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Preface
This research began with Radboud Universitair Medisch Centrum’s goal of cre-
ating a lasting, innovative, and affordable healthcare system. My interest in
machine learning and data analysis led me to join this cause, driven by a pas-
sion to improve lives in the non-commercial or public sector. I’m dedicated not
only to discovering but also to developing tools that explore the possibilities of
machine learning in medical care.

I could not have achieved my results and concluded this research without
the excellent help of my supervisors, René Monshouwer and Martijn Kusters
who provided advice and guidance throughout the research process.

Contents
1 Introduction 8

2 Radboudumc 8
2.1 Radiotherapy department . . . . . . . . . . . . . . . . . . . . . . 9

3 Patient process 9
3.1 Complaints and symptoms . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Post-treatment follow-up . . . . . . . . . . . . . . . . . . . . . . . 10

4 Project description 10
4.1 Project goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Patient collected data . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Available data sources 12
5.1 CASTOR, Patient’s General Treatment and Toxicity Information 12
5.2 RTHweb, patient’s basic information . . . . . . . . . . . . . . . . 12
5.3 Basisregistratie personen (BRP), patient’s survival status . . . . 12
5.4 DICOM, patient’s radiotherapy radiomics . . . . . . . . . . . . . 12

6 Standardizing values tool 13

7 Data preparation 13
7.1 Multiple treatments . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.2 DICOM long to wide format . . . . . . . . . . . . . . . . . . . . . 14
7.3 Combining data sources . . . . . . . . . . . . . . . . . . . . . . . 14

4



8 Lung cancer SBRT survival research 14
8.1 Methods and materials . . . . . . . . . . . . . . . . . . . . . . . . 16
8.2 treatment planning and delivery . . . . . . . . . . . . . . . . . . 16
8.3 Dosimetric parameters . . . . . . . . . . . . . . . . . . . . . . . . 18
8.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

9 Lung Cancer Survival Prediction Model 22
9.1 Choosing the Best Classifier . . . . . . . . . . . . . . . . . . . . . 22

9.1.1 Why Random Forest Was Disregarded . . . . . . . . . . . 23
9.1.2 Feature Analysis . . . . . . . . . . . . . . . . . . . . . . . 23

10 Bibliography 31

Summary
Van der Burg’s study delved into the potential connection between overall sur-
vival and patient characteristics, along with radiation dose to the body in lung
cancer patients undergoing various treatment schedules. The cohort, consisting
of 302 patients, was categorized based on treatment schedules, and the Kaplan-
Meier curve illustrated an overall survival average of 62.5% at 2 years. Log-
rank and Wilcoxon methods gauged the calculated probability-value (p-value).
Throughout the curve, spanning from 0 to 2500+ days, no significant survival
difference emerged in either method, leading to the conclusion that different
treatment schedules do not impact the overall survival of lung cancer patients
at any interval.

Cox regression, principal component analysis, and Spearman’s rank-order
correlation were employed to identify data features associated with cancer-
related death. Univariate cox regression analysis pinpointed a significant as-
sociation between cancer-related death and patient’s WHO status, gender, and
dosimetric values such as PTV mean dose, PTV std dose, PTV d2prct_ingy,
PTV v10, PTV v20, PTV v65, lungs maximum dose, oesophagus minimum
dose, oesophagus v25, oesophagus v30, and oesophagus v35. Multivariate cox
regression analysis revealed that patient’s WHO status and oesophagus mini-
mum dosage were significantly linked to an increased cancer-related death, while
female gender was associated with a decreased cancer-related death. Principal
component analysis demonstrated an identical linear distribution for both clas-
sifications (deceased and alive) on a 2D plane. After selecting variables with
over a 1% contribution in principal components 1 and 2, the result was nearly
identical, with only event classification showing a slimmer distribution while
remaining mostly under the no-event classification distribution. Spearman’s
rank-order correlation indicated no correlation between dosimetric parameters
and overall survival.

Six different classifiers (random forest, elastic net logistic regression, neural
net, support vector machine, and LogitBoost) were applied to the entire dataset,
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including follow-up toxicity-related datapoints, and a subset of datapoints avail-
able only post-treatment, excluding most toxicity features. All machine learning
models underwent training and testing with 100 repetitions, 5 inner-folds, and
5 outer-folds. Ranked by AUC score, random forest (RF) and generalized lin-
ear model with elastic net (GLMNET) emerged as the two best discriminators.
Random forest was not further explored due to traceability requirements. The
generalized linear model was fitted by both elastic net regularization and fea-
tures selected from cox regression analysis, principal component analysis, and
Spearman’s rank-order correlation matrix. These features included patient’s
WHO status, gender, and dosimetric values such as PTV mean dose, PTV std
dose, PTV d2prct_ingy, PTV v10, PTV v20, PTV v65, lungs maximum dose,
oesophagus minimum dose, oesophagus v25, oesophagus v30, oesophagus v35,
and oesophagus v65. Both GLM and GLMNET models achieved AUC scores
of 0.72, indicating similar importance values for features. In conclusion, patient
characteristics and radiomics data exhibit predictive values for machine learning
models, although insufficient to establish a fully reliable and accurate machine
learning model.
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Acronyms
DICOM Digital Imaging and Communications in Medicine

EPD Electronic patient’s dossier

BRP (GBA) Basic person registration (Basisregistratie personen)

SBRT Stereotactic body’s radiotherapy

PTV Planned target volume

Oes Oesophagus

Dose STD Dose standard deviation

Toxicity Degree to which irradiation can harm humans and cause effect.

Radiomics data Data features from medical imaging.

SBRT fractioning schema Planned schema of treatment frequency and its
irradiation dosage.

Survival chance Chance of patient’s survival related to health events occur-
ring at specific time.
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1 Introduction
This document provides an in-depth account of a 6-month-long research en-
deavor focused on cancer survival, employing machine learning and data analysis
for classification purposes. While acknowledging that readers unfamiliar with
these fields may find the detailed intricacies challenging, the narrative ensures
clarity in presenting the problem description, initial circumstances, methodol-
ogy, and ultimate conclusions. Chapter 7, titled ”Lung Cancer SBRT Survival
Research,” stands as an independent manuscript intricately woven into this
comprehensive report. Notably, this manuscript, slated for completion, is a
prerequisite for author Van der Burg’s pre-master study in Q3 and Q4 of 2019.

Stereotactic body radiation therapy (SBRT) takes center stage in this re-
search, a technique deployed for treating both primary and secondary lung can-
cers. The benefits of hypo-fractionated radiotherapy in treating lung tumors are
highlighted, emphasizing a condensed treatment course that minimizes clinic
visits compared to conventional programs. Additionally, greater setup preci-
sion allows for a smaller irradiated volume. Citing studies, it is noted that
patients with inoperable non-small cell lung cancer undergoing SBRT exhibit a
notable 55.8% survival rate at 3 years, a marked improvement over the 20%-35%
rate associated with conventional radiotherapy (Timmerman, 2010). However,
potential drawbacks, such as uncertain effects of altered fractionation and the
theoretical risk of altering the normal tissue-to-tumor tissue ratio with higher
doses per fraction, are acknowledged. Notably, doses primarily targeting the
upper heart region in lung cancer patients undergoing SBRT have been linked
to non-cancer-related deaths (Stam, et al., 2016).

This study aims to evaluate the clinical outcomes of overall lung cancer pa-
tient survival under different SBRT fractioning schemas. Given the inherent
difficulty in estimating cancer survival rates and times, especially considering
the multifaceted influence of patient characteristics and treatments, the study
explores the potential of machine learning models in predicting lung cancer
survival duration. The goal is not only to benefit patients by providing pre-
dictive insights but also to offer doctors valuable information on the predictive
values associated with patient characteristics and radiomics data. Beyond its
research focus, this document serves as a comprehensive resource, delving into
the project’s intricacies, work approach, planning, communication agreements,
conclusions, and evaluation.

2 Radboudumc
Radboudumc, Radboud universitair medisch centrum, is an academic hospital
in Nijmegen that collaborates with Radboud university Nijmegen and is part
of the Nederlandse Federatie van Universitair Medische Centra (NFU). UMC
Radboud organization aims to be pioneers in shaping a sustainable, innovative
and affordable health-care system for generations to come. Through a person-
centred and innovative way and in close collaboration with Radboud’s network.
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The hospital has over a thousand beds and about ten thousand employees.
More than three thousand students are trained at Radboudumc in Medicine,
Biomedical studies Sciences, Dentistry, Molecular Mechanisms or Disease and
Quality and Safety in the patient care. (”Over het Radboudumc”, n.d.)

2.1 Radiotherapy department
The department Radiotherapy treats cancer through radiation, called radiother-
apy; destroying cancer cells or inhibiting growth. Sometimes radiotherapy alone
is sufficient, but often a combination of surgery, chemotherapy, or both is used.
Patients who cannot be cured can have their quality of life highly improved by
irradiating painful metastases. (”Over de afdeling”, n.d.)

3 Patient process
Detailing the process how a lung cancer patient is diagnosed and treated and
what data is collected and used in this study.

3.1 Complaints and symptoms
Lung cancer is mainly caused by smoking, responsible for more than 85% of
all lung cancer cases. Tobacco has many different toxic substances which can
lead to a high increase in cancer risk compared to non-smokers. Common lung
cancer symptoms are:

• a cough that doesn’t go away after two or three weeks

• a long-standing cough that gets worse

• persistent chest infections

• coughing up blood

• an ache or pain when breathing or coughing

• persistent breathlessness

• persistent tiredness or lack of energy

• loss of appetite or unexplained weight loss

Source: (”Lung cancer - Causes - NHS”, 2015)
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3.2 Diagnosis
When experiencing these symptoms, the person is examined by a general prac-
titioner, asking about his/her general health and symptoms. A general practi-
tioner may choose to examine further using a spirometer, measuring how much
air the person breathes in and out. Diagnosis is established mostly in two ways;
by X-ray or CT imaging; showing the tumour as a white-grey mass; or by tissue
sample, surgically collecting a sample of the supposed tumour and analysing it
in a lab. Patients treatment, survival and cure chance are mostly determined by
the TNM cancer staging. Categorizing the tumour-size, metastases and lymph
nodes which are all crucial for treatment and survival of the patient. (”Lung
cancer”, 2018)

3.3 Treatment
Patients with non-small-cell lung cancer with no other risks or complications,
used to be operated to surgically remove the tumour and use chemotherapy to
destroy any remaining leftover cancer cells; patients with small-cell lung can-
cer were always treated using radiotherapy as generally the cancer would’ve
already spread to other body parts. (”Lung cancer”, 2018) However, nowadays
both cases are generally always treated using stereotactic body radiotherapy
(SBRT). Which, simply put, is radiotherapy with high precision, thus not dam-
aging healthy tissue. This, relatively new, method allows for the same effective
result compared to conventual treatment methods while decreasing risks, e.g.
infection from surgery. SBRT delivers various fractionated radiation dosages
over multiple sessions (patients are radiated multiple times [over multiple days]
to add to the total required irradiation dosage). There are 4 main treatment
schedules determining the amount of treatment sessions and radiation dosage
given. (”FAQs: SBRT”, n.d.).

3.4 Post-treatment follow-up
The patient can have a follow up 1 week, 2 weeks, 3 weeks, 1 month, 6 months,
12 months and 24 months after the radiotherapy treatment stopped. Consisting
mainly of toxicity (side effects) of the treatment but also general health the
patient answers a questionnaire which the doctor fills in.

4 Project description
Practically all research at a hospital is to find new cures, quality control, improve
patient’s care or improve the hospital processes to provide better care. This
project falls under both quality control and to improve patient’s care.
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4.1 Project goal
Result of this project is to conclude whether the different 4 different treatment
methods, called schedules, have a statistically significant difference in survival
probability and if the patient’s medical data can be used to predict the pa-
tient’s survival. All treatment schedules serve a slightly different purpose but
can be categorized under maximizing survival chance and minimizing toxicity.
By analysing the overall survival rate per schedule, the doctors get insight into
the effectiveness of each schedule which the doctors can use to improve treatment
or better inform their patients. Many patient’s medical and biological charac-
teristics and treatment affect survival chance and time. A machine learning
model to predict lung cancer survival time would not only benefit patients but
also give doctors insight into predictive values of patient’s characteristics and
radiomics data. A successful model also gives doctors an additional objective
source to base their patient’s survival time estimation on.

4.2 Research question
“Are there statistical differences in the survival rate between the different frac-
tionating schedules of stereotactic irradiation treated lung cancer patients, and
can the survival chance and toxicity of the patient be predicted using the pa-
tient’s medical data?” This research question was divided into 4 distinct end
products.

1. Software that can calculate, visualize and plot possible statistical differ-
ences in overall patient survival rate between the different fractioning
schemas.

2. Report (dis)proving a statistical difference in overall survival between the
different fractioning schemas of lung cancer patients.

3. Machine learning model predicting the survival chance of lung cancer pa-
tients.

4. Report detailing whether available data is enough to train an accurate
machine learning model.

4.3 Patient collected data
Data available for this study includes; CT images, stored in DICOM format,
and connected to the patient’s electronic dossier; treatment planning and radi-
ation dosage, extracted from previously mentioned DICOM files; cancer TNM-
staging, detailing information about the tumour, aggression, location and more;
questionnaire whether patient is experiencing side-effects, called toxicity; gen-
eral medical and biological characteristics, such as age and gender. All data was
stored in different formats, datasets, and online location; more dataset details
in the chapter “available data sources”.
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5 Available data sources
5.1 CASTOR, Patient’s General Treatment and Toxicity

Information
Radboud radiotherapy has been using Castor for a few years now. A database
which is tightly connected with forms and access control, aimed in this case at
researches. Administrators and researchers can create forms (questionnaires)
which doctors and patients can fill in, data is immediately stored in an online
database. Each database has access control features allowing other researchers
to read, write and edit the data as well as restrict certain datapoints.

For my research I was given read access to all pseudonymized lung cancer
patients treated with SBRT. Allowing me export of all SBRT patients ever
treated at Radboud while not having access to any direct personal identifying
information. Somewhat identifiable information was still anonymized as much
as possible, e.g. birthdates were converted to numerical age values.

This data source mainly contained data about patient’s toxicity but also
treatment information and patient’s characteristics such as gender.

5.2 RTHweb, patient’s basic information
Formerly used database of the radiotherapy department accessible on the in-
tranet by authorized employees. I did not have access to the online database
web environment; but was given an export of all its data.

This data source was very minimal and most of its datapoints could also
be found in the Castor dataset. However, RTHweb was critical by determining
which treatment was most relevant of patient’s who underwent multiple SBRT
treatments.

5.3 Basisregistratie personen (BRP), patient’s survival sta-
tus

Basisregristratie personen (basic registry of persons), formerly known as GBA
(gemeentelijke basis administratie). All patient’s survival status was requested
at the government which returned a sheet when each patient had died or was
still alive.

Castor also has a patient survival datapoint, more importantly also to what
causes. However, the BRP data source was critical as 75% of the Castor survival
status was unknown.

5.4 DICOM, patient’s radiotherapy radiomics
Text BoxImage result for lung cancer ct scan contouringA CT-scan is made of
each patient, which is stored as a DICOM (Digital Imaging and Communications
in Medicine) file, on which the tumour is visible as a white-grey mass. Doctors
create contourings on each CT slice detailing the tumour and the visible organs
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such as the lungs, heart and oesophagus (ee fig 2. For an example). Allowing
the doctor to create a better treatment plan whereas minimal healthy tissue is
irradiated during the treatment.

Using inhouse software, for each patient’s CT-scan the irradiation amount
of each organ and the tumour received can be calculated. This data source is
critical in creating a machine learning model predicting survival chance as the
treatment is just as important as the tumour itself for predicting survival.

6 Standardizing values tool
Names of all contours drawn by doctors in the DICOM files are filled in by
hand. Each contour drawn is given a descriptive name to identify the contour,
however the doctor can type in anything, resulting in contours of the same area
but given slightly different naming.

After processing DICOM files through the inhouse software, all informa-
tion is extracted as numerical and textual based values and inserted in a SQL
database. A table for all patients and another table with all extracted contours
linked to a treatment plan and a patient. E.g. the contour for tumours is named
PTV (planned target volume) but of all 400 patients, there were 360 unique
names for the PTV. Difference ranging from upper- and lowercase letters, names
including radiation dosage, incorrect spelling, and many more; resulting in the
same contour area across different DICOM files being named different.

Text BoxTo tackle this problem, a Java GUI application was developed where
you can select a CSV file (exporting the database to csv) and select a column.
All the distinct column values are displayed, the user can select which values
are equal and should have the same value.

After using the Java tool all contours of the same drawn area now have the
same name and can be used in data analysis.

7 Data preparation
Four different datasets, CASTOR, RTHweb, BRP and DICOM files, all were
combined into one dataset to make data analysis simpler. Unfortunately, not
all datasets could easily be joined by a universal identifier. Castor dataset
contains the most usable values of all datasets thus the plan was to join all other
datasets to castor. However, the patient number in Castor was automatically not
accessible to me due to privacy restrictions, its unique identifier was a generated
auto increment number which could not be directly linked to a patient. Another
dataset, a link table, was given to me which connected all Castor records to a
patient number.

7.1 Multiple treatments
Each treatment record is only connected to a patient number; patients who
underwent multiple treatments are only distinguishable by their values and not
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an identifier. Same applies to the RTHweb dataset, treatments are linked to a
patient but do not have an identifier. Even worse, not every listed treatment
in both datasets existed in the other datasets, e.g. a patient might have had a
SBRT treatment according to the castor dataset but not according to RTHweb
dataset. For each treatment in Castor a treatment of the same patient in RTH-
web was attempted to be joined by the dates of treatment. The most recent
treatment is selected and all treatments within 14 days fill in missing values
and aggregate multiple parameters into one. Patients who underwent multiple
treatments are not only difficult to join to other data sources but also raise a
statistical analysis worry; multiple treatments mean a higher total dose to the
patient, influencing the survival probability. This issue was chosen to be ignored
as it complicates the research too much in respect to time available.

7.2 DICOM long to wide format
After using inhouse software on all DICOM files, an SQL database is created
with all its relevant values. All contouring area values of these files were exported
to CSV. Result dataset was in long format, one record per contour. Other
datasets had 1 record per treatment or patient thus the DICOM dataset was
converted from long to wide format, turning all rows per CT- scan into columns.
Now one record per treatment exist with all dosage parameters.

7.3 Combining data sources
All datasets (CASTOR, RTHweb, BRP and DICOM files) now each contain one
record for every patient with the most recent or aggregate treatment informa-
tion. By inner joining the various datasets one final dataset rolls out containing
all patient’s information, toxicity information, treatment information and ap-
plied radiation dosages.

8 Lung cancer SBRT survival research
The primary objective of this investigation is to explore potential associations
between overall survival and the dosage administered to the planned target
volume (PTV), lungs, heart (sub)structures, and the esophagus. This exami-
nation focuses on patients with early-stage and locally-advanced non-small-cell
lung carcinoma (NSCLC) and small-cell lung carcinoma (SCLC) who underwent
various stereotactic body radiotherapy (SBRT) fractioning schemas.

The cohort comprises a combined total of 302 NSCLC and SCLC patients.
Those with minimal lung damage and tumors surrounded by normal tissue re-
ceived SBRT predominantly in schedules of 3 x 18 Gy and 5 x 11 Gy. Patients
with either significantly damaged lungs, possibly from previous treatments, or
tumors near tissues contraindicating irradiation—primarily the ribs—were sub-
jected to SBRT schemas of 8 x 7.5 Gy or 12 x 5 Gy. All patients were anatom-
ically registered to an average anatomy, with their planned doses adjusted ac-
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Figure 1: How data is processed and combined into one dataset.

cordingly. Subsequently, dose-volume histogram (DVH) parameters for PTV,
lungs, heart (sub)structures, and the esophagus were acquired.

Various analytical approaches, including Cox regression, principal compo-
nent analysis, and Spearman rank-order, were employed to pinpoint doses to
the lungs, heart (sub)structures, and esophagus with negligible associations with
cancer-related death.

Stereotactic body radiation therapy (SBRT) emerges as a crucial treatment
modality for primary and secondary lung cancer. The advantages of hypo-
fractionated radiotherapy in treating lung tumors include a condensed treat-
ment course that reduces clinic visits compared to conventional programs. This
is coupled with the ability to adopt a smaller irradiated volume, facilitated by
enhanced setup precision [1]. Notably, patients with inoperable non-small cell
lung cancer receiving SBRT demonstrated a substantial 55.8% survival rate at
3 years, a notable improvement over the 20%-35% rate associated with conven-
tional radiotherapy [2]. However, SBRT comes with potential drawbacks, such
as uncertain effects of altered fractionation and the theoretical risk of worsen-
ing the normal tissue-to-tumor tissue ratio with higher doses per fraction. For
instance, doses primarily targeting the upper heart region in NSCLC patients
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treated with SBRT were significantly associated with non-cancer-related deaths
[3]. This study aims to evaluate the clinical outcomes of overall lung cancer
patient survival under different SBRT fractioning schemas, shedding light on
the nuanced impact of radiation dosage on patient outcomes.

8.1 Methods and materials
Between 2011 and 2016, Radboud University Medical Centre in Nijmegen, The
Netherlands, treated 322 patients primarily diagnosed with stage T1-T2N0M0
non-small-cell lung carcinoma (NSCLC) and small-cell lung carcinoma (SCLC).
Following meticulous selection criteria, 302 patients were included in the study
(refer to Table 1), with exclusions made for individuals lacking SBRT plans,
which couldn’t be inferred from other available patient data, or if the last SBRT
treatment information was unknown.

The treatment involved four distinct SBRT fractioning schedules, primar-
ily determined by the patient’s tumor location. Patients with minimal lung
damage and tumors surrounded by normal tissue were administered SBRT with
prevailing schedules of 18 Gy in 3 fractions and 11 Gy in 5 fractions. In con-
trast, patients with significant lung damage, potentially from prior treatments,
or tumors in proximity to tissues posing irradiation risks—primarily the ribs—
received SBRT with a schema of 7.5 Gy in 8 fractions or 5 Gy in 12 fractions.

However, the cohort with the 5 Gy in 12 fractions schema was deemed too
small for statistically significant comparisons to other fractioning schedules.
Consequently, all patients with the 12 x 5 Gy schedule were excluded from
the study.

Follow-up (FU) encompassed a comprehensive toxicity questionnaire admin-
istered by the attending physician at intervals of 1 week, 2 weeks, 3 weeks, 1
month, 6 months, 12 months, and 24 months post the completion of radiother-
apy treatment.

The survival status of all patients was diligently obtained from the Dutch
Ministry of Internal Affairs Basic Register of Persons (Basisregistratie Personen
[BRP]). This meticulous approach to data collection ensures a robust foundation
for analyzing the outcomes and potential associations within the studied patient
cohort.

8.2 treatment planning and delivery
Patients underwent a 4D-CT treatment planning scan to facilitate the tracking
of tumors during radiation administration, a critical consideration given the
dynamic nature of tumor movement during breathing.

The contouring process, crucial for delineating treatment areas, adhered to
specific techniques and parameters, guided by the expertise of a designated pro-
fessional, denoted by their employee title, utilizing a specific machine—details
which can be customized as per the actual scenario. All contouring and treat-
ment planning occurred on a CT scan performed with a particular machine,
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Table 1: Patient, tumor, and treatment characteristics.
Characteristic All Patients N % Median (Range)
Gender

Male 185 61.3
Female 115 38.1
Unknown 2 0.7

Diagnose Age (y) 73 (27-94)
Tumor Diameter (cm) 2 (0.3-6)
Tumor Location

Upper Lobe 164 54.3
Middle Lobe 18 6.0
Lower Lobe 113 37.4
Unknown 7 2.3

Survival
Alive 152 50.3
Deceased 150 49.7
Known Cancer Death 49 x
Unknown Death Cause 101 x

Treatment
3 x 18 Gy 110 36.4
5 x 11 Gy 113 37.4
8 x 7 Gy 64 21.2
12 x 5 Gy 15 5.0

FEV1
< 70 174 56.6
≥ 70 65 21.5
Unknown 63 20.9

T-stage
1 144 x
2 47 x
3 18 x
Unknown 93 x

WHO Performance Status
Asymptomatic 46 x
Symptomatic but completely ambulatory 187 x
Symptomatic 51 x
Bedbound 1 x
Unknown 17 x

17



incorporating advanced technologies such as contrast enhancement for precise
delineation.

For the primary tumor and potentially other metastatic tumors, the GTV-
PTV margins were established at x millimeters, with potential additional vari-
ables considered, such as lung breathing capacity. The documentation could
optionally delve into further specifics, such as the utilization of additional ma-
chines for different aspects of the treatment process, including the types of actual
radiation machines employed.

Position verification and setup correction procedures were executed using
specific software, possibly coupled with the use of a plastic mask or other immo-
bilization devices to enhance precision in treatment delivery. These meticulous
steps in the treatment planning and execution process underscore the com-
mitment to ensuring accuracy and efficacy in the administration of radiation
therapy.

8.3 Dosimetric parameters
Following the exclusion of patients with missing dose data for either the PTV
or one of the specified organs—lungs, heart (sub)structures, and esophagus (x
patients)—the cohort was refined to include 288 patients. Subsequently, dose-
volume histograms (DVHs) for lung tissue, esophagus, heart (sub)structures,
and PTV were generated for all patients. This involved extracting information
from archived DICOM files using in-house software.

The analysis focused on relative volume parameters, specifically the percent-
age of the contour volume receiving specified dosages, ranging from V5 to V75
in 5 Gy increments. This comprehensive approach to dose evaluation provides
a nuanced understanding of the radiation exposure across different anatomical
structures, contributing valuable insights to the study.

8.4 Analysis
Survival status is known for each patient. Non-deceased patients were right-
censored with the last date being when the respective patient’s survival status
was obtained from BRP.

Kaplan-Meier curve was used to visualize the survival curve of each SBRT
fractioning schema, log-rank to compare the difference between the survival
curves [and possible other groupings], and Cox proportional hazard regression
to describe the (in)effect of treatment and patient’s factors on survival.

Survival probability S(ti) at time ti is calculated using the following equa-
tion: S(ti) = S(ti−1) · (1− di

n1
).

Survival time is measured as the number of days from the first treatment
till event occurrence or censoring. Survival probability S(t) is the probability
that an individual survives from the time origin (diagnosis) to a specified future
time t. Hazard probability, h(t), is the probability that the event occurs to the
patient who is under observation at time t.
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To assess the potential significant association between dosimetric parameters
and overall survival, a meticulous series of steps was undertaken, with all tests
conducted at a statistical significance level of p < 0.05. For the planned target
volume (PTV), lungs, esophagus, and heart (sub)structures, the three dosimet-
ric parameters exhibiting the highest likelihood were selected for analysis.

Initially, univariate analysis was applied to all dose parameters. The dosi-
metric parameter demonstrating the most robust and significant association
with overall survival, as determined by a univariate Cox regression using the
maximum likelihood estimator, was then singled out. Subsequently, the dosi-
metric parameters with the highest likelihood were subjected to multivariate
Cox regression analysis, considering potential confounders such as diagnosis age,
FEV1, pulmonary artery (PA) proven status, tumor size, and tumor location.

To uphold quality control and ensure the statistical significance of retained
parameters, a second multivariate Cox regression was conducted. This aimed to
explore their possible associations not only with all-cause death but also specif-
ically with non-cancer-related death. The factors considered in this subsequent
analysis included a large list of remaining parameters. This rigorous approach
serves to establish the robustness and reliability of identified dosimetric param-
eters in predicting overall survival outcomes, while also addressing potential
confounding factors and examining associations with different causes of death.

9 Lung Cancer Survival Prediction Model
Many patients’ medical and biological characteristics and treatment affect sur-
vival chance and time. A machine learning model to predict lung cancer survival
time would not only benefit patients but also give doctors insight into predictive
values of patients’ characteristics and radiomics data. A successful model also
gives doctors an additional objective source to base their patients’ survival time
estimation on.

Identifying whether patient information and treatment radiomics-collected
data have predictive values and can be modeled into a survival estimation anal-
ysis machine learning model, including finding the best classifier for said data.

All ML models in this study were trained & tested with 100 repetitions with
5 inner-folds and 5 outer-folds.

9.1 Choosing the Best Classifier
A few researchers in the data science field developed an automated process to
fit various machine learning models with built-in feature selection and compare
model accuracy scores (T.M. Deist, F.J.W.M. Dankers et al., 2018). Six different
classifiers (random forest, elastic net logistic regression, neural net, support
vector machine, and LogitBoost) were applied to the entire dataset, including
follow-up toxicity-related data points, and a subset of data which was only
available the moment treatment finished. Ranked by AUC score, random forest
(RF) and generalized linear model with elastic net (GLMNET) scored as the
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Figure 2: Classifiers AUC ranking score

two best discriminators respectively. Thus, RF and GLM(NET) models were
investigated and trained in further detail.

9.1.1 Why Random Forest Was Disregarded

Random forest is an ensemble of decision trees. Trained by randomly sampling
subsets of the training data, fitting a model to the subsets and aggregating pre-
diction results. For classification using the majority vote method. An important
factor for any machine learning model in the medical world is traceability, how
did the model come to a classification or prediction? Random forest is a ’black
box’; input variables go in and a result variable comes out; how it achieved its
result is not supposed to be known. However, one can peek at some trees to
get a glimpse of which variables the model found important to manually deter-
mine a crude accuracy. Result of said peek resulted in the unanimous decision
not to use random forest; various trees, as second leaf node, had the question
tumour size > 0; when answered false, the follow-up leaf node question was
tumour diameter > 0. The first said leaf node should already not exist since
nobody is treated with a tumour that has no size. Second leaf node is even
more interesting since nothing can have a diameter if it doesn’t have a size.

For the reasons mentioned above, traceability and questionable leaf nodes,
it was unanimously decided not to use random forest.

9.1.2 Feature Analysis

Cox regression, principal component analysis and Spearman’s rank-order cor-
relation were applied to identify data features association with cancer-related
death. These analysis methods measure association significance and correlation
between features. Results of these analysis determine what variables are used
to train the machine learning model.

Cox Regression Univariate cox regression analysis showed significant cancer-
related death association with patient’s WHO status, gender and dosimetric val-
ues PTV mean dose, PTV std dose, PTV d2prct_ingy, PTV v10 PTV v20 PTV
v65, lungs maximum dose, esophagus minimum dose, esophagus v25, esopha-
gus v30, and esophagus v35. Multivariate cox regression analysis show that
the WHO status symptomatic and esophagus minimum dose features have a
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Figure 3: Multivariate cox regression

significant association with cancer-related death and the gender female feature
a significant association with cancer-related survival.

Principal Component Analysis Principal component analysis shows the
exact same linear distribution for both classifications (deceased and alive) on a
2D plane. After sub-selecting variables with greater than a 1% contribution in
principal component (PC) 1 and PC2, the result is nearly identical; only event
classification shows a difference, a slimmer distribution while remaining almost
entirely under no-event classification distribution.

Spearman Rank-Order Spearman’s rank-order correlation shows no cor-
relation between all dosimetric parameters and overall survival. Generalized
linear model was fit by selected features (patient’s WHO status, gender and
dosimetric values PTV mean dose, PTV std dose, PTV d2prct_ingy, PTV v10
PTV v20 PTV v65, lungs maximum dose, esophagus minimum dose, esophagus
v25, esophagus v30, esophagus v35 and esophagus v65) from the cox regression
analysis, principal component analysis and Spearman’s rank-order correlation
matrix.
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Figure 4: Principal component analysis and variable importance

Figure 5: Spearman heatmap of the highest correlated features

Training a Generalized Linear Model Using Elastic Net Regulariza-
tion

The CRAN package ’GLMNET‘ uses elastic net regularization (NET) as auto-
matic feature selection to fit a linear regression model via penalized maximum
likelihood. The regularization path is computed for the lasso or elastic net
penalty at a grid of values for the regularization parameter lambda. Elastic net
mixes two penalty algorithms; Ridge penalty, which shrinks the coefficients of
correlated predictors towards each other; and Lasso, which tends to pick one of
them and discards the others. If predictors are correlated in groups, an α = 0.5
tends to select the groups in or out together. (Hastie & Qian, 2014) General-
ized linear model was fit by both Elastic net regularization and selected features
(patient’s WHO status, gender and dosimetric values PTV mean dose, PTV std
dose, PTV d2prct_ingy, PTV v10 PTV v20 PTV v65, lungs maximum dose,
esophagus minimum dose, esophagus v25, esophagus v30, esophagus v35 and
esophagus v65) from the cox regression analysis, principal component analysis
and Spearman’s rank-order correlation matrix.
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Figure 6: GLMNET model score (all variables)

Model Scores & Conclusion

AUC scores of 0.72 were achieved by both GLM and GLMNET models, show-
ing similar features importance values. GLM with manual feature engineering
achieved the same AUC score as GLMNET while using fewer features which
are easier to traceback and control. However, manual feature engineering for
a GLM is drastically more complex and time-consuming compared to elastic
net regularization’s automatic feature selection which is also easier in both pro-
gramming and data analysis.

Concluding that patient characteristic and radiomics data have predictive
values for machine learning models; however, not enough to create a trustwor-
thy accurate machine learning model, but also that elastic net regularization’s
automatic feature selection is superior, compared to manual feature engineering,
in terms of time constraints and complexity.

Ethics in Data
By default, personal information of patients such as names and addresses were
not accessible to me. Some personal information was required for the research,
but all irrelevant details were removed, e.g., date of birth was converted to a
numerical age value.

Patient unique identifiers such as a patient number were pseudonymized;
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Figure 7: GLM model score (WHO, gender & PTV dose STD)

Figure 8: GLM model score (WHO, gender & 16 dosimetric features)
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anonymizing or replacing the patient number was not an option so that, if the
research required it, a supervisor could verify research findings or claims directly
to patient’s all information.

Data available for the research never left the work computer at the radio-
therapy, including not storing it on cloud services or sending data over email.

Advice
Using CASTOR to record patient data is a considerable improvement compared
to the RTHweb system in terms of the quantity of data points and accessibility;
however, data quality and consistency are worse, which when relating to data
volume is understandable and acceptable, yet more work to a data analyst. More
improvements could be made to CASTOR by configuring more data constraints,
e.g., only specified acceptable data types can be entered into open fields.

Various in-house tools used to obtain the data and results detailed in this
study were abominably slow, so slow that about 300 DICOM files took the
better half of a day to process. One slow process isn’t the end of the world;
however, if software repeatedly allows for lengthy coffee breaks, it negatively
impacts the workflow.

A new research should be conducted to discover why there is no difference
in survival between SBRT schedules. Why do schedules aimed to maximize
survival changes have the same survival rate as schedules aimed to minimize
toxicity?

Patient characteristic and radiomics data have predictive values for machine
learning models; however, not enough to create a trustworthy accurate machine
learning model. More data is required to achieve more accurate results. Rad-
boudumc could work together with other medical universities or hospitals to
acquire more data or create a joint study. More data can always change results
but more importantly, machine learning models always profit from a higher
quantity in terms of accuracy.

A new research should be conducted to discover more underlying predictive
values from patient’s information, characteristics, and treatment radiomics data.
Why do females have a decreased chance of dying from lung cancer compared
to men and why does a WHO symptomatic status have an increased chance of
dying from lung cancer?

Research Framework
Knowledge required to conduct this study and to verify used research methods
were gained and cited from published articles on pubmed.gov and found on
Google Scholar similar to this study’s research question. Online courses and
other sources were used as self-study material to acquire the skills to understand
and apply analysis and modeling methods. To learn about existing solutions,
presentations and lectures regarding data analysis and machine learning applied
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in the healthcare sector were attended at the Big Data Expo 2018 in Utrecht.
Webinars regarding machine learning in healthcare were followed together with
supervisors to remain up to date about new study results and applied techniques.

To understand how and at what stages the data I’m analyzing is gathered,
my clinical physicist supervisor showed and explained the patient process of
diagnosis and treatment. Weekly meetings were held with supervisors to share
and discuss progress and achieved results. Presentations and expositions were
attended to gain more insight into the topic and technical aspects such as PhD
defenses and a Big Data Expo with topics around healthcare, data, and machine
learning.

Sketches, designs, and functionality priority lists about the developed DI-
COM values normalizing tool were created and discussed with stakeholders.
All developed software had prototypes which were discussed with stakeholders.
Feedback from other co-workers was asked to improve design and functionality.

Six different classifiers were applied on the entire dataset with a repetition
of 100, 5 inner, and 5 outer folds to discover the best models to investigate in
the limited time available. Selected machine learning algorithms’ performance
results were compared and pitched to supervisors to decide on the best algorithm
to build a model around.

All model results and classifier testing were conducted with a repetition
of 100, and 5 inner and 5 outer folds. Leaf choices or variable importance
were extracted from models to manually determine a crude accuracy. Survival
research and model results were evaluated using various calculated probability
values to determine statistical significance.

Survival research findings and work methodology were checked and verified
by both supervisors and doctors to assure quality and reason results on a medical
level of possible accuracy.

Evaluation
The first thought that comes to mind when evaluating my internship at Radboud
is not just how enjoyable it was to work there but also the feeling of contributing
to improving people’s lives. What kept me going the most was pitching my
own arguments why and especially how a subject should be analyzed, instead of
simply being told what to do; resulting in a feeling of appreciation and eventually
accomplishment.

Combining the various data sources turned out to be the most difficult and
time-consuming task. I was attempting for too long to graciously combine the
datasets. Eventually, after spending too much time on this issue, it became
clear there was no proper solution. Acknowledging there isn’t always the right
way, a perfect way, of achieving one’s goal is what allowed me to make decisions,
and thus results, faster. Not just in terms of code but also making decisions
that affect research results. The time spent pondering on questions, such as
whether to include patients in the cohort who underwent multiple treatments;
results could have been achieved for both included patients and excluded. Doing
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anything is time better spent than waiting for an answer, even though eventually
it might be the wrong choice.

While updating stakeholders on the progress of combining the various data
sources, one constant important question was how many patients in total are in
the combined dataset. Too many times I couldn’t explain in detail how many
patients were excluded at each process. Prompting me to develop code to log
and write results obtained with all details available directly to disk. Adding
traceability to the result made life at the end of the project much easier. All
results delivered now contain all the original values it’s based upon and what
processing was applied, code is not required to read nor understand the output.

Communication during the project was excellent. Only once there was a
misunderstanding, a simple graphical user interface mix-up, which was corrected
the very next day. Weekly meetings were planned in the intranet scheduler with
reminders, none were attended late or missed. Regularly my supervisor was
unavailable, but any email sent would be answered within an hour by email or
walk by my office personally to answer my inquiry. I look up to my supervisor’s
responsiveness and communication skills, hoping to match them one day.

From the start, it was clear that I did not have all the required knowledge to
conduct the research. A planning was made in crude segments which would later
be split into agile sprints set by myself; e.g. feature engineering was planned for
4 weeks, when I started this part of the project, I researched the best way to
conduct feature engineering for my scenario and split the 4 weeks into sprints
covering 3 feature analysis methods. I deviated from my planning multiple
times but was always corrected without impeding or endangering the product’s
quality.
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