, for their inputs and support on the project during the progress meetings.

· My colleagues at Bosch Rexroth Electric Drives and Control B.V.: Wim de Graaff, Robert Vierbergen, Rob Bierbooms, Manuel Gallardo, Hugo van Osch, Demis Reijbroek, Chi Choi, Arend Aerts, and Roy Groen, for their inputs and support on the project.
Irene Septyo Rini Panuju

Eindhoven, the Netherlands

June 2012

Table of Contents

7List of Illustrations

8Glossary

101.
Introduction

101.1.
About Logging

101.2.
Motivation

111.3.
Organization of the Report

122.
Company Profile

122.1.
Bosch Rexroth Electric Drives & Control B.V. Eindhoven

132.1.1.
Application Engineering Department

142.2.
NYCe4000

142.2.1.
Motion Control System

152.2.2.
Software Architecture

172.2.3.
NYCeLogger and NYCeScope

192.2.4.
Regression Test Environment

203.
Assignment Description

203.1.
Problem Definition

203.2.
Project Goal

203.3.
Requirements

203.1.1.
Target Users

213.1.2.
General Requirements

234.
Approach

234.1.
Initial Planning

244.2.
Requirements Gathering & Planning

254.3.
Analysis & Design

254.4.
Implementation

264.5.
Deployment

264.6.
Testing

274.7.
Evaluation

285.
Research and Design Considerations

285.1.
Criteria

285.2.
Design Candidates

295.2.1.
Extraction

305.2.2.
Transformation

325.2.3.
Loading

335.2.4.
Reporting

365.3.
Conclusion

375.4.
Findings in NYCe4000 Logging System

396.
Design Implementation

396.1.
Conceptual Design

436.1.1.
LogAnalyzer

446.1.2.
ILogAnalyzerPlugin

446.1.3.
Log

456.1.4.
LogAnalyzerProject

466.2.
User Interface

477.
Brief Overview of the Log Analyzer Tool

477.1.
Functionalities

507.1.1.
Plugins folder

507.1.2.
LogAnalyzer project

518.
Conclusion and Recommendations

518.1.
Conclusion

528.2.
Recommendations

Appendix A: Project Survey
Appendix B: Project Plan
Appendix C: User Requirements Document
Appendix D: Design Document
Appendix E: Acceptance Test Reports
Appendix F: Manual for Creating a LogAnalyzer Plugin

Appendix G: HBO Kennisbank Permission Form
List of Illustrations

12Figure 1.1, Organization of the report

13Figure 2.1, Rexroth within the Bosch Group

14Figure 2.2, business structure of Bosch and Bosch Rexroth

15Figure 2.3, the simplified architecture of the NYCe4000 system

16Figure 2.4, NYCe4000 software architecture of the host software

17Figure 2.5, setup of NYCe4000 system and software subsystems

18Figure 2.6, graphical user interface of NYCeLogger

18Figure 2.7, logging options of NYCeLogger

19Figure 2.8, NYCeScope display of trace values

19Figure 2.9, trace data exported from NYCeScope

22Figure 3.1, a complete log of a CmReadTrackState function call in NYCe log data

23Figure 3.2, UML Use-case Diagram showing Log Analyzer’s general capabilities

24Figure 4.1, a typical iterative and incremental development model

25Figure 4.2, the Gantt chart representation of the project’s schedule

25Figure 4.3, workflow diagram for requirements gathering process

26Figure 4.4, workflow diagram of analysis & design process

27Figure 4.5, white box and black box testing model

30Figure 5.1, the ETL process in a data warehouse

34Figure 5.2, Microsoft Chart Control graph and chart samples

35Figure 5.3, ZedGraph graph and chart samples

36Figure 5.4, GraphLib graph samples

37Figure 5.5, the log analyzer tool and the NYCe4000 system

37Figure 5.6, a simplified model of log data analyzing process in the log analyzer tool

40Figure 6.1, UML class diagram of the log analyzer tool on February 27th, 2012

41Figure 6.2, UML class diagram of the log analyzer tool on May 2nd, 2012

42Figure 6.3, UML class diagram of the log analyzer tool on April 30th, 2012

43Figure 6.4, UML class diagram of the log analyzer tool on May 29th, 2012

44Figure 6.5, UML sequence diagram of adding log scenario

45Figure 6.6, UML sequence diagram of log data analysis in adding log scenario

46Figure 6.7, UML sequence diagram of saving project file scenario

47Figure 6.10, screenshot of a prototype of the log analyzer tool GUI with opened File menu

48Figure 7.1, a screenshot of the GUI of LogAnalyzer version 3

49Figure 7.2, Log Viewer showing trace data with original values (top) and translated values (bottom)

50Figure 7.3, a screenshot of the compared logs, with differences highlighted

50Figure 7.4, a screenshot of the Timeline view showing the trace data (top) and NYCe log data (bottom)

Glossary
.NET Framework

ADO.NET

Application Programming Interface (API)
Attribute
Die bonding system

Gantry machine

KISS principle

Method

A software framework that is available with several Microsoft Windows operating systems. It contains a large library of code solutions for software development and a virtual machine that manages the execution of programs written specifically for the framework.

Abbreviated from ActiveX Data Objects for .NET. It is among the basic class library that is included with .NET Framework, and can be used to access data and data services.

A set of commands and protocols intended to be used as an interface by software components to communicate with each other.
A variable that is specific to a given object in object-oriented programming. Its manipulation is often done by method(s).
A machine that is used to attach the silicon dies to a base, e.g. a leadframe, that forms the basis of a microchip.
Also called Cartesian or linear robot. It is usually a large system, mounted on an overhead system that allows horizontal movements, which performs pick-and-place applications, but can also be used in welding and other applications.

Abbreviated from Keep It Short and Simple. It is a design principle used in the fields of animation and engineering which states that most systems work best if they are kept simple rather than made complex.
A function or procedure associated with a class in object-oriented programming. It defines the behavior of the object of the associated class during runtime.
NYCe4000 application

Object

Object-oriented design

Parsing

Query language

Semantics

Version management system

XML

Wafer handling robot
A subsystem or a part of a larger machine that is controlled by the NYCe4000 hardware via the NYCe4000 host software.

An instance of a class at the program runtime in object-oriented programming.

The process of planning a system of interacting objects for the purpose of solving a software problem. It is one of the many approaches to software design.

A process of analyzing a body of text made of a sequence of tokens, e.g. words. It breaks down the words into functional units that can be converted into command or data that is understandable to (computer) machines.

A language used to specify the procedures for the retrieval and modification of information from a database.

The interpretation of the meaning of languages and expression.

A computer system used to manage the changes to documents and computer programs. It is essential for the organization of projects with multiple developers.

Abbreviated from Extensible Markup Language. It defines a set of rules for encoding documents in a format that is both human- and machine-readable. It is developed by the World Wide Web Consortium (W3C).

An industrial robot used to handle thin silicon wafers used in the manufacturing of microchips, and also several types of solar cells.
1. Introduction
1.1. About Logging

Log data generated by automated computer program contains useful information for evaluating and diagnosing a system. However, the data generated by the logging process can be very big and time-consuming to analyze, especially when the system that is being logged is complex. Thus, a log analyzer tool is required to better interpret and understand the information contained in the log data.

Bosch Rexroth has also implemented the logging functionality for their NYCe4000 product family. The logging process records, among other things, the external and internal function calls that can provide information on the activity of a NYCe4000 system. This information can be useful to understand and pinpoint problems in a customer’s application, which most of the time is not known exactly by Bosch Rexroth (see Appendix A: Project Survey).
The logging process as explained above is done by a subsystem of the NYCe4000’s software architecture. The resulting log data is stored as ASCII-based text files. Another type of log file also exists, called trace data, which contains the real-time continuous values in the system’s nodes. By combining the information from the log file and trace data, the communication activity between the PC and the NYCe4000 motion control system can be understood in more detailed.
1.2. Motivation

The use of log data analysis to diagnose the customers’ NYCe4000 application* is still done minimally at Bosch Rexroth, mainly because of the amount of work needed to analyze the log files. Besides having to go through the log files manually, often the information from other sources needs to be linked with the log data in order to get a complete diagnosis of the system, e.g. from the trace data. This causes the valuable information contained in the log files to be largely ignored and other workarounds are much preferred to pinpoint problems in NYCe4000 system. Most of these workarounds require a lot of interactions with customers, and often the customers’ valuable machine time is exhausted from having to reproduce the error.
On the other hand, there are many commercial and open-source log analyzer tools available, but most of them are restricted to analyze web log files or Windows Event Logs. Furthermore, log data are very often formatted differently and show different kind of information for different systems, e.g. Windows Event Logs are written in XML* format, and web log files specifically record the HTTP requests received by web servers. Thus, to have a better and relatively quick analysis of the data, a tool dedicated to analyze the log data and other related data generated by NYCe4000 system needs to be developed.
1.3. Organization of the Report

[image: image2.emf]Realized Solution Project Overview

Company Profile

Chapter 2

Assignment

Description

Chapter 3

Approach

Chapter 4

Research & Design

Considerations

Chapter 5

Design

Implementation

Chapter 6

Brief Overview of the

LogAnalyzer Tool

Chapter 7

Conclusion and

Recommendations

Chapter 8

Figure 1.1, Organization of the report
Figure 1.1 illustrates the organization of this report. The remaining chapters of this report are structured as follows:
· Chapter 2 and 3 describe the overview of the project which this report is based on. Specifically, Chapter 2 introduces the client of the project, in this case Bosch Rexroth, as well as providing some background information about the project. Chapter 3 describes the problem definition and the goal of the project.

· Chapter 4 describes the approach taken to finish the project; what was planned and how the plan was applied.
· Chapter 5, 6, and 7 describes the realized solutions and the outputs of the project. Chapter 5 describes the considerations taken while researching and designing the tool. Chapter 6 describes the final design of the tool, based on the considerations described in Chapter 5. Chapter 7 describes the end product of the project, which is the LogAnalyzer tool.
· Chapter 8 gives the conclusion of this report, as well as recommendations for future projects.
2. Company Profile

Bosch Rexroth is an engineering company headquartered in Lohr am Main, Germany. Bosch Rexroth is a daughter company of Robert Bosch GmbH, and is specialized in the field of drive and control technologies (see Figure 2.1), namely Electric Drive and Control, Industrial Hydraulics, Mobile Hydraulics, Linear Technology, Assembly Technology, and Pneumatics.
[image: image3.png]Bosch Group.

Industial
Technology

Automobile
Technology

Drive and Control
Technology?

Packaging
Seler Enerey

Dinchuding other, ? Bosch Rexroth AG (100% Bosch, ¥ Bosch Solar Energy AG

Figure 2.1, Rexroth within the Bosch Group
Bosch Rexroth was formed from a merger in 2001 between Mannesmann Rexroth AG and Automationstechnik business unit of Robert Bosch GmbH. Both companies have history spanning to over a century in technology and engineering, with the Rexroth family acquiring Höllenhammer, a water-driven iron forge in Elsavatal, Germany, in 1795, and Robert Bosch opening his “Workshop for Precision Mechanics and Engineering” in 1886.
Bosch Rexroth has a total of 34,896 employees spread over 64 countries. Total revenue summed up to €5,063 million in 2010, with the highest percentage of revenue coming from Europe (€2,876 million).

2.1. Bosch Rexroth Electric Drives & Control B.V. Eindhoven

In Eindhoven, a branch of Bosch Rexroth was formed from the acquisition of Nyquist Industrial Control in 2005. Now, it is part of the business group Electric Drives and Control (DCC) of Bosch Rexroth (see Figure 2.2). This business group develops, markets, and sells motion control systems, which measure the coordinated movements of mechanical constructions with nanometre accuracy. In marketing their product, the Eindhoven office focuses on the following markets: semiconductor, solar, power led and flat panel display.
There are three departments at Bosch Rexroth office in Eindhoven: Product Development, Application Engineering, and Service Department. Product Development is responsible for developing new technologies of motion control systems, Application Engineering is responsible for giving integration support to new customers, and Service Department is responsible for giving support to the already-existing customers.

[image: image4.emf]Bosch Group

Automotive

Technology

Industrial

Technology

Consumer Goods &

Building Technology

Bosch Packaging Bosch Rexroth

Bosch Solar

Energy

Pneumatics

Electric Drives &

Control

Linear Motion &

Assembly Technology

Sales Assembly &

Handling

Sales Semiconductor &

Solar

Engineering &

Application

Solution Projects

Semiconductor

Sales

Solar Sales

Applications

Engineering

Hydraulics Service

Figure 2.2, business structure of Bosch and Bosch Rexroth
2.1.1. Application Engineering Department

The project was conducted in the Eindhoven office of Bosch Rexroth Electric Drives and Control Group, specifically the Application Engineering Department. As was mentioned before, the Application Engineering Department is responsible for giving integration support to new customers. Some activities that are done in this department are offering consultation to new customers in choosing the products and setting up an application of the motion control systems. The current version of motion control system that is sold at Bosch Rexroth Eindhoven is called NYCe4000. More about NYCe4000 and motion control system will be explained in the later section.
While setting up a new NYCe4000 application, it is not unusual that the customers encounter some problems. Often, the exact application and configuration of NYCe4000 systems varies among customers. Therefore, it is necessary for the Application Engineers to first have some information on how the customer used their NYCe4000 system before they can start pinpointing the problems in their applications.
Usually, such information is gathered from interviews. A lot of times the Application Engineers ask the customers to provide the configurations that were done and the trace of values that results from those configurations, and then the Engineers can try to reproduce the errors on customers’ machine. The customer can also generate log file which contains the relevant data on how the customer uses the NYCe4000 system by running the NYCeLogger, a proprietary NYCe4000 logger tool provided by Bosch Rexroth.
2.2. NYCe4000

2.2.1. Motion Control System

A motion system is an electromechanical system in which a mass is transported, while motion control is a technique to make sure that the dynamics (position, velocity, and acceleration) of a mass behave as desired. Thus, a motion control system is best defined as an electromechanical system for transporting a mass, and the behavior of that system can be controlled. In controlling the motion system, the NYCe4000 relies on the use of electronics and software. Therefore, the NYCe4000 can also be called a digital motion control system.
The NYCe4000 motion control system is developed mainly for semiconductor and solar industry. Thus, it can be used to implement automation solutions typical for such industries, such as wafer handling robots*, gantry machines*, and die bonding systems*.
A simplified depiction of the NYCe4000 system architecture is shown in Figure 2.3. A NYCe4000 system consists mainly of a PC which is connected to controller modules, which in turn control the actual motors (also referred to as axis/axes).
A Host PC refers to the PC that controls the network of NYCe4000 motion control system. It is usually an Industrial PC running Windows XP or Windows 7 and can be connected to up to 62 controller modules. On the Host PC, a (graphical user interface) application can be developed to send various commands to the controller modules connected with the Host PC.
Node is the term used to refer to a controller module of NYCe4000. Physically, a node is a housing and backplane that contains the drive modules, Motion Control Unit (MCU), and I/O connections. There are various types of controller module available for NYCe4000, as can be seen in Figure 2.3. The MCU contains the real-time application that executes commands sent from the Host PC. Depending on the type of housing, a node can be connected to a maximum of 10 axes, and the whole network can control up to 128 axes.
[image: image5.png]

Figure 2.3, the simplified architecture of the NYCe4000 system

2.2.2. Software Architecture

[image: image6.png]client client
application | | application

NYCe 4000 C API
. L LI [T [T [T [T
nvee | own [sys [i] sea [sac
[osar | | | | | M SIM
APl
NCS
NET S
usermd HNL AP HSI AP
pp— HINI driver N4K_sim network
Microsoft IEEE1394
= Naksim
; -
roce | ' NY411x firmware
i

Figure 2.4, NYCe4000 software architecture of the host software
As was mentioned in the previous section, there are different software modules running on the Host PC and the node. The software on the Host PC is called host software, and the software on the node is called firmware. The host software consists of a number of subsystems (see Figure 2.4). The following table gives short description of the subsystems:
	Subsystem
	Description

	NYCE
	NYCe4000 subsystem

	DEH
	Diagnostics and Error Handling subsystem

	DWN
	Download subsystem

	SYS
	System subsystem

	NHI
	Node Hardware Interface subsystem

	SAC and MAC
	Single Axis Control subsystem, also containing the Multi Axis Control (MAC) subsystem and the SACDL (SAC Drivelink) subsystem

	SEQ and SQC
	Sequencer subsystem

	SIM
	Simulation subsystem

	UDC
	User Definable Control

	CML
	Configuration Mapping Layer

	CTR
	Control subsystem

	ECG
	Electronic Camming and Gearing subsystem

	EDH
	Error Detection and Handling subsystem

	EVH
	Event Handling subsystem

	GEN
	General subsystem

	HNI
	Host Network Interface subsystem

	NCL
	NYCe Class Library

	NCS
	NYCe communication Services subsystem

	NNI
	Node Network Interface subsystem

	OSAL
	Operating System Abstraction Layer subsystem

	PDS
	Performance Diagnosis and Status subsystem

	PPI
	Peripheral Program Interface subsystem

	SERC
	SERCOS subsystem

	SPG
	Setpoint Generator subsystem

	STD
	State Transition Diagram subsystem

	TSK
	Task handler subsystem

	UTILS
	Utility functions subsystem (for example XML file handling)

The subsystems NYCE, DEH, DWN, SYS, NHI, SAC, SEQ, SIM, and UDC are the only subsystems that have Applications Programming Interface (API)*. These APIs provide function calls to be used by the client’s applications and also NYCe4000 software tools. Meanwhile, the other, “lower-level” subsystems are called internally from those function calls. Often, when an API function call encounters warning or error, it will return with the information about the internal subsystem that originally detected the warning or error.
From high level, the setup of NYCe4000 system and its software subsystems can be seen in Figure 2.5.
[image: image7.png]node 2

NHI

SAC

Figure 2.5, setup of NYCe4000 system and software subsystems

On the topmost layer, the “system” controls a whole machine or robot. This layer can be accessed through the SYS subsystem. This layer can for example see how many nodes are connected to the system – which form the middle layer. The “node” itself, however, is accessed using NHI subsystem and has the “axes” which form the bottom layer. An “axis” in turn is accessed by the SAC subsystem.
If a simulation of NYCe4000 is being run, the SIM subsystem (see Figure 2.4) provides functionality to set up the nodes and axes like in Figure 2.5. This enables the users to run or test host software without having to actually attach any NYCe4000 hardware modules.

Meanwhile, for logging purposes, the DEH subsystem (see Figure 2.4) is used. The DEH API contains function calls that enable the writing of log information onto the shared memory. Thus, a customer can also implement NYCe4000’s logging functionality in their customized host software. By default, the DEH function calls are called internally by the function calls in NYCe4000’s API.
2.2.3. NYCeLogger and NYCeScope

To support NYCe4000 system, Bosch Rexroth has developed a total of nine tools in the NYCe4000’s software package (see Figure 2.4). These tools are used to configure and control the NYCe4000 system. Among those tools, two of them are used to extract the information that can be used to analyze and diagnose the NYCe4000 system and are relevant with the project described in this report, namely the NYCeLogger and NYCeScope. These tools are described in more details in the following section:
· NYCeLogger

[image: image8]
Figure 2.6, graphical user interface of NYCeLogger

[image: image9]
Figure 2.7, logging options of NYCeLogger
After the DEH subsystem writes the log information onto the shared memory, this information can be retrieved and viewed by running the NYCeLogger. This log information can then be saved into a text-based log file for analysis. Figure 2.6 shows the graphical user interface of the NYCeLogger, as well as an example of logging information of a simulated NYCe4000 system.

Before running the NYCeLogger, it is possible to define which tool should be logged and what kind of data to be logged, e.g. which subsystems should be logged and whether parameters information should also be logged (see Figure 2.7).

· NYCeScope

[image: image10]
Figure 2.8, NYCeScope display of trace values
[image: image11.png]I data_06.xt - Notepad
Fie Edt Fomat View Hep

¥ NYCESCOPE EXPORT FILE TIMECHANNELS VERSION 1

5

% NYCe4000 version 39.0.0.9

5%

% sanple tinelseconds] : 9.0005

% Number of samples 50000

% Number of channels i 12

% UTC time of sample 0 : 2011-12-07 09:00:44.193

5%

% channel : AXIS , Meas_Axis , SAC_VARLAXIS_POS , NUMERIC

5% Channel RIS | Meas_axis . SAC_VARAXIS_VEL , NOWERIC

5% Channel RXIS | €00, SAC_VAR_DRIVE_CURRENT , NUMERIC

5% Channel RIS | <00 | SAC_VARAXIS_POS , NUMERIC

5% Channel RIS | <00 | SAC_VARAXIS_VEL , NOWERIC

5% Channel RXIS | €00 | SAC_VARSETPOINT_POS , NUMERIC

5% Channel RIS | €00 | SAC_VARSETPOINT_VEL | NUMERIC

5% Channel RXIS | COL | SAC_VARDRIVE_CURRENT , NUMERIC

5% Channel RIS | COL | SACVARAXIS_POS , NUMERIC

5% Channel RIS | COL | SAC_VARAXIS_VEL , NOWERIC

5% Channel RIS | COL | SAC_VARSETPOINT_POS , NUMERIC

5% Channel tAXIS | COL | SAC_VARCSETPOINTVEL , NUMERIC

5%

% Trigger channel o

% Trigger time 0

5%

5% number of value tables o
855 -0.004 o 0.0135632325
856 00004 0 -0.00474713137
857 00004 Q 0.0135632325
858 00004 0 0.00203448487
859 00004 Q 0.016275879
860 00004 Q 0.0135632325
g6l 00004 Q 0,0784827873
867 00004 0 0.00474713137
863 00004 0 000474713137
864 00004 Q 0.0135632325
865 -0.004 0 0.00474713137

999.5
1000
1000

959.5

999, 5
1000
1000

959.5
1000
1000
1000

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

Figure 2.9, trace data exported from NYCeScope

To trace the values of variables on the node, drive, and axis, the NYCeScope can be used. The tool is designed to resemble a real oscilloscope, and can display up to 32 variables from a maximum of four different nodes. Like a real oscilloscope, it is important to configure the NYCeScope to correctly display the trace values after the variables are chosen.

The captured trace data can also be exported into text files for further analysis, e.g. in MatLab or to be analyzed with log files. In Figure 2.8, the display of trace values on the NYCeScope can be seen, and Figure 2.9 shows an example of the exported trace data file.

2.2.4. Regression Test Environment

During the development phase of the new version of the NYCe4000’s hardware and software within the Development Department of Bosch Rexroth, often tests are done to find bugs and errors. These tests are called regression tests. Usually, the regression tests are done automatically using a regression test environment, which is also developed by the Development Department of Bosch Rexroth.

To help with identifying errors and bugs, the regression test environment generates log files that record the behavior of the tested systems during the testing session. Like log files generated by the NYCeLogger, the size of these test log files can be quite large and cumbersome to analyze manually.
3. Assignment Description

3.1. Problem Definition
As was mentioned before, the use of log files to diagnose a NYCe4000 system is not done often in Bosch Rexroth because of the amount of work needed to manually link and analyze the log data produced by the NYCeLogger, the NYCeScope, and the regression test environment. This is especially true if the NYCe4000 application that is being diagnosed is quite large and complex. Therefore, to be able to utilize the valuable information stored in the log files, a tool needs to be developed to help analyze the log files and other related information of the NYCe4000 system.
3.2. Project Goal

The goal of this project is to create a user-friendly tool that is able to analyze and visualize the information contained in the log files, in order to reduce the amount of manual work that needs to be done for interpreting log files. This will help the internal engineers of Bosch Rexroth to diagnose the behavior of the NYCe4000 system in the production and test environments faster and easier.
By allowing easier and faster analysis of the log data, the internal engineers of Bosch Rexroth will be able to recognize the value of the information contained in the log data in diagnosing the NYCe4000 system. Thus, this project also serves to promote the potential of the log data analysis in helping with the NYCe4000 system diagnostic, as well as encouraging further development in the logging system and analysis of the NYCe4000 motion control system.
3.3. Requirements
3.1.1. Target Users
The log analyzer tool is meant to be used by the internal engineers of Bosch Rexroth. These engineers are divided into three subgroups:
· Application Engineers
These engineers offer support to customers for setting up a NYCe4000 application. When setting up a new NYCe4000 system, it is not unusual that customers encounter problems and report it to the Application Engineers. The log analyzer tool can help the engineers to pinpoint the problems that occur when the customers are setting up their own NYCe4000 application.

· Service Engineers
These engineers offer support to customers with an already up-and-running NYCe4000 application. Because the NYCe4000 system is already in a productive environment, it is generally more difficult to get data than when it is still being set up. Therefore, the log files can be a good source of information to pinpoint the problems in the productive NYCe4000 application.
· Test Engineers
These engineers run tests on newly developed versions of the NYCe4000 system’s hardware and software to find bugs and errors. The log files produced by these tests provide information on the system’s behaviors during test sessions. The log analyzer tool can help the Engineers to identify bugs and errors from the test log files.

For more details about the target users of the tool, please refer to Appendix C: User Requirements Document, Chapter 3.4 (page 4-5).

3.1.2. General Requirements

The log analyzer tool must be able to take three different types of data as its input, namely the NYCe log data, trace data, and test log data. The NYCe log data and trace data are mainly used by the Application and Service Engineers, while the test log data is mainly used by the Test Engineers.
The NYCe log data consists of a list of function calls executed by any NYCe4000 application. To be able to record the NYCe log data, a host software needs to use the NYCe4000 API and call the functions of the DEH (Diagnostics and Error Handling; see Subsection 2.2.2) subsystem. By default, all functions that are part of the NYCe4000 API call the DEH functions internally to record its own function entry, parameters, and function exit. Thus, it is optional for the customers to develop their own logging functionality in their host software.

Depending on how the DEH functions are called in the application, the log data can contain information about the entry point of a function call (function entry), its in- and out-parameters, and its exit point (function exit), as can be seen in Figure 3.1. The DEH subsystem can also record information of NYCe4000-related events as well as customized user messages into the log data to aid with the diagnosis.
[image: image12.png]322589:
322592

3744
3744
3744
3744

FUNC ENTRY: CmReadTrackstate|
PRI PAR: trackId=0

OUT PAR: prackstate=5

FUNC EXIT: CmReadTrackstate - RETVAL :

NYCE OK

Figure 3.1, a complete log of a CmReadTrackState function call in NYCe log data
The trace data contains the values of variables that were actually on the nodes or axis after the nodes in the NYCe4000 system received commands sent from the PC using the NYCe4000 function calls. Some example of values that are contained in the trace data are drive currents and axis positions (see Figure 2.9).
Meanwhile, at the time that this report was being written, the automated test environment was still under major improvement. Thus, there was still little information on how the log data would be generated and how the data would be formatted. However, it was explained that the test log data consists of function calls and values generated by the NYCe4000 system’s application during an automated test session, similar like the NYCe log.

Generally, the log analyzer tool needs to be able to analyze and visualize the NYCe log data, trace data, and test log data. The visualization of the data needs to be easily understandable so that it can assist the users in finding the information they need out of the log data; preferably if the users can switch from a broader view of the data to a more detailed one. Possible views of the log data are timeline, which displays the general overview of the log data over time, and tabular, which displays the detailed log data in the form of a table. A filtering system is important too, because most of the time only a little part of the log data is necessary to be viewed instead of the entire log. It is also desirable that the result of the logs’ analysis can be saved for later use and shared with other users.

The ideal log analyzer tool should also be able to anticipate changes made in the NYCe4000 and its logging system in the future. Moreover, it should be able, or ready, to provide the mentioned capabilities using log files generated by any version of NYCe4000 software tools and automated testing tools used in Bosch Rexroth.
In conclusion, the log analyzer tool should have – in general – the following features (see Figure 3.2):

· Different views of the log data

· A filtering system
· Compare different log data

· Save log analyzing session/project

· Open log analyzing session/project

· Translates the values of variables, parameters, and event IDs in the log data into meaningful names/representations

To read more about the general requirements for the log analyzer tool, please refer to Appendix C: User Requirements Document, Chapter 3 (page 2-6).
[image: image13.png]User

Compare Logs

Project

Project

Save LogAnalyzer

Gpen LogAnalyzer

LogAnalyzer

Filter Log Data

v

ew Log's
Statistics

2 View Logs Timeline

ew Setpoints’
Timeline

& Translate Variable,
Parameter, Event IDs

Figure 3.2, UML Use-case Diagram showing Log Analyzer’s general capabilities
4. Approach

After the assignment was given and understood, it was immediately decided that the iterative and incremental software development would be taken as the approach to fulfill the assignment.

[image: image14.jpg]Requirements Analysis & Design
Implementation
lanning

Deployment

A\

I
Initial

Planning
Evaluation

Figure 4.1, a typical iterative and incremental development model

The basic idea of an iterative and incremental development is to develop a software or system in small parts through repeated cycles (incremental), with some time set aside to revise and improve the developed parts of the software or system (iterative). This means that the cyclic processes as described in Figure 4.1 were to be repeated throughout the project.

This approach was chosen to ensure that the final version of the log analyzer tool would contain all the specified requirements, as well as to accommodate changes to the requirements that might happen during the project, all the while still keeping within the time constraint of the project. This way, it can be ensured that the tool will be accepted by the target users at the end of the project.
In an iterative and incremental development, the developers can take advantage of the knowledge that they have gathered from the previous iteration cycles. Thus, it is possible that the requirements gathering, designing, implementation, testing, and evaluation processes on the later iteration cycles have shorter execution time than in the earlier iteration cycles.

4.1. Initial Planning

During this process, the project plan was made and the project’s phases were scheduled. It was also decided that there would be a total of three iteration cycles in the project, as can be seen in Figure 4.2.
Like the typical iterative and incremental development model in Figure 4.1, the requirements gathering, designing, implementing, and testing are done repeatedly in each iteration cycle. Nevertheless, unlike the model, an initial research and investigation was scheduled more or less in parallel with the requirements gathering. The main purpose of this activity was to get familiar with the NYCe4000 motion control system, especially its logging system, before interviewing the target users for gathering requirements. More information about the scheduling of the project can be found on Appendix B: Project Plan, Chapter 4 (page 5-7).

[image: image15.emf]ID Task Name Start Finish

jun 2012 feb 2012 mrt 2012 apr 2012 mei 2012

5-2 27-5 6-5 29-4 10-6 8-4 15-4 1-4 17-6 20-5 24-6 26-2 13-5 12-2 22-4 11-3 3-6 19-2 18-3 25-3 4-3

1 9-2-2012 1-2-2012 Project Planning

2 1-3-2012 1-2-2012 Research and Investigation

3 23-3-2012 6-2-2012 Requirements Specification 1

4 23-3-2012 20-2-2012 Designing and Modeling 1

5 13-4-2012 26-3-2012 Coding 1

6 13-4-2012 26-3-2012 Testing 1 + End of Iteration 1

15 8-6-2012 1-3-2012 Reporting

7 17-4-2012 16-4-2012 Requirements Specification 2

8 17-4-2012 16-4-2012 Designing and Modeling 1

9 7-5-2012 18-4-2012 Coding 2

10 8-5-2012 18-4-2012 Testing 2 + End of Iteration 2

11 10-5-2012 9-5-2012 Requirements Specification 3

12 10-5-2012 9-5-2012 Designing and Modeling 3

13 31-5-2012 11-5-2012 Coding 3

14 4-6-2012 11-5-2012 Testing 3 + End of Iteration 3

Figure 4.2, the Gantt chart representation of the project’s schedule
Deliverables and non-deliverables of the project were also decided in this phase. However, the sub-deliverables that are to be delivered after each iteration cycle could only be decided after initial requirements have been gathered and specified.

For more information about the deliverables and non-deliverables of the project, please refer to Appendix B: Project Plan, Chapter 1.1.3 (page 3).
4.2. Requirements Gathering & Planning

After the initial planning, the requirements could then be gathered and specified. The process of gathering and specifying the requirements for the log analyzer tool can be seen in Figure 4.3. In the case of this project, the “developer” was the project member, and the “stakeholders” were the target users of the log analyzer tool – the Application Engineers, Service Engineers, and Test Engineers of Bosch Rexroth Eindhoven.
[image: image16.png]Developer

S

Discuss potental

-

Estimate efforis

Document.

f

Stakeholders

reguirements.

prioitize

Figure 4.3, workflow diagram for requirements gathering process

The requirements were gathered mainly from discussions during the interviews and brainstorming sessions with the target users. As can be seen on the project’s schedule in Figure 4.2, this process was done extensively at the beginning of the project. The reason for doing this was to acquire as many requirements as possible. The gathered requirements were then documented and prioritized by the users, while the efforts (time) to fulfill those requirements were estimated by the developer. Afterwards, a panel of users would review the documented requirements and decide whether or not to change the requirements and/or their priorities, e.g. when the total estimated effort does not fit within the project’s time constraint.
For more information about the gathered requirements and how they are prioritized, please refer to Appendix C: User Requirements Document, Chapter 4 (page 6-14).

After all requirements were prioritized and estimated, they could be used to plan the sub-deliverables for each iteration cycle. For example, most of the requirements with “Must” priority need to be present in the first version of the tool at the end of the first iteration cycle. More information about the sub-deliverables’ schedule can be seen on Appendix B: Project Plan (Appendix A: Iterations Schedule).
4.3. Analysis & Design

In Figure 4.2, it can be seen that the designing processes were executed in parallel with the requirements gathering.
As more requirements were discovered, early conceptual and user interface designs of the log analyzer tool were developed using the requirements that were already gathered. These designs were then built into prototypes (see Figure 4.4) and evaluated, sometimes together with the users. When the prototype did not fulfill the requirements sufficiently, adjustments were made on the prototype and also on the design if necessary. More about the designing process will be discussed in the next chapter of this report.

[image: image17.emf]Requirements

gathering

Research &

design

Build prototype

Adjust design and/

or prototype

Integrate to

product

Start

Stop Evaluate prototype

Figure 4.4, workflow diagram of analysis & design process

4.4. Implementation
The implementation of the tool was done after the design was final. However, as can be seen in Figure 4.4, while designing, prototypes were built to test the design. The successful prototypes were then integrated into the product. This way, when the time for requirements specification extended unexpectedly, e.g. on the first iteration cycle, the implementation phase could still finish on time because some of the coding work was already done in the prototype.
4.5. Deployment

At the end of the implementation phase, the code was deployed into the Synergy database, which is the version management system* used in Bosch Rexroth. The code that was deployed to the Synergy database had to be a working, integrated code, and not separate prototypes.

Because there are three iteration cycles, there are three versions of the log analyzer tool registered in the Synergy database. The purpose of having the deployment phase in each iteration cycle is to have three working versions of the tool, which function as independent products. With a working version of the product, it is easier to evaluate the progress of the project at the end of an iteration cycle. Having the deployment phase at the end of each iteration cycle also serves as a form of anticipation to the possibility that not all requirements might be met at the end of the project. In this case, the final product of the project can be decided from the last working version of the tool.
4.6. Testing

Testing was done to ensure that the deployed versions of the tool sufficiently met its requirements, and to reduce as many bugs as possible in the final product. To meet those goals, there were two types of testing that were carried out during the development of the log analyzer tool, namely the white box testing and black box testing.

[image: image18.png]Known Inputs

Known Outputs.

ol

Inspection

Known Inputs

WhiteBox

277

BlackBox

Known Outputs.

)

Figure 4.5, white box and black box testing model
White box testing is the type of software testing that is done by people who know how the software code works, e.g. the developer. White box testing is suitable for inspecting specific pathways in the software, e.g. in an if-and-else statement (see Figure 4.5). Thus, it makes for a specific testing process that can potentially discover bugs earlier in the development phase. However, because the tester knows exactly what kind of value to expect from the pathways, the test can be biased and not discover all of the bugs that might appear when the actual users are using the software.
Black box testing is the type of software testing that is done by people who do not know how the software code works. A black box test typically only verifies whether good inputs result in good outputs, and not when bad inputs are tested like in white box testing. However, black box testing can be a good way to test whether the software still works as expected when it is used outside the development environment, e.g. on a user’s machine.
Originally, it was planned that the log analyzer tool would undergo unit tests as part of its white box test (see Appendix B: Project Plan, Chapter 2.3 (page 7)). Unit testing is a testing process that is done on individual units of the software, specifically the classes and methods*. However, because there was a lack of experience in the automated unit testing, the process was largely replaced by prototyping (see Figure 4.4).
When a version of the log analyzer tool was deployed, functional test cases were written for the black box tester so they could conduct an acceptance test. Acceptance testing was done to evaluate whether the current version of the software had managed to capture all of the agreed requirements.
4.7. Evaluation

After a working version of the tool was deployed and tested, evaluation was done by a panel of users. Evaluation was done in the form of review meetings, where the users could express their opinion and feedbacks on the current version of the deployed tool. Prior to the meeting, the users were given a copy of the deployed tool to work with, and a demo of the deployed tool was also done at the beginning of the review meeting.
The feedback and improvement ideas from the review meeting were further discussed as potential new requirements, as the iteration cycle ended and new iteration cycle began. During the discussions of the new requirements, attention was especially given to the current implementation and project schedule, e.g. the time to write the Final Report. The priorities of the requirements are then given accordingly, and the changes in the requirements are included into the implementation schedule of the next iteration cycle(s).
For more information about the changes in the requirements throughout the iteration cycles, please refer to Appendix C: User Requirements Document, Appendix A: Reworks and Remaining Requirements.
5. Research and Design Considerations
5.1. Criteria

While considering the choices of the design, there are criteria that needed to be weighed in order to choose the best possible design candidate to be implemented in the log analyzer tool. These criteria will be mentioned while discussing the design candidates and consist of:
· Adaptability
The NYCe4000 system is continuously being developed, and thus, changes in the logging system are almost unavoidable. The design of the log analyzer tool needs to be adaptable enough to anticipate these changes.
· Simplicity
Simplicity in the design of the log analyzer tool is preferable for two reasons: 1) Ease of implementation, and 2) Ease of maintenance. Ease of implementation is included as criteria especially because of the limited time constraint of the project. A simple but effective GUI design will also lead to the ease of use.
· Usability
Usability factors, such as performance and discoverability, are used to weigh the suitability of a design candidate, because the development of the tool is emphasized on usability (see Subsection 3.2). The performance factor is related with the fact that the size of the log data to be analyzed depends on the size and complexity of the logged NYCe4000 system. If the log analyzer tool fails to analyze most log files within an acceptable time, the user might consider taking workarounds instead of using the tool. Meanwhile, the focus on discoverability is mainly due to the fact that most engineers in Bosch Rexroth do not analyze log data very often, especially the NYCe log data.
5.2. Design Candidates
Because the log analyzer tool will be used to analyze and link different types of data, namely the NYCe log data, trace data, and test log data, some principles of data warehousing were considered to be applied into the design of the tool, such as Extraction, Transformation, Loading (ETL), and Reporting processes.
In the data warehousing, data from various different sources and with different types of formats are copied into a storage called the data warehouse or information warehouse (see Figure 5.1). The stored data is then further analyzed and reported to the end-users. Similarly, in interpreting the NYCe4000’s log data, different types of log data are needed to better diagnose a system. Just like in a data warehouse, the NYCe log data, trace data, and test log data need to be extracted from the NYCe4000 system and transformed into a uniform format before it can be properly analyzed and reported to the users.

[image: image19.jpg]

Figure 5.1, the ETL process in a data warehouse
In the following subsections, the design and technique candidates for Extraction, Transformation, Loading, and Reporting processes of the log analyzer tool will be discussed.

5.2.1. Extraction
Extraction, as the name implied, is the process of extracting the relevant data from different data sources. During the extraction process, only the copy of the source data is extracted for analysis. There are two possible ways that can be used to extract the NYCe log data, trace data, and test log data from the NYCe4000 system, namely:
1. Direct extraction from shared memory using the NYCe4000 API.

When a DEH function is used in an application, it will write the log data onto a buffer in the shared memory. This data can be retrieved by calling the DehGetLoggingData function from the DEH subsystem, which retrieves a single log entry from the log buffer while the application is still running. Meanwhile, the values on the node can be traced by calling functions from the NYCE, SAC, NHI, and the SYS subsystems. The only known method for retrieving test data is by printing out the test log files from the automated test environment.
· Adaptability: When a new version of the NYCe4000 software tools and/or APIs contain significant changes in the logging process, e.g. the DehGetLoggingData becomes obsolete and is replaced by new function call, the code for extracting log data to be used in the log analyzer tool will need to be rewritten. Therefore, adaptability level is rather low.
· Simplicity: More code needs to be written to call the functions for retrieving the log data. Thus, the simplicity of the overall final product is decreased. Moreover, there is a possibility of being trapped in the “reinventing the wheel” practice, because the exact same thing has been implemented previously on the NYCe4000 software tools, e.g. the NYCeLogger and NYCeScope.
· Usability: Additional data extracting functionality and the possible “reinventing the wheel” practice brought by this method might negatively affect the performance of the log analyzer tool. Furthermore, it is generally more difficult to get log data from the customers’ NYCe4000 application, e.g. with the Application and Service engineers, since the tool needs to be present on the same computer that runs the customer’s host software to get the relevant log data. Thus, usability is rather low.
2. Using the NYCeLogger, the NYCeScope, and the regression test environment to generate the ASCII-based log files.

As was mentioned before on Subsection 2.2, the NYCe4000 already has its own software tools for extracting the log data and trace data, which are the NYCeLogger and the NYCeScope. The log data extracted by these tools can be saved or exported to ASCII-based text files, which then can be used as input for the log analyzer tool.
· Adaptability: In every released new versions of the NYCe4000 software tools and APIs, the accompanying NYCeLogger and NYCeScope are ensured to be compatible with the tools and APIs. The same applies to the regression test tools. Thus, the adaptability level of the log analyzer tool will be higher.
· Simplicity: Because the extraction process is performed outside of the log analyzer tool by the NYCeLogger, NYCeScope, and regression test environment, less code needs to be written. This makes the development phase shorter and the overall final product more simplified.
· Usability: For most of the target users, this method of log data extraction is the most familiar one. Therefore, implementation of this method will help simplify the learning curve and make the tool more discoverable to the target users. Thus, usability is quite high.
After weighing the three criteria, it was decided that the extraction process of the log analyzer tool would be done by generating ASCII text log files from the NYCeLogger, the NYCeScope, and the test environment.
5.2.2. Transformation
Transformation is the process of cleansing and translating the different types of source data into a uniform format so that it is ready to be analyzed and reported to the users.
The technique used for transforming the source data differs depending on the choice of the extraction method. If the NYCeLogger, the NYCeScope, and the regression test environment are used to extract the log data, then the text in the log files needs to be read and parsed* in order to get the log data. Otherwise, a different kind of parsing method still needs to be implemented to translate the retrieved log data, e.g. the NYCe log data recorded and retrieved by DehGetLoggingData is in the form of a string which contains the message number, timestamp, thread Id, function entry, function exit, and in- and/or out-parameters, which still need to be parsed.
Another point that needs to be addressed is implementing the parsing method for different log data. Even though the NYCe log data, trace data, and test log data are similarly stored in the form of a text file, the data contained in those files are still arranged differently. Therefore, different parsing analysis are needed to correctly transform the data from different types of log files. For this purpose, a couple of design candidates were considered for the log analyzer tool:
1. Parser plugins
Plugins are small software components that add specific functionalities to the software. In the case of the log analyzer tool, the plugins will be used to add the parsing functionality of different types of log data to the log analyzer tool; one plugin for parsing one type of log data. If a new type of log data needs to be analyzed by the log analyzer tool, a new plugin needs to be written to parse the log data of that type and transform it into a format that can be understood by the log analyzer tool.
· Adaptability: When a user wants to analyze a new type of log data, they can install the plugin for parsing that specific log data, without having to install a new version of the log analyzer tool. Naturally, the plugin needs to be written first in C# programming language. Thus, the adaptability level is around medium.
· Simplicity: The parsing code is separated into the plugins, and they can be added and removed if needed. However, because the code is distributed to different components, it might be more complicated to maintain rather than having all parsing code in one project. Thus, the simplicity level for parser plugin in the log analyzer tool is around medium.
· Usability: If the users want to analyze a certain type of log data, they only need to install the necessary parser plugin to their log analyzer tool. Similarly, if a user does not feel the need to analyze a type of log data, e.g. an Application and Service Engineer might not need to analyze a test log file, they can uninstall the parser plugin for that log data type. This feature might help in increasing the performance and overall usability of the tool, especially for the more advanced users.
2. Adjustable parser

An adjustable parser is a special type of parser which enables the users to configure its parsing logic from the (graphical) user interface. When a user wants to let the tool analyze a new type of log data, they can configure how the parser processes the new type of log data by themselves, e.g. what kind of text patterns should be recognized and how it should be translated. The purpose of developing an adjustable parser is to avoid having to implement any C# code when a new type of log data needs to be added to the log analyzer tool.
· Adaptability: Adaptability level is very high, because the users can use the same version of the log analyzer tool to analyze any type of log data and without having to install any additional software components.
· Simplicity: Implementing an adjustable parser is not a simple task, especially because the format of the NYCe log data, the trace data, and the test log data are significantly different. Thus, an advanced semantics* system needs to be developed for the log analyzer tool to properly parse the different log data. Since there are only a limited number of different log data types used in the NYCe4000 system, an adjustable parser might also add unnecessary complexity to the log analyzer tool that makes it not only more difficult to maintain but also to use.
· Usability: If an adjustable parser is implemented on the log analyzer tool, the users need to specify a new parsing logic every time a new type of log data needs to be analyzed, which might become rather complicated. Moreover, new users might end up spending more time learning how to configure the parser rather than actually doing the analysis of the log data. Thus, it can be concluded that the usability level of an adjustable parser for the log analyzer tool is quite low.
After weighing the three criteria, it was decided that the parser plugins would be used to implement the Transformation process of the log analyzer tool.
5.2.3. Loading

Loading is the process of storing the transformed data into a single repository, e.g. a data warehouse. This is done to make the extracted and transformed data available for analysis and reporting by different processes, e.g. online analytical process (OLAP) and data mining process. To store the transformed log data, the following candidates were considered:
1. Relational database server
A relational database server is a software product which main function is to store and retrieve data as requested by other software applications, either locally on the same computer or over the network or internet. As the name implies, it is designed based on the relational data model developed by Edgar Codd, and it supports query languages* such as SQL. Microsoft SQL Server is an example of a relational database server.
· Adaptability: When a relational database server is decided to be included as part of the design of the log analyzer tool, most probably the same software will be used for the entire life cycle of the log analyzer tool. Thus, the adaptability of the log analyzer tool will also be dependent on the adaptability of the chosen relational database server.
· Simplicity: Microsoft SQL Server Express, which is already a scaled down version of Microsoft SQL Server, can handle data until up to 10 GB. Meanwhile, one of the initial requirements for the log analyzer is to be able to analyze and view two different log data, each sized only 10 MB (see Appendix C: User Requirements Document, Chapter 4.1.1 (page 14)). Furthermore, including a relational database server might add unnecessary complexity into the design of the log analyzer tool because more code needs to be written to make connection with the database server. Thus, simplicity is quite low.
· Usability: Generally, writing and reading data from a database server, which is located on hard disk, is slower than writing and reading data to and from the local memory. Thus, performance might be a bit of an issue.
2. Local memory

Alternatively, the transformed log data can be stored in the local memory of the log analyzer tool. Rather than using regular arrays to represent the log data, the ADO.NET* library contains a class called DataTable, which can be used to represent the log data in the form of a table in the local memory.
· Adaptability: The storing and reading of the transformed log data depends entirely on how it was coded in the log analyzer tool. Thus, adaptability is quite high.
· Simplicity: Less code might need to be written, since no connection needs to be made to any external file or database server when storing the transformed log data.
· Usability: Accessing data on the main memory is generally much faster than accessing data on the hard disk. Thus, performance will be higher. However, the performance of the log analyzer tool can also slow down if the number and size of the analyzed log data grows to exhaust the local memory.
After weighing the three criteria, it was decided that the local memory was more suitable to store the transformed log data, in the form of DataTable objects*.
5.2.4. Reporting
After the log data is extracted, transformed, and loaded, it can be analyzed and presented to the users. The data can be presented in the form of data visualization, such as table, graph, and chart, which allows for user interaction, e.g. filtering data. The graph and chart displays are especially useful in providing the timeline view of the log data.
The .NET Windows Forms library contains a class called DataGridView, which provides an interactive table for displaying data, but no ready-to-use graphing and charting control. Because of the time constraint of the project, it is impractical to write a graphing and charting control from scratch. Therefore, it was decided to look for an already existing, non-commercial control for visualizing the log data in the log analyzer tool, such as:
1. Microsoft Chart Control
Chart Control is a library developed by Microsoft which automates the creation of interactive charts and graphs on ASP.NET pages or Windows Forms application. Officially, the .NET Framework* version 3.5 is required to use the control, but there are ways to “hack” the library in Visual Studio 2008 to make it also compatible on the .NET Framework version 2.0. Figure 5.2 shows some samples of charts and graphs that can be created using Microsoft Chart Control.

[image: image20.png]30 Stair-Stacked Pie

produc

.
e
| A

3D Funnel Chart with Point Gaps.

&

20 Pie Chart with Supplemental Pie Chart

20 Grouped pie Chart

e s 8 s B30

P

“Using Bolinger Bands and Volume Indicators

30 Spine Chart

Figure 5.2, Microsoft Chart Control graph and chart samples
· Adaptability: The control was licensed by Microsoft and the code cannot be further configured. However, the control itself offers quite broad and customizable selections of graph and chart drawing functionalities. Thus, adaptability is around medium.
· Simplicity: The control provides built-in function calls for drawing interactive graphs and charts. Thus, less coding work was needed to provide the data visualization. However, the many configuration possibilities might mean that more time needs to be invested to find the code for the suitable graphs to be used in the log analyzer tool. Also, the control can only be installed in Visual Studio 2008 or Visual Studio 2010 (already installed by default). This might cause problem with the future maintenance of the tool because most of the time Visual Studio 2005 is used in Bosch Rexroth.
· Usability: The graphs and charts produced by the control appear very polished and professional. However, there are some concerns regarding its performance on .NET Framework version 2.0, because the control was only officially tested on .NET Framework version 3.5 and 4.0. This concern was raised because one of the requirements of the log analyzer tool is to be compatible with .NET Framework version 2.0 (see Appendix C: User Requirements Document, Chapter 4.2.4 (page 14)).
2. ZedGraph

ZedGraph is an open source class library, Windows Forms control, and .NET web control for drawing 2D lines, bars, and pie graphs of arbitrary datasets. It is written in C# and is compatible with .NET Framework version 2.0. Figure 5.3 shows a sample of charts and graphs that can be created using ZedGraph.
[image: image21.png]Widget Production

(unitstour)

120

100

Wacky Widget Company
Production Report fdenti®

e T—— R — R

] oo

FretFred

Fean Range

600 800 1200

Time, Days
(Since Plant Construction Startup)

Figure 5.3, ZedGraph graph and chart samples
· Adaptability: Just like Microsoft Chart Control, the control is protected by a license and any modification to the code needs to be communicated to the ZedGraph forum. This requirement is seen as rather cumbersome because the project will possibly be maintained by different people throughout its life cycle. However, similarly like Microsoft Chart Control, ZedGraph also offers a lot of customization possibilities, except perhaps for 3D graphs.
· Simplicity: Because the control is quite customizable, there is generally less coding work that needs to be done. Additionally, unlike Microsoft Chart Control, ZedGraph was completely built in .NET Framework version 2.0 and does not require being used in Visual Studio 2008 or later. There is no need to “hack” the control and thus, simplicity is higher.
· Usability: The graphs and charts look less polished than Microsoft Chart Control. However, there is more assurance in its performance on .NET Framework version 2.0.
3. GraphLib
GraphLib is an open source class library and Windows Forms control for drawing graphs created by Zimmermann Stephan. It is written in C# and is compatible with .NET Framework version 2.0. GraphLib was initially designed to display the output of a multichannel ECG (Electro Cardiograph) device, and thus, the control provides an oscilloscope-like appearance to the graphs that it creates, as can be seen in Figure 5.4.
[image: image22.png]

Figure 5.4, GraphLib graph samples
· Adaptability: The license for the control allows the use and modification of the code. Thus, adaptability is quite high. However, the documentation of the code is not very complete.
· Simplicity: Only the code for drawing graphs is available. In one way, it is good because the code becomes shorter and more straightforward, but in the other way some modifications need to be done, e.g. to make it also possible to draw a horizontal bar chart for representing the NYCe log data (see Appendix C: User Requirements Document, Chapter 4.1.4 (page 8-9)).

· Usability: By default, GraphLib draws the graphs in an oscilloscope-like layout that looks similar to the display area of the NYCeScope. Because the engineers at Bosch Rexroth frequently use the NYCeScope, the use of this control to visualize the log data might make the log analyzer tool more discoverable and usable to the target users.
After weighing the three criteria, it was decided that the GraphLib control would be used to draw the graphical representation of the log data in the log analyzer tool.

5.3. Conclusion
After looking at the candidates and the criteria, it was decided that the log analyzer tool would be built as a host software separate from the NYCe4000 APIs and software architecture, as can be seen in Figure 5.5. As can be seen in Figure 5.5, the tool takes the NYCe log file, trace data file, and test log file as input and is able to read the NYCe log data, trace data, and test log data from these files to be analyzed and visualized to the users.

[image: image23.emf]NYCe4000 API's

Customer’s host software

NYCeSoftware

NYCeLogger

NYCe4000 system

Node 1 Node n

NYCeScope

Log Analyzer

Axis 1

Axis n

Axis 1

Axis n

«file»

NYCe log file

«file»

Trace data file

Host PC

Customer’s/Test

software

«file»

Test log file

Figure 5.5, the log analyzer tool and the NYCe4000 system

[image: image24.emf]NYCe log file

Trace data

file

Test log file

NyceLogAnalyzerPlugin

TraceLogAnalyzerPlugin

TestLogAnalyzerPlugin

Graphical User

Interface

User

LogAnalyzer

Local

memory

Figure 5.6, a simplified model of log data analyzing process in the log analyzer tool
Both Figure 5.5 and 5.6 show the simplified models of log data analyzing process in the log analyzer tool. Figure 5.5 shows the data extraction process (see Subsection 5.2.1) that is done by the NYCeLogger, the NYCeScope, and the test application, which export ASCII text log files in the form of NYCe log files, trace data files, and test log files containing log data from shared memory. After the extraction process in Figure 5.5 is completed, the process as described in Figure 5.6 occurs internally in the log analyzer tool.

In Figure 5.6, the transformation, loading, and reporting processes are described. First of all, the plugins parse and transform the log data contained in these files into a uniform data type (see Subsection 5.2.2), which are stored temporarily in the local memory (see Subsection 5.2.3). The users can then access and view this data from the graphical user interface (GUI), which visualizes the data in the form of tables and graphs using DataGridView and GraphLib controls (see Subsection 5.2.4).
5.4. Findings in NYCe4000 Logging System

During the initial research and investigation phase, there were some findings in the NYCe4000 logging system that also need to be taken into account when designing the log analyzer tool:
1. Timestamps are not logged in the same format.
(This is especially visible on the NYCe log file and trace data file generated by the NYCeLogger and the NYCeScope. In the trace data file, the timestamp of sample 0 is written in UTC and has an accuracy of 0.001 second. However, on the NYCe log file, the timestamps for all log entries are written using the running time of the logged application, which only have an accuracy of 1 second, even though the speed in which the log entries are written has the accuracy of 100 nanoseconds.
There has been talk about changing the format of the NYCe log’s timestamp on a future version of the NYCe4000 to follow the UTC format like the trace data. Meanwhile, this problem is solved by letting the parser plugin for the NYCe log translate the timestamps into “HH:mm:ss.fff” time format, and the aligning and scaling of the timeline is temporarily done with an accuracy of 1 second.
2. Log data skips some records, especially when the NYCeLogger logs data from all subsystems.
(Since the logged data is stored in a circular buffer, new data will overwrite the old data if the old data is not retrieved in time. Thus, it is quite possible for the NYCeLogger or the DehGetLoggingData function to retrieve incomplete log data, especially when a large amount of data is being logged, e.g. when log data from all subsystems are recorded.
There is no really valid way to get around this problem with the log analyzer tool, because the buffer size of the log is fixed. One way to prevent losing the log data is to increase the size of the log buffer or develop a dynamic log buffer, which size can increase depending on how much data is being logged. Meanwhile, a workaround to this problem is to limit the number of subsystems that need to be logged, e.g. setting the NYCeLogger to log only SAC subsystem function calls.
3. There is no firm relation between the functions and their parameters in the NYCe log.

(As was explained earlier in Subsection 3.1.2, the log data of a function call is recorded sequentially in the following order: function entry, in parameters, out parameters, and function exit. There is no ID or any additional information that indicates to which function call a parameter belongs to, except for the sequence of appearance in the log data. This makes analyzing the NYCe log more challenging, especially with the fact that some log data can get lost in the shared memory as mentioned earlier.
To solve this problem, it was decided to take into consideration the sequence of appearance of the lines in the NYCe log data during the transformation process of the log analyzer tool. This can be done by looking at the Message Number (see Figure 3.1). For example, if a log line has a Message Number 15, but the log line above has a Message Number 10, then it is unlikely that the two log lines belong to the same function call. This conclusion is drawn because the log lines with Message Number 11, 12, 13, and 14 are definitely missing, and there is a possibility that the log line with Message Number 15 belong to the same function call with the missing log line(s).
4. There is wrong calculation of data ID in the NYCe log.

(While investigating ways to translate variable, parameter, and event IDs in the NYCe log data, there was one parameter of a function call which is calculated wrong in the log data, e.g. the value of SacReadVariable function’s in-parameter, named varId, was calculated using regular integer instead of unsigned integer. Therefore, the value of SacReadVariable’s varId parameter cannot be found in the data ID map. The data ID map is a text file that contains the translation of the variables, parameters, and event ID values in the NYCe log data, and the values in the data ID map are all calculated in unsigned integer.
If this error cannot be fixed in the future releases of the NYCe4000 software, then the log analyzer tool should have a mechanism to recognize these faulty values as well as translating the correct ones. However, the decision to implement this mechanism on the log analyzer tool is not yet final at the writing of this report.
5. The provided data ID map does not contain internal event IDs.

(Sometimes, events that occur in the NYCe4000 application are caused internally, e.g. not fired by the host software but by the firmware (the software on the node; see Subsection 2.2.2). However, the IDs of these internal events are not listed on the data ID map currently used in this project. Thus, it is not yet possible to translate the internal event IDs when it appears on the NYCe log data.
A solution to this problem is to provide translation mapping for the internal event IDs, either as different kind of map or incorporated into the data ID map. However, since the internal events are rarely looked into when diagnosing the NYCe4000 application, it might not be a very urgent matter to include the translating of the internal event IDs into this project. Nevertheless, a solution should be implemented to handle the internal event ID data in the near future.
6. The data IDs in the NYCe log by themselves are not unique, but the translated names are.

(Around the same time that #4 was discovered, it was also found that the variable, parameter, and event IDs in the NYCe log data are actually not unique. However, the translated names for these IDs are unique. Thus, it might be useful if the log analyzer tool has a mechanism to let the users choose more than one possible translation of a data ID, if the users prompt for it. However, similarly like #4, this solution was not implemented in the final product of the project because there was some talk about making the data IDs unique in the future releases of the NYCe4000 software.
6. Design Implementation

6.1. Conceptual Design
From the design consideration as described in Chapter 5, especially from Figure 5.6, the conceptual design of the log analyzer tool was made. In making the conceptual design, the UML method and object-oriented design* approach were used to model the classes and incorporate the selected design candidates as discussed in Chapter 5 into the design of the log analyzer tool.

[image: image25.emf]+getLogs() : List<Logs>

+analyzeAndAddLog(in logName : string) : bool

+removeLog(in logName : string) : string

-addLogDocument(in logName : string) : bool

-removeLogDocument(in logName : string) : bool

-addLog(in logName : Log) : bool

-removeLog(in logName : Log) : bool

-analyzeLogs() : bool

LogAnalyzer

+Content() : object

-Name : string

Log

-Name : string

-Tokens : object

LogDocument

1 0..*

1

0..*

GUI

+analyze(in logDocument : LogDocument) : Log

«interface»

ILogAnalyzerPlugin

0..1

*

NYCeLogAnalyzerPlugin

+Content() : object

-FunctionCalls : object

NYCeLog

+Register(in ipi : ILogAnalyzerPlugin) : bool

«interface»

ILogAnalyzerPluginHost

-Has 1

-Has

0..*

1

1

*

-Creates

1

Figure 6.1, UML class diagram of the log analyzer tool on February 27th, 2012
Figure 6.1 shows one of the earliest conceptual designs of the log analyzer tool. After some research on the internet about the plugin architecture, it was discovered that a lot of articles recommend creating the interface to host the plugin (ILogAnalyzerPluginHost). The reason behind this is so that the plugins is able to manipulate the main application in order to add functionalities. Thus, the ILogAnalyzerPlugin was added into the design. Furthermore, this research also results in the creation of the plugin interface (ILogAnalyzerPlugin), which is considered necessary for the main application (LogAnalyzer) to be able to access the different parser plugins, e.g. calling the method to analyze/parse a log file.

When this design is adapted to the log analyzing process as described in Subsection 5.3 and Figure 5.6, the log analyzer tool processes the log files as follows: after the users define a log file to be analyzed, the GUI passes the log file path name to the LogAnalyzer to be analyzed and added. The LogAnalyzer then reads in the tokens, e.g. lines, contained in the log file and stores it in the LogDocument object. Afterwards, the LogAnalyzer loops through the installed plugins to see whether any of them can analyze the tokenized log data. If the log file is actually a NYCe log file, the result of the plugin’s analysis will be a NYCeLog, which inherits from the abstract Log class. This object is then returned to the LogAnalyzer and contained there, after which the users, through the GUI, can access the Log objects using the methods in the LogAnalyzer.
[image: image26.png]Gul
[PiugiNames

(3

1

Loghnalyzer

Togs - Armylst
Plugins : ArrayList
FileredLogs : ArayList
analyzeRndAdILogli ogFIeLocalon SiThg.m poginName™ sing) Boo | ¢
+addPlugin(in pluginLocation :sting) : sting

- getLogToview(in logarms - sting) ILog

getComparedLogs(in logName! - siing nlogame? :sting) - ArayLst

B 4
irtaiTace Creates Loy LogDataTablo
ILogAnalyzerPlugin -Name : string
e owaree
I T P = T
= el 2 rgetContent() : LogDataTable [+getDuration() : int

[1 1
TraceLogAnalyzerPlugin NyceLogAnalyzorPlugin
Name suing Narme - sifng

TestLogAnalyzerPlugin
Rame - sting

Figure 6.2, UML class diagram of the log analyzer tool on May 2nd, 2012
After the design as shown in Figure 6.1 was tested with the prototype, it was discussed with colleagues in Bosch Rexroth. The results of this discussion can be seen in Figure 6.2. The plugin classes TraceLogAnalyzerPlugin and TestLogAnalyzerPlugin, for parsing trace data files and test log files, were also added into the design.

Ronald Hiemstra, a software engineer from the Development Department, suggested that the plugins can read the log files directly instead of being passed with the LogDocument by the LogAnalyzer. This way, the analyzing process of the log becomes simpler and there is less data traffic between the LogAnalyzer and the plugins, which would potentially improve the performance. Furthermore, Ronald also suggested that a specific object is used to store the analyzed log data (Log’s “Content”), instead of storing the analyzed data in normal arrays. The reason behind this is to get specific data from the analyzed log more easily, e.g. timestamp and duration. Therefore, the LogDataTable class was added to the design.
This design was also discussed with Hugo van Osch, a software engineering student who was also doing his graduation project at Bosch Rexroth. He recommended to apply the KISS principle* into the design and suggested to minimize the inheritance in the design while still in the early stage of development, in order to avoid unnecessary complexity. Thus, the NYCeLog object was removed and the Log object was not made abstract anymore. Additionally, the ILogAnalyzerPluginHost was also removed, because the plugins were only passing data to and from the LogAnalyzer. So, there was no need to give the plugins the access to directly manipulating the main application, and therefore, no need for a plugin host interface.

[image: image27.emf]+analyzeAndAddLog(in logFileLocation : string) : bool

+getLog(in logName : string) : DataTable

+getLogFileFilter() : string

+getGeneralStatistics(in logName : string) : string

+getDetailedStatisticsKey() : ArrayList

+getDetailedStatistics(in logName : string, in key : string) : string

+getChartTimelineDataSources(in logName : string, in backWorker : object) : ArrayList

+getGraphTimelineDataSources(in logName : string, in backWorker : object) : ArrayList

+getFilteredLogTimeline(in logName : string, in timestamp : string, in dataName : string) : DataTable

-Logs : ArrayList

-Plugins : ArrayList

-OkColor : ChartColorRating

-ErrColor : ChartColorRating

-WrnColor : ChartColorRating

LogAnalyzer

GUI

+getName() : string

+analyze(in logFile : string) : Log

+getCompatibleFileFilter() : string

+getChartDataNamesColumnName() : string

+getChartDataDisplayValuesColumnName() : string

«interface»

ILogAnalyzerPlugin

-Name : string

-CompatibleLogFile : string

NyceLogAnalyzerPlugin

1

1

1

*

-Creates

1 *

-Name : string

-Content : DataTable

-PluginName : string

-StatisticsInfo : ArrayList

-TimelineConfiguration : TimelineType

Log

-Columns : ArrayList

-Rows : ArrayList

Bovenste pakket::DataTable

1

1

-Name : string

-CompatibleLogFile : string

TraceLogAnalyzerPlugin

1

*

LogAnalyzerProject

-Name : string

-Value : ArrayList

StatisticsInfo

+CHART

+GRAPH

«opsomming»

TimelineType

-Creates 1

1

1

1

1

*

+Color : int

+Rate : int

«struct»

ChartColorRating

1

*

Figure 6.3, UML class diagram of the log analyzer tool on April 30th, 2012
After some more research, it was revealed that the ADO.NET library has a class called DataTable that can represent a data in the form of table with columns and rows. Instead of creating the LogDataTable class from scratch, it seemed more practical to use the existing DataTable object. Thus, the LogDataTable was removed from the design and replaced with DataTable.
As more requirements were gathered and specified in the first iteration cycle, the requirement to save the log analyzing project came up. To equip the log analyzer tool for fulfilling this requirement, the LogAnalyzerProject class was added to the design. This LogAnalyzerProject class would be used to contain the important information of the current log analyzing session and store it into a file, so that the session can be resumed on later time.
During the requirements gathering, it was also revealed that the regression test environment was still under major reconstruction. When it is released, the test environment will generate a different kind of log files. The release date for the new regression test environment was predicted to be after the end of the log analyzer tool project, and therefore, it was decided to postpone the implementation of the requirements for analyzing the test log files with the log analyzer tool. For that reason, the TestLogAnalyzerPlugin will not be implemented in this project, and its class is removed from the design of the log analyzer tool.
The result of the changes related with the LogDataTable, the LogAnalyzerProject, and the TestLogAnalyzerPlugin can be seen in Figure 6.3. The rest of the classes, e.g. the ChartColorRating, TimelineType, and StatisticsInfo, were added later in the second iteration cycle to help represent the log data on the GUI.

[image: image28.emf]+analyzeAndAddLog(in logFileLocation : string) : bool

+getLog(in logName : string) : Log

+getLogFileFilter() : string

+getGeneralStatistics(in logName : string) : string

+getDetailedStatisticsKey() : ArrayList

+getDetailedStatistics(in logName : string, in key : string) : string

+getFilteredLogTimeline(in logName : string, in timestamp : string, in dataName : string) : DataTable

+saveLogAnalyzerProject(in logAnalyzerViews : ArrayList, in projectFileName : string)

+loadLogAnalyzerProject(in projectFileName : string) : ArrayList

+removeLog(in logName : string)

+getProjectLogFileName() : string

+getLogNames() : ArrayList

+getTranslatedLogContent(in logName : string) : DataTable

-Logs : ArrayList

-Plugins : ArrayList

LogAnalyzer

GUI

+getName() : string

+analyze(in logFile : string) : Log

+getCompatibleFileFilter() : string

+getChartDataNamesColumnName() : string

+getChartDataDisplayValuesColumnName() : string

+getColumnTranslators(in requestedLog : Log) : ArrayList

«interface»

ILogAnalyzerPlugin

-Name : string

-CompatibleLogFile : string

TraceLogAnalyzerPlugin

1

1

1

*

-Creates

1 *

+Name : string

+Content : DataTable

+PluginName : string

+GeneralStatisticsInfo : ArrayList

+DetailedStatisticsInfo : ArrayList

+TimelineDisplay : TimelineType

Log

-Name : string

-CompatibleLogFile : string

NyceLogAnalyzerPlugin

1

*

+Version : string

+AddedLogs : ArrayList

LogAnalyzerProject

-Name : string

-Value : ArrayList

StatisticsInfo

+CHART

+GRAPH

«opsomming»

TimelineType

-Creates

1

1

1

1

1

*

+Color : int

+Rate : int

«struct»

ChartColorRating

1

*

+Name : string

+SelectedLogName : string

+FilterExpression : string

LogAnalyzerView

1

*

-Creates

1

*

-Columns : ArrayList

-Rows : ArrayList

DataTable

1

1

Figure 6.4, UML class diagram of the log analyzer tool on May 29th, 2012
Figure 6.4 shows the final design concept of the log analyzer tool. Not many changes were made; only the addition of the LogAnalyzerView class to contain GUI-specific settings information to be saved in the project file, and the ChartColorRating was moved to the GUI side so that the LogAnalyzer would be more independent of the GUI. While implementing the saving and loading of the project file, it was discovered that containing GUI-specific settings in the LogAnalyzerView makes it easier to pass the settings information to and from the GUI, as well as making the serialized project file more human-readable.
The following section briefly describes some of the most important classes of the tool, e.g. the LogAnalyzer, the ILogAnalyzerPlugin, the Log, and the LogAnalyzerProject. For more information about the other classes that are present in Figure 6.4, please refer to Appendix D: Design Document, Chapter 3 (page 3-6).
6.1.1. LogAnalyzer

LogAnalyzer class is the main container class which stores and provides access to the loaded plugin objects and also the analyzed logs. As the main container class, the LogAnalyzer class provides generic methods to manipulate other non-GUI-related objects, such as adding and analyzing (and parsing) log, removing analyzed log, saving log analyzer project, loading log analyzer project, and translating data IDs in analyzed logs.
Figure 6.5 and 6.6 show the interactions among the GUI, the LogAnalyzer, and plugins in adding and analyzing a NYCe log file. It can be seen that the LogAnalyzer class bridges the communication between the GUI and the other classes, e.g. the plugin and Log classes.

For more information about the methods in the LogAnalyzer class, please refer to Appendix D: Design Document, Chapter 3.2.1 (page 4).

[image: image29.emf]Bovenste pakket::User

MainForm LogFileForm

openLogFile()

showLogFileForm()

Graphic representation

open("D:\state log.log")

LogAnalyzer

analyzeAndAddLog("D:\state log.log", "NyceLogAnalyzerPlugin")

true

"D:\state log.log"

addLogFileName("D:\state log.log")

Graphic representation

getFilterProperties("D:\state log.log")

list of filter properties

refreshFilterValues()

Figure 6.5, UML sequence diagram of adding log scenario

[image: image30.emf]LogAnalyzer LogFileForm

analyzeAndAddLog("D:\state log.log", "NyceLogAnalyzerPlugin")

NyceLogAnalyzerPlugin

analyze("D:\state log.log")

adding analyzedLog to list

true

NyceLogAnalyzerPlugin

analyzedLog

DataTable()

resultLogTable

addColumns("Timestamp", "Name", "Subsystem", "ThreadId", "ReturnValue", "InParameters", "OutParameters")

addRows(...)

analyzedLog

Log()

setName("D:\state log.log")

setContent(resultLogTable)

setPluginName("NyceLogAnalyzerPlugin")

setStatisticsInfo(statisticsInfoList)

setTimelineType(Chart)

setYValueColumns("ThreadID")

Figure 6.6, UML sequence diagram of log data analysis in adding log scenario

6.1.2. ILogAnalyzerPlugin

ILogAnalyzerPlugin is the interface for the parser plugins, which allows the LogAnalyzer class to recognize and call the methods from the parser plugins.

When making a new parser plugin, the new plugin class needs to inherit from the ILogAnalyzerPlugin interface (see Figure 6.1) and implement its methods. After the ILogAnalyzerPlugin’s methods are successfully implemented in a new plugin class, the class can be compiled into a .dll file and copied to the designated folder of the plugins of the log analyzer tool. The log analyzer tool will then be able to recognize the new .dll plugin and load it automatically every time the tool starts running, enabling the new parsing functionality.

For more information about the methods that can be inherited from the ILogAnalyzerPlugin class, please refer to Appendix D: Design Document, Chapter 3.2.2 (page 5).
6.1.3. Log

Log is the class that represents the analyzed log data that is ready for reporting. Besides the parsed log data in the form of a DataTable (stored as Content attribute*), the Log class also contains other information about a log, e.g. name of the log file, name of the plugin that analyzed the log, the type of timeline to draw the parsed log data, and the statistics information of the log data. More information about the Log class, as well as its attributes and methods, can be found in Appendix D: Design Document, Chapter 3.2.5 (page 6).
6.1.4. LogAnalyzerProject

LogAnalyzerProject class is important for saving the log analyzing project/session. When saving a LogAnalyzer project, the tool creates a LogAnalyzerProject object filled with all information of the current LogAnalyzer session and serializes the object into an XML file. When loading a LogAnalyzer project file, the tool deserializes the data from the XML project file into a LogAnalyzerProject object and uses the information contained in it to rebuild the saved LogAnalyzer session. The LogAnalyzerProject class contains information about the added and analyzed log data, as well as the settings for each view of the saved LogAnalyzer session. Figure 6.4 shows the sequence of methods and classes that are involved when saving a project file.

[image: image31.emf]Bovenste pakket::User

save project

MainForm saveProjectDialog

ShowDialog()

graphical representation

selects folder "C:\LogAnalyzerProject"

"C:\LogAnalyzerProject"

Hide()

logAnalyzerViewsList

LogAnalyzer

saveLogAnalyzerProject("C:\LogAnalyzerProject", logAnalyzerViewsList)

savedLogAnalyzerProject

LogAnalyzerProject()

LogAnalyzerViews = logAnalyzerViewsList

copyOfAnalyzedLogs

AddedLogs = copyOfAnalyzedLogs

copy log files to "C:\LogAnalyzerProject\LogFiles"

Serialize(actualProjectFileName, savedLogAnalyzerProject)

actualProjectFileName

true

notification

Figure 6.7, UML sequence diagram of saving project file scenario

In Figure 6.7, it can be seen that after the users prompt to save a project, the GUI made a list of the LogAnalyzerView objects which contain information about the current settings in each view. These LogAnalyzerView objects are then passed to the LogAnalyzer, which in turn creates a new LogAnalyzerProject object and serializes it into an XML file, as well as copying the actual log files that were added in this session to the project folder. At the end, the GUI will notify the users whether the process of copying the analyzed log files and serializing the project file is successful or not.
At the beginning, instead of copying the actual log files to the project folder, serializing the analyzed Log objects into the XML project file was attempted. However, the resulting XML project file became very big, e.g. while the actual log file has the size of 5 MB, if the Log object that represents that log file is serialized, the resulting XML file grows to be 20 MB. This situation happens because the .NET’s XML serializer class tries to define all the information relating to the DataTable object that contains the Log’s actual log data, e.g. the row number, the data type, etc.

Besides impractical, serializing the Log objects can also be very slow, especially if the LogAnalyzer contains many Log objects with large-sized content, e.g. 50000 rows. In contrast, copying text files such as the log files are much faster because they only contain lines of text. Thus, it was decided to save the log analyzing session by copying the actual analyzed log files into the same folder with the XML project file.
6.2. User Interface

The user interface is designed as a Windows Form application. From the gathered requirements, it was decided that the tool would have a file menu for selecting the input and output data, e.g. the log file and project file, and five tabs which represents different types of reporting/visualization of the selected log data (see Figure 6.9).
For more information about the requirements for the user interface of the log analyzer tool, please refer to Appendix C: User Requirements Document, Chapter 4.1.2 (page 6-7) and Chapter 4.2.6 (page 14). The details on the operational environment of the log analyzer tool can also be seen in Appendix C: User Requirements Document, Chapter 3.5 (page 5).
[image: image32.png]o
‘\mmmm Loge | Log Ovenview

Save project

Open project

Detaled Statistos

Figure 6.10, screenshot of a prototype of the log analyzer tool GUI with opened File menu
7. Brief Overview of the Log Analyzer Tool
The end product of the project is a software tool called LogAnalyzer, currently in its third version. It is written in C# and runs on .NET Framework version 2.0 or later. Its main functionalities are to analyze and visualize the log data from NYCe log files, trace data files, and test log files of the NYCe4000 motion control system. The different log data can be reported in different types of views, which are accessible through tabs (see Figure 7.1), namely:

· Statistics View

· Log Viewer

· Compare Logs View

· Timelines View
· Setpoints View
[image: image33.png]Addlog B ogs [Tmeines [Sapomts

Removelogfile » fiog sac_scope 13022012 evertlc +
Save project

Open project

|Duration : 4000ms
[No. of warmings retumed : 0
INo. o erors retumed : 0
INo. o entries - 37.

INo. of functon call : 37
INo. o threads :2

INo. of subsystems used :2.

Figure 7.1, a screenshot of the GUI of LogAnalyzer version 3

7.1. Functionalities

As was mentioned earlier, the LogAnalyzer can receive the NYCe log files, trace data files, and test log files of the NYCe4000 motion control system as its input and visualize the log data contained in these files into five different views.

The File menu, as can be seen in Figure 7.1, contains menus to add log file, remove log file, save project, and load project. In each tab, the users can select which added log file to view using the combo boxes that are present on top of each tab view.

The Statistics view, also shown in Figure 7.1, displays the statistics information of an added log data. The statistics information is divided into two sections: the General Statistics give the overall statistics information of the log, e.g. the start logging time, the end logging time, and the number of errors returned in the whole NYCe log, while the Detailed Statistics give a more specific statistics information of the log, e.g. the number of errors returned by a certain thread in a NYCe log.

The Log Viewer view provides the tabular view of an added log data. In this view, the users can filter and sort the log data, as well as translating its values (see Figure 7.2). The filtering functionality is designed to be similar like Excel’s column filtering, and has the options of auto-filter and custom-filter.
As was mentioned earlier in Subsection 5.4, some unsigned integers value in the NYCe log data can be translated into a more descriptive name using the data ID map, and some of the values can have multiple translation names. However, in the current version of the LogAnalyzer, it is not yet possible to choose the alternative translation for the NYCe log’s unsigned integer values.
[image: image34.png]LogAnalyzer =
File
Staisics | Log Viewer | Compare Logs | Timelnes [Setpains |

X\IPUttestlog s state session v Translate values Ertries: 5000 of 5000

Timestamp. [¢] ServoDC_SAC_VAR_STATE é

093303384
093303384
093303385
093303385
093203385
093203385
093203387
093203387
093303388
093303388
093203389
093203389
093203390
093203390
093303391
093303391

[image: image35.png]Staisics | Log Viewer | Compare Logs | Timelnes [Setpains |

X\IPUttestlog fes'state session v [Show original vaues Etres: 5000 of 5000

Timestarp___[<]_ServoDC_SAC_VAR_STATE o
0O

033303384 “SAC_FREE"

093303384 “SAC_FREE"

093303385 “SAC_FREE"

093303385 “SAC_FREE"

033303386 “SAC_FREE"

033303386 “SAC_FREE"

033303387 “SAC_FREE"

033303387 “SAC_FREE"

033303388 “SAC_FREE"

033303388 “SAC_FREE"

033303389 “SAC_FREE"

033303389 “SAC_FREE"

093303390 “SAC_FREE"

093303390 “SAC_FREE"

093303391 “SAC_FREE"

093303391 “SAC_FREE"

Figure 7.2, Log Viewer showing trace data with original values (top) and translated values (bottom)
The Compare Logs view lets the users view two added log data in tabular forms next to each other and accommodates them in finding the differences between the two log data (see Figure 7.3). The users can also filter the log data just like in the Log Viewer view. The LogAnalyzer also provides functionality to align the view of the compared logs, so they can be scrolled together at the same time.

At the current version of the LogAnalyzer, the Compare Logs view only supports highlighting the differences on the same type of log data, e.g. the NYCe log data with the NYCe log data.

[image: image36.png]LogAnalyzer

File

‘Statisics | Log Viewer | Compare Logs | Timelnes | Setpoints |

Timestamp. [¢] Duration [¢] Name [¢] Subs ~

Timestamp

[] Duration

[x] Name [g] Subs *

OsalliutexCiaim

OsalltexRel.

Figure 7.3, a screenshot of the compared logs, with differences highlighted
[image: image37.png]o loghnalyzer _— e

File

Statstics | Log Viewer | Compare Logs | Timelines [Setpoints

XAIPUtestlog fles\data_065¢ (] Algn timelines

> u | rosten KHMIEN 7ot 5o KRN o voes GRS Teaane o0 SAC VASETTONT VEL

200 SAC VAR SETPONT POS

1090102121

030059621

Toresamy Durmion o -
T =
w o osa
w osa
w o Nesch
w osa
Threadid 3658 : : : : : : : : w Osath
w |0 osae |
IR s s s s S R S | : . ;o Ol -

003523000 003528000 003533000 003538000 003543000 003548000 003553000 003558000 003603000 00360

Figure 7.4, a screenshot of the Timeline view showing the trace data (top) and NYCe log data (bottom)
In Timelines view, as can be seen in Figure 7.4, the users can see the overview of one or two log data in the form of graph or chart. The table next to the graph shows a specific part of the log data that is selected by the users from the graph. Furthermore, the users can change the display scale of the timelines and, when there are two timelines displayed, the users can align the view of the timelines and scroll them together at the same time.

The Setpoints view was planned to display the calculated setpoints information of an axis, e.g. position, velocity, and acceleration, from the function calls information that are logged in the NYCe log data, e.g. from the parameters of the SacPointToPoint function calls. Because the Setpoints view reflect the values that are expected to be generated on the node after certain commands are executed, it can be linked and compared with the actual trace data. Thus, the connection between the Host PC and the node(s) can be examined better. However, when this report was still being written, the implementation of the Setpoints view had not been completed yet.
For more information about the implemented LogAnalyzer functionalities and their acceptance test results, please refer to Appendix E: Acceptance Test Reports.
7.1.1. Plugins folder

The “Plugins” folder is the designated folder where parser plugins for the LogAnalyzer are located. Installation of a new parser plugin can be done by copying the .dll plugin file and pasting it to this folder, and the LogAnalyzer will have the new parsing functionality automatically the next time it is started up. All plugins must contain “LogAnalyzerPlugin” as their name, otherwise the LogAnalyzer will not able to recognize and load the plugin.

Some plugins might also need initialization file(s), e.g. to provide the LogAnalyzer with the data ID translation functionality for the NYCe log data (see Appendix D: Design Document, Chapter 4.3). These initialization files are located in the “PluginInitFile” subfolder inside the “Plugins” folder.
At the time this report was being written, there are parser plugins for parsing the NYCe log files and trace data files, but no parser plugin for the test log files because the regression test environment is still under major improvement. For more information regarding the creation of a LogAnalyzer plugin, please refer to Appendix F: Manual for Creating a LogAnalyzer Plugin.
7.1.2. LogAnalyzer project

As was mentioned in Subsection 6.1.4, the LogAnalyzer saves its current session in a project folder. A typical LogAnalyzer project folder consists of an XML file, which contains the saved settings of the LogAnalyzer’s views and the information about the added logs, as well as subfolder “LogFiles”, which contains the analyzed log files from the previous sessions.

After the users choose to save the project, the LogAnalyzer will allow the users to specify the location (and the name) of the LogAnalyzer project folder. After the location of the project folder is specified, the XML project file will be created and the analyzed log files will be copied to the specified folder. When the user wants to load the saved LogAnalyzer project, they only need to specify the location of the XML project file, and the LogAnalyzer will be able to load the saved settings and reanalyze the saved log files.
8. Conclusion and Recommendations
8.1. Conclusion
The log data is a valuable source of information for diagnosing the NYCe4000 motion control system. If the log data is complete, analyzing the log data can be an effective way to pinpoint problems within the customer’s NYCe4000 application, because all of the information about the NYCe4000 system’s recent activities can be traced back in the log data. The goal of this project is to design and build a software tool to help automate the works related with interpreting and analyzing the NYCe4000 log data, so that the log data can be used for diagnosing and pinpointing problems within a NYCe4000 system application.
In fulfilling this project, the iterative and incremental software development method was chosen as the approach, in which the project was divided into three iteration cycles and the users can review each version of the product at the end of each iteration cycle. Therefore, the changes in the requirements can be captured early in the development and the end product is ensured to fulfill the specified requirements.
The reviews done at the end of the iteration cycles not only results in feedback and improvement ideas on the LogAnalyzer, but also have a positive side effect in raising the interest within Bosch Rexroth regarding the potential of the LogAnalyzer tool and the log analysis. Furthermore, the project also managed to gather some improvement ideas for the logging system of the NYCe4000, and these ideas are also communicated during those review meetings.
As the result, three versions of the LogAnalyzer tool were created. The last version of the LogAnalyzer is able to receive NYCe log files generated by the NYCeLogger and trace data files exported from the NYCeScope as input, and then analyze and visualize the log data contained in those files in the form of tables and graphs. At the end of the project, parser plugins for the NYCe log files and trace data files are available to be used by the LogAnalyzer, but there is no plugin yet for parsing test log files. It is also still not yet possible to view the setpoints timeline, or choose the alternative translations of the NYCe log data values in the LogAnalyzer.
Compared to processing the log data manually, the LogAnalyzer is able to give its users a quick overview of the entire log file(s) and allow them to easily filter out unnecessary information from the displayed log data. Thus, the goal of reducing the manual work in analyzing the log data generated by the NYCe4000 motion control system has been more or less achieved. However, because of the time limitations of this project, the LogAnalyzer has not been tested yet to investigate an actual problem in the NYCe4000 application.
Therefore, depending on the feedback that might arise when the users begin to use the LogAnalyzer for diagnosing a NYCe4000 application, additional and/or changes in the existing requirements might arise. This is especially true if the internal engineers at Bosch Rexroth wish to use a more intelligent log analyzer tool in the near future that is not only able to summarize the retrieved log data, but also draw knowledge and relevant conclusions automatically from it.
8.2. Recommendations

From the conclusion, the following recommendations are made as the possible improvements for the LogAnalyzer:
1. Create parser plugins for other log data.

After the new version of the regression test environment is released, a parser plugin needs to be made for the test log files so that the Test Engineers can also use the LogAnalyzer to analyze their own log data. Furthermore, it might be useful to also create parser plugins for other types of log data generated from the NYCe4000 motion control system, e.g. the CmServer log data and the customers’ CSV-formatted trace data.
2. Provide functionality that allows the users to choose alternative translations of the NYCe log values.

If the values of variable, parameter, and event IDs in the NYCe log cannot be made unique, it might be useful to allow the users to choose alternative translations of the NYCe log values in the LogAnalyzer.
3. Include translation for the internal event IDs.

In the near future, a solution to translate the internal event IDs that are recorded in the NYCe log data needs to be implemented in the LogAnalyzer. This can be done by including the translation map of the internal event IDs into the data ID map currently used by the LogAnalyzer, or creating a new translation map specifically for translating internal event IDs.
4. Proper alignment of trace data timeline with setpoints timeline.

The setpoints data contains the expected values on the node after some commands are sent to the node from the Host PC. Thus, it can be very useful to link it with the trace data, which records the actual real time values on the nodes. To get a good view of these, adding the functionality to properly align and compare the values in the trace data timeline and the setpoints timeline is needed.
5. Build a knowledge base to store conclusions from the previously analyzed logs.

A knowledge base is a special kind of database that manages knowledge. After the LogAnalyzer has grown more mature, a knowledge base can be built to add more intelligence to the LogAnalyzer. The knowledge base can be filled manually and/or automatically with knowledge gathered from the log analyzing process, e.g. from the LogAnalyzer. As the knowledge base fills up, the LogAnalyzer can access it and use the stored knowledge to draw conclusions of the added log data automatically, further automating the log data analysis process.
More recommendations for the improvements of the LogAnalyzer can also be found in the deployed code, mostly in the comments starting with “TODO:” phrase.

Furthermore, as was mentioned in the Subsection 5.4, there are some limitations found in the NYCe4000 logging system that need to be taken into account while designing the log analyzer tool. Some of these limitations are managed by the current design of the LogAnalyzer. However, in order to get more accurate results of the log analysis, some improvements need to be made in the logging system of the NYCe4000, namely:
1. More accurate timestamps in the NYCe log.
The NYCe log is written using the accuracy of 100 nanoseconds. However, all the sub-second accuracy is ignored when the log data is being written on the shared memory. This makes it difficult to know the exact time of a certain log entry – especially in the timeline view – because a lot of data are being logged within 1 second. Therefore, in order to have a more accurate view of the log data, the NYCe log timestamps need to be more accurate, e.g. with accuracy of 0.001 second, and preferably written in the UTC format.
2. Ensure that the calculations of data IDs in the NYCe log are all correct.
For the LogAnalyzer to be able to correctly translate the variables, parameters, and event ID values in the NYCe log, it is important that the logged values match with the ones provided in the data ID map. Thus, errors in value calculation like the one found with SacReadVariable’s varId need to be fixed, e.g. making sure that all variable, parameter, and event ID values are calculated in unsigned integer before they are logged.

3. More robust logging system.
Since the NYCe log data is written using a circular buffer, it is possible for a log file to miss lines of log data because they are removed from the buffer before the NYCeLogger can retrieve them. To prevent accidentally losing log data, the solution is to increase the buffer size for the log data or implement a dynamic log buffer, which size increases and decreases depending on how much data is being logged. The latter is especially preferred if the performance of the NYCe4000 application is highly prioritized and should not be hindered by the logging activities.
4. Establish connection between the parameters and the function calls data in the NYCe log.

Having an ID or any other types of pointer that can be used for referencing a logged parameter’s data to its owning function call in the NYCe log data can be very useful. This way, the assigning of the parameters data with the function calls data during the processing of the log data in the LogAnalyzer can be done more accurately.

Author:

Irene Septyo Rini Panuju

Version 1.6

08.06.2012

�

Bosch Rexroth AG

Eindhoven, the Netherlands

Page | 54

[image: image40.png]Logging options

Process:

niksim eve

Subsystem:

5C
Subsystem logging lags
¥ Log functon enty
¥ Log functon exit
I~ Ol when ot NYCE_DK
¥ Log pimay parameters
¥ Log secondary parameters
™ Log output parameters

v Lag ise essaged

Gballogging lags
I” Log events
o

¥ Log AutoScrol

Selectall

Desslect all

[image: image41.png]Py

0

2 22

_1399201641.vsd
�

�

�

�

LogFileForm

LogAnalyzer

analyzeAndAddLog("D:\state log.log", "NyceLogAnalyzerPlugin")

NyceLogAnalyzerPlugin�

addColumns("Timestamp", "Name", "Subsystem", "ThreadId", "ReturnValue", "InParameters", "OutParameters")

addRows(...)

analyzedLog

analyzedLog

DataTable()

NyceLogAnalyzerPlugin

analyze("D:\state log.log")

Log()

adding analyzedLog to list�

true

resultLogTable

setName("D:\state log.log")

setContent(resultLogTable)

setPluginName("NyceLogAnalyzerPlugin")

setStatisticsInfo(statisticsInfoList)

setTimelineType(Chart)

setYValueColumns("ThreadID")

_1400321304.vsd
Naam van team�

�

Bedrijfsnaam
￼�

�

�

Bedrijfsnaam
Afdelingsnaam�

Bosch Group
 �

Automotive Technology
 �

Industrial Technology
 �

Consumer Goods & Building Technology
 �

Bosch Packaging�

Bosch Rexroth�

Bosch Solar Energy�

Pneumatics
 �

Electric Drives & Control
 �

Linear Motion & Assembly Technology
 �

Sales Assembly & Handling
 �

Sales Semiconductor & Solar
 �

Engineering & Application
 �

Solution Projects
 �

Semiconductor Sales
 �

Solar Sales
 �

Applications Engineering
 �

Hydraulics
 �

Service
 �

_1400324050.vsd
�

Company Profile

Chapter 2�

Assignment Description

Chapter 3�

Project Overview

Approach

Chapter 4�

Research & Design Considerations

Chapter 5�

Design Implementation

Chapter 6�

Brief Overview of the Log Analyzer Tool

Chapter 7�

Realized Solution

Conclusion and Recommendations

Chapter 8�

_1400420461.vsd
�

�

�

�

�

�

�

�

+analyzeAndAddLog(in logFileLocation : string) : bool
+getLog(in logName : string) : Log
+getLogFileFilter() : string
+getGeneralStatistics(in logName : string) : string
+getDetailedStatisticsKey() : ArrayList
+getDetailedStatistics(in logName : string, in key : string) : string
+getFilteredLogTimeline(in logName : string, in timestamp : string, in dataName : string) : DataTable
+saveLogAnalyzerProject(in logAnalyzerViews : ArrayList, in projectFileName : string)
+loadLogAnalyzerProject(in projectFileName : string) : ArrayList
+removeLog(in logName : string)
+getProjectLogFileName() : string
+getLogNames() : ArrayList
+getTranslatedLogContent(in logName : string) : DataTable

-Logs : ArrayList
-Plugins : ArrayList

LogAnalyzer

GUI

+getName() : string
+analyze(in logFile : string) : Log
+getCompatibleFileFilter() : string
+getChartDataNamesColumnName() : string
+getChartDataDisplayValuesColumnName() : string
+getColumnTranslators(in requestedLog : Log) : ArrayList

«interface»
ILogAnalyzerPlugin

-Name : string
-CompatibleLogFile : string

TraceLogAnalyzerPlugin

1�

1

1�

*

-Creates

1�

*

+Name : string
+Content : DataTable
+PluginName : string
+GeneralStatisticsInfo : ArrayList
+DetailedStatisticsInfo : ArrayList
+TimelineDisplay : TimelineType

Log

�

-Columns : ArrayList
-Rows : ArrayList�

DataTable

1�

1

-Name : string
-CompatibleLogFile : string

NyceLogAnalyzerPlugin

1�

*

�

+Version : string
+AddedLogs : ArrayList

LogAnalyzerProject

-Name : string
-Value : ArrayList

StatisticsInfo

+CHART
+GRAPH

«opsomming»
TimelineType

-Creates

1�

1

1�

1

1�

*

+Color : int
+Rate : int

«struct»
ChartColorRating

1�

*

�

+Name : string
+SelectedLogName : string
+FilterExpression : string

LogAnalyzerView

1�

*

-Creates

1�

*

_1400321755.vsd

_1399872702.vsd
�

�

�

�

�

�

�

�

+getLogs() : List<Logs>
+analyzeAndAddLog(in logName : string) : bool
+removeLog(in logName : string) : string
-addLogDocument(in logName : string) : bool
-removeLogDocument(in logName : string) : bool
-addLog(in logName : Log) : bool
-removeLog(in logName : Log) : bool
-analyzeLogs() : bool

�

LogAnalyzer

+Content() : object

-Name : string

Log

-Name : string
-Tokens : object

LogDocument

*�

-Creates

1

1�

0..*

1�

0..*

�

NYCeLogAnalyzerPlugin

�

GUI

1�

1

+analyze(in logDocument : LogDocument) : Log

«interface»
ILogAnalyzerPlugin

0..1�

*

+Content() : object

-FunctionCalls : object

NYCeLog

+Register(in ipi : ILogAnalyzerPlugin) : bool

«interface»
ILogAnalyzerPluginHost

-Has

1�

-Has

0..*

_1398951270.vsd
�

�

System

NYCe log file

Trace data file

Test log file

NyceLogAnalyzerPlugin

TraceLogAnalyzerPlugin

TestLogAnalyzerPlugin

Local memory

Graphical User Interface

User

LogAnalyzer

_1399109766.vsd
Tasks

￼

￼

1

￼

￼

￼

￼

ID

Task Name

Start

Finish

_1399117370.vsd
�

�

�

�

Bovenste pakket::User

MainForm

save project

saveProjectDialog

ShowDialog()

graphical representation

selects folder "C:\LogAnalyzerProject"

"C:\LogAnalyzerProject"

Hide()�

logAnalyzerViewsList�

LogAnalyzer

saveLogAnalyzerProject("C:\LogAnalyzerProject", logAnalyzerViewsList)

savedLogAnalyzerProject

LogAnalyzerProject()

LogAnalyzerViews = logAnalyzerViewsList

copyOfAnalyzedLogs�

AddedLogs = copyOfAnalyzedLogs

copy log files to "C:\LogAnalyzerProject\LogFiles"�

Serialize(actualProjectFileName, savedLogAnalyzerProject)�

actualProjectFileName�

true

notification

_1396943251.vsd
�

�

�

�

�

�

�

�

+analyzeAndAddLog(in logFileLocation : string) : bool
+getLog(in logName : string) : DataTable
+getLogFileFilter() : string
+getGeneralStatistics(in logName : string) : string
+getDetailedStatisticsKey() : ArrayList
+getDetailedStatistics(in logName : string, in key : string) : string
+getChartTimelineDataSources(in logName : string, in backWorker : object) : ArrayList
+getGraphTimelineDataSources(in logName : string, in backWorker : object) : ArrayList
+getFilteredLogTimeline(in logName : string, in timestamp : string, in dataName : string) : DataTable

-Logs : ArrayList
-Plugins : ArrayList
-OkColor : ChartColorRating
-ErrColor : ChartColorRating
-WrnColor : ChartColorRating

LogAnalyzer

GUI

+getName() : string
+analyze(in logFile : string) : Log
+getCompatibleFileFilter() : string
+getChartDataNamesColumnName() : string
+getChartDataDisplayValuesColumnName() : string

«interface»
ILogAnalyzerPlugin

-Name : string
-CompatibleLogFile : string

NyceLogAnalyzerPlugin

1�

1

1�

*

1�

*

-Creates

1�

*

-Name : string
-Content : DataTable
-PluginName : string
-StatisticsInfo : ArrayList
-TimelineConfiguration : TimelineType

Log

�

-Columns : ArrayList
-Rows : ArrayList�

Bovenste pakket::DataTable

1�

1

-Name : string
-CompatibleLogFile : string

TraceLogAnalyzerPlugin

+Color : int
+Rate : int

«struct»
ChartColorRating

1�

*

1�

1

1�

*

�

�

LogAnalyzerProject

-Name : string
-Value : ArrayList

StatisticsInfo

+CHART
+GRAPH

«opsomming»
TimelineType

-Creates

1�

1

_1398420100.vsd
Requirements gathering

Research & design

Build prototype

Evaluate prototype

Adjust design and/or prototype

Integrate to product

Start

Stop

_1395643370.vsd
�

�

�

Bovenste pakket::User

MainForm

LogFileForm

openLogFile()

showLogFileForm()

Graphic representation

open("D:\state log.log")

LogAnalyzer

getFilterProperties("D:\state log.log")

analyzeAndAddLog("D:\state log.log", "NyceLogAnalyzerPlugin")

list of filter properties

true

"D:\state log.log"

addLogFileName("D:\state log.log")�

Graphic representation

refreshFilterValues()�

