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Summary

This paper reports on the first stage of a research project1) that aims to incorporate objective
measures of physical activity into health and lifestyle surveys. Physical activity is typically
measured with questionnaires that are known to have measurement issues, and specifically,
overestimate the amount of physical activity of the population.

In a lab setting, 40 participants wore four different sensors on five different body parts, while
performing various activities (sitting, standing, stepping with two intensities, bicycling with two
intensities, walking stairs and jumping). During the first four activities, energy expenditure was
measured by monitoring heart rate and the gas volume of in‐ and expired O2 and CO2.
Participants subsequently wore two sensor systems (the ActivPAL on the thigh and the UKK on
the waist) for a week. They also kept a diary keeping track of their physical activities, work and
travel hours.

Machine learning algorithms were trained with different methods to determine which sensor
and which method was best able to differentiate the various activities and the intensity with
which they were performed. It was found that the ActivPAL had the highest overall accuracy,
possibly because the data generated on the upper tigh seems to be best distinguishing between
different types of activities and therefore led to the highest accuracy. Accuracy could be slightly
increased by including measures of heartrate. For recognizing intensity, three different measures
were compared: allocation of MET values to activities (used by ActivPAL), median absolute
deviation, and heart rate. It turns out that each method has merits and disadvantages, but
median absolute deviation seems to be the most promishing metric. The search for the best
method of gauging intensity is still ongoing.

Subsequently, the algorithms developed for the lab data were used to determine physical activity
in the week people wore the devices during their everyday activities. It quickly turned out that
the models are far from ready to be used on free living data. Two approaches are suggested to
remedy this: additional research with meticulously labelled free living data, e.g., by combining a
Time Use Survey with accelerometer measurements. The second is to focus on better
determining intensity of movement, e.g., with the help of unsupervised pattern recognition
techniques.

Accuracy was but one of the requirements for choosing a sensor system for subsequent research
and ultimate implementation of sensor measurement in health surveys. Sensor position on the
body, wearability, costs, usability, flexibility of analysis, response, and adherence to protocol
equally determine the choice for a sensor. Also from these additional points of view, the activPAL
is our sensor of choice.

1) The authors would like to thank Reinier Bikker, Guido van den Heuvel, Jeffrey Hoogland and Bob Lodder for their effort
to clean and standardize the data and perform explorative data analysis. We would also like to thank Mark Schauwen
and the Educational Programme Motion Technology for facilitating the use of the laboratory and for the technical
support. Thanks to THUAS students Adnan Akbas, Colin Werkhoven, Ali Safdari, Mark Boon and Matthew Turkenburg
for their work on predicting activities in the free living week and to Utrecht University student Jasper Vogelzang for his
work on Hidden Markov models to predict transitions between activities.
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1 Introduction

Every year adults are asked to fill a short questionnaire to assess their physical activity and
sedentary behaviour. Traditionally, Statistics Netherlands and the National Institute for Public
Health and the Environment of the Netherlands (RIVM) measure the health of the Dutch
population via a Short QUestionnaire to ASsess Health‐enhancing physical activity (SQUASH),
(Wendel‐Vos et al., 2003). Respondents fill in the frequency and duration of several activities like
walking, cycling and sports. Statistics Netherlands publishes each year about the population’s
adherence to Physical Activity Guidelines of the National Health Council. Physical activity is
defined as any bodily movement produced by the skeletal muscle that results in energy
expenditure (Prince et al., 2008). However, it is well‐known that self‐reported survey data are
prone to measurement errors and lack of representativeness (Ferrari et al., 2007; Fruin and
Rankin, 2004; Helmerhorst et al., 2012; Sallis and Saelens, 2000; Shephard, 2003; Welk et al.,
2014; Wijndaele et al., 2015). Self report also suffers from reporting bias, e.g. due to social
desirability or inaccurate memory (Helmerhorst et al., 2012; Prince et al., 2008; Sallis and
Saelens, 2000; Welk et al., 2014). Respondents often underestimate the time spent in light
intensity activities and overestimate high intensity activities (Nicolaou et al., 2016).

Activity monitor devices allow to objectively measure intensity, duration and patterns of activity
(Troiano and Freedson, 2010). Tri‐axial accelerometers can provide information about physically
active and inactive periods (Ward et al., 2005). Accelerometers measure movements accurately
and are widely available at a low cost (Esliger and Tremblay, 2007). Next to acceleration, activity
monitor devices may measure for example heart rate, oxygen intake and counting steps.

However, research indicates that people are substantially more willing to fill in a questionnaire
than to wear an accelerometer (e.g., Kraakman, 2021, Toepoel et al., 2021). It is unclear to what
extent respondents are willing to wear activity trackers for research purposes, or to what extent
activity trackers can replace surveys from a data quality perspective. A research project was
started to address these questions (Schouten and Voermans, 2019). Specifically, we study
whether it is possible to develop a sensor system and algorithm that are able to replace the
SQUASH questionnaire.

This paper describes the first step in this research project: the search for a sensor system that is
accurately and validly capable to recognise physical activity and its intensity. To determine
accuracy and validity, a ground truth is necessary. The intensity of activities can be bench‐marked
with respiratory gas exhalation and heart rate. For recognition of physical activity we used an
observation method, where participants performed a number of prescribed activities (cycling,
walking, running, jumping, standing, climbing stairs, sitting) with five motion sensors at different
positions of the body; and a heart rate sensor and VOX sensor attached to their body.

A small scale observation study (𝑛=40) was performed in the motion technology laboratory of
the Hague University of Applied Sciences (THUAS). In addition, participants wore two sensors at
home for a week, while keeping a diary of their physical activities during that week. We will refer
to the data that is generated during and outside the laboratory as respectively labdata and
weekdata.

In this paper we describe the estimation of intensity and activity recognition. The report,
particularly the activity classification in Section 4, builds on findings from a previous sub‐project
concerning the preliminary investigation of the data (Bikker et al., 2020). The result of this
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preliminary analysis was a model that classified the activities fairly well, with a few exceptions.
Based on these analyses, it was determined that the activPAL in combination with a heart rate
measurement classified the activities most accurately. In this report additional analyses with
alternative machine learning models are used to study if the preliminary results are still upheld.

1.1 Research questions

CBS wants to determine whether sensor‐based measurements can replace or supplement the
SQUASH survey. The research consists of two aspects: classification of physical activity and
estimating intensity. There is no true value for intensity during the free living period, therefore,
we will only apply a classification algorithm based on the weekdata. The following research
questions will be assessed in this report:

RQ1. How can we estimate intensity based on the lab‐ and weekdata?
RQ2. How well can machine learning models classify activities based on labdata?
RQ3. How well can machine learning models classify activities based on weekdata?

The feasibility of using accelerometers in large scale surveillance depends on a number of
aspects. The three research questions above are concerned with the quality of measurement and
the possibility to gauge the required variables from measures and algorithms. For the present
pilot we chose to provide all participants with the same high quality research grade measurement
devices, to be worn in the same position and on the same body parts. Other options may be
feasible too, for example using relatively cheap commercial devices (like fitbits) that may already
be in the participants’ possession or are provided by the research institute. A pilot into the
feasibility of using participants’ own accelerometers is described in Kraakman (2021). Decisions
on the type of measurement device to use, how long to measure, where to measure, all impact
the balance between quality, costs and participant burden. Sample persons have to be willing
and able to wear the meters, and the lowest possible respondent burden should be striven for.
Respondent burden was not the main research topic for the pilot described here, nevertheless,
some information is available that is addressed in the fourth research question:

RQ4. How do the sensors used in the free living period compare in terms of user friendliness?

The international physical activity norm states that an adult needs at least 150 minutes of
minimally moderate physical activity per week and needs to perform muscle and
bone‐strengthening activities at least twice a week. The intensity of physical activity is expressed
as Metabolic Equivalent of Task (MET). Moderate physical activity is defined as having a MET
value of at least 3. Although MET value is calculated by dividing the oxygen uptake by the mass of
a person in kilogram times 3.5 (Mortazavi et al., 2013), in practice the calculation of the physical
activity norm is based on assigning a fixed MET value per type of activity. We compare the
(pre‐)calculated MET value with oxygen intake and other measures of intensity like the Mean
Amplitude Deviation (MAD) that describes the typical distance of data points to their mean to
answer RQ1.

In the SQUASH questionnaire, respondents are asked to estimate the number of minutes
generally spent per week on a number of activities that typically take up most of people’s time:
working, travelling, biking for work and leisure, walking for work and for leisure, doing sports,
gardening, doing household chores. These activities are assigned a MET value to be able to gauge
the intensity of movement, for the classification in light, moderate and intensive physical activity.
When using an accelerometer, only the direction and amplitude of the movement is measured.
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Whether this movement is ’walking’ of ’bicycling’ needs to be recognised from the pattern of
movement. Some accelerometers can for example use information on the inclination of the
device to distinguish biking from walking, for example because the have a gyroscope (like the
x‐IMU’s) or by calculating inclination from the angles between the x‐, y‐, and z‐ vectors (like the
activPAL software does). The step frequency distinguishes walking from running. Algorithms then
translate these patterns into activity and intensity classification. An important consideration for
the present research project is to what extent we will be able to develop these algorithms for
intensity and activity recognition, and to what extent respondents will still have to provide this
context. A subsequent question is which kind of activities need to be recognized in order to be
able to provide the statistics needed.

Because the physical activity norm states the required number of active minutes per week, a
week is also the measurement unit of time chosen in this study, as well as in most other studies
with accelerometers, although shorter periods of four days may also render valid estimates of
physical activity (Edwardson et al., 2017). Edwardson et al. (2017) gives an overview of studies
using the activPAL. In 71% of studies, the activPAL was worn for 7 days. Ideally, the number of
days of measurement are determined by the required reliability, which may be different for
different types of behaviour (sitting, standing, walking, etc.) and different populations. Most
likely, there will be variation over days of the week, over weeks and over seasons in the amount
of physical activity. Questionnaires tackle this variability by asking for a subjective estimation of
the mean number of minutes over longer periods of time. Longer measurement periods with
accelerometers could theoretically inform on within respondent variation and could potentially
better inform machine learning models. However, better measurement needs to be balanced
with higher respondent burden and diminished adherence. Skin irritation may be the result
when wearing the activPAL for longer periods, for example. There is also the practical
consideration that there is a finite amount of recording capacity on the device. Edwardson et al.
(2017) conclude that, pending better recommendations, the measurement period should be at
least 7 days but ideally up to the 14 day limitation of the activPAL.

The second and third research questions will be answered by training supervised machine
learning algorithms and evaluating their performance. The machine learning algorithms classify
the sensor measurements into periods of activities like running, standing, and cycling. The
performance of the models is evaluated via the logbook that is kept during the laboratory
session. We compare the performance of the sensors that provided raw accelerometer data to
answer RQ2. The logbook is not available for the weekdata. Therefore, we compare the
classification of the weekdata of RQ3 with the SQUASH diaries and the predictions of the
software of the ActivPAL sensor.

The structure of this report is the following. In Section 2 we will describe the sensors, lab
sessions and diary in more detail. This section also contains information about data cleaning
procedures. In Section 3 we evaluate three methods to estimate the intensity of physical
activities. Section 4 describes the data analysis leading to the choice for one of the sensors (the
activPAL) for subsequent studies in the research program. Neural networks are trained to classify
activities by accelerometer data from the laboratory sessions. We also investigate how the
models that were developed for recognising laboratory activities extrapolate to the free living
period. Section 5 describes the lab and free living sensors from the viewpoint of user friendliness
and other practical considerations. We finish the report with conclusions and recommendations
for future work in Section 6.
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2 Methods

Participants came to the THUAS motion technology laboratory, where they first signed a consent
form and completed a questionnaire about their exercise behaviour (the SQUASH questionnaire).
Two lab assistants weighed and measured the participants and attached five different sensors to
various part of the body. Subsequently, participants performed a series of prescribed activities.
During a number of activities, a breath gas analysis was done to measure energy expenditure. A
detailed description of tasks is available in Luiten and Voermans (2019a) and Luiten and
Voermans (2019b). Following the lab session, participants wore two sensors, the activPAL on the
left upper thigh and the UKK at the back attached on a belt around the waist, at home for a week.
During that week they filled in a diary in which they noted the times for getting up, working,
travelling (plus mode), exercising, taking off the sensor(s), and going to bed. Some of the
participants had the free living week prior to the lab session. They received the ActivPAL and UKK
through the mail. A short manual assisted in mounting the sensors properly. Participants
received €50 for their assistance.

2.1 Sample, sensors and activities

A convenience sample of 40 participants took part in the research in the laboratory. These were
recruited among CBS employees via an e‐mail, students of THUAS via posters at the THUAS, and
participants of the CBS Health Survey who had indicated that they would be available for
subsequent research again. An attempt was made to compose four homogeneous groups for this
training set: half men, half women and half physically active, half inactive. The ‘active’ were not
supposed to be a top athlete, and the ‘inactive’ were not supposed to be completely inert. The
level of fitness, together with other variables such as age, correlate for example to the maximal
exercise heart rate (Londeree and Moeschberger, 1982). Whether people were active or inactive
was determined on the basis of three questions that participants had to answer: the number of
minutes per week walking, cycling and exercising. The derivation of ‘active’ on the basis of these
questions was mainly done on the basis of the number of minutes of exercise. The non‐active
participants walked an average of 63 minutes per day, cycled 29 minutes and played sports for 12
minutes, according to their answers to these questions. The active participants walked 66
minutes, cycled 32 minutes and exercised 45 minutes. Whether a person was classified as active
or inactive influenced the setting of the activities that participants did in the laboratory session.

We were able to analyse the labdata of ActivPAL for 36 participants 2). Table 2.1 shows the prior
distribution of gender and activity of the 36 analysed participants. 55% of them were active, but
being active was not equally distributed across the sexes: the male respondents were more
active than female respondents. 9 respondents are members of a sports association and 13
respondents did fitness at home or at the gym. The weight of respondents ranges from 50.4 to
100.3 with a mean of 74.6 kg. The length of respondents ranges from 157.0 to 194.5 with a mean
of 179.0 centimetre. The age of respondents ranges from 18 to 71 with an average of 35 years.

The following sensors were attached to participants during the laboratory sessions:

– The Vyntus CPX system. Vyntus allows to determine a subjects’ metabolic response while

2) The data quality of one respondent was problematic, the data of two respondents was incomplete, one respondent
did not perform jumping in the laboratory.
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Table 2.1 Gauged activity level and gender of participants
General activity level Sex Number of respondents
Active Men 15

Women 5
Inactive Men 5

Women 11

exercising. Through a face mask or mouth‐piece the gas volume of in‐ and expired O2 and
CO2 are collected. From the breathing volume and the differences between inspiration and
expiration O2 and CO2 concentration the oxygen uptake and the CO2 production are
calculated by the software. The Vyntus was attached to a ergo‐meter and treadmill for
cycling and walking activities (see below for a description of the activities performed).

– The activPAL3 ™(PAL Technologies Ltd., Glasgow, UK) is a small and slim device that directly
measures the postural aspect of sedentary and active behaviour. It is mounted on the
upper thigh with a medicinal patch. Via proprietary algorithms information about thigh
position and acceleration are used to determine body posture (i.e., sitting/lying and
upright), stepping, and stepping speed (cadence), from which energy expenditure is
inferred indirectly. The sampling frequency for acceleration data was 20 Hz. ActivPAL3 has
8bit output, so the measured accelerometer data is within the range [0, 255].

– Two IMUs (Inertial Measurement Units), one mounted on the right wrist, one on the right
tibia. The version used was the X‐IMU (x‐io Technologies Limited, Bristol, UK). The IMU
contains a magnetometer, accelerometer, barometer and gyroscope. The sample
frequency for acceleration data was 512 Hz. The X‐IMU outputs 16bit acceleration data
with a range of 8g.

– The Hexoskin smart shirt that measures heart rate, respiratory rate, minute ventilation,
step count, and energy expenditure. The sampling frequency for acceleration data was 64
Hz.

– The UKK RM42 (UKK, Tampere, Finland) accelerometer. Raw acceleration data were
collected at a 100Hz sampling rate with 13‐bit A/D conversion of the ±16g range and
analysed with a custom‐written MATLAB script for mean amplitude deviation (MAD) in
non‐overlapping 5s epochs (Vähä‐Ypyä, Vasankari, Husu, Suni, et al., 2015). Twelve
consecutive 5s epochs were averaged to produce minute‐by‐minute MADs. Previously
defined and validated cut‐points of 16.7mg (mili‐acceleration caused by gravity), 91mg and
414mg were used to categorise the minutes into separate sedentary time and light,
moderate and vigorous intensity physical activity (Vähä‐Ypyä, Vasankari, Husu, Mänttäri,
et al., 2015; Vähä‐Ypyä, Vasankari, Husu, Suni, et al., 2015). The UKK was worn in an elastic
band on the hip during daytime and transferred to a wrist worn elastic band during
sleeping hours.

The sensors and position on the body are shown in Figure 2.1. The same IMU sensor is worn on
the ankle and wrist. ActivPAL, Hexoskin, two IMUs and UKK contain accelerometers. We will refer
to the unprocessed tri‐axial accelerometer data as raw data. ActivPAL provides data in raw and
pre‐classified (i.e., sitting/lying, standing, stepping) form. A summary file provides for example
the number of steps, the proportion of time spend lying and the estimated MET. The
pre‐classification algorithms are not public, and the taxonomy of activities differs from our seven
activities. The data of the UKK sensor are already processed into e.g., average X‐, Y‐, and Z
acceleration at a frequency of approximately 1 Hz and includes the variable MAD (Mean
Amplitude Deviation).

Measurements started with a synchronisation jump by the participant. This made it easier to
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(a)Wristworn
IMU

(b) ActivPAL (c) Hexoskin (d) UKK

Figure 2.1 Sensors

superimpose the start of the measurements for all the sensors. The activity classes in which gas
volume was also measured were:

– cycling on an ergo‐meter, moderately intensive at 70 watts for untrained and 100 watts for
trained participants. Revolution was kept at 60 per minute. We will refer to this activity as
cycling light.

– cycling, intensive, at 80 and 120 watts for untrained and trained participants respectively,
both also at 60 revolutions per minute. We will refer to this activity as cycling heavy.

– walking on the treadmill (4 km/h for untrained and 5 km/h for trained participants),
– running on the treadmill (8 km/h for untrained and 10 km/h for trained participants).

Participants who could not run for five minutes could stop earlier or could run at a slower
speed; it appeared that even for trained women 10 km/h was quite intensive.

– standing,
– sitting.

The activities were determined as representative activities that people perform daily. The
intensity of walking and cycling for trained and untrained participants was based on literature
and the experiences of the HUAS. The order of the activities was alternated among participants.
However, running always followed walking, and cycling intensive always followed cycling
moderate. Each activity lasted 5 minutes. Between walking / running and between cycling there
was a short interval where the Vyntus needed to be hooked to the other device. Otherwise, the
interval between activities was generally shorter than a minute, but could vary between
respondents as a result of various circumstances (e.g., adjustment of sensors that came loose,
blue tooth connections that were disrupted, etc.).

The activity classes in which no gas volume was measured were:

– Jumping: 5 jumps with 10 second intervals.
– Climbing stairs (up and down twice on the stairs between two levels of the laboratory).

Figure 2.2 shows the time series of accelerometer data of several sensors during the laboratory
session for one of the respondents. UKK data of the activity sitting are missing for 10
respondents, and standing for 1 respondent. Although time shifts are already applied to the
data, the start‐ and end‐time of the logbook is sometimes still a bit off. For example, it is
remarkable that VO2 of running does not immediately increase.

The participants wore two sensors, ActivPAL and UKK, during a 7 day period while they continued
with their normal life. During this week the participants kept an activity diary in which they
indicated when they worked, when they cycled, when they travelled, when they sported, which
sport they performed and when they slept. The diary also contains the start and end times of
non‐wear periods. Note that the activities noted in the diary were partly more extensive than
those measured in the lab (e.g., travelling), and partly less extensive (e.g., we did not ask
participants to note when they were sitting or standing). The diaries were mostly filled in at the
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Figure 2.2 Measurements of different sensors during the lab sessions of one
respondent after applying time corrections.

conclusion of a day, or even the following day, leading to inaccuracies. Some obvious mistakes
like wrong dates and wrong hours were removed. For example, the date was be outside the
measurement period or the hours indicated that the activity longer than reasonable. We also
encountered some unlikely, but possible activities such as high intensity activities that could not
be distinguished by accelerometer data and activPAL’s MET values. The dairies were cleaned to a
certain degree with the help of the activPAL data where the start and finish of certain activities
could easily be ascertained. The diaries could not be cleaned thoroughly however.

The diary contains the variables ‘wake up’ and ‘sleeping’ to indicate sleeping. Sleeping is clearly
visible in the accelerometer data of Figure 2.3. Other diary activities such as working and
travelling are harder to see in the data. The working hours, 06:30 until 19:30, overlap with
travelling, indicating that the diaries are not as accurate as the laboratory activities.

Moreover, respondents also completed the SQUASH questionnaire during the week. The
activities in the completed questionnaire are mapped to intensities called Metabolic Equivalent
of Task (MET) by assigning a fixed MET value per activity. The MET values are taken from
Ainsworth’s compendium of physical activity Ainsworth et al., 2000. Next, the number of
minutes per week spent in light and moderate to high intensive activities is calculated via an MET
threshold. We mentioned in the introduction that this estimate is inaccurate and often biased. If
we succeed to find a better estimate for intensity, then we might use the SQUASH questionnaire
to quantify the size of the bias.

2.2 Preprocessing ofmeasurements

The sensor data contains a timestamp. Each sensor is synchronised using the time stamp
variable, the measurements of the other sensors and the beginning and end of the lab activities.
The sensors are synchronised with the logbook of activity by visual inspection of one variable
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Figure 2.3 Accelerometer data of one respondent during one day.

from each sensor. We corrected the timestamps, such that the jumps occurred at the right time
and the other activities looked fine. Two files with time shifts at the beginning and/or end were
produced: time shifts of the activities and time shifts of the sensor. 19.85 % of the sensors and
19.49 % of the activities contain a time shift, which stresses the importance of data cleaning.
During the data cleaning, we encountered the following situations:

– Vyntus contained some duplicated time series
– Start‐ end/or end times of activities do not precisely correspond to logbook
– Some sensor output was damaged, and could not be cleaned
– There is not always enough time between activities for the heart rate to calm down.

An accelerometer at rest on the surface of the Earth will measure an acceleration due to Earth’s
gravity, straight upwards (by definition) of 𝑔 = 9.81m/s2. By contrast, accelerometers in free fall
(falling toward the centre of the Earth at a rate of about 9.81m/s2) will measure 𝑔 = 0 zero.
However, it turns out that most sensors are not calibrated, so that they often measure nonzero
acceleration in all directions. Algorithms exist to remedy this at the end of the data collection
(e.g., van Hees et al., 2014), but we were not aware of this at the time of analysis.

Variables like heart rate and VO2 need a warming up period. The length might differ per activity,
e.g. cycling has a longer warming up period than for example walking. The variation in
accelerometer data depends on the activity. Since UKK is averaged per second, the time series
are quite smooth. The five jumps are clearly visible in Hexoskin and ActivPAL accelerometers, but
not in UKK data. Hence, a frequency of one second is likely too rough to detect activities.

Compared to the logbook, the quality of the diaries was quite bad. Most respondents will have
filled in the diary at the end of the day, with the result that begin and end time of activities would
be guessed. One respondent did not have weekdata and three other respondents did not keep a
diary. We compared the diaries to ActivPAL MET values and number of events in order to clean
the diaries and assess their quality. During the data cleaning we identified two diaries of
insufficient quality. The following observations are made during the data cleaning:
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– Only 75% percent of the respondents wore the sensor for at least 6 and a half days, while
respondents where instructed to wear the sensor for 7 days.

– The begin‐ and endtimes of activites are often not accurately.
– Some diary items are probably wrong, but we were unable to correct the timestamps.
– The diary contains obvious mistakes, for example incorrect dates and activities without an

endtime.

Table 2.2 shows the number and duration of activities. Note that the standard deviation is quite
large for all activities, meaning that the duration differs between respondents and over the days.
Respondents typically cycle for a short period. The maximum duration of sports is 6 hours, and
90% quantile is 2 hours. If we compare the median duration with the margin of 15 minutes, the
quality of the diary is not very good. Therefore, we will only use the diary in combination with
(ActivPAL) predictions.

Table 2.2 Number of times activities occur in diaries,median and standard
deviation of duration (inminutes).

# respondents # activities duration (std.)
Non‐wear 28 104 20 (78)
Cycling 31 314 10 (18)
Traveling 33 472 30 (130)
Sports 24 69 60 (53)
Working 30 123 420 (197)

CBS | Discussion paper | February 21, 2022 12



3 Intensity

Estimating the intensity of physical activity is a crucial element if one wants to determine if
people adhere to physical activity guidelines. This section describes three metrics, MET, heart
rate and tri‐axial Medium Amplitude Deviation (MAD), that are related to the intensity of physical
activities. Moreover, we explore the use of thresholds to classify intensities into three classes.
The use of thresholds, coupled with counts of the number of times an acceleration exceeds a
certain threshold has long been the only way to determine the intensity of movement. With the
onset of machine learning, the focus has shifted to recognising activities and subsequently
allocating MET values to those activities.

3.1 Metabolic Equivalent of Task

One MET corresponds to the intensity of quietly sitting and is equal to approximately 3.5mL
VO2/kg/minute. The Vyntus sensor measures oxygen intake. By combining measurements of
Vyntus with the weight of respondents, we can compute a reliable estimate for energy
expenditure from Vyntus measurements, expressed as the MET value.

ActivPAL’s software provides MET values. The software assigns a MET value of 1.25 to the
activities non‐wear, (primary/secondary) lying, sedentary, travelling. Standing has a MET value of
1.4. The other activities, stepping and cycling, have a MET value between 1.8 and 5.1. The
empirical distribution of stepping MET values during the laboratory sessions contains two peaks.
The distribution of cycling does not contain a clear peak, indicating that ActivPAL is unable to
separate cycling light and heavy in the operationalisation chosen in the lab setting, where cycling
occurred at 60 cycles per minute for each intensity level.

We can compare activPAL’s MET value with the baseline from Vyntus for the laboratory activities.
We calculated the MET values for respondents for which both ActivPAL and Vyntus data are
available. The measurements might need some time the converge. Therefore, we removed a
warming‐up period at the start of each activity. The length of the warming‐up period depends on
the type of activity. The MET values are averaged per respondent and activity over 10‐second
intervals by computing the mean value. Vyntus VO2 corrected for the weight of respondents
correlates well with activPAL’s MET. We added the Pearson’s correlation for each respondent and
then averaged over the number of respondents. This resulted in an average correlation of 0.836
over the time series of 10‐second average MET values with a standard deviation of 0.081. Even
thought the average correlation is quite high, there can still be a large absolute difference
between the MET of Vyntus and ActivPAL for certain activities and respondents.

Figure 3.1 shows the MET value of both sensors. As mentioned, the activities sitting and standing
have a constant MET value from ActivPAL. The median MET by the Vyntus sensor suggests that
there are different MET values possible for these low‐intensity activities. However, by using
Vyntus MET it is hard to distinguish the activities sitting and standing. The MET values of sitting
and standing are quite different from the other activities for both sensors. The highest MET
values occur for activity running for both sensors, although there is much variation in the MET
values of running. The highest observed MET value from Vyntus is 11.4 versus a maximum of 5.1
of activPAL’s MET. For high‐intensity activities, the MET values of Vyntus are more volatile,
especially after reducing the sampling frequency to 5 seconds or less. On the other hand,
ActivPAL possibly suffers from classification mistakes, since the MET value depends on the
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activity. In addition, MET values for the ActivPAL are censored at 5.1 MET as a result of the
sampling resolution and range.

Figure 3.1 MedianMET fromActivPAL per respondent and activity versus
medianMET as calculated byVyntusVO2.

3.2 Heart rate

It is possible to measure energy expenditure accurately when using a combination of an
accelerometer and heart rate (Brage et al., 2004). Therefore, we are firstly interested in the
correlation between heart rate as measured by Hexoskin and MET. Figure 3.2 shows that a higher
value of heart rate corresponds in general with a higher value of VO2 after correcting for body
weight (in kg) and vice versa. The value of VO2 differs between activities, but the VO2 of
low‐intensity activities sitting and standing is often very similar.

Pearson’s correlation per respondent of VO2 and heart rate after resampling to a frequency of 10
second intervals range over the respondents from 0.53 to 0.98 after removing a warm‐up time.
The average correlation over the respondents equals 0.896 with a standard deviation of 0.084.
Low correlation is often caused by a relatively high heart rate of single activity. Possibly, some
respondents have performed high intensity movements just before the activity started, so that
the heart rate did not have time to return to the baseline heart rate. The baseline heart rate
varies over respondents as a result of age and fitness variation. It will be interesting to compare
the difference between current and baseline heart rate with VO2 values in future research. In
Section 2 we will combine Hexoskin heart rate with accelerometer data to examine the
explanatory value of heart rate.

3.3 Mean/median amplitude deviation

The mean amplitude deviation is the measure of intensity used by the UKK software. It has
shown to perform well to accurately separate intensity of activity compared to other statistics
like the skewness, kurtosis and difference between high and low percentiles (Vähä‐Ypyä,
Vasankari, Husu, Suni, et al., 2015). While UKK uses mean deviation for their calculations, we
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Figure 3.2 Median heart rate versusmedianVO2 per respondent.

chose to use the median instead. Some of the activities showed large within variations that
would unduly influence the amplitude deviations.

The Median Amplitude Deviation (MAD) is calculated per axis 𝑟 from raw accelerometer data.
The MAD is the median of the deviations from the median acceleration during a short epoch, for
example a few seconds. 𝑀𝐴𝐷𝑥𝑡 is the MAD of the x‐axis (direction) during epoch 𝑡:

𝑀𝐴𝐷𝑥𝑡 = median ൫|𝑥𝑡,1 − 𝑥̂𝑡|, |𝑥𝑡,2 − 𝑥̂𝑡|, |𝑥𝑡,3 − 𝑥̂𝑡|, … , |𝑥𝑡,𝑘 − 𝑥̂𝑡|൯ (3.1)

where 𝑥̂𝑡 = median ൫𝑥𝑡,1, 𝑥𝑡,2, 𝑥𝑡,3, … , 𝑥𝑡,𝑘൯ is the median over the epoch and 𝑘 is the number of
observations in epoch 𝑡. The𝑀𝐴𝐷𝑦𝑡 and𝑀𝐴𝐷𝑧𝑡 can be calculated based on respectively the
y‐axis and z‐axis accelerometer values. The three axes can be summarized in the𝑀𝐴𝐷𝑥𝑦𝑧𝑡.

𝑀𝐴𝐷𝑥𝑦𝑧𝑡 = median ൫|𝑟𝑡,1 − 𝑟̂𝑡|, |𝑟𝑡,2 − 𝑟̂𝑡|, |𝑟𝑡,3 − 𝑟̂𝑡|, … , |𝑟𝑡,𝑘 − 𝑟̂𝑡|൯ (3.2)

The variable 𝑟𝑡,𝑖 = ට𝑥2𝑡,𝑖 + 𝑦2𝑡,𝑖 + 𝑧2𝑡,𝑖 for 𝑖 in 1,… , 𝑘 summarises the information from the three

axis. The epoch length 𝑘 is a parameter of this measure of intensity. The provided mean
amplitude deviation for UKK contains 6‐second epochs (Vähä‐Ypyä et al., 2018). Another
parameter is the step size that determines the frequency of the MAD. A step size equal to the
epoch length means non‐overlapping epochs.

Table 3.1 shows the correlation between the MAD values calculated for ActivPAL, UKK, and both
IMUs with VO2. The mean amplitude deviation of UKK is provided with a 6‐second epoch length
and a step size of 1 second. The time series of all sensors are down‐sampled to 6‐second
intervals for a fair comparison between the sensors. We calculated the correlation between
activPAL’s MAD and and VO2 for different epoch lengths, to get a first impression of the effect of
the epoch length on the correlation. For an epoch length between 5 and 25 seconds, the
correlation of activPAL’s MAD and VO2 varies between 0.791 and 0.795. The correlation is quite
robust for epoch length if the epoch length is between 5 and 25, but decreases for shorter or
longer epoch lengths. Note that the optimal epoch length might also depend on the frequency of
the sensor. The accelerometer values are not re‐scaled before calculating the MAD. As a result,
the range of MAD values differs per sensor. The MAD of UKK varies between 4 to 1233, while the
MAD of ActivPAL varies between 0 and 47.512. Moreover, note that UKK’s𝑀𝐴𝐷𝑥𝑦𝑧 is calculated
using the mean instead of the median. The median in Equation 3.1 is replaced with a mean and
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𝑟̂𝑡 is also calculated by taking a mean (see Equation 3‐6 in Vähä‐Ypyä et al., 2018). Unfortunately,
we cannot calculate the MAD of UKK by using the median, since the received UKK data are
already aggregated.

Table 3.1 shows that the correlation of UKK’s mean amplitude deviation and VO2 is lower than
the correlation of ActivPAL. However, it is not straightforward to compare the correlations, since
they are calculated by a different method (median versus mean) and based on a different set of
respondent activities.

Table 3.1 Pearson’s correlation betweenMADwith 6-second epochs and
VyntusVO2.

mean correlation standard deviation # respondents
ActivPAL 0.791 0.089 29
UKK 0.630 0.164 30*
* 13 respondents lack data for activity sitting, 2 respondents lack data of activity stand‐
ing

The MAD of ActivPAL has the highest correlation with Vyntus VO2, therefore we compared the
mean MAD of ActivPAL per respondent and activity versus Vyntus VO2 corrected for body weight.
The MAD in Figure 3.3 shows three groups of clustered activities: standing and sitting, cycling
light and heavy with walking and running. However, it is difficult to distinguish all activities. The
MAD value of cycling light and heavy is very similar, while the VO2 per kg differs.

Figure 3.3 MedianMADversusmedianVO2 per respondent after subtracting a
warming up period of atmost twominutes.

3.4 Three intensity classes

Recall that we are ultimately interested in the time spent in moderate to high intensity activities.
The threshold between low and moderate activities is 3 MET. Using specific cut‐off points or
thresholds, one can determine if the intensity is low, moderate of high. Intensity thresholds can
vary over populations (e.g., Kuppevelt et al., 2019). In this paragraph we present an algorithm to
compute the degree of intensity directly from the raw accelerometer data of the ActivPAL device.
A similar rule‐based approach can be found in Staudenmayer et al., 2015. The degree of intensity
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is computed per minute and can take the values: low, moderate or high. The general idea is that
when during a certain period the changes of the accelerometer values are below or above given
thresholds, the intensity of activity is low, moderate or high.

The pseudo code is shown in Algorithm 1. First, for every second the median of the
accelerometer values is computed. Next, we compute for every second the MAD for a rolling
window of size 𝑤 seconds and step size 1 second. As a result we get for every second the MAD
values of the x‐, y‐ and z‐axis of the accelerometer. The next step is to count the number of
seconds these MAD values are below a threshold 𝑡𝑙𝑠 within one minute. If this count is above a
threshold 𝑡𝑙𝑚 the degree of intensity is low. If this count is below this threshold, first compute the
geometric mean of the MAD values of the axes (𝑀𝐴𝐷𝑥𝑦𝑧𝑖). Next, count the number of seconds
this value is above a threshold 𝑡ℎ𝑠 within one minute. If this number is above a threshold 𝑡ℎ𝑚 the
degree of intensity is high, otherwise the degree is moderate.

Algorithm 1 Compute intensity levels
Input: Time series 𝑋, 𝑌, 𝑍 with integer accelerometer measurements, epoch length 𝑘, thresholds [𝜏𝑙𝑚, 𝜏ℎ𝑚]

and [𝜏𝑙𝑠, 𝜏ℎ𝑠 ] per minute (𝑚) or per second (𝑠).
Output: Intensities𝑀𝑡 for all minutes 𝑡
1: for every second 𝑡 do
2: Calculate𝑀𝐴𝐷𝑥𝑡,𝑀𝐴𝐷𝑦𝑡,𝑀𝐴𝐷𝑧𝑡 and𝑀𝐴𝐷𝑥𝑦𝑧𝑡 from 𝑋, 𝑌 and 𝑍 using Equation 3.1 and 3.2
3: if𝑀𝐴𝐷𝑥𝑡 < 𝜏𝑙𝑠 and𝑀𝐴𝐷𝑦𝑡 < 𝜏𝑙𝑠 and𝑀𝐴𝐷𝑧𝑡 < 𝜏𝑙𝑠 then
4: 𝑆𝑙𝑡 ← 1
5: else
6: 𝑆𝑙𝑡 ← 0
7: end if
8: if𝑀𝐴𝐷𝑥𝑦𝑧𝑡 > 𝜏𝑢𝑠 then
9: 𝑆ℎ𝑡 ← 1

10: else
11: 𝑆ℎ𝑡 ← 0
12: end if
13: end for
14: for every minute 𝑡 do
15: 𝑐𝑙𝑡 ← ∑𝑖 in minute 𝑡 𝑆𝑙𝑖
16: 𝑐ℎ𝑡 ← ∑𝑖 in minute 𝑡 𝑆ℎ𝑖
17: if 𝑐𝑙𝑡 > 𝜏𝑙𝑚 then
18: 𝑀𝑡 ← low
19: else if 𝑐ℎ𝑡 > 𝜏ℎ𝑚 then
20: 𝑀𝑡 ← high
21: else
22: 𝑀𝑡 ←medium
23: end if
24: end for

Figure 3.4a shows the result of applying this algorithm for one set of thresholds. The activities
are those computed by activPAL’s software. The values of the thresholds are
𝜏𝑙𝑚 = 40, 𝜏ℎ𝑚 = 50, 𝜏𝑙𝑠 = 1, 𝜏ℎ𝑠 = 6 and the epoch length is 6 seconds with a step size of 1 second,
yielding 60 MAD values per minute. The intensity values are calculated for both labdata and
weekdata of 33 respondents. The thresholds are derived by comparing the computed degree of
intensity with the activities of one participant during the lab session. Additional research is
necessary to find thresholds that generalise well. Thresholds can also be dependent on
demographics like sex, age, lifestyle etc. See Sasaki et al., 2011; Troiano et al., 2008; Freedson
et al., 1998; and Matthews, 2005 for a discussion of thresholds for specific devices and specific
positions on the body.

As can be seen in Figure 3.4, low MAD intensity coincides quite well with the ActivPAL
classifications of primary and secondary lying, sedentary behaviour and non‐wear. Stepping and
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(a) Themedian is used to compute the
amplitude deviation.

(b) Themean is used to compute the
amplitude deviation.

Figure 3.4 ActivPAL’s activity classification versus intensity as calculated by
Algorithm1 based on the lab- andweekdata.

cycling are most often classified as moderate activity, although cycling is also quite often classified
as high intensity. There are two categories with low agreement: both standing and travelling are
classified as moderately intensive in MAD. Comparison with diaries has determined that ActivPAL
not always correctly determines travelling. Car and train travel are mostly correctly recognized as
travel, but travelling by bus and tram are not. The MAD calculation seems to suffer from the
same over‐estimation of activity. Although some activity during travel is probable (walking to the
train door), most of the movement measured is more probably the result of bumps in the road.

Our MAD is calculated by taking themedian, while UKK prefers amean to compute the
amplitude deviation. The choice for the median is based on two arguments. Firstly, the median is
more robust to large deviations. Low‐intensity activities such as sitting contain strong deviations
during a short period. We expect that these deviations occur for example when a respondent
changes the position of his legs. These deviations shouldn’t have a large effect on the intensity.
Secondly, the performance of the MAD with using a median is overall better than the mean.
Figure 3.4b shows the confusion matrix of the intensity categories compared to activPAL’s
classification. The low physical activities primary and secondary lying, sedentary behaviour are
more often classified as low‐intensity activity when the median is used instead of the mean. The
two confusion matrices differ substantially for the activities standing and travelling. Ideally
standing is classified as a low‐intensity activity. Hence, the amplitude deviation based on the
median performs better for standing. Travelling is a very generic category. Travelling by public
transport can be classified as low intensity, for example, if respondents sit in a bus. Travelling by
bicycle can also be classified as more intense.

3.5 Short summary of findings onmeasuring intensity

In this Section we compared three measures of intensity, MET, heart rate and MAD (with
thresholds) with Vyntus VO2 to answer the first research question: How can we estimate
intensity based on the lab‐ and weekdata? The MET value that is calculated by ActivPAL can be
used to distinguish standing and sitting from the more intensive activities, but the MET values of
the activities running, cycling, walking do not cluster well. Hence, we conclude that activPAL’s
MET value performs moderately well. The variation of Hexoskin’s heart rate over the
respondents is quite high. However, the heart rate is able to distinguish activities for a given
respondent. Heart rate could be a promising measure of intensity, provided that inter‐person
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variation in baseline heart rate is corrected for. The MAD values calculated on the ActivPAL data
are able to distinguish three groups of activities: standing and sitting, walking and cycling and
running. A threshold approach classified the MAD values into low, moderate and high intensity
classes. We conclude that the MAD is a good estimate of intensity, as it performs better than
activPAL’s MET and Hexoskin’s heart rate. However, the thresholds need further refinement.
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4 Activity classification

The goal of time series classification is to identify each (group of consecutive) observations as
coming from one of the predefined classes. Time series classification differs from other
classification tasks like image classification since it involves a temporal aspect. Because of the
temporal aspect, it is known as a challenging problem in data science. Machine learning is one of
the most used approaches to classify a time series. There are mainly two approaches within
machine learning: unsupervised learning like clustering algorithms and supervised learning
which requires a training set with labels that is used to train the mode how to differentiate
between classes. Human activity classification is the general term for the task of classifying
measurements into classes of physical activities. Our problem involves the classification of the
time series that are measured by the sensors. Since the true activity is known during the
laboratory sessions, supervised algorithms will be applied. Since there are more than two
activities, the task is known as multi‐class classification.

We do not know if it is possible to differentiate 100 % accurately between all activities using the
measurements from the sensors. On the one hand, two identical time series may belong to
different activities. On the other hand, very different time series might be generated during the
same activity due to respondent heterogeneity. Therefore, we cannot expect an accuracy of 100
%. We will compare the accuracy of different types of algorithms, to get an impression of the
accuracy that can be achieved.

4.1 Train, validation and test set

Our machine learning model is trained by providing features, the input variables, and the true
activity, the labels. The output of the model is compared with the labels to evaluate the
performance and update the model parameters. The features are 𝑋, 𝑌, and 𝑍‐acceleration data
(possibly supplemented with heart rate) at a regular sample frequency. The data are normalised
for each feature by subtracting the mean and dividing by the standard deviation. The labels are
the classes of activities at the same frequency of the features. There are only labels for the
laboratory sessions.

The steps from raw input data to features are called feature extraction. Firstly, the accelerometer
data are re‐sampled at a frequency of 10 seconds. Secondly, the data are divided into short
periods that are classed slices. Each slice of a fixed length 𝑘 corresponds to at most one
respondent and one activity. If the number of observations after re‐sampling is not a multiple of
𝑘, then a few observations might be disregarded. Slice 𝑠𝑡 contains the three‐dimensional time
series from timestamp 𝑡 − 𝑘 until 𝑡

𝑠𝑡 = ቄ൛𝑋𝑗ൟ
𝑡
𝑗=𝑡−𝑘 , ൛𝑌𝑗ൟ

𝑡
𝑗=𝑡−𝑘 , ൛𝑍𝑗ൟ

𝑡
𝑗=𝑡−𝑘ቅ ,

for 𝑘 ≥ 𝑗 ≥ 𝑛. For a given respondent and activity, the training data equals of the time series
[𝑠0, 𝑠𝑚 , 𝑠2𝑚 , … , 𝑠𝑛−𝑘] for a given 1 ≤ 𝑚 ≤ 𝑘. We have encountered 𝑘 in Section 3 as the epoch
length and𝑚 as the step size. A small value of𝑚 corresponds to highly overlapping slices, while
there is no overlap for𝑚 = 𝑘. The slices of activities are sorted by timestamp for each
respondent. The label 𝑦𝑡,𝑎 of a slice is the activity of the respondent of interest at the last
timestamp of the slice.

𝑦𝑡,𝑎 = ൝1, if activity 𝑎 occurred for at time 𝑡
0, otherwise
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The features and labels are divided into a train, validation, and test set by sampling respondents
uniformly at random. Firstly, the respondents are divided into a train and test respondents. The
train (test) set consists of all the measurements of the train (test) respondents. Since all
respondents performed the same activities during the laboratory sessions, the number of time
slices of each respondent is roughly the same. Secondly, the train set is divided into an actual
train set and validation set. 5‐fold cross‐validation is used to estimate hyper‐parameters; the
training data are divided into five different splits of 80% train data and 20% validation data.

With 40 respondents and cleaned data of only 36 respondents, it might matter which
respondents are in the test and training set. In other words, the model performance on the test
respondents might be dependent on the train‐test split. Therefore, we repeated the model
training and evaluation for 5 different splits in train/validation and test sets and averaged the
results.

4.2 Neural networks

Two types of machine learning models are used to classify the time series: Convolutional Neural
Networks (CNN) and Long Short‐Term Memory (LSTM) models. These types of neural networks
are known to work well for time series classification. A feed‐forward neural network describes a
single differential score function that maps the input data to an output vector. The network can
be visualised as a directed graph that consists of nodes and edges. The nodes, also called
neurons, are ordered in layers and contain functions that are applied to the data. The edges
describe the data flow from the input layer to the output layer. The fully connected neural
network is one of the simplest types of networks. In a fully connected network, each node in a
layer directs to each node in a consecutive layer. With only a few hidden layers, the number of
edges in a small network is already quite high. The output layer is always fully connected.

The shape of the input data is equal to the number of features times the input shape 𝑘. If the
features are 𝑋, 𝑌, and 𝑍‐acceleration data, then the number of features equals 3. The output
vector 𝑦̂𝑡,𝑎 has equally many elements as the label 𝑦̂𝑡,𝑎. The number of nodes of the hidden layer
depends on the type of layer and/or the number of coefficients. The number of layers, size of
layers, and type of layers can be referred to as network architecture.

A linear function 𝑓(𝑥) = 𝑊𝑥 + 𝑏 is applied to the input of each node. The parameters weight𝑊
and bias 𝑏 will be estimated during the training phase. An activation function 𝜎(⋅) is applied to
the result of the matrix multiplication. We use the well‐known rectified linear activation function
(ReLU) of the form 𝜎(𝑓(𝑥)) = max{0, 𝑓(𝑥)}. Note that ReLU function is not continuous at 0. The
final layer contains a softmax activation function, to map the values to a vector. The 𝑖th
component of the output vector equals

𝜎softmax (𝑥)𝑡,𝑖 =
𝑒𝑥𝑡,𝑖

∑𝑎
𝑗=0 𝑒𝑥𝑡,𝑗

such that each value is between 0 and 1 and ∑𝑎
𝑗=0 𝑒𝑥𝑗 = 1. A common approach is to use the

argmax as the predicted class.

The loss is minimised during the training phase. Each training iteration contains three steps.
Firstly, the loss is computed for a batch of observations. Secondly, the gradient of the weights is
determined via back‐progagation. Thirdly, the learnable parameters are adjusted according to
the gradient. The size of the adjustments is described by the learning rate. The biases are
initialised with zeros and weights with samples from a normal distribution with mean 0 and

CBS | Discussion paper | February 21, 2022 21



standard deviation 0.01 to avoid getting stuck at an all‐zero weight solution.

The iterative procedure is repeated until a stopping criterion is met. The easiest stopping
criterion is to stop when all observations are evaluated. However, the network might benefit
from seeing observations more than once. The number of times the complete training set is
evaluated is called the number of epochs. A second option for a stopping criterion is, therefore,
to stop after a fixed number of epochs. However, the model might over‐fit the training data if the
number of epochs is too large. Note that the number of learnable parameters is already large for
a single‐layer hidden network, so over‐fitting can occur easily.

There are two common approaches to prevent over‐fitting: regularisation and a refined stopping
criterion. Our models contain a dropout layer in which nodes are removed at random during the
training phase. As a result, the network will be more robust and is less likely to over‐fit the train
data. Another common approach is to add a regularisation term to the loss function. Next to a
dropout layer, we refined the stopping criterion. The training is stopped when the loss does not
decrease during two epochs, and the best model in terms of validation loss is returned.

4.3 Sensor comparison

Recall that we are interested in the performance of machine learning models trained on labdata
in order to answer the first research question. To this end, a different CNN model if trained for
each sensor. The features are based on X‐, Y‐, Z‐acceleration data of four sensors, ActivPAL, IMU
wrist and tibia, and Hexoskin. Heart rate measured by Hexoskin is an additional feature. Note
that the sensors are placed on different positions on the body, and therefore we do not only
compare the technology to measure acceleration, but also different positions. Raw UKK
accelerometer data are not available, therefore we have not estimated machine learning models
on UKK data.

In general, the performance of a trained machine learning model depends on the size of the
training data. The number of respondents for IMU worn on tibia and wrist are respectively 18
and 12, which might affect the model performance. One respondent does not have Hexoskin
data including heart rate. The test respondents of ActivPAL are chosen uniformly at random. To
compare the model performance of the different sensors, the test respondents of Hexoskin and
IMU are a subset of the ActivPAL test respondents. The remaining respondents are used for
training.

Figure 4.1 shows the layers of the network. The input data are divided into batches of 16
observations. Each convolutional layer is followed by a pooling layer to reduce the spatial size of
the representation. Including a pooling layer between convolutional layers is a common practice.
The first convolutional layer has shape 64 and the second layer shape 128. ReLU is used as an
activation function. The dropout layer contains a dropout rate of 0.5. The optimiser is RSMProp
and the learning rate equals 1𝑒 − 4. Accuracy and balanced accuracy are used to evaluate the
performance of the models.

Figure 4.1 Layers of CNN.

We will measure the performance of the models in accuracy and balanced accuracy. Both
metrics can be derived from the confusion matrix. The confusion matrix divides classifications
into true positives (TP; observations correctly classified as belonging to a certain activity), true
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negatives (TN; observations correctly classified as not belonging to a certain activity), false
positives (PF; observations incorrectly classified as belonging to a certain activity), and false
negatives (FN; oservations incorrectly classified as not belonging to a certain activity). The
accuracy can be calculated as:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Balanced accuracy weights all activity classes equally. Other frequently used metrics include the
precision and recall that can also be calculated from the confusion matrix and the specificity and
sensitivity. The recall and precision focus on the true positives, whereas the sensitivity and
specificity focus on the proportion of correctly classified observations. These metrics can be
calculated for the train, validation and test set.

The performance of models with different step sizes and train percentages are shown in Table
4.1. The validation accuracy is always higher than the test accuracy, since the parameters are
optimised using the validation set. Models with the feature heart rate perform better for all
sensors. Some models are trained on a smaller training set since the number of respondents
with cleaned data varies over the sensors. The lower performance of IMU wrist is probably due
to the low number of training respondents. The model trained on ActivPAL acceleration data
performs best. The step size and training percentage are optimised by comparing the validation
accuracy. A step size of 25% of the epoch length yields better results than 50%, and the training
percentage of 0.6 is slightly better than 0.7 for all sensors except ActivPAL.

Table 4.1 (Balanced) validation and test accuracy of the bestmodel for each
sensor.

sensor heart rate accuracy balanced accuracy validation accuracy

Hexoskin True 0.751 0.746 0.976
False 0.724 0.722 0.955

ActivPAL True 0.909 0.872 0.975
False 0.875 0.846 0.965

IMU tibia True 0.879 0.861 0.991
False 0.730 0.733 0.982

IMU wrist True 0.668 0.647 0.975
False 0.449 0.416 0.946

Figure 4.2 shows the confusion matrix of the best sensor: ActivPAL including the heart rate.
Cycling is performed on a home trainer, so cycling heavy instead of light means shifting to a
higher gear which might be hard to detect by a sensor on the upper thigh. Cycling light and
heavy are indeed often confused. Note that cycling is not confused with other activities, such as
walking and standing. As a result, the sensitivity and specificity of cycling compared to the other
activities are both quite high. Using the confusion matrix, we can calculate the plausibility that a
slice of data that is classified as a certain activity is correctly classified: the positive likelihood
ratio. Cycling light has sensitivity of 0.72 and a specificity of 0.99 compared to all other activities,
which results in a positive likelihood ratio of 52.08. Cycling heavy on the other hand as a
sensitivity of 0.93 and a specificity of 0.95 compared to the other activities, which results in a
positive likelihood ratio of 17.76. These likelihood ratios show that the classification is able to
distinguish cycling light and heavy, although improvements are possible.

Jumping are less accurately classified, perhaps because this activities was performed during a
shorter period. Jumping has a sensitivity of only 0.55. However, the specificity is very high.
Respondents stood still between the five jumps, hence the model might confuse jumping with
standing. The model might confuse sitting with standing since these are both low intensity
activities. It should be noted that some sensors were not properly calibrated before the
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laboratory sessions, this might (partly) cause the confusion between standing and sitting. Figure
4.2 shows that standing and walking are well classified.

Section 3 described the correlation between heart rate and VO2. On average, the heart rate
differed per activity. Especially when the accelerometer data has trouble to distinguish activities
like cycling light and heavy, we hope that heart rate can improve the classification. After using
five different train‐test splits to train a model with and without heart rate, we concluded that
heart rate improved the classification on average. However, all categories are improved a little on
average, not just cycling. However, heart rate needs a warming‐up (or cooling‐down) period
when changing from a low to heavy intense activity (or vice versa).

Figure 4.2 Confusionmatrix for ActivPALwith heart rate. The numbers
correspond to the number of observations in the test data (without
overlapping slices).

The confusion matrix of activPAL’s predictions versus the model predictions is shown in Figure
4.3. This confusion matrix is based on a frequency of one minute and only the labdata. The
activPAL software uses a different set of possible activity classes: non‐wear, standing, running,
cycling, stepping, primary lying, secondary lying, travelling and sedentary. Primary lying occurs
mainly during the night, while secondary lying occurs during the day. The classification can
distinguish for example traveling but does not have a specific class for e.g., climbing stairs. None
of the observations during the laboratory sessions is classified as non‐wear or traveling as
expected. The software predicts only four distinct classes during the laboratory sessions. Both
activity taxonomies contain for example the class cycling. There are some discrepancies between
the true status and the activPAL prediction. This is partly the result of the fact that not all
measured activites are classified in activPAL. For example, climbing stairs is mostly classified as
stepping, sometimes also as cycling. However, on the classe in common, cycling was classified
correctly in 94 % of cases, stepping in 90 %, sitting in 94 %, and standing in 93 % of cases.
Discrepancies may be the result of of differences with the training data from activPAL’s model,
but also of slightly blurry edges between activities and slight errors in timing of activities.

4.4 Model comparison

In this subsection we will compare different models based on activPAL’s accelerometer data. The
goal of these model comparisons is to get an impression of the possibility to increase the
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Figure 4.3 Confusionmatrix of ActivPAL predictions during laboratory
sessions. The confusionmatrix shows caseswith at least one prediction.

accuracy by changing model type and finetuning hyperparameters. The current model contains a
lot of learnable parameters. While the task of classifying activities is quite difficult, the number
of parameters might be too high. If a smaller model is able to classify the activities equally well,
we prefer the smaller model that needs probably also less epochs for training.

The model trained on ActivPAL accelerometer data without heart rate will be optimized by tuning
hyperparameters. Similarly to the models from Table 4.1 the input shape is 16 as batch size, 3 for
all directions of acceleration and 100 as chosen slice length. The validation loss is minimized,
while the model keeps track of the (balanced) accuracy in order to evaluate the performance.
We performed grid search with only two or three values per hyperparameter. The resulting
model can likely be finetuned into a slightly better model, but the hyperparameter optimization
gives insight in the increase in accuracy. The following values of hyperparameters result in 288
different combinations in the grid search:

– Activation function: ReLU or ELU.
– Batch size: series of 16 or 64 observations.
– Dropout rate: 0.4, 0.5 or 0.6. A higher dropout rate might reduce the risk of overfitting.
– Number of epochs: 5, 10 or 20. Experiments indicated that increasing that training is often

stopped before the 20 epochs of training have finished because of the early stopping
criterium.

– Number of convolutional layers: two or three, each layer is followed by a pooling layer.
– Number of neurons. The number of neurons is either increasing per layer ([64, 128, 258]

for a 3‐layer network) or the same for all layers ([64, 64, 64]). A larger model is able to
detect more patterns, but can also overfit the data.

– Optimizer. Two commonly used optimizers are used: Adam optimizer and RSMprop.

Table 4.2 contains the (balanced) accuracy of the three best models for activPAL without heart
rate. The table also contains a standard deviation based on five different splits of train and test
data. The test set contains no overlapping slices. Over the 288 different combinations of
hyperparameters, the accuracy is always larger than 0.8, meaning that a smaller model with 2
hidden layers is also able to classify the activities accurately. The best models are trained for
maximal 20 epochs, which is an increase compared to the default model with 10 epochs. The
number of neurons increase per layer. The minimal balanced accuracy of the 288 models is
0.789, while the maximal value of 0.818.

CBS | Discussion paper | February 21, 2022 25



Table 4.2 Parameters and accuracy of threemodelswith highest validation
accuracy in the CNNhyperparameter optimization.

Rank of mean val. accuracy 1 2 3
Activation function Relu Relu Relu
Batch size 16 16 64
Dropout rate 0.4 0.4 0.6
# epochs 20 20 20
# conv. layers 2 2 3
# neurons [64, 128, 256] [64, 128, 256] [64, 128, 256]
Optimizer RSMprop Adam Adam
Mean accuracy 0.83 0.83 0.823
Std. accuracy 0.032 0.032 0.038
Mean balanced accuracy 0.808 0.808 0.801
Std. balanced accuracy 0.028 0.028 0.032

Figure 4.2 shows that it is difficult to differentiate between cycling light and heavy. The same
holds for the best model of the hyperparameter tuning. Therefore, we will combine the two
actvities into one activity called cycling from here on. Using a two‐step classification we might
first classify the activity as cycling and afterwards try to differentiate between cycling light and
heavy. However, the distinction between cycling light and heavy is not very important for now.

The confusion matrices of the 5 different train‐test splits for the best model are shown in
Appendix A Figure A.1 until A.5. Note that the difference in accuracy between models with
different test sets is quite high. This might be due to the relatively low number of respondents
and/or respondent hetergeneity.

We benchmark the performance of the optimized CNN with a Long‐Short Term Memory (LSTM)
model and a Random Forest (RF) classifier. LSTM is a type of neural network that is often used for
time‐series classification since it can remember observations over time intervals. This might be
useful to classify activities that consist of multiple (repeating) movements such as upward and
downward movements during cycling. RF is a classical machine learning algorithm that combined
multiple decision trees to classify activities. The algorithm uses less parameters, therefore it is
interesting to compare the difference in performance.

Random Forest requires one‐dimensional feautres, therefore we need to transform the X‐, Y‐,
and Z accelerometer time series. The distribution of frequencies during a slice is computed using
Fast Fourier Transformation (FFT). The 20 peak frequencies in the slice were used as the features
of the model. The slice length is set to 20 seconds while calculating the features, with step size𝑚
of 1 second. An illustration of a spectogram of a respondent during an activity is shown in
Appendix A figure A.6. Next to the peak frequencies, average accelerometer data for the three
axes are used as features. LSTM is implemented in tensorflow, with the Scikit‐learn
implementation of RF classifier3). RF classifier contains 100 estimators. Default values are used
for other hyperparameters of the RF and LSTM model.

The same five splits between train and test respondents are used as in the hyperparameter
optimization. Therefore, we can benchmark the CNN with activity cycling with the results in Table
4.3. Compared to the accuracy of the CNN, both LSTM models performed less good. Although RF
contains fewer parameters, it is the best performing model. This might be due to the different
features. Comparing feature sets could be a topic for further research.

3) Scikit‐learn version 0.24.2, Tensorflow version 2.4.1.
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Table 4.3 Accuracy of fourmodels, togetherwith balanced accuracy and the
corresponding standard deviations. Accuracy is abbreviated as acc. and
standard deviation as std.

Acc. Std. acc. Balanced acc. Std. balanced acc.
CNN 0.924 0.044 0.866 0.041
1‐layer LSTM 0.869 0.058 0.736 0.062
2‐layer LSTM 0.856 0.057 0.764 0.058
RF classifier 0.970 0.011 0.940 0.021

Figure 4.4 Confusionmatrix of RandomForest

Figure 4.4 shows the confusion matrix. This shows that the performance of the Random Forest is
comparable to the performance of the Neural Network. Table 4.4 shows that only the recall for
activity jumping is less than 0.9. Recall and precision can be calculated from the confusion
matrix. The performance of the Random Forest on the week data drops dramatically, as with the
neural network, with an accuracy of 0.41 and a balanced accuracy of 0.25. There is a big
difference in accuracy between participants, ranging from 0.17 to 0.80.

Table 4.4 Classification report of RandomForest.
precision recall F1‐score support

cycling 1.00 1.00 1.00 6107
walking 0.99 1.00 0.99 3108
running 1.00 1.00 1.00 2984
jumping 0.98 0.88 0.93 342
standing 0.98 0.91 0.94 3042
climbing stairs 0.94 0.95 0.95 448
sitting 0.92 1.00 0.96 3088
accuracy 0.98 19119
macro avg 0.97 0.96 0.97 19119
weighted avg 0.98 0.98 0.98 19119
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4.5 Weekdata

The previous paragraphs described the performance of the activity recognition models during
the laboratory sessions. In the end, Statistics Netherlands would like to create a model that is
able to extrapolate well to the free living data. Therefore, we aimed to predict periods in the
weekdata with a model trained on the labdata. We first evaluate the performance of a model
trained on labdata. The weekdata contains more activities than the labdata. The activities in the
weekdata are also different in duration and more diverse. For example, respondents can stand in
the kitchen (alternated with walking) or work while standing. Therefore, a model based on
labdata is not likely to generalize well to the weekdata and we will try to augment the training
data by using selections of the weekdata.

Although the respondents filled in a diary, we do not know all details about the activities during
the free living week. The evaluation criteria (accuracy etc.) are, therefore, evaluated with respect
to activPAL labels. The activPAL classification label sedentary can be compared with the
predictions of sitting, and activPAL labels non‐wear and travelling are not present in the
labsessions. These labels were removed before calculating the metrics. The diary activities
sleeping, sports, travelling and non‐wear were removed with a margin of 15 minutes before and
after the activity, since the model based on the laboratory activities would not be able to classify
these activities well. Non‐wear in the diary can refer to taking off one or both attached sensors,
but since there is enough weekdata, we decided to remove all non‐wear periods. Diary activities
cycling and working are not removed, since the model is trained to recognize cycling and working
does likely contain activities like sitting, standing and walking.

Figure 4.5 shows a comparison between activPAL’s labels and the most frequently predicted class
for every minute. It turns out that the model trained on labdata often incorrectly predicts
cycling, resulting in an accuracy of 0.114 and a balanced accuracy of 0.154. Further research is
necessary to analyse this behavior. It is remarkable that the model predicts only a few minutes of
running. Recall that sport periods as noted in the diary are removed, and it is hardly likely for
running to occur during other periods. The performance differs a lot between the respondents,
with a maximal overall accuracy of 0.68.

Figure 4.5 Confusionmatrix of ActivPAL predictions and the predictions of
themodel trained on labdata during the free livingweek.
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4.6 Short summary of section

In this section, we described the performance of machine learning models trained on
measurements of different sensors to answer the second research question: How well can
machine learning models classify activities based on labdata? The neural network trained on
ActivPAL’s accelerometer data can quite accurately classify the time series, followed by IMU tibia.
However, the model confuses cycling light with cycling heavy. Adding heart rate as an additional
feature increases the performance of the models. Hyperparameter optimization did not have a
large impact on the performance. A neural network is not the only type of model that can
accurately classify the labdata, a random forest model performed slightly better. The train‐test
split of respondents does affect the performance. This behaviour might be caused by the
differences between the respondents (e.g. general activity level, sex) or between the execution
of the activities (e.g. did respondents follow the exact instructions?). Recall that we trained the
models on a relatively small sample size of 36 respondents.

The third research question is: How well can machine learning models classify activities based on
weekdata? First, a model trained on labdata is used to classify the weekdata. The results are
compared with ActivPAL’s classification since the activities in the diary are different from the
laboratory activities. Even though ActivPAL’s classification contains different classes, we can
conclude that the quality of the classification is very poor. Cycling is for example often classified
as sedentary. Experiments to supplement the training data with measurements from specific
periods from the free living period do not seem very promising at this moment. Semi‐supervised
machine learning might be more promising when the quality of the classification is better.
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5 User Friendliness

An important aspect of the choice for an accelerometer for large scale use is user friendliness. In
contrast to dedicated research projects, the general public will be less inclined to humour the
researcher and will be apt to reject the device or stop prematurely if the device is complicated to
mount or use. Investigating user friendliness was no explicit goal of the small scale research
project we report upon here. Nevertheless, some observations can be made. Specifically, the
number of non‐wear hours of the two free living devices can be monitored, and the remarks
participants made spontaneously.

The activPAL was worn for a means of 7 days (21 of the participants wore the device for 8 days,
28 wore them the entire 7 days); four participants did not wear it the full 7 days for reasons that
had nothing to do with usability (we needed the devices back for another purpose). One
participant complained about skin irritation but continued wearing the device. Adherence to the
UKK protocol was slightly less. The UKK had to be taken off during showering or other activities
where the device risked getting wet. Also, the device had to be transferred from waist to pulse
during sleeping. Taking the device off bears the risk that participants forget to put it back on.The
UKK was worn 7 or 8 days by 27 participants. 5 participants did not wear the UKK every day. One
participant wore the UKK only 3 days. For one participant there were no data. 3 participants
wore the device for less than 12 hours for at least one day.

In a subsequent pilot among 47 participants where the activPAL was used (Toepoel et al., 2021),
user evaluation was an explicit part of the study. Participants were asked how they evaluated
wearing the activPAL in an open question. Regretfully, only 26 participants answered the
question. Only one participant was negative, finding the adhesive tape unpleasant and itchy, and
the manual to mount the device unclear. 18 participants were unequivocally positive (’you never
even notice that you are wearing it’), while 7 participants were positive, but with a qualification
that some aspects were less than optimal (removing the adhesive plaster from a hairy leg, and
also itchiness and skin irritation). Part of the skin irritation was not caused by the adhesive
plaster, but by the latex finger condom that was used to waterproof the activPAL. This can be
remedied by using other materials. These findings on respondent evaluation corroborate other
research, (e.g., Berendsen et al., 2014; Edwardson et al., 2017). In this study, the mean number
of valid days was 6,5, with 78 percent of participants wearing the device for the requested 7 days.

The sensors that were only used in the lab were not evaluated explicitly on user friendliness. It
was evident from the start that most would not be feasible for use outside the lab situation,
either because the machine was too large (the Vyntus) or because the device was too expensive
(the Hexoskin). The latter was also impractical, as participants would either have had to wear the
Hexoskin vest day and night for seven days, or had to have at least one spare one. The fact that
the device needs in practice to be mailed out and also returned by mail is an additional argument
to strive for a small device. The IMUs worn on the shin and arm were neither very practical, as
they were both quite large, and also came without holding device; they had to be taped on the
leg and arm. As a result, the IMUs were prone to get loose easily.
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6 Summary and discussion

In this paper we describe a pilot aimed at selecting a sensor system for use in subsequent
physical activity research. The ultimate aim is to use objective sensor data in large scale health
surveys, to replace or supplement survey questions on physical activity.

In a lab setting 40 participants in four categories (male or female and active or not active)
performed a number of tasks (sitting, standing, stepping at two intensity levels, bicycling at two
intensity levels, walking stairs and jumping), observed by trained lab assistants who noted the
precise start and end times of each task. Participants’ metabolic response was measured through
breath‐by‐breath analysis by Vyntus™ CPX, allowing the precise calculation of energy
expenditure. These measurements served as the benchmark for accelerometer data from four
different sensor systems, mounted on various parts of the body: the thigh worn activPAL, the
UKK worn on the waist (and pulse during sleeping), a IMU on the shin and one on the pulse, and
a Hexoskin shirt. The Hexoskin additionally measured heart rate. In a subsequent week,
participants wore the AP and the UKK in a free living setting (i.e., at home and at work), while
keeping a diary of their physical activity. In the diary the start and end times of the activities
‘sleeping’, ‘working’, ‘travelling’, ‘bicycling’, ‘doing sports’, and ‘non‐wear’ were noted.

6.1 Intensity

The first research question was: How can we estimate intensity based on the lab‐ and weekdata?
We compared three metrics, heart rate, MET and Median Amplitude Deviation (MAD), using the
measurements of the laboratory sessions. All three metrics have disadvantages. MAD is the best
out of the three metrics to measure intensity. Kuppevelt et al., 2019 investigate yet another
approach to classify the measurements into intensity categories, unsupervised machine learning,
that seems promising. In this approach, activities are constructed based on free living observed
data directly, without the need for calibration studies. Activities are inferred from the
distributions of observations and their duration. The search for the optimal method is still
ongoing, however.

Heart rate by itself is not sufficient to determine the intensity of activities; although there are
participants where the correlation between VO2 and heart rate is almost perfect, there are also
participants where the correlation is very low (.27). Some participants’ heart rates were lower
during cycling than during standing for example, making it difficult to estimate intensity. Heart
rate could give valuable additional information when added to an accelerometer. However,
adding a second device might be an extra burden for participants, and also an additional strain
on funds. A heart rate measurement would be valuable in future testing to develop free living
algorithms, but for structural fieldwork for population surveillance, it should be avoided if it
would mean adding a second device.

The MET measure, the Metabolic Equivalent of Task, is approximately 3.5mL VO2/kg/minute and
represents the intensity of quietly sitting. MET values of the lab activities could be determined by
the Vyntus measurements. The SQUASH questionnaire and the activPAL determine energy
expenditure by assigning MET values to activities. The SQUASH inventories the activities like
walking, biking, gardening, cleaning, but also the precise nature of sports. The activPAL
distinguishes a more limited activity palette; only sitting, standing, stepping, and biking. ActivPAL
first determines the activity, and subsequently assigns the appropriate MET value.
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The third way we looked into intensity was by studying the Median Amplitude Deviation. This is
the measure of intensity used by UKK and is an established way to determine intensity (see e.g.,
Kuppevelt et al., 2019). Low, moderate and vigorous intensity are subsequently determined by
choosing cut‐off points. Those cut‐off points are different for different populations (children,
adults, elderly). The cut‐off points in this pilot were determined by the lab results of one
participant. The MAD is substantially better in distinguishing activities than heart rate. It would
be interesting to compare the MAD and heart rate after a correction for the baseline heart rate.
The MAD values correlated moderately highly with VO2 for the lab activities. For the lab and
week data, low and moderate MAD intensity coincides very well with the activPAL classifications:
the low intensity activities of lying and sitting, as well as non wear were classified as such for 92
to 100% of cases. Stepping and bicycling were classified as moderate of intensive acitivity in 97
and 99% of cases, respectively. There were two classes with low agreement: standing and
travelling, that were classified as moderately intensive by MAD in 70% and 61% of cases,
respectively. It is unclear at this point where this confusion stems from: is activPAL incorrectly
determining standing, are the cut‐off points too liberal, was the one participants on whose values
the cut‐off points were determined perhaps not representative for all the participants?

Comparison with participants’ diaries has determined that activPAL not in all cases correctly
determined travelling. Car and train travel were mostly correctly recognized as travel, but
travelling by bus and tram were not. The MAD calculation seems to suffer from the same
over‐estimation of activity.

6.2 Activity classification of labdata

The second research question was: How well can machine learning models classify activities
based on labdata? For each sensor a model was trained to classify activities. All models worked
relatively well. ActivPAL, worn at the upper thigh, achieved the best accuracy. The IMU, worn on
the tibia, performed the second best even though the training set was smaller. All models benefit
from adding the heart rate as an additional feature. However, the added specificity of heart rate
was not very large: the accuracy of the classification models based on activPAL data increased
with 0.034 when heart rate was added. It would be interesting to include derived features next
to heart rate such as frequencies that are used by the Random Forest and analyse the most
important features of the model in more detail. It must be stressed that the UKK results were not
included in the comparison: UKK data were not available in the raw format needed to link data to
the Vyntus and to the Hexoskin’s heart rate measure. Analysis of the separate UKK showed that
UKK was not sufficiently able to recognise bicycling (Bikker et al., 2020), a finding that is
recognized by other research on hip worn accelerometers (Tarp et al., 2015). In addition, the fact
that no raw data could be received from the UKK, makes the UKK not suitable for use for CBS.

Note that even although our models use only accelerometer data, the frequency and domain of
the measurements differed over the sensors. Therefore, the choice for activPAL does not
necessarily mean that the upper thigh is the best location to wear a sensor for activity
recognition in general, although literature supports the location of the upper thigh as the
favoured position (e.g., Kozey‐Keadle et al., 2012, Kuster et al., 2020 for monitoring sedentary
behaviour; see also Stamatakis et al., 2019). Additionally, information on inclination that can be
calculated from the angles between the vectors, as yet not included in our models, will
potentially increase accuracy of activity recognition.
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6.3 Activity classification ofweekdata

The third research question was: How well can machine learning models classify activities based
on week data? While the machine learning algorithms were able to reliably classify the activities
performed in the lab, the algorithms very poorly generalised to the free living period. Despite
the fact that most activities people do during the day exist of lying, sitting, standing, and
stepping, the model’s accuracy was 0.114. Especially cycling was often wrongly classified. This
might be due to incorrect and inaccurate diary keeping, both in classification as in timing the
performed activity. In three subsequent pilots that were performed since, participants were not
asked to keep a diary, as a result of the very limited use they were in this pilot. However,
accurately determining the degree of physical activity during the free living period is the ultimate
goal. Adherence to physical activity norms and insight into people’s sedentary behaviour is
calculated on the basis of the free living week. There are multiple arguments why the model
does not extrapolate well. We will list the most important arguments here.

– The movements in the laboratory are way simpler and less volatile than real life
movements. For example, hikers have to stop for traffic lights in real life and bicyclers
encounter speed bumps that will influence the acceleration. House cleaning is for example
composed of short movements like standing, walking, picking up stuff.

– Some activities in real life do not categorise well into the eight activity classes we
measured in the lab. Relatively static sports like boxing or weight lifting will not be
classified as intensive activity when measured with an accelerometer. On the other hand,
while travelling, movement of the vehicle can be incorrectly classified as movement of the
participant. This was noted when comparing the activPAL classification with diary
information.

– The length and type of activities varies in real life over the respondents. Some activities
might not even occur for some respondents. Some activities occur for example more often
during the weekend or working hours. During the laboratory sessions, all respondents
performed the exercises for a fixed time.

6.4 User friendliness

The ultimate goal of this research project is to study the feasibility of using accelerometers for
objectively measuring physical activity in population surveillance. A prerequisite to this end is
not only that we succeed in deriving the desired statistics, but also that we are able to convince
the public to wear the device, in the manner that we wish, and to continue wearing it. The
preliminary findings show that most participants are able to mount the activPAL according to
specification, that adherence to protocol is high and that the device is not seen as a burden to
wear. It has to be specified, however, that our experiences so far are limited to dedicated
participants who either volunteered, or were members of a panel. Future studies among the
general population are foreseen where we can more realistically gauge, and possibly influence,
people’s willingness and adherence.

6.5 Lessons Learned

An important aspect of this pilot was gaining experience with the data science aspects of
accelerometer measurement. Important lessons were learned on the topic of data cleaning of
these kinds of data, and the various machine learning approaches that could be used.
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Measurements of 36 of the 40 respondents in the small scale project were successfully cleaned
and aligned with the start‐ and end time of registered activities. Synchronising the timestamps of
the sensor with the timestamps of the activities turned out to be challenging. We recommend to
precisely monitor the start and end time of activities. Calibration of sensors before or after use
needs to be part of the protocol. This will likely reduce the number of hours to clean the data
after getting the measurements from the sensors. Matching the data of the different sensors was
also time consuming, since frequency and the range of the measurements was different. Vyntus
saved for example only data during the activities, and used an index number instead of a
timestamp.

Several machine learning techniques were applied and tested: Convolutional Neural Networks,
Long‐Short Term Memory models with either one or two LSM layers, and simple Random Forest
classifiers. All the models were tweaked by fine tuning the hyper parameters and by trying
different splits between training and test data. Although the CNN and LSTM are specifically
suitable for time series data, the simple RF model achieved a slightly higher accuracy in
classifying activities. A master student looked into the possibility of using Multilevel Hidden
Markov models for the free living data (Vogelzang, 2021). Still other options could be considered,
like training a hierarchical model for activity recognition. However, we felt that it would not be
worthwhile to pursue perfecting the models on imperfect and insufficient data. Since the models
classify short periods of measurements, the performance of the models is highly dependent on
the timestamps of the activities. We stress that the accuracies as found in this study can,
therefore, easily be improved by follow up studies.

6.6 Conclusion

Given the performance of the models, the costs, flexibility of analysis, and response and usability
aspects like adherence to protocol, the activPAL is our sensor of choice. Adding a heart rate
monitor would increase the accuracy of measuring intensity. Also measurement of GPS location
could be very informative of the speed with which, and the locality where (home, office, sports
accomodation), people move. However, a careful consideration needs to be made if this increase
in accuracy outweighs the increased costs and respondent burden of a second sensor. Additional
research is necessary to balance these requirements.

We have indicated that at least one additional pilot is necessary with the chosen solution for us
to understand physical activity in the free living period. Ideally, the pilot would have more
respondents than the present one, to be able to incorporate differences in for example age,
gender, general activity level in activity recognition models. In general, however, more detailed
research with additional sensors on different body parts and positions would be a valuable
addition to the knowledge base.

To increase the accuracy of the analysis of free living data, we propose three tracts: the first is an
additional qualitative test, where participants are asked to fill in a complete 24 hour diary of all
their activities, in 10 minute bouts. Linking to the Time Use survey app under development would
be ideal. The goal of such a test would be to build a training pool of more varied and fully labelled
activities. In these analyses, inclination will be used as a source of information, in addition to
acceleration. Training the models with transitions between activities is another promising
direction for future research, especially in combination with allowing respondent heterogeneity
in model parameters. Adding more information about the context of the movement, like time of
the day, week or weekend, working hours, or the weather might also help to increase the
performance. However, it will continue to be difficult to recognise various sports with various
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intensities, something that needs to be inventoried on behalf of the Physical Activity Guidelines.

The second tract is to move away from attempts to classify all behaviours, and instead focus more
on classifying the intensity of behaviours, in a sense the more traditional approach. The activity
guidelines specify that people should be moderately active during a number of minutes (or
vigorously active during a shorter time). Recognising intensity of activity is perhaps easier than
recognising each and every activity as such. This is a tract that is also chosen by e.g., Kuppevelt et
al, (2019). In this paper we have studied ways to determine intensity, by looking into heart rate,
MET values, and median amplitude deviation (MAD) of the three accelerometer axes. Focusing
on intensity, however, precludes the possibility to one day be able to distinguish between a broad
set of different types of sports in accelerometry, the other dimension of the activity guidelines.

The third tract is to combine the previous tracts in a hybrid estimation method. Respondents can
fill a diary with start and end times of their activities, possibly complemented with other relevant
information. The diary should be designed such that the respondent can easily list their
activities. It is also possible to experiment with more general classes such as work, sports,
travelling, getting out of bed. Next to the diary, sensor measurements can be used to estimate
the intensity of activities. The intensity and activity class can then be combined to get a more
accurate estimate of the movements of the respondent. One could use diary information to
estimate a respondent and time dependent prior distribution. This prior can for example be used
to map the output of the neural networks to a classification per minute or as the transition prior
of an Hidden Markov Model as used by Vogelzang, 2021. Again, the benefits to quality and
accuracy of adding a diary in fieldwork need to be carefully balanced with respondent burden.

We need to be able to analyse these data independently, without having to resort to the
proprietary software developed by activPAL. For the time being, the activPAL algorithms may
function as a benchmark to gauge the performance of our own algorithms. ActivPAL is used by a
large number of researchers of physical activity, who are active in research communities like
ProPASS, and who develop and share algorithms. Also, by using the activPAL we do not need to
do the extensive research necessary to prove that the activPAL is able to accurately classify
activity, others have done that for us. Additionally, using devices that are used by several
research institutes, also in the Netherlands, makes it possible to share resources and know how,
as is presently done with AmsterdamUMC and Maastricht University.

We set out this research in search of more objective and more precise measurement of physical
activity than the SQUASH questionnaire that is used presently. It is known from literature that
(respondents in) the SQUASH tend to overestimate their physical activity, a finding that is
replicated in one of our own pilots where we compare the SQUASH with the activPAL and
people’s own accelerometer (Toepoel et al., 2021). We have found in this first pilot that
accelerometers also have their faults, and may for example classify riding a bus as moderately
intensive activity. In addition, the choice of epoch length and the determination of the cut‐off
point can all impact the measured intensity. Careful handling of these parameters is necessary in
order to measure reliably (Brondeel, 2016).

The experiments that are presently being performed, the additional qualitative pilot that is
suggested above, and a larger scale field test that is envisaged in the near future will shed more
light on how to balance these respective faults. It is very well probable that some form of
questionnaire in addition to sensor measurement will be necessary to reliably estimate physical
activity in all its forms.
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Appendix
A Activity recognition

FigureA.1 Confusionmatrix of themodel trained on the first train-test split
with optimized hyperparameters. The values in thematrix correspond to the
number of observations in the test data (without overlapping slices).

FigureA.2 Confusionmatrix of themodel trained on the second train-test
splitwith optimized hyperparameters.
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FigureA.3 Confusionmatrix of themodel trained on the third train-test split
with optimized hyperparameters.

FigureA.4 Confusionmatrix of themodel trained on the fourth train-test
splitwith optimized hyperparameters.

FigureA.5 Confusionmatrix of themodel trained on the fifth train-test split
with optimized hyperparameters.
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FigureA.6 Spectogramof one respondent during a laboratory session. Top
frequencies are shown inyellow, in contrast to less oftenused frequencies that
are shown in blue.

CBS | Discussion paper | February 21, 2022 41



Colophon
Publisher
Statistics Netherlands
Henri Faasdreef 312, 2492 JP The Hague
www.cbs.nl

Prepress
Statistics Netherlands

Design
Edenspiekermann

Information
Telephone +31 88 570 70 70, fax +31 70 337 59 94
Via contact form: www.cbs.nl/information

© Statistics Netherlands, The Hague/Heerlen/Bonaire 2018.
Reproduction is permitted, provided Statistics Netherlands is quoted as the source


