CELL CONTROL WITH AGENTS

P.J.H.M. Boots, D. van Schenk Brill

IPA Research Centre, Fontys University of Professional Education,

P.O. Box 347, 5600 AH Eindhoven, The Netherlands

http://www.techniek.fontys.nl/hi/open/sb

email: P.Boots@fontys.nl, D.vanSchenkBrill@fontys.nl
Abstract: A software system is described that uses the agent concept in the Cell Control layer. Important design goals are: the system continues as good as possible after a process crash, crashed processes are recreated whenever possible, and equivalent workstations are allocated dynamically. This project is carried out mainly to investigate whether the agent concept is applicable in such a situation. The system is not operational yet, but will be built in the period ahead. In addition, a graphic simulator for a small manufacturing system will be built for testing the agent structure.

Keywords: agents, fault tolerance, CORBA, NIST model

1. Introduction

At the IPA research centre of Fontys University of Professional Education, experiments are done with different kinds of architectures for manufacturing control systems. The goal of these experiments is to gain experience in designing and building such systems and to acquire knowledge about their behaviour. This experience and knowledge will be used in the curricula of Fontys and in projects that are done for local industries.

This paper is an extension of the ideas presented in earlier papers (van Schenk Brill and Boots, 1999a and b). It describes a design for the Cell Control layer using the agent paradigm.

Note that, in this paper, the word 'process' is used in two ways: it can refer to a software process representing a program in execution, and it can refer to the physical processing of a product in the cell. In the latter case, the term 'manufacturing process' is used.

2. Layered model

Basis of the experimental architectures is a layered model resembling the NIST model (see a.o., Albus et al, 1981).

The following layers are distinguished:

· Facility Control layer

· Shop Floor Control layer

· Cell Control layer

· Workstation Control layer

· Automation Module Control layer

· Automation Module layer

The lower three layers are the same for all experimental architectures. The experiments in general focus on the Cell Control and Shop Floor Control layers; this paper is concerned with the Cell Control layer.

The layers are described here in terms of information, not in terms of functionality. Every layer has certain information, provided by the system configurator. Normally this information is located in a configuration file or database table, but it may also be hardcoded in the software or entered by an operator when the system starts up. Every piece of configuration information is located in exactly one layer. At runtime, information may be copied to other layers when necessary.

As an example: layout information is concentrated in the WSC layer and when any layout information is needed by another layer, it is retrieved from the WSC layer. In other words: the WSC layer is the source of layout information.

2.1. Information distribution

All configuration information is located in exactly one layer. For the lowest four layers this is defined below:

· Automation Module layer

This layer contains the sensors and actuators. Every sensor and actuator is an Automation Module (AM). In principle, there is neither any programmable processor capacity (there may be embedded processors involved in an AM, but we assume these are not freely programmable) nor any storage capacity in this layer.

· Automation Module Control layer

These are software entities directly controlling the Automation Modules. For every Automation Module, there is one Automation Module Controller (AMC). An AMC knows how to convert an elementary command into signals to the hardware. An AMC has no knowledge of physical properties (length, position, etc) of the AM it is controlling, of any other AM, or of the workstation that it is part of. It also has no knowledge of the products in that workstation.

· Workstation Control layer

A workstation may consist of a number of AM's and is controlled by a software process called a Workstation Controller (WSC). A WSC can execute symbolic commands and translate them into elementary commands for its AMC's. A WSC has a list of all the symbolic commands it can execute, it knows the status of any product in the workstation, it knows how to translate symbolic commands into AMC commands and it knows relevant details about the layout of the workstation and the cell. More on these commands can be found in paragraph 2.2.

· Cell Control layer

In the Cell Control layer, decisions are made about the flow of products through the cell and on which workstation an operation has to be performed when there are multiple possibilities. The Cell Control layer has no obvious configuration information. There may still be some configuration information, like the algorithm that has to be used for deciding upon the exact product flow, but this is circumstantial. An actual implementation of the Cell Control layer can be monolithic (one process controlling all WSC's) or distributed.

2.2. WSC commands

Every WSC has a set of commands that it can execute. These may be commands to perform some manufacturing process like milling or grinding, but it can also be a transport operation. A WSC command is denoted simply by a string with or without parameters, separated by spaces. Examples of these commands are:

· MILL PROG1

Apply NC-program PROG1 to the product on a mill.

· MOVE P1 P2

Move a product from position P1 to position P2.

· MOVE P1 P2 RX RY RZ

Move a product from position P1 to position P2 and rotate it over angles RX RY RZ in the default co-ordinate space.

The positions in a MOVE command are specified with symbolic names since the agents are not concerned with layout and therefore not aware of any co-ordinate system. MOVE commands have the special feature that they can be split: MOVE P1 P2 has the same effect as the combination of
MOVE P1 P3 and MOVE P3 P2.

2.3. AMC Calling Layer

We aim at making our software as reusable as possible. One step towards that goal is the introduction of a standard interface between the WSC's and AMC's. This interface, the AMC Calling Layer (ACL), is defined as a set of class interface definitions in the CORBA-IDL language (see also section 7). The ACL can be implemented with CORBA, although this is not mandatory. Every category of AM's has its own interface that applies to all AM's of that category, even if they are physically different. For example, a certain conveyor may contain two AM's: a stepper motor for driving the belt and a sensor for noticing the presence of a product. The conveyor as a whole is considered a workstation and therefore has its own WSC. The same WSC-software can be used for other conveyors, built with another stepper-motor and sensor.

When necessary, the implementation of the ACL also handles network connections between WSC and AMC. In this way, it is completely transparent to the WSC whether the AMC is inside the same process, in another process on the same computer or on another computer. In the latter case, the type of connection (e.g. Ethernet, Profibus, CAN-bus, etc.) is also transparent to the WSC. One can replace a Profibus by a CAN-bus without having to change the WSC (see also van Schenk Brill and Klijn, 2000).

2.4. Simulator

Actual experiments are currently done with a physical scale model production cell, called ROTIS (see van Schenk Brill and Klijn, 2000 for a short description). Work is done on building a simulator that conforms to the ACL interface and can be used instead of the lowest two layers (AMC and AM). This simulator will give the user the following possibilities:

· Define a layout with a given set of machines.

· Define new machines that can be placed in the cell.

· Generate faults with a given probability.

· Log relevant events into a file.

The simulator will use the same calling interface (hence ACL) as the AMC's of the physical cell. It will have a 3D display based on VRML or OpenGL.

The WSC's and anything above this layer can be used for both the simulator and the physical cell without any change to the code (although re-linking may be necessary).

3. Why agents?

We start this section by defining our view of agents and then discuss some advantages and disadvantages.

An agent is a software process that acts autonomously in co-operation with other equivalent agents. No agent has control over any other agent: one agent can not prevent any other agent from doing something and one agent can not force any other agent to do something. Agents co-operate by means of negotiation. They try to come to an agreement by sending each other messages according to a negotiation protocol. A collection of agents working together on a certain task is called an agent society. All agents in a society are equivalent and we assume that they are even equal: i.e. all agents execute the same program (no, there are no agents that are more equal than others!)

In this case, the agent concept is applied to the Cell Control layer. Every WSC has exactly one agent associated with it. This agent represents the WSC in the agent society and acts on its behalf. There may also be agents without associated WSC. Such agents model the entrance and exit of products into and out of the system. They are called "entrance agents" and "exit agents".

Every product in the cell is at any moment assigned to exactly one agent, initially an entrance agent. Whenever a product has to leave an agent, the negotiation protocol is started to choose the next agent and when the choice is made, the product is handed over to that agent. One agent can have several products at the same time assigned to it.

It should be stressed that, although the agent concept is the subject of this paper, it is not considered superior to other concepts. This is merely meant as an experiment to find out the applicability of agents in such a situation. As with all aspects of life, agents have their advantages and disadvantages

The following advantages can be mentioned:

· Scalability
All agents will be the same. Adding a new workstation to the system means, next to building, configuring and starting the correct AM's, AMC's and WSC for the new machine, simply starting an extra agent.

· Flexibility
When a machine or its associated AMC or WSC crashes (or is stopped by the operator) during execution, its agent will not participate in negotiations anymore and therefore the system will adapt to the new situation in a natural way. The same holds when a machine is added or becomes available again after a temporary failure.

Disadvantages are:

· Concurrency problems

The agents are a set of concurrent co-operating processes, which can and will pose problems with synchronisation and communication. These problems are solvable, but complicate the programming effort.

· Overhead

The use of a negotiation protocol may generate a large number of messages. There is a danger that these messages will overflow the available bandwidth on the network.

4. Design goals

The main design goals for this implementation of the Cell Control layer with agents are:

1. No crucial processes

No single process in the Cell Control layer is crucial. When any process in the Cell Control layer crashes, the remaining processes will try to continue production as good as possible.

2. Automatic recreation

The system is self-repairing. Crashed processes are re-instantiated whenever possible and broken connections are restored whenever possible without operator intervention.

3. Dynamic allocation

When two or more machines can do a certain task, the choice between the two is made at runtime, depending on the current situation. Different decision algorithms will be examined.

Some practical implications of these design goals are considered below.

4.1. No crucial processes

All agents are equal and they have no configuration information. They have no a priori knowledge about each other. Whenever a WSC finishes an operation on a certain product, its agent starts a negotiation about the next manufacturing process step for that product.

This agent sends a broadcast message containing a certain WSC command because it wants to know which workstations can execute that command. The address of the broadcasting agent is contained within the message.

All agents that can execute the command send a message back to the broadcasting agent indicating their ability and including a weighting value that is to be used in the decision algorithm (see also van Schenk Brill and Boots, 1999a and b). For this communication, the language KQML can be used (see Finin, et al, 1992).

Such a negotiation sequence is performed after every manufacturing process step, therefore any change in the system (crashed or added agents) will be taken into account in the next negotiation cycle.

Next to the agents, there are other processes in the Cell Control layer, which are also non-crucial. These are decsribed in section 6.

4.2. Automatic recreation

When a process in the Cell Control layer crashes it will be automatically recreated whenever possible. There are two aspects to this:

· Processes have to be monitored in order to know if they are still alive. This monitoring can be done by processes on any machine.

· There must be a possibility to create new processes. We assume that a multi-tasking operating system is used that does not allow remote process creation (i.e. creating a process on a specific machine directly from another machine; Windows 95/98/NT is an example of such an OS). Therefore, an extra process to create new instances of crashed agents is needed at any machine (see also section 6)

4.3. Dynamic allocation

The negotiation sequence described in paragraph 4.1 can also be employed for this design goal. Every agent that can execute a certain command answers to a broadcast and returns a value that is used in a decision algorithm to choose the 'best' workstation for the task. The agent that starts a negotiation decides which workstation will be chosen, based on the returned weighting values.

5. Implementation notes

In this section, we elaborate on some aspects of the implementation.

5.1. WSC command execution

Every WSC has a set of commands that it can execute (see paragraph 2.2). When the connection between an agent and a WSC is made, this set of commands is sent from WSC to agent because the agent has to know what its workstation can do.

From the Cell Control layer, any command from this set may be issued to a WSC. The WSC will execute the command as soon as possible. When the WSC is busy executing an earlier command, new commands may be put in a queue.

Some workstations, however, can execute multiple commands at the same time. For example, a conveyor knows only one command: MOVE BEGIN END (a movement from the start of the conveyor to the end of the conveyor). When it is executing this command for a certain product, it can start the same command for the next product before the first product has arrived at the end, because there can be several products on the belt at the same time. Thus, it can execute the same command for multiple products at the same time. All products are located sequentially on the conveyor and the commands are finished in FIFO order.

An agent can ask its WSC about the state of a command (WAITING, EXECUTING, or FINISHED). The WSC can give information about the state of the workstation (IDLE or EXECUTING).

5.2. BOP

For every product or batch of products, a list of WSC commands is defined: the Bill Of Process (BOP). A product has to undergo these commands one by one in the order specified. A BOP includes processing commands, but possibly also transportation c.q. orientation commands. For every product in the cell there is a pointer denoting the current command in its BOP.

It remains an open question whether or not the transportation steps should be specified in the BOP. There are three possible approaches:

· Specify no transportation steps at all.

This is the most flexible alternative, but may be hard to implement and there is a danger of running into deadlock situations.

· Specify only begin- and endpoint for every transportation.

In this case, the endpoint is fixed, but it is unspecified via which route the endpoint is reached. Again, the danger of deadlock is present. Furthermore, the dynamic allocation (paragraph 4.3) is not possible, since it is specified which machine will do the next manufacturing process step.

· Specify every single transportation step.

The, the complete route that the product has to follow is specified in the BOP. Deadlock can be avoided in this way and the negotiation between agents is trivial. In fact, the essence of the agent concept is violated. In addition, it inhibits dynamic allocation.

It can be concluded from the above that none of these alternatives is completely satisfactory.

5.3. Agent negotiation

The agents are driven by the BOP's: when a command for a certain product is finished, the agent looks at the next line in the BOP of that product and starts a negotiation to find an agent that can execute this command. The goal of this negotiation is to decide who is going to do the next manufacturing process step and how the product is going to get there in the right orientation.

When a command finishes, the agents negotiate which workstation will do the next command.

6. Agent Infrastructure

6.1. Tasks

The Cell Control layer consists of a number of agents, one agent for each workstation, and one agent for every point where products enter or leave the system.

Agents may be randomly distributed over the network, ranging from 'one agent per computer' to 'all agents on the same computer'. Computers may or may not be on the same LAN, hence may or may not be reachable with a network broadcast message. In order to allow for these diverse distributions we introduce the concept of Agent Infrastructure.

The Agent Infrastructure is an entity (consisting of several processes as we shall see shortly) with the following functions:

1. Communication service

The Agent Infrastructure keeps a record of the TCP/IP-addresses of all active agents in order to be able to do broadcast operations to all agents. This is necessary because a network broadcast will not work when agents are on different LAN's. Furthermore, since there may be several agents on one computer, not all agents will use the same TCP-port. An agent can instruct the Agent Infrastructure to send a message to all agents (see below for more details).

2. Information service

The Agent Infrastructure can hold, and give access to, information that is of interest for the agents. Examples are: the BOP's, configuration files, and NC-programs.

3. Agent recreation

The Agent Infrastructure constantly monitors the presence of all agents. When an agent seems to be gone, a replacement agent will be started by the Agent Infrastructure.

4. Information gathering

The Agent Infrastructure can gather status information about the system as a whole (product/batch manufacturing process status, operational status of individual machines, etc.). This information is meant for the Shop Floor Control layer.

5. Order release

The Agent Infrastructure can instruct an agent to start a negotiation cycle in order to start processing a product or batch. The incentive for this action comes from the Shop Floor Control layer.

6.2. Architecture

The Agent Infrastructure is decomposed into several processes: one process on every computer that contains one or more agents. Such a process is called an Agent Infrastructure Module (AIM).

6. Since we do not want any AIM process to be crucial, AIM's maintain mutual communication to exchange all relevant information. Consequently, when information in one AIM changes, after some delay all AIMs will have that same information. This information exchange has low priority because we do not want it to interfere with higher priority commands on the network (e.g. agent-to-WSC or inter-agent communication). When an AIM (or the computer that it lives on) crashes, any other AIM can take over its function (except for function 3, Agent recreation). The Shop Floor Control layer communicates with one of the AIM's, but can switch to any other AIM without problem.

AIM's may live on different LAN's and therefore they can not always find each other automatically. In some cases, an address must be entered manually.

When an AIM crashes, this will be noticed by the agents on the same computer. The first agent noticing it restarts the AIM and informs the other agents about this. When accidentally two instances of the AIM on the same computer are started, the second one exits automatically. For this purpose, a starting AIM checks for other AIM's on the same computer.

The five functions of the AIM's are elaborated upon in the next sections.

6.3. Communication service

When an agent starts up, it registers itself with its local AIM by sending a message containing a unique name and the TCP/IP address to localhost on the standard TCP port for the AIM's. The local AIM shares that information after some time with all other AIM's.

An agent can do a broadcast to all other agents by requesting its local AIM to do that for him. That AIM forwards the message to all agents that it knows of. This message contains the TCP/IP address of the broadcasting agent.

An agent that wants to answer to the broadcast sends a message directly to the broadcasting agent, bypassing the Agent Infrastructure.

6.4. Information service

For this function, the Agent Infrastructure provides access to a database containing files that are of interest to agents. Depending on the situation, the Agent Infrastructure can act as the DBMS server itself (only in trivial cases) or it can invoke a remote DBMS server in a 3-tier structure (agent (Agent Infrastructure (DBMS server). Since this DBMS server will be crucial, this is a violation of the first design goal. This, however, is considered acceptable since we can rely on crash-recovery features of this server.

6.5. Agent recreation

An AIM knows which agents are present on its computer because all agents register themselves. On a regular basis "Are-you-alive?" messages are sent to every local agent through some IPC call (depending on the OS, this may be TCP/IP) and an answer is expected within a certain time-out period. When the answer fails to come, the AIM assumes that the agent is gone or that it is stuck in some never-ending loop. The agent-process is killed and a new one is started. Since the new agent must take over state-information of its predecessor, it is necessary that agents log all relevant events and actions to a file. This file is read by a starting agent for it to know what its predecessor was doing. When started properly, the new agent restores the connection with its WSC and registers itself with the AIM.

6.6. Information gathering

Since each agent deals with only a part of the cell (one workstation), it would be difficult for the Shop Floor Control layer to monitor the status of a product or a batch. Therefore, the AIM's gather all relevant status information of the agents. As with the address information, the AIM's exchange this information between them, so when one AIM knows something a short while later all AIM's know it. A Shop Floor Control process can connect to any of the AIM's and retrieve status information from it.

6.7. Order release

When connected to an AIM, a Shop Floor Control process can issue commands to the system for starting the production of a product or a batch. These commands are automatically routed to the correct agent(s).

7. Using CORBA

Part of the above mentioned functionality can be accomplished by using a CORBA implementation. CORBA is set up by the OMG (Object managament Group) as a standard for distributed components. Implementations of this standard are, among many others, Inprise's Visibroker and Iona's Orbix. The Visibroker Smart Agents (note that Inprise's use of the word 'agent' has no direct relation with the agents we described in this paper; for more information see Orfali 1997) seem to exhibit a considerable part of the functionality of the Agent Infrastructure: Smart Agents exchange information automatically and the crash of one Smart Agent does not stop the system as a whole. Furthermore, the object activation facilities in CORBA could possibly be used for recreating crashed agents automatically.

The IDL (Interface Definition Language) of CORBA makes it possible to specify interfaces without making an a priori choice for a programming language.

8. Final remarks

We are quite confident that the system can be implemented in the way described. The question is mainly whether the network traffic that is generated by the negotiation protocol will not increase to an intolerable level. Designing and building the Agent Infrastructure will pose concurrency and data integrity problems, but these seem to be surmountable.

Research has to be done to investigate whether CORBA is useful in this kind of application. Next to the functionality, also the performance, stability, fault-tolerance, manageability, and configurability will have to be examined for various CORBA implementations.

No attempt is made here to compare this agent implementation to those proposed and implemented by others. For a discussion of three related visions on agents, see Zwegers, et al 1998.

References

Albus, J., Barbara, A. and Nagel, R. (1981) Theory and Practice of Hierarchical Control, Proc of the 23rd IEEE Computer Society International Conf.
Finin, T., McKay, D., Fritzon, R., (1992) Specification of the KQML Agent Communication Language, DARPA, Technical Report 92-04, Enterprise Integration Technologies Inc.

Orfali, R., Harkey, D., Edwards, J.: Instant CORBA (1997), John Wiley and Sons, new York

Schenk Brill, D. van and Boots, P.J.H.M., (1999a) An educational application of the agents concept in production control systems, X Workshop on Supervising and Diagnostics of Machining Systems, Innovative and Integrated Manufacturing, Karpacz.
Schenk Brill, D. van and Boots, P.J.H.M., (1999b) Using autonomous agents in a flexible production cell with non-trivial routing, ASI99, Leuven.

Schenk Brill, D. van and Klijn, P., (2000) The use of a CAN-bus in a flexible manufacturing cell, ICME2000, CIRP International Seminar on Intelligent Computation in Manufacturing Engineering, Capri.
Zwegers, A.J.R., Beukering L.H.Th.M. van, Schenk Brill, D. van and Pels, H.J. (1998), A comparison of three agent based control systems, ASI97,Budapest.

