Contribution of Physical Education and Active Transport to Energy Expenditure in Adolescents

Lars Borghouts

Fontys University of Applied Sciences
Physical Activity \& Health Research Group

AJESEP 2010, La Coruna, Spain

We sincerely apologise......

Introduction

Important role for schools in stimulating PA behavior in youth (Naylor \& McKay, 2009, McKenzie \& Lounsberry, 2009):

- Reaches a large number of children and adolescents
- Children and adolescents spend most of their waking hours in school

Ferreira et al (2007):
".....little research has investigated specific features of the school environment that impact on youth physical activity"

Introduction

Physical Education (PE)

- Dutch PE lessons provide $1 / 3$ of total daily needed minutes of MVPA, (Slingerland \& Borghouts, EJSS, in press), other countries similar results (Fairclough \& Stratton, 2005)
- Contribution of PE to total PA is unknown

Active Transport to school (AT)

- Important variable in youth PA (Strong et al., 2005)
- Internationally declining rates of AT (McCann, 2000, Noble et al., 2000)
- No data available on contribution on total PA from objective measurements

Aims of this study

1. To determine the amount of PA in adolescent boys and girls during a regular week.
2. To determine the contribution of PE and AT to total PA.

Methods - Actiheart

Physical Activity Guideline: MVPA
Accelerometers / heartrate alone not accurate in determining PA intensity (Welk, 2000)

Combined uni-axial accelerometer + heartrate monitor: Actiheart

Reliable and valid measure of physical activity energy expenditure (PAEE) for youth populations (Corder et al., 2007, Barreira et al., 2009)

Step test calibration to determine individual HR - EE relationship

Data based on 4 weekdays and 2 weekend days
PAEE converted to MVPA: moderate physical activity > 3
 METs

Methods - Activity Diary

During measurement week, PA recorded in following categories:

- Physical Education
- Active transport (in general / to school)
- Organised and non-organised sports
- Work-related activities

Study population

Secondary school students (15-17 yrs) randomly selected from 3 large schools in a middle-large city in the south of the Netherlands (pop. 204.929) (Data collection: October 2009-July 2010)

Response rate 55\% ($\mathrm{n}=82$), data 8 participants excluded
Final sample: $\mathrm{n}=74$ (38 boys, 36 girls)
All students 100 minutes PE p/wk ($=1$ lesson p/wk)

	All $(\mathbf{n}=\mathbf{7 4})$	Boys $(\mathbf{n}=\mathbf{3 8})$	Girls ($\mathbf{n}=\mathbf{3 6})$
Age ($\mathbf{y r s}$)	$15,7(0.83)$	$15.9(.94)$	$15.6(.69)$
Height (\mathbf{m})	$1.75(0.1)$	$1.81(.67)^{* *}$	$1.68(.72)^{* *}$
Weight (kg)	$65.12(11.0)$	$67.8(11.4)^{*}$	$62.2(9.78)^{*}$
BMI (kg/m²)	$21.33(3.3)$	$20.66(3.06)$	$22.13(3.49)$

[^0]
Results

Avg. minutes of MVPA per day	All $(\mathrm{n}=74)$	Boys $(\mathrm{n}=38)$	Girls $(\mathrm{n}=36)$
Weekday	$114(\pm 54)$	$123(\pm 62)$	$105(\pm 42)$
Weekend day	$98(\pm 75)$	$107(\pm 79)$	$88(\pm 70)$
Overall	$109(\pm 53)$	$117(\pm 59)$	$100(\pm 45)$
Schoolday	$63(\pm 27)$	$65(\pm 27)$	$62(\pm 26)$

Schoolday = leaving home for school - coming home from school

Results

Avg. minutes of MVPA per day	All $(\mathrm{n}=74)$	Boys $(\mathrm{n}=38)$	Girls $(\mathrm{n}=36)$
Weekday	$114(\pm 54)$	$123(\pm 62)$	$105(\pm 42)$
Weekend day	$98(\pm 75)$	$107(\pm 79)$	$88(\pm 70)$
Overall	$109(\pm 53)$	$117(\pm 59)$	$100(\pm 45)$
Schoolday	$63(\pm 27)$	$65(\pm 27)$	$62(\pm 26)$

Schoolday = leaving home for school - coming home from school

Results

Avg. minutes of MVPA per day	All $(\mathrm{n}=74)$	Boys $(\mathrm{n}=38)$	Girls $(\mathrm{n}=36)$
Weekday	$114(\pm 54)$	$123(\pm 62)$	$105(\pm 42)$
Weekend day	$98(\pm 75)$	$107(\pm 79)$	$88(\pm 70)$
Overall	$109(\pm 53)$	$117(\pm 59)$	$100(\pm 45)$
Schoolday	$63(\pm 27)$	$65(\pm 27)$	$62(\pm 26)$

Schoolday = leaving home for school - coming home from school

Results - PE

	All $(\mathrm{n}=74)$	Boys $(\mathrm{n}=38)$	Girls $(\mathrm{n}=36)$
MVPA in PE (minutes)	$49(\pm 18)$	$56(\pm 16)^{* *}$	$42(\pm 17)^{* *}$
$\%$ of full day MVPA	$12(\pm 7)$	$14(\pm 8)$	$11(\pm 6)$
$\%$ of schoolday MVPA	$21(\pm 10)$	$24 \pm(10)^{*}$	$18(\pm 9)^{*}$
AT minutes MVPA p/day	$28(\pm 17)$	$30(\pm 20)$	$25(\pm 14)$
$\%$ of full day MVPA	$26(\pm 14)$	$26(\pm 16)$	$25(\pm 12)$
$\%$ of schoolday MVPA	$43(\pm 17)$	$46(\pm 19)$	$41(\pm 14)$

PE = physical education, AT = active transport

* $(P<0.05)$ ** $(P<0.01)$ denote statistically significant differences between the sexes

Schoolday = leaving home for school - coming home from school

Results - PE

	All $(\mathrm{n}=74)$	Boys $(\mathrm{n}=38)$	Girls $(\mathrm{n}=36)$
MVPA in PE (minutes)	$49(\pm 18)$	$56(\pm 16)^{* *}$	$42(\pm 17)^{* *}$
$\%$ of full day MVPA	$12(\pm 7)$	$14(\pm 8)$	$11(\pm 6)$
$\%$ of schoolday MVPA	$21(\pm 10)$	$24(\pm 10)^{*}$	$18(\pm 9)^{*}$
AT minutes MVPA p/day	$28(\pm 17)$	$30(\pm 20)$	$25(\pm 14)$
$\%$ of full day MVPA	$26(\pm 14)$	$26(\pm 16)$	$25(\pm 12)$
$\%$ of schoolday MVPA	$43(\pm 17)$	$46(\pm 19)$	$41(\pm 14)$

PE = physical education, AT = active transport

* $(P<0.05)$ ** $(P<0.01)$ denote statistically significant differences between the sexes

Schoolday = leaving home for school - coming home from school

Results - Active transport

96% of the sample used active transportation to school (boys 95%, girls 97%)

	All $(\mathrm{n}=74)$	Boys $(\mathrm{n}=38)$	Girls $(\mathrm{n}=36)$
MVPA in PE (minutes)	$49(\pm 18)$	$56(\pm 16)^{* *}$	$42(\pm 17)^{* *}$
$\%$ of total MVPA on Weekdays	$12(\pm 7)$	$14(\pm 8)$	$11(\pm 6)$
$\%$ of total MVPA on Schooldays	$21(\pm 10)$	$24(\pm 10)^{*}$	$30(\pm 20)$
AT minutes MVPA p/day	$28(\pm 17)$	$26(\pm 16)$	$25(\pm 9)^{*}$
$\%$ of total MVPA on Weekdays	$26(\pm 14)$	$46(\pm 19)$	$41(\pm 14)$

$\mathrm{PE}=$ physical education, AT = active transport

* $(\mathrm{P}<0.05){ }^{\text {** }}$ ($\mathrm{P}<0.01$) denote statistically significant differences between the sexes

Schoolday = leaving home for school - coming home from school

Results - Active transport

96% of the sample used active transportation to school (boys 95%, girls 97%)

	All $(\mathrm{n}=74)$	Boys $(\mathrm{n}=38)$	Girls $(\mathrm{n}=36)$
MVPA in PE (minutes)	$49(\pm 18)$	$56(\pm 16)^{* *}$	$42(\pm 17)^{* *}$
$\%$ of total MVPA on Weekdays	$12(\pm 7)$	$14(\pm 8)$	$11(\pm 6)$
$\%$ of total MVPA on Schooldays	$21(\pm 10)$	$24(\pm 10)^{*}$	$18(\pm 9)^{*}$
AT minutes MVPA p/day	$28(\pm 17)$	$30(\pm 20)$	$25(\pm 14)$
$\%$ of total MVPA on Weekdays	$26(\pm 14)$	$26(\pm 16)$	$25(\pm 12)$
$\%$ of total MVPA on Schooldays	$43(\pm 17)$	$46(\pm 19)$	$41(\pm 14)$

$\mathrm{PE}=$ physical education, $\mathrm{AT}=$ active transport
${ }^{*}(\mathrm{P}<0.05){ }^{* *}(\mathrm{P}<0.01)$ denote statistically significant differences between the sexes
Schoolday = leaving home for school - coming home from school

Discussion

- First study that investigated contribution of PE and AT through measurements of PAEE, and provides insight into the order of magnitude of this contribution.
- Both boys and girls surpassed PA guidelines: However, operationalisation is a big issue!
- This study: MVPA > 3 METs

1 min bouts

- What happens with MVPA > 5 METs? 5 min bouts?
(See also de Vries et al., Med Sci Sports Exerc, 2009 (41) 1)
- Additional analyses needed

Discussion

Physical Education

- In boys almost 25\% of total MVPA during schooldays originated from PE
- Girls were less active during PE than boys: Is there an effect of the Dutch "competitive games dominated PE curriculum?"
(see also: Kulinna et al. 2003, Laurson et al., 2008, Slingerland \& Borghouts, EJSS, in press)
- Overall 1 PE lesson accounts for 21% of MVPA

Effective interventions strategies to increase PA:

- more PE lessons per week.......
- optimal use of allocated PE time by intensifying PE lessons without compromising other PE goals.

Discussion

Active Transport (AT)

- 96% of all students active transport to school
- "Born on 2 wheels": Effect of the cycling-friendly infrastructure in the Netherlands

- Stimulating AT on all schooldays can increase MVPA by 43\%

64\% of schoolday MVPA = PE \& AT
PE and AT have great impact on total MVPA in adolescent boys and girls, especially in inactive populations.

[^0]: *P < . 05 ** P <. 01

