
17-12-2015

Automated number recognition
software for digital LED displays
Graduation report

Author: Mark Schoneveld

Graduation counselors from the

HHS:

Ing. T.J. Koreneef & Ir. A Le Mair

Graduation counselor from

Carya Automatisering:

P. Batenburg

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

1

Foreword
Before you lies the report “Automatic number recognition software for LED displays”. This is my

report for my graduation internship for the study Mechatronics at The Hague University of Applied

Sciences in Delft (HSS).

This report is written for Carya Automatisering and the HHS. It will illustrate the phases the project

went through and presents the end result of the project that started the 26th of September 2015 and

ended on the 17th of December 2015.

I would like to thank Peter Batenburg from Carya Automatisering for all the guidance, help and

feedback on the project. Of course I would also like to thank all other employees of Carya that helped

when it was necessary.

From the HHS I would like to thank Theo Koreneef for all the guidance during the project and Fidelis

Theinert at the very beginning of the project when he helped me to formulate a good project

assignment.

At last I would like to thanks my family and friends or all the support when it was needed.

I wish you pleasure with reading the report.

Mark Schoneveld, Nieuw-Vennep, 17-12-2015

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

2

Table of Contents
Foreword ... 1

Summary ... 4

Introduction ... 7

1. Assignment .. 8

1.1 Goals .. 8

1.2 Requirements .. 8

1.3 Boundaries ... 9

1.4 Deliverables ... 9

2. Research .. 10

2.1 Method for recognising the numbers ... 10

2.1.1 Types of machine learning ... 11

2.1.2 Choosing a learning method... 13

2.1.3 Supervised learning with non-linear regression ... 15

2.2 Pre-processing the image .. 15

2.2.1 Finding numbers in the image .. 16

2.2.2 Filtering numbers out of image .. 18

2.3 Conclusion ... 26

3. Detailed design .. 27

3.1 Structure of the code .. 27

3.1.1 Image acquiring .. 27

3.1.2 Image pre-processing ... 28

3.1.3 Recognition ... 29

3.2 Process of the code ... 30

4. Realisation ... 33

4.1 Test environment .. 33

4.1.1 Camera ... 33

4.1.2 Displays ... 36

4.1.3 Setting up the test environment .. 38

4.2 Budget analysis .. 40

5. Testing ... 41

6. Deliverables ... 43

7. Conclusion and recommendations .. 44

Conclusion ... 44

Recommendations .. 45

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

3

References ... 46

Appendix .. 48

Appendix A Images of all numbers .. 49

Appendix B Multi Layer Perceptron .. 52

Appendix C First plan pre-processing .. 57

Appendix D SysML diagrams ... 63

D1: block definition diagram of the Image pre-processing ... 63

D2: block definition diagram of the Recognition parts of software .. 64

D3: Activity diagram of the number recognition software ... 65

D4: Use case diagram of the number recognition software ... 66

Appendix E Specifications of the Basler A312fc camera ... 67

Appendix F Specifications of the Navitar NMV-5WA camera lens .. 69

Appendix G Specifications of the function generator ... 70

Appendix H 8x8 dot matrix display.. 72

Appendix H1 specifications of the 8x8 dot matrix LED display ... 72

Appendix H2 Dot matrix LED display (8x8) connected to MAX7219 controller 73

Appendix I Best test results of the number recognition software .. 74

Appendix J Best test results of the single (linear) perceptron .. 75

Appendix K Number recognition software .. 76

Appendix K1 Image retrieval code .. 76

Appendix K2 Image pre-processing code .. 78

Appendix K3 Multi Layer Perceptron code .. 86

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

4

Summary
This project is about making making number recognition software for Carya Automation in Delft. The

software must recognise numbers with different fonts from±

 7 segment LED displays

 5x7 dot matrix LED displays

 8x8 dot matrix LED displays

The research question is “What is the best method for recognising numbers for this project?”. The

demands of Carya were:

Research

Machine learning

The research showed that the best way to recognize number was with non-linear regression

methods, because it was not known whether the test data could be predicted correctly with linear

regression. This means that the learning method can make a non-linear prediction line.

Classification methods were no option, because these return discrete values. Namely the predicted

class. Regression methods give a percentage of how certain it is with its prediction.

The learning method also needs to be an eager learning method and not lazy. This means that the

learning is done before the prediction starts instead of during the learning. Because of this, eager

learning methods are faster than lazy learning methods during the prediction, but lazy methods have

no training time before the prediction starts.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

5

The chosen learning method is a Multi Layer Perceptron (MLP)

Pre-processing
The most important conclusions that was drawn, was that the better the input for the MLP was, the
more basic the MLP could be without other kinds of modifications. The pre-processing contains:

 Thresholding, to filter out the numbers from the image
 Blurring, to remove noise and attach parts of numbers that lie close to each other
 Dilation, to attach the remaining parts of numbers that need to make a connection
 Erosion, to remove noise than could be dilated too and to smoothen the edges of the dilated

numbers
 Connected Component Labelling, for detecting what pixels are connected to each other
 Skeletonization, so only the basic contours of the numbers remain
 Rotation, so all numbers stand straight up
 Cutting out all numbers from the images, so the numbers can be used for training the

network or as input for the network that needs to be predicted.

Detailed design
The number recognition software can be divided in three main parts:

 Image acquisition
 Image per-processing
 Learning and predicting numbers

Realisation
In the realisation phase, the code is programmed and the test environment is made. The test
environment can be divided in the following parts:

 Camera: which camera is used?
 Displays: which displays are used?
 User set-up: what does the user need to set-up before the software can be started?

The following camera and lens are used for the project:

 Camera: the Basler A312fc.

 Lens: a Navitar NMV-5WA.

The main advantage is that the lens has a manually changeable shutter and focus. Unfortunately the
lens is also a wide angle lens, which causes dish eye/ barrel distortion in the image. Because the pre-
processing already filters out a lot of the data from the image by cropping it, most is the barrel
distortion is also filtered out.

The displays are a green 7 segment LED display from a function generator and two red dot LED
matrices of the size 8x8. These can also produce numbers from 5x7 matrices.

For setting up the test environment, see the use case diagram in appendix D4.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

6

Testing
For testing if the software meets all requirements, the following tests have been done.

The software has passed every test, but the last requirement has not been checked yet because of
the time that was left for the project. This was the least important requirement for Carya. They cared
more about the proof of concept than the amount of time it took to recognise the numbers. The
software recognises 98.1% of all test images.

Conclusion
The answer to the research question “What is the best method for recognising numbers for this
project?”, is a non-linear learning method, the MLP, that makes use of images that have been pre-
processed to create an as good as possible input for the MLP.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

7

Introduction
Carya Automatisering VOF is a company located in Delft. They are specialised in automating

processes in many kinds of industries. The company is founded in 2003 and at the moment there are

five persons leading the company and three employees.

A few years ago, a client wanted Carya to automate a number recognition process for them. The

client frequently checked how much electromagnetic radiation different kinds of displays could

handle till numbers shown on the displays were impossible for humans to read. This process was

done by pointing an electromagnetic radiation resistant camera towards the display and sending the

resulting images to a computer screen. This computer screen was then checked by some people

sitting in front of it and they wrote down for what frequencies the display would show signs of

electromagnetic interference.

The project was to automate this. Carya wrote recognition software with LabVIEW for seven segment

LED and LCD displays. Afterwards the customer also wanted numbers that where presented on other

kinds of displays to be recognised, but it turned out not to be feasible in the time allocated to the

project.

The goal of this graduation project is: “Write recognition software that is able to recognise numbers

with different fonts that are presented on digital displays”.

To reach this, the following question needed to be asked: “What is the best method for recognising

numbers for this project?”. This project is a proof of concept. Carya wants to use the recognition

method for recognising numbers and/or other objects in future vision-projects. Now follows an

outline of this report.

 The first chapter discusses the assignment.

 The second chapter describes the research phase.

 The third chapter shows the detailed design of the software. This is mainly done with

drawings and different kinds of SysML-diagrams.

 The fourth chapter describes the realisation of the software and the test environment.

 The fifth chapter is about the tests that have been done with the software.

 The sixth chapter gives a summary of all products that are finished and can be delivered to

Carya. At the end the answer will be given whether the main goal has been reached.

 The final chapter contains the conclusions of the project and the recommendations for Carya

about further implementation of the recognition software.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

8

1. Assignment
The scope of the assignment has been divided in multiple parts:

 Goals

 Requirements

 Boundaries

 Deliverables

 These are described in this chapter and at the end of the report it is checked whether everything

within the scope has been done and implemented.

1.1 Goals
The goal of the project is to write software that is able to recognise numbers with different fonts

from different kinds of displays. To reach this goal, research is done to find the best recognition

method and find the best way to pre-process every image.

1.2 Requirements
Carya has set a number of requirements for this project. These requirements can be divided into

three main types:

 Recognition software

 Test environment

 Result analysis

These requirements can be found in Table 1.

Table 1:Requirements Carya has set for the project

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

9

1.3 Boundaries
To prevent the assignment from getting to big, certain boundaries have been set. These are shown in

Table 2.

Table 2: Boundaries of the project

1.4 Deliverables
The goal of this project is to make recognition software that is able to recognise numbers from

different displays with different sizes and different fonts. The deliverables are:

 The recognition software
 A validation report of the recognition software

The validation report can be found in chapter “5. Testing”.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

10

2. Research
To find a way to recognise the numbers from displays, the research was focussed on the following

two areas:

 What is the best method for recognising the numbers in the image?

 What kind of pre-processing1 needs to be done to the image for above methods before

number recognition can be applied?

An explanation of the research of each point will be shown in this chapter, together with the

outcome. First, the method for recognising the numbers will be dealt with. After this is chosen, it can

be determined what kind of input the recognition method needs and what kind of pre-processing

needs to be done.

2.1 Method for recognising the numbers
Carya set the requirement (requirement 5, Table 1) that machine learning needed to be used, unless

a better method was found. After research it became clear that there are two main methods for

character recognition:

 Template matching

 Machine learning

What they have in common is that they both look at characteristics of the object that needs to be

recognised. In this case it is an image of a number. The difference lies in how they do this.

With template matching, an image is compared to a database of other images with possible

appearances. In the case of this project, an image of an unknown number would be compared to

many images of numbers from 0 to 9 with different fonts, one by one. The most similar image in the

database is expected to have the same value as the number that is presented to the software. This is

used in many programs for number recognition, but in many cases it only works good when it

expects a number with a specific font that is also in the database. Otherwise it is possible that the

software does not recognise the number or worse, gives a wrong estimation of the value of it.

When the font is not known, machine learning could be used. A table with advantages and

disadvantages of template matching and machine learning is presented below (Table 3).

Table 3: Advantages and disadvantages of template matching and machine learning

1 Pre-processing: making adaptions to an image, so the software can further use the data from it. Like
thresholding the image, cropping or removing noise.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

11

Machine learning has the big advantage that it can learn what each number looks like. This is done by

looking at all numbers in the database with different fonts, rotations, sizes, whatever a project

requires. It learns what a number looks like and does not compare it to a rigid template.

This project is a proof of concept for software being able to recognise numbers presented on

displays. It needs to be as fast as possible during the recognition process and in real life it may not

always be known what font is used for the numbers. Because of this, machine learning is the best

option for the project.

2.1.1 Types of machine learning
A machine learning algorithm is able to learn from its inputs and predict something with the

processed information from previous obtained inputs.

To learn an algorithm what a number looks like, it will need examples that are extracted from a

database. The database can differ in size. This depends on what the learning method needs and how

similar the objects are that need to be recognised.

Machine learning contains many kinds of methods. These can be classified into four main groups:

These main learning methods all have different ways of learning. The most important ones are

described in Table 4.

Table 4: Advantages and disadvantages of the main learning methods

Before the choice can be made between these four types of learning, two questions need to be

considered:

 continuous or discrete values?

 eager or lazy methods?

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

12

Continuous or discrete value

The result from every of the above method can be given in two different forms. The result can be a

continuous value or a discrete value. A continuous value can be any value and a discrete value can

only be a specific value. For example, the separation of numbers in supervised learning, semi-

supervised learning and reinforcement learning can be done in two ways.

 Classification (discrete)

 regression (continuous).

With classification a separation line is “drawn” between the plotted data of the different numbers

and the data is classified. By looking at what side the data lies, it can be predicted to what class a

number belongs. With regression, a predictive line is calculated with which it can be predicted how

likely it is that a number has a specific value. In Figure 1 (Rossant, 2014), a classification and a

regression is showed. The red lines are linear and therefore of the form ”y = ax + b”.

Figure 1:). [A red classification line in the left image and a red regression line in the right image], Reprinted from GIthub
website, by iPython-books, retrieved from http://ipython-books.github.io/featured-04/

Carya demands to get a percentage of how big the chance is that a number is estimated correctly

(Requirement 12, Table 1), so the outcome needs to be a continuous value. Regression is chosen for

the project.

Regression can be linear and non-linear. In this project, different numbers with different fonts are

presented to the learning algorithm. Non-linear regression methods can form linear regression lines,

but not the other way around. Since it is not known whether the data from different numbers can be

separated or predicted by a linear function, a non-linear regression learning method is the best

choice to start the project with. At the end of chapter 5 an evaluation is done whether a non-learning

method was necessary or that a linear learning method would have been sufficient.

http://ipython-books.github.io/featured-04/

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

13

Eager of lazy methods

The last big choice that needed to be made was whether the learning method is eager or lazy.

Eager methods search for the best general function to predict a target by looking at all training data

before it starts. A lazy method only starts to search for a general function as soon as it needs to do

so. This makes lazy methods a lot slower during the recognition process. Lazy methods also use more

memory because they have to process all the images in the training set, every time the recognition

software starts to recognise something. The advantage of these methods is that they are able to

make multiple different prediction models per learning round Instead of one model for all cases.

Therefore these methods can find a the best prediction model for the specific input.

This does not mean that eager methods are not accurate. When there is a good trainings set, the

results can be almost as good as with lazy methods, if not equal. The advantages and disadvantages

of both methods are presented in Table 5.

Table 5: Advantages of eager and lazy learning methods

The digital displays in this project will present numbers with high contrast to the environment and

pre-defined shapes, so with the trainings set it is possible to make a good prediction model. Because

Carya wants the software to be as fast as possible during the recognition of numbers (Table 1,

requirement 10), the best choice for this project is an eager learning method.

2.1.2 Choosing a learning method
The learning method needs to be eager and the result needs to be a continuous value. Now that
these choices are made, it can be decided which of the four learning method is most appropriate:

 unsupervised learning
 semi-supervised learning
 supervised learning
 reinforcement learning.

Unsupervised learning

With unsupervised learning, there is no labelled data. Labelled data is not always available because

the labelling can be very time consuming. Standard unsupervised learning method make use of

classification and are therefore not suitable for this project, as stated before with classification

methods. Nevertheless, there are some types that can calculate how likely it is that a number

belongs to a certain cluster: soft or fuzzy clustering.

A big disadvantage of clustering is that because the software does not know the value of each

number in the database. It may be the case that the same numbers with different fonts have bigger

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

14

differences than different numbers. Than the classification could go completely wrong. For example,

a blocked three and nine look a lot like each other, but a smaller three can be very different (see

Figure 2).

Figure 2: Two threes that show significant differences in shape and a three and a nine that share the same shape wide shape
in a block form

It would be plausible that these are not classified correct, because the right three and the nine share

almost the same shape. The three on the left however is a lot thinner, more round and a bit thicker.

The threes could be put in different clusters and there is no way the software can know this.

Unsupervised learning lacks to ability to be steered in a certain direction with setting its variables,

but this can also be an advantage. It is possible that because it is not steered in a certain direction, a

new unsuspected pattern can be found.

Semi-supervised learning

Semi-supervised learning makes use of clustering, just like unsupervised learning. By looking at the

few labelled data in the database and comparing them with other unlabelled data, it can be

predicted where the unlabelled data belongs to. With these kind of learning methods, the user does

not have to label all clusters afterwards as with unsupervised learning. Nevertheless, the

disadvantage is that is does not know when unlabelled data is incorrect, just as with unsupervised

learning. When some unlabelled data with a specific number on it looks a lot like some labelled data

with another specific number on it, it is possible that all that unlabelled data is classified incorrectly.

If the user want to make a database with some labelled numbers, he has to make sure that the data

is labelled correctly. This can be a very time consuming process.

Supervised learning

With supervised learning, a prediction is made and the software gets told if the answer is right or

wrong and when it is wrong, it gets told what it should be. It can adjust its parameters in such a way

that it learns to recognise numbers by getting the correct answer. A big problem is the labeling of

data. This can be time consuming.

Reinforcement learning

These learning methods use labelled databases just like supervised learning methods, but does not

get told what the correct answer should be when it is wrong. An disadvantage that result from this is

that it can sometimes be slower than supervised learning methods. This is because it need to search

for a correct answer instead of just getting the correct answer.

Choice of learning method for the project

A labelled database would not be a problem to acquire, because the numbers on the predefined

displays that been used for making images can be set manually and therefore the labelling can be

done automatically together with making the image. This can be done by making the image and

naming the image after the value presented on the image. (more on this in chapter 3).

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

15

Clustering with unsupervised or semi-supervised data could be a possibility, but some numbers may

look a lot like each other when presented on the digital displays. This could be a problem for

unsupervised learning because it may not find the difference. And for semi-supervised learning this

may be a problem concerning the possibility that numbers are labelled wrong after clustering.

Reinforcement learning would be a good choice, just like supervised learning, but the fact that it may

be slower in some cases than supervised learning methods, makes supervised learning the best

choice in this project.

2.1.3 Supervised learning with non-linear regression
There are many supervised learning methods to choose from that make use of non-linear regression

and eager learning methods. But there are two methods however that come up almost everywhere

on the internet, in books and in papers.

 Support Vector Machine (SVMs)

 Multi Layer Perceptrons (MLPs)

Although the SVM is a classifier. The SVM that can make predictions with regression is called

Support Vector Regression method (SRV).

These are not the only two learning methods. Other methods include for example decision trees and

K-nearest neighbour are also called a lot, but the first two methods have already been used in many

scientific research to character recognition with much success, sometimes almost 100%. Some of

these papers can be found in the sources. In most papers these two methods excel and can compete

with each other. What the best method is, is unfortunately not possible to predict. This depends on

the training and test data and the machine learning method processes it.

There were no good reasons to choose for or an SVR or an MLP. The way they work differs, but both

have shown good results in OCR. The choice fell for an MLP because Carya was already a little

familiar with this method and getting to understand MLPs is relatively easy for people from Carya

that need to work with it in the future, because it is based on the human brain. An explanation of the

MLP is given in Appendix B1.

It appears to be the case that people made combinations of machine learning methods and other

mathematical tricks in the learning methods to be able to predict very difficult problems. Like input

images with a lot of noise or with numbers a lot of different handwritten numbers. The more

irregular the image was, the more complex the machine learning method becomes to handle this.

Numbers on digital LED displays without backlight have very clear contours and much contrast.

Therefore the numbers are relatively easy to filter out of images with few noise and clear contours.

On top of that, numbers shown on digital displays almost always present clear characteristics so they

are easily readable for humans. A relatively easy learning method without extra adjustments would

satisfy if the pre-processing of the image is good.

2.2 Pre-processing the image
The pre-processing of the image is very important for the recognition. When the pre-processing is

done in a good way, the machine learning method can be kept relatively basic. The pre-processing

will consist of the following parts:

 Filtering out the numbers from the image

 Finding the position of the numbers in the image

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

16

To know what pre-processing needs to be done, the method for finding the numbers needs to be

known. Therefore the acquisition of the images will come first and after that the way of retrieving

the necessary information from the image with pre-processing.

2.2.1 Finding numbers in the image
At the beginning of the project, the main idea was to use histograms of the x- and y-axis about the

amount of pixels per row and per column to find the numbers. This proved to be a problem in some

cases when the image was rotated (more about this in Appendix C). With Connected Component

Labelling (CCL) all pixels with a value above zero that are connected can be given a certain value. This

works as follows:

Every pixel is checked in the image. It starts with the left upper corner and works its way down to the

bottom right corner. When a pixel is black, it skips that pixel. When a pixel is anything else than black,

it gets a label.

The label it gets depends on the situation. Let’s take a look at Figure 3

(Dhull003, 2010). Imagine the red pixel is white. That means it gets a label. If

one of the pixels around the red one with a black dot already have a label,

the red pixel gets the lowest of them. If there are no other labels to be

found around the red pixel, it will get a new label that has not been assigned

to another pixel yet.

When the label is assigned, the software continues to pixel right of the red

pixel and does exactly the same. This process continues till all pixels are

checked and labelled if they are white. The result of this process might look

as in Figure 4.

At the same time a pixel is labelled, the software also keep a list with all

labelled values that connect with each other. By finding, for example, that

two pixels with a three and a seven touch each other and two pixels with a label of three and six,

then it can be concluded that pixels thee, seven and six belong to the same object, due to a similarity

in the connecting label. The same can be seen from Figure 4 and Table 6.

Figure 4: Dhull003. (2010). Example of an array where connected region labeling is to be carried out. 1 represents the region
pixel, and 0 represents the background pixel. Retrieved from https://en.wikipedia.org/wiki/Connected-
component_labeling#/media/File:Screenshot-Pixel_Region_(Figure_1).png)

Figure 3: [square 8
connectivity]. Reprinted
from Wikipedia website, by
DHull003, 2010, Retrieved
from
https://en.wikipedia.org/wi
ki/Connected-
component_labeling#/medi
a/File:Square_8_connectivit
y.png

https://en.wikipedia.org/wiki/Connected-component_labeling#/media/File:Screenshot-Pixel_Region_(Figure_1).png
https://en.wikipedia.org/wiki/Connected-component_labeling#/media/File:Screenshot-Pixel_Region_(Figure_1).png

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

17

Table 6: [connected label table]. (n.d.). Retrieved from https://en.wikipedia.org/wiki/Connected-component_labeling

On the bottom row, there are two labels with a value of six and one with a value of seven. Because

these labels touch the pixels with label three, it can be concluded that all labels connecting with label

three belong to the same object in an image and are indirectly touching label seven. By creating a

connected label table, the pixels that belong to the same object are grouped.

When all white pixels are labelled, the image is processed again all connecting labels will the lowest

connecting label value. When this is completely processed, the numbers are separated from each

other and the exact region in which every number lies is known. An example of how this might look is

given in Figure 5 (Dhull003, 2010).

Figure 5: Dhull003. (2010). Result of connected region labeling using two-pass raster scan [Drawing]. Retrieved from
https://en.wikipedia.org/wiki/Connected-component_labeling#/media/File:Screenshot-Figure_1.png

To be able to use this method, there are two important features that the image needs to have:

 All images need to be binary, which means that there are only black (value=0) and white

(value=255) pixels.

 All parts of the numbers need to be connected, because every loose object is labelled

different.

This means that the pre-processing has to lead to the above result. Unfortunately, the number

presented on the DOT matrix display and 7 segment display are, as the names already say, segments

and dots. These points need to be filtered out of the image and connected to each other.

https://en.wikipedia.org/wiki/Connected-component_labeling
https://en.wikipedia.org/wiki/Connected-component_labeling#/media/File:Screenshot-Figure_1.png

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

18

2.2.2 Filtering numbers out of image
To make the CCL work, all segments that present a number must be connected. But these need to be

filtered out of the image first. All displays are LED displays without backlight. This means that all

numbers that are presented, are bright light sources. This can be used for filtering out the numbers

from the image. When the light source is bright, the aperture of the camera can be closed almost

completely (more about this in chapter 4). When the aperture is almost closed, a lot of noise from

the background is removed while the numbers are still visible in the image. All steps that are taken in

the pre-processing of the image are documented in this chapter with a short explanation why it was

used. These steps are:

 Thresholding, to filter out the numbers from the image
 Blurring, to remove noise and attach parts of numbers that lie close to each other
 Dilation, to attach the remaining parts of numbers that need to make a connection
 Erosion, to remove noise than could be dilated too and to smoothen the edges of the dilated

numbers
 Connected Component Labelling, for detecting what pixels are connected to each other
 Skeletonization, so only the basic contours of the numbers remain
 Rotation, so all numbers stand straight up
 Cutting out all numbers from the images, so the numbers can be used for training the

network or as input for the network that needs to be predicted.

Thresholding

For filtering out the numbers from the image, thresholding needs to be done. When thresholding is

used, specific colours are filtered out of an image. There are different ways to process all values

above and under a set threshold. Since a black and white image is the best input for the CCL,

everything below a specified threshold becomes black and everything above it becomes white.

The colour of the LEDs is either green or red and this is filtered out of the image (Figure 6).

Figure 6: 8x8 dot matrix LED display and 7 segment LED display

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

19

Images loaded with the CV2-library, that is parts of the OpenCV-library are using the colour space

Red, Green and Blue (RGB). The disadvantage of RGB is that is can be very hard to filter certain

colours out of images if they are not 100% red, green or blue. This is because all other colours are

always a combination of red, green and blue. For humans it is hard to say what combination of

colours is used for, let’s say, all shades of green or in this case, the very bright red and green from the

displays. Therefore, the thresholding in the code is done by converting all colours to the HSV colour

space, which stands for Hue, Saturation and Value of the brightness. Figure 7 ((RGB cube, n.d). and

((“[HSV cone],” n.d.)). shows a cube that illustrates the possible colour combination in RGB and a

cone that illustrates how the HSV colour space works.

 The Hue is the colour. In Python, all shades of red are 0 to 60, green is 60 to 120 and blue is

120 to 180.

 The Saturation has a range from 0 to 255 and the lower the Saturation, the more mat the

colour is.

 The Value also has a range from 0 to 255 and the lower the Value the darker the colour.

Filtering all red values out of an image with almost completely closed aperture, gives a result like

Figure 8.

The conversion between HSV and RGB can be done with a standard function from the OpenCV-library

and can be converted in both ways.

Figure 7: RGB color cube seen from white (255,255,255) [Drawing]. (n.d.) Retrieved from
https://engineering.purdue.edu/~abe305/HTMLS/rgbspace.htm and [HSV cone] [Drawing]. (n.d.). Retrieved from
https://upload.wikimedia.org/wikipedia/commons/f/f1/HSV_cone.jpg

Figure 8: Making an image of two threes of a DOT matrix LED display and thresholding them with HSV and almost closed
aperture. (A) Picture of test environment. (B) Thresholded image made by the camera.

A B

https://upload.wikimedia.org/wikipedia/commons/f/f1/HSV_cone.jpg

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

20

Blurring

Noise in images is always a problem in vision. To filter this out of the image, a technique called

blurring is most commonly used. Blurring the image is a technique where all pixels are compared to

the ones around it and made more equal to each other. For example, the edge of one of the white

dots in Figure 8 touches one or more black pixels. By blurring the image, the black pixels around the

white ones become a bit more white, but not the maximum value. The exact opposite goes for the

white pixels at the edges. When the right image of Figure 8 is blurred, the result will be like in Figure

9.

Figure 9: Blurred version of Figure 8B

In a good test environment, blurring is not necessary for removing noise. As in Figure 8 and Figure 9

there is no noise, but blurring can still help with pre-processing. Not only is the noise (partially)

removed while blurring, but components of numbers that lie close to each other are connected and

sharp edges are faded. The CCL needs binary images to process, so the image is thresholded again.

Every pixel that is not black (having a value above zero), can be seen as a part of the number and can

be made white. The result is shown in Figure 10.

Figure 10: The blurred image is thresholded

Almost all dots are connected, but there are still some pretty large gaps between some parts of the

three on the left.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

21

With only blurring and thresholding this appeared to be a problem. It needed to be done several

times before the parts where connected (Figure 11), but the middle stripe of the three on the right

touched the upper and bottom stripe of the three because these are so close to each other and

surrounded by other white pixels. Another method needed to be used to connect the loose parts.

Figure 11: Image blurred and thresholded a second time. The gap between the parts of the left three became slightly
smaller, while the three on the right already became a lot thicker.

Dilation and erosion

Dilation makes all white spots in a thresholded image bigger, so when a black image with white

numbers is dilated, all numbers become thicker. When looking at Figure 10, it becomes clear that

dilation is necessary to connect all parts of the number to each other. Erosion has the exact opposite

effect. It makes white object in images smaller. This can be used for making noise in images smaller

or even letting them disappear when it is small enough. Erosion and dilation in combination with

blurring the image and thresholding the image are powerful tools for image pre-processing to

remove noise and make other object easier to process.

The dilation makes all white pixels in the image bigger, regardless of the surrounding pixels. This is a

big advantage in opposition to blurring the image. When dilating Figure 11, the result look like in

Figure 12.

Figure 12: Dilated version of figure 12

This is exactly what the CCL needs. All components of every image are connected and the image is

binary. The only disadvantage is that noisy pixels that may not be filtered out yet are also dilated.

These need to be filtered out again. Since a blur will not satisfy because the noise points became a lot

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

22

bigger too, erosion is necessary. Every group of white pixels become smaller, but since there is a

connection between all points of the numbers, the connection remains. Only the small dots will be

removed when the parameters are set correctly for the erosion. A result of erosion might look as in

Figure 13.

Figure 13: Erosion after dilation

All noise is removed, the image is binary and all parts of the numbers are connected. This image can

be used as input for the CCL. Nevertheless, the process appeared to be slow. It took a couple of

seconds to label all pixels, calculate the connected label table and then make every label in the image

another value. The reason was that there were a lot of pixels to process since all numbers where

relatively thick after the blurring, thresholding and dilating. Even though everything was eroded at

the end. The numbers needed to be made thinner, so less pixels needed to be labelled, the

connected label table was smaller and the relabelling went faster.

Skeletonize

Skeletonization means that only the basic feature of a binary image is kept See Figure 14

(“[Skeletonization]”, n.d.).

Figure 14: [Skeletonization] [Drawing]. (n.d.) Retrieved from
http://doc.cgal.org/latest/Surface_mesh_skeletonization/main_image_suggestion.png

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

23

With this function, the basic form of all numbers could be kept, while still processing the numbers,

because all components remain connected. They only become smaller. When the numbers from

Figure 13 are skeletonized, the figure look like presented in Figure 15.

Figure 15: Numbers in the image after skeltonization

The processing with the CCL now only takes about half a second, what is a big improvement. An

important thing to keep in mind is that when there are more numbers to be processed, is will take

more time to do so. It needs to process more labels.

The other advantage of skeletonizing all numbers is that is does not matter how thick a number is.

They will all become one pixel thick and can be cropped to be prepared for the recognition software.

If not all numbers are the same width, the recognition software may have problems with recognising

the number. The input always needs to be of the same form so it can learn from its input. The MLP

learns the global shape of a number. If it is too stick, it will learn that almost all pixels can be white

for a certain number and if it is too small, it will learn only specific pixels can be white if a number is

presented.

Figure 16: Numbers from different digital displays without skeletonizationn in the process.

This would not matter if all numbers on the displays would have the same thickness, but this is not

the case as can be seen from resulting images in Figure 16. Therefore the skeletonization is a big

advantage in the learning process.

Figure 17: Numbers from different digital display after skeletonization and dilation

After skeletonization and then dilation, the numbers are all slightly bigger than the skeletons and the

sharpest edges are roughly smoothened. With an end result as in Figure 17, the images can be used

for the MLP training to learn what every number looks like and the MLP prediction to predict the

value of a number.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

24

Rotating

In Figure 16 and Figure 17, the numbers were standing straight in front of the camera when the

picture was taken. Carya wants the software to recognise the numbers, even when the camera is

rotated with 45 degrees. Figure 15 is a good example of when the camera is rotated.

At first, the rotation was tried to be acquired by looking at the median value of where the numbers

were. This appeared to be problematic in some cases (See appendix C1). A more reliable way

appeared to be finding the position of every outer rotated number and find the exact middle of it

(Figure 18).

Figure 18: A rectangle around the found numbers and a line drawn between them

A line was drawn between these centre points of the two outer numbers in the image. This line

makes a certain angle with the horizontal axis when the numbers are rotated in the image. The image

is then rotated by this angle so all numbers are straight in the resulting image (Figure 19).

Figure 19: Rotated skeleton

When the camera is rotated around the axis pointing out of the display, this will always work. But

when the camera is rotated around the x-axis and y-axis parallel to the display, the numbers are

deformed slightly. This is also visible in Figure 19, where the right number is smaller than the left

number. The image could be skewed, but this is an extra process and the software may also be able

to learn that numbers are sometimes shown with a little skewness. This of course means there is a

need for enough training material, but there can be made plenty to test with.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

25

Besides that, the MLP needs cropped images because too many pixels mean a lot slower processing

time. When all images are cropped enough, the most basic contours are kept and small rotation

disappear in the resulting images. The only thing that matters that that the width and height of the

numbers are kept proportional to each other so the number presents a possible shape and that the

height of the numbers in all images is the same in the cut out image of the numbers. Cropped images

of the numbers from Figure 19 are shown in Figure 20.

If the image pre-processing is done, the image from the figure above can be used for training the

network or can be put in the network to determine what numbers are presented.

Figure 20: The two resulting images from the pre-processing of the camera image

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

26

2.3 Conclusion
Learning method

Classification is no option because Carya want a percentage of how good the recognition works. And

because it is not known whether all data will be linearly separable, the choice to start with is a

learning method that can produce non-linear regression lines which can predict the numbers.

The learning method needs to be eager and not lazy, because eager methods are faster during

recognition than lazy methods because they train before recognition starts. Lazy methods do it

during the recognition.

SVR and MLP are both great machine learning methods that have proven themselves to be good with

OCR in many research papers. There are no hard cons or pros for selecting one of both methods,

because they are both able to learn and recognise almost anything in the right circumstances. Carya

was already a little familiar with MLPs and is relatively easy to understand because it is based on the

human brain. With an eye on the fact that people from Carya need to work with it in the future, the

choice fell on the Multi Layer Percepton as learning method.

Pre-processing

The better the pre-processing is, the more basic the machine learning method can be.

For pre-processing the following steps will be taken:

 Thresholding, to filter out the numbers from the image
 Blurring, to remove noise and attach parts of numbers that lie close to each other
 Dilation, to attach the remaining parts of numbers that need to make a connection
 Erosion, to remove noise than could be dilated too and to smoothen the edges of the dilated

numbers
 Connected Component Labelling, for detecting what pixels are connected to each other
 Skeletonization, so only the basic contours of the numbers remain
 Rotation, so all numbers stand straight up
 Cutting out all numbers from the images, so the numbers can be used for training the

network or as input for the network that needs to be predicted.

After all of these steps are processed, the images can be used for training the MLP or testing the

MLP.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

27

3. Detailed design
In the previous chapter the MLP has been chosen as the learning algorithm and all different steps
have been defined that will be used for the image pre-processing. This chapter will be about:

 the structure of the code for image retrieval
 the structure of the code for the MLP
 the structure of the code for IPP
 the way all these codes work together to let the number recognition work

This explanation is mainly done with SysML-diagrams. The basic Block Definition Diagram (BDD) of
the number recognition software is shown in in Figure 21.

Figure 21: BDD of the number recognition software

3.1 Structure of the code

3.1.1 Image acquiring
For acquiring images, the software needs to receive camera images of numbers on the displays and
show these on the screen so the user can to see whether all numbers are in the view of the camera.
But this is not enough, because the numbers also need to be visible for the software without too
much noise from other object. Therefore the user also sees a thresholded image where, if set
correctly, only the numbers in the image are visible.

This means that the Image Acquiring can be divided in the following parts (Figure 22):

Figure 22: BDD of pre-processing the image

1

2

3

1

1.1

1.2

1.3

1.4

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

28

The colour of the numbers need to be set by the user for thresholding. The user has to do this by
setting the HSV values. The easiest way is to select the green, red or blue spectrum with the Hue and
select all possible values (0-255) with the Saturation and the Value. By looking at the thresholded
image from the camera the user can see whether the values are correct or that they need to be
adjusted. Further adjustments can also be done with the camera, but more about this in chapter 4.

3.1.2 Image pre-processing
The image pre-processing happens after the image acquiring and before the recognition software is

used. The numbers are filtered out of the image and processed in such a way that all numbers with

different fonts are presented in the same way to the recognition software. As said before in

paragraph 2.2, if the pre-processing is optimized as good as possible, the machine learning method

can be kept simple. That is why the pre-processing is a very important part of the number recognition

software.

The main structure of the pre-processing software is presented in the BDD in Figure 23. For a

complete BDD of the image pre-processing, see Appendix D1: block definition diagram of the Image

pre-processing.

Figure 23: BDD of image pre-processing

All blurring, thresholding, dilation, erosion and skeletonization described in paragraph 2.2, is done to
connect all segment of the numbers. The labelling of the pixels can be divided in two parts.

 Labelling all pixels in the image

 Labelling the numbers in the image

The second step means that all connected labels are, thanks to connecting all dots and stripes of

every number, labelled the same. It is then possible to filter out everything from the image with a

certain label.

2

2.1

2.2

2.3

2.4

2.5

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

29

3.1.3 Recognition
Now that the images are made and the pre-processing is done, the recognition software can be used

to detect what numbers are present in the image. The image recognition can be divided in the

following steps presented in Figure 24 (to see the complete diagram of the recognition part of the

software, see “Appendix D2: block definition diagram of the Recognition”:

Figure 24: BDD of the number recognition

The recognition software consists of three main parts.
 Initializing the weights and biases at the start. These are determined randomly when the

software is being trained

 Training the MLP by adjusting the weights and biases to get a result that is as good as

possible.

 Predicting numbers with the MLP. The weights and biases from the training that gave the

best result are used to predict the outcome of an image form a camera.

3

3.1

3.1.1

3.1.2

3.1.3

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

30

3.2 Process of the code
The above codes with the image acquiring, image pre-processing and the learning method combined

can make the complete number recognition software. When all blocks (for more info in deeper layers

in the BDD, see Appendix D) are used for the structure of the code, the classes and functions inside it

will look like in the class diagram in Figure 25.

Figure 25: A class diagram of the number recognition code. This is made with the block definition diagrams.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

31

An activity diagram is shown in Figure 26. For a sharper image, see “Appendix D3: Activity diagram of

the number recognition software”. It illustrates how all parts of the recognition software work

together to get the software to learn numbers or recognise numbers.

Figure 26: Activity diagram of training the learning method

Shortly explained, the user can choose whether he wants to train the software or to use it to predict

a value of a number. If the user wants to train the network, it directly goes to the training parts and

retrieves trains the biases and weights. If the user wants to predict numbers with the network, then

the software first retrieves an image from the camera and then the software goes to the number

recognition part, where it retrieves the best weights and biases.

The first block in the image acquisition part says the user has to give the colour of the numbers. This

needs to be done so thresholding is possible. After the threshold is given by the user (in HSV), the

software returns the real camera image and a thresholded image continuously to the user on the

computer screen, with which the user can see whether the threshold values are correct.

If everything the threshold good, the user can press the “p” to take a picture and continue to the pre-
processing of the image. If “q” is pressed, the program stops and the user can set the threshold
values again.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

32

Summary
The number recognition software can be divided in three main parts:

 Image acquisition
 Image per-processing
 Learning and predicting numbers

The user has to predefine whether he want to train or test the network. If he wants to train, the
network needs no further input from the user and goes on with the training directly. If the user
wants to recognise numbers from a display, the user has to set the threshold values that can be
checked with the live feed from the camera with the thresholded live feed that is presented on a
computer screen. If the threshold needs to be adjusted, the user can quit by pressing “q” and adjust
them. If he is satisfied and want to start the prediction of numbers, the user can press “p”.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

33

4. Realisation
If the user wants to predict numbers from displays, he needs to set the threshold values in the code.

This is not the only thing that has influence on the resulting image. A very important parts is the way

the camera and the display are positioned, the lighting in the room, the aperture of the camera, and

so on.

In the realisation phase, the code is programmed and the test environment is made. The test
environment can be divided in the following parts:

 Camera: which camera is used?
 Displays: which displays are used?
 User set-up: what does the user need to set-up before the software can be started?

At the end of the chapter a budget analysis is given whether the budget analysis of the Plan of
Approach was estimated correctly.

4.1 Test environment

4.1.1 Camera
While being in search of a camera, the Hague University of Applied sciences in Delft proposed the
following camera and lens:

 Camera: the Basler A312fc.

 Lens: a Navitar NMV-5WA.

The lens has a focal length of 4.5 mm and has an manually adjustable aperture to set the amount of

light that passes through onto the light sensor in the Basler-camera. The focus is also manually

adjustable to sharpen or blur the image. Figure 27 shows an image of the Basler camera with the

Navitar lens. For the specifications of the camera and the lens, see “Appendix E Specifications of the

Basler A312fc camera” and ”Appendix F Specifications of the Navitar NMV-5WA camera lens”

Figure 27: Basler-camera used for the project

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

34

The aperture can be set between f/1.4 and f/16, with f/1.4 almost completely open and f/16 almost

completely closed (see Figure 28 (Hill, 2010)).

Figure 28:Peter Hill. (2010). [Apertures with different sizes][Drawing]. Retrieved from
http://www.redbubble.com/people/peterh111/journal/5725038-the-easy-guide-to-understanding-aperture-f-stop

The Basler camera has a relatively high frame rate. It makes 53 frames per second (fps), where most

good, expensive webcams mostly only have 30 fps. Some standard rules for cameras are that:

 the more the aperture is closed, the less light can go through and reach the sensor in the

camera that captures the light

 the higher the frame rate, the less light can be let through the lens per frame per second and

the darker the image will be with the same amount of light.

When the aperture is closed almost completely, only the light from bright light sources is let through.

Like light from the LED displays. An almost closed aperture in combination with the high frame rate

makes sure that most of the background is filtered out in the resulting image, but that the numbers

shown on the LED displays are still visible on the image. For the 7 segment display however, this

might not always be the case since these LEDs shine less bright than the dot matrix displays and the

lines of the numbers are thinner than the dots of the other display. It may be needed to open the

aperture a little bit during the testing, but this also depends on other factors, like the light in the test

environment.

http://www.redbubble.com/people/peterh111/journal/5725038-the-easy-guide-to-understanding-aperture-f-stop

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

35

Fish eye

The lens of the camera is a 4.5 mm lens and therefore a wide angle lens. An advantage is that the

lens can make very sharp images at short distances and has a very wide viewing angle.

A big disadvantage however, is that it suffers from fisheye distortion/barrel distortion. This means

that all objects are made more round in the image. The closer the object to the lens, the worse this

gets (see Figure 29). The closer an object is at the sides of the view range of the lens, the worse the

distortion gets. In the exact centre of the picture, there is no distortion.

All cut out numbers are cropped so much that in most cases this is not visible any more, but the user

has to keep in mind that the closer the camera gets to the display, the more the fisheye distortion

will be.

The fisheye could also be removed in the pre-processing, since the specifications of the camera lens

are known and the distance between the lens and the object are known. However, after cropping all

images of the numbers in the pre-processing it was barely visible that they were distorted in

comparison to the ones taken with the camera standing on a further distance from the display. (see

chapter 5). Since this straightening of the image would be an extra step in the pre-processing, and

extra steps take more time, this was left out of the pre-processing.

Because of the relatively high frame rate, the manual changeable focus and manually changeable

aperture, the Basler camera in combination with the Navitar lens are suitable for this project. The

only disadvantage is the fish eye effect, but due to the cropping in the pre-processing, this hardly has

any effect on the images that are made of the numbers.

Figure 29: A picture taken from close by the display (A) and a picture taken a bit further from the display (B). When looking
at the black part of the display, the fish eye distortion is clearly bigger in figure A than in figure B.

A B

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

36

4.1.2 Displays
The displays where the numbers needed to be recognised from are:

 7 segment display
 8x8 dot matrix LED display
 5x7 dot matrix LED display

7 segment display
The 7 segment display was acquired from an function generator of Carya that was also used in the
project that formed the basis for this project. A GW Instek SFG-2104. Figure 30 shows an image of
the numbers presented on the function generator.

Figure 30: Numbers 1 to 8 on the function generator that has been used for the test environment

An advantage was that all numbers were presented a little bit sheared to the right side. The numbers

could easily be projected with the same structure on the dot matrix displays, but standing straight

up. This means that there is more variety in the learning images and the learning software will learn a

bigger variation of numbers.

8x8 and 5x7 DOT matrix displays
Machines or measuring equipment with 8x8 and 5x7 dot matrix LED displays where not available at
Carya, so these needed to be ordered. An Arduino has been used for presenting the numbers on the
dot matrix displays, so the numbers could be defined manually by setting every LED separately. The
reason an Arduino has been chosen, is that there was already one present for testing. Any other micro
controller board equal to the Arduino board could have been used.

Two 8x8 dot matrices had been ordered for the test environment. The specifications of the display are
presented in “Appendix H1 specifications of the 8x8 dot matrix LED display”. These displays had certain
advantages:

 The display could also be used for presenting numbers from 5x7 dot matrices. (Figure 31,
picture C).

 The numbers were red, so the recognition software was not only being tested on the green
numbers from the 7 segment display of the function generator.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

37

The displays were ordered together with a two micro controllers (MAX7219). Not only was this
almost as expensive as buying only the display, this was also a way to reduce the amount of needed
ports on the Arduino. Instead of a port on the Arduino for every row, column, a voltage supply and a
ground, there were only five ports used on the Arduino:

o Load
o Voltage supply
o Ground
o Clock
o Input signal

Figure 31: numbers presented that are common on 8x8 (A and B) and 5x7 DOT matrices (C)

For programming the Arduino, the library LedControl was used. This library can be retrieved from
Github with the source https://github.com/wayoda/LedControl

A B C

https://github.com/wayoda/LedControl

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

38

4.1.3 Setting up the test environment
It was already said that the user needs to set the threshold values so the numbers from the displays

could be filtered by colour. This is very important to do the filtering, but not the only thing There are

also a lot of other factors from the test environment that play an important role. In Figure 32, a use

case diagram is shown where these steps are presented.

Figure 32: Use case diagram of the number recognition software

Setting up the test environment is equally as important, if not more important than the exact right

threshold values. If setting up the test environment is done correctly, the amount of noise in the

image is reduced and the displays will be presented better to the camera.

Aperture

Carya wanted the number recognition software to work with as few light adjustments as possible.

Figure 33: Making an image of two threes of a DOT matrix LED display and thresholding them with HSV and almost closed
aperture. (A) Picture of test environment. (B) Thresholded image made by the camera.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

39

When the aperture is closed almost completely (f/16), only very bright light can be seen on the image

from the camera. Since the displays are LED displays, they remain visible on the image when showing

a number, while the background light is almost complete filtered out (Figure 33).

In case the environment is still very bright, it might be possible that there is still some noise from the
environment coming through the aperture and can be spotted on the thresholded image.

The focus

The focus of the camera should be as much optimized as possible, but when the aperture is almost

closed, the difference between a sharp and blurry image is significantly low, because there is very

few light that comes through. When the aperture is open, it becomes important that the image is as

sharp as possible. Beyond a distance of 30 cm from the display, this can become a problem because

the lens is a wide angle lens that is specialized in making sharp images from objects close by the lens.

Surface underneath the displays

As can be seen from the image above, there is also a lot of light on the surface where the numbers

are shining above. If a matt surface is used, like paper, the reflecting light is filtered because the light

is not bright enough. It is important that the surface is not mirroring the light, because the light

intensity then remains the same as when it comes directly from the display.

Background of the displays

The background behind the display should preferably be black and no shiny surface. When the

background is a light colour, for example white, the background produces noise because it is not

filtered out by the aperture in rooms with lighting. If the background must be a bright colour, like

white, than it is best to make the room dark.

Distance between the camera and the display

Carya wanted the software to work for distances with a camera distance of 15 to 30 cm and with a

maximum angle of 45 degrees with respect to the display in x, y and z direction. For these distances

the software has been tested.

Lighting

Lighting is one of the most important parts with vision, because too much light can for example cause

noise in the image or too much over exposure, which makes the image almost completely white.

With LED displays, the LEDs are bright light sources themselves and it is preferable that there is no

light from the environment. Carya however wanted the software to work with as few light

adjustments as possible. In a normal workspace with TL lights at the ceiling, the software should

work for the LED displays that were used in the tests.

Conclusion

The user needs to make sure the aperture, focus, lighting, background of the display, surface

underneath the display and the distance between the display and the camera is set correctly to make

sure the number recognition software works properly.

The software is persistent against TL light in offices, but the background always needs to be dark and

not shiny. The same goes for the surface underneath the displays, so that the surface can not reflect

any light from the displays into the camera lens.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

40

4.2 Budget analysis
The budget plan that was made at the beginning of the project, is shown in Figure 34, together with

the budget analysis.

Figure 34: The budget analysis and the true costs

The dot matrix displays were a little more expensive than estimated, because they were ordered

together with the MAX7219 and other components like capacitors, resistors and diodes and there

were some additional shipment costs. The 7 segment display however did not need to be ordered

because there was an function generator present with a 7 segment display that could be set with any

number that was needed and the alphanumeric display was also not ordered. It was not parts of the

project and was meant to be done when there was time left.

The cables were less expensive. This was because not all rows and columns of the displays needed to

be attached to the Arduino, but only 5 of them and some cables to connect the two matrix displays.

Approximately only around 10 cents of cable has been used for the project. The total cost of the

project are 12 euro cheaper than estimated.

A B

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

41

5. Testing
When the software and the test environment where ready, the test could be done to see how rigid

the number recognition software was. Not all tests could be done.

According to the requirements that Carya set for this project, a table could be made with all points

that the software has to meet. See Table 7 for the points where the software will be tested for.

Table 7: Table to confirm the requirements of Carya

Test results

1. Has machine learning been used in the recognition software?

Yes. The Multi Layer Perceptron has been used for the recognition of numbers. The learning method

has been kept as basic as possible. The pre-processing has to process the images in such a way that

these can be implemented directly in the MLP. The better the input in the MLP, the more basic the

MLP can be.

2. Can the software recognise the numbers zero to nine from 5x7 dot matrix LED displays, 8x8

dot matrix LED displays and 7 segment LED displays

Yes. A database consisting of a total of 4591 images of all numbers and displays was made. These

images were made by manually placing the camera with distances from 15 to 30 cm from the

displays and with angles with a maximum of 45 degrees. After training the MLP multiple times with

1/8 of this database (random), the best result came after 88 training round (epochs). The software

was able to recognise 98.1 of all numbers in the test set. The output of the code was:

“Epoch 88 : 563 out of 574 correct (98.0836236934 %)”

In “Appendix I Best test results of the number recognition software”, it can be seen that the software

predicted the 1, 2, 4 and 5 without problems.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

42

Whereas the recognition software was able to predict one, two, four and five without mistakes, the

software showed that the six, eight and nine were the hardest numbers to predict. The software

sometimes predicts the big block numbers wrong. With this, I mean the numbers like in Figure 35.

Figure 35: the numbers eight, eight, six and nine after pre-processing. They show small differences between each other

The differences between the block numbers are very subtle. Mostly only a small stripe. For example,

a nine is sometimes seen as an eight and vice versa. Although this difference is small, it must still be

able to be recognised. To improve the learning algorithm, it could be tried to make the database

bigger. The prognosis is that this will improve the test results, because the perceptron will get more

pictures to use for the training. It does however specifically need the block numbers because these

appear to be difficult for the learning software.

3. Can the software recognise the numbers zero to nine from all the above displays when the

camera is rotated with 45 degrees?

Yes. The images in the database are taken with random angles and since the recognition software is

only sometimes having some trouble with certain numbers, it is safe to say that the angle of the

camera was no problem in the number recognition.

4. Can the software recognise the numbers zero to nine from all the above displays when the

camera is positioned between 15-30 cm?

Yes, but after 25 cm the image pre-processing sometimes is not able to filter the number from the

image, because the image is not sharp enough after this distance. Especially when it is angled. This is

a characteristic of the lens and this could be solved by using a bigger lens. Keep in mind that a bigger

lens also means a smaller view angle.

5. Can the software recognise numbers without light adjustments?

This depends on the situation. The software is robust against TL light when the background of the

image and the underlying ground is non-reflecting. As long as this is the case, then no, light

adjustments are not necessary.

6. Can the test environment be set up within 5 minutes?

Yes. The training of the weights and biases of the MLP however might take a little bit longer. This

depends on the speed of the computer, the amount of training images, the amount of test images,

the parameters of the MLP and so on. On a Toshiba Satellite C50, it is possible to do the training in 5

minutes. During the training the test environment can be set up.

7. Does the software show the original image, together with the predicted value of the number

and a percentage of how certain it is that the number has that value?

Yes. It also shows for every other number what the certainty is. The number with the highest

certainty is the predicted value.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

43

8. Can the recognition software check numbers every five seconds

 Because of the fact that there was limited time for the project and this was one of the least concerns

for Carya, this has not been tested yet. A prognosis would be yes, but this should be measured to be

able to say it with certainty.

Assumptions that have been made

At the beginning of the project, two assumptions have been made where the whole project was built

upon. These assumptions where:

 The learning method can be kept basic, if the image pre-processing is good

The database consists of the numbers zero to ten with six different fonts per number. The fact that

98.1% of these images is estimated correctly with a relatively small database, means that using a

basis learning algorithm with good input images can result in almost an optimal result and that the

assumption was correct.

 Linear learning methods may not be able to separate all data

The fact that there is still two percent of the test images that is not recognised, means that the

software is not able to make a non-linear function (with the current training database) to produce a

prediction line for the numbers that will work for 100%. A MLP can easily be converted to a single

layer perceptron by removing the hidden layer, thereby making it a linear learning method instead of

a non-linear learning. The best result is:

“Epoch 117 : 526 out of 574 correct (91.637630662 %)”

This shows that only a little less than a tenth of the test database could not be estimated be a linear

separator after the single perceptron is trained. The main problem appears to be recognising the five,

The software mostly thinks it is a six or a nine, because these are basically the same with the

exception of one stripe. (see “Appendix J Best test results of the single (linear) perceptron”.

The data from the training set is not linearly separable, because it is not able to find a linear function

that can predicted all numbers. Although it comes really close.

6. Deliverables
The deliverables of the project where:

 The recognition software
 A validation report of the recognition software

All of the deliverables are handed over to Carya Automatisering and The Hague University of Applied

Sciences on the 17th of December 2015. The validation report can be found in this report in chapter 5.

As appendices of this report, additional information about certain parts of the project is presented

and all datasheets of equipment used in this project, like the displays and the camera.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

44

7. Conclusion and recommendations
In this chapter, the conclusion of the project is given and a recommendation in case Carya wants to

use the software and test environment or future project.

Conclusion
For the project, Carya wanted to have vision software that was able to recognise numbers from 7

segment LED displays, 7x5 dot matrix LED displays and 8x8 dot matrix LED displays. The matrix

displays have red LEDs and the 7 segment display has green LEDs. The project was divided in a

practical assignment and a research assignment.

Research question

The research question was: “What is the best method for recognising numbers for this project?”.

Carya wanted the software to be able to show how big the chance was that a predicted value is the

correct value. Because of this, the learning method needed to be a regression method and not a

classification method, which only shows the class a number belongs to.

The assumption that was made during the beginning of the project, was that the numbers were not

linearly predictable by a line. The research therefore showed that the best method was a non-linear

supervised learning algorithm. The Multi Layer Perceptron (MLP) was chosen to be used as the

learning algorithm.

The research also showed that the worse the test input was, the more complex the learning

algorithm needed to be to recognise all numbers. A basic learning algorithm can be used without any

other tricks for better recognition, as long the input images are good enough. Therefore the course

for the practical assignment was to use a basic version of the MLP and to focus mainly on the image

pre-processing.

The results that the recognition software showed, made clear that this assumption was correct.

98.1% of the test images could be recognised when the algorithm learning the numbers from the

training input. The bar that was set was a minimum of 95%, so the learning method performed better

than expected.

Assumptions that have been made during the project

At the beginning of the project, there were some things that could not be determined with certainty.

To continue the project, some assumptions were made where the project was built upon. These

assumptions where:

 The learning method can be kept basic, if the image pre-processing is good.

The database consists of the numbers zero to ten with six different fonts per number. The fact that

98.1% of these images is estimated correctly with a relatively small database, means that using a

basis learning algorithm with good input images can result in almost an optimal result and that the

assumption was correct.

 Linear learning methods may not be able to separate all data

The fact that there is still two percent of the test images that is not recognised, means that the

software is not able to make a non-linear function (with the current training database) to produce a

prediction line for the numbers that will work for 100%. The assumption that not all data can be

linearly separated, it true.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

45

Assignment

The project assignment was “Write recognition software that is able to recognise numbers with

different fonts that are presented on digital displays.”. All demands of Carya are met, except for the

one about the time that could not be tested yet. This however was not very important to Carya, long

as the software worked, since the project was a proof of concept.

The number recognition software was able to recognise numbers from the test set with a certainty of

98.1% and meet all important requirements, and can therefore be called successful. Here must be

noted that the digital displays are only the earlier defined displays in the project.

Recommendations
Camera

Carya can better use another lens for future vision projects that have the same requirements as this

project. The Basler-camera its manually changeable aperture and focus were very handy and could

be changed within a second. The lens however has the problem that is creates barrel distortion in the

image because it is a wide angle lens. If Carya wants to use a camera for the same test environment

as with this project, I would recommend to use a bigger lens of 8 mm or 12 mm to prevent this kind

of distortion.

Database with numbers

The database with images of numbers probably needs to be bigger than the 4500 images that are

now in the database. It is enough to predict 98.1% of the test images correct, but this could probably

be better. Especially since the mistakes are clearly made because of numbers that look like each

other. With more training data, this can possibly be solved. Note that all parameters for the Multi

Layer Perceptron need to be changed again to get the best result.

Programming language

Carya want to implement the code in LabVIEW, what I think will be a lot faster than Python. Python

does the trick, but it is not very fast in comparison to languages like C and C++, because it is an

interpreter and not a true programming language. I do not know how fast LabVIEW codes are

however.

Test environment

Carya wants to adjust as few as possible to the light in the environment while testing. It is possible to

filter out the numbers with the software if there is no over exposure, but I would advise to take the

pictures in a dark space if LED displays are being checked. Light from any other source means that a

lot of settings need to be changed in the test environment and that there is a bigger chance that

there will be noise in the image. On top of that, the pre-processing will take less time if some filtering

steps can be skipped.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

46

References
Carya Automatisering (n.d.). [Logo Carya] [Image]. Retrieved from https://www.carya.nl/nl/

[connected label table]. (n.d.). Retrieved from https://en.wikipedia.org/wiki/Connected-

 component_labeling

Cyrille Rossant. (2014). [A red classification line in the left image and a red regression line in the right

 image] [Drawing]. Retrieved from http://ipython-books.github.io/featured-04/

Dedgaonkar, S. G., Chandavale, A. A., & Sapkal, A. M. (2012). Survey of Methods for Character

 Recognition (ISSN: 2277-3754). Retrieved from http://www.dsi.unifi.it/NNLDAR/Papers/01-

 NNLDAR05-Liu.pdf

De Haagse Hogeschool (n.d.). Haagse Hogeschool [Image]. Retrieved from

 https://bldng360.nl/bedrijven/Haagse%20Hogeschool

Dhull003 (2010). [square 8 connectivity] [Drawing]. Retrieved from

 https://en.wikipedia.org/wiki/Connected-

 component_labeling#/media/File:Square_8_connectivity.png

Dhull003. (2010). Result of connected region labeling using two-pass raster scan [Drawing]. Retrieved

 from https://en.wikipedia.org/wiki/Connected-component_labeling#/media/File:Screenshot

 -Figure_1.png

Dhull003. (2010). Example of an array where connected region labeling is to be carried out. 1

 represents the region pixel, and 0 represents the background pixel. Retrieved from

 https://en.wikipedia.org/wiki/Connected-component_labeling#/media/File:Screenshot

 -Pixel_Region_(Figure_1).png

Driessen K. (2015, september 2). Structuur plan van aanpak (PvA) voor het hbo. Retrieved from

 https://www.scribbr.nl/scriptie-structuur/structuur-plan-van-aanpak-pva-voor-het-hbo/

DVS (n.d.). [Numbers recognised by software and displayed] [Photograph]. Retrieved from

http://www.dvs-vision.de/sites/default/files/images/Bilder/Zeichen%202.png

Liu, C. (n.d.). Classification and Learning for Character Recognition: Comparison of Methods and

 Remaining Problems. Retrieved from http://www.dsi.unifi.it/NNLDAR/Papers/01-NNLDAR05

 -Liu.pdf

Mustapha, A. (2013, August 7). What are the differences between machine learning, pattern
 recognition and data mining? [Forum post]. Retrieved from
 https://www.researchgate.net/post/What_are_the_differences_between_machine_learnin
 g_pattern_recognition_and_data_mining

Nielsen, M. (2015, June). Neural Networks And Deep Learning. Retrieved December 17, 2015, from
 http://neuralnetworksanddeeplearning.com/index.html

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

47

Peter Hill. (2010). [Apertures with different sizes][Drawing]. Retrieved from

 http://www.redbubble.com/people/peterh111/journal/5725038-the-easy-guide-to-

 understanding-aperture-f-stop

PMWIKI (n.d.). Plan van Aanpak. Retrieved from www.ipma.nl/wiki/kennis/plan-van-aanpak

projectsmart (n.d.). The stages of a Project. Retrieved from http://www.projectsmart.com/project-

 management/the-stages-of-a-project.php

RGB color cube seen from white (255,255,255) [Drawing]. (n.d.) Retrieved from

 https://engineering.purdue.edu/~abe305/HTMLS/rgbspace.htm and [HSV cone] [Drawing].

 (n.d.). Retrieved from https://upload.wikimedia.org/wikipedia/commons/f/f1/HSV_cone.jpg

Semi-supervised learning. (2015, June 18). Retrieved December 17, 2015, from

 https://en.wikipedia.org/wiki/Semi-supervised_learning

Semi-Supervised. (n.d.). Retrieved from http://scikit-

 learn.org/stable/modules/label_propagation.html

Template matching. (2015, November 20). Retrieved December 17, 2015, from

 https://en.wikipedia.org/wiki/Template_matching

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

48

Appendix

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

49

Appendix A Images of all numbers

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

50

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

51

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

52

Appendix B Multi Layer Perceptron
Perceptrons are models of neurons in brains. Perceptrons get certain inputs X (see Figure 36). These

inputs are called nodes. Some nodes are more important than others for reaching a specific results.

Figure 36: Architecture of a perceptron

(Source: Stephen Marsland, Machine Learning: An Algorithmic Perspective)

This importance is given with a certain weight ω (W in the image). All inputs are multiplied with their

corresponding weight and the results are summed. The outcome h is put in an activation function (in

this case a threshold) that says the perceptron has to fire or not, depending on the value of h is.

When speaking of firing with a threshold, 0 is a no and 1 is a yes. The formula to calculate h is:

h = ∑ ω𝑖𝑥𝑖

𝑚

𝑖=1

One perceptron is able to make linear regressions. Simple problems with one type of output can be

solved with a perceptron, like OR problems. For example, with an OR problem there can be two

inputs. When they both are zero, the h will be zero too. If threshold is <1, this means that one or

both inputs is a 1, the output after the threshold will also be a one. If both outputs are 0, the output

will also be zero.

With an XOR this is not the case. It is not possible to solve this problem with only one perceptron,

because the problem is not linearly solvable. Multiple perceptrons will be needed, which can produce

non-linear solutions.

The Multi Layer Perceptron consists of multiple perceptrons and is build out of multiple layers. There

are as many nodes in the input layer as there are input variables and the same goes for the output.

The middle layer is a hidden layer. The amount of nodes can differ per situation (Figure 37).

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

53

Figure 37: Complete schematics of a Multi Layer Perceptron. The Input Layer, Hidden Layer and the Output Layer are all
visible

Figure 4: Architecture of a Multi Layer Perceptron

(Source: https://www.google.com/patents/WO1999053350A1?cl=en)

The advantage of Multi Layer Perceptrons is that it is now possible to solve non-linear problems

(Figure 37). The same thing happens as with a single perceptron to calculate h, but the activation

function is different for the hidden layer. Instead of a threshold, a sigmoid or hyperbolic tangent

function is used. The end values are different, but they both can be used. Sigmoid gives a value from

0 to 1, but sometimes the output of a hyperbolic tangent function can be of better use. In this case,

the sigmoid would be easier because a percentage of how sure the prediction of a number is can be

given quite easily with a value from 0 to 1.

The reason a sigmoid or tangent is used as activation function, is that when multiplying the result of

the hidden layer when using a threshold, the result could be a zero, while this may be very close to

becoming a one. This could give a completely wrong outcome in the output layer when the node is

important for the calculations. Therefore a sigmoid or tangent function is used. If a small value is still

passes and multiplied with the weight, it can be of significant use to the answer in the output layer. A

sigmoid function looks as follows:

𝑎 = 𝑔(ℎ) =
1

1 + exp (−ℎ)

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

54

The bias b in the figure is implemented for the same reason. May the sum after a layer be 0, then the

bias will prevent the value from being zero in the rest of the calculations.

Using a MLP

In the case of this project, let say there are some images with 28 by 28 pixels. The objective of the

project is to adjust the weights in the function to make a MLP that can predict what numbers is

presented in an image.

There are 28*28 input nodes and ten output nodes (zero to nine). The hidden layer can contain as

many perceptrons as the user wants. Using more perceptrons does not necessarily mean that you

will get a better result. This also should be tested, but this will be dealt with later on.

To make a MLP learn, the variables of the perceptron need to be able to change when having a

specific answer y that is calculated as output value of the perceptron. These variables that need to be

changed are the weights and the biases. When determining how wrong the system is, it is checked

how big the error is in the end result, compared to the true target value t. This is where back

propagation comes in. Certain different types of error calculations could be used, but one used in

many different MLPs is the sum-of-squares function. The difference between t and y is calculated,

squared and summed:

𝐸(𝑡, 𝑦) = ∑(𝑡𝑘 − 𝑦𝑘)2

𝑛

𝑘=1

(source: Stephen Marsland, Machine Learning: An Algorithmic Perspective)

The weights between the output and hidden layer are updated and then the error of the hidden layer

can be calculated in exactly the same way. With this error the weights between the input layer can

be updated. The updating happens with these formulas:

Updating the output layer:

Updating the hidden layer:

(source: Stephen Marsland, Machine Learning: An Algorithmic Perspective)

η is the learning rate. This indicates how fast the MLP should learn and change how big the steps

must be in with which the weights adjust themselves. The bigger they are, the bigger the chance that

a minimum error will be missed while adjusting. When the learning rate is too small, it may take

forever to find a minimum or it will be stuck in the minimum, instead of the absolute minimum

(figure 5).

Now the MLP is able to predict the number on this image. When the optimal minimum (Figure 38) is

reached, the program has learned as good as possible and mostly has a high prediction rate.

However, the minimum in figure 3 is not the biggest minimum. Because starting point of the weights

started at the wrong point and the learning rate is too small, the function is stuck in one of the

minima. This is always a risk when training a MLP and therefore it is always wise to run the MLP

multiple time when training with different random weights to start with. The chance that the optimal

minimum will be found is a lot higher then.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

55

Figure 38: Slope with error reaching a minimum

(source: Stephen Marsland, Machine Learning: An Algorithmic Perspective)

A big problem that can occur with Multi Layer Perceptrons is overfitting. Overfitting means that

when the network learn to much, it will eventually also learn that the noise is part of the number on

the image, so the user needs to make sure there is not too much training data available for the

learning network. Multi Layer Perceptrons, mostly needs thousands of images before they show a

good result. The right moment to stop is just before the top of the learning curve.

The code

The code that has been used for the learning software has been largely based on the software from

the website http://neuralnetworksanddeeplearning.com/index.html . I have made my own

implementation of the code so it was easier for me to make adjustments to it for the number

recognition software.

The parameters that need to be set for the software are the:

 Amount of input nodes. This is the amount of pixels there are in the image. For this project

that number is a constant value of 785

 Amount of hidden nodes.

 Amount of output nodes. This is the amount of numbers that need to be recognised, so ten

numbers.

 The learning rate. This determines how big the steps are with which the learning rate

changes. (See the formula for updating the hidden and output layer its weights and biases)

 Amount of epochs. Every epoch is a learning round in which it can improve its weights and

biases once.

 Training and test data. This can be changed to whatever the user wants. The current settings

for the software however are set on the database for images of 28 by 28 pixels.

http://neuralnetworksanddeeplearning.com/index.html

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

56

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

57

Appendix C First plan pre-processing
In a perfect situation, the camera and the display stand opposed to each other with perfect lighting

to get a perfect image. In this project, to satisfy the requirements, the software also needs to

recognise numbers that are rotated with a maximum of 45 degrees. To make this possible, some pre-

processing needs to be done. Pre-processing means that certain methods are used to make the

inputs of a system more suitable for the application. In this case, this means that the image is made

more appropriate for the learning algorithm.

The complete pre-processing consists of multiple actions
 Thresholding the image so only the numbers are presented
 Blur the image to delete noise from the image
 Rotate the image so that the numbers are presented horizontally
 Separate every number and make an image of it
 Scale the image of the numbers

Take Figure 39 as an example of how images with numbers can be presented in an extreme case. This

thresholded image represents a rotation in all direction on the Euclidian-axis. But is directly becomes

clear that the numbers are still separated in some way, despite the rotation. The image is greyscale,

but the zero value is blue in this image and the maximum value of 255 is red.

Figure 39: image of numbers thresholded and rotated in x-, y- and z-direction.

Rotate the complete image

The most important rotation is that the numbers are put horizontally. Then it is easier to separate all

numbers with a horizontal line and present the position of the numbers in a histogram. With digital

displays, the numbers are almost always separable by a vertical line when the image is standing right.

Since the testing displays are standard digital displays, this feature was thought to be the best

method for extracting numbers from images.

To find the position of all numbers, two histograms are used. One for the x-axis and one for the y-

axis. They represent the amount of pixels with a value of one or more in the image per x- or y-

coordinate (Figure 40).

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

58

Separating the numbers from this image is hard, if not almost impossible, but now that the minimum

and maximum x and y are known for the position of the numbers, it will take less processing time for

the program to search for numbers, because it can look on a specific location in the image.

With every y-coordinate where a pixel with a value of one or more is found, the median value is

taken and put in a new graph (Figure 41). With a graph like this it can roughly be said what the

direction is the numbers are standing in. By using linear regression a line is drawn in the formula

form 𝑦 = 𝑎𝑥 + 𝑏. The rotation on the image then happens with the tangent rule. The result is shown

in Figure 42.

Figure 41: The median values of all black pixels in every column in the thresholded image

Figure 40: A histogram of x-axis of the image (left) and a Histogram of the y-axis of the image

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

59

Figure 42: The image is rotated with the angle that the line in figure 9 made with the horizontal x-axis.

Figure 43 and Figure 44 show that by doing the previous rotation, the numbers are separable. By

locating the minimum and maximum x and y of every “mountain” in the histogram of the x-axis, the

space in which the number lays can be cut out and used for the learning method. To make sure that

the software will recognise the numbers, the test set will also contain numbers that are slightly

skewed. This will prevent the program from having to skew every number it wants to recognise

because it has learned that is can be presented like this.

Figure 43: Histogram of the y-axis of the rotated image

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

60

Figure 44: Histogram of the x-axis of the rotated image

In the rotated picture it is visible that the numbers become bigger from left to right and that the

numbers are slightly skewed. To make sure the difference in size is not a problem for the recognition

software, the size of the image of the numbers is resized.

The skewness of the image will be dealt with by putting slightly skewed numbers in the trainings set.

It will then learn to recognise straight and skewed numbers.

Why did it not work?
The main reason this method did not work, was because of two reasons.

1. The numbers are not always separable by a linear line in the image
When the camera stand directly perpendicular to the display, the software will almost always be able
to find a space between the numbers with a vertical line through them with zero pixels of a high
value. This changes when the camera is rotated (Figure 45)

Figure 45: An image of a display, with a rotated camera

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

61

The rotation of the image happens perfectly, but due to the rotation of the camera, the image is

severely skewed. There is still a clear separation between all numbers, but if this must be found, the

software should rotate the vertical line that checks for these separations every time it gets on a pixel.

This is very time consuming and it may not even be reliable. It could happen that the line goes

directly through the open space between two segment of a numbers for example and this would give

major problems with locating the numbers in the image.

2. When there were less than 3 numbers in the image, doing a rotation could form problems.

The software was able to rotate the image, despite the amount of numbers in the image. The

accuracy however went down rapidly when the amount of numbers became less (see Figure 46,

Figure 47 and Figure 48). Note, the numbers are not completely in the image, but this had no

influence on the rotation, because it happened afterwards. The images are just to give an illustration

of the situation.

Figure 46: Rotation of two numbers in the image

Figure 47: Rotation of three numbers in the image

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

62

Figure 48: Rotation of four numbers in the image

The problem was that depending on the number, the amount of pixels with a high value (red) for

every vertical line was measured for the rotation, and then the median value was taken an put in the

histogram. This meant that of there were only two numbers, the shape is a really important influence

on the rotation. It can be seen that Figure 45 and Figure 48 both have four numbers, but with the

Figure 45, the numbers are on top equal to the bottom, unlike the number in Figure 48.

In the case of these numbers, they were still separable with a linear line as was shown by the

histogram. However, the fact that the rotation was not reliable, made this method unsuitable for the

project. It was unpredictable if the pre-processing would do its work.

These are the reasons that this form of filtering out the numbers has not been used in the project.

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

63

Appendix D SysML diagrams

D1: block definition diagram of the Image pre-processing

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

64

D2: block definition diagram of the Recognition parts of software

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

65

D3: Activity diagram of the number recognition software

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

66

D4: Use case diagram of the number recognition software

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

67

Appendix E Specifications of the Basler A312fc camera

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

68

Source: http://www.graftek.com/pdf/Brochures/basler/A310.pdf

http://www.graftek.com/pdf/Brochures/basler/A310.pdf

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

69

Appendix F Specifications of the Navitar NMV-5WA camera lens

Back Focal Length 9.960

EFL (mm) 4.5

Field Angle 1/2 (HxV) 79 x 59.4

Field Angle 1/3 (HxV) 59.7 x 45.1

Focus Control Manual

Focusing range from front of lens (m) 0.2 - inf.

Format 1/2"

F Stop 1.4-16

Iris Control Manual

Mount C

Object Area at M.O.D. (HxV) 1/2" 260h x 180v

Object Area at M.O.D. (HxV) 1/3" 195h x 135v

Object Area at M.O.D. (HxV) 1/4" 130h x 90v

Source: https://navitar.com/products/imaging-optics/low-magnification-video/navitar-machine-

vision/navitar-machine-vision-12-format/

https://navitar.com/products/imaging-optics/low-magnification-video/navitar-machine-vision/navitar-machine-vision-12-format/
https://navitar.com/products/imaging-optics/low-magnification-video/navitar-machine-vision/navitar-machine-vision-12-format/

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

70

Appendix G Specifications of the function generator

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

71

http://www.gwinstek.com/en-global/products/Signal_Sources/DDS_Function_Generators/SFG-2000

http://www.gwinstek.com/en-global/products/Signal_Sources/DDS_Function_Generators/SFG-2000

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

72

Appendix H 8x8 dot matrix display

Appendix H1 specifications of the 8x8 dot matrix LED display

http://www.best-microcontroller-projects.com/image-files/led-dot-matrix-display-kingbright-tc15-

11srwa_490.png

http://www.best-microcontroller-projects.com/image-files/led-dot-matrix-display-kingbright-tc15-11srwa_490.png
http://www.best-microcontroller-projects.com/image-files/led-dot-matrix-display-kingbright-tc15-11srwa_490.png

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

73

Appendix H2 Dot matrix LED display (8x8) connected to MAX7219 controller

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

74

Appendix I Best test results of the number recognition software

results = [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),

(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),

(0, 0), (0, 0), (0, 0), (7, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),

(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1),

(1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1),

(1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1),

(1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1),

(1, 1), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2),

(2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2),

(2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2),

(2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3),

(3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3),

(3, 3), (3, 3), (3, 3), (2, 3), (3, 3), (7, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3),

(3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (4, 4), (4, 4), (4, 4), (4, 4),

(4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4),

(4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4),

(4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4),

(4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4),

(4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (5, 5), (5, 5), (5, 5), (5, 5),

(5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5),

(5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5),

(5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5),

(5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5),

(5, 5), (5, 5), (5, 5), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (0, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6),

(6, 6), (6, 6), (5, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6),

(6, 6), (6, 6), (6, 6), (6, 6), (5, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6),

(6, 6), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7),

(7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7),

(7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7),

(7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8),

(8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (6, 8), (9, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8),

(8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8),

(8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9),

(9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9),

(9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (3, 9), (9, 9), (9, 9), (9, 9), (9, 9),

(9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (8, 9), (9, 9), (9, 9), (9, 9), (3, 9)]

Epoch 88 : 563 out of 574 correct (98.0836236934 %)

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

75

Appendix J Best test results of the single (linear) perceptron

results = [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),

(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),

(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0),

(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1),

(1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1),

(1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1),

(1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1),

(1, 1), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2),

(2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2),

(2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2),

(2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3),

(3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3),

(3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (7, 3), (3, 3), (9, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3),

(3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (4, 4), (4, 4), (4, 4), (4, 4),

(4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4),

(4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4),

(4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4),

(4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4),

(4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (5, 5), (5, 5), (5, 5), (5, 5),

(5, 5), (9, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5),

(5, 5), (5, 5), (5, 5), (6, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (9, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5),

(9, 5), (9, 5), (8, 5), (9, 5), (9, 5), (9, 5), (8, 5), (9, 5), (8, 5), (2, 5), (9, 5), (9, 5), (9, 5), (9, 5), (9, 5), (9, 5),

(6, 5), (9, 5), (6, 5), (8, 5), (9, 5), (6, 5), (9, 5), (9, 5), (6, 5), (6, 5), (6, 5), (6, 5), (9, 5), (8, 5), (6, 5), (9, 5),

(5, 5), (9, 5), (5, 5), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6),

(6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6),

(6, 6), (6, 6), (6, 6), (6, 6), (5, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6), (6, 6),

(6, 6), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7),

(7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7),

(7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7),

(7, 7), (7, 7), (7, 7), (0, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8),

(8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (9, 8), (0, 8), (9, 8), (8, 8), (8, 8), (8, 8), (3, 8), (8, 8),

(8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8),

(8, 8), (6, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9),

(9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9),

(9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (8, 9), (9, 9), (9, 9), (9, 9), (9, 9),

(9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (3, 9), (9, 9), (9, 9), (9, 9), (9, 9), (9, 9), (3, 9)]

Epoch 117 : 526 out of 574 correct (91.637630662 %)

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

76

Appendix K Number recognition software

Appendix K1 Image retrieval code
"""

Image pre-processing for number recognition (ImageRetrieval.py)
Created on Thu Dec 17 03:45:25 2015

@Company: Carya Automatisering
@Author: Mark Schoneveld

@Study: Mechatronics
@School: The Hague University of Applied Sciences (Delft)

"""

import cv2
import numpy as np

class imgRetrieval:
 def get(self):
 cap = 0
 cv2.destroyAllWindows()
 path = "C:/Users/Carya/Desktop/testenmaar/images/"
 filetype = ".jpg"
 cap = cv2.VideoCapture(0)
 i=1
 counter = 0
 try:
 while True:
 # Capture frame-by-frame
 ret, frame = cap.read()
 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
 print hsv

 #red, orange & yellow
 lower = np.array([0,180,200])
 upper = np.array([60,255,255])

lower = np.array([35,180,0])
upper = np.array([100,255,255])

 # Threshold the HSV image to get only blue colors

 mask = cv2.inRange(hsv, lower, upper)
 res = cv2.bitwise_and(frame, frame, mask = mask)
 mask = cv2.blur(mask,(i,i))

 cv2.imshow('frame',frame)
 cv2.imshow('mask',mask)
 cv2.imshow('res',res)

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

77

 if cv2.waitKey(1) & 0xFF == ord('p'):
 filename = str(counter) + filetype
 cv2.imwrite(path + filename, mask)
 results = mask
 break
 counter+=1

 if cv2.waitKey(1) & 0xFF == ord('q'):
 results = 0

 break
 except KeyboardInterrupt:
 pass
 # When everything done, release the capture
 cap.release()
 cv2.destroyAllWindows()

 return(results, path, filename)

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

78

Appendix K2 Image pre-processing code
-*- coding: utf-8 -*-
"""

Image pre-processing for number recognition (IPP.py)
Created on Thu Nov 12 13:59:49 2015

@Company: Carya Automatisering
@Author: Mark Schoneveld

@Study: Mechatronics
@School: The Hague University of Applied Sciences (Delft)

Description
This program consists of the following classes and functions:

class IPP
x -def imgageRetr
x -def noiseRemoval
x -def connectPartsNrs
x -def regression
x -def rotate (2x. The whole number region and for every number)
 *input:image, angle
 -def findNrs
 -def makeImagesNrs
 -def deItalicNrs

 -def histogram
 -def showImage

"""

from skimage.morphology import skeletonize
import math
import cv2
import numpy as np
import os

class imagePreProcessing(object):
 def __init__(self, path, file_name):
 self.img = cv2.imread(path+file_name, 0)
 self.kernel_d_and_r = (3,3)
 self.amount_dilate = 2
 self.amount_erode = 1

#Threshold values

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

79

 self.thres_l = 50
 self.thres_h = 255
 self.thres_type = cv2.THRESH_BINARY

 def noiseRemoval(self):
 #A bilateral filter removes noise, but maintains edges in images better than gausian- or median
blur.
 img_orig = self.img
 self.img = cv2.blur(self.img,(5,5))
cv2.imshow("1bilateralfilter", self.img)
 img_blur = self.img
 return(img_orig, img_blur)

 def resize(self):
 #Resize image (array) to 500 by 500 pixels, sot he image is always a square
 print len(self.img)
 print len(self.img[0])
 print "bla"

 if len(self.img) > len(self.img[0]):
 length = len(self.img)
 empty_column = np.zeros((length-len(self.img[0])/2))
 for adding_c in xrange(length):
 self.img = np.insert(self.img, 0, empty_column, axis=1)
 self.img = np.insert(self.img, len(self.img[0]), empty_column, axis=1)
 if len(self.img[0]) % 2 != 0:
 self.img = np.delete(self.img[0], (0),axis=1)

 if len(self.img) < len(self.img[0]):
 length = len(self.img[0])
 empty_row = np.zeros(length)

 for adding_r in xrange((length-len(self.img))/2):

 self.img = np.insert(self.img, 0, empty_row, axis=0)
 self.img = np.insert(self.img, len(self.img), empty_row, axis=0)
 if (len(self.img[0])+(len(self.img))) % 2 != 0:
 self.img = np.insert(self.img, 0, empty_row, axis=0)

 img_resize = self.img
 return(img_resize)

 def threshold(self):
 #Convert to numpy array and gray-values
 """Threshold image
 #img = cv2.threshold(img, low, high, type_of_thresholding)
 """
 _,self.img = cv2.threshold(self.img, self.thres_l, self.thres_h,self.thres_type)

 img_thres = self.img
 return(img_thres)

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

80

 def connectPartsNrs(self):
 #Give kernel for dilation and erosion
 kernel = np.ones(self.kernel_d_and_r,np.uint8)

 #First dilate the image and then erode. With this, the dots can be connected.
 #When the dots are not connected yet, the user can adjust the kernel
 self.img = cv2.blur(self.img,(3,3))
 self.threshold()
 self.img = cv2.dilate(self.img, kernel, iterations = 2)
 self.img = cv2.erode(self.img, kernel, iterations = 2)
 self.img = ((skeletonize(self.img/255)).astype(np.uint8))*255

 img_connected = self.img

 return(img_connected)

 def regression(self):
 y_white = []
 x_white = []

 #For every row
 for i in xrange(len(self.img[0])):
 #Create empty list
 y_help = []
 #For every column
 for j in xrange(len(self.img)):
 #if a[i][j] is above 0
 if self.img[i][j]>0:
 #add x coordinate j to list c
 y_help.append(float(j+1))

Give y_white the values of y_help (2D-matrix)
Give x_white the value of i (1D-matrix)
If y_help is empty, don't do anything
 if y_help:
 y_white.append((sum(y_help))/float(len(y_help)))
 x_white.append(i)

Make regression line with pointcloud of position of numbers
 x_white, y_white = zip(*sorted(zip(x_white, y_white)))
 fit = np.polyfit(x_white,y_white,1)
 fit_fn = np.poly1d(fit)

 return (fit, fit_fn)

 def rotate(self, fit):
 #If "foto" is entered, i = 1 and the foto is a seperate number
 foto = self.img

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

81

 #Get amount ofrows and columns of foto
 rows,cols = foto.shape
 #Get rotation matrix according to the "fit"
 if fit[0]<=0:
 rot_ofset = 90
 elif fit[0]>0:
 rot_ofset = 90

 r_matrix = cv2.getRotationMatrix2D((cols/2,rows/2),(-
(math.degrees(math.atan2(1,(fit[0])))))+rot_ofset,1)
 #Rotate foto
 foto_rotated = cv2.warpAffine(foto,r_matrix,(cols,rows))

 self.img = foto_rotated

 return(foto_rotated)

 def labelPixelsOne(self):

 for j in xrange(len(self.img)):
 self.img[0,j] = 0

 for i in xrange(len(self.img)):
 self.img[i,0]

 #Create an empty matrix with the size of self.img for the labels
 foto_labels = np.zeros([(len(self.img)),len(self.img[0])])
 #Create empty list to store connected label numbers
 connected = []
 #label to give to number
 label = 1

 #Make sure the first row and column (0) are not being processed
 i=1
 j=1

 #From row 1 to the single last row
 for i in xrange(len(self.img)-1):
 #From column 1 to the single last column
 for j in xrange(len(self.img[0])-1):
 #If img pixel is not zero...
 if self.img[i,j] != 0:
 """If the value (middle one) is 1, store the labbeled
 values left of it and the values above it:

 x x x
 x 1 o
 o o o

 """

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

82

 #Create empty list to store values of surrounding pixels
 around = []
 around.append(foto_labels[i, j-1])
 around.append(foto_labels[i-1, j-1])
 around.append(foto_labels[i-1, j])
 around.append(foto_labels[i-1, j+1])

 #If a labelled pixel is connected to the current pixel...
 if (np.sum(around)!=0):
 around.sort()

 around.reverse()
 #Remove all zero's in the labelled list
 around[:] = [cntr for cntr in around if cntr != 0]

 foto_labels[i,j] = (np.array(around)).min()
 #For every label number in the surrounding pixels...
 around = list(set(((np.array(around)).astype(int))))

 #Put the connected numbers in the row with the label number

 all_labels = []
 for k in around:
 all_labels = list(set(all_labels + connected[k-1] + around))

 for l in all_labels:
 connected[l-1] = list(set(connected[l-1] + all_labels))

 #If there is no connection to a labelled pixel...
 else:
 #The pixel gets a new label value
 foto_labels[i,j] = label
 #The label value goes up by one
 label+=1
 #An extra row is created at the connection matrix
 (connected).append([])
 return(foto_labels, connected)

 def labelPixelsTwo(self, foto_labels, connected):

 #Make sure the first row and column (0) are not being processed
 i=1
 j=1
 labelnrs = []
 coordinates_i = []
 coordinates_j = []
 #From row 1 to the single last row
 for i in xrange(len(foto_labels)-1):
 #From column 1 to the single last column

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

83

 for j in xrange(len(foto_labels[0])-1):
 if foto_labels[i,j] != 0:
 label = [label for label in connected if foto_labels[i,j] in label][0]
 smallest_label = connected.index(label) + 1
 foto_labels[i,j] = smallest_label+50

 if smallest_label in labelnrs:
 coordinates_i[labelnrs.index(smallest_label)].append(i)
 coordinates_j[labelnrs.index(smallest_label)].append(j)

 else:
 coordinates_i.append([])
 coordinates_j.append([])
 labelnrs.append(smallest_label)
 coordinates_i[labelnrs.index(smallest_label)].append(i)
 coordinates_j[labelnrs.index(smallest_label)].append(j)

 values = []
 for length in xrange(len(coordinates_i)):
 values.append(foto_labels[(coordinates_i[length][0]) , (coordinates_j[length][0])])

 self.img = foto_labels

 return(foto_labels.astype(np.uint8), coordinates_i, coordinates_j,values)

 def makeImageNrs(self, values, coord_i, coord_j):
 counter = 0
 cropping_all = self.img
 kernel = np.ones(self.kernel_d_and_r,np.uint8)

 test_pixels = []
 test_results = []
 test_own = []
 for length in xrange(len(coord_i)):

 cropping = cropping_all[min(coord_i[length])-5:max(coord_i[length])+5 , min(coord_j[length])-
5:max(coord_j[length])+5]

 cropping = cv2.dilate(cropping, kernel, iterations = self.amount_dilate)

 width = len(cropping[0])*20/len(cropping)
 if width %2 != 0:
 width -= 1
 cropping = cv2.resize(cropping, (width, 20))
 empty_column = np.zeros(len(cropping))

 print "width = ",width
 #Making individual images of all numbers
 #Add black lines at the sides of the number, but keep the proportions of the number
 for adding_c in xrange((28-width)/2):

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

84

 cropping = np.insert(cropping, 0, empty_column, axis=1)
 cropping = np.insert(cropping, len(cropping[0]), empty_column, axis=1)

 #Add 4 black lines above and underneath the number
 empty_row = np.zeros(len(cropping[0]))
 for adding_r in xrange(4):
 cropping = np.insert(cropping, 0, empty_row, axis=0)
 cropping = np.insert(cropping, len(cropping), empty_row, axis=0)

 #Make all numbers in the individual image white
 for x in xrange(len(cropping)):
 for y in xrange(len(cropping[0])):
 if cropping[x,y] == values[length]:
 cropping[x,y] = 255
 else:
 cropping[x,y] = 0
 print len(cropping)

 #Make compressed database of all numbers in the image
 test_own+=(zip([test_pixels], [test_results]))

 cntr_str = str(counter)
 #Write away an image per number
 path, dirs, files =
os.walk("C:/Users/Carya/Desktop/testenmaar/images/created/new_training_7").next()
 file_count = len(files)
 cntr_str = str(file_count)

 cv2.imwrite('C:/Users/Carya/Desktop/testenmaar/images/created/new_training_7/' +
cntr_str + '.jpg', cropping)
 counter += 1

 return(cropping, test_own)

 def fitNumbers(self, coord_i, coord_j):
 #If "foto" is entered, i = 1 and the foto is a seperate number
 middle_squares_i = []
 middle_squares_j = []
 for length in xrange(len(coord_i)):
 middle_squares_i.append(max(coord_i[length]) - ((max(coord_i[length])-
min(coord_i[length])) / 2))
 middle_squares_j.append(max(coord_j[length]) - ((max(coord_j[length])-
min(coord_j[length])) / 2))

 # Make regression line with pointcloud of position of numbers
 middle_squares_i, middle_squares_j = zip(*sorted(zip(middle_squares_i, middle_squares_j)))
 print "Middle i = ", middle_squares_i

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

85

 print "Middle j = ", middle_squares_j
 fit = np.polyfit(middle_squares_j, middle_squares_i,1)

 return(fit)

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

86

Appendix K3 Multi Layer Perceptron code

"""
This code is based on the code retrieved from
http://neuralnetworksanddeeplearning.com/index.html, from Michael Nielsen.
An own implementation of the code has been made to accomodate it to my own needs.

Number recognition software (MLP.py)
Created on Tue Sep 22 11:43:03 2015

@Company: Carya Automatisering
@author: Mark Schoneveld

@Study: Mechatronics
@School: The Hague University of Applied Sciences (Delft)

Description
This program consists of the following classes and functions

class ImageLoadAndProcess
 -imExtract
 -imPreprocess

class features
 -featureExtraction
 -featureRecognition

class MLPTrain ()
 -__init__
 -train (main function to call for training the network)
 -forward (feedforward through the MLP)
 -sigmoid (sigmoid calculation)
 -deltaOut (differencebetween target and calculated value)
 -deltaHidden (difference between target(hidden node)and calculated value)
 -update (recalculate all weights and replace the old ones)
 -backProp (calculations of the "should be" weights from output to the weight, hence backwards)
"""
import random
import numpy as np
print "Hello"

class MLPTrain(object):
 """ Input: variableName = filename.classname(nrInputNodes, nrHiddenNodes, nrOutputNodes)
 Input example: network = MLP.MLPTrain(700,4,10)
 Means 700 input nodesin input layer, 4 hidden nodes in output layer
 and 10 output nodes in output layer.
 """

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

87

 def __init__(self, MLP):
 """Length of the network, so number of layers."""
 self.MLP = MLP
 """Create 3D matrix with weights belonging to connected nodes."""
 self.weights = [np.random.randn(y,x) for y,x in zip(MLP[1:], MLP[:-1])]
 """Create 1D array with random values for the bias."""
 self.biases = [np.random.randn(y,1) for y in MLP[1:]]

 def train(self, traindata, testdata, epochs, eta, nr_mini_batch):
 random.shuffle(traindata) #Shuffle the trainingdata every time all epochs are done.
 """When i is smaller than the nr of epochs, a whole itteration (epoch)
 will be performed to update all weights and biases"""
 eta = eta/nr_mini_batch #Make sure the learning rate is equally devided over every image in a
batch.
 for i in xrange(epochs):
 batches = self.makeBatches(traindata, nr_mini_batch) #Create batches
 for batch in batches:
 self.update(batch, eta)
 self.outcome(i, testdata)

 def makeBatches(self, traindata, nr_mini_batch):
 random.shuffle(traindata) #shuffle all traindata
 batches = [traindata[j:j+nr_mini_batch] for j in xrange(0,len(traindata),nr_mini_batch)]
 return (batches)

 def update(self, batch, eta):
 d_weights = [np.zeros((y,x)) for y,x in zip(self.MLP[1:], self.MLP[:-1])]
 d_biases = [np.zeros((y,1)) for y in self.MLP[1:]]
 for x, target in (batch):
 delta_weights, delta_biases = self.backProp(x, target)
 d_weights = [d_w_old - d_w_new for d_w_old, d_w_new in zip(d_weights, delta_weights)]
 d_biases = [d_b_old - d_b_new for d_b_old, d_b_new in zip(d_biases, delta_biases)]
 self.weights = [weights - eta * d_w_old for weights, d_w_old in zip(self.weights, d_weights)]
 self.biases = [biases - eta * d_b_old for biases, d_b_old in zip(self.biases, d_biases)]

 def backProp(self, inputs, target):
 d_weights = [np.zeros((y,x)) for y,x in zip(self.MLP[1:], self.MLP[:-1])]
 d_biases = [np.zeros((y,1)) for y in self.MLP[1:]]
 inputs_copy = inputs
 """Forward movement through network till output is reached."""
 sigm = self.forwardTrain(inputs_copy)
 """Backward calculations"""

 d_out, d_weights, d_biases = self.deltaOut(d_weights, d_biases, target, sigm)

 d_weights, d_biases = self.deltaHidden(d_weights, d_biases, d_out, sigm)

 return (d_weights, d_biases)

AUTHOR: MARK SCHONEVELD
17-12-15

GRADUATION REPORT
AUTOMATED NUMBER RECOGNITION SOFTWARE FOR DIGITAL LED DISPLAYS

88

 def outcome(self, i, testdata):
 results = [(np.argmax(self.forwardTest(x)), y) for x,y in testdata]
 grade = sum(int(estimate == y) for estimate, y in results)
 print "results = ", results

 print "Epoch ", i, ": ", grade ,"out of", len(testdata) ,"correct (", float(grade)/len(testdata)*100,
"%)"

####################### FORWARD ###
 def forwardTrain(self, x):
 """
 Input
 -x(old) (all values of every pixel in the batch)

 Output
 -x(new)
 """
 sigm = [x]

 for weight, bias in zip (self.weights, self.biases): #doorloop elk gewicht en elke bias.
 c = np.dot(weight, x) + bias
 x = self.sigmoid(c) # y(j) = (x(1)(j)*w(2)(j)+......x(i)(j)*w(i)(j)) + b(j).
 sigm.append(x) #Put value x at the end of the array sigm.
 return (sigm)

 def forwardTest(self, x):
 for weight, bias in zip (self.weights, self.biases): #doorloop elk gewicht en elke bias.
 #c = np.dot(weight, x) + bias
 x = self.sigmoid(np.dot(weight, x) + bias) # y(j) = (x(1)(j)*w(2)(j)+......x(i)(j)*w(i)(j)) + b(j).
 return (x)

 def sigmoid(self, y):
 """Called in forward"""
 return (1.0 / (1.0+np.exp(-y)))

 ################# Delta ##########################
 def deltaOut(self, d_weights, d_biases, target, sigm):
 d_out = (target-sigm[-1])*sigm[-1]*(1-sigm[-1])
 d_biases[-1] = d_out
 d_weights[-1] = np.dot(d_out, sigm[-2].transpose())
 return (d_out, d_weights, d_biases)

 def deltaHidden(self, d_weights, d_biases, d_out, sigm):
 for i in xrange(2, len(self.MLP)):
 d_hidden = np.dot(self.weights[-i+1].transpose(), d_out) \
 * ((sigm[-i]*(1-sigm[-i])))
 d_biases[-i] = d_hidden

 d_weights[-i] = np.dot(d_hidden, sigm[-i-1].transpose())
 return (d_weights, d_biases)

