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Abstract. We present a novel anomaly-based detection approach capa-
ble of detecting botnet Command and Control traffic in an enterprise
network by estimating the trustworthiness of the traffic destinations.
A traffic flow is classified as anomalous if its destination identifier does
not origin from: human input, prior traffic from a trusted destination, or
a defined set of legitimate applications. This allows for real-time detec-
tion of diverse types of Command and Control traffic. The detection
approach and its accuracy are evaluated by experiments in a controlled
environment.
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1 Introduction

In this paper we present a new approach to detect botnet C&C(Command and
Control) traffic in an enterprise network. With the term enterprise network we
refer to a computer network that is exclusively used by an organization under
one common administration. Passive network-based detection of botnet traffic is
an attractive defense layer against botnets because of its low risk of compromise.
A basic approach is misuse detection, based on knowledge of malicious traffic,
such as signatures [14]. However, the dependency on knowledge of specific bot-
nets, makes it ineffective against new types of C&C communication. Anomaly
detection addresses this problem by observing deviations from normal traffic.
Detection by DNS anomalies is a popular approach, but obviously limited to
bots that use DNS in their C&C communication. Correlation-based approaches
can detect a broader range of C&C traffic, however they require multiple mali-
cious traffic instances for detection [7].

In contrast, our approach is capable of real-time detection of a broad range
of C&C traffic by just a single traffic instance. It is based on trust of traffic
destinations. Trust is a complex concept and can be defined in many different
ways. We use a context-specific definition of trust, derived from the more generic
definition of Olmedilla et al. [13]. In our context, which is an enterprise network
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with potentially bot-recruited computers, we define trust as the measurable belief
of an organization that a specific entity does not collude in a botnet. We assume
that the organization trusts its employees and a defined set of legitimate soft-
ware applications if deployed on an uninfected computer. On the other hand,
the enterprise computers including the installed OS and software instances, are
not trusted, since they can become compromised and recruited in a botnet.
Traffic destinations are initially not trusted, because they can be part of a C&C
infrastructure that is contacted by an inside bot. However, a destination becomes
trusted by transitivity, if its identifier origins from another trusted entity. The
identifier of a destination can be an IP-address, name, URI, or any other data
that is used to direct the traffic to a remote computer or resource.

Evaluation of the origin of destination identifiers enables the detection of
C&C traffic. Traffic is classified as normal, if the destination identifier origins
directly from: human input, a legitimate application, or the received content
from a trusted destination. All other destination identifiers are not trusted and
the associated traffic is classified as anomalous.

We will refer to this anomaly detection approach as Untrusted Destination
by Identifier Detection or UDI Detection. Section 2 describes the details of UDI
detection. Section 3 evaluates UDI detection by experiments with real traffic.
Section 4 elaborates evasion possibilities. UDI detection is compared with other
work in Sect. 5. Finally Sect. 6 concludes and proposes future work.

2 UDI Detection Approach

We assume the typical scenario of client computers in a segment of an enterprise
network, protected by a stateful firewall. This enforces inside bots as the initiator
of C&C communication(phone home). All traffic is passively captured by the UDI
detector and organized in traffic flows. The detector evaluates the egress flows
on trust of their destinations. An egress flow is only classified as normal if its
destination is trusted. Ingress flows inherit the trust and anomaly state of the
associated egress flow.

For each new egress flow, trust is determined by its destination identifier in
three consecutive stages as shown in Fig. 1.

The first stage tests the presence of the destination identifier in a prede-
fined set of legitimate destinations, used by trusted applications. This typically
includes destinations of servers for software updates, browser home pages, and
local management traffic. Flows to these destinations are classified as normal
and not further evaluated.

The second stage tests if the destination identifier matches a reference that
was received in the payload of a prior ingress flow from a trusted destination.
Reference examples are URL’s in HTTP content and IP-addresses in DNS replies.
If the destination identifier matches a reference, the destination is trusted, and
the associated flow is classified as normal and not further evaluated.

The third stage evaluates the remaining destination identifiers on the likeli-
hood of being directly entered by a human. We assume that humans normally
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Fig. 1. Schematic overview of UDI detection.

enter destination identifiers that can be distinguished by their relatively low
complexity and high predictability.

The remaining destination identifiers represent untrusted destinations that
belong to flows that are likely automatically generated by illegal processes. The
combination of the three stages results in a system that can immediately detect
botnet phone home traffic, even if it has a low volume and uses popular traffic
types, to stay below the radar of existing Intrusion Detection Systems. The
passive traffic monitoring and real-time classification of UDI detection, allow for
implementation in an edge-router, or a network Intrusion Prevention System,
to prevent any contact between an inside bot and outside C&C entities. The
necessary deep packet inspection of traffic payloads and the management of a
set of known trusted legitimate destinations, are especially feasible in enterprise
networks.

2.1 Logical Destination Identifiers and Forward References

Before further elaborating UDI detection, we introduce the ldi (logical destina-
tion identifier) of an egress flow X, defined by Eq. 1.

ldiX = (host-idX , resource-idX) (1)

The host-id identifies the contacted remote host of flow X. It is directly repre-
sented by the remote IP address or a hostname, as defined by Eq. 2.

host-idX =

{
hostname(IPdest,X) if hostname(IPdest,X) �= null

IPdest,X if hostname(IPdest,X) = null
(2)

IPdest,X is the destination address of the egress flow. If this address is the result
of a DNS lookup, the hostname is obtained from a cache by hostname().

The resource-id in Eq. 1 identifies a specific resource of the remote host and
is extracted from the payload of the egress flow. An example of a resource-id is
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the path/querystring, used in a HTTP GET request. In this particular example
the complete ldi is very similar to a URI. A completely different example is an
ICMP flow of a ping. In this case the resource-id in the ldi is empty.

In case of a DNS lookup, the ldi of the associated egress DNS flow is defined
by the hostname that must be resolved instead of the IP-address of the involved
DNS server (Eq. 3). This allows for immediate detection during a DNS question
stage of C&C communication.

ldiX = queryX if X = DNS flow (3)

We define a forward reference as a data element in the payload of an ingress flow
that can be used as the ldi of a future flow. It can range from a URL in a HTTP
hyperlink to an IP-address in a DNS A-record. For UDI detection all forward
references in the payloads of ingress are stored in a list of trusted references.
Obviously, if the ingress flow is associated with an egress flow that was classified
as anomalous by an untrusted ldi, the forward references are not stored. The
size of the list remains limited by a maximum allowed validity time of forward
references, defined by cache properties of the observed computers (Fig. 2).

Fig. 2. The remote destination B of egress flow F3, identified by ldiB , is trusted because
it was referenced in a prior ingress flow F2 of trusted destination A.

2.2 The UDI Detection Algorithm

The three stages of Fig. 1 identify ldi’s of trusted destinations. After the three
stages, the remaining ldi’s represent destinations that are not trusted and their
associated flows are classified as anomalous. Algorithm 1 shows the complete
detection procedure.

– isEgress(X) is true if X is an egress flow
– IdentifyDestination(X) extracts the ldi from egress flow X according to Eq. 1

or 3.
– isLegitimate(), isReferenced(ldi), isUserSubmitted() are the tests of the three

consecutive stages of Fig. 1.
– getStatusofAssociatedFlow(X) is NORMAL or ANOMALOUS, depending on

the state of the associated egress flow of ingress flow(X).
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Algorithm 1. UDI detection algorithm
for each new flow X do

if isEgress(X) then
ldi = identifyDestination(X);
if isLegitimate(ldi) or isReferenced(ldi) or isUserSubmitted(ldi) then

X.Status = NORMAL;
else

X.Status = ANOMALOUS;
signalAnomaly(X);

end if
else

X.Status = getStatusOfAssociatedF low(X);
if X.Status = NORMAL then

extractForwardReferences(X);
end if

end if
end for

– extractForwardReferences(X)will extract and store forward references of flowX.

The string matching process in all three stages can be significantly simplified
by truncation of the ldi, typically by excluding the resource-id and reducing the
hostname to the second level domain name. We will refer to this as partial ldi
matching. It will reduce the size of the list of trusted destinations and simplify
the extraction of both ldi and forward refences. A disadvantage of partial ldi
matching is the increase of False Negatives, caused by accidental matches of
malicious ldi’s with trusted ldi’s. This will be discussed in Sect. 4.

3 Experimental Evaluation

We constructed a basic UDI detector as a proof of concept and evaluated its
accuracy in experiments with real traffic. We implemented the UDI detection
algorithm in C++ on a X86-64 PC with a Linux OS. It was inserted as a bridge
in a LAN. In addition to real-time detection, traffic was captured in pcap format
for offline evaluation by the UDI detector. To limit the complexity of payload
parsing, only DNS and HTTP payloads were inspected for forward references.
Partial ldi matching was implemented, by excluding the resource-id of Eq. 1 and
truncating DNS hostnames to the second level domain name.

We derived simple name-based features from [2,3], an [10], resulting in isUser-
Submitted()=TRUE if three conditions are met:

1. number of characters � C
2. number of non-letter characters � N
3. top level domain ∈ {set of popular human-input TLD’s (region dependend)}
We evaluated the accuracy of UDI detection with traces of both normal traffic
and malicious C&C-traffic in a controlled environment that allowed for testing
with a wide variety of legitimate and botnet traffic.
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3.1 Evaluation of False Positives

In the first experiment we evaluated False Positives by traffic of 40 selected cases
of preinstalled applications and web applications, all commonly used by students
of our university, such as: the use of email, popular social media, Google Maps,
the planning of a journey by Dutch public transport, WhatsApp, games and
downloading. Depending on the case, the traffic was produced by a Windows
7, Linux, or Android device. Although corporate traffic is expected to be less
diverse, we chose for this selection, to test the detector under difficult conditions.

The parameters of the function isUsersubmitted() were chosen: C=20, N=3
and a TLD set of {.com, .org, .net, .nl, .uk, .de, .gov}. Two particular cases
resulted in an excessive number of false positives (FPR > 0.5). The first case was
a download with Bittorrent. Since our implementation of UDI detection cannot
extract the peer IP addresses of encrypted tracker information, all P2P connec-
tions were classified as anomalous. The second case was an Android game that
continuously connected to different destinations. Since both cases are not repre-
sentative for corporate usage, they were excluded from further FPR calculation.

The traces of the remaining 38 cases contain 24362 flows with 54 % HTTP,
8 % of HTTPS, 36 % DNS, and 2 % of other traffic. Since all cases were produced
with freshly installed software, we assume no C&C traffic. Consequently every
flow, classified by the detector as anomalous, is regarded as a False Positive.
This resulted in a FPR of 0.0026 (64 False Positives in 24362 flows). Manual
inspection revealed that the majority of False Positives was caused by failures of
the detector to extract forward references from SSL payloads and complex web
scripts. We will also further elaborate this in Sect. 4.

3.2 Evaluation of True Positives

For the analysis of True Positives, five traces with a mixture of normal and C&C
traffic were composed. The normal traffic consisted of 8358 traffic flows, gener-
ated by the usage of the 30 most popular global websites, derived from rankings,
such as Alexa [1]. The C&C traffic consisted of isolated C&C conversations, cap-
tured from bots with different types of C&C communication. Ten copies of the
same conversation were injected in the normal traffic at equidistant times. We
used a self-developed tool that could modify timestamps and ephemeral ports
of the injected C&C traffic, to obtain a consistent composition of normal traffic
and ten similar C&C conversations. We composed in this way the five traces,
each with a different type of C&C traffic. Table 1 shows the number of measured
True Positives and the resulting DR (Detection Rate or True Positive Rate).

All injected C&C flows were detected, with the exception of Twebot, because
Twitter.com is a simple name that could have been entered by a human. In
addition Twitter.com was also referred by other legitimate traffic. A solution for
this problem is proposed in the next Section.
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Table 1. Measured FPR and DR of UDI detection with 5 different infected traces.

Trace C&C type C&C dia-
logues

C&C flows TP FP DR FPR

Top30 + Kelihos [6] DNS + HTTP 10 40 40 16 1 0.0019

Top30 + Storm [8] P2P 10 20 20 16 1 0.0019

Top30 + Twebot [12] Twitter 10 60 0 16 0 0.0019

Top30 + TBOT [5] TOR 10 20 20 16 1 0.0019

Top30 + Morto [11] DNS 10 20 20 16 1 0.0019

4 Evasion of UDI Detection and Solutions

If a C&C flow is erroneously classified as trusted by at least one of the three
stages, UDI detection is evaded. For the first and second stage of Fig. 1, this
is only possible if the adversary can communicate from a trusted destination.
It requires control over a trusted destination in addition to the local bot. This
makes the evasion effort relatively high in an enterprise environment with a
limited number of trusted destinations. Evasion of the third stage is possible
by the use of a simple ldi that could origin from human input. This also raises
problems for the botnet, since human-friendly hostnames are often occupied and
in case of a takedown, replacement is difficult. Addition of more features and
machine learning can result in a more accurate human input classification that
can adapt to specific situations.

Unfortunatly the partial ldi matching in our proof of concept facilitates eva-
sion, because the ldi is not completely evaluated. This was demonstrated in our
experiments with Twitter C&C traffic. Although the complete ldi of the con-
tacted account was Twitter.com/tlab32768, including the timeline of the mali-
cious account, partial ldi matching only evaluated the hostname Twitter.com,
which resulted in a classification as trusted.

The solution is a complete ldi match instead of a partial, however, this
requires an accurate matching process that can identify all resource-id’s and for-
ward references in payloads. SSL/TLS encryption and complex script
constructions in web pages complicate the matching process. An SSL/TLS inter-
ception proxy with associated public-key certificate on all computers in an orga-
nization [9] allows for inspection of the encrypted traffic. Browser emulation in
the UDI detector improves the identification of ldi’s and forward references in
complex payloads. The two mentioned techniques enable UDI detection with full
ldi matching, however, but the accompanying complex and processing-intensive
payload analysis requires further research.

5 Related Work

Detection of C&C traffic by flow-based analysis over several consecutive stages
that isolate the malicious traffic, is a common approach. Strayer et al. propose



C&C Traffic Detection by the Identification of Untrusted Destinations 181

multistage detection for C&C traffic over IRC [15]. Unlike our UDI detection,
the approach is limited IRC C&C traffic and uses statistical flow-based and
topological properties that depend on the presence of multiple infected bots.

The second stage of our UDI detector tests if the ldi of a new flow is refer-
enced in prior ingress flows. Zhang et al. propose CR-miner [17], a system that
detects malicious automatic traffic, by evaluating traffic dependencies between
connections and user events. In contrast to our method CR-miner is imple-
mented in the observed computer itself, to observe user and process properties.
This significantly increases the exposure level to potential malware. CR-minor
associates flows by the Referer field in the HTTP header. This makes the app-
roach only applicable to HTTP traffic that supports this field. It can be easily
manipulated by malware, since it is produced in a potentially infected computer.
UDI detection is not sensitive for this type of tampering, because forward ref-
erences are captured from payloads of ingress flows that origin from other com-
puters and because ldi’s cannot be manipulated, without changing the egress
flow destination.

Burghouwt et al. use causal relationships between flows to detect botnet
C&C traffic [4]. Instead of the destination, detection is based on the direct cause
of a flow. Unlike UDI detection this demands for the accurate measurement of
delay between certain events and induced new flows. Another difference is the
required monitoring of user events by a software agent or a hardware device.

Whyte et al. present a detector of scanning worms by determining IP-
addresses that are not earlier seen in DNS-replies or received HTTP-data [16].
This can be seen as a special case of flow referral, that isolates flows with unref-
erenced destination IP-addresses, as is often seen with worms.

6 Conclusions and Future Work

UDI detection detects different types of stealth C&C phone home communication
in an enterprise network by the trustworthiness of contacted destinations. It
evaluates the ldi’s in three different stages. Advantages of UDI detection are:
real-time detection of even a single C&C flow, detection of zero-day traffic and
a low exposure to malware.

Partial ldi matching simplifies the UDI detector implementation. The results
of experiments with samples of C&C traffic and normal traffic support the detec-
tion approach.

In future work we plan improvement of UDI detection by complete ldi match-
ing, to detect also C&C traffic over popular social media. This requires SSL traffic
interception, payload parsing by browser emulation, and the selection of more
features with an appropriate machine-learning algorithm for a more accurate
and adaptive classification of human input.
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