

SETTING UP AN

 INDUSTRIAL CONTROL

SYSTEMS LABORATORY

Haryanto Natalius Liuwan
hn.liuwan@student.fontys.nl

Graduation Project Internship
SecurityMatters BV

Preface

This document is the final report of “Industrial Control Systems Simulation Laboratory

Development” graduation project internship. The internship was carried out at SecurityMatters

from 1st February 2014 until 31st May 2014 by Haryanto Natalius Liuwan, a double degree

Information and Communication Technology student at Fontys Hogescholen.

The reasons why I chose this graduation project are because I like to have interaction with

hardwares, and I already learnt some of networking module at my home university in Indonesia.

In this moment I would like to say thank you to Daniel Trivellato as my company mentor, Casper

Schellekens as my university mentor, and all colleagues of SecurityMatters, the company where I

accomplished this graduation project internship.

I hope you will enjoy reading the report, Thank you.

Eindhoven, May 2014

Haryanto Natalius Liuwan

Table of Contents

Preface ... 2

Table of Contents... 3

Summary ... 1

Glossary ... 2

Chapter 1: Introduction .. 4

1.1. Introduction .. 4

Chapter 2: The Company .. 6

2.1. History ... 6

2.2. Mission, Vision, and Values .. 6

Chapter 3: The Assignment ... 8

3.1 Background .. 8

3.2. Assignment Overview .. 8

3.3. Project Deliverables .. 8

3.4. Goals.. 9

3.5. Changes During the Project .. 9

3.5.1. Change of Phase Order... 9

3.5.2. Programming Language ... 9

3.5.3. Project Focus .. 10

Chapter 4: Phasing and Methodology ... 11

4.1. Initiation and Research Phase ... 11

4.2. Learning Phase .. 12

4.3. Development Phase ... 12

4.3.1. Defining Requirements ... 13

4.3.2. Analysis and Design .. 13

4.3.3. Implementation... 13

4.3.4. Testing .. 13

4.3.5. Evaluation ... 13

4.4. Rebuilding Laboratory Phase ... 13

Chapter 5: Learning Phase .. 14

5.1. Objective ... 14

5.2. Topics .. 14

5.2.1. ICS/SCADA System Components and Protocols.. 14

5.2.2. Industrial Process ... 14

5.2.3. Electricity Distribution ... 14

5.2.4. Protocols for each Application.. 15

5.3. Result ... 15

5.3.1. Project Plan... 15

5.3.2. Answers for Some Research Questions ... 15

Chapter 6: Development Phase ... 16

6.1. Objective ... 16

6.2. Progress ... 16

6.2.1. Learn Programming Language and Platforms .. 16

6.2.2. Protocol Behaviour Learning ... 17

6.3.3. Selecting Modbus Library .. 18

6.3.4. Simple GUI Implementation... 19

6.3.5. Complex GUI and API Implementation ... 19

6.3.6. Setting up PLC Simulator .. 20

6.3. Result... 21

6.3.1. Modbus HMI Application ... 21

Chapter 7 Laboratory Rebuilding Phase .. 23

7.1. Objective ... 23

7.2. Process ... 23

7.3. Results ... 23

7.3.1. Network Topology Design... 23

7.3.2. Parts installation ... 24

Chapter 8 Conclusion and Recommendations... 25

8.1. Final Conclusion.. 25

8.2. Recommendations ... 25

8.2.1. Use Software With Real PLC ... 25

8.2.2. Application Expansion Using APIs ... 25

8.2.3. Laboratory Expansion to Support More Protocols .. 26

Evaluation.. 27

References.. 28

Appendix A: Project Plan ... I

Appendix B: Graduation Project Survey.. XV

Appendix C: User Requirement Specification Document Modbus HMI Application ...XIX

Appendix D: Software Design Document Modbus HMI Application XXXIV

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

1

Summary

Industrial Control Systems are at the core of industrial production processes. They enable

automation of production processes with a simple and effective system rather than manual and

24/7 analogue monitored systems used in old times. Modernization of these systems leads to

connected system that can be vulnerable to cyber-attacks.

SecurityMatters is a start-up company founded in 2009 which focuses on network

monitoring and security systems. The company has some products aimed to secure network

environment from cybert-threats.

The assignment is about developing a new HMI application that is using an industrial

protocol of interest for company and integrating it into an existing test laboratory. The software

made in this graduation project internship expands the company’s demonstration and security

testing instruments to support Modbus/TCP protocol as well.

This project is seperated into four phases: initiation, learning, development, and laboratory

rebuilding. The initiation phase did before project started was intended to keep the project on the

track by formulating some questions to lead the project.

The learning phase’s objective is to learn basics of ICS/ SCADA systems and paves a way

for next phases.

The development phase intended to develop an application for simulation laboratory. A

HMI application made on this phase can be used as demonstration instrument and security testing

tool for SecurityMatters employees.

The laboratory rebuilding phase intended to move simulation laboratory facilities to new

headquarter and integrate it with peripherals used in new headquarter.

ICS/SCADA system attacks are real threats that needs to be treated seriously in order to

prevent large attacks that might affect company and national securities since it might control

sensitive facilities.

Finally, there are some ways to improve this project, connect the software with real PLCs,

develop a new application based on the API made in this project, and laboratory facilities

expansion to support more protocols.

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

2

Glossary

Term Description

API Abbreviation for “Application Programming Interface”. This is the interface

that allows another application to interact with particular application.

Cloud Distributed computing via network, where a program runs on network rather

than locally.

DLL Abbreviation for “Dynamic-Link Library”. This is Microsoft’s shared library

implementation for Windows systems.

ICS Abbreviation for “Industrial Control System”. This is the general term for

devices used for industrial production.

GUI Abbreviation for “Graphical User Interface”. This is the type of user interface

that allows user to interact with icons and other visual indicators instead of

command line.

HMI Abbreviation for “Human-Machine Interface”. This is the application that

built to monitor and control ICS instruments.

Jamod Open-source Java library for Modbus protocol communication.

Java Object Oriented Programming language developed by Sun Microsystems.

JavaFX Platform for creating GUI applications based on Java programming language.

Linux Free alternative operating system for computers developed by Linus

Torvalds.

Modbus Master-Slave communication protocol developed by Modicon Electronics

used for ICS communication.

MVC Abbreviation for “Model-View-Controller”. This is the programming pattern

for OOP that separates the application logic from the GUI.

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

3

OOP Abbreviation for “Object Oriented Programming”. This is the programming

paradigm that sees every elements of a program as interacting objects.

OS X Unix-based graphical interface operating systems developed and marketed

by Apple Inc.

PLC Abbreviation for “Programmable Logic Controller”. This is the component

of ICS which has a logic function to determine outputs to actuators as the

programmed consequence of inputs from the sensors.

SCADA Abbreviation for “Supervisory Control and Data Aquisition”. This is a way

to monitor, control, and acquire data from remote controllers and field

devices. SCADA consists of industrial hardware and software components.

Scene Builder A component of JavaFX that allows to design Graphical User Interfaces

without extensive knowledge of the underlying code.

Windows Operating system developed by Microsoft.

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

4

Chapter 1: Introduction

1.1. Introduction

ICS along with its components are the core of industrial production processes today. They

enable automation of production processes with a simple and effective system rather than manual

and 24/7 analog-monitored systems used in old times. Figure 1.1 shows an example SCADA

network where multiple ICS exchange information to carry out the industrial process.

Figure 1.1: SCADA Architecture Using Internet

The most common ICS/SCADA system(Figure 1.1) used to monitor and manage

operations of automation instruments is the HMI. It represents industrial devices in an interface,

and is used to control and monitor industrial devices anywhere and everywhere.

Modernization opens an opportunity of monitoring and managing ICS remotely,

simplifying large scale plant management.

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

5

With the usage of TCP/IP networks in ICS/ SCADA systems, cyber-attacks in the past

years have been increasingly targeting such systems. For example, the StuxNet malware attack in

2010 successfully disrupted the process of Iran’s nuclear power plants. These circumstances led

to a need to find better way to protect industrial networks and its equipment.

The purpose of this graduation project is to contribute to the development of a laboratory

for ICS attack simulation aimed to discover possible vulnerabilities on ICS instruments that might

be exploited by hackers.

The structure of this final report is the followng:

- Chapter 2 introduces the host company.

- Chapter 3 describes the assignment.

- Chapter 4 defines the phasing and methodology.

- Chapter 5 describes the first phase of the project.

- Chapter 6 describes the second phase of the project.

- Chapter 7 describes the third phase of the project.

- Chapter 8 contains conclusions and recommendations.

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

6

Chapter 2: The Company

2.1. History

SecurityMatters is a start-up company which focuses on network monitoring and security

systems. The company was founded in 2009 by Damiano Bolzoni, Sandro Etalle and Emmanuele

Zambon to bring the new security technology to the market. Despite aged just 4 years,

SecurityMatters succeeded to prove capabilities of their product by having a top-notch companies

as their client such as The Boeing Company.

2.2. Mission, Vision, and Values

The mission of SecurityMatters is to deliver game-changing technology that makes its

customers more secure and in control. The company vision is to be recognized as leading provider

of high-quality innovative solutions for cybersecurity.

As a start-up company, SecurityMatters has to keep improving the performance of its

products to compete with the other companies that are working on the same field around the world.

To achieve that, the company has a research and development team which employs a simulation

laboratory and tools to simulate real world situation on industrial instruments and systems as well

as attack scenarios that might occur in a production process.

2.3. Products

In line and industrial from cyber-threats, SecurityMatters products aim at securing enteprise

networks.

Currently, the company has two main products. SilentDefense ICS, for securing an

industrial environment, and SilentDefense Web, to secure web applications. Both of the products

have an advantage to detect attacks without a signature, thus protecting systems from zero-day

attacks.

SilentDefense secures industrial processes and web-applications by analyzing and reporting

malicious traffic that might be generated from hackers and unauthorized users of the system.

SilentDefense defines a whitelist of allowed communication patterns from each device, and makes

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

7

it as a base of monitoring. Whenever an abnormal communication is detected, SilentDefense will

report and capture the traffic along with the details that helps the IT security team to resolve it.

Figure 2.1 shows an example deployment of SilentDefense ICS to an industrial network.

Figure 2.1: SilentDefense™ Topology Example

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

8

Chapter 3: The Assignment

3.1 Background

Recently, the company moved their headquarter from Enschede to Eindhoven. While most

of the operations are now carried out in the new location, the simulation laboratory is still located

in Enschede. The relocation of the simulation laboratory was scheduled for the beginning of May

2014. Meanwhile, the company also wants to expand their demo instruments to support the testing

of more industrial protocols.

The company has a HMI communicating with real and simulated PLCs using MMS and

IEC 61850 protocols in their simulation laboratory. By expanding the protocol support, the

company will have broader choice for their potential customers and internal team to test misuse

cases regarding ICS/SCADA system security, and to have better understanding about

vulnerabilities that a PLC might have.

3.2. Assignment Overview

The assignment is about developing a new HMI application that is using other protocols

than the company currently has and integrating it into the laboratory that was going to be moved

in May 2014. The software made in this graduation project internship expands the company’s

demonstration and security testing instruments to support Modbus/TCP protocol as well.

The assignment is expanded into 4 phases: initiation, research, development, and lab

rebuilding phase. The assignment will be detailed in chapter 4, and details of each phases will be

described in chapter 5 through 7.

3.3. Project Deliverables

The final deliverables of this assignment are:

1. An application to enable communication between a server and a PLC that displays

process values in a GUI, and allows to simulate unusual and incorrect traffic for

security testing.

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

9

2. Simulation laboratory in Eindhoven headquarter and integrate it with the developed

application.

3.4. Goals

This project was started mainly because SecurityMatters needs to constantly research on

vulnerabilities of industrial networks and systems. Furthermore, it needs to move the simulation

laboratory to the new headquarter in Eindhoven. The main goals of this project is to provide

SecurityMatters with an extra instrument to simulate and analyze communications in an industrial

network, discover new ICS vulnerabilities, and improve the performance of its products.

3.5. Changes During the Project

There have been some changes during the project progress, which are described below:

3.5.1. Change of Phase Order

At the end of the first phase, the company realized that it was not feasible to move

the simulation laboratory devices from Enschede to Eindhoven at that moment. The reason

is that there are servers for which the company cannot afford to have a down time, since

the development team was working on a new software release.

As a solution, the company mentor decided that the laboratory rebuilding phase

would be shifted into 3rd phase instead of 2nd phase.

3.5.2. Programming Language

At the beginning of the development phase, the company reqested programs to be

made on Java programming language. The reason is that a Java application will have more

compatibilities across platforms used in SecurityMatters computing environment and will

be easier to use and maintain.

This decision directly affects the development phase since the Java programming

language has to be learned before starting the real application development. While this was

delaying the progress of the development phase, it is good both for the developer education

and the company to have the application written in Java language, as this opens the

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

10

opportunity for the application to be used in other environments such as Linux or OS X

rather than just Windows.

3.5.3. Project Focus

This project was preliminared designed with more technical networking tasks in

mind. However, to the requirements of university focusing the assignment on software

development, these parts of the project were minimized to accomodate.

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

11

Chapter 4: Phasing and Methodology

This project is organized into four phases: initiaton, learning, development, and laboratory

rebuilding. The summary and timeline of phasing are described on following picture:

Figure 4.1: Project Phasing

Figure 4.2: Project Timeline

4.1. Initiation and Research Phase

This phase was done before the actual start of the internship. The objective of this phase

was to make progress be assured during the graduation project.

The project was carried out with these questions in mind to keep the project on track. The

research questions are:

1. How to make a network topology and define configurations to prevent hackers having

access to equipment directly?

2. How to find a method to find vulnerabilities of the devices (PLC, etc.)?

2.1. What programming language and protocols should the HMI application use?

2.2. How do Programmable Logic Controllers communicate?

2.3.How can Programmable Logic Controllers be attacked?

3. How to find a method to find vulnerabilities of the network?

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

12

3.1.What devices are needed as an addition to the simulation laboratory in

Eindhoven headquarter?

4.2. Learning Phase

This phase was done as a first phase of the internship, and the purpose is to have more

understanding about ICS and SCADA systems before starting the development phase. The learning

phase will be detailed more on chapter 5.

4.3. Development Phase

The development phase consisted of developing an HMI application for the company after

knowledge about PLC protocols was acquired. The development phase will be detailed more in

chapter 6.

Figure 4.3: Iterative Methodology

In this phase, iterative methodology was used both because the developer was not familiar with

Java programming language and in order to continuously get and integrate feedback from company

mentor about the result. More precisely, the development is achieved by the iteration of the

following steps:

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

13

4.3.1. Defining Requirements

In this step, requirements are defined for each iteration. The requirements itself are

based on the goals that are being achieved. Example: Requirement to implement simple

client-server communication using the Jamod library.

4.3.2. Analysis and Design

As the next step, requirements are translated into analysis and design. The

upcoming implementation are based on the design made in this step. Example: Use

case of Jamod library simple implementation.

4.3.3. Implementation

This step implements design made on previous step. Example: Create an

application that implements Jamod library.

4.3.4. Testing

This step tests result made on implementation phase to know whether features are

working as intended.

4.3.5. Evaluation

After testing step, evaluation step will be taken and feedback collected to prepare

the next iteration.

4.4. Rebuilding Laboratory Phase

The rebuilding laboratory phase intended to rebuild the laboratory that had to be moved

from Enschede to new headquarter in Eindhoven. The rebuilding laboratory phase will be

detailed more on chapter 7.

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

14

Chapter 5: Learning Phase

5.1. Objective

This phase was done to learn the basic concepts of ICS/SCADA systems since this field is new

for the writer. The objectives of this phase are :

1. To gain knowledge how ICS / SCADA systems work.

2. To gain knowledge how PLCs communicate and what protocols can they use.

3. To answer research questions.

4. To have more understanding about what is going to be developed in the next phase.

5.2. Topics

The main topics which have been studied in this phase are presented below:

5.2.1. ICS/SCADA System Components and Protocols

This topic was chosen as the topic learnt to acquire basic knowledge about what

ICS/ SCADA systems are and how they work, along with typical components and

common protocols . This knowledge paves the next step of learning since the

project itself will correlate with ICS/ SCADA system components such as PLC and

industrial networks.

5.2.2. Industrial Process

This topic includes ICS/ SCADA system component role on common industrial

process such as water treatment, oil and gas mining, and power plants including wind,

hydro, nuclear, and heat power generator.

5.2.3. Electricity Distribution

This topic was chosen after obtain knowledge on the electricity transmission

and distribution process, including transmission substation for high voltage electricity,

distribution substation for low voltage electricity, smart meter, and smart grid.

The importance of learning about the electricity distribution process is in

preparation of the study of applications that simulates this process.

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

15

5.2.4. Protocols for each Application

The knowledge about components used in industrial process and electricity

distribution was then coupled with protocols that might be used on each processe to

have a complete overview of real situations.

5.3. Result

The learning phase led to the following results:

5.3.1. Project Plan

The first result of learning phase is project plan, a document that describes activities

planned for the next phases of the project. This document defines practical steps for

next activities and also as as an indicator of the project progress.

5.3.2. Answers for Some Research Questions

5.3.2.1. What Programming Language and Protocols Should the HMI

Application use?

The HMI Application should be designed according to the requirements of the

company’s. In this case, the HMI application was developed using Java programming

language and the Modbus protocol.

5.3.2.2. How do Programmable Logic Controllers Communicate?

In the past, PLCs were communicating using serial ports and proprietary protocols,

since there was no standard regulating how they should communicate. However, PLC

nowadays are usually communicating over TCP/IP and standard protocols to enhance

connectivity, ensure compatibility, and reduce development cost.

5.3.2.3. How can Programmable Logic Controllers be Attacked?

PLCs can be attacked by sending wrong or too many commands to the device itself.

Depending on PLC characteristics, the effects on the PLC may vary. It may simply

reject the command or completely crashes.

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

16

Chapter 6: Development Phase

6.1. Objective

The development phase was started with some objectives in mind:

1. Learn Java and JavaFX programming language and platform.

2. Know how PLC device communicate in detail.

3. Find libraries that suits application requirements.

4. Develop the HMI application for SecurityMatters.

6.2. Progress

The development was carried out in several iterations:

6.2.1. Learn Programming Language and Platforms

The first iteration consists of learning the programming language and platforms that

will be used fir application development. Java programming language and JavaFX platform

were chosen as the base of the software that will developed.

Java was chosen because it provides multi-platform support. This is a benefit for

SecurityMatters since it ensures interoperability. For example: Developer uses Ubuntu

Linux platform, while project manager uses Windows and others are using OS X platform.

Furthermore, Java is a well-known programming language within SecurityMatters, thus

facilitates the reuse and maintenance of application code.

JavaFX was chosen as the GUI platform because it provides multi-platform support

and it is intended to replace Swing, an older GUI platform for Java. This choice ensures

that the application is using the latest technology that will not be deprecated fastly and also

can be developed and maintained easily.

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

17

Figure 6.1: JavaFX Scene Builder Example

6.2.2. Protocol Behaviour Learning

Protocol behaviour learning was needed as the next step, to know how an Modbus

HMI application communicates and interacts with PLC. This iteration was approached

using two methods: theoretical and practical.

Protocol specification sheets were studied to know how the protocol is designed

and how it works.

The approach used in practical consisted of wiretapping communications over

protocol simulator and analyzing it to observe how the protocol was used in practice was

done using Wireshark and RawCap application to capture traffic generated between

simulators.

A PLC Simulator was used to simulate traffics that might occur in a real world

scenario, using tool already present in the simulation laboratory of SecurityMatters. While

it might not be perfectly accurate, it still give a sufficient overview about how particular

protocol works.

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

18

Figure 6.2: Wiretapping Progress

6.3.3. Selecting Modbus Library

Given the availability of several Modbus libraries, the HMI application

development will reuse one of these libraries to simplify the development process. Finding

the best library is quite tricky since every library has its own characteristics.

For the Modbus HMI Application, the Jamod library was eventually selected

because it is based on Java programming language and implemets all the functions that

were needed for the application itself. Several libraries such as libmodbus, Modbus4j and

Jamod2 were considered, but since Jamod was the simplest to implement, has a good

documentation, and was written in Java, it was chosen eventually.

Below is the simple Jamod implementation in Command Line Interface result from

this iteration to prove that the HMI was able to communicate with PLC simulator:

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

19

Figure 6.3: Jamod Simple Implementation

6.3.4. Simple GUI Implementation

After the proof-of-concept built in the previous iteration, a preliminary GUI was

implemented. This would be the proof-of-concept that JavaFX and existing libraries can

be combined.

Figure 6.4: Jamod Preliminary GUI Implementation

6.3.5. Complex GUI and API Implementation

After being succesful in the implementation of a simple GUI, a more elaborated

GUI was designed to resemble a real industrial HMI. To achieve that, APIs were created

to simplify development of complex application and also for further development.

Upon development of complex software, APIs are definitely needed to ensure that

the programmer will not write the same code twice. This approach will reduce the

development effort since a method has only to be written once and can then be reused. So

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

20

whenever the programmer has an error in the particular method, the programmer will only

have to change the method, and nothing else.

Figure 6.5: Final Working Applicaiton

6.3.6. Setting up PLC Simulator

During the development, Modbus protocol traffic was generated using a PLC

Simulator. This simulator generates PLC traffics for essential core functions based on a

logic implemented in a script.

The script made for this project is the improvement of an existing script prepared

by a company’s employee. Changes were made to make the PLC’s logic more realistic and

add more features to match with HMI application requirements defined in earlier stages.

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

21

Figure 6.6: PLC Simulator Software

6.3. Result

6.3.1. Modbus HMI Application

The resulting Modbus HMI is an application that resembles an industrial water

boiler, with some more functions to test PLC from several threats. This application is using

Jamod as the Modbus message translator between the PLC simulator or device with the

HMI application itself.

Figure 6.6: Modbus HMI Application

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

22

As mentioned earlier, this application is designed to generate Modbus traffic both

for normal and test functionalities. The normal functions are connect, read, write, and

disconnect from PLC, while test function consist of sending custom message directly to

the PLC.

Connect to PLC

Read Value

Write Value

Disconnect from PLC

Connect Function

Read Function

Write Function

Custom Message Function

Disconnect Function

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Send Custom Message

Figure 6.7: Modbus HMI Application Use Cases

The application is based on MVC architecture, which separates application

interface from the logic part to make further development easier. The model and controller

are based on Java and the view is based on JavaFX.

PLC / PLC Simulator

Internet Protocol
Modbus/TCP Message

View
FXML/ JavaFX

Controller
Java Logic

Model

Human-Machine Interface Application

Library

Jamod

User

Figure 6.8: Modbus HMI Application Architecture

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

23

Chapter 7 Laboratory Rebuilding Phase

7.1. Objective

 The objectives of this phase are:

1. Move simulation laboratory from Enschede to the new Eindhoven headquarter.

2. Integrate simulation laboratory with peripherals in new headquarter.

7.2. Process

 7.2.1. Network Consideration

Lab movement started with the network design draft that will be realized once

equipments will be moved to the new headquarters.

In the past three months, employees had to deal with slow and unreliable wireless

connection which affects productivity. The new network design draft included the

infrastructure changes required to provide ethernet cable connection to SecurityMatters

employees.

 7.2.2. Device preparation

 The network design phase continued with device procurement as a preparation

before peripheral arrived to the Eindhoven headquarters. In this phase cables were also

prepared according to the design requirements.

7.3. Results

 The results of this phase are the following:

7.3.1. Network Topology Design

Following some discussion regarding network design for new headquarter, the

result is shown in the network map below:

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

24

Unmanaged Switch

Developer Room

Server Room

Server

Managed Switch

Internet
Connection

Project Manager Room

Unmanaged Switch

Demo Room

Unmanaged Switch

Server Rack Printer

Conference RoomManager RoomDirector Room

Unmanaged
Switch Access

Point

Router IP Phone

Unmanaged SwitchUnmanaged Switch

Figure 7.1: Network Map in Eindhoven Headquarter

7.3.2. Parts installation

Devices that arrived were installed according to the design diagram on room

A,B, and C to bring connectivity to those rooms. The other rooms were still waiting

for servers that have not yet arrived due to some internal delays.

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

25

Chapter 8 Conclusion and Recommendations

8.1. Final Conclusion

 ICS/SCADA system attacks are real threats that need to be treated seriously in order to

prevent large attacks that might affect company and national safety and security.

One of the ways to prevent attacks is to actively test devices for vulnerabilities to some

exploits. In this way, both users and vendors could be aware to the threats to their systems. Along

with the tests, production environments must have some mechanism to prevent or reduce effects

from ICS/ SCADA system attacks.

The HMI software made in this project will be useful for internal testing and demonstration

purposes, and the API developed will make future Modbus application development easier.

PLC protocol simulation was possible using PLC simulator application, it reflects essential

PLC functionalities but not vendor specific characteristics and vulnerabilities that might be found

on real PLCs.

 The moving of the simulation laboratory to Eindhoven headquarter has major effects for

both employees and potential customers. Effects for employees are better control and faster access

to servers. Effect for potential customers is the possibility to see the company’s products

capabilities in a simulated working environment rather than just through videos or other marketing

methods.

8.2. Recommendations

8.2.1. Use Software With Real PLC

My first recommendation for this project is to connect the HMI application to real

PLCs instead of a simulated one. The reason is because only real PLCs can be tested for

vulnerabilities, so HMI application test feature could be more effective.

8.2.2. Application Expansion Using APIs

My second recommendation is to make another Modbus HMI application using the

APIs developed in this project, to have another use or study case for the Modbus protocol.

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

26

8.2.3. Laboratory Expansion to Support More Protocols

Last but not least, I would suggest to develop more protocol support for simulation

laboratory facilities. In this way, SecurityMatters could convince more potential customers

to buy and use its products.

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

27

Evaluation

The most interesting part of the internship is to learn about components that are really used

in defferent industries, including PLC devices and its protocols because I never had a chance to

learn such thing. This situation made me feel more challenged and eager to know more about it.

All project tasks were challenging for me. Even though I had some difficulties on learning

some concepts, there was always support from company mentor and colleagues from

SecurityMatters.

Aside from knowledge, I also gained soft skills like time management and interpersonal

skills. This valuable experience teaches me how to be a better person on my upcoming career.

Overall, it was a good experience to work together with SecurityMatters company and its

amazing colleagues. Aside from mistakes that I made, I am pround of those achievements.

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

28

References

Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems (IDC Technology)
by Gordon Clarke CP Eng BEng MBA, Deon Reynders Pr Eng BSc (ElecEng) (Hons) MBA.

Reference

number

Source URL Address Description

1 Wikipedia http://en.wikipedia.org/wiki/Modbus

Modbus protocol
description

2 Modbus
Organization

site

http://www.modbus.org/docs/Modbus
_Application_Protocol_V1_1b.pdf

Modbus protocol
specification

3 ABB AC800M
product site

http://www05.abb.com/global/scot/sco
t349.nsf/veritydisplay/b48192f9da2e1

947c12579c7005ea32a/$file/3BSE063
717_A_en_Compact_800_5.1_Flexibl

e_process_control_products.pdf

ABB AC800M
brochure

4 Remmon site http://www.remmon.com/en/products/

web_based_hmi/mtom.php

HMI application

example

5 Viet Phat group
site

http://vietphatgroup.com/index.php?m
od=news&cpid=207

SCADA system
architecture

example

6 Lockheed

Martin site

http://id.lockheedmartin.com/blog/stux

net-whitepaper-updated

Stuxnet

description

7 SecurityMatters
site

http://www.secmatters.com/resources SilentDefense
product

information

8 Wikipedia http://en.wikipedia.org/wiki/Iterative_

and_incremental_development

Iterative

development
method

9 Wikipedia http://en.wikipedia.org/wiki/Applicatio

n_programming_interface

API

10 Wikipedia http://en.wikipedia.org/wiki/Cloud_co

mputing

Cloud

11 Wikipedia http://en.wikipedia.org/wiki/Dynamic-
link_library

DLL

12 Wikipedia http://en.wikipedia.org/wiki/Industrial
_Control_System

ICS

13 Wikipedia http://en.wikipedia.org/wiki/Graphical

_user_interface

GUI

14 Wikipedia http://en.wikipedia.org/wiki/Human_m

achine_interface

HMI

15 SourceForge http://jamod.sourceforge.net/ Jamod

16 Wikipedia http://en.wikipedia.org/wiki/Java_(pro

gramming_language)

Java

17 Wikipedia http://en.wikipedia.org/wiki/JavaFX JavaFX

Fontys University of Applied Sciences Setting Up Industrial Control
Graduation Project Final Report Systems Simulation Laboratory

29

18 Wikipedia http://en.wikipedia.org/wiki/Linux Linux

19 Wikipedia http://en.wikipedia.org/wiki/Model-
view-controller

MVC

20 Wikipedia http://en.wikipedia.org/wiki/Object-

oriented_programming

OOP

21 Wikipedia http://en.wikipedia.org/wiki/OS_X OS X

22 Wikipedia http://en.wikipedia.org/wiki/PLC PLC

23 Wikipedia http://en.wikipedia.org/wiki/SCADA SCADA

24 Wikipedia http://en.wikipedia.org/wiki/JavaFX Scene Builder

25 Wikipedia http://en.wikipedia.org/wiki/Microsoft

_Windows

Windows

I

Appendix A: Project Plan

Fontys University of Applied Sciences 2014

II

Fontys University of Applied Sciences 2014

III

TABLE OF CONTENTS
INTRODUCTION ... IV

PROJECT STATEMENT ... V

2.1. Formal Client ... V

2.2. Project Leader .. V

2.3. Project Context ... V

2.4. Project Motivation .. V

2.5. Project Results ... VI

2.6. Project Deliverables and Non-Deliverables ... VI

Ang project non-deliverables are: ... VI

2.7. Project Constraints ... VI

Possible project constraints are: .. VI

2.8. Project Risks .. VII

2.9. Research... VII

PROJECT PHASING .. VIII

MANAGEMENT PLAN .. X

4.1. Money .. X

4.2. Skills .. X

4.3. Quality ... X

4.4. Information .. XII

4.5. Time .. XII

4.6. Organisation .. XIII

User Requirements Specification Document

IV

CHAPTER 1

INTRODUCTION

This document describes the detailed plan of the writer’s graduation project carried out at

SecurityMatters BV. The project assignment itself consist of Setting up an Industrial Control

Systems Cybersecurity simulation laboratory, to simulate cybersecurity threats that may target

real-word industrial operations. The writer’s role in this project is as the laboratory engineer and

software designer.

The main topic of the graduation project is about cybersecurity in Industrial Control

Systems, and as the first step of this project, the writer has to study Industrial Control Systems

equipment and protocols. Second, the writer has to design and develop an application to enable

communication between industrial equipment. Finally, the writer has to rebuild and integrate the

simulation lab that SecurityMatters currently has in Enschede.

User Requirements Specification Document

V

CHAPTER 2

PROJECT STATEMENT

2.1. Formal Client

Daniel Trivellato will be the representative of SecurityMatters B.V in this project.

2.2. Project Leader

The writer will act as project leader and is responsible for all communication

between the project participants and the external parties.

2.3. Project Context

Cyber-attacks in the past years increasingly targeted Industrial Control Systems

such as Supervisory Control and Data Acquisition, servers, and Programmable Logic

Controllers. For example, StuxNet malware attack in 2010 successfully disrupted the

process of Iran’s nuclear facilities at a huge scale. These circumstances led to a need to

find better method to protect industrial networks and their equipment.

SecurityMatters is a start-up company which focuses on network monitoring and

security systems. Their products are more focused on securing industrial processes

from cyber threats. As a company which focuses on security, SecurityMatters needs

some research on how Industrial Control Systems, for example Programmable Logic

Controller, can be misused by the other parties. Recently, the company moved their

headquarter from Enschede to Eindhoven. While most of the operations are now carried

out in the new location, the simulation laboratory is still located in Enschede, The

relocation of the simulation laboratory is scheduled for the beginning of May 2014.

2.4. Project Motivation

This project was started mainly because SecurityMatters needs to constantly

research on vulnerabilities of industrial networks and systems. Furthermore, they need

to move their simulation laboratory to the new. Therefore, the goals of this project are:

1. Develop some applications to simulate normal and abused communication between

User Requirements Specification Document

VI

Industrial Control Systems.

2. Rebuild and integrate the simulation laboratory on the new headquarter.

2.5. Project Results

The end result of this graduation project would be:

1. Applications to enable communication between a server and a Programmable Logic

Controller that also features a functionality to show values in a Graphical User

Interface whenever it is needed, and to simulate wrong traffic for security testing.

2. Rebuilding the simulation laboratory in Eindhoven headquarter and integrate it with

the developed applications.

2.6. Project Deliverables and Non-Deliverables

The project deliverables are:

1. Project Plan

2. Application(s), along with:

a. Requirements Document

b. Design Document

3. Laboratory rebuilding design

The project non-deliverables are:

1. Activity notes

2. Meeting minutes

2.7. Project Constraints

Possible project constraints are:

1. The preferred programming language by the company is Java, which is not

mastered by writer yet.

2. Applications must be able to communicate with MMS and ModBus protocols,

which are new to the writer.

User Requirements Specification Document

VII

3. Existing simulation laboratory complexity level is not been known to the writer yet.

2.8. Project Risks

Project has the following risks:

1. Learning fails to meet expectations; if this happened, then project leader will

discuss with formal client, to obtain more information and knowledge regarding

protocols that will be used.

2. Applications fail to meet in terms of functionality expectations, expectations

functionalities; if this happened then project leader will discuss with formal client,

to get more resources and help from colleagues during the development phase. To

make sure that work is done on schedule, formal client and project leader will meet

weekly to discuss about the progress of the project.

3. Rebuilding laboratory phase may not be successful because of missing equipment,

unknown peripherals, and time constraint. If this happened then project leader will

discuss this circumstance with formal client, since the equipment itself are mission-

critical, thus a good preparation and coordination would be needed.

2.9. Research

Research is one of the most important parts of this project because the topic is

completely new for the writer. Some of the research questions are as follows:

1. What programming language and protocols should the application use?

2. How do Programmable Logic Controllers communicate?

3. How can Programmable Logic Controllers be attacked?

4. What devices are needed as an addition to the simulation laboratory in Eindhoven

headquarter?

Hopefully these questions will be answered as the project progresses in order to

help defining the final product.

User Requirements Specification Document

VIII

CHAPTER 3

PROJECT PHASING

This chapter describes an approximate schedule for the graduation project. The project

started on February 1st 2014 and is expected to finish on May 31st 2014.

Phase 1: Learning Phase

Started on February 1st 2014 until March 14th 2014, and May 12th 2014 until May 16th 2014.

Time for corresponding phase: 6 weeks

Deliverable(s) : Project plan

Tasks :

1. Project definition

Gather general informations needed and determine the requirements of the project.

2. Learn from particular sources

Search internet and books for information regarding the project topic to build the required

understanding for the next phases.

3. Consult with formal client

Discuss with formal client about the progress of the learning phase..

4. Finalize project plan

Plan the project for tracking project progress.

Phase 2: Development Phase

Started on March 10th 2014 and expected to be finished on May 9th 2014.

Time for corresponding phase: 9 weeks

Deliverable(s) : Applications, design, and requirement documents

Tasks :

1. Create requirement documents

Define client requirements and report them into a requirement document.

User Requirements Specification Document

IX

2. Create design documents

Create a documentation of the application that will be developed.

3. Develop the application

Realization from design documents.

4. Test application

Test whether the application functions as required.

5. Discuss with formal client

Discuss with formal client about the progress of the development phase.

Phase 3: Laboratory Rebuilding Phase

Expected to start on May 12th 2014 and expected to be finished on May 31st 2014.

Time for corresponding phase: 3 weeks

Deliverable(s) : Design and report of new simulation laboratory

Tasks :

1. Determine requirements of the laboratory

Define client requirements and report to formal client what devices are needed.

2. Make a design of the new laboratory

Make a documentation of the laboratory design that would be implemented.

3. Implementation

Rebuild the laboratory as by design document.

4. Discuss with formal client

Discuss with formal client about the progress of the laboratory rebuilding phase.

User Requirements Specification Document

X

CHAPTER 4

MANAGEMENT PLAN

4.1. Money

No money is involved since all room and equipment are provided by formal client.

4.2. Skills

The skills needed for each phase are the following:

1. Learning Phase

During this phase, analytic skills are needed as most of time spent for searching and

studying information, and planning skills are needed to write the project plan.

2. Development Phase

On this phase, Java and C# language programming skill would be needed as the

application are going to be written on corresponding language. Also, knowledge

about Supervisory Control and Data Acquisition or Industrial Control System

protocols such as ModBus and MMS would be needed.

3. Laboratory Rebuilding Phase

During this phase, networking and planning skills are needed as the laboratory

needs to be reconfigured, and there is a chance that a new devices will be added to

the laboratory.

4.3. Quality

The overall quality of the end product can be measured in several aspects:

1. Features

A good application requires all features listed in the requirement document.

2. Modularity

A good product, including application and laboratory design need to be modular so

that they can be expanded in case it is needed.

User Requirements Specification Document

XI

3. Interface

A good application needs a straight-forward interface to make it easy to use and

understand.

User Requirements Specification Document

XII

4.4. Information

The following table shows the actions required by each project participant in relation to
the project deliverables.

 Participant Project

Plan

Requirement

Document

Design

Document

Final application

and report

Graduation

Final Report

Project Leader Haryanto

Natalius

Liuwan

Cr, Ar,

S, Di

 Cr, Ar, S, Di Cr, Ar, S,

Di

 Cr, Ar, S, Di Cr, Ar, S, Di

Company tutor /

Formal Client

Daniel

Trivellato

Di, R,

Ar, A

Di, R, Ar, A Di, R, Ar,

A

 Di, R, Ar, A Di, R, A

University Tutor Casper

Schelleken

s

Di, R,

Ar, A

 Di, R Di, R Di, R Di, R, A

 Legend: Cr Create

 Di Discuss

 A Approve

 S Send

 R Receive

 Ar Archive

4.5. Time

The following figures summarize the duration and execution dates of the project
activities.

User Requirements Specification Document

XIII

A learning phase will preceed both the development phase and laboratory rebuilding phase since

the topics covered are quite different.

4.6. Organisation

The project organizational structure is reported in this person:

Contacts:

Project Leader

Name: Haryanto Natalius Liuwan

Phone: +31616855000

e-mail: hn.liuwan@student.fontys.nl

Address: Amalia van Anhaltstraat 26, 5616BH Eindhoven

Company Tutor

Name: Daniel Trivellato

Phone: +31642483416

e-mail: d.trivellato@secmatters.com

Address: Twinning Centre K.5.10

University Tutor

Formal Client, Daniel
Trivellato

University Tutor,
Casper Schellekens

Project Leader and
Developer, Haryanto

Natalius Liuwan

User Requirements Specification Document

XIV

Name: Casper Schellekens

Phone: 08850 73223

e-mail: c.schellekens@fontys.nl

Address: Fontys R1 4.47

User Requirements Specification Document

XV

Appendix B: Graduation Project Survey

User Requirements Specification Document

XVI

Appendix A : Graduation Project

Survey
 HBO-ICT: English Stream

Data student:

Name student : Initials: H.N. Name: Liuwan

 First name: Haryanto Natalius Studentnumber.: 2331039

 Telephone:0683268545 E-mail.: hn.liuwan@student.fontys.nl

Data company:

Name company/organisation : SecurityMatters BV

Visiting adress : Mirastraat 93 7521 ZG Enschede

Company mentor : Initials: D. Name: Trivellato

 Telephone:0642483416 E-mail.: daniel.trivellato@secmatters.com

 Department/ position: Project Manager

Startdate Graduation project : February 2014

Duo Graduation project : No

Accepted by student: date: signature:

Accepted by company: date: signature:

Hand in date Graduation Project Survey:

University of Applied Sciences

User Requirements Specification Document

XVII

Approved by graduation project coordinator: yes/no date: signature:

Remarks :

_

PLEASE SEND THIS FORM BY EMAIL TO THE INTERNSHIP COORDINATOR
IMMEDIATELY AFTER THE INTERNSHIP INTERVIEW HAS TAKEN PLACE.

User Requirements Specification Document

XVIII

Description of the graduation project:

1. Describe the problem analysis:
The company needs to do some research about the threats that may occur on Industrial Control

System (ICS) environment and what is the solution for each threats. Because nowadays hackers
think that attacking such system are more challenging, yet these systems are critical. It means

that there must be some security methods applied to protect continuity of these systems.

2. Describe the graduation assignment.
Graduation assignment consist of:

- Studying literature of Industrial Control Systems, Cyberthreats, and Cybersecurity
solutions. What are the threats that may occur on working Industrial Control System

environment.
- Determining peripheral needed to build Industrial Control System environment.

- Setting up peripherals used in Industrial Control System environment.

- Simulating attack scenarios of the peripherals involved in Industrial Control System.

- Delivering report of vulnerabilities of devices used and possible attack scenarios that may happen on working Industrial
Control Systems environment.

3. What is the research component of this assignment?

- Making a network topology and defining configurations to prevent hackers to have access to equipment directly.
- Finding a method to find vulnerabilities of the devices (PLC, etc.).
- Finding a method to find vulnerabilities of the network.

4. What are the methods and tools?
Methods are going to be the part of the research.

5. How and by whom will you be guided by the company?
Daniel Trivellato will accompany intern(s) as a project manager.

6. What fields of Study play an important factor in realizing the graduation assignment?

The fields of study that takes part in realizing the graduation assignment are networking,
electronic hardware, security, monitoring, design, and realization.

OTHER DETAILS:

Preference university tutor: 1. Casper Schellekens

 2.

User Requirements Specification Document

XIX

Appendix C: User Requirement Specification Document Modbus HMI Application

User Requirements Specification Document

XX

User Requirements Specification Document

XXI

USER REQUIREMENTS SPECIFICATION

Human-Machine Interface for Modbus Application Protocol

SecurityMatters

2014

User Requirements Specification Document

XXII

Table of Contents

Chapter 1: Introduction.. XXIII

1.1. Purpose ... XXIII

1.2. Structure of the Document ... XXIII

1.3. Definitions and Acronyms .. XXIII

Chapter 2: Software Description .. XXVI

2.1. Context.. XXVI

2.2. Objectives ... XXVI

2.3. Architecture .. XXVI

2.4. Concept of Operations ...XXVII

2.5. HMI Users and User Interface...XXVII

2.6. Methodology .. XXVIII

2.7. Assumptions and Dependencies ... XXVIII

Chapter 3: Software Requirements .. XXIX

3.1. System Interface ... XXIX

3.1.1. Communication Interface(s) .. XXIX

3.1.2. Software Interface(s).. XXIX

3.2. Functional ... XXIX

3.3. Graphical User Interface .. XXIX

3.4. Performance Requirements .. XXIX

3.5. Methodology ... XXIX

3.6. Software System Attribute.. XXIX

3.6.1. Reliability .. XXIX

3.6.2. Maintainability .. XXIX

3.6.3. Portability... XXX

Chapter 4: Use Cases .. XXXI

 Reference ... XXXIII

User Requirements Specification Document

XXIII

Chapter 1: Introduction

1.1. Purpose

This User Requirements Specification describes the architecture and system design of the

Modbus Human-Machine Interface software for SecurityMatters BV, as a part of the
graduation project “Setting up an Industrial Control Systems Cybersecurity Simulation

Laboratory”.
This document is intended to be read by:

- All responsible for further development of this application.

- Users of the product.

1.2. Structure of the Document

This document is structured as follows:
- Section 1.3 contains a glossary of pertinent terms and abbreviations.

- Chapter 2 provides a general description of the software and its intended use.

- Chapter 3 describes the requirements upon which the software was built.

- Chapter 4 contains some example use cases of the software.

1.3. Definitions and Acronyms

The concepts and acronyms used in this document are described as follows:

1.3.1. Java

Java is an object-oriented programming language developed by Sun Microsystems.
Java is available for almost every device in market. The most fascinating feature

from Java is its ability to run on multiple platforms as long as there is a Java Virtual
Machine installed.

1.3.2. Object-Oriented Programming

Object-Oriented Programming is a programming paradigm that considers the main
elements of a program as an “object” with specific functionalites. This paradigm is

widespread as it promotes and facilitates software reusability. By using Object
Oriented Programming, programmers do not have to rewrite the same code for the

same function in their programs.

User Requirements Specification Document

XXIV

1.3.3. Model-View-Controller

Model-View-Controller is a programming pattern for Object-Oriented

Programming that separates the application logic from the user interface. By
splitting application logic and user interface, developers have more flexibility on

expanding an application in the future. As the name suggests, the pattern involves
the interaction of three (classes of) components: a Model, a View, and a Controller.

The Model is in charge of representing and managing the information required by
the system; the View renders the interface which enables the user to interact with

the program; finally, the Controller contains the logic of the program and translates
user/system input into the output to be rendered by the View.

1.3.4. Graphical User Interface

A Graphical User Interface is an interface that allows users to interact with a

program using graphics.

1.3.5. JavaFX

JavaFX is a platform for creating Graphical User Interface applications through a
Java library. JavaFX is platform independent like Java. JavaFX intends to replace

the older “Swing” platform in the future because of its larger set of capabilities
compared with the latter.

1.3.6. Scene Builder

Scene Builder is a component of JavaFX that allows to design Graphical User

Interfaces without extensive knowledge of the underlying code. Scene Builder
offers a drag and drop designer interface and will produce FXML files used by

JavaFX.

1.3.7. Industrial Control System

Industrial Control System is a general term used to encompass control systems used

in industrial environments, including Supervisory Control and Data Acquisition
(SCADA) systems and as well as Programmable Logic Controllers (PLCs).

1.3.8. SCADA

User Requirements Specification Document

XXV

SCADA is a way to monitor, control, and acquire data from remote controllers and
field devices. SCADA consists of industrial hardware and software components.

1.3.9. PLC

A component which contains the logic to determine outputs as the programmed
consequence of inputs from the sensors.

1.3.10. Human-Machine Interface

A software built to monitor and interact with PLCs. HMIs are usually custom built

according to user needs and the needs of the application domain. Example of
commercial HMIs include: WinCC by Siemens, RSView by Rockwell Automation,

and DigiVis500/Network Managers by ABB.

1.3.11. Modbus

Modbus is an application protocol used in Industrial Control System or SCADA

systems, originally developed by Modicon. Modbus uses Master-Slave paradigm
as a way to communicate between devices. Modbus can be used both in serial and

TCP/IP based communications (Modbus/TCP). In this documents we will focus on
the latter.

1.3.12. Java Modbus Library

Java Modbus Library, known as Jamod, is an open source Java library which

implements Modbus functionalities.

User Requirements Specification Document

XXVI

Chapter 2: Software Description

2.1. Context

SecurityMatters is a start-up company which focuses on network monitoring and intrusion

detection systems. Their products aim at securing industrial processes from cyberthreats.
As a company which focuses on security, SecurityMatters needs instruments for

demonstrating the capabilities of its technology to its prospect. Currently, the company has
a Human-Machine Interface communicating with real and simulated Programmable Logic

Controllers using MMS and IEC 61850 protocols. Recently, the company decided to
develop a Modbus-based HMI.

2.2. Objectives

The HMI for Modbus application protocol is built with the following goals in mind:
1. To simulate HMI-PLC communication using the Modbus protocol.

2. To show how the products of SecurityMatters react to those communications.

3. To test PLCs vulnerability on some attack scenarios.

2.3. Architecture

The HMI will be developed in Java using JavaFX and Jamod libraries. The Graphical User
Interface will be designed using Scene Builder to provide an efficient and effective

interface design. The overall software architecture is represented in the figure below.

PLC / PLC Simulator

Internet Protocol
Modbus/TCP Message

View
FXML/ JavaFX

Controller
Java Logic

Model

Human-Machine Interface Application

Library

Jamod

User

The HMI enables users to communicate with a PLC simulator over the network. The HMI
and PLC simulator will be deployed in the cyberlab of SecurityMatters to be available for

use in demonstrations.

User Requirements Specification Document

XXVII

User
Client

HMI Application
Server

PLC Simulator

RouterSwitch

Demo Room Server Room

Building s Switch

2.4. Concept of Operations

The application will be capable communicating using Modbus protocol, and triggering

standard operational functions to a PLC, as well as sending custom commands to identify
vulnerabilities of the device.

2.5. HMI Users and User Interface

The intended users of the HMI are SecurityMatters employees simulating an industrial

process and demonstrating the capabilities of the company’s products, and “testers”
interested in finding vulnerabilities of the PLC.

The Graphical User Interface represents an industrial water boiler controller through which

the user can modify the boiler operation. Below are some screenshots of the main HMI
windows and an example of notification raised when sending custom commands to the

PLC.

User Requirements Specification Document

XXVIII

2.6. Methodology

The application’s development is based on Object-Oriented Programming and Model-
View-Controller programming pattern. Both patterns will allow easier programming

progress for present and future improvement.

2.7. Assumptions and Dependencies

This application depends on a few software components. Such components need to be

installed by the user on the system where the application should run. Those software
dependencies are:

1. Java Runtime Environment.

2. Programmable Logic Controller:

A real or simulated PLC program must be running and connected to the same network as

the HMI software.

User Requirements Specification Document

XXIX

Chapter 3: Software Requirements

3.1. System Interface

The system interface requirements are grouped into two groups:

3.1.1. Communication Interface(s)

The software must communicate using Modbus/TCP protocol.

3.1.2. Software Interface(s)

The software would have to provide interface such as methods on classes. With
such interface, it will be possible to improve application in the future.

3.2. Functional

The main functionalities that must be supported by the application are:
1. Establish a connection with a PLC.

2. Read values from a PLC.

3. Write values to a PLC.

4. Send custom commands to a PLC.

The details of every function will be described in Chapter 4 along with the use cases.

3.3. Graphical User Interface

The requirements of the Graphical User Interface:
1. Ease of understanding and use, to make sure the audience of demonstration will

understand the operations being executed.

2. Resemblance of the Graphical User Interface look and feel with that of existing

industrial HMIs.

3. Feedback on every action carried out by the user, to make sure that the user understands

that the action requested has been accomplished.

3.4. Performance Requirements

 The HMI is built with no particular constraints on the software performance (e.g. speed,

bandwith).

3.5. Methodology

The application should be based on Java programming language as company’s request.

3.6.Software System Attribute

3.6.1. Reliability

The application must be reliable and contain appropriate error-handling and input
validation to prevent application crash on normal operations. In case connection

dropped, the application must be able to reconnect automatically.

3.6.2. Maintainability

The application will come with design documentation and the code is written

according to Object-Oriented Programming and Model-View-Controller to ensure
maintainability and reusability.

User Requirements Specification Document

XXX

3.6.3. Portability

The final deliverable is a program executable on any platform equipped with a Java

Virtual Machine, to make sure that the application is easily portable to other
systems.

User Requirements Specification Document

XXXI

Chapter 4: Use Cases
This chapter describes some use cases of the Modbus HMI and the effects of a user command

on the software program. The use cases are described by the following diagram and table:

Connect to PLC

Read Value

Write Value

Disconnect from PLC

Connect Function

Read Function

Write Function

Custom Message Function

Disconnect Function

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Send Custom Message

Use case ID 1

Use case name Connect to PLC

Goal Create a connection to PLC

Actor User

Pre-condition HMI is not connected yet

User actions 1. User clicks Connect in menu bar.

2. User inputs PLC’s IP address and port.

3. User clicks Connect.

4. Connect window will close and application will be connected with PLC.

Effect The HMI will be connected with the PLC.

The HMI starts reading values from device.

Note If the PLC does not exist or input values are wrong, device might not be
connected

Use case ID 2

Use case name Read Value

Goal Reads value from PLC

Actor User

Pre-condition HMI is connected with PLC

User actions 1. User clicks Read in menu bar.

User Requirements Specification Document

XXXII

2. User inputs address to read from PLC.

3. User clicks Read.

4. The application will show value on corresponding address.

Effect HMI shows values on address desired

Note If the PLC address entered is out of range an exception will be raised

Use case ID 3

Use case name Write Value

Goal Writes value to PLC

Actor User

Pre-condition HMI is connected with PLC

User actions 1. User clicks Write in menu bar.

2. User inputs address and value to write to PLC.

3. User clicks Write

4. The application will show notification that the operation is done.

Effect PLC value on specified address is changed

Note If the PLC address entered is out of range an exception will be raised

Use case ID 4

Use case name Send Custom Message

Goal Sends custom message to PLC

Actor User

Pre-condition HMI is connected with PLC

User actions 1. User clicks Test in menu bar.

2. User selects “Custom Message”.

3. User specifies message to send to PLC.

4. User clicks Execute.

5. The application will show notification that the operation is done.

Effect The response of the PLC cannot be predicted

Extensions This option could crash the PLC

Use case ID 5

Use case name Disconnect

Goal Release connection from PLC

Actor User

Pre-condition HMI is connected with PLC

User actions 1. User clicks Disconnect in menu bar.

2. The HMI will disconnect from PLC.

Effect The PLC will be disconnected.

Extensions After disconnecting, the user cannot do any functions on PLC

User Requirements Specification Document

XXXIII

Reference
Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems (IDC Technology) by

Gordon Clarke CP Eng BEng MBA, Deon Reynders Pr Eng BSc (ElecEng) (Hons) MBA.

Reference

number

Source URL Address Description

1 Wikipedia http://en.wikipedia.org/wiki/Modbus

Modbus protocol
description

2 Modbus
Organization

site

http://www.modbus.org/docs/Modbus
_Application_Protocol_V1_1b.pdf

Modbus protocol
specification

3 Wikipedia http://en.wikipedia.org/wiki/Iterative_
and_incremental_development

Iterative
development

method

4 Wikipedia http://en.wikipedia.org/wiki/Applicatio

n_programming_interface

API

5 Wikipedia http://en.wikipedia.org/wiki/Cloud_co
mputing

Cloud

6 Wikipedia http://en.wikipedia.org/wiki/Dynamic-
link_library

DLL

7 Wikipedia http://en.wikipedia.org/wiki/Industrial

_Control_System

ICS

8 Wikipedia http://en.wikipedia.org/wiki/Graphical

_user_interface

GUI

9 Wikipedia http://en.wikipedia.org/wiki/Human_m
achine_interface

HMI

10 SourceForge http://jamod.sourceforge.net/ Jamod

11 Wikipedia http://en.wikipedia.org/wiki/Java_(pro
gramming_language)

Java

12 Wikipedia http://en.wikipedia.org/wiki/JavaFX JavaFX

13 Wikipedia http://en.wikipedia.org/wiki/Linux Linux

14 Wikipedia http://en.wikipedia.org/wiki/Model-

view-controller

MVC

15 Wikipedia http://en.wikipedia.org/wiki/Object-
oriented_programming

OOP

16 Wikipedia http://en.wikipedia.org/wiki/OS_X OS X

17 Wikipedia http://en.wikipedia.org/wiki/PLC PLC

18 Wikipedia http://en.wikipedia.org/wiki/SCADA SCADA

19 Wikipedia http://en.wikipedia.org/wiki/JavaFX Scene Builder

20 Wikipedia http://en.wikipedia.org/wiki/Microsoft
_Windows

Windows

User Requirements Specification Document

XXXIV

Appendix D: Software Design Document Modbus HMI Application

User Requirements Specification Document

XXXV

SOFTWARE DESIGN DOCUMENT

Human-Machine Interface for Modbus Application Protocol

SecurityMatters

2014

User Requirements Specification Document

XXXVI

Table of Contents

Chapter 1: Introduction ..XXXVIII

1.1. Purpose..XXXVIII

1.2. Structure of the Document ..XXXVIII

1.3. Definitions and Acronyms ...XXXVIII

1.3.1. Java ..XXXVIII

1.3.2. Object-Oriented Programming .. XXXIX

1.3.3. Model-View-Controller .. XXXIX

1.3.4. Graphical User Interface.. XXXIX

1.3.5. JavaFX ... XXXIX

1.3.6. Scene Builder .. XXXIX

1.3.7. Industrial Control System ... XL

1.3.8. SCADA .. XL

1.3.9. PLC ... XL

1.3.10. Human-Machine Interface .. XL

1.3.11. Modbus .. XL

1.3.12. Java Modbus Library.. XL

Chapter 2: Software Overview .. XLI

2.1. Context... XLI

2.2. Functionalities.. XLI

2.3. Design .. XLI

Chapter 3: Software Design.. XLII

3.1. Software Design .. XLII

3.2. Assumptions and Dependencies .. XLIII

3.3. Design Rationale ... XLIII

Chapter 4: Graphical User Interface.. XLIV

4.1. Overview of User Interface ... XLIV

4.2. Screen Images ... XLIV

4.3. Screen Objects and Actions ... XLVII

Chapter 5: Class Design ... XLVIII

Chapter 6: Sequence Diagrams ... LIII

6.1. Connect to PLC ... LIII

6.2. Disconnect from PLC... LIII

6.3. Auto Mode Activation .. LIV

User Requirements Specification Document

XXXVII

6.4. Manual Mode Activation ... LIV

6.5. Read Discrete Input or Coil Status from PLC .. LV

6.6. Write Single or Multiple Discrete Input Status to PLC .. LV

6.7. Read Input or Holding Registers Value from PLC ... LVI

6.8. Write Holding Register Value to PLC ... LVI

6.9. Send Custom Command to PLC ... LVII

Chapter 7: Development Methodology ... LVIII

Reference .. LX

Appendix ... LXI

Appendix A: Address Table... LXI

User Requirements Specification Document

XXXVIII

Chapter 1: Introduction
1.1. Purpose

This design document describes the architecture and system design of the Modbus

Human-Machine Interface software built for SecurityMatters BV, as a part of the
graduation project “Setting up an Industrial Control Systems Cybersecurity Simulation

Laboratory”.
This document is intended to be read by:

- All responsible for further development of this application.

1.2. Structure of the Document

This document is structured as follows:

- Section 1.3 contains a glossary of pertinent terms and abbreviations.

- Chapter 2 provides a general overview of the software.

- Chapter 3 describes the software design.

- Chapter 4 describes the user interface design.

- Chapter 5 describes the software classes.

- Chapter 6 provides a sequence diagram of the software.

- Chapter 7 describes the development methodology adopted.

1.3. Definitions and Acronyms

The concepts and acronyms used in this document are described as follows:

1.3.1. Java

Java is an object-oriented programming language developed by Sun Microsystems.
Java is available for almost every device in market. The most fascinating feature

from Java is its ability to run on multiple platforms as long as there is a Java Virtual
Machine installed.

User Requirements Specification Document

XXXIX

1.3.2. Object-Oriented Programming

Object-Oriented Programming is a programming paradigm that considers the main

elements of a program as an “object” with specific functionalites. This paradigm is
widespread as it promotes and facilitates software reusability. By using Object

Oriented Programming, programmers do not have to rewrite the same code for the
same function in their programs.

1.3.3. Model-View-Controller

Model-View-Controller is a programming pattern for Object-Oriented

Programming that separates the application logic from the Graphical User
Interface. By splitting application logic and user interface, developers have more

flexibility on expanding an application in the future. As the name suggests, the
pattern involves the interaction of three (classes of) components: a Model, a View,

and a Controller. The Model is in charge of representing and managing the
information required by the system; the View renders the interface which enables

the user to interact with the program; finally, the Controller contains the logic of
the program and translates user/system input into the output to be rendered by the

View.

1.3.4. Graphical User Interface

A Graphical User Interface is an interface that allows users to interact with a
program using graphics.

1.3.5. JavaFX

JavaFX is a platform for creating Graphical User Interface applications through a

Java library. JavaFX is platform independent like Java. JavaFX intends to replace
the older “Swing” platform in the future because of its larger set of capabilities

compared with the latter.

1.3.6. Scene Builder

Scene Builder is a component of JavaFX that allows to design Graphical User

Interfaces without extensive knowledge of the underlying code. Scene Builder

User Requirements Specification Document

XL

offers a drag and drop designer interface and will produce FXML files used by
JavaFX.

1.3.7. Industrial Control System

Industrial Control System is a general term used to encompass control systems used
in industrial environments, including Supervisory Control and Data Acquisition

(SCADA) systems and as well as Programmable Logic Controllers (PLCs).

1.3.8. SCADA

SCADA is a way to monitor, control, and acquire data from remote controllers and
field devices. SCADA consists of industrial hardware and software components.

1.3.9. PLC

A component which contains the logic to determine outputs as the programmed
consequence of inputs from the sensors.

1.3.10. Human-Machine Interface

A software built to monitor and interact with PLCs. HMIs are usually custom built

according to user needs and the needs of the application domain. Example of
commercial HMIs include: WinCC by Siemens, RSView by Rockwell Automation,

and DigiVis500/Network Managers by ABB.

1.3.11. Modbus

Modbus is an application protocol used in Industrial Control System or SCADA

systems, originally developed by Modicon. Modbus uses Master-Slave paradigm
as a way to communicate between devices. Modbus can be used both in serial and

TCP/IP based communications (Modbus/TCP). In this documents we will focus on
the latter.

1.3.12. Java Modbus Library

Java Modbus Library, known as Jamod, is an open source Java library which

implements Modbus functionalities.

User Requirements Specification Document

XLI

Chapter 2: Software Overview

2.1. Context

SecurityMatters is a start-up company which focuses on network monitoring and

intrusion detection systems. Their products aim at securing industrial processes from
cyberthreats. As a company which focuses on security, SecurityMatters needs

instruments for demonstrating the capabilities of its technology to its prospect.
Currently, the company has a Human-Machine Interface communicating with real and

simulated PLCs using MMS and IEC 61850 protocols.
The software described in this document has been built to expand the company’s

demonstration instruments to support Modbus/TCP protocol as well.

2.2. Functionalities

The HMI for Modbus application protocol is built with the following functionalities in
mind:

1. As a Human-Machine Interface application that will be able to communicate using
Modbus protocol.

2. As a demo instrument for Modbus protocol.
3. As a PLC vulnerability tester on some attack scenarios.

2.3. Design

The HMI was designed with Object-Oriented Programming and Model-View-
Controller pattern in mind to ensure modularity and reusability. More details on the

software design will be provided in coming chapters.

User Requirements Specification Document

XLII

Chapter 3: Software Design

3.1. Software Design

The HMI was developed using Java as programming language, and using JavaFX as

Graphical User Interface platform. The HMI’s development is based on Object-
Oriented Programming and Model-View-Controller programming pattern. Both

patterns will allow easier programming progress for present and future development.

The implementation using Object-Oriented Programming pattern is mainly on the
Modbus application protocol classes, which implement functions from Jamod library

to allow easier access to Modbus functions.

The implementation of Model-View-Controller pattern applied to this application
resulted in Controllers and Model written in Java programming language, and the View

part written in JavaFX language.

To design the Graphical User Interface, Scene Builder, a component of JavaFX was
used to ensure effective and efficient design process. Moreover, this is the newest Java

platform for drawing Graphical User Interface resulting in a future-proof and modern
interface that can run seamlessly on other machines that support Java.

Below is the diagram of the software components from the Model-View-Controller

point of view. The JavaFX view component will be detailed in Chapter 4, while
Modbus model and controller classes will be detailed in Chapter 5.

View
FXML/ JavaFX

Controller
Java Logic

Model

There is no data storage part in this application, because the function of the HMI is to

collect and send real-time data from PLCs using Jamod library via Modbus/TCP
protocol. Overall, the process consists mainly of querying and translating data from a

PLC which is connected to the Human-Machine Interface application.

User Requirements Specification Document

XLIII

PLC / PLC Simulator

Internet Protocol
Modbus/TCP Message

View
FXML/ JavaFX

Controller
Java Logic

Model

Human-Machine Interface Application

Library

Jamod

User

3.2. Assumptions and Dependencies

This application depends on a few software components. Such components need to be
installed by the user on the system where the HMI should run. Those software

dependencies are:
1. Java Runtime Environment.

2. Programmable Logic Controller:

A real or simulated PLC program must be running and connected to the same
network as the HMI software.

3.3. Design Rationale

The design of the HMI aims at providing users with a comprehensive yet easy to

understand tool for simulating an industrial process and demonstrating the capabilities
of the company’s products. Few more things are taken into considerations as well:

1. Cross platform interoperability.
2. Availability of libraries and APIs.

3. Expandability in the future.

During the development phase of this application, different combinations of
components were tested, such as C++ programming language with Libmodbus library,

as well as several libraries in java, including modbus4j and jamod2. At the end, the
Java-jamod combination was selected because of requirements and feasibility of

development itself.

User Requirements Specification Document

XLIV

Chapter 4: Graphical User Interface

4.1. Overview of User Interface

The Graphical User Interface represents an industrial water boiler controller through

which the user can modify the boiler operation, and is designed with two main concepts
in mind:

1. Ease of understanding and use, to make sure the audience of demonstrations will
understand the operations being executed.

2. Resemblance of the Graphical User Interface look and feel with that of existing
industrial HMIs.

Below is the screenshot of the main screen of the HMI:

4.2. Screen Images

Below are some screenshots of the main HMI windows and a short description of the

functionality of each window:

User Requirements Specification Document

XLV

Main working window in case PLC is connected.

The window for connecting to PLC.

The window for reading input and holding register values from PLC.

The window for writing holding register values to PLC.

User Requirements Specification Document

XLVI

The window for sending test commands to PLC.

The window for setting level thresholds to PLC.

User Requirements Specification Document

XLVII

4.3. Screen Objects and Actions

The interface objects with which the user can interact are designed to be intuitive, and

to every action carried out by the user the interface will provide feedback, to make sure
that the user understands that the action requested has been accomplished.

Main menu, used to access main functions of the HMI.

Valves, which the user can open/close (i.e. send on/off value to PLC) upon clicking.

Warnings and notifications to users in case the values sent to the PLC are incomplete

or incorrect, or have been correctly received.

User Requirements Specification Document

XLVIII

Chapter 5: Class Design
The operation of the HMI is achieved by the interaction of a number of Java classes. The Model

component consists of the Modbus class for translating user requests into commands for PLC
and translating values from PLC to Graphical User Interface values. The controller controls

each of view part of the HMI. Below are the classes involved and descriptions of the class:

View

connect.fxml
home.fxml

Controller

ConnectController.java
HomeController.java

Model

Modbus.javalevel_thresholds.fxml
read.fxml

warning.fxml
write.fxml

test.fxml

LevelThresholdsController.java
ReadController.java
TestController.java
WarningController.java
WriteController.java

Class name: Modbus

Description: The Modbus class is the interface with the Jamod library. This class is also

responsible for preparing values needed for every Jamod transaction

Methods (operations) Method Description

connect(String ipIn)

connect(String ipIn, String portIn)

A method to initiate connection with a PLC device.

customWrite(byte[] Value) A method to write data in bytes to PLC.

disconnect() A method to disconnect a PLC device.

f01ReadCoil(String readAddress)

f01ReadCoils(String readAddress,
String countValue)

A method to perform read coil(s) operation on

PLC.

f02ReadDiscreteInput(String

readAddress)
f02ReadDiscreteInputs(String

readAddress, String countValue)

A method to perform read discrete input(s)

operation on PLC.

f03ReadHoldingRegister(String

readAddress)
f03ReadHoldingRegisters(String

readAddress, String countValue)

A method to perform read holding register(s)

operation on PLC.

f04ReadInputRegister(String
readAddress)

f04ReadInputRegisters(String
readAddress, String countValue)

A method to perform read input register(s)
operation on PLC.

f05WriteCoil(String writeAddress,
Boolean value)

A method to perform write coil operation on PLC.

f06WriteHoldingRegister(String

writeAddress, Boolean walue)

A method to perform write register operation on

PLC.

f15WriteCoils(String

writeAddress, String value)

A method to perform write coils operation on PLC.

User Requirements Specification Document

XLIX

f16WriteHoldingRegister(String

ReadAddress, String[] Value)

A method to perform write registers operation on

PLC.

getIp() A method that returns IP address written on

Modbus class.

getPort() A method that returns port number written on
Modbus class.

warning(String val1) A method to show warning window along with
specified message.

Class name: ConnectController

Description: The ConnectController class is the controller of connect.fxml and
reconnect.fxml view, which is used get parameters for connecting and reconnecting a

PLC.

Methods (operations) Method Description

connect(String ipIn)

connect(String ipIn, String portIn)

A method to send needed parameters and

command for connect() method in Modbus class.
Whenever connection succeeded, parameters used

will be saved.

setStage(HomeController

t21,Stage temp1)

A method to initialize connect window and

receiving needed parameters from previous
controller. This method also reads a last succeeded

connection parameter file if that exists.

setStageDirect(HomeController
t21,Stage temp1)

A method to initialize reconnect window and timer
countdown.

timerIteration() A method to show countdown timer in UI and
defines action needed to reconnect.

Class name: HomeController

Description: The HomeController class is the controller of home.fxml view, which
controls all control and notifications for user.

Methods (operations) Method Description

automode() A method to turn on auto mode for PLC.

connected() A method to enable Graphical User Interface

elements for PLC functions

disconnect() A method to enable Graphical User Interface
elements for PLC functions.

initialize(URL url,
ResourceBundle rb)

A method to initialize controller, including timers
on controller.

manualmode() A method to turn off auto mode for PLC.

pauseread() A method to turn off automatic value reading.

read() A method to read corresponding values from PLC.

readOnce() A method to read corresponding values from PLC

once.

reconnect() A method to initialize reconnect function in case
connection dropped.

User Requirements Specification Document

L

resumeRead() A method to turn on automatic value reading.

setStage(Stage temp) A method to initialize the main window, including
disable Graphical User Interface elements until

PLC connected.

showConnect() A method to show connect window.

showRead() A method to show read window.

showTank() A method to show tank level thresholds window.

showTemp() A method to show temperature thresholds
window.

showTest() A method to show test window.

showWrite() A method to show write window.

shutdown() A method to destroy running treads for the
application in the system.

tankLampOff() A method to set tank level alarm image black.

tankLampOn(Image im) A method to set tank level alarm image with
specified image.

tempLampOff() A method to set temperature level alarm image
black.

tempLampOn(Image im) A method to set temperature level alarm image

with specified image.

toggleHeater() A method to turn heater on or off.

toggleInValve() A method to turn input valve on or off.

toggleOutValve() A method to turn input valve on or on.

Class name: LevelThresholdsController

Description: The LevelThresholdsController class is the controller of

level_thresholds.fxml view, which controls both temperature and tank level threshold
values.

Methods (operations) Method Description

comparevalue(String[] values,
String offsetAddr)

A method to verify values written with requested
value.

condition(String[] values) A method to verify whether values on text field are
correct.

save(String[] values, String

offsetAddr)

A method to send needed parameters and

command for saving the values on PLC.

setStage(HomeController t2,Stage

temp, String alarmLimitIn, String
offsetAddrIn)

A method to initialize window and receiving

needed parameters from previous controller.

Class name: ReadController

Description: The ReadController class is the controller of read.fxml view, which controls
read input and holding register functions.

Methods (operations) Method Description

f03ReadHoldingRegister(String
addr)

A method to initiate read a value from PLC.

User Requirements Specification Document

LI

f04ReadInputRegister(String addr)

setStage(HomeController t21,
Stage temp)

A method to initialize window and receiving
needed parameters from previous controller.

setvalue(String val) A method to set Graphical User Interface elements

according to value received.

Class name: TestController

Description: The TestController class is the controller of test.fxml view, which controls
test interface.

Methods (operations) Method Description

custom(String valText) A method to send custom message to PLC.

f01ReadCoil(String addr) A method to send needed parameters and
command to read coil action on PLC.

f02ReadDiscreteInput(String addr) A method to send needed parameters and
command to read discrete input action on PLC.

f03ReadHoldingRegister(String

addr0

A method to send needed parameters and

command to read holding register action on PLC.

f04ReadInputRegister(String addr) A method to send needed parameters and

command to read input register action on PLC.

f05WriteCoil(String addr, Boolean
val)

A method to send needed parameters and
command to write coil action on PLC.

f06WriteHoldingRegister(String
addr, String val)

A method to send needed parameters and
command to write holding register action on PLC.

f15WriteCoils(String addr, String

val)

A method to send needed parameters and

command to write coils action on PLC.

f16WriteHoldingRegisters(String

offsetAddr, String[] values)

A method to send needed parameters and

command to write holding registers action on PLC.

hexStringToByteArray(String s) A method to change string recived to byte of
hexadecimal data type.

setRadio(Boolean tempBool) A method to set radio button according value
received from PLC.

setStage(HomeController t2,Stage

temp)

A method to initialize window and receiving

needed parameters from previous controller.

Class name: WarningController

Description: The WarningController class is the controller of warning.fxml view, which
controls all notifications for user.

Methods (operations) Method Description

setStage(String text1) A method to set warning message.

Class name: WriteController

Description: The WriteController class is the controller of write.fxml view, which
controls all notifications for user.

Methods (operations) Method Description

User Requirements Specification Document

LII

comparevalue(Stromg add, String

val, String com)

A method to verify values written with requested

value.

setStage(HomeController t2, Stage

temp)

A method to initialize window and receiving

needed parameters from previous controller.

f06WriteHoldingRegister(String
add, String val)

A method to send needed parameters and
command for saving the values on PLC.

User Requirements Specification Document

LIII

Chapter 6: Sequence Diagrams
Below are the sequence diagrams that illustrate the operation of the application in response to

user actions.

6.1. Connect to PLC

To connect to a PLC, the user will have to specify the IP address and port (optional) of

the PLC. Clicking connect will send those parameters to the ConnectController class,
and ConnectController will pass those values to the Modbus class. Then, modbus.java

model will send needed commands to the PLC and reads the PLC’s response. When
the connection is established, the Modbus class will return “Connect Success” message

as a reply to ConnectController.java.
Upon receiving success confirmation from the Modbus class, ConnectController will

close Connect.fxml view and calls connected() method from call HomeController to
start reading values from PLC.

Actor
View

Connect.fxml
Controller

ConnectController.java

Click Connect

Model
modbus.java

Connect(String ipin) or Connect(String ipin, portin)

ConnectButton

HomeControlller.connected()

Return "Connect Success"

Input PLC IP Address

Input Port(Optional)

Controller
HomeController.java

View
Home.fxml

Show Parent Stage

Display Home Screen

6.2. Disconnect from PLC

To disconnect the PLC, the user can click the disconnect button on the menu. The
disconnect() method will be initiated in class HomeController and class modbus. Since

disconnection does not have return value, HomeController will directly disable the
interaction of the Graphical User Interface with the PLC.

User Requirements Specification Document

LIV

Actor
View

Home.fxml
Controller

HomeController.java
Model

modbus.java

Disconnect()

Disconnect()

Click Disconnect

Display Default Values

Disconnect()

6.3. Auto Mode Activation

The application features an “auto mode” that simulates the industrial process by
automatically issuing commands to the PLC. To activate auto mode, the user can click

the auto mode menu item. The autoMode() method will be initiated in class
HomeController, then method f06(AutoAddress,”1”) will be invoked from class

Modbus to turn on auto mode flag on the PLC.

Actor
View

Home.fxml
Controller

HomeController.java
Model

modbus.java

f06(AutoAddress, "1")

AutoMode()

Click Auto Mode

Display Home Screen

Show Auto Mode

6.4. Manual Mode Activation

To activate manual mode, the user can click manual mode on menu. The manualMode()
method will be initiated in class HomeController, then f06(AutoAddress,”0”) method

and parameters will be sent to Modbus class to turn off auto mode flag on the PLC.

User Requirements Specification Document

LV

Actor
View

Home.fxml
Controller

HomeController.java
Model

modbus.java

f06(AutoAddress,"0")

ManualMode()

Click Manual Mode

Display Home Screen

Show Home Screen

6.5. Read Discrete Input or Coil Status from PLC

To read discrete input or coil status from the PLC, the user must select test menu from

home screen and then the user can input the address that she wants to read and click
the read button. The parameter will be sent to CustomController class and forwarded

to class modbus. The result value is returned to the controller which will initiate the
function to display the result on the Graphical User Interface.

Actor
View

custom.fxml

Controller
Custom

Controller.java

Click Read

Model
Modbus.java

f01(String ReadAddress) /
f02(String ReadAddress)

ExecuteButton

View
home.fxml

Controller
HomeController.java

Click Test Menu

showTest()

setStage(final HomeController t2,Stage temp)

stage.show()

Return Boolean Result

Show value to user

Select custom function and input values

Waiting for user input

setRadio(bool tempBool)

6.6. Write Single or Multiple Discrete Input Status to PLC

To write single or multiple discrete input status to the PLC, the user must select test
menu from home screen first and then the user can input the destination address along

with status desired and click the write button. The parameter will be sent to class
CustomController and forwarded to Modbus class. Then a notification message will be

shown to user.

User Requirements Specification Document

LVI

Actor
View

custom.fxml

Controller
Custom

Controller.java

Click Write

Model
Modbus.java

f05(String Address, Boolean Value) /
f15(String Address, String Values)

ExecuteButton

View
home.fxml

Controller
HomeController.java

Click Test Menu

showTest()

setStage(final HomeController t2,Stage temp)

stage.show()

View
warning.fxml

Controller
Warning

Controller.java

Return Boolean Result

setStage(String message)

Stage.show()

Show notification to user

Select custom function and input values

Waiting for user input

6.7. Read Input or Holding Registers Value from PLC

To read input or holding registers value from the PLC, the user must select read menu

and then can input the mode and address that the user wants to read and click the read
button. The parameters will be sent to class ReadController and forwarded to Modbus

class. The result value is returned to the controller, then the controller will initiate the
function to display the result value on the Graphical User Interface.

Actor
View

read.fxml

Controller
Read

Controller.java

Click Read

Model
Modbus.java

ReadButton

View
home.fxml

Controller
HomeController.java

Click Read

showRead()

setStage(final HomeController t2,Stage temp)

stage.show()

Input mode address

Waiting for user input

f03ReadHoldingRegister(String Address)/
f04ReadInputRegister(String Address)

Return String Value

SetValue(String value)

Show value to user

6.8. Write Holding Register Value to PLC

To write holding register values to the PLC, the user must select write menu from home
screen and then can input the destination address along with value desired and click the

write button. The parameter will be sent to class WriteController and forwarded to

User Requirements Specification Document

LVII

Modbus class. Right after the command is sent, a read holding register function is also
sent to verify the value written. If the written value and specified value match, the

Graphical User Interface will show a success notification.

Actor
View

write.fxml

Controller
Write

Controller.java

Click Write

Model
Modbus.java

f06WriteHoldingRegister(String WriteAddrss, String Value)

WriteButton

View
home.fxml

Controller
HomeController.java

Click Write

showWrite()

setStage(final HomeController t2,Stage temp)

stage.show()

View
warning.fxml

Controller
Warning

Controller.java

setStage(String message)

Stage.show()

Show notification to user

Input write address and value

Waiting for user input

f03ReadHoldingRegister(String Address)

Return String Value

compareValue()

6.9. Send Custom Command to PLC

To send custom commands to the PLC, the user must select test menu from home screen
first, and then user can input the hexadecimal message and click the write button. The

parameter will be sent to class CustomController and forwarded to Modbus class and
Modbus class will return the result to CustomController. CustomController will invoke

Warning controller class and view to send notification to user.

Actor
View

custom.fxml

Controller
Custom

Controller.java

Click Write

Model
Modbus.java

custom(byte[] Value)

ExecuteButton

View
home.fxml

Controller
HomeController.java

Click Test Menu

showTest()

setStage(final HomeController t2,Stage temp)

stage.show()

View
warning.fxml

Controller
Warning

Controller.java

Return Boolean Result

setStage(String message)

Stage.show()

Show notification to user

Select custom function and input message

Waiting for user input

User Requirements Specification Document

LVIII

Chapter 7: Development Methodology
The application has been developed using an iterative development method. More precisely,

the implementation is achieved by the iteration of the following steps:
1. Defining Requirements

2. Analysis and Design

3. Implementation

4. Testing

5. Evaluation

The first iteration concerned the implementation of jamod2 functionalities in a Java command

line-based application to do simple queries to a PLC.

The second iteration saw the implementation of a simple Graphical User Interface interfacing

with the jamod2 library.

Finally, in the third iteration the final water boiler environment along with full jamod2 library

functionalities was implemented.

User Requirements Specification Document

LIX

User Requirements Specification Document

LX

Reference
Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems (IDC Technology) by

Gordon Clarke CP Eng BEng MBA, Deon Reynders Pr Eng BSc (ElecEng) (Hons) MBA.

Reference
number

Source URL Address Description

1 Wikipedia http://en.wikipedia.org/wiki/Modbus

Modbus protocol

description

2 Modbus

Organization
site

http://www.modbus.org/docs/Modbus

_Application_Protocol_V1_1b.pdf

Modbus protocol

specification

3 Wikipedia http://en.wikipedia.org/wiki/Iterative_

and_incremental_development

Iterative

development
method

4 Wikipedia http://en.wikipedia.org/wiki/Applicatio
n_programming_interface

API

5 Wikipedia http://en.wikipedia.org/wiki/Cloud_co

mputing

Cloud

6 Wikipedia http://en.wikipedia.org/wiki/Dynamic-

link_library

DLL

7 Wikipedia http://en.wikipedia.org/wiki/Industrial
_Control_System

ICS

8 Wikipedia http://en.wikipedia.org/wiki/Graphical
_user_interface

GUI

9 Wikipedia http://en.wikipedia.org/wiki/Human_m

achine_interface

HMI

10 SourceForge http://jamod.sourceforge.net/ Jamod

11 Wikipedia http://en.wikipedia.org/wiki/Java_(pro

gramming_language)

Java

12 Wikipedia http://en.wikipedia.org/wiki/JavaFX JavaFX

13 Wikipedia http://en.wikipedia.org/wiki/Linux Linux

14 Wikipedia http://en.wikipedia.org/wiki/Model-
view-controller

MVC

15 Wikipedia http://en.wikipedia.org/wiki/Object-

oriented_programming

OOP

16 Wikipedia http://en.wikipedia.org/wiki/OS_X OS X

17 Wikipedia http://en.wikipedia.org/wiki/PLC PLC

18 Wikipedia http://en.wikipedia.org/wiki/SCADA SCADA

19 Wikipedia http://en.wikipedia.org/wiki/JavaFX Scene Builder

20 Wikipedia http://en.wikipedia.org/wiki/Microsoft

_Windows

Windows

User Requirements Specification Document

LXI

Appendix

Appendix A: Address Table
During the development of Modbus Human-Machine Interface Software, some changes were done

on the content of the PLC Simulator addresses. The new content of the PLC addresses is as follows:

Analog Inputs
tankLevelAddr = 10

fluidTemperatureAddr = 11

Holding Registers
heatingCounterAddr = 0

coolingCounterAddr = 1

fillingMeterAddr = 10

heatingMeterAddr = 11

drainMeterAddr = 12

tankLevelHighAddr = 20

tankLevelHighHighAddr = 21

tankLevelHighHighHighAddr = 22

tankLevelMinAddr = 23

tankLevelMaxAddr = 24

fluidTemperatureHighAddr = 30

fluidTemperatureHighHighAddr = 31

fluidTemperatureHighHighHighAddr = 32

fluidTemperatureMinAddr = 33

fluidTemperatureMaxAddr = 34

inputValveOpenAddr = 40

heaterOnAddr = 41

outputValveOpenAddr = 42

autoModeAddr = 50

initAddr = 60

