
MOTION CONTROL WITH VISION

Peter Boots and Dick van Schenk Brill

 Fontys University of Professional Education, IPA Research Centre
P.O. Box 347, 5600 AH Eindhoven, The Netherlands

Email: P.Boots@fontys.nl, D.vanSchenkBrill@fontsy.nl

Abstract

This paper describes the work that is done by a group of I3 students at
Philips CFT in Eindhoven, Netherlands. I3 is an initiative of Fontys
University of Professional Education also located in Eindhoven. The work
focuses on the use of computer vision in motion control. Experiments are
done with several techniques for object recognition and tracking, and with
the guidance of a robot movement by means of computer vision. These
experiments involve detection of coloured objects, object detection based
on specific features, template matching with automatically generated
templates, and interaction of a robot with a physical object that is viewed
by a camera mounted on the robot.

1 The I3 project

The I3 project involves the implementation of a model for education in innovative
engineering with industrial coeducation. The model (Bakker et al, 1999) was developed
by three knowledge transfer centres affiliated to the Fontys University of Professional
Education (technological departments). Those were the centre for Medical Technology,
the Environmental research centre and the IPA (Integrated Production Automation)
research centre. In short the model implies, that students from different departments will
fulfil the last 18 months of their (polytechnic) studies fully in industrial practice. They
have to work in project teams that are innovative, interdisciplinary and internationally
oriented (the three I’s). Within the project teams modern ways of working are applied as
described in (Kollenburg et al, April 2000 & September 2000). There are multiple I3
student groups working simultaneously in different companies; one of which at Philips
CFT (Centre for Industrial Technology) Eindhoven, department of Industrial Vision
(IV). At this centre the I3 project team is involved in developments in the field of motion
control with vision. The work of this team and their preliminary results will be described
further in this paper.

2 Project background

The goal of this project at CFT-IV is to gain experience in controlling the motion of a
robot by using a vision system. Normally, such a movement is controlled with sensors
that measure the actual position of each individual joint. A feedback loop then locks the
motors into predefined positions (called 'setpoints'). A setpoint generator is used for
generating consecutive positions, e.g. for following a smooth spline path. The path

followed by the robot arm is strictly defined by those setpoints, and therefore this
approach, although very common, has some drawbacks:
• When the position or orientation of an object can vary from one situation to the

other, it can be difficult to program the robot-movements in such a way that the
object is always grasped correctly.

• When the situation is such that the object is moving randomly, it is difficult to
follow the object with a robot.

• In order to achieve a reasonable accuracy, it is always necessary to calibrate the
robot.

• Extensive computations are necessary for transforming real-world co-ordinates to
robot joint positions.

These problems can possibly be solved when a vision system is used for controlling the
robot instead of, or in addition to, the normal sensors.
This paper describes the main results achieved by the project team thus far.

3 Project goals

There are two practical cases that the project team is working on. These are described
here shortly and elaborated upon in the following sections.
• The "RoboCup" project.

RoboCup is a competition between teams of mechanical football-players. These
teams must be able to play a football game against other robot teams, with of
course some adapted rules. The goal is to create in the long run a team of robots
that can play and win a football game against a human team.
A vision system has to be developed that will be able to recognise and localise the
ball, the goals, the players of the two teams and the borders of the playing field.
With these data, the robot must be able to compute its own position, the speed of
the ball, the best way to hit the ball, the best trajectory from the current ball
position to the opponent goal, etc (see Iakovou 2001 for an extended description).
The vision module is therefore part of a much larger system that is not considered
here.

• The "JuggleBot" project.
Here, the intention is to let a robot interact with an object, in this case a ball. The
project will evolve in a number of steps of increasing difficulty: first the robot
follows the ball, then it pushes the ball into a hole and finally it keeps the ball in the
air by bouncing it with a small bat. The emphasis is on speed and accuracy.

As mentioned before, the benefit for Philips is that knowledge is gained in a number of
fields related to vision based robot control.

4 RoboCup

4.1 Vision system
The vision system for the football robots consists of 2 cameras, a black and white camera
and a colour camera, and 2 identical image acquisition boards equipped with a Philips
TriMedia chip. The purposes of the 2 systems are described below:
• The colour camera is responsible for finding the objects, and determining their

positions, based on colour. This can be done because all the important objects, the
field, the lines, the ball, the goals, the teammates and the opponents, have distinct
colours.

• The black and white camera receives the object positions from the colour module
and starts tracking that object (e.g. the ball). The tracking is done by the B/W
camera because of its higher capture and refresh rates.

Until now, emphasis has been put on the first part, the colour based object detection.

4.2 Colour spaces
In order to efficiently distinguish the objects based on their colour, it is necessary to
choose a suitable colour representation. Colours are represented by a number of (mostly
3) scalar values. Possible representations are:
• RGB: 3 values for the intensity of the red, the green and the blue component of the

colour. This is a natural representation because, on the one hand, colour cameras
decompose every pixel in the image into these 3 component colours and, on the
other hand, a CRT has 3 electron guns, one for each component colour. The values
range from 0 to 255 (i.e. 1 byte) per colour. This representation, however, is not
very suitable for colour based object detection, since changing lighting conditions
generally causes changes in all 3 values, which is undesirable.

• HSI: Hue, Saturation and Intensity (sometimes called HSL, with Luminance instead
of Intensity). These values are used in the control of an ordinary colour television,
since this normally has controls for colour saturation and for the intensity. Low
colour saturation means that a black and white picture is shown, high saturation
usually gives an overly coloured picture. Low intensity means a completely black
picture and high intensity gives a completely white picture. The hue gradient
actually specifies the colour itself.
For object detection, HSI is ideal since different lighting conditions normally have
large effect on intensity, but little effect on hue and saturation, therefore one can
restrict attention to these two components instead of 3 in the RGB case. The
conversion from RGB to HSI is quite complicated, as this formula for the Hue
shows
H(R,G,B) =

{ if R=G=B, then 0
 else
 if R is maxcolor, then (G-B)/(maxcolor-mincolor)
 if G is maxcolor, then 2.0 + (B-R)/(maxcolor-mincolor)
 if B is maxcolor, then 4.0 + (R-G)/(maxcolor-mincolor)
}

• YUV: For colour information transmission, mostly YUV is chosen. The Y
component is comparable to the Luminance. U and V are used to reconstruct the
colour information. YUV has similar advantages as HSI, albeit that the changes in U
and V are slightly larger with changing lighting conditions than the changes in H
and S. An advantage of YUV as opposed to HSI is that the conversion between
RGB (the camera output) and YUV is easy to compute because of the linear relation
between them, whereas the conversion from RGB to HSI is more complicated.

Y= 0.23*R +0.58*G +0.12*B
U = -0.17*R +0.33*G +0.5*B
V = 0.5*R -0.42*G -0.08*B

For RoboCup, the YUV representation is chosen because of its good possibilities for
object detection based on colours and its easy conversion from RGB. To increase
processing speed, a hardware module is used for this conversion.

4.3 Algorithm for object detection based on colour
Every pixel in the image is converted into YUV representation, and then represented by
a white dot in the 2-dimensional UV-plane (i.e. Y is neglected). U and V values range
from -128 to 127. These dots in the UV-plane can also be represented by polar co-
ordinates (angle and radius, relative to the origin (0,0)):

Angle = arctan(U/V)
Radius = √(U2+V2)

When the UV-plane is shown graphically, the resulting picture resembles a square pizza
pie filled with all kinds of colourful ingredients. For this reason, the following algorithm
is also called "pizza pie segmentation".

A feature of YUV representation is that pixels of the same colour are all inside a
triangular segment in the UV-plane between a minimal and a maximal angle, much like
a piece that is cut out of a pizza pie. Since the points near the origin of the UV-plane are
almost grey and therefore contain
almost no colour information, these are
excluded from such a pizza pie
segment.

Now, for every object that has to be
localised, a corresponding pizza pie
segment can be defined in the UV-
plane. These parts are not overlapping
since the colours in the scene are clearly
distinguishable (see Figure 1).
Experiments have shown that re-
calibration is necessary when the
lighting changes, because the positions
of the white dots representing a certain
object change when there is more or
less light, and of course also when the
colour of the light itself changes. In the
future, a method will be designed for
automatically determining where the
pizza pie segments have to be.

All pixels of the original image that are
projected inside one of the predefined
pizza pie segments in the UV-plane are supposed to belong to the same object. In this
way all pixels of one object are located and features like the area size (i.e. number of
pixels in the object) and the centre of gravity of the object can be easily computed.

4.4 Reconstructing a partly occluded ball
When we concentrate on the ball (which is red), we can say that, when the ball is not
occluded by any other object, it is visible as a red circle in the image and the centre of
gravity of all red pixels coincides with the centre of the physical ball. This is a rather
crude and unreliable way of determining the position of the ball, mainly because the
results are distorted when the ball is partly occluded or badly lit. When only half of the
ball is visible, the computed centre of gravity of all red pixels will have a considerable
deviation from the real centre of the ball. Since, for a football-playing robot, it is of

Figure 1 UV plane with pizza pie segments

crucial importance that the position of the ball is known at every moment, a solution has
to be found.

It is investigated whether the Hough-transform is suitable here. The Hough transform is
a technique, originally designed for finding partly occluded straight lines in an image
(first described in Hough 1962; see Davies 1997 for an elaborate treatment) and later
extended to the case of partly occluded circles and other shapes. For this algorithm, first
all edge points must be found by means of some other method, and then the algorithm
can collect all points belonging to the same circle. Disadvantages are that it is a quite
computation intensive algorithm and that, when a circle is searched, the radius of that
circle must be known on beforehand. As a result, it is not possible to do this for every
single image frame, but only at a certain regular rate. Furthermore, the radius of the
circle to be searched must be determined one way or the other. A possibility is to take
the perspective view of the camera into account. Since the camera is fixed to the robot at
a certain height above the playing field, and assuming that the ball is always on the
ground and never lifted, there is a relation between the height of the ball in the image,
and the radius that the ball will have. The higher the ball is, the greater the distance from
the robot, and hence, the smaller the radius. One can measure the correspondence (or
compute it with a suitable mathematical model) and use this to set the radius of the circle
that the Hough transform is looking for. The Hough transform can then reconstruct the
complete ball-circle when that ball is partly occluded. When the ball is completely
visible, the Hough transform is not necessary.

5 Jugglebot

5.1 Feedback loops
A typical control system for a servo motor is depicted in Figure 2. There are three
feedback loops here, which will be discussed below:
1. The amplifier loop
2. The controller loop
3. The setpoint generator loop

5.1.1 Amplifier loop.
In this picture, the internal loop denotes the amplifier applying a certain current to the
motor in order to get it moving. This current is measured about 10000 times a second in
order to stabilise it to the value supplied by the controller. This loop is mostly
implemented in hardware.

5.1.2 Controller loop.
The middle loop is meant to determine the current that is needed to get the motor to a
certain position. The position and/or velocity of the motor (or an axis connected to the
motor) is measured by the encoder and the difference between this actual location and
the desired location (the setpoint) is calculated and fed into the controller. The controller
decides what current should be applied to the motor in order to get it to the right
position. The controller will try to balance the applied currents in such a way that the
motor is in the setpoint position as fast as possible, taking into account the effects of
overshoot. The actual position is measured by the encoder in certain time-intervals, with

a length in the order of magnitude of 1 millisecond. In between two encoder-
measurements, the current is constant. This loop is implemented in software.

5.1.3 Setpoint generator loop.
The outer loop is based on the setpoint generator (see below) that calculates the
setpoints. The frequency with which setpoints change depends on the situation. The
more setpoints an application generates, the better control it has over the exact
movement, but the more computation time is needed. Consider an example in which an
axis is in position A and has to move to position B at a distance of 1 meter. When the
driving motor is controlled by only one setpoint (position B), only the controller will
determine the behaviour of the axis. Since the controller reacts on the signals of the
encoder, the exact movement will depend on external influences like the load. When two
or more motors are moving in parallel the path is unpredictable. By generating multiple
setpoints, the application has more exact control over the followed path. A setpoint may
be determined by the desired position and/or velocity. When a setpoint is supplied to the
controller, it will try to send the axis to these values as explained above.

5.2 Setpoint generator (SPG)
A setpoint generator is a software module that generates a sequence of setpoints on the
basis of a limited number of parameters. Different setpoint generators may generate
different setpoints when supplied with the same parameters. Two possible types are:
• A point to point generator will sent an axis from one point to another in the shortest

possible time. The axis starts and ends with velocity zero. This generator will
generate setpoints such that the axis starts with a maximal acceleration until the
maximum speed is reached, then continues with that speed until nearly at the
endpoint and then decelerates maximally to come to a halt exactly at the endpoint.
The values for maximal acceleration, maximal deceleration and maximal speed of
course have to be supplied to this setpoint generator in advance.

• A spline generator generates a "smooth" path through a number of points. The
partial path from one point to another is called a spline segment. "Smooth" means
here that every spline segment follows some polynomial profile and that adjacent

Setpoint
generator Controller Amplifier

Motor

Encoder

≈ 10 kHz

≈ 1 kHz

++

- -

Amplifier loop

Controller loop

Setpoint generator loop

Figure 2 Feedback loops

segments satisfy certain continuity requirements (see Boots 1997). The degree of the
polynomials and the exact continuity requirements may vary from one generator to
the other. Thus, the spline generator receives a sequence of position- (and maybe
speed-) values from some application, and generates setpoints in such a way that the
axis moves smoothly from one point to the next.

5.3 The example robot
The Transposer robot that is used in the experiments has the following characteristics:
• The robot is of the 'jointed arm' type with 3 rotational joints.
• There are three motors: one for a rotation of the complete arm around the vertical

axis, one for a movement of the effector in horizontal radial direction and one for a
movement of the effector in vertical direction. The mechanics of the robot are
designed in such a way that each of the last 2 motors in fact moves (the same) 2
joints.

• Each motor has a controller board that contains the three above mentioned feedback
loops and generates the necessary currents for the motor. These controller boards are
considered black boxes, i.e. no attempt is made to make changes in these feedback
loops.

• The three controller boards are connected to each other and to a CPU board by a
dedicated bus system. The CPU board is built around a processor of the M68000
family.

• The CPU board is connected to a PC by a serial link. It runs a special OS called
MACOS.

The controller boards can be programmed in a number of ways, the two most relevant

start
Accelerate
maximally

Final velocity
reached

First position
reached

Second position
reached

Velocity

Accelerate
maximally

Decelerate
maximally Third

position
reached

Final velocity
reached

Time

Figure 3 Position based speed profile

being:
• Position mode

The distance, final velocity and maximal acceleration are specified. The built-in
SPG generates a velocity profile as depicted in Figure 3.
For every specified point, the SPG first accelerates maximally until the maximal
velocity is reached, then continues with that velocity until the specified point is
reached. At that moment the next parameters are read and the SPG generates a new
similar profile for going to the next point.

• Speed mode
Only speed and acceleration are specified and this results in a speed profile, which,
unlike the previous one, does not react on reaching a certain position (since no
position is specified at all), but is continuously moving with the final velocity until
the application conveys the next set of parameters.

5.4 Software design
The software for this project is developed by several students concurrently, therefore the
interfaces had to be defined unambiguously. Although most software at the IV
department is written in the language C, this software is written in C++. A class model
has been made which is still undergoing changes.

5.5 Object finding
The software is designed in such a way that the object location can be done with several
different algorithms, by extending the class IPU (Image Processing Unit). Possible
algorithms are:
• Feature tracking

The object is located using some features like area size, main axes, etc. A standard
library is used for finding these features.

• Template matching
The object is found using template matching. An experimental algorithm is used for
generating a suitable template automatically in the initialisation procedure of class
IPU.

• Colour detection
The pizza pie algorithm described in relation to the RoboCup project could also be
used in this project. This approach, however, is not pursued.

5.6 Object tracking
One objective is to let the robot follow a randomly moving object. The camera will be
mounted on the robot effector and the robot should move in such a way that the object is
always almost in the centre of the image. In principle, when the position of the object in
the image is found, when the mechanical dimensions of the robot arm are known exactly
and when the actual position of each joint is known, it is possible to compute exactly in
what direction and with what speed the motors should be moved in order to get the
object in the middle of the image. The (not yet implemented) idea is to avoid computing
this complex real-world to robot transformations and make the control as simple as
possible, like a fly that is able to land on an apple without having to do complex
computations. The simplified algorithm is:
• Find the object in the image using one of the techniques described in paragraph 5.5.
• Determine the deviation of the object position relative to the centre of the image.

• Steer the motors depending on this deviation. The direction of the deviation
determines which motors have to move and the direction in which they have to
move, and the distance from the centre determines the velocity with which the
motors have to move. Instead of computing exactly the optimal values for each
motor, these values are approximated with simple formulas.

This approach is viable because, assuming that the object is indeed kept in the middle of
the image, the deviations from the centre will be small and hence the approximations
will be close to the optimal values. In addition, the approximations are repeated in the
same rate as the image capturing and in this way corrections will be made quickly when
the robot is not moving in exactly the right direction.

6 Final remarks

The I3 projects are in principle 'never ending stories', which means that they are still
running to date. Students are taking over each other's work. Currently the team is (a.o.)
working on the use of a high-speed camera for motion control. Since the future of the
project depends on the results gained on the current tasks and on the wishes and needs of
Philips CFT, it is not possible to predict exactly in what way the project will evolve.

Working with a team like this has a lot of advantages, since the students can help each
other and learn to co-operate with people from different disciplines and nationalities, but
on the other hand it is difficult to find assignments in which the students can co-operate
successfully.

We would like to thank the people at Philips CFT, IV department, for giving our
students the opportunity for working in this technically advanced and inspiring
environment. Finally, the students are thanked for their hard work and good results.

References

Bakker, R. M., Geraedts, H. G. M. & van Schenk Brill, D. (1999), A Model for
Education in Innovative Engineering, WESIC1999, Newport, September 1999.

Boots, P.J.H.M. (1997), A Spline Generator Interface for OMC SAC, Software
Requirements Specification, Philips CFT internal report.

Davies, E.R. (1997), Machine Vision, Academic Press, San Diego, USA
Hough, P.V.C. (1962), Method and means for recognising complex patterns, US PAtent

3069654
Iakovou, D. (2001), RoboCup Vision Module, Philips CFT internal report.
Kollenburg, P.A.M., Veenstra, H., van Schenk Brill, D., Ihle, H. & Kater, K. (April

2000), Integrated Product Development and Experiences of Communication,
TMCE2000, Delft, April 2000.

Kollenburg, P.AM. van, Schenk Brill, D. van, Schouten, G., Mulders, P. Ochs, J.B. &
Zirkel, M. (September 2000), Collaborative Engineering Experiences, Engineering
& Product Design Education Conference 2000, Brighton, September 2000.

	P364:
	stampTemplate:
	pg: 361
	header: Proc. of WESIC 2001, University of Twente, The Netherlands, 27-29 June 2001

	P365:
	stampTemplate:
	pg: 362
	header: Proc. of WESIC 2001, University of Twente, The Netherlands, 27-29 June 2001

	P366:
	stampTemplate:
	pg: 363
	header: Proc. of WESIC 2001, University of Twente, The Netherlands, 27-29 June 2001

	P367:
	stampTemplate:
	pg: 364
	header: Proc. of WESIC 2001, University of Twente, The Netherlands, 27-29 June 2001

	P368:
	stampTemplate:
	pg: 365
	header: Proc. of WESIC 2001, University of Twente, The Netherlands, 27-29 June 2001

	P369:
	stampTemplate:
	pg: 366
	header: Proc. of WESIC 2001, University of Twente, The Netherlands, 27-29 June 2001

	P370:
	stampTemplate:
	pg: 367
	header: Proc. of WESIC 2001, University of Twente, The Netherlands, 27-29 June 2001

	P371:
	stampTemplate:
	pg: 368
	header: Proc. of WESIC 2001, University of Twente, The Netherlands, 27-29 June 2001

	P372:
	stampTemplate:
	pg: 369
	header: Proc. of WESIC 2001, University of Twente, The Netherlands, 27-29 June 2001

