

THE AMPELMANN DDT

Development of the Ampelmann DDT data analyzing tool

JUNE 3,2016 AMPELMANN Devin van Tuijll

Acknowledgements

You are about to read my thesis report, which is meant as a reference guide for future Ampelmann employees who want to use the developed tool. It is also for my mentors from The Hague University Of Applied Sciences.

This thesis has been written to gain a bachelor degree in engineering. The thesis period was scheduled from the 8th of February 2016 until the 3rd of June 2016.

During my graduation period, I had the opportunity to witness and operate the Ampelmann System itself. I have developed myself in ways of communicating, programming and planning. I found the graduation period at Ampelmann very interesting and learnful.

First of all I would like to thank Martijn Krutzen and Niels van der Geld, for guiding and helping me whenever it was necessary during these 17 weeks and for sharing their knowledge. Another thanks goes out to the other Motion Control Engineers and in particular Roman Janssen, Jurjen de Vriend and Alexander Verweij, who had several interesting ideas for my tool and were able to help whenever necessary. I would also like to thank Olaf Orlandini for working out my front page logo idea.

I would like to thank Ampelmann Operations B.V. for the opportunity to grow and learn in their company and for the opportunity to have a really great assignment in which I was able to completely let myself go and do what I found was best.

Finally I would like to thank Suzanne D. de Jong and Theo J. Koreneef for their guidance and their honest opinions about my progress and ideas.

June 2016, Delft
Devin van Tuijll

Summary

In this document, the development of a data analyzation tool is being described. The tool is developed for Ampelmann Operations B.V. to help the Motion Control engineers with the debugging process of their systems. Ampelmann Operations B.V. is a company that focusses on offshore access. Their main product is a motion compensated gangway, which allows people to safely transfer from a boat towards an offshore construction or another boat.

Since about four months, Ampelmann Operations B.V. is logging data with a self-made tool from the Ampelmann Systems' PLC to the Box-PC over an UDP connection. This Box-PC is an industrial computer that can withstand vibrations and shocks on the rough sea environment. The logs are in a BIN file format and a tool has been created to translate these BIN-files into CSV-

files.

But nothing more than that has been done to the logging part of the Ampelmann systems, and thus a demand for an analyzing tool was created.

This is where the assignment focusses on; creating a data analyzation tool that is able to plot graphs and error functions. It should also be able to derive key figures and to export selected data.

A morphological overview combined with the Kesselring method, led to a program written in Visual Basic. This program has a hard-coded structure combined with queries to let the user select relevant data and queries for modularity. The output of the tool shall be in the form of CSV-files, ensuring that they can be loaded in again at any time.

The tool is able to load the CSV-files and able to refer to the conversion tool to open the BIN files. The tool consists out of four different tabs to ensure stability and a clear overview of the functions. The names of the tabs are related to the functionality and are named: Analyze, Query, Save&Send and Key figures. Based on the structure of the CSV-file, the tool makes multiple treeviews of the containing titles within the CSV-file for some of the mentioned tabs. A treeview is a visual way of displaying all containing titles within a CSV-file in a structured way. In the analyze tab, the user is able to plot graphs and error graphs, ensuring that a visual view is gained from the logged data. In the query tab, a basic template has been created to ensure that future programmers/users are able to apply queries on the tool. In the Save&Send tab, the user is able to export data, by either saving the data locally or sending them via a mail server. In the final tab, Key figures, the user is able to derive certain Key figures ensuring that the commonly used functions are calculated automatically.

On base of this report, the conclusion can be made that the tool is a stable way of helping the user with debugging of the Ampelmann System. Based upon the test case, the conclusion can be made that the tool is able to display all of the demands of the customer. The stability can be improved by looking at the control loop for the nodes of the treeview, which lead to unexpected behavior at the moment. Another recommendation is based on workability. The treeview can be improved by adding more hierarchy. In this way the treeview becomes even more structured and this translates into an even better way of debugging.

Inhoud

Summary1
List of Symbols4
List of Abbreviations
List of Images and Tables
1. Introduction
1.1 Client and Organization8
1.2 Process description
2. Assignment description
2.1 Problem definition9
2.2 Goal:
2.3 Thesis question9
2.4 Sub questions9
2.5 Scope
3. Approach10
4. Background sesearch
4.1 The Ampelmann System11
4.2 The cylinder13
4.3 End user
4.4 Data logging
4.5 Other ways of logging17
4.5.1 Boundaries17
4.5.2 PLC to PC application17
5. Conceptual Phase19
5.1 Requirements
5.2 Morphological analysis20
5.2.1 Problem definition: Tool in general20
5.2.2 Problem definition: Data logging26
5.2.3 Problem definition: Output of data
5.3 Kesselring
5.3.1 Problem definition: Tool in general
5.3.2 Problem definition: Output of data32
5.3.3 Conclusion
6. Design
6.1 Plotting data
DE HAAGSE HOGESCHOOL Page 2 of 147

6.1.1 Workability
6.2 Key figures40
6.2.1 Design
6.2.2 Workability43
6.3 DDT
6.4 Save / Send45
6.5 Online / Query48
7. Programming
8 Proof of Concept
9. Conclusions
10. Recommendations
11. References
Appendix I – Plan65
Appendix II – Accountability research for Kesselring method
Appendix III – Test case results
Appendix IV – Manual for Tool99
Appendix V – Program

List of Symbols

$Abs_{cumlength}$	The absolute cumulative length
AveCon _{err}	The average control error of two given functions a and b
$Err_{graph}(x)$	The resulting graph function
$Fa_{err}(x)$	One of two functions of which the error graph needs to be calculated for
$Fb_{err}(x)$	One of two functions of which the error graph needs to be calculated for
$Fa_{ace}(i)$	One of two functions to calculate the average control error for
$Fb_{ace}(i)$	One of two functions to calculate the average control error for
l _{stroke}	Necessary stroke lengths for compensation
<i>Max_{func}</i>	Maximum value of a function
Mean	The mean of a function
Min _{func}	Maximum value of a function
n _{criteria}	Total amount of criteria
n _{csv}	The amount of items in the CSV file row
p_{kes}	Amount of points per conceptual choice on a certain criteria
T _{kes}	Total amount of points per conceptual choice
W _{kes}	Weightfactor per conceptual choice on a certain criteria
x _{csv}	A value from the read in CSV file
$x_{errgraph}$	A value that runs from the first item in the CSV file row until the last

List of Abbreviations

6-DoF	Six Degrees Of Freedom
BIN	Binary file
CSV	Comma Separated Value file
DDT	Devin Data Tool
DoF	Degrees of Freedom
FOG	Fibre Optic Gyrocompass
GUI	Graphical User Interface
НМІ	Human Machine Interface
HPU	Hydraulic Power Unit
MRU	Motion Reference Unit
PLC	Programmable Logic Controller
РТА	Piston Type Accumulator
ТСР	Transmission Control Protocol
UDP	User Datagram Protocol

List of Images and Tables

Figure 30 - State machine diagram for subject: Key Figures	53
Figure 31 - State machine for Save	54
Figure 32 - State machine for Send	55
Figure 33 - Tabcontrol function - connections between different tabs	56
Figure 34 - Test environment	57
Figure 35 – Treeview graph node error	60
Figure 36 - Test results speed	84
Figure 37- Visual basic vs java	84
Figure 38 - easyness comparison	
Figure 39 - Result of standalone test	90
Figure 40 - 32 bit hierarchy test result	91
Figure 41 - Reading in CSV files test result	92
Figure 42 – Save function test result	93
Figure 43 - Derive Key Figure test	
Figure 44 - CSV result of manual calculation	95
Figure 45 - Fool proof test failure	96
Figure 46 - Result of graph plotting	98

20
26
29
30
31
31
32
59

1. Introduction

1.1 Client and Organization

Ampelmann Operations B.V. is a company which has its headquarters located in Delft. The company was founded in 2008 and has been growing ever since. They have got seven offices around the world: In Aberdeen, Delft, Brunei, Houston, Qatar, Rio de Janeiro and Singapore.

Before 2008, it was hard to access offshore structures like windmills and oil platforms. They would have to use helicopters or boats and rope swing towards the various systems, which costs a lot of effort and time and was above all a very unsafe action.

The founders of Ampelmann saw their future in finding a solution to this problem. They came up with the Ampelmann system, which is a ship-based, self-stabilizing platform that actively compensates all vessel motions using a Stewart Platform (A platform on six cylinders to control six degrees of freedom, respectively Surge, Sway, Heave, Roll, Pitch and Yaw) to make access to offshore structures safe, easy and fast.

This process is done by continuously measuring the motions of the host vessel. Then, the required lengths of the six cylinders are calculated to keep the transfer deck completely motionless. Finally, each hydraulic actuator is controlled separately.

1.2 Process description

This report describes the development of a data analysing tool for Ampelmann. The tool is designed to help future Motion Control engineers in debugging the Ampelmann systems, which at the moment is hard due to the large amount of logged data and no dedicated tool to read this data with. The results of the research are described in this report and in its appendices.

To design the tool, a morphological overview is created. In combination with the Kesselring method, one concept has been chosen to make a proof of concept for.

In chapter two, the assignment description is explained in detail, where the user can see the problem description and the goals. Chapter three is about the approach of the assignment. To understand where the tool is focusing on, chapter four has been added. Chapter four describes the background information. In chapter five, the user is able to see the conceptual choices that are made during the graduation period. Chapter six is about the design of the concept that is chosen in chapter five. Then the programming of the tool is explained in chapter seven, so that the underlying connections are clear. Chapter eight gives a proof of concept, proving that the concept is working. After chapter eight, conclusions and recommendations follow.

2. Assignment description

2.1 Problem definition

At this moment, troubleshooting an the Ampelmann system is done by reading data and using experience. The problems that occur are solved by Ampelmann motion control engineers. The problem is that it is hard to read logged data, as the data log files grow enormously due to the available amount of data.

2.2 Goal:

Ampelmann's solution to this problem is to implement a data analyzing tool, which can translate logged data into an user friendly environment wherein one is able to see what the reason is some errors occur or to adjust the Ampelmann System its settings to optimize its behavior.

The final user of this tool should be able to see data plots of the logged data and other relevant debugging information such as control errors.

Besides checking logged data, the tool should be able to receive queries and respond with a proper response (containing the information asked in the query).

2.3 Thesis question

"What is the most stable way of creating a data analysing tool and how can this be implemented inside the Ampelmann system?"

2.4 Sub questions

- Who is/are the end user(s)?
- How is data currently logged?
- How can we extract data from logged files in a structured way?
- How can we show other relevant debugging data?
- How is the user able to send queries?

2.5 Scope

To get a good result in a time span of 17 weeks, the tool should at least work for an Ampelmann hexapod's cylinder data.

The reason an Ampelmann cylinder has been chosen, is because the whole Ampelmann system has a lot of error functions. All these error functions are too much to program in a timespan of 17 weeks. The cylinder holds a subset of error functions, large enough to prove the functionality of the tool.

3. Approach

In order to come up with an approach, the project is divided into different phases and work packages. This is done to gain a good structure in the approach of the solution to the thesis question.

This project can be divided into five phases which are described below:

The first one is the start-up phase, wherein the actual start-up will take place. This includes defining a plan on how to successfully make a thesis.

The second phase is the definition of the project. It will consist out of background research and the documentation of its results. The background research consists of reading available documents to understand the hardware of the current Ampelmann systems and understanding the Ampelmann system software, by looking into the current software code. Also hydraulics and electrical courses specifically designed for the Ampelmann systems will be followed.

The third phase will be about the design. Here, the actual research will be translated into a proof of concept. This will include a morphological overview, a Kesselring method to choose the correct solutions based on some given weight factors and working out the concepts.

Then the fourth phase is the testing of the system. The project needs to be realized and tested, to ensure its workability and so that the outcomes of the analyzing are correct. Also a well written report has to be created, so that documentation of the tool is always available.

The final phase is the writing of the Thesis and writing documentation, to ensure the total system is documented.

The schematic overview for the given phases and work-packages are shown in the figure below. The detailed description is left out and elaborated in Appendix I – Plan.

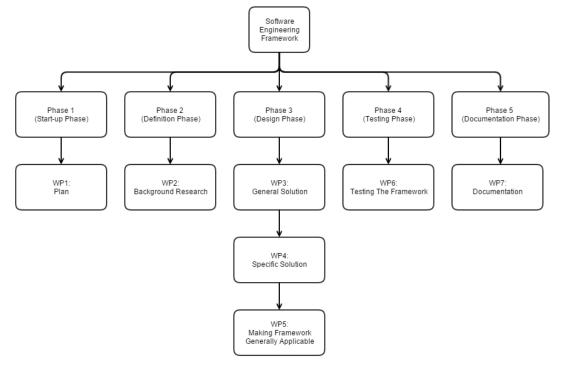


FIGURE 1 - SCHEMATIC OVERVIEW OF PHASES AND WORK PACKAGES

4. Background sesearch

4.1 The Ampelmann System

The Ampelmann system is a ship-based, self-stabilizing platform that actively compensates all vessel motions using a Stewart Platform.

A Stewart platform is a platform that consists of six cylinders to give the user six degrees of freedom (6-DoF) to move the platform upon. Another name for the Stewart platform is "hexapod".

A schematic view is shown below wherein the Stewart platform is in its neutral position, which is the position wherein the cylinders are send to the middle of the total stroke length. In this way it can go down and up the same amount of meters, ensuring that the system is able to compensate sinusoid like waveforms.

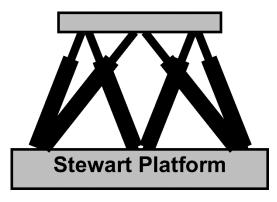


FIGURE 2 - STEWART PLATFORM IN NEUTRAL¹

The motion control loop constantly checks the current vessel/ship motions and will try to compensate these motions by using the six hydraulic cylinders. These will try to keep the top frame horizontal with respect to the horizon.

To understand how the cylinders are moved, a schematic flow is given to represent what is actually happening:

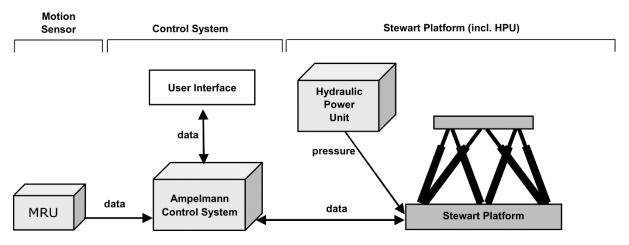
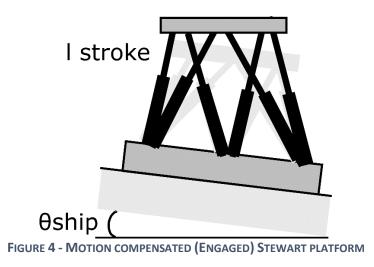


FIGURE 3 - SCHEMATIC WORKFLOW AMPELMANN SYSTEMS²

¹ Cerda Salzmann, D. J. (2010, 10 7). *We at sea*. [1]



The Motion Reference Unit or MRU, measures the vessel motions using a FOG technique. FOG stands for Fiber Optic Gyrocompass and uses the Sagnac effect to measure its Roll, Pitch, Yaw which are respectively the rotation amongst x, y and z. The Surge, Sway and Heave, respectively the translation amongst x, y and z are done by an accelerometer.

The Sagnac-effect³ is the phase-shift-effect of two rotating waves that undergo a rotation themselves. If pulses of light are send through an optic fiber coil in the clockwise and anti-clockwise direction simultaneously and the coil itself moves, the same effect occurs. The light that moves in the same direction as the coil moves, takes a bit longer to arrive than the opposite direction, thus resulting in a phase shift. This phase shift can be calculated and thus the rotation angles of the moved FOG.

The data of the FOG is send to the control unit of the Ampelmann system. The controls of the Ampelmann systems are realized by using a PLC or Programmable Logic Controller. These controllers are quick and reliable. The PLC contains analog inputs, analog outputs, digital inputs and digital outputs. With these in- and outputs, the control loop of the system is able to move the cylinders valves, which let hydraulic flow in or out and thus letting the cylinder extend or retract.

In the next figure, the position of the motion compensated (Engaged) Stewart platform is schematically displayed. The base of the frame is attached to the boat, and it is tilted due to the waves that hit the boat. The motion control loop calculates the necessary stroke lengths l_{stroke} , to overcome the ships current angles in the 6-DOF motion, which are schematically shown in the picture with one angle: θ_{ship} .

4.2 The cylinder

As described in the project scope, the main goal focusses solely on a cylinder due to the large amount of errors the total Ampelmann system has. In order to understand the project completely, background info of the cylinder Ampelmann uses is necessary. Therefore this information will be given in this paragraph.

The cylinders in the Ampelmann system are controlled by valves which control hydraulics, the hydraulic flow is demonstrated below:

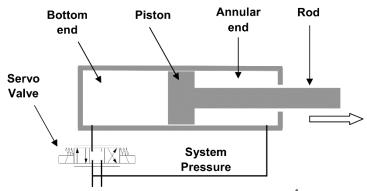


FIGURE 5 - HYDRAULIC FLOW OF CYLINDER⁴

The hydraulic pressure comes from a diesel operated pump or electric pump and pumps oil throughout the system, while a PTA (Piston Type Accumulator) makes sure that there is pressure even when the hydraulic power supply is cut off. This knowledge is left out of this description, due to its irrelevance to the project.

The valve used in the picture above is shown in detail below:

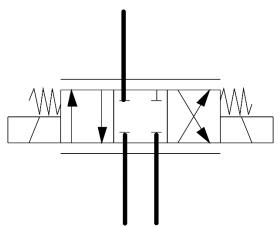
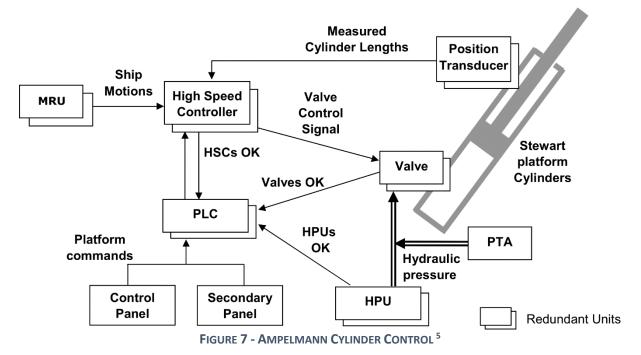


FIGURE 6 - CYLINDER VALVE


The valves that are used are proportional and they are solenoid controlled. Proportional means that any position between fully open and fully closed can be used to send flow through the valves. The valve is controlled by a solenoid which pushes the valve from one condition to the other condition. In its rest condition, the springs will put the valve in the middle condition, so that it is closed.

This valve let's a flow come through either inwards or outwards and this controls the positioning of the cylinder.

To ensure that the cylinder is at its desired position, there is a position transducer installed. This transducer calculates the actual length of the cylinder and it's length is compared to what the actual position of the cylinder is. If the cylinder is not at the desired position, the valve control adapts to make sure it will be. This system can be seen as following:

In above picture, the mentioned loop between the valve control, valve and position transducer is easily seen. The Hydraulic Power Unit or HPU supplies the system with hydraulic pressure. The system operators are able to operate the system with the control panel and GUI (Graphical User Interface) that is installed on a touchscreen panel. Combined with buttons and other inputs and outputs, they form a Human Machine Interface or HMI. They can put the Stewart platform in different modes with this interface, while the Octans sends data towards the controller so that in a case of motion compensation, the system knows how to respond.

The cylinders have several components as described before, and these are the ones that are meant to be allocated to the tool. The functions on which the tool should focus, are determined by the project owners: The control error on the cylinder length and the control error on the valve position. Besides these error functions, the total absolute cumulative length, the minimum, maximum and the average values of a given input are also meant to be calculated. These functions are applied to the currently loaded in csv files over certain intervals.

4.3 End user

The end user is an important aspect in this project. The tool must be designated towards the end user to ensure that the tool is understandable.

The end user is defined by the project owners. It is defined by the following quote:

"The tool has to be designed in such a way, that the motion control engineers of Ampelmann are able to understand the tool almost immediately and if this is not the case, a help function should help them to do so."

The wishes and demands of the end user will give boundaries for the tool. A summary of what the demands and wishes for the end user are, are shown below:

- There has to be a tool wherein the user is able to read in logged data.
- Inside the tool, graphs of logged data should be plotted.
- The tool should make it easier to select parts of data.
- The tool should be able to derive certain key figures for a selected period of time.
- The final prototype must be a standalone tool.
- A working test environment has to be made.
- The final prototype should be safe(e.g. not vulnerable for hacking, steady connections, etc.)
- The final prototype should be able to select data that is relevant to the user.
- The system should be written in a language that is known to most of the motion control engineers.
- The system should be "fool-proof".
- The final prototype should have a catchy name, to ensure the tool will be remembered and used.

The education level on which the tool is based, is higher education, meaning that the end user will have an HBO-bachelor degree or higher.

4.4 Data logging

In order to understand how the solution is found for the research question, the principles of how the data logging is currently done should be known.

The data logging is currently done by sending data from the PLC to a Box-PC and possibly to a PC/Laptop. A Box-PC is an industrial computer which is more steady than a personal computer. This will be elaborated in the 5. Conceptual Phase chapter.

A short representation of the current system is shown in the following figure:

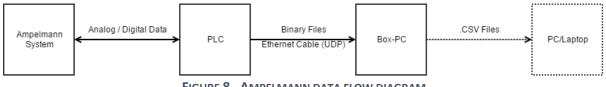


FIGURE 8 - AMPELMANN DATA FLOW DIAGRAM

The Ampelmann System's electronics and the PLC are connected via standard copper wires. Whilst this is happening, the PLC keeps track of all of the inputs and outputs of the system. The PLC stores this data inside a buffer and once the buffer is full, the data will be transmitted towards the Box-PC. The Box-PC is an industrial computer that is able to withstand vibrations and shocks. These transmitted files are sent via an UDP socket-connection and stored in binary format on the Box-Pc. This UDP-connection is a one-way connection: The PLC sends out data, without getting an acknowledge of someone receiving it. In this way, the PLC won't notice any remarkable drops in computing time, whilst with a TCP-connection it would. This is because of the two-way communication in TCP, the PLC will actively listen to what is being communicated on the dedicated socket port.

The output files are in a binary format, which can be decoded to CSV files if the structure files are supplied. These structure files are necessary to decode the Bin files.

The available .CSV files that are the output result, are readable data logs that contain info about time and what has happened during that time.

4.5 Other ways of logging

Currently the data logging is done in the way described above. This might not be the best way of doing this, so other methods were researched. First some boundaries are given and then the researched methods are described.

4.5.1 Boundaries

The PLC-program should not be changed, due to the fact that it is not only used for logging, but also for controlling the Ampelmann system.

So all interchangeable logging parts are the parts that come after the Ethernet cable that comes from the PLC, which is displayed with X in the following figure:

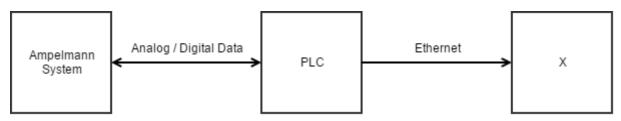


FIGURE 9 - INTERCHANGEABLE PART

4.5.2 PLC to PC application

Given the boundaries above, it is still possible to connect the Ethernet cable towards a PC. However, the data still needs to be extracted by the PC. The PC can do this by connecting to the PLC and read its data when done by an dedicated application, because the PC cannot do this directly. One of these ways is mentioned below.

4.5.2.1 PLC to Python

Some documents ⁶⁷ mention the connection between a Siemens PLC and Python. Python is a programming language with a lot of libraries.

One of these libraries is the Snap7 library. This is a python wrapper for connecting with Siemens PLCs. To understand how this communication could be established, the basic way of how Siemens PLCs work is described first:

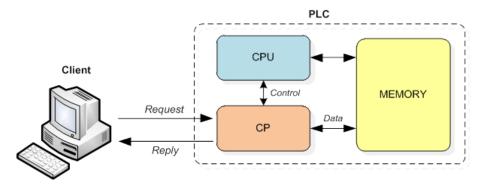


FIGURE 10 - PLC REQUESTS AND REPLIES ⁶

As seen in Figure 10, the client can request data from the PLC. The CP,CPU and the memory will transmit data so that the CP can send a reply back.

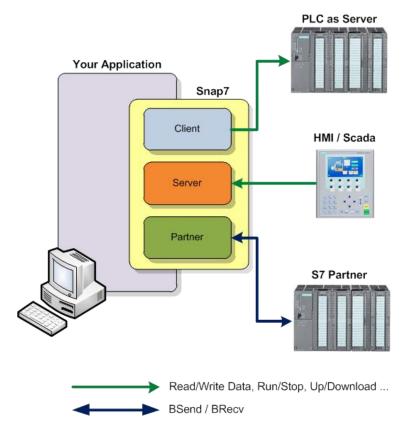


FIGURE 11- SNAP7 WRAPPER⁸

In Figure 11 is shown how Snap7 works. Snap7 is a communication protocol between several applications and the Siemens PLC. The application can act as a client, server or partner. Because the same structure is used as within the Siemens PLCs, the PLC won't notice that it is communicating with an application instead of a Siemens Client/Server/Partner.

A big downside is that the client sends data towards the PLC as well, and this tends to slow down the computing time of the whole PLC which can have negative consequences for the Ampelmann system.

Another downside is that this will actively open the PLC for incoming hacking threads, which can put the PLC in stop mode during operation.

Due to this, the way of logging remains the same as mentioned before (See 4.4 Data logging): Logging over UDP with binary files.

5. Conceptual Phase

5.1 Requirements

First the project requirements need to be known in order to get a concept that covers the demands of Ampelmann. A method that is useful to determine and write down requirements, is the MoSCoW-method.

The MoSCoW-method is used to describe the main project objectives and requirements and can be used for this project.

MUST

Product requirements:

- There has to be a tool wherein the user is able to read in logged data.
- Inside the tool, graphs of logged data should be plotted.
- The final prototype has to be in a 32-bit hierarchy.
- The final prototype has to be a standalone file.
- The tool should make it easier to select parts of data.
- The tool should be able to derive certain key figures for a selected period of time.
- There has to be a working test environment.

SHOULD

Product requirements:

- The system should be able to select data that is relevant to the user.
- The system should be written in a language that is known to most of the motion control engineers.
- The system should be "fool-proof".
- The final prototype should have a catchy name, to ensure that it will be remembered and used.
- The system its graphical user interface should be easy to understand.

COULD

Product requirements:

• It could be an advantage if the final prototype will not cost a lot / anything.

WOULD

Product requirements:

• It would be great if the final prototype is a simple executable file.

5.2 Morphological analysis

To come up with the best solution, several options of coming to a solution need to be reviewed. One way of doing this, is using a morphological overview which describes the different solutions for different parts of the requirements. Both pros and cons of all parts are described. At the end of this chapter, a final choice as concept will be made according to those advantages.

At first, the project needs to be split up in multiple sections, so that the morphological analysis can be used upon every single part.

5.2.1 Problem definition: Tool in general

The tool needs to be designed and the way of doing that has to be determined. There are several solutions to this problem and the morphological analysis will make sure the best solution is chosen.

The requirements for this problem from the MoSCoW-method are:

- The system must be built in a modular way.
- System should be able to select data that is relevant to the user.
- The system should be written in a language that is known to most of the motion control engineers.
- The system should be "fool-proof".
- It would be great if the final prototype is a simple executable file.
- The documentation must be clear. Either on paper, as commenting code.

Function:	Option 1:	Option 2:	Option 3:	Option 4:	Option 5:
Code Language	VisualBasic	🏓 python	Java	Combination	
Data Selection	Rule Base	Mathine Jearning	Hard Coding	Query	Comb ination
Modularity	Quer	XML	Combination		

 TABLE 1 - MORPHOLOGICAL OVERVIEW OF TOOL IN GENERAL

5.2.1.1 Concept A

Concept A uses Visual Basic as programming language, in combination with a rule base selection method and XML for modularity. Concept A is represented in Table 1 by the orange line.

Visual Basic:

Visual basic is a computer scripting language that most of the engineers at Ampelmann have mastered. It is an easily understandable language and there are a lot of functions from which good working GUI's can be made. A downside is that live graphs are less easy to program, which is a function that could make the tool better.

Pros:

- Easy GUI
- Easily understandable
- Employees already master the language

Cons:

• Live graphs not easily made

Rule Base:

The relevant selection process, as described before, is the process that should make sure that the user of the tool will only get results that are relevant.

"Rule-based systems automate problem-solving know-how, provide a means for capturing and refining human expertise, and are proving to be commercially viable" ⁹.

For this project this might come in very handy, because this ensures a certain amount of modularity. If used correctly, it can predict the "likeliest places to look for relevant information" and "probable causes". A con might be that when the system is expanded in the future and more rules are added, the system's computation time will increase.

Pros:

- Places of relevant info
- Probable causes of failures

Cons:

• Slow computation time

XML:

XML is short for Extensible Markup Language, and is very useful when you want certain messages to be in the same structure every time. It is platform independent and it is easily extendible, hence the name. A con of XML is that not many browsers support it and it thus needs an extra application to be implemented.

Pros:

- Easily Extendible
- Platform Independent

Cons:

• Not many supported browsers

5.2.1.2 Concept B

Concept B uses Python as programming language, Machine learning to select relevant data and queries to ensure modularity. Concept B is represented in Table 1 by the green line.

Python:

Python is a programming language, with many built-in libraries and many libraries to extend it with. In Python, it is very easy to plot live graphs. Python also uses indentation to make the structure of the program in a smooth, easily readable way. Python is open-source and thus free for use. A con for Python is that at the moment there are two supported versions, the 2.7 and 3.4 version, which may lead to conflicting code.

Pros:

- Many Libraries
- Live graphs easy
- Smooth and readable
- Free

Cons:

• Two supported versions

Machine Learning:

Machine learning is a way of artificial intelligence, which relies on algorithms. It can predict data and can be used for classification problems. For this project it could be useful to predict failures and to select specific data for the user. A con of machine learning is that it is hard to implement (you will need extra datasets for training, testing and validating) and it can be hard to visualize what is going on.

Pros:

- Prediction of failures
- Select specific data

Cons:

- Hard implementation
- Hard visualization

Queries:

Queries are questions that are asked to a system which will interpret them, process them and reply with a certain output. Inside this project, it is enabling the user to get answers on their specific question or query. A pro of queries are that is known what the user actually wants. Another pro is that is able to make the system modular with this. A con is that for modularity, the structure of the queries need to be handled the same way every time, and this may take extra time to implement.

Pros:

- Clear demands (questions) of user
- Modularity is available

Con:

• Modularity implementing may take extra time

5.2.1.3 Concept C

Concept C uses Java as programming language, with a rule base selection method and queries to ensure modularity. Concept C is represented in Table 1 by the purple line.

Java:

Java is a programming language, which aims for the WORA-solution, which means "*Write once, Run Anywhere*" ¹⁰. This makes sure that the final program will work anywhere, which is a benefit. Within Java it is also easy to plot live graphs. It's also an open-source language, which makes it free to use.

The cons of Java are that it can use a lot of memory, and like XML it requires an interpreter.

Pros:

- WORA solution
- Easy Live Plots
- Free

Cons:

- Memory
- Requires Interpreter

Rule Base:

See 'Rule Base' on page 21.

Query:

See 'Queries' on page 22.

5.2.1.4 Concept D

Concept D uses a combination of programming languages to write the tool in. It uses a rule base structure in combination with queries and hard coding to select relevant data and it uses a combination of XML and queries to ensure modularity. Concept D is represented by the red line in Table 1.

The combination of programming languages is to get the best out of both. Python is good for plotting live graphs and Visual Basic can make good GUI's and is mastered by the engineers of Ampelmann.

The combination of the Rule Base structure, with queries and hardcoding, is to ensure the modular use of the final prototype. The queries will be used to let the user give in queries, which the tool will process and translate into an output.

Python: See 'Python' on page 22.

Visual Basic: See 'Visual Basic' on page 21.

Rule Base: See 'Rule Base' on page 21.

Hard Coding:

With hard coding, the way of selecting data is done with input of the user with predefined choices. Pros of hard coding are that the user cannot make a mistake if programmed correctly and the user knows which options are available. A con is that the options are limited, due to the given choices.

Pros:

- No mistakes can be made by the user if programmed correctly
- Clear options to choose from

Cons:

• Limited choices

Query: See 'Queries' on page 22.

XML: See 'XML' on page 21.

5.2.1.5 Concept E

Concept E uses visual basic as programming language, with a combination of choices for data selection and queries for modularity. Concept E is shown in Table 1 with the **black** line.

Visual Basic:

See 'Visual Basic' on page 21.

Rule Base: See 'Rule Base' on page 21.

Machine Learning: See 'Machine Learning' on page 22.

Hard Coding: See 'Hard Coding' on page 24.

Query: See 'Queries' on page 22.

5.2.2 Problem definition: Data logging

The data logging currently is done by the method described in the data logging chapter. This is one way of doing it, but there may be better ways of doing this hence the morphological overview below.

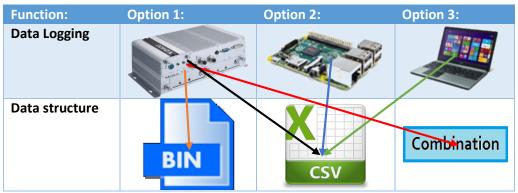


TABLE 2 - MORPHOLOGICAL CHOICES FOR DATA LOGGING

5.2.2.1 Concept A

Concept A relies on the Box-PC, in combination with .Bin files. Cocnept A is shown in Table 2 - Morphological choices for Data Logging with the orange line.

Box-PC:

The Box-PC is an industrial computer that is able to withstand vibrations and shocks. This is one of the reasons it is being used at the moment in every Ampelmann system, because they need to withstand the ships motion vibrations. Another pro is that because it already implemented in every Ampelmann system, it is not necessary to buy a whole new item for the Ampelmann system, and this will suppress costs of the final prototype.

A con of the Box-PC is that is a really slow computer. This is fixable, by replacing the internal hard disk drive with a solid state drive. Solid state drives are much quicker, because they do not use the spinning disks, but rather use a set of chips to speed up the process.

Pros:

- Already implemented, low distribution costs.
- Able to withstand shocks.

Cons:

• Slow, but this is solvable with an SSD drive.

Bin Files:

A Bin file is a file type which is primarily associated with 'Binary File'. It consists out of a sequence of bytes.

One of the major pros of binary files, is that they are relatively small in storage space. This is convenient in the future, when the data logs will be transmitted over bad sea-internet, because they will have to transmit small amounts of data. Binary files will most of the time be unreadable, because the original structure has to be known in order to open the file correctly.

Pros:

- Relatively small in storage space.
- Useful with bad internet connections.

Cons:

• Hard to read without knowing its original structure.

5.2.2.2 Concept B

Concept B relies on a Raspberry Pi, in combination with CSV-files as data structure. It is shown in Table 2 - Morphological choices for Data Logging, by the blue line.

Raspberry Pi:

The Raspberry Pi is a small programmable computer. Its major pros are that it is very small, easily programmable (Open-source software) and is relatively cheap compared to a Box-PC. A con is the slow Ethernet connection it has compared to a normal computer or Box-PC. Another con is that all Box-PC's should be replaced with the raspberry pi, or they should at least be compatible with each other.

Pros:

- Cheap
- Compact and Small
- Easily Programmable

Cons:

- Slow Ethernet
- Replacement or combining (synergy) with existing Box-PC

CSV:

CSV stands for "Comma-Separated Values". This data structure is text-based, which means that it is easily readable for every user, which is a pro in comparison with Binary files. Another pro is that it is easily editable. The cons of CSV is that confusion can be created with the use of punctuation, as the files are separated by commas.

Pros:

- Easily Readable
- Easily Editable

Cons:

• Confusion with the use of punctuation.

5.2.2.3 Concept C

Concept C relies on a laptop in combination with a CSV data structure. Concept C is shown in Table 2 - Morphological choices for Data Logging, by the green line.

Laptop:

Another way of data logging is by using a laptop. The laptop has the most user friendly interface in comparison with the Box-PC and the Raspberry Pi. Another pro is that it is a mobile, standalone device. A con is that it is large in comparison to the Box-PC and the Raspberry Pi. Another con is that it is more expensive to replace all the Box-PC's rather than using the existing Box-PC's.

CSV: See 'CSV' on page 27.

5.2.2.4 Concept D

Concept B relies on the Box-PC in combination with the combination of BIN and CSV. Concept D is shown in Table 2, by the red line.

Box-PC: See 'Box-PC' on page 26.

BIN: See 'BIN' on page 27.

CSV: See 'CSV' on page 27.

5.2.2.5 Concept E

Concept E relies on a Box-PC with a CSV data structure. It is shown in Table 2, by the **black** line.

Box-PC: See 'Box-PC' on page 27.

CSV: See 'CSV' on page 27.

5.2.3 Problem definition: Output of data

The output of the data should be researched, because the system has to be able to reproduce earlier asked queries. These queries can be stored in different ways.

Function	Option 1	Option 2
Output File	CSV	AMPELMANN

TABLE 3 - MORPHOLOGICAL CHOICES FOR OUTPUT OF DATA

5.2.3.1 Concept A

Concept A relies on an output file in the form of a .CSV file. It is shown in the table above with the red circle. This way of creating output files ensures that the files can be read in at any time and that they are readable without needing a special program to open them. A con of a CSV file might be that the structure is preset and that there is a possible cause for trouble for when the file needs to be reproduced on the screen, because it is the same structure as the files that are read in as input.

Pros:

• Easily readable

Cons:

• Preset structure that can cause troubles when trying to reproduce

5.2.3.2 Concept B

Concept B relies on a dedicated output file, that contains all information to reproduce an earlier state of the tool. It is shown in Table 3Table 1 with the blue circle. A pro of this manner is that the output is dedicated, which implies that the output is exactly as wanted and the files have an extension that is only able to be opened by the tool itself. A con of this manner is that it will tend to have the property that it is unreadable without a special program to open it. The output file extension will be in the form of .Ampelmann.

Pros:

• Dedicated output, easy for reproducing

Cons:

• Unreadable without a special program

5.3 Kesselring

With the morphological overviews shown in the previous chapter, it is possible to design concepts out of them by using weight factors to determine which pros and cons are more important than the other. A great way of displaying these weight factors is by using the Kesselring Method. This method calculates with the weight factor, which option is the best for the final solution (This method is designed by F. Kesselring of the Technical University of Twente¹¹).

Each weight factor can differ from one to four, wherein one is the least important and four is the most important. The scores of the individual choices are also numbered one to four, where 1 is the lowest and 4 is the highest score.

The total amount of points per choice is calculated by the following formula:

$$T_{choice} = \sum_{i=1}^{n_{criteria}} p_i w_i$$

EQUATION 1 - KESSELRING CALCULATION

Where:

 $n_{criteria} = The total amount of criteria$

 T_{kes} = Total amount of points per conceptual choice

 $p_{kes} = Amount of points per conceptual choice on a certain criteria$

 $w_{kes} = Weight factor per conceptual choice on a certain criteria$

Each grade in the Kesselring method is accounted for in Appendix II – Accountability research for Kesselring method.

5.3.1 Problem definition: Tool in general

The first thing the Kesselring method will be used upon is the programming language. It is divided into five categories, which compares them at speed, flexibility, easyness, experience and stability. Then they are multiplied with a weight factor. The weight factors are based upon the demands of Ampelmann. Therefore, speed and stability are necessarily the most highest weight factors of them all with a weight factor of four. The other three sections are also important, but less important than the speed and stability and are thus weighted with a factor of three.

Programming Language	Visual Basic	Python	Java	Combination	Weight Factor
Speed	4	3	3	3	4
Flexibility	3	4	3	4	3
Easyiness	3	3	1	2	3
Experience	3	4	1	2	3
Stability	4	3	3	2	4
Total	59	57	39	44	68
Percentage	86.8%	83.8%	57.3%	64.7%	100%

 TABLE 4 - KESSELRING METHOD FOR PROGRAMMING LANGUAGE

¹¹ Kesselring, F. (1954). *Technische Kompositionslehre*. Berlin [4]

In the table on the previous page, the difference between Visual Basic and Python is only 2 points out of 68. This is a difference of 3%.

Java scores bad on overall score, and is thus left out of the conceptual phase. The combination of languages doesn't score better than the languages on their own, hence this will be left out of the conceptual phase.

Because this difference is so marginal between Python and Visual Basic, it is not pretty clear which system wins from the other. Therefore another factor has to eliminate the one from the other. The practical use is still not incorporated in the comparison. Because Ampelmann employees are more common with Visual Basic than Python, Visual Basic will be used for the conceptual design.

Data Selection	Rule Base	Machine Learning	Hard Coding	Query	Combination	Weight Factor
Flexibility	2	3	1	2	4	3
Easyiness	2	2	4	3	3	3
Experience	1	3	4	2	3	3
Stability	1	2	3	3	4	4
Total	19	32	39	33	43	52
Percentage	36.5%	61.5%	75%	63.5%	82.7%	100%

TABLE 5 - KESSELRING METHOD FOR DATA SELECTION

In the table above, rule base, query and machine learning score the lowest. Hard coding could be a good option, but hard coding makes the prototype les dynamical which is unwanted. A combination of the other options comes out best with 82.7% and is thus used for the conceptual design.

The combination that will be used will become clear in the conceptual design starting on page 33.

Modularity	Query	XML	Combination	Weight Factor
Flexibility	2	2	3	3
Easyiness	2	2	1	3
Experience	3	2	1	3
Stability	3	3	4	4
Total	33	30	31	52
Percentage	63.5%	57.7%	59.6%	100%

TABLE 6 - KESSELRING METHOD FOR MODULARITY

In the table above, using queries comes out as best option. Because the differences are not too big, it is possible to implement XML, but queries will mainly be used for modularity.

So the concept that will be used for the tool in general is concept E. It is shown on page 20 in **black**.

5.3.2 Problem definition: Output of data

The output of the data is also important, as described in the morphological analysis. This will be shown in the table below:

Output of Data	CSV	Ampelmann file	Weight
Flexibility	2	4	3
Easyiness	4	2	3
Experience	4	1	3
Total	30	21	36
Percentage	83.3%	58.3%	100%

 TABLE 7 - KESSELRING METHOD FOR THE OUTPUT OF DATA

Table 7 suggests that a CSV file type is the best way of storing the data, due to experience and it's relatively easy understandable structure.

The outcome is thus equal to concept A, which is shown in table 29 with the red circle.

5.3.3 Conclusion

As a conclusion to this chapter, a summary of the chosen set-up is given:

The tool shall be programmed in Visual Basic, with assistance of Python if felt necessary. For data selection a combination of hard coding and queries come out as best, hence the tool will focus on both.

For modularity, queries will mainly be used and xml if found necessary.

As output, the CSV files will be used, so that the output can be used as input in the same tool whenever necessary.

6. Design

To realize the conceptual choices in the previous chapter, the design for each conceptual part will be elaborated in this chapter.

One of the requirements of Ampelmann, was to make an easy understandable graphical user interface or GUI (see '5. Conceptual Phase

5.1 Requirements').

The GUI depends on the language in which it is build. For this case it is Visual Basic. Within Visual Basic, the programmer is able to create "Windows-style" GUI's.

To make the GUI, the demands are split into parts. In this way, each part gets enough attention to make it run smooth and "fool-proof". The parts are:

- Plotting Logged Data / Offline
- Key Figures
- Saving or Sending

For each part will be elaborated which choices are made for the design.

6.1 Plotting data

For plotting data within Visual Basic, is a build-in function called Chart.

With the Chart-function, the programmer is able to give parameters for the X and Y axis of a chart so that a graph will be made with a predefined shape (e.g. a "line-style" graph or "bar-style" graph).

To implement the chart in this project, the X and Y values should come from the CSV-files.

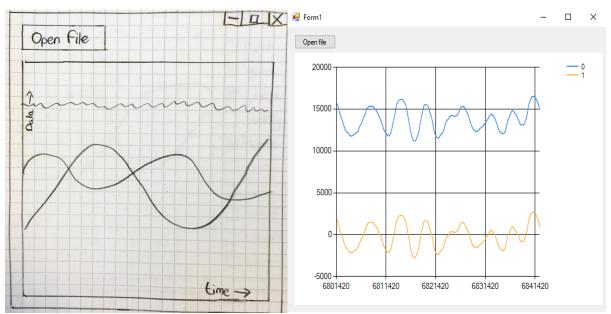


FIGURE 12 - PLOTTING CSV DATA (LEFT - SKETCH, RIGHT - DESIGN)

However, this method relies solely on the CSV-file that has been loaded and not on the user's choice. The user has to be able to select relevant data itself as well, for the system to function properly. Therefore, the Treeview function was added to the system, making it more open for user input. The Treeview function is a function that is build-in in Visual Basic. It is a structured way of displaying data, and in combination with checkboxes, it can make the user select preferred data. It's structure is divided in branches, hence the name.

The second design is shown below:

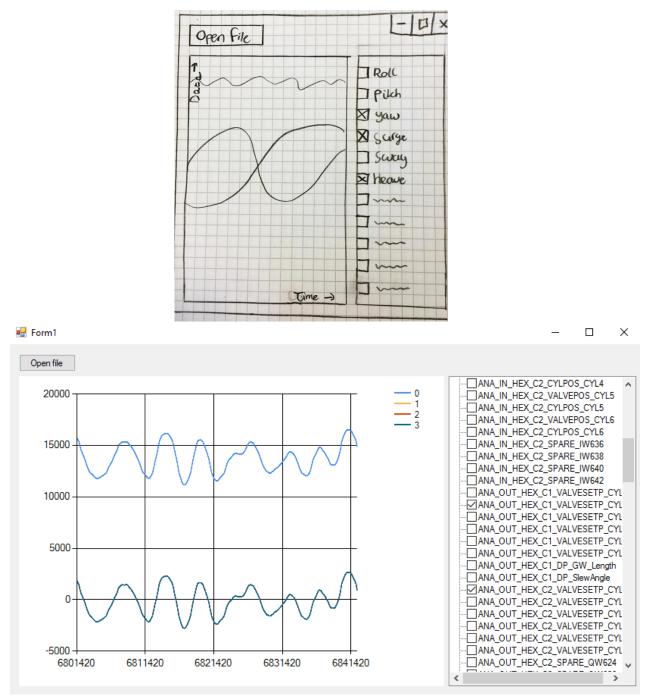


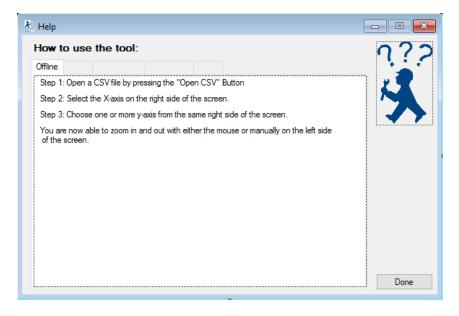
FIGURE 13 - TREEVIEW FUNCTION (UPPER - SKETCH, LOWER - DESIGN)

6.1.1 Workability

To increase workability, several other function have been added to the tool.

X-axis:

The tool is only relying on time as X-axis, and eventually it should be interchangeable, so that any item in the treeview can be used as X-axis. This is possible by pressing the "Change X-Axis" button.


Adjustable Scale/View:

Besides the interchangeable X-axis, the view/scale of the axis is only relying on the automatically assigned scale, which comes forth out of the Auto Scale function in Visual Basic.

To make it possible for the user to adjust the scale, several textboxes are added to read in the user's preferred scale or view. The user can then apply the settings by pressing the "Apply" button or reset to its previous values by pressing the "Reset" button.

Help Button:

A help button is added, to give the user tips on how to use the tool. The following window will popup:

Select / Deselect All:

A select and deselect all button are added to let the user select all items in the treeview or to deselect them all.

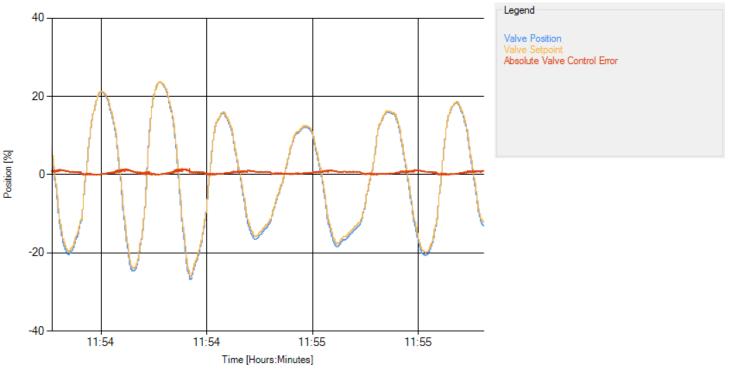
Error Graph:

To add more functionality to the actual data, an error graph function is added.

This graph is the difference between one graph and another. For instance the difference between the set point of a valve and its actual position.

The calculation is done by the following formula:

$$Err_{graph}(x_{errgraph}) = Fa_{err}(x_{errgraph}) - Fb_{err}(x_{errgraph})$$


EQUATION 2 - ERROR GRAPH CALCULATION

Where:

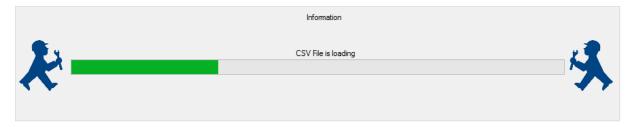
 $x_{errgraph}$ = A value that runs from the first item in the CSV file row until the last. $Err_{graph}(x)$ = The resulting graph.

 $Fa_{err}(x)$ = One of two functions of which the error graph needs to be calculated for. $Fb_{err}(x)$ = One of two functions of which the error graph needs to be calculated for.

If the example of the cylinder's set point and its actual positionn is used, and we take the absolute value of the results per data point we get the following result:

The red line is the error graph. In the most ideal situation, this line would be completely flat, and thus totally 0, indicating that the cylinder is perfectly following it's set point. In reality this will never occur, but it will actually fluctuate around 0.

Absolute zero:


Another function is the absolute zero function, which scales the X-axis values to start from 0. This convenient when debugging the system, to accurately see the amount of passed time. This will help the Motion Control engineers to see when the PLC has started.

Information section:

An information section is added, so that the user can see relevant information when a certain action occurs. For instance the selection of a x-axis or an error that occurs.

Loading bar:

A loading bar or progress bar is added, to let the user know the program is still working when adding a big CSV-file. Big CSV-files will take more time to load and the progress bar will prevent the user from thinking that the tool is frozen or crashed. The bar is displayed in the information section mentioned above.

FIGURE 15 - LOADING BAR

Legend text and axis label text:

To make clear which line is which function, legend text has been added. Each line contains the equivalent name as its selected item of the treeview.

Also for the axes, the label texts are shown, to see which function is shown on what axis.

Tab control:

To ensure that the following parts of the tool can fit on the screen, the tab control function has been added, with each tab containing one of the four parts mentioned on page 33.

The tab control is also added to the help menu button, so that the user can see tips per tab.

Open Bin File:

Because the project owners wanted to have the functionality of opening a bin file directly, methods were researched to implement the already existing Bin to CSV converter that has been made by one of the motion control engineers of Ampelmann. There are two ways of doing this. One is building the converter in the tool. The other way is by referencing directly towards the converter and letting its output stream directly towards the tool.

The second way has been chosen, because this ensures that in future release of the converter, the tool doesn't have to be re-written in order to function properly. It will just reference towards the new version of the existing converter.

🖳 PLC Log Conver	er				_		\times
Source settings STL File :	C:\Users\Devin\Documents\Visual \$	tudio 2015\Projects\Windows/	Application9\WindowsApplicat	iion9\bin\x86\Debug\LOG_OB36.STL	Brows	se	
Source Files :	20160330_113416_Log_OB36Log		Image: Second		Open Files		
CSV file settings Destination :	C:\Users\Devin\Desktop\Ampelman	\PLCloglive\2016\201603\20	160330\OB36Log\LOG_OB3	6_20160330	Brows	se	
Start Time:	11:34:16	 Split file size 	: 5000	kB			
End Time:	11:36:51	 Down sample rate 	ə: 0	ms			
Conversion							
		Convert and	go back to DDT.				

In Figure 16 the converter is shown. The user can load a STL-file, which contains the structure of the binary (.BIN) file. These STL-files were provided by the converter. The user can then load in the binary files and press the "Convert and go back to DDT" button, to convert the binary files to CSV-files and go back to the tool.

Final Result:

The final result for the offline tab is shown below, containing the above mentioned functions.

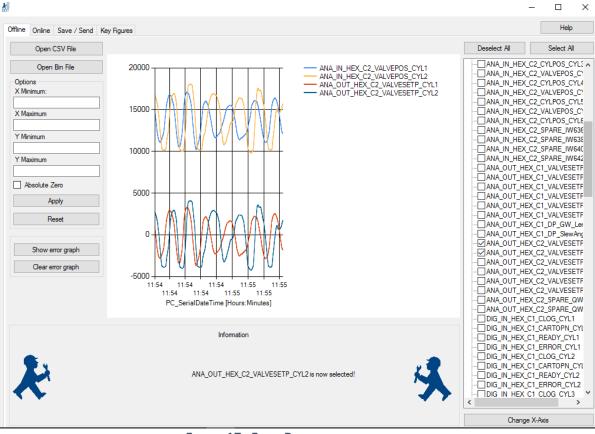


FIGURE 17 - FINAL RESULT FOR OFFLINE TAB

6.2 Key figures

Key figures is another tab in the tab control mentioned earlier on page 39. The benefit of key figures are that the user of the tool is able to get a quick analysis of most commonly used key figures.

Total absolute cumulative length:

One of the commonly used key figures is checking how far a cylinder has moved since a certain amount of time. So the tool should calculate the total amount of length that a cylinder has travelled.

This is also convenient for future use, for instance for predictive maintenance. If the average travelled amount of distance for cylinders is known at their breaking point, predictions can be made on when a working cylinder may break.

The total absolute cumulative length is calculated by the following formula:

$$Abs_{cumlength} = \sum_{i=1}^{n_{csv}} |x_{csv_i} - x_{csv_{i-1}}|$$

EQUATION 3- TOTAL ABSOLUTE CUMULATIVE LENGTH

Where:

 $Abs_{cumlength}$ = The absolute cumulative length. n_{csv} = The amount of items in the CSV file row. x_{csv} = A value from the read in CSV file.

Mean:

The mean of a function is used commonly too. To calculate the mean, the following formula has been used:

$$Mean = \sum_{i=1}^{n_{csv}} \frac{x_{csv_i}}{n}$$

EQUATION 4 - MEAN OF A FUNCTION

Where:

Mean = The mean of a function. n_{csv} = The amount of items in the CSV file row. x_{csv} = A value from the read in CSV file.

Maximum:

The maximum of a function can be critical information, especially when an error has occurred peaks are relevant. The maximum of a function is also commonly used for debugging and analyzing the Ampelmann systems.

To calculate the maximum, the following formula has been used:

 $Max_{func} = Max\{x_{csv_i} | i = 1 \dots n_{csv}\}$

EQUATION 5 - MAXIMUM OF FUNCTION

Where:

 Max_{func} = Maximum value of a function. n_{csv} = The amount of items in the CSV file row. x_{csv} = A value from the read in CSV file.

Minimum:

The minimum of a function can also be critical information.

To calculate the minimum, the following formula has been used:

 $Min_{func} = Min\{x_{csv_i} | i = 1 \dots n_{csv}\}$

EQUATION 6 - MINIMUM OF FUNCTION

Where:

 Min_{func} = Maximum value of a function. n_{csv} = The amount of items in the CSV file row. x_{csv} = A value from the read in CSV file.

Average Control Error:

The average control error of two functions is convenient to know, because the error rate can tell whether to adjust the gains of the control loop to get an even better result, which is that the error function becomes as close to zero as possible.

The average control error is calculated by the following formula:

$$AveCon_{err} = \sum_{i=1}^{n_{csv}} \frac{Fa_{ace}(i) - Fb_{ace}(i)}{n_{csv}}$$

EQUATION 7 - AVERAGE CONTROL ERROR

Where:

 $AveCon_{err}$ = The average control error of two given functions a and b. $Fa_{ace}(i)$ = One of two functions to calculate the average control error for. $Fb_{ace}(i)$ = One of two functions to calculate the average control error for. n_{csv} = The amount of items in the CSV file row.

Standard Deviation:

The standard deviation is a number that gives an indication of spread. The number indicates how much the given values differ from eachother.

$$\sigma = \sqrt{\frac{\sum(x - mean)}{n_{csv}}}$$

EQUATION 8 - STANDARD DEVIATION

Where:

 σ = The standard deviation. x = The current value. Mean = The mean as calculated in Equation 4. n_{csv} = The amount of items in the CSV file row.

6.2.1 Design

With above functions in mind, the design of the Key Figures tab has been made. The formulas used, have to be applied to data that has been load in on the "offline" tab. To make it easy for the user to understand how to apply these functions, the same treeview structure has been used in order to have a clear overview.

The formulas selection has been implemented inside an option window, wherein the user can select which formula he/she wants to apply to the selected data.

To show the key figures on screen, a 'show' button has been added.

To ensure stability and speed, the formulas can only be selected one by one. In this way, the tool can calculate each formula once, preventing it from crashing once the tool is on the Box – PC. The results are displayed in a separate field, with dynamic checkboxes. Each checkbox will be created dynamically, each time the user presses the 'show' button. In this way, almost unlimited amount of key figures can be displayed on screen.

6.2.2 Workability

To increase workability, several extra functionalities have been added.

Select / Deselect All:

A select and deselect all button are added to let the user select all items in the treeview or to deselect them all.

Inverse Selection:

An inverse selection option is added to ensure that the user is able to select the other keyfigures easily and unselect the current ones.

Delete:

A delete button is added to ensure that the user is able to delete the key figures that are unwanted / unneccesary.

Clear All:

A clear all button is added to let the user clear the total field of key figures.

Round / Truncate:

Round and truncate buttons are added to gain the mobility to round or truncate the selected key figure. This can be done by selecting the amount of decimals and pressing the corresponding buttons.

Formula(s) used:

To fill up the empty space between the treeview and the options menu, a used formula window has been created. In this way the user can see which formula has been used in order to gain the shown result.

翻				-		\times
Offline Online Save / Send Key Figures					Help	
Options	Formulas		Deselect All	Inverse	Select	ΔII
Total Absolute Cummulative Length Mean Max Min Average control error Control Error Maximum Control Error Minimum Absolute Max Control Error Show	Formula used: Total Absolute Cummulative Length: $\sum_{i=1}^{n} \mathbf{x}_i - \mathbf{x}_{i-1} $			HEX_C1_CYLPO: HEX_C1_VALVEF HEX_C1_SPARE HEX_C1_SPARE HEX_C1_SPARE HEX_C1_SPARE HEX_C2_VALVEF HEX_C2_VALVEF HEX_C2_VALVEF HEX_C2_CYLPO: HEX_C2_CYLPO:	005_CYL6 5_CYL6 1W536 1W538 1W540 1W542 205_CYL1 5_CYL1 205_CYL2 5_CYL2 205_CYL3 5_CYL3	~
Key Figures The mean of ANA IN HEX C1 VALVEP The mean of ANA IN HEX C1 VALVEP The max of ANA IN HEX C1 CYLPOS The max of ANA IN HEX C1 CYLPOS The max of ANA IN HEX C2 VALVEPC The min of ANA IN HEX C2 VALVEPC The min of ANA OUT HEX C1 VALVES The averace emor of ANA IN HEX C2 N	: CYL3is 13434.9 OS CYL5is 13582.2763145014. CYL1is 18472. W542is 32767. V542is 32767.	Options Select All Deselect All Inverse Selection Delete selected Clear all Round Truncate 1 Decimal 2 Decimals 3 Decimals 4 Decimals 5 Decimals 		HEX_C2_VALVEF HEX_C2_VALVEF HEX_C2_VALVEF HEX_C2_VALVEF HEX_C2_VALVEF HEX_C2_VALVEF HEX_C2_SPARE HEX_C2_SPARE HEX_C2_SPARE HEX_C2_SPARE HEX_C2_SPARE HEX_C2_SPARE HEX_C1_VALV T_HEX_C1_VALV T_HEX_C1_VALV T_HEX_C1_VALV T_HEX_C1_VALV T_HEX_C1_VALV T_HEX_C1_VALV T_HEX_C1_VALV T_HEX_C2_VALV T_HEX_FX_FX_FX_FX_FX_FX_FX_FX_FX_FX_FX_FX_FX	5_C7L4 YOS_CYL5 S_CYL5 S_CYL6 S_CYL6 JW638 JW640 JW642 JW642 JW642 IW642 IW644 SESTP_CY IESETP_CY	

FIGURE 18 - FINAL RESULT FOR KEY FIGURES TAB

In Figure 18, the final result is shown for the key figures tab. In this picture, some key figures are shown. The one that has been checked, has its values rounded to 1 decimal. This shows the round function.

6.3 DDT

One of the requirements of Ampelmann was to implement a name which would not be forgotten by the motion control engineers. After brainstorming with the mentors, the name DDT was brought up. Simple in pronounciation and to remember. It stands for Devin's Data Tool, referring to the name of the maker of the tool. This has been translated into an Ampelmann logo, seen below:

FIGURE 19 - LOGO DDT

6.4 Save / Send

The save and send tab, is a tab wherein the user is able to export data, either via saving to the computer or via mail.

Saving and sending is one of the requirements of the project owners. Both are ways of exporting data and ways of compressing loads of data into smaller useful parts.

Several save and send functions have been defined by Ampelmann:

- Exporting graphs
- Exporting used CSV treeview items
- Exporting used key figures
- Exporting functions with specific cut off values

All these functions are clickable via the corresponding checkboxes, making it able to select one or two, three, etc. of the available options.

The information about a succeeded or failed export is shown within a separate box, containing the names of either save info or send info, which are related to the respective functions.

Filename:	Filename:		
Selected nodes in Offline Tab	Time and Date of using the tool		
Key Figures	Key Figures		
Graphs	Graphs		
Cut Off Function	Cut Off Function		
	E-mail Address:		
Save	Send		

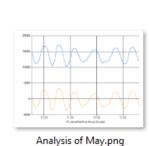
FIGURE 20 - SAVE AND SEND MENU OPTIONS (LEFT: SAVE , RIGHT: SEND)

In figure above, the explained options are shown as they are designed inside the program.

A file name has to be given in order for the functions to work, as they will give the files a dedicated name. For sending, an email address is required as well.

Each saved file will be saved in a folder that contains the name of the date of the day that the functions are used. In this way, retrieving the used functions is convienient, because the user can search on the date as well instead of only on the file name.

Savefile 23 05 2016


FIGURE 21 - NAMING OF A FOLDER WHEN EXPORT FUNCTIONS ARE USED

In the figure above, the earlier mentioned way of saving files is shown. These folders contain the selected items of the options window of the send function.

An example of its contents is shown in the figure below:

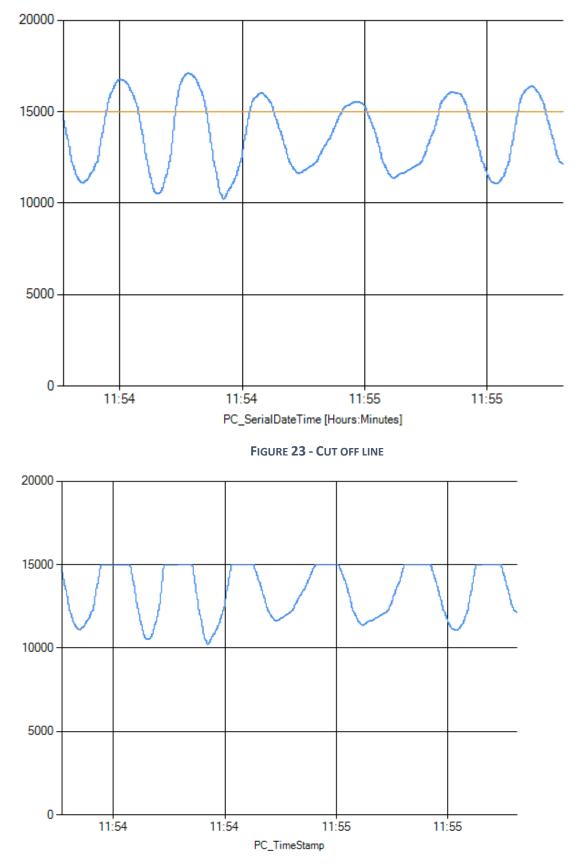
Analysis of May.txt

Analysis of May CutOff.csv

FIGURE 22 - CONTENTS OF DEDICATED FOLDER

These are the results of the save function. The first item in the above figure, contains the result of the "cut-off" function.

This cut-off function is a function, wherein the user can say whether to look for minima or maxima and cut out values above or below these minima or maxima. In this way, the end-user or motion control engineer is able to check when a selected function has passed a certain key value, and this function will then crop the values, so that a reduced file with only the requested data will come out as output. This makes the debugging of the Ampelmann system easier, since it deletes unnecessary data and only keeps the wanted data that is beneath a certain key figure.


Once the cut-off function has been used, the tool automatically adds a line to show the user where the cut-off function has cut off the function. This is shown in the picture on the following page with as example a cut-off value of maximum 15000.

In Figure 24Figure 24 - Result of cut off, on the next page, the result of the cut-off function is shown. The flat lines indicate that there is no data on those times, and the chartview compensates by filling up the gaps. A recommendation is to crop the flat lines at the top, because they add no significant benefits.

These functions can also be used as a warning type of function, warning the user whenever a certain criteria has been passed, resulting for instance in an error that lets the user know there is something wrong.

6.5 Online / Query

To let the end-user request specific data from the Box-PC, there should be a online tab or query tab on the tool. Queries are commands that can be send towards a database to get potential results.

After onset of the research, the project owners decided to focus more on the analysing part and to only set-up a basic template for in the future for the online or query mode. This due to the scope and the availability of going online via a shared desktop application such as TeamViewer.

The template has been created with the idea in mind that the end-user should be able to use the same program to be either the sender as the receiver, respectively the client or the server.

Therefore a design has been made wherein the user is able to let the program know whether he/she is either client or server.

This is done by using radiobuttons, to ensure that not both options can be used at the same time.

6.5.1 Client mode

In client mode, the user can press the connect button, which will execute a command that sends a TCP message throughout a predefined IP-address. Whenever there is a server listening, and it replies with the suspected handshake code, a TCP connection has been set up. From that moment on, the user would be able to send queries towards the server.

If an error occurs, a "Display Error" button will appear. Once pressed the user will get the information needed to understand the occurring error.

6.5.2 Server mode

In server mode, the program sets up a server that is constantly looping and trying to find a client to connect with. Once the server gets a TCP request, it replies with a handshake code to confirm the connection and thus setting up the two-way TCP connection.

6.5.3 Design

In the future, this tab can be extended so that the queries can be send and replied to. For now, the basic template has been set up and on the next page, in Figure 25 the tab has been shown for the queries, with a connection Set up.

6.5.4 Modularity

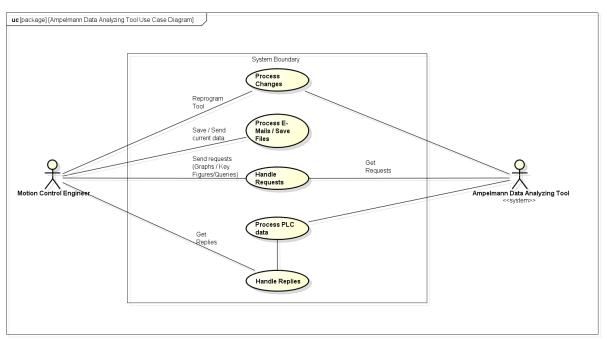
Because the query tab is in the form of a basic template, the modularity of the tool is hard coded. This is visible in many ways. For instance the exporting of data always occurs on the same way and in the same format, ensuring that future programmers / users are able to proceed with every shape of CSV-files, because the tool can read them. Also the code is commented intensively, ensuring that most engineers will know how to continue in the program for future functions.

}		
Analyse Query Save / Send Key Figures		Help
Connection Mode Selection Status: Connected Client Select		
Actions	Connect Query Replies	
Query 1: 		
Query 3:		
Guery 4: Query 5: 		
Query 6:		
Query 8:		
N		
Ser	a	

FIGURE 25 - QUERY VIEW CONNECTED WITH SERVER

As mentioned before when a connection fails an error message occurs, resulting in the following image:

	- 🗆
nalyse Query Save / Send Key Figures	Help
Connection Adde Selection Status: Argument Null error. Click the button below to find out more. Client Select	
Display Error Info	
Actions Query 1: Query 2:	
Juery 3:	
luery 4:	WindowsApplication9 ×
Query 5:	Argument Null Exception occured at 192.168.0.2. Press the connect button again, or try restarting the server via TeamViewer.
Juery 7:	ОК
Query 8:	
Send	


FIGURE 26 - ERROR DISPLAYED AND DISPLAY ERROR BUTTON PUSHED

7. Programming

To program the tool, the main users or actors need to be clear. For this tool the main actor is the Ampelmann Motion Control engineer. The functionality of their input is shown below in a use case diagram. The other actor is the tool itself, which is a system actor.

The in- and outputs of the system are shown in the use case-diagram in the figure above. These inputs and outputs need to be programmed in order to get a good proof of concept.

The Motion Control engineer has to be able to send requests to the tool like graphs, key figures and queries. Also saving and sending functions have to be realized in order for the Motion Control engineers to save the data or sending it towards the Ampelmann headquarters.

Each function within the program has to be determined on beforehand to ensure that underlying relations are known. This will result in a more clear view on how to program the different parts in such a way that the other parts will be able to work with it as well.

As said in the Design chapter on page 33, there are three main subjects:

- Plotting Logged Data / Offline
- Key Figures
- Saving or Sending

For each of these subjects, the corresponding functions are shown in a Block Definition Diagram:

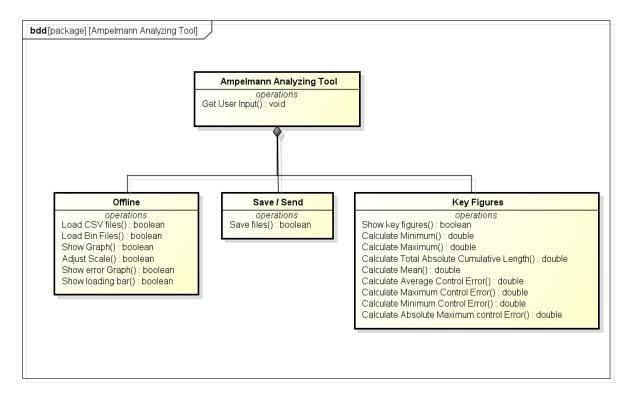


FIGURE 28 - BLOCK DEFINITION DIAGRAM

Also for each of these subjects a state machine diagram is made to give a detailed overview of the functions it contains. At the end a state machine is given for the connection between all of them.

Each of these functions are programmed in such a way that whenever the exit button is pushed, the program quits immediately.

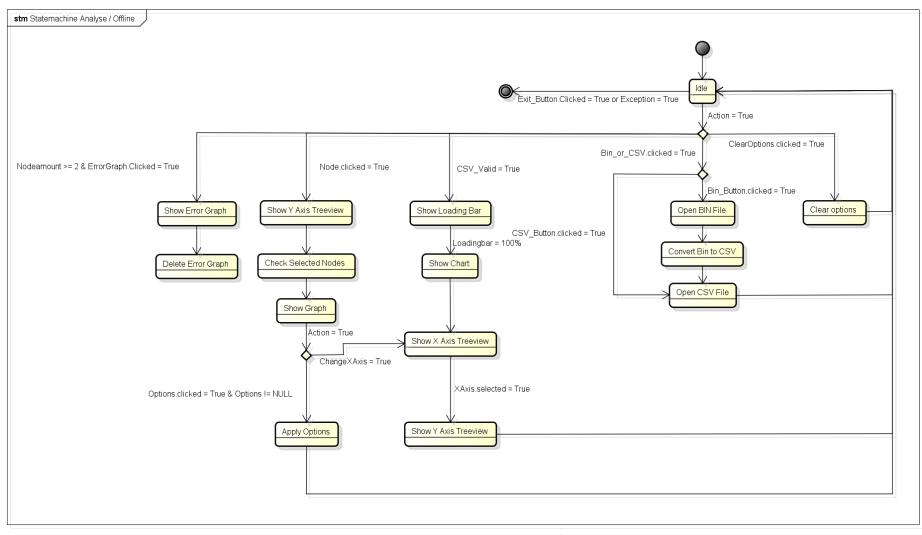


FIGURE 29 - STATE MACHINE FOR SUBJECT: ANALYSE / OFFLINE

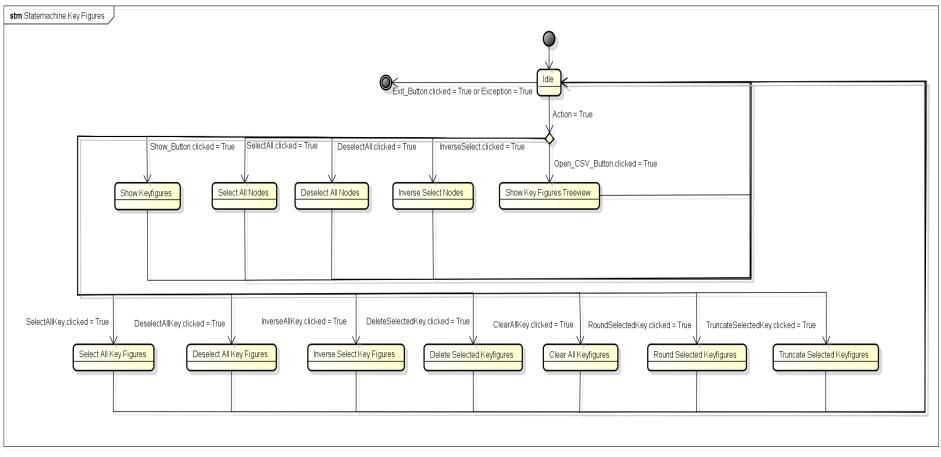


FIGURE 30 - STATE MACHINE DIAGRAM FOR SUBJECT: KEY FIGURES

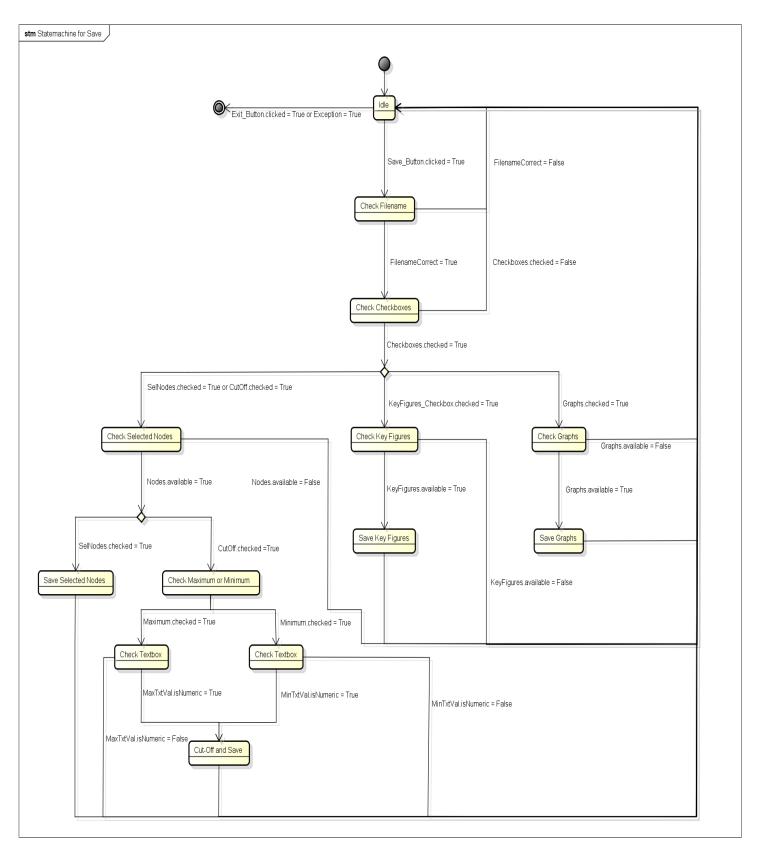


FIGURE 31 - STATE MACHINE FOR SAVE

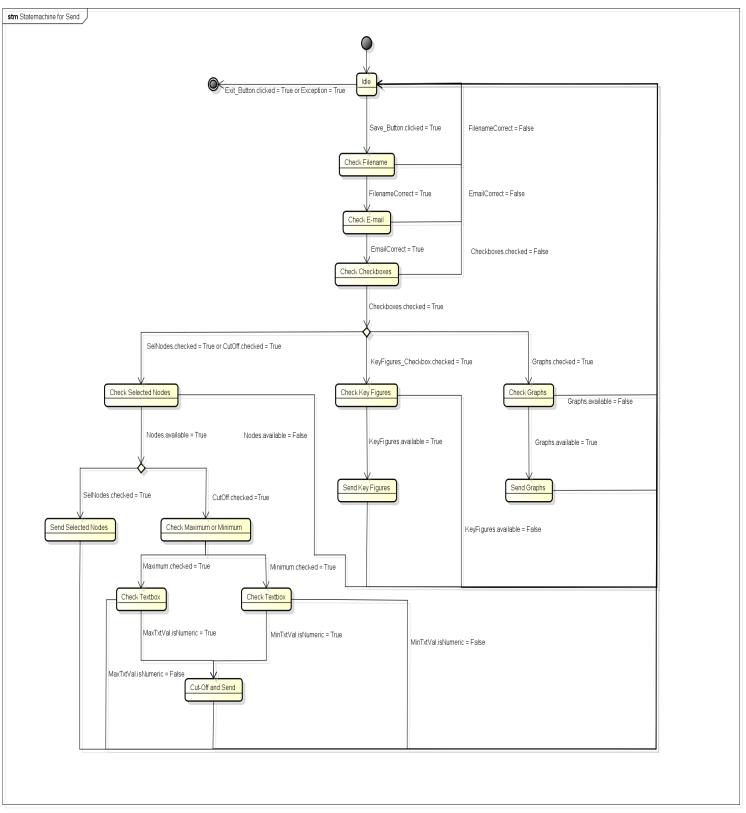
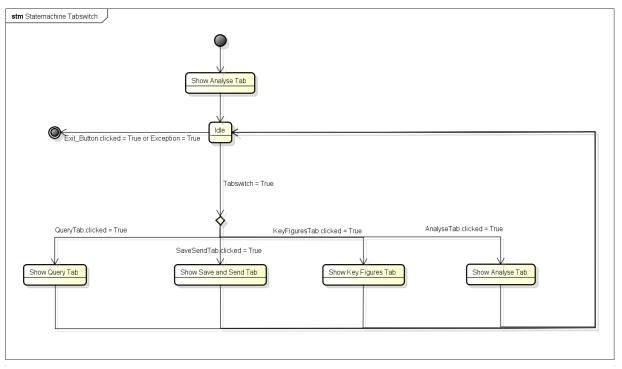



FIGURE 32 - STATE MACHINE FOR SEND

FIGURE 33 - TABCONTROL FUNCTION - CONNECTIONS BETWEEN DIFFERENT TABS

In the figure above, the interconnection between all tabs has been shown. If the user starts the tool, the program starts with the analyse tab. After that, every time a tab has been clicked it switches to that particular tab. In every tab, an Idle state has been implemented. This is the state wherein the tool is when nothing happens. As mentioned before, the user is always able to exit the tool whenever he/she is in the Idle state.

The programming is built up in an event based structure, which lets the program go to idle state until an event occurs. This ensures that no unnecessary background processing time is required.

To ensure stability, the loop in the Query/Online tab for the server mode is written in a multi threaded way, so that one thread is running and looking for clients, while the other thread maintains computational abilities for the rest of the program.

The programming code can be found in Appendix V – Program.

8 Proof of Concept

In order to proof that the concept is working, the designed concept must be tested. This will be done in combination with a test case. The test case describes the different amount of tests and how these tests are done step by step. Also the criteria on which the test is passed or failed is mentioned.

These tests are executed on a test environment, which has to be created as it is one of the requirements.

The test environment should exist of the following parts in order to get as close as possible to a real Ampelmann system:

- Moxa (Box-PC)
- Ethernet and/or Wi-Fi for PLC dependencies
- Power Supply
- PLC that imitates the PLC in the Ampelmann control panel one
- PLC that imitates the PLC in the Ampelmann control panel two
- DDT on monitor that is connected to Moxa

If we put this all together, we get the following result:

FIGURE 34 - TEST ENVIRONMENT

In the previous figure (Figure 34 - Test environment), the mentioned parts are installed, where:

- Yellow = Moxa (Box-PC)
- Green = Ethernet and/or Wi-Fi for PLC dependencies
- Purple = Power Supply
- Red = PLC that imitates the PLC in the Ampelmann control panel one
- Brown = PLC that imitates the PLC in the Ampelmann control panel two
- Blue = DDT on monitor that is connected to Moxa

With the test environment set-up, the test case can be made. The test case will test the requirements that are testable from the requirements list.

The test case will consist of the following items for testing:

Test 1: Stand-alone test

Test 2: 32-Bit hierarchy test

Test 3: Read in CSV files test

Test 4: Export data test

- Test 5: Deriving Key figures test
- Test 6: Fool proof test
- Test 7: Easy understandable GUI check/test
- Test 8: Graph plotting test

The testcase for these tests is displayed on the next page.

Test Case #	Test Title	Test Summary	Goals	Test Steps	Criteria for Pass/Fail	Expected Result
1	Stand-alone test	Test to check whether the DDT can work stand alone	Validating if the DDT is stand alone.	1. E-mail tool executable 2. Run Executable	Pass: Executable runs without installing Fail: Executable doesn't run without installing	Pass
2	32 - Bit Hierarchy Test	Test to check whether the DDT works with a 32 bit hierarchy	Validating if the DDT is working in a 32-bit hierarchy.	 Run the program on a 32-bit hierarchy computer. This will be tested on the Moxa (Box- PC). The moxa has got a 32-bit hierarchy. 	Pass: Executable runs without errors on hierarchy Fail: Executable doesn't run	Pass
3	Read in CSV files test	Test to check whether the tool can read in CSV files.	Validating if the tool can read in CSV files.	 Run the DDT Load different sets of CSV files 	Pass: Treeview will open up the data from the CSV files Fail: An error will occur or the treeview will not fill with data from the csv files	Pass
4	Export Data test	Test to check whether the tool is able to save and send data	Validating if the tool can send and save data.	 Run the DDT Load different sets of CSV files plot graphs and request keyfigures Save or Send files. 	Pass: Selected items are saved or send on the computer Fail: Selected items are not saved on the computer or send via e-mail	Pass
5	Deriving Key Figures test	Test to check whether the tool is able to derive certain key figures	Validating if the tool is able to derive key figures from selected data.	 Run the DDT Load different sets of CSV files Derive key figures 	Pass: Able to derive key figures with values that seem logical to the motion control engineers of Ampelmann Fail: Unable to derive key figures	Pass
6	Fool proof test	Test to check whether the tool is fool proof	Validating if the tool is fool proof / stable.	 Run the DDT Load different sets of CSV files Let different people with no knowledge about the DDT try to use every function 	Pass: No crashing or unexpected behaviour occurs Fail: Program crashes or unexpected behaviour occurs	Fail
7	Easy understandable GUI test	Test to check whether the tool is easily understandable	Validating if the GUI is easy to understand.	 Run the DDT Load different sets of CSV files Let different people with no knowledge about the DDT press every button. 	Pass: Other engineers know how to use the DDT, or with help of the Manual or Help button Fail: Other engineers fail to understand the DDT	Pass
8	Graph plotting test	Test to check whether the tool is able to plot graphs	Validating if the tool can plot graphs from read in data.	1. Run the DDT 2. Load different sets of CSV files 3. Plot multiple graphs	Pass: DDT plots graphs Fail: DDT does not plot graphs	Pass

 TABLE
 8 - TEST
 CASE

Actual Result	Notes
Pass	
Pass	
Pass	
Pass & Fail	Saving is working, Sending not yet.
Pass	
Fail	Checking treenodes only works from up to down
Pass	
Pass	

The test case results are shown in the table on the previous page. These results are elaborated in Appendix III – Test case results.

As seen in the table on the previous page, almost every test succeeded, except the sending and saving and the fool proof test.

For the sending and saving part, the problem can be solved by programming the send part in the following way: Save the files to a local place on the computer, grab the saved files and put them in an attachment in an e-mail. In this way, the user is able to send the data as well.

The problem with the treenodes was that if the user would check a node whilst a node below it in the treeview has been checked, the chart handles the newly checked node as if it is the lowest node in the treeview.

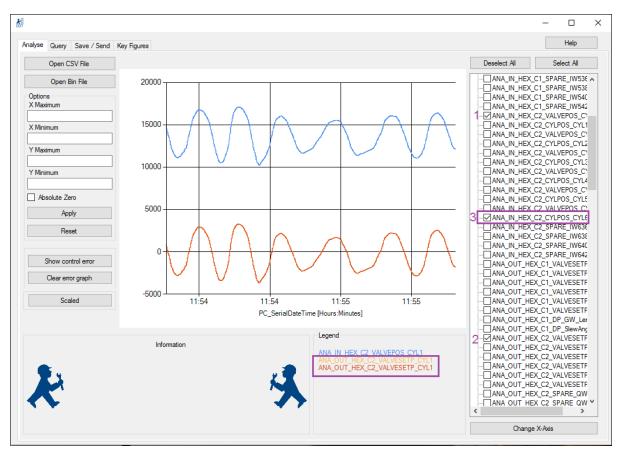


FIGURE 35 - TREEVIEW GRAPH NODE ERROR

In the figure above, the error is more clear to see. The node with a "3" in front of it is checked later than node "2". But because it is above node 2 in the treeview, the chart thinks it is the last added node and adds an identical graph to the chart and an identical name to the legend. If the two purple boxes in the picture above are compared, this is even more clear to see.

9. Conclusions

After several conceptual ideas at the start, one concept was worked out in detail which resulted in the current design.

The current design meets the requirements of Ampelmann, ensuring that all parties are pleased with the result.

The tool has got a catchy name, Devin's Data Tool or DDT, and has its own logo. Due to its name, the tool will be remembered and used within the Ampelmann company.

The tool is able to load CSV files and BIN files if the STL files are loaded as well. This ensures that the Ampelmann engineers can use the current data logging tool for the DDT.

Plotting graphs is made easy by the treeview with checkboxes. If the user checks the box, the graph will display and vise versa. Besides the standard requirement of plotting data in a graph, the user also has the ability to apply operations on the chart, allowing them to zoom in or scale the axis to a value selected by themselves.

A basic template has been rolled out for query based information, wherein the user is able to connect with a server, which is the exact same DDT program, only with one marked as server and one marked as client. This ensures stability and consistency in the tool and no other files need to be installed to serve as a server, which makes the tool to still be able to operate as a stand-alone tool.

The exporting of data has been realized by two functions, save and send. Saving items is made easy by giving the user a selection of options, and saving the files locally to a dedicated folder. Sending has not yet been realized, but will be in upcoming weeks.

The Ampelmann engineers are now also able to derive key figures for different kind of purposes. This is made convenient by adding several features that can be applied upon the displayed key figures. These key figures can also be exported via the save and send tab.

10. Recommendations

In order to gain an even better tool, several recommendations to future programmers / users are mentioned below.

The treeview at every tab in the tool can become better, if there are more child nodes used. This ensures that there is more hierarchy, and that there is a better overview of which subject belongs to a certain main chapter. So for instance, every C1 and C2 from the log files, can be a group and inside C1 and C2 there can be another level of hierarchy. These will then be groups of analog inputs, analog outputs, digital inputs and digital outputs. In this way there will be a more simpler overview of the nodes.

Another recommendation is to look at the loop for checking the nodes in the offline / analyse tab, which is at the moment resulting in unexpected behaviour as mentioned within the proof of concept chapter.

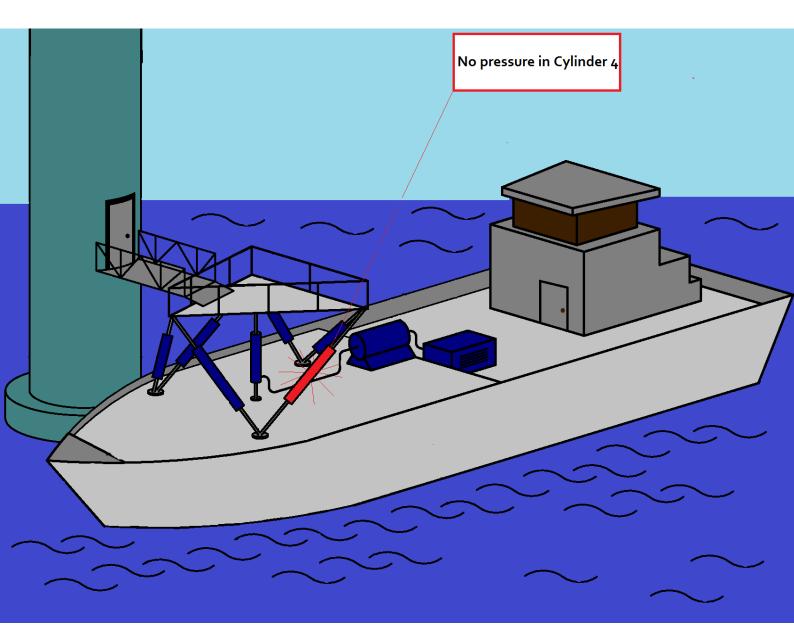
A final recommendation is to look at the scaling of the values. At the moment, the values in the CSV files that come from the PLC are raw values, and they have to be calculated to percentages as shown in Figure 14.

For future users, a manual has been added that can help them with learning the tool. It can be found in Appendix IV – Manual for Tool.

11. References

- [1] Cerda Salzmann, D. (2010, 10 7). *We at sea*. Retrieved from http://www.we-at-sea.org/wpcontent/uploads/2013/01/RL5-1-2004-012-Ampelmann-PhD-thesis.pdf
- Computer Weekly. (n.d.). *Computer Weekly*. Retrieved from http://www.computerweekly.com/feature/Write-once-run-anywhere
- Hayes-Roth, F. (1985, 11 9). ACM Digital Library. Retrieved from http://dl.acm.org/citation.cfm?id=4284.4286
- Kesselring, F. (1954). Technische Kompositionslehre. Berlin.
- MathPages. (n.d.). MathPages. Retrieved from http://www.mathpages.com/rr/s2-07/2-07.htm
- Molenaar, G., & Preeker, S. (n.d.). *Read the Docs.* Retrieved from Read the Docs: https://media.readthedocs.org/pdf/python-snap7/latest/python-snap7.pdf

Snap7. (n.d.). Snap7. Retrieved from http://snap7.sourceforge.net/


Appendix I – Plan

THE AMPELMANN DDT

Development of the Ampelmann DDT data analyzing tool

AMPELMANN Kluyverweg 1, 2629 HS, Delft By: Devin van Tuijll

1. Introduction

Nowadays all the technical tools and work we encounter must be better than its previous version is. In the way of obtaining the best technical solution to a certain problem, one will almost always encounter problems.

To detect and solve these problems, people will use their knowledge to "debug" the used system and find out what the underlying cause was, so that the problem can be tackled and this will be prevented in the future.

In this document, it will become clear which steps and measures are taken to come to a fully working prototype of a data analyzing tool. The research and development of this system is commissioned by Ampelmann Operations B.V. and the planning is displayed for the whole time span of 17 weeks until 03-06-2016.

At Ampelmann Operations B.V., solving problems is nothing different than described above. Their motion control engineers will debug the systems when they encounter problems and will use their knowledge to solve the problems that occur.

At the moment the debugging can become much better and Ampelmann Operations B.V. gave me the opportunity to do this for their company. The detailed description of the assignment can be found in chapter <u>3.2</u>.

The approach of this project can be found in chapter <u>5</u>. It will become clear very soon, that this project is done in phases, to ensure its structure, quality and safety.

2. Background

2.1 Client and Organization

Ampelmann Operations B.V. is a company which has its headquarters located in Delft. The company was founded in 2008 and has been growing/expanding hard ever since. They've got a lot of offices around the world. Ampelmann has offices in Aberdeen, Delft, Brunei, Houston, Qatar, Rio de Janeiro and Singapore.

Before 2008, it was hard to access offshore buildings like windmills and oil platforms. They would have to use helicopters or boats and rope swing towards the various systems, which cost a lot of effort and time.

The founders of Ampelmann saw their future in finding a solution to this problem. They came up with the Ampelmann system, which is a ship-based, self-stabilizing platform that actively compensates all vessel motions using a Stewart Platform (A platform on six cylinders to ensure six degrees of freedom) to make access to offshore structures safe, easy and fast.

This process is done by continuously measuring the motions of the host vessel. Then, the required lengths of the six cylinders are calculated to keep the transfer deck on which people can cross to the windmills, oil platforms, other offshore buildings or ships completely motionless. Finally, each hydraulic actuator is controlled separately.

2.2 Stakeholders

- Ampelmann: Contractor which will use the tool later on for their company
- Ir. N. van der Geld: First company mentor, will learn certain aspects of mentoring a graduate student, which are convenient for future graduate students.
- Ir. M. Krutzen: Second company mentor, will learn certain aspects of mentoring a graduate student, which are convenient for future graduate students.
- Ms. S.D. de Jong: First Graduate student coordinator, will have benefits from this project, because she will learn certain aspects of mentoring a graduate student, which are convenient for future graduate students.
- Mr. T.J. Koreneef: Second Graduate student coordinator, which will have benefits from this project, because he will learn certain aspects of mentoring a graduate student, which are convenient for future graduate students.
- The Hague University of Applied Sciences: they have the potential to further improve the reputation of the school and potentially increase the number or quality of graduate students.
- Ampelmann Motion Control engineers: They are the ones that will use the tool for their work.

3. Assignment Description

3.1 Problem Definition

At this moment, troubleshooting an the Ampelmann system is done by reading data and using experience. The problems that occur are solved by Ampelmann motion control engineers. The problem is that it is hard to read logged data, as the data log files grow enormously due to the available amount of data.

3.2 Goal:

Ampelmann's solution to this problem is to implement a data analyzing tool, which can translate logged data into an user friendly environment wherein one is able to see what the reason is some errors occur or to adjust the Ampelmann System its settings to optimize its behavior.

The final user of this tool should be able to see data plots of the logged data and other relevant debugging information such as control errors.

Besides checking logged data, the tool should be able to receive queries and respond with a proper response (containing the information asked in the query).

3.3 Thesis question

" What is the ideal solution for a data analyzing tool, and what is the best way of implementing it on an Ampelmann System.

3.4 Sub Questions

- How does the common Ampelmann hexapod and it's construction work?
- How is data currently logged?
- How can we extract data from logged files in a structured way?
- How can we show other relevant debugging data?
- How is the user able to send queries?

3.5 Requirements

The MoSCoW method is used to describe the main project objectives and requirements and can be used for this project.

MUST

Product requirements:

- There has to be a tool wherein the user is able to read in logged data
- Inside the tool, graphs of logged data should be plotted.
- The final prototype has to be in a 32-bit hierarchy.
- The final prototype has to be a standalone file.
- The tool should make it easier to select parts of data.
- The tool should be able to derive certain key figures for a selected period of time.
- There has to be a working test environment.

SHOULD

Product requirements:

- System should be able to select data that is relevant to the user.
- The system should be written in a language that is known to most of the motion control engineers.
- The system should be "fool-proof".
- The final prototype should have a catchy name, to ensure it will be remembered and used.
- The system it's graphical user interface should be easy to understand.

COULD

Product requirements:

• It could be an advantage if the final prototype will not cost a lot / anything.

WOULD

Product requirements:

• It would be great if the final prototype is a simple executable file.

3.6 Scope

To get a good result in a time span of 17 weeks, the tool should at least work for an Ampelmann hexapod's cylinder data.

The reason an Ampelmann cylinder has been chosen, is because the whole Ampelmann system has a lot of error functions, which is not reachable to implement in the tool in the time span of 17 weeks. The cylinder obviously has less error functions than the total system, but enough to prove that the tool is working.

3.7 Prerequisites

The following prerequisites have to be known in order to succeed the project:

- The thesis duration will be 17 weeks in total.
- The graduation period will be from Monday 08-02-2016 until Friday 03-06-2016.
- During the graduation period, there should be assistance in the form of a company mentor from Ampelmann.
- Ampelmann will have a designated working place available for the student.
- Ampelmann will have a working system available for testing purposes.

3.8 Product

The final product of this project is a working prototype of a data analyzing tool. The system should work and shall be tested on an existing Ampelmann cylinder and at the end attempts will be made to expand it even further than only the cylinder.

3.9 Costs

Ampelmann will probably not have to buy any materials, as the tool will be a software solution. If the logging cannot be done via a standard Ethernet connection and a connection module has to be bought, this will be specified in the final report.

3.10 Quality

To ensure quality, weekly meetings will take place. In this way all parties are up to date and will know what is on the planning and what has to be done.

3.11 Safety

Ampelmann strives towards safety. They are setting the standard in offshore safety and thus the project must undergo some safety measures.

The standard safety induction video will tell new employees what the safety rules are and Ampelmann has two main sets of rules, of which the golden rules are the safety rules:

Table 1 – Golden rules

4. Risk Analysis

This chapter is about the Risk Analysis. In order to avoid an unexpected loss of time, the risks of the project should be determined. This is done by looking at the Risk probabilities, the impact and the mitigating measures that have been taken in order to minimize the given risks.

4.1. External Risk Factors

Risk	Absence of company coach or graduate student coach					
Probability	Average, both parties have a busy schedule, so this will happen often.					
Impact	Small, as questions can be asked to other colleagues.					
Measures	Finding out the planning of both parties, to ensure their availability.					
Table 2 – External Risk 1						

Risk	Reservation Failure				
Probability	Average, as not every Ampelmann system can be worked upon.				
Impact	Major, as the testing shall be done on an real Ampelmann system.				
Measures	Ensure that reservation status of alternate machinery is known, and that				
	reservations are made quickly so it will not cause problems later in the project.				
Table 3 – External Risk 2					

4.2. Internal Risk Factors

Risk	Miscommunication				
Probability	Small, as there are weekly meetings.				
Impact	Small-Major, the amount of impact is determined by the subject where miscommunication is upon.				
Measures	Maintain good contact within the group and keep weekly meetings.				
Table 4 – Internal Risk 1					

Risk	Missing deadlines
Probability	Small, as there will be a reasonable planning made.
Impact	Major, as a deadline always remains a deadline and thus is missing one never wanted.
Measures	The project must recover from any possible delays as quickly as possible and resume work on schedule.

Table 5 – Internal Risk 2

Risk	Program problems
Probability	Small-Average, depending on the type of program language and detailed code, the probability can vary from small to average.
Impact	Average-Major, depending on the type of problem that occurs, this can have major impacts, as the major part of the project is programming.
Measures	Keep meeting with company coach to ensure the correct way of handling is executed.

Table 6 – Internal Risk 3

Risk	Thesis writing problems
Probability	Small, as there is enough time calculated in to write the thesis.
Impact	Average-Major, depending on what the problem is. If the document is lost, this will have a major impact. If there is not enough time as well.
Measures	Write the program on a cloud based storage location, this will tackle the lost document problem and stick to the planning to avoid time issues.

Table 7 – Internal Risk 4

Risk	No testing due to too little time						
Probability	Average, as this is the first time of writing a bachelor thesis.						
Impact	Major, as it will not proof its conceptual idea.						
Measures	Keep updating the planning, so that unexpected loss of time is minimized.						

Table 8 – Internal Risk 5

Risk	Ordering parts						
Probability	Small, as there probably will not be ordered many parts.						
Impact	Average-Major, depending on what the actual delivery time is.						
Measures	Research the current system, so that is known if the prototype needs extra parts.						

Table 9 – Internal Risk 6

5. Approach

The project can be divided into different phases. Roughly speaking, into five phases.

The first one is the start-up phase, wherein the actual start-up will take place. This includes defining a plan on how to successfully make a thesis.

The second phase is the definition of the project. It will consist out of background research and the documentation of its results. The background research consists of reading available documents to understand the hardware of the current Ampelmann systems (For instance by reading the "Development of the Access System for Offshore Wind Turbines" book) and understanding the Ampelmann system software, by looking into the current software code. Also some hydraulics and electrical courses specifically designed for the Ampelmann systems will be followed.

The third phase will be the design phase. In this phase, the actual research will be translated into a proof of concept. This will include a morphological overview, a Kesselring method to choose the correct solutions based on some given weight factors and working out the concepts.

Then the fourth phase is the testing of the system. The project needs to be realized and tested, to ensure its workability and so that the outcomes of the analyzing are correct, and a well written report has to be created, so that documentation of the tool is always available.

The final phase is the writing of the Thesis and writing missing documentation, to ensure the total system is documented.

First phase (Start-up phase):

5.1. Plan

- Decide the scope/deliverables of the project
- Find out the requirements of the project
- Indexing the available / required resources
- Form a Plan
- Documenting the progress and the results
- Presenting the progress and the plan to the client (Ampelmann)

Second phase (Definition phase):

5.2. Background research

- Research the Ampelmann system
- Research the current data logging
- Research the Ampelmann cylinders

Third phase (Design phase):

5.3. General solution finding

- Brainstorm sessions
- Make a morphological overview
- Use the Kesselring method to determine logical concepts
- Work out concepts

5.4. Specific solution finding

- Choose a concept
- Start with determining how to read in the log files
- Start with programming
- Report the results and progress

5.5. Making tool generally applicable

- Find out what is necessary to make a system generally applicable
- Determine demands of other employees
- Generalize the system

Fourth phase (Testing phase) :

5.6. Testing the tool

- Write a test case and report
- Acquire the needed materials to perform a test
- Acquire the needed competences to perform a test
- Ensure a safe test environment
- Test the made tool on the Ampelmann cylinder
- Document the results.

Fifth phase (Documentation phase) :

5.7. Documentation

- Gather all information that is available
- Write missing information/documentation
- Combine all information
- Revise the report/documentation

5.8. Work packages

Work packages are a great way of representing various tasks and who is executing them in what way.

If we take a look at the Prince 2 method of creating work packages, we can say that most work packages contain:

- The name of the person who will do the work package
- Work package name / title
- Description of work package
- Time
- Agreements
- Deliverables

The work packages for this project can be found in "<u>Appendix I</u>". The structure of the work packages is shown below in figure 1:

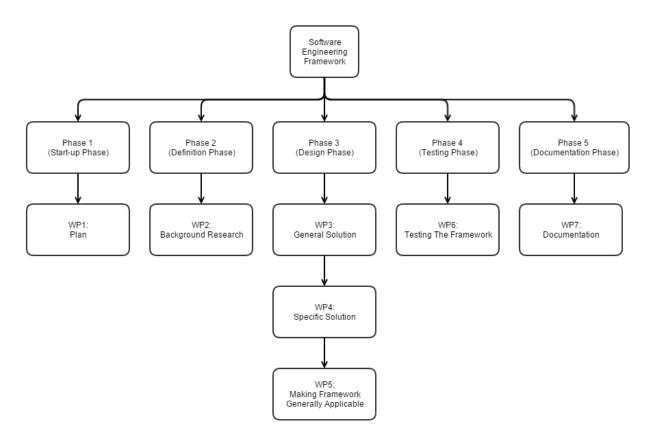


Figure 1 – Structure of work packages

6. Project Organization

In this chapter will be briefly described who the involved parties of the project are.

The current project group consists of a graduate student, two company coaches, two graduate student coordinators and a client.

6.1. Meetings

Because the final result is for a company that relies on the outcome of the research, meetings will take place with the company coaches, to keep both parties updated and sustain a good workflow.

The graduation period lasts 17 weeks. To ensure that everything is going as planned, a meeting will be planned every week. If something goes not as planned, the way of working can be changed easily because of the weekly meetings.

6.2. Contact List

Name:	Role:	E-Mail:				
Ampelmann	Client	info@ampelmann.nl				
N. van der Geld	Company coach	niels.vandergeld@ampelmann.nl				
<u>M. Krutzen</u>	Company coach	martijn.krutzen@ampelmann.nl				
S. De Jong	Graduate student coordinator	s.d.dejong@hhs.nl				
T.J. Koreneef	Graduate student coordinator	t.j.koreneef@hhs.nl				
D. van Tuijll	Graduate student	devinvantuijll@live.nl				

Table 10 – Contact list

7. Planning

This chapter contains the planning for the whole time span of 17 weeks, from 08-02-2016 until 03-06-2016. This is to ensure that the project is worked upon in a structured way.

To keep the structure in this project, the phases with its work packages of the "<u>Work Packages</u>"chapter are used within the planning. In this way it is clear to see what has been done and what is still left to do.

\$ \$ \$ \$ \$ # #												
(G	ANTT. project	\prec	7								
Naam Begin datum Eind datum												
	0	Software Engineer Framework	8-2-16	3-6-16								
	0	Phase 1 (Start-up Phase)	8-2-16	12-2-16								
		WP1: Plan	8-2-16	12-2-16								
	0	Phase 2 (Definition Phase)	15-2-16	19-2-16								
		WP2: Background Research	15-2-16	19-2-16								
	0	Phase 3 (Design Phase)	22-2-16	29-4-16								
		WP3: General Solution	22-2-16	4-3-16								
		 WP4: Specific Solution 	7-3-16	1-4-16								
		WP5: Generally Applicable Framework	4-4-16	29-4-16								
	0	Phase 4 (Testing Phase)	2-5-16	13-5-16								
		WP6: Testing The Framework	2-5-16	13-5-16								
	0	Phase 5 (Documentation Phase)	16-5-16	3-6-16								
		 WP7:Documentation 	16-5-16	3-6-16								

Figure 2 – Planning data

In zoom 2016	en Uit zo	omen		Vanda	ag ▼ Vo	orige Vol	lgende	Kritieke pao	d weergeve	n Baselir	ies						
Week 5	Week 6 8-2-16	Week 7 15-2-16	Week 8 22-2-16	Week 9 29-2-16	Week 10 7-3-16	Week 11	Week 12 21-3-16	Week 13 28-3-16	Week 14	Week 15	Week 16	Week 17 25.4-16	Week 18 2-5-16	Week 19 9-5-16	Week 20 16-5-16	Week 21 23-5-16	Week 22 30-5-16
			_										2-5-16				
_	È																
-			-	-	-	-	-	-		-	-		-		-	-	-
_												_					
						_	-										
-	-	-	-	-	-	-	-	-					-	_	-	-	-
_																	
	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_	

Figure 3 – Planning Overview

Appendix I: Work packages

Phase one – Start-up Phase

Work package 1:	Plan	
Executive:	Devin van Tuijll	
Description:	The plan will make clear how the approach of the project will be and what the prerequisites, deliverables and requirements are.	
Time:	One week	
Agreements:	Must contain: Prerequisites Deliverables Work Packages Scope Goals Risk analysis Planning Requirements	
Deliverables:	Plan	

Phase two – Definition Phase

Work package 2:	Background Research	
Executive:	Devin van Tuijll	
Description:	The background research will make sure that there is a proper knowledge achieved on beforehand, so that the total solution can be based upon the whole system eventually.	
Time:	One week	
Agreements:	 Research the Ampelmann system Research the current data logging Research the Ampelmann cylinders 	
Deliverables:	Documentation about research	

Phase three – Design Phase

Work package 3:	General Solution	
Executive:	Devin van Tuijll	
Description:	The general solution is the way to find a general solution to the given problem.	
Time:	Two weeks	
Agreements:	Do Brainstorm sessions	
	Make a morphological overview	
	Use the Kesselring method to	
	determine logical concepts	
	Work out concepts	
Deliverables:	 Documentation which concludes the morphological overview and the Kesselring method. Concepts 	

Work package 4:	Specific Solution	
Executive:	Devin van Tuijll	
Description:	Work out a concept, so that there will be a way to start with making the program.	
Time:	Four weeks	
Agreements:	 Choose a concept Start with determining how to read in the log files Start with programming Report the results and progress 	
Deliverables:	Concept choiceBegin of Tool (Program)	

Work package 5:	Making tool generally applicable
Executive:	Devin van Tuijll
Description:	Go further with the tool in such a way that future employees can add the total Ampelmann system to it.
Time:	Four weeks
Agreements:	 Find out what is necessary to make a system generally applicable Determine demands of other employees Generalize the system
Deliverables:	Generally applicable tool

Work package 6:	Testing the	
Executive:	Devin van Tuijll / Testing personnel	
Description:	The testing is necessary, so that is known whether the tool is working or not.	
Time:	Two weeks	
Agreements:	 Write a test case and report Acquire the needed materials to perform a test Acquire the needed competences to perform a test Ensure a safe test environment Test the made tool on the Ampelmann cylinder Document the results. 	
Deliverables:	Test CaseTest Results	

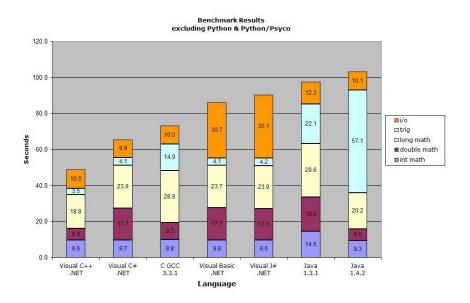
Phase five – Documentation Phase

Work package 7:	Documentation	
Executive:	Devin van Tuijll	
Description:	At the end of the graduation period, a complete report has to be handed over to Ampelmann and The Hague University of Applied Sciences. In order to do this, all necessary files to make the tool work need to be documented (if not already documented). This ensures future and current employees to proceed with the tool.	
Time:	Three weeks	
Agreements:	 Gather all information that is available Write missing information/documentation Combine all information Revise the report/documentation 	
Deliverables:	Complete Report and DocumentationWorking Software Engineer Tool	

Appendix II – Accountability research for Kesselring method

Accountability research for Kesselring method.

Tool In General


Speed

Java is much faster than Visual Basic and Python. This has been tested by several people on the internet. Some results are shown below:

Test	Program	Seconds	Kilobytes	GigaHertz	CPU	CPU load
regex-dna						
	Python 3	10.58	266,312	478	23.44	49% 39% 68% 68%
	Java	8.20	749,864	929	24.44	70% 69% 82% 79%
reverse- complement						
	Python 3	3.11	266,972	800	4.56	20% 99% 2% 29%
	Java	1.17	345,940	1661	2.42	41% 43% 57% 72%
k-nucleotide						
	Python 3	76.50	162,004	1937	297.12	97% 97% 97% 99%
	Java	6.82	240,412	2568	21.50	77% 71% 77% 92%
binary-trees						
	Python 3	152.06	804,624	596	516.24	94% 92% 95% 91%
	Java	11.51	622,328	889	40.10	86% 86% 92% 87%

FIGURE 36 - TEST RESULTS SPEED 12

In above figure, Python is slower than Java. Visual basic is even faster according to OSnews.com:

FIGURE 37- VISUAL BASIC VS JAVA¹³

Hence Visual Basic scores best.

¹³ Full test: http://www.osnews.com/story/5602/Nine_Language_Performance_Round-

up_Benchmarking_Math_File_I_O/page3/

¹² Full test : https://benchmarksgame.alioth.debian.org/u64q/python.html

Flexibility

Due to the extensibility of python and it's available packages, python scores best. Besides that, Python does not need a lot of set-up in comparison with Java, according to Quora.com¹⁴: "Python requires no "set up." A full python environment is already on every Linux machine, and on Macs. On Linux, the program yum, or the Yellow dog Updater, Modified is written in python, so python is here to stay. Java requires a substantial amount of setup. So if you want to get started with python programming, just type python at the prompt. Now. That's it. To start with Java, call someone who knows it."

Easyness

The easyness of the programming language is based upon the amount of lines it takes to get the same result.

>b)	if a > b :	if a > b then
	a = b	a = b
= b;	b = c	b = c
= C;		end if

The following picture describes these differences with a small example:

FIGURE 38 - EASYNESS COMPARISON¹⁵

If the indentation of python is calculated as well to break the if statement, Python and Visual Basic score the same, where Java requires more symbols to get the same result.

Experience

Experience of the languages is based upon the experiences of the writer of this thesis. Before this research, Python has been the mainly used programming language at The Hague University of Applied Sciences. Visual Basic has also been learned, at Ampelmann. With Java, there was no experience at all. The combination of python and visual basic was done earlier before, but on a small scale.

Stability

Due to its structure, visual basic is just a little more stable than python and java. Also, Visual Basic produces an exe file, which can be run whenever wanted, which is a huge advantage compared to Java and Python.

¹⁵ https://pythonconquerstheuniverse.wordpress.com/2009/10/03/python-java-a-side-by-side-comparison/

¹⁴ https://www.quora.com/If-I-had-to-choose-between-learning-Java-and-Python-what-should-I-choose-to-learn-first

Data Selection

Flexibility

With hard coding what the program must do, the flexibility is not very high, because it can only do that was has been hard coded. With a rule base structure, there is more flexibility, because the program is not completely shut down for other input, but it can change its output depending on the input. Machine learning is more flexible, because it can learn how to behave on a certain way and adapt to certain situations, making it the most flexible. With combining flexible options, the tool tends to get more flexible, hence the four as grade.

Easyness

A rule base structure and a machine learning based structure is more difficult than a hard coded structure and a query structure. Because hard coding is the easiest (No extra code needed to accomplish), it gets the highest grade. A query based structure is somewhat simpler than a machine learning based structure and a rule base structure, hence it gets a three as grade. The combination of more of these options, has been given a three, because hard coding will always be included, compensating for the lower grades of the other options.

Experience

The writer of this thesis has the most experience with hard coding, hence it scores the best. Machine learning has been learned, but the experience is less than hard coding. With queries, only a little experience has been gained in the past. With a Rule Base structure, no experience has been gained. The combination of these options have been applied frequently in the past, giving it a three as grade.

Stability

The stability of a rule based system scores the lowest. According to TeraData¹⁶, the rule based systems tend to have a lower stability in the longer term, in comparison with a machine learning system, due to its complexity how longer the system uses it. To let the rules adapt each time is very time inefficient, and hence this is given a one as grade for stability. Machine learning scores somewhat higher, but lower than a hard coded script, because the adaptation can become unstable due to overfitting etcetera. Queries score the same as hard coding, because they are somehow hard coded as well, and based upon user input. The combination scores the best, because the programmer can use the best of both sides to get the most stable system.

¹⁶ http://www.forbes.com/sites/teradata/2015/12/15/data-science-machine-learning-vs-rules-based-

Modularity

Flexibility

Queries and XML score the same amount on flexibility. This is because they both have pros and cons to support the fact that they have a modular construction. XML is able to give a certain structure to a program, leaving a structure to continue to build on for future programming parts. Queries, if programmed correctly, are able to get the requested data and send it to the user, based upon the input the user gave on beforehand. If it is programmed correctly, the system will always be able to respond in a correct way, no matter what the input is, making it modular. The combination scores higher on flexibility, because this results in a two way modular structure, making it more modular than each option on its own.

Easyness

Queries and XML score the same on easyness. Both take a certain amount of time to implement in the tool, and both are depending on other ways of input, giving it a grade of two. The combination scores even lower, because it takes much more time to implement it.

Experience

The writer of this thesis has had experience with queries for modularity, but less with experience on modularity based on XML, hence XML scores lower. The combination of both has never been experienced, giving it a one as grade.

Stability

Queries tend to be stable, as the programmed structure is able to respond to every request. XML is stable, because it has the same structure over and over. They both score a three on this part. The combination of both can become even more stable, if the structure of XML is used and the reply structure of a query based setup is used, giving the combination grade a four.

Output of Data

Flexibility

A dedicated .Amp file or Ampelmann file, could be in any form, thus it scores a four on flexibility. The CSV file scores a two, because the CSV files are always in the same structure.

Easyness

CSV files are easy to read in, and easy to read with the bare eye when opening with a text editor, resulting in a four for Easyness. The Ampelmann file type is less easy, because the standard format is not yet known.

Experience

The thesis writer has a lot of experience with CSV files, but none with Ampelmann files, leading to a score of four for CSV files and a score of one for Ampelmann files.

Appendix III – Test case results

Test Results

Test 1: Standalone Test

Test:

The standalone test will be done by e-mailing only the executable file and running it. If the executable file runs, the test has passed. If the executable doesn't run because it needs its dependencies, it is not standalone and thus it will fail the test.

The following test has been done on the Moxa (Box-PC), and the result is shown with a photograph. This is to show that it works standalone and on the Moxa.

Test Result:

		AMPCMP 05	
Life Very Favories Tools		2	
Colore the file Copy the file	Search 😥 Folders 💷 -	Analyse Query Save / Send Key Fig. Open CSV File Open Bin File Options X Maximum X Maximum Y Moximum Y Moximum Absolute Zero Acoly Reset	
Details		Clear ence graph Scaled	
rendya		A CONTRACTOR OF THE OWNER	

FIGURE 39 - RESULT OF STANDALONE TEST.

In the picture above, it is clear to see that only the ddt.exe file is included and that the tool launches without depending on other files. This means that the test has been passed.

Test 2: 32-bit hierarchy test

Test:

The second test in the series of tests, is the test to validate whether the file works on a 32-bit computer, which was a requirement from the requirements list.

To test if this is valid, the program will be executed on a 32-bit system. Since the Moxa (Box-PC) is a 32-bit system, the test is passed if the program will run. To prove that the system is operating in a 32-bit hierarchy, the system settings will be shown in the result as well. On windows XP, a system is 32 bit when there is no 64-bit information under the header "system".

Test Result:

General Computer Name Hardware	Advanced Devel	Analyse Query Save / Send Ke	/ Figures	
	Advanced Remote System: Microsoft Windows Windows Embedded St Service Pack 3 Registered to: OEM OEM 0EM 82503-OEM-0034001-0 MOXA V2400XPE Intel(R) Aton(TM) CPU N270 @ 1.50GH 1.60 GHz. 1.99 GB of R	Open Bin File Options X Maximum X Minimum Y Minimum Y Minimum Absolute Zero Apply Reset Show control error Cleas eccor graph		
	OK Cancel	Scaled	Information	
FILES UR AVAC Voiver	MRU Clen	x		头
27 Part P-type_Guid		And Freed		e sud b

FIGURE 40 - 32 BIT HIERARCHY TEST RESULT

In the picture above it is clear to see that the system settings do not display information about a 64bit, hence the structure is 32-bit. The program itself runs smoothly without any incompatibility problems occurring. This means that the test has been passed.

Test 3: Read in CSV files test

Test:

In this test, the function of reading in CSV files will be tested. The test will be done by running the tool and loading different CSV files. If the files are loaded correctly, the data will be shown in the treeview on the right, which result in a pass for this test. If not, the test has failed.

Test Result:

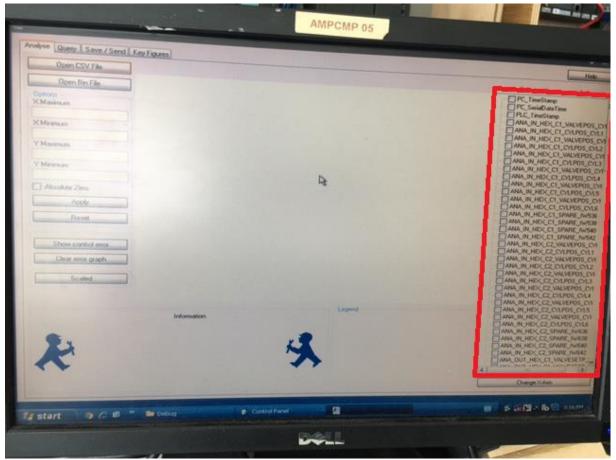


FIGURE 41 - READING IN CSV FILES TEST RESULT

In the picture above, the red box displays the treeview with the loaded data of a CSV file. This means that the CSV files have been loaded correctly and thus the test has been passed.

Test 4: Export data test

Test:

In this test, the functionality of exporting data will be tested. The test will be done by reading in a CSV file and then plotting a graph, adding some key figures and then saving or sending the files.

Test Result:

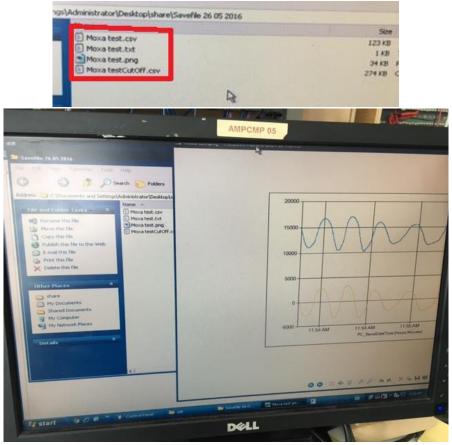


FIGURE 42 – SAVE FUNCTION TEST RESULT (TOP: FOLDER WITH RESULTS. BOTTOM: ONE OF THE RESULTS OPENED.)

In the picture above, the save function is shown and it has passed the test.

The sending of files is not yet programmed and thus this part fails the test, resulting in a pass and a fail as end result.

Test 5: Deriving key figures test

Test:

This test will determine whether the key figures function is functioning properly. The test is done by loading in a CSV file and requesting key figures. If the key figures seem logical, the test is passed. If not the test has failed.

Test Result:

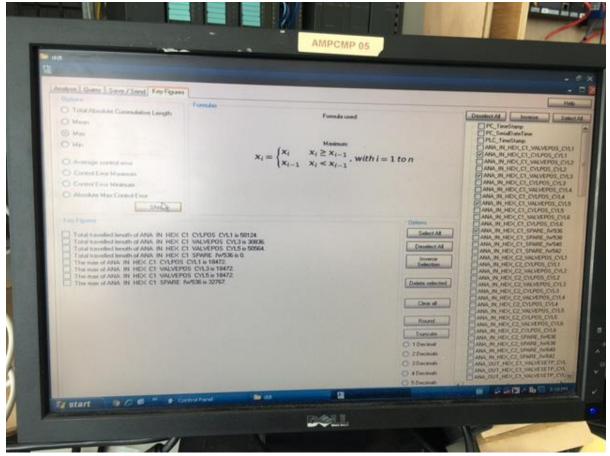


FIGURE 43 - DERIVE KEY FIGURE TEST

The output of the tool are raw values. If we look at these values and compare them to the CSV file below, we can see that the calculation is done correctly. In the CSV file on the next page, the total travelled length for ANA_IN_HEX_C1 is calculated manually. This is done by taking the absolute difference between two data values and then adding the answers to get the total travelled length.

=SOM(E10215:E20426)		
D	E	
	4	
	4	
	4	
	8	
	4	
	4	
	8	
	4	
	4	
	4	
	4	
	4	
	4	
	4	
	8	
	58124	

FIGURE 44 - CSV RESULT OF MANUAL CALCULATION

In the figure above, the calculations are down manually. The manual calculation show the same result, confirming that the derivation of keyfigures is working properly.

Test 6: Fool Proof test

Test:

This test will determine whether the DDT is fool proof. The test will be done by letting inexperienced people use the tool. If the tool doesn't crash, it will pass the test. If it crashes or acts with unexpected behavior, the test has failed.

Test Result:

After several people had used the tool, an error was detected. Adding graphs via the treeview in the analyse/offline tab only works when they are checked from up to down. Otherwise it will try to add the same last checked graph again.

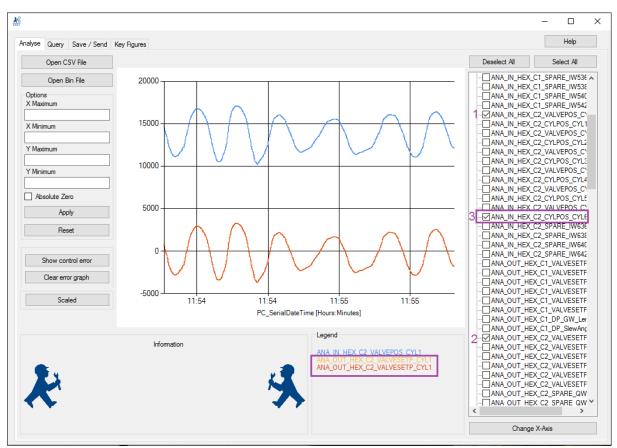


FIGURE 45 - FOOL PROOF TEST FAILURE

The error occurs when a node higher in the treeview is checked later than one beneath it. For instance in the picture above, the node labeled with 3 is checked later than the node labeled with 2, resulting in a graph that is equal to the lowest checked one (See the legend).

This error is probably produced by the loop that checks whether a node has been checked or not. So a recommendation is to check that control loop.

This test has thus failed.

Test 7: Easy Understandable GUI test

Test:

This test will determine whether the DDT GUI is easy to understand or not. The test will be done by letting several people look at the GUI and give their opinion about the GUI. It is done at the presentation and demonstration for almost the whole motion control engineer group.

Test Result:

The motion control engineers found the tool promising. It looked like it worked fine, despite some minor bugs. They had several ideas for functions that are not yet programmed inside the tool. These functions are mentioned in the recommendation area.

The GUI has passed the test.

Test 8: Graph plot test

Test:

This test is meant to determine whether the tool is able to plot graphs. The test will be done by plotting multiple graphs and checking its functionality. The graphs will pass the test once the DDT can plot multiple graphs in different colors, with the corresponding titles in the legend. It will fail if the graphs do not plot correctly.

Test Result:

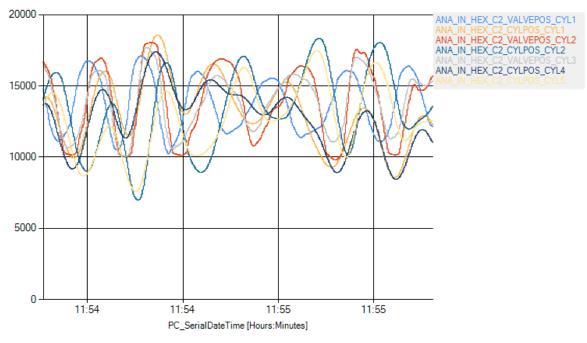


FIGURE 46 - RESULT OF GRAPH PLOTTING

In above picture, it is clear to see that multiple graphs can be plotted without flaws. This means that the graph plotting has passed the test.

Appendix IV – Manual for Tool

The Ampelmann DDT Manual

Manual for The Ampelmann DDT, a data analysing tool.

By Devin van Tuijll June 3rd, 2016

Content

Introduction	
Tabs of the Tool	
Analyse	
CSV	
Bin	
Key Figures	
Save & Send	111
Save	
Query	
Troubleshooting	

Introduction

This manual is meant for Ampelmann employees who want to use the DDT. The DDT is designed for MCM employees to help them in the debugging process of the Ampelmann systems.

The manual has been written by Devin van Tuijll. In case that there are any questions, please feel free to contact him.

Tabs of the Tool

The main functionality of the tool has been broken down into four main pieces: Analyse, Query, Save/Send and Key Figures. The manual will elaborate per chapter how to use the tool. You can switch between tabs by simply clicking them.

Analyse	Query	Save / Send	Key Figures

FIGURE 47 - TABS OF DDT

Analyse

The analyse tab is the place that first comes up when the tool is started. Here, the user is able to load in CSV files or BIN files. This can be done by their corresponding buttons, shown in the figure below:

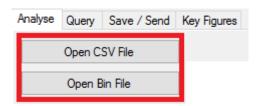


FIGURE 48 - OPEN CSV (TOP BUTTON) AND OPEN BIN (LOWER BUTTON)

CSV

When the "Open CSV File" button is pressed, the program will give a pop-up message, containing a file locator for the desired CSV file, as shown below:

→ ⊻ 🛧 📙 « Am	pelmann > PLCloglive > 2016 > 201603	> 20160330 > OB38Log	✓ [™] Zoe	eken in OB38Log	م
ganiseren 👻 Nieuwe	e map				
J WindowsApplic: ^	Naam	Gewijzigd op	Туре	Grootte	
ConeDrive	🗟 LOG_OB38_20160330_012551.csv	11-4-2016 13:23	CSV-bestand van	5,001 kB	
	🕼 LOG_OB38_20160330_012633.csv	11-4-2016 13:23	CSV-bestand van	5,001 kB	
Deze pc	🕼 LOG_OB38_20160330_012714.csv	11-4-2016 13:23	CSV-bestand van	5,001 kB	
📰 Afbeeldingen	🚯 LOG_OB38_20160330_012754.csv	11-4-2016 13:24	CSV-bestand van	5,001 kB	
🔜 Bureaublad	🚯 LOG_OB38_20160330_012835.csv	11-4-2016 13:24	CSV-bestand van	5,001 kB	
Documenten	LOG_OB38_20160330_012916.csv	11-4-2016 13:24	CSV-bestand van	1,059 kB	
Downloads	LOG_OB38_20160330_084203.csv	29-4-2016 12:58	CSV-bestand van	5,001 kB	
iPhone van Devi	🚯 LOG_OB38_20160330_084244.csv	29-4-2016 12:58	CSV-bestand van	4,924 kB	
h Muziek	🚯 LOG_OB38_20160330_112310.csv	11-4-2016 13:17	CSV-bestand van	5,001 kB	
•	🚯 LOG_OB38_20160330_112351.csv	11-4-2016 13:18	CSV-bestand van	5,001 kB	
Video's	🚯 LOG_OB38_20160330_112432.csv	11-4-2016 13:18	CSV-bestand van	5,001 kB	
Lokale schijf (C:)	🚯 LOG_OB38_20160330_112513.csv	11-4-2016 13:18	CSV-bestand van	5,001 kB	
National V	🗟 LOG OB38 20160330 112941.csv	11-4-2016 13:18	CSV-bestand van	5,001 kB	
Bestar	ndsnaam:		~ CS	SV files (*.csv)	~

FIGURE 49 - CSV FILE LOCATOR

Once the file locator has been opened, the user can either select a CSV file, or select none and close the CSV file locator. If closed, nothing happens. If a CSV file is opened, the tool tries to allocate the data of the CSV files into arrays. During this process, a loading bar will occur and will tell how far the process is. If this succeeds, the data titles of the CSV file will be shown in the treeview to the right, as shown below:

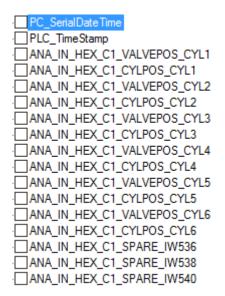


FIGURE 50 - TREEVIEW AFTER LOADING CSV

This treeview is used for the X axis, which is displayed by the message above the treeview. Here the X axis for graph plots can be selected.

If the X axis is selected, on the same place as the x axis treeview, the Y axis treeview will occur. On top of this treeview, a select all and deselect all button will occur as shown in the following figure:

Deselect All	Select All	
PC_TimeStamp	ìme	•
PLC_TimeStam	C1_VALVEPOS_C1	
	C1_CYLPOS_CYL1	
	C1_CYLPOS_CYL2 C1_VALVEPOS_C1	
ANA_IN_HEX_	C1_CYLPOS_CYL3 C1_VALVEPOS_C1	

FIGURE 51 - SELECT ALL AND DESELECT ALL

With these buttons, the user is able to select or deselect the items in the treeview.

Once a node is clicked in the treeview, the user will see that the selected item will be plotted against the earlier selected X axis, as seen in the figure on the next page.

The legend of graph is displayed just right below it, marked with the title: "Legend".

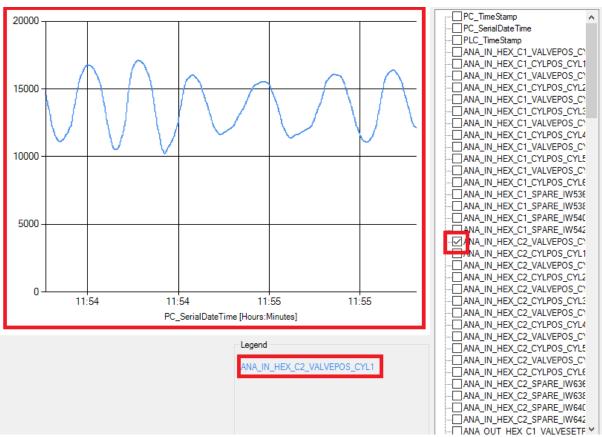


FIGURE 52 - PLOTTED GRAPH AND LEGEND

From now on, it is possible to plot any graph against the selected X axis.

To zoom in, the user is able to select either a region with the mouse, or type their range in manually, by using the options menu in the figure below:

Options
X Maximum
X Minimum
Y Maximum
Y Minimum
Absolute Zero
Apply
Reset

FIGURE 53 - OPTIONS MENU

Within the options menu, the user is able to give values for: Maximum X, Maximum Y, Minimum X and Minimum Y. Once satisfied with the values, the user can press the apply button to apply the settings. If desired, the user can reset the settings to its previous values, by pressing the Reset button. There is also an absolute zero checkbox, which allows the user to resample the time to start

from zero, which can be convenient when using the PLC timestamp since the PLC timestamp is the time since it was turned on.

To display the difference between two graphs, there is an error function implemented, which is accessible by pressing the Show Control Error button. The title aims at the control error, which is for instance the difference between the setpoint postion and the actual position of a valve. To delete the error graph again, the user can press the "clear error graph" button. The "Show control error" button only works if there are only two nodes selected in the treeview to the right.

The buttons are shown in the figure below:

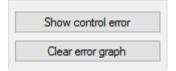


FIGURE 54 - ERROR GRAPH BUTTON

An example of an error function could be:

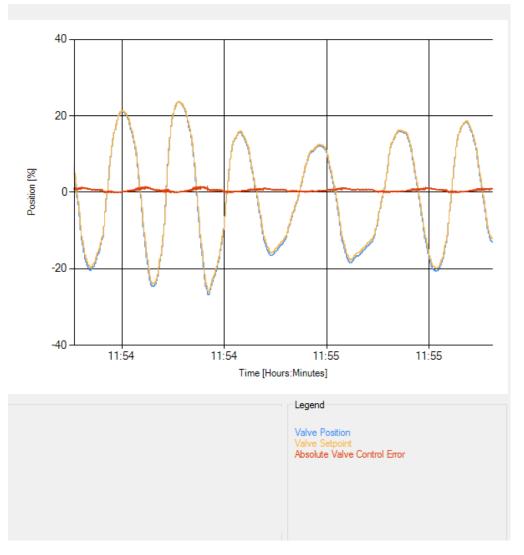


FIGURE 55 - VALVE CONTROL ERROR

In the figure above, the absolute control error for the values is given. This is an example of what might be possible in the future with the tool. For now, the values are not scaled yet, so with raw values we get the following result:

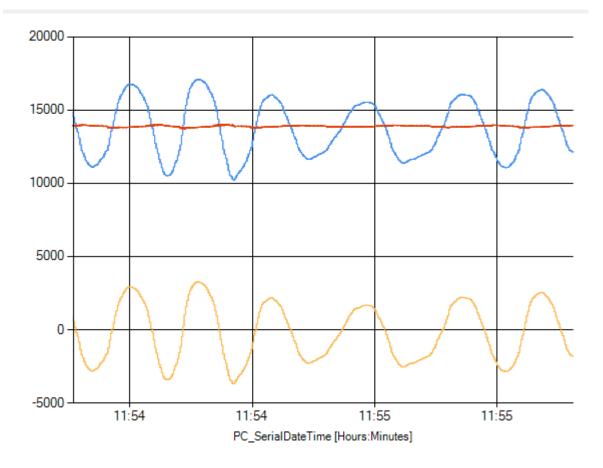


FIGURE 56 - ERRORGRAPH WITHOUT SCALING

Bin

Bin files can be opened as well. This can be done by pressing the "Open Bin File" button, as described in Figure 47.

This will then open up the PLC log converter tool made by J. de Vriend. This will open up the tool, which looks like this:

💀 PLC Log Conver	er	-		×
Source settings				
STL File :		Brows	se	
Source Files :		Open Files	Bin	
CSV file settings				
Destination :	C:\Users\Devin\Documents\Visual Studio 2015\Projects\WindowsApplication9\WindowsApplication9\bin\x86\Debug	Brows	e	
Start Time:	13:23:38 Split file size : 5000 kB			
End Time:	13:23:38 Down sample rate : 0 ms			
Conversion				

FIGURE 57 - BIN LOG CONVERTER

If you then press the browse button on the upper right side, you can select the corresponding STL file. Then the bin files that correspond to the same type as the STL file can be loaded in. For instance: OB38.stl can be loaded in as an STL file, and every OB38 bin file can then be loaded in as well. This is shown in the figure below:

PLC Log Conver	er	- 0	
Source settings			
STL File :	C:\Users\Devin\Documents\Visual Studio 2015\Projects\WindowsApplication9\WindowsApplication9\bin\x86\Debug\LOG_0B38.STL	Browse	
Source Files :	20160330_115528_Log_OB38Log □ PLC_TimeStamp ⊕ ANA_IN ⊕ ANA_OUT ⊕ DIG_IN ⊕ DIG_OUT	Open Bin Files	
CSV file settings Destination :	C:\Users\Devin\Desktop\Ampelmann\PLCloglive\2016\201603\20160330\0B38Log\LOG_0B38_20160330	Browse	
Start Time:	11:55:28 Split file size : 5000 kB		
End Time:	11:56:51 Down sample rate : 0 ms		
Conversion			
	Convert and go back to DDT.		

FIGURE 58 - OB38 EXAMPLE

If the "Convert" button is clicked, the tool converts the Bin file to a CSV file, which is automatically opened by the DDT.

Key Figures

In the "Key Figures" tab, the user is able to derive key figures when a CSV file is loaded in the "Analyse" tab.

On the right side, an exact copy of the treeview from the "Analyse" tab will occur. These nodes can be selected to apply key figures upon. On top of the treeview, there are three buttons. A "Deselect All", an "Inverse" and a "Select All" button.

An example is shown below:

Deselect All	Inverse	Select All
···· PC_TimeStamp		~
PC_SerialDateTime		
PLC_TimeStamp		
- ANA_IN_H	HEX_C1_VALVEF	OS_CYL1
ANA_IN_F	HEX_C1_CYLPOS	CYL1
- ANA_IN_F	HEX_C1_VALVEF	OS_CYL2
- ANA_IN_I	HEX_C1_CYLPOS	CYL2
- ANA_IN_H	HEX_C1_VALVEF	OS_CYL3
- ANA_IN_H	HEX_C1_CYLPOS	S_CYL3
- ANA_IN_H	HEX_C1_VALVEF	OS_CYL4
- ANA_IN_H	HEX_C1_CYLPOS	S_CYL4
- ANA_IN_H	HEX_C1_VALVEF	OS_CYL5
	HEX_C1_CYLPOS	S_CYL5

FIGURE 59 - TREEVIEW WITH DESELECT ALL, INVERSE AND SELECT BUTTONS

If one or more nodes are selected, the user can select which formula to apply. This is possible in the "Options" menu, as shown below:

Options
O Total Absolute Cummulative Length
O Mean
O Max
O Min
\sim .
 Average control error
Average control error Control Error Maximum
Control Error Maximum

FIGURE 60 - OPTIONS MENU

One of these functions can be selected, which are applied to the selected nodes once the "Show" button is clicked. The formulas in the upper part can be applied to one or more nodes, whilst the lower half can only be applied when two nodes are selected.

The result of the key figure calculations are shown in the Key Figure group box on the lower part of the tab, as seen in the figure below:

Kev Figures
Noy riguida
_
The mean of ANA IN HEX C1 CYLPOS CYL1 is 13033.2662293156.
The mean of ANA IN HEX C1 VALVEPOS CYL3 is 13627.8159208847.
The mean of ANA IN HEX C1 VALVEPOS CYL4 is 13655.7066483918.
The mean of ANA IN HEX C1 VALVEPOS CYL5 is 13582.2763145014.
The mean of ANA IN HEX C1 CYLPOS CYL5 is 12666.6542641732.
The mean of ANA IN HEX C1 CYLPOS CYL6 is 13036.1543131303.
The mean of ANA IN HEX C1 SPARE IW540 is 32766.9999999942.
Total travelled length of ANA IN HEX C1 CYLPOS CYL1 is 58124.
Total travelled length of ANA IN HEX C1 VALVEPOS CYL3 is 30836.
Total travelled length of ANA IN HEX C1 VALVEPOS CYL4 is 18632.
Total travelled length of ANA IN HEX C1 VALVEPOS CYL5 is 50564.
Total travelled length of ANA IN HEX C1 CYLPOS CYL5 is 62380.
Total travelled length of ANA IN HEX C1 CYLPOS CYL6 is 48336.
Total travelled length of ANA IN HEX C1 SPARE IW540 is 0.

FIGURE 61 - KEY FIGURE GROUPBOX

Every created key figure can be selected by their respective checkboxes. Once one or more checkboxes are checked, it is possible to apply certain commands to them. These commands or functions are shown in the other "Options" group box, located on the right side of the key figures. This options menu is shown in the figure below:

Options
Select All
Deselect All
Inverse Selection
Delete selected
Clear all
Round
Truncate
1 Decimal
O 2 Decimals
 2 Decimals 3 Decimals
_

FIGURE 62 - OPTIONS MENU FOR KEY FIGURES

The first three are "Select all", "Deselect All" and "Inverse Selection", which selects, deselects or inverse selects the current nodes that are checked.

Deleting a node can be done by clicking the "Delete Selected" button which is the button below the "Inverse Selection" button. This will then delete the selected node(s).

The "Clear all" button will clear the whole Key Figures group box.

The last two buttons are the "Round" and "Truncate" buttons, which can round or truncate a keyfigure, depending on which button is pushed. The user can determine the amount of decimals to truncate or round off to and on default it is set to two. An example of the truncate function to three decimals is shown below, where the upper is before and the lower after the truncation.

The mean of ANA IN HEX C1 CYLPOS CYL1 is 13033.2662293156.
 The mean of ANA IN HEX C1 CYLPOS CYL1 is 13033.266

FIGURE 63 - TRUNCATION EXAMPLE

And an example for the rounding function has been given, with a rounding to two decimals:

✓ The mean of ANA IN HEX C1 VALVEPOS CYL5 is 13582.2763145014.
✓ The mean of ANA IN HEX C1 VALVEPOS CYL5 is 13582.28

FIGURE 64 - ROUNDING EXAMPLE

Save & Send

In the "Save and Send" tab, the user is able to export selected nodes, key figures, graphs and cut off function plots.

The export is in either the way of saving to a local folder, or to send them via email.

Save

In the figure below, the "Save" group box is shown. In this box, the user is able to select which features to export and to give a file name.

Filename:
Selected nodes in Offline Tab
Key Figures
Graphs
Cut Off Function
Save

FIGURE 65 - SAVE GROUPBOX

In the file name textbox, the user gives a certain name which will be used for saving the file. The file will be saved locally and the corresponding folder will be opened up when the user presses the save button and the saving has succeeded.

If "Selected nodes in Offline Tab" is selected, the user can save the selected nodes in a new CSV file. The "Offline" tab is the same as the "Analyse" tab.

If "Key Figures" is selected, the user is able to save the key figures that are displayed in the "Key Figures" tab.

If "Graphs" is selected, the tool will save the plotted graphs from the "Analyse" tab.

If "Cut Off Function" is selected, the user is able to select a certain value for which the plots in the "Analyse" Tab should be cut off to. The user can either select a maximum or a minimum.

If the "Save" button is clicked, a dedicated folder will be created, with the current date as name. This has been done to ensure that there is always a good structure in saving and managing files.

If the Cut Off function is used, a CSV file will be created, which can be opened up again in the tool, so that the cut off can be shown visually with graphs. In the figure below, an example of a dedicated folder is shown:

Savefile 02 06 2016	\ \		
		🔊 Manual.csv	2-6-2016 14:06
	-	Manual.png	2-6-2016 14:06
		Manual.txt	2-6-2016 14:06
		🔊 ManualCutOff.csv	2-6-2016 14:06

FIGURE 66 - DEDICATED FOLDER EXAMPLE

Query

In the "Query" tab, a template has been made for sending queries and requesting data from the same tool.

In the figure below, the connection group box is shown:

Connection		
Mode Selection	Status: Connected	
O Server Select		
Display Erro	r Info	Connect

FIGURE 67 - QUERY MODE CONNECTION GROUP BOX

The user is able to select if either the client or the server side is wanted, by selecting their corresponding radio buttons. Once selected, the tool can behave in either a server way or a client way, guaranteeing that only the DDT is necessary to make a connection between both. Because it is a template, the current version only uses the local host. In the future, multiple IP addresses can be given to the program to let it connect to.

The "Display Error Info" button will let the user know what the error is in case that the "Status" label shows that there is an error.

If the connect button is clicked in server mode, the server will start its loop for finding connecting clients. If the connect button is clicked in client mode, the client will try to find a host.

Troubleshooting

In case of trouble, there is a help button located inside of the tool on the right upper side, which is accessible from every tab.

The help button is shown below:

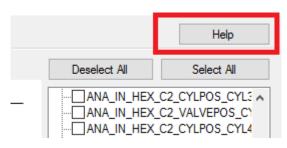


FIGURE 68- HELP BUTTON

Once pressed, the help menu will pop-up, containing likewise info from the manual, displayed per tab. It also contains a F.A.Q. tab which contains the frequently asked questions. This will help finding out errors of the tool.

The help menu is shown in the figure below:

Help -	- 🗆 ×
How to use the tool:	972
Analyse Query Send / Save Key Figures F.A.Q. Step 1: Open a CSV file by pressing the "Open CSV" Button Step 2: Select the X-axis on the right side of the screen. Step 3: Choose one or more y-axis from the same right side of the screen.	4
You are now able to zoom in and out with either the mouse or manually on the left side of the screen.	• •
To change the x axis, press the "Change X Axis" button. If an error graph is wanted, select the "Show Error Graph" button.	
	Done

FIGURE 69 - HELP MENU

Appendix V – Program


```
Imports System.Net
Imports System.Net.Sockets
Imports System.Text
Imports System. Threading
Imports System.Math
Imports System
Imports System.IO
Imports System.Drawing.Imaging
Imports System.Drawing
Imports Excel = Microsoft.Office.Interop.Excel
Imports System.Web.UI.DataVisualization.Charting
Imports System.Windows.Forms.DataVisualization.Charting
Public Class test
    'Declaration of variables that are used throughout the whole program.
    Private Shared output As String = ""
   Dim CSVarray As Array
   Dim CSVarray2 As Array
   Dim distance As Integer
   Dim n true counter As Integer
   Dim forcounter As Integer
   Dim namearray(500) As String
   Dim prev_xmin As Integer
   Dim prev_xmax As Integer
   Dim prev_ymax As Integer
   Dim prev_ymin As Integer
   Dim Customaxis As Boolean
   Dim Filename As String
   Dim csvclicked As Boolean = False
   Dim proceedclicked As Boolean = False
   Dim xaxis As Integer = 2
   Dim differencenamearray(1) As String
   Dim globaloutput As String
    Dim currentserieamount As Integer = 0
    Dim globaldifferencearray As Array
   Dim errorgraphpushed As Boolean = False
   Dim globalnarray As Array
   Dim checkedornotarray As Array
   Dim globallabelcounter As Integer = 0
   Dim globalk As Integer = 0
   Dim changexaxis As Integer = 0
   Dim changexaxisclicked As Boolean = False
   Dim binfilebool As Boolean = False
   Dim globalfilename As String
   Dim scaledboolean As Boolean = False
    Dim globalscaleerrarray As Array
    Dim globallabeldelete As Boolean = False
    Dim emptylabelspace(500)
    Private Sub Open CSV Button Click() Handles Open CSV Button.Click 'Sub that
handles the click event on the "offline" tab of the tool.
        Dim Filename As String
        Static clickamount As Integer = 0
        Dim Rowlength As Integer
        Dim Columnlenght As Integer
        Dim FieldCounter As Integer = 0
        Dim Counter2 As Integer = 0
        Dim Counter3 As Integer = 0
        Dim Counter4 As Integer = 0
        Dim Counter5 As Integer = 0
        clickamount = clickamount + 1 'Variable to count the amount of clicks on the
"Open CSV File" Button.
        CSVloadinglabel.Visible = True 'Loading info in the infoscreen is shown
        ProgressBar1.Visible = True 'Loading info in the infoscreen is shown
        Chart2.Visible = True
                                'Show the graphchart
DE
          AA
                                                                        Page 116 of 147
     HOGESCHOOL
```



```
If binfilebool = False Then
           OpenFileDialog1.ShowDialog() 'Show the dialog
            Filename = OpenFileDialog1.FileName 'Attach Filename to the selected item
        ElseIf binfilebool = True Then
            Filename = Me.globalfilename
        End If
        ProgressBar1.Value = 10 'Set the progress to a certain value
        Try
            Using MyReader As New Microsoft.VisualBasic.
                      FileIO.TextFieldParser(Filename)
               MyReader.TextFieldType = FileIO.FieldType.Delimited
               MyReader.SetDelimiters(",") 'Read through data with , as delimiter.
               Dim currentRow As String()
               While Not MyReader.EndOfData
                    Try
                        currentRow = MyReader.ReadFields() 'Read all fields on the
current line, return them as an array of strings and proceed to the next line.
                        Dim currentField As String
                        For Each currentField In currentRow
                            FieldCounter = FieldCounter + 1
                                                                'Count all fields.
                            Rowlength = currentRow.GetLength(0) 'Get the length of the
rows.
                        Next
                    Catch ex As Microsoft.VisualBasic. ' Catch exception
                            FileIO.MalformedLineException
                        MsgBox("Line " & ex.Message &
                    "is not valid and will be skipped.", 0, "DDT")
                    End Try
               End While
           End Using
        Catch f As Exception
           GoTo line2
        End Try
        ProgressBar1.Value = 30
        Columnlenght = FieldCounter / Rowlength
       Dim CSVarray((Columnlenght - 2) * clickamount, (Rowlength - 1) * clickamount)
As Double
       Try
           Using MyReader As New Microsoft.VisualBasic.
                      FileIO.TextFieldParser(Filename)
               MyReader.TextFieldType = FileIO.FieldType.Delimited
               MyReader.SetDelimiters(",") 'Read through data with , as delimiter.
               Dim currentRow As String()
               While Not MyReader.EndOfData
                   Try
                        currentRow = MyReader.ReadFields()
                        Dim currentField As String
                        For Each currentField In currentRow
                            If Counter4 > Rowlength - 1 Then 'Skip the first line
which contains a string
                               If Counter2 > Rowlength - 1 Then 'Proceed when the end
of the column has reached with the next column
                                   Counter3 = Counter3 + 1
                                    Counter 2 = 0
                                End If
                               CSVarray(Counter3, Counter2) = currentField 'Address
the values to the array
                               Counter2 = Counter2 + 1
                            Fnd Tf
                            Counter4 = Counter4 + 1
DE HAAGS
                                                                        Page 117 of 147
     HOGESCHOOL
```



```
Next
                    Catch ex As Microsoft.VisualBasic.
                            FileIO.MalformedLineException
                        MsgBox("Line " & ex.Message &
                    "is not valid and will be skipped.", 0, "DDT")
                    End Try
                End While
            End Using
        Catch g As Exception
            GoTo line2
        End Try
        ProgressBar1.Value = 50
        Me.CSVarray = CSVarray
        Dim Namearray(Rowlength - 1) As String
        Try
            Using MyReader As New Microsoft.VisualBasic.
                      FileIO.TextFieldParser(Filename)
                MyReader.TextFieldType = FileIO.FieldType.Delimited
                MyReader.SetDelimiters(",") 'Read through data with , as delimiter.
                Dim currentRow As String()
                While Not MyReader.EndOfData
                    Try
                        currentRow = MyReader.ReadFields()
                        Dim currentField As String
                        For Each currentField In currentRow
                            If Counter5 <= Rowlength - 1 Then
                                Namearray(Counter5) = currentField
                                Counter5 = Counter5 + 1
                            End If
                        Next
                    Catch ex As Microsoft.VisualBasic.
                            FileIO.MalformedLineException
                        MsgBox("Line " & ex.Message &
                    "is not valid and will be skipped.", 0, "DDT")
                    End Try
                End While
            End Using
        Catch h As Exception
            GoTo line2
        End Try
        ProgressBar1.Value = 70 'Set the progressbar value to 70%
        For i = 0 To Counter5 - 1
            CSVOfflineTreeview.Nodes.Add(Namearray(i)) ' Add the data to the treeviews
            TreeViewKeyFigures.Nodes.Add(Namearray(i)) ' '
            PreviousTreeview.Nodes.Add(Namearray(i))
            TreeViewXAxis.Nodes.Add(Namearray(i))
            Me.namearray(i) = Namearray(i) ' Give the global name array the same
values as the local one.
        Next
        ProgressBar1.Value = 80 'Set the progressbar value to 80%
        Me.Filename = Filename
        'Show and hide buttons and labels.
        Me.csvclicked = True
        Label8.Visible = True
        CSVOfflineTreeview.Visible = True
        TreeViewXAxis.Visible = True
        Opencsvofflinelabel.Visible = False
        ProgressBar1.Value = 100
        Select_All_KeyTreeview_Button.Visible = True
        Deselect_All_KeyTreeview_Button.Visible = True
        InverseKey_Button.Visible = True
line2.
        ProgressBar1.Visible = False
DE
                                                                         Page 118 of 147
```



```
CSVloadinglabel.Visible = False
        xaxisselectionlabel.Visible = True
    End Sub
    Private Sub SelectAll_Click(sender As Object, e As EventArgs) Handles
SelectAll.Click ' Handles the select all button on the offline tab
        Dim parent As TreeNode
        For Each parent In CSVOfflineTreeview.Nodes 'Loop through the CSV Offline
Treeview nodes
            parent.Checked = True ' Check all checkboxes
        Next
    End Sub
    Private Sub DeselectAll_Click(sender As Object, e As EventArgs) Handles
DeselectAll.Click ' Handles the deselect button on the offline tab
        Dim parent As TreeNode
        For Each parent In CSVOfflineTreeview.Nodes 'Loop through the CSV Offline
Treeview nodes
            parent.Checked = False 'Uncheck all checkboxes
        Next
    End Sub
    Private Sub Aftercheck(sender As Object, e As EventArgs) Handles
CSVOfflineTreeview.AfterCheck 'Handles what has to happen after a checkbox in the
treeview on the offline tab has been checked or unchecked
        Dim n_counter As Integer = 0
        Dim n_array(500)
        Dim m_array(500)
        Dim Amount As Integer
        Dim seriecounter As Integer = 0
        Dim n As TreeNode
        Dim deletecounter As Integer = 0
        Dim m As TreeNode
        Dim xaxis As Integer
        Dim emptyarrayindex As Integer = 0
        Static previouscheckedarray(500)
        Dim deletenumber As Integer = 0
        Dim previoustreeviewcheckedcounter As Integer = 0
        Dim delete As Boolean = False
        Dim lbl(500) As Label
        Dim deleteamount As Integer = 0
        Static lblcount As Integer = 0
        For q = 0 To 500
            lbl(q) = New Label
            lbl(q).Text = ""
        Next
        xaxis = Me.xaxis
        Chart2.ChartAreas(0).CursorX.IsUserSelectionEnabled = True
'Let the user select a region to zoom into with the mouse on the X-axis
       Chart2.ChartAreas(0).CursorY.IsUserSelectionEnabled = True
'Let the user select a region to zoom into with the mouse on the Y-axis
        Amount = CSVarray.GetLength(0)
'Get the lenght of the column of the csv file
        For Each n In CSVOfflineTreeview.Nodes
            If n.Checked = True Then
                n_array(n_counter) = n.Index
'Fill an array with the necessary index values. This is to overcome a problem that
occurs when checking a box and another one has already been checked.
                n_counter = n_counter + 1
                infolabel.Text = namearray(n.Index) & " is now selected!"
'Display the info on the infolabel
                                                                         Page 119 of 147
      HOGESCHOOL
```



```
n.Tag = "checked"
            ElseIf n.Checked = False And PreviousTreeview.Nodes(n.Index).Checked =
True And Me.changexaxis = 0 Then
                                   ' Check if the current value was checked before to
know which graph to delete
                'n.index = the number which now is deselected.
                n.Tag = "remove"
                delete = True
            End If
        Next
        If delete = True Then
            For Each n In CSVOfflineTreeview.Nodes
                If n.Tag = "checked" Then
                                                              'If the current node has
a "checked" tag
                    deletecounter = deletecounter + 1
                                                              'Count 1 up at the
delete<br/>counter for each node that doesn't need to be deleted
                ElseIf n.Tag = "remove" And Me.changexaxis = False Then
                                                                             'If the
node is tagged for removal and the user hasn't changed the x axis
                    Try
                        Chart2.Series.RemoveAt(deletecounter)
                                                                             'Try to
remove the current one
                        LegendGroup.Controls.RemoveAt(deletecounter)
                                                                             'Remove
the legendtext
                        'Get the created empty space
                                                                             ' Set the
                        globallabeldelete = True
global variable for a deleted label to true
                        emptylabelspace(deleteamount) = deletecounter * 13
                        deleteamount = deleteamount + 1
                    Catch
                        GoTo line2
                                                                             '0n
failure, exit the for loop
                    End Try
                    Me.currentserieamount = Me.currentserieamount - 1
                                                                             'Remove
one from the seriecounter, to make the global seriecounter even again.
                    n.Tag = ""
                    GoTo line2
                End If
            Next
            delete = False 'Set the delete boolean back to false to reset the
delete procedure.
        End If
line2:
        For j = 0 To 500
            If n array(j) Is Nothing Then
                emptyarrayindex = j
                GoTo Line1
            End If
        Next
Line1:
        For i = Me.currentserieamount To emptyarrayindex - 1 'Start with the last
added serie
            Chart2.ChartAreas(0).CursorX.IsUserSelectionEnabled = True
'Let the user select a region to zoom into with the mouse on the X-axis
            Try
                                        'Add a serie
                Chart2.Series.Add(i)
                If Me.xaxis = 1 Or Me.xaxis = 0 Then
                    Chart2.Series(i).XValueType = ChartValueType.Time
```



```
Chart2.Series(i).ChartType =
DataVisualization.Charting.SeriesChartType.Line
                                                               'Make a line-style
graph instead of a bar-style
                End If
                Chart2.Series(i).ChartType =
DataVisualization.Charting.SeriesChartType.Line
                                                                'Make a line-style
graph instead of a bar-style
           Catch
                Chart2.Series.Add(i + 1) 'Add a serie +1 if the serie already
exists.
                If Me.xaxis = 1 Or Me.xaxis = 0 Then
                    Chart2.Series(i + 1).XValueType = ChartValueType.Time
                    Chart2.Series(i + 1).ChartType =
DataVisualization.Charting.SeriesChartType.Line
                                                                'Make a line-style
graph instead of a bar-style
                End If
                Chart2.Series(i).ChartType =
                                                              'Make a line-style
DataVisualization.Charting.SeriesChartType.Line
graph instead of a bar-style
            End Try
            'Chart2.Series(i).LegendText = namearray(n_array(i))
'Set the legend text to the correct relevant name
            LegendGroup.Controls.Add(lbl(i))
            lbl(i).Text = namearray(n_array(i))
            lbl(i).Size = New Size(400, 13)
            If globallabeldelete = False And deleteamount = 0 Then
                lbl(i).Location = New Point(6, 30 + lblcount) 'Give the correct
location of the new label
                lblcount = lblcount + 13
            End If
            If globallabeldelete = True And Not deleteamount = 0 Then
                lbl(i).Location = New Point(6, 30 + emptylabelspace(deleteamount))
'Give the correct location of the new label
                deleteamount = deleteamount - 1
                globallabeldelete = False ' Reset that a label has been deleted
            Fnd Tf
            Chart2.ApplyPaletteColors() 'Let the program be able to access the colors
of the series
            lbl(i).ForeColor = Chart2.Series(i).Color
            For k = 0 To Amount - 1
                If Not xaxis = -1 And Not Me.xaxis = 1 Then
                    Chart2.Series(i).Points.AddXY(CSVarray(k, xaxis), CSVarray(k,
               'Add Data points to make the graph.
n_array(i)))
               ElseIf Me.xaxis = 1 Then
                    Chart2.Series(i).Points.AddXY(CSVarray(k, xaxis), CSVarray(k,
               'Add Data points to make the graph.
n array(i)))
               Else
                    Chart2.Series(i).Points.AddXY(CSVarray(k, 2), CSVarray(k,
               'Add Data points to make the graph.
n_array(i)))
               End If
            Next
            Me.currentserieamount = Me.currentserieamount + 1
        Next
        globalnarray = n_array
        previouscheckedarray = n_array
        For Each n In CSVOfflineTreeview.Nodes
                                                                         Page 121 of 147
```



```
If n.Checked = True Then
                PreviousTreeview.Nodes(n.Index).Checked = True 'copy the checkboxes in
another treeview for deleting purposes
            ElseIf n.Checked = False Then
                PreviousTreeview.Nodes(n.Index).Checked = False 'copy the checkboxes
in another treeview for deleting purposes
            Fnd Tf
        Next
    End Sub
    Private Sub ApplyButton_Click(sender As Object, e As EventArgs) Handles
ApplyButton.Click
                    ' Handles what happens when the apply button is pushed on the
offline tab.
        Dim seriecounter As Integer = 0
        seriecounter = Chart2.Series.Count
        If seriecounter > 0 Then 'Prevent applying settings before a serie has been
added
            Dim newxarray(CSVarray.GetLength(0) - 1) As String
            Me.prev xmin = Chart2.ChartAreas(0).AxisX.Minimum
                                                                 'Store the current
values of the scale for later use in the reset button.
            Me.prev_xmax = Chart2.ChartAreas(0).AxisX.Maximum
            Me.prev_ymin = Chart2.ChartAreas(0).AxisY.Minimum
            Me.prev_ymax = Chart2.ChartAreas(0).AxisY.Maximum
            If Not X_Min_TextBox.Text = vbNullString Then 'check if the boxes are
not empty.
                Chart2.ChartAreas(0).AxisX.Minimum = X_Min_TextBox.Text
                infolabel.Text = "Custom axis values applied!"
                                            'Set customaxis to true for other parts in
                Customaxis = True
the tool
            End If
            If Not X_Max_TextBox.Text = vbNullString Then
                Chart2.ChartAreas(0).AxisX.Maximum = X_Max_TextBox.Text
                infolabel.Text = "Custom axis values applied!"
                Customaxis = True
            Fnd Tf
            If Not Y_Min_TextBox.Text = vbNullString Then
                Chart2.ChartAreas(0).AxisY.Minimum = Y_Min_TextBox.Text
                infolabel.Text = "Custom axis values applied!"
                Customaxis = True
            End If
            If Not Y Max TextBox.Text = vbNullString Then
                Chart2.ChartAreas(0).AxisY.Maximum = Y Max TextBox.Text
                infolabel.Text = "Custom axis values applied!"
                Customaxis = True
            End If
            If Abs Zero.Checked = True Then 'Make the timestamp start from 0
                For i = 0 To CSVarray.GetLength(0) - 1
                    newxarray(i) = CSVarray(i, xaxis) - CSVarray(0, xaxis)
                    Chart2.Series(0).Points(i).AxisLabel = newxarray(i).ToString
                    Chart2.ChartAreas(0).AxisX.Interval = 10000
                Next
            End If
        Flse
            MsgBox("No graph to apply settings to.", 0, "DDT")
        End If
    End Sub
```

Private Sub Reset_Button_Click(sender As Object, e As EventArgs) Handles Reset_Button.Click 'Handles the reset button on the offline tab.


```
Chart2.ChartAreas(0).AxisX.Minimum = Me.prev_xmin
            Chart2.ChartAreas(0).AxisX.Maximum = Me.prev_xmax
            Chart2.ChartAreas(0).AxisY.Minimum = Me.prev ymin
            Chart2.ChartAreas(0).AxisY.Maximum = Me.prev_ymax
            X_Min_TextBox.Text = "" 'Delete the text in the boxes.
            X_Max_TextBox.Text = ""
            Y_Min_TextBox.Text = ""
            Y_Max_TextBox.Text = ""
            infolabel.Text = "Axis settings set back to default!"
            Me.Customaxis = False
        Else
            MsgBox("Nothing to reset.", 0, "DDT")
        End If
    End Sub
    Private Sub Aftercheck2(sender As Object, e As TreeViewEventArgs) Handles
TreeViewXAxis.AfterCheck ' Handles the treeview for the x-axis.
        Dim n As TreeNode
        Dim counter As Integer = 0
        For Each n In TreeViewXAxis.Nodes
                                            'Loop through the x-axis treeview. This
will only happen once, because only 1 can be clicked per time.
            If n.Checked = True Then
                Me.xaxis = n.Index 'Select the x-axis
                MsgBox(namearray(n.Index) & " is selected as x-axis.", 0, "DDT")
                infolabel.Text = namearray(n.Index) & " is selected as x-axis."
                counter = counter + 1
            End If
       Next
        If counter > 0 Then
                                    'If an x axis has been chosen, hide the x axis
treeview
            TreeViewXAxis.Visible = False
            xaxisselectionlabel.Visible = False
            SelectAll.Visible = True
            DeselectAll.Visible = True
            Change_X_Xaxis.Visible = True
        End If
        If Not Me.xaxis = 1 Then
            Chart2.ChartAreas(0).AxisX.Title = namearray(xaxis)
        ElseIf Me.xaxis = 1 Then
            Chart2.ChartAreas(0).AxisX.Title = namearray(xaxis) & " [Hours:Minutes]"
        End If
        Me.changexaxis = 0
    End Sub
    Private Sub Change X Xaxis Click(sender As Object, e As EventArgs) Handles
Change X Xaxis.Click 'Handles the change x-axis button.
        Dim amount As Integer = 0
        Dim newxaxis As Integer = 2
        Me.changexaxis = 1
        System.Threading.Thread.Sleep(1000)
        amount = Me.currentserieamount
        xaxisselectionlabel.Visible = True
        SelectAll.Visible = False
        DeselectAll.Visible = False
        MsgBox("Please select a new x-axis in the treeview to the right.", 0, "DDT")
        TreeViewXAxis.Nodes(Me.xaxis).Checked = False
        TreeViewXAxis.Visible = True
        Me.changexaxis = 1
        For i = amount - 1 To 0 Step -1
            Chart2.Series.RemoveAt(i)
DE
                                                                         Page 123 of 147
     HOGESCHOOL
```



```
CSVOfflineTreeview.Nodes(globalnarray(i)).Checked = False 'Uncheck the
previous checked values for the y axes, to overcome that double x-axis are used, which
will give an error.
        Next
        Me.changexaxis = 1
        Me.currentserieamount = 0
    End Sub
    Private Sub Help_Button_Click(sender As Object, e As EventArgs) Handles
Help_Button.Click ' Handles the global help button.
        My.Forms.Form2.Show() ' Show the second form.
    End Sub
    Private Sub SaveButton_Click(sender As Object, e As EventArgs) Handles
SaveButton.Click ' Handles the event that happens when the save button is clicked.
        Dim never As Boolean = False
        Dim array(500)
        If FilenameTextbox.Text = vbNullString Or FilenameTextbox.Text.Contains("/")
Or FilenameTextbox.Text.Contains("\") Or FilenameTextbox.Text.Contains(":") Or FilenameTextbox.Text.Contains("*") Or FilenameTextbox.Text.Contains("?") Or
FilenameTextbox.Text.Contains("<") Or FilenameTextbox.Text.Contains(">") Or
FilenameTextbox.Text.Contains("|") Or FilenameTextbox.Text.Contains(Chr(34)) Then
            MsgBox("Please type in a valid filename.", 0, "DDT") 'Display a message
when the filename contains characters that are not allowed.
        Else
            Dim regDate As Date = Date.Now() 'Get the current time.
            Dim strDate As String = regDate.ToString("dd MM yyyy") 'Translate the
current time into a specific format
            If (Not System.IO.Directory.Exists("Savefile " & strDate)) Then 'Make a
folder with the time string if it doesn't exist already.
                System.IO.Directory.CreateDirectory("Savefile " & strDate)
            End If
            If Not SaveCheck1.Checked = True And Not SaveCheck2.Checked = True And Not
SaveCheck3.Checked = True And Not SaveCheck4.Checked = True Then ' check whether the
boxes are checked
                MsgBox("Please check at least one of the check boxes.", 0, "DDT")
            Else
                If SaveCheck1.Checked = True Then
                     Dim objWriter As New System.IO.StreamWriter("Savefile " & strDate
& "/" & FilenameTextbox.Text & ".csv")
                     Dim n As TreeNode
                    Dim counter As Integer = 0
                     For Each n In CSVOfflineTreeview.Nodes
                         If n.Checked = True Then
                             array(counter) = n.Index ' fill an array to be able to get
the checked values later on
                             counter = counter + 1
                         End If
                     Next
                     Dim savearray(CSVarray.GetLength(0), counter) 'make an array for
the selected nodes
                     For k = 0 To counter - 1
                         For m = 0 To CSVarray.GetLength(0) - 1
                             savearray(m, k) = CSVarray(m, array(k)) 'Store the values
in the array
                         Next
                    Next
```


For i = 0 To counter - 1 objWriter.Write(namearray(array(i))) 'write the names If i < counter - 1 Then 'only write a comma when the line is not at it's end objWriter.Write(",") End If Next objWriter.Write(objWriter.NewLine) 'Write a new line, to seperate the head titles from the numbers. For j = 0 To CSVarray.GetLength(0) - 1 For k = 0 To counter - 1 objWriter.Write(savearray(j, k)) 'Write the values in line shape (from left to right) If k < counter - 1 Then 'only write a comma when the line is not at it's end objWriter.Write(",") End If Next If j < CSVarray.GetLength(0) - 1 Then</pre> objWriter.Write(objWriter.NewLine) 'After every line, write an empty line for the next piece of code, if the code is not yet at the end End If Next objWriter.Close() 'Close the stream Process.Start("Savefile " & strDate) End If If SaveCheck2.Checked = True Then ' If box two is checked Dim m As CheckBox Dim objWriter As New System.IO.StreamWriter("Savefile " & strDate & "/" & FilenameTextbox.Text & ".txt") 'Open up a textfile objWriter.WriteLine(strDate) ' Write the current date to the file For i = 0 To globallabelcounter - 1 ' For each keyfigure m = GroupBox6.Controls(i) objWriter.WriteLine(m.Text) 'write the keyfigure result in the text file If i = globallabelcounter - 1 Then objWriter.Close() 'Close the file when all keyfigures are written to the file. Keyfiguressaveinfo.Text = "The Keyfigures are saved in: " & "Savefile" & strDate & "/" & FilenameTextbox.Text & ".txt" Process.Start("Savefile " & strDate) End If Next End If If SaveCheck3.Checked = True Then ' If box three is checked. Chart2.SaveImage("Savefile " & strDate & "/" & FilenameTextbox.Text & ".png", System.Drawing.Imaging.ImageFormat.Png) ' Save the chart as a png file. Graphsaveinfo.Text = "The Graphs have been saved!" Process.Start("Savefile " & strDate) End If If SaveCheck4.Checked = True Then If MaxCutOff Rad.Checked = True And MaxCutOff Text.Text <> vbNullString And IsNumeric(MaxCutOff Text.Text) Then Dim arraylength As Integer Dim n As TreeNode Dim counter As Integer = 0 Dim counter1 As Integer = 0 Dim counter2 As Integer = 1 DE HAAGS Page 125 of 147


```
Chart2.Series.Add(Me.currentserieamount)
                        For r = 0 To CSVarray.GetLength(0) - 1
Chart2.Series(Me.currentserieamount).Points.AddXY(CSVarray(r, Me.xaxis),
MaxCutOff_Text.Text)
                        Next
                        Chart2.Series(Me.currentserieamount).ChartType =
DataVisualization.Charting.SeriesChartType.Line
                        For Each n In CSVOfflineTreeview.Nodes
                            If n.Checked = True Then
                                array(counter) = n.Index ' fill an array to be able to
get the checked values later on
                                counter = counter + 1
                            End If
                        Next
                        If counter = 0 Then
                            GoTo line1
                        End If
                        Dim savearray(CSVarray.GetLength(0), counter) 'make an array
for the selected nodes
                        For k = 0 To counter - 1
                            For m = 0 To CSVarray.GetLength(0) - 1
                                savearray(m, k) = CSVarray(m, array(k)) 'Store the
values in the array
                            Next
                        Next
                        Dim cutoffarray(CSVarray.GetLength(0), counter)
                        For a = 0 To counter - 1
                            For g = 0 To CSVarray.GetLength(0) - 1
                                If MaxSmaEqu_Rad.Checked = True Then
                                     If savearray(g, a) <= MaxCutOff_Text.Text Then</pre>
                                         cutoffarray(counter1, 0) = CSVarray(g, 1)
'Store timestamp data
                                         cutoffarray(counter1, counter2) = savearray(g,
a)
                                         counter1 = counter1 + 1 'Count one up
                                     End If
                                ElseIf MaxSma Rad.Checked = True Then
                                     If savearray(g, a) < MaxCutOff_Text.Text Then</pre>
                                         cutoffarray(counter1, 0) = CSVarray(g, 1)
'Store timestamp data
                                         cutoffarray(counter1, counter2) = savearray(g,
a)
                                         counter1 = counter1 + 1 'Count one up
                                     End If
                                Else
                                     GoTo line1
                                End If
                            Next
                            counter2 = counter2 + 1
                            counter1 = 0
                        Next
                        Dim objWriter As New System.IO.StreamWriter("Savefile " &
strDate & "/" & FilenameTextbox.Text & "CutOff" & ".csv")
                        objWriter.Write(namearray(0) & ",") 'Write the timestamp
                                                                          Page 126 of 147
```


'write the names For i = 0 To counter - 1 objWriter.Write(namearray(array(i))) 'write the names If i < counter - 1 Then 'only write a comma when the line is not at it's end objWriter.Write(",") End If Next For o = 0 To cutoffarray.GetLength(0) If IsNothing(cutoffarray(o, 0)) Then 'If there is nothing left in the array, get the length of the total filled part arraylength = o 'Get the length of the total filled array GoTo line2 'exit the for loop End If Next line2: objWriter.Write(objWriter.NewLine) 'Write a new line, to seperate the head titles from the numbers. For j = 0 To arraylength - 1 For 1 = 0 To counter objWriter.Write(cutoffarray(j, 1)) 'Write the values in line shape (from left to right) If 1 < counter Then 'only write a comma when the line is not at it's end objWriter.Write(",") End If Next If j < arraylength - 1 Then</pre> objWriter.Write(objWriter.NewLine) 'After every line, write an empty line for the next piece of code, if the code is not yet at the end End If Next objWriter.Close() Process.Start("Savefile " & strDate) ElseIf MaxCutOff_Rad.Checked = True And (MaxCutOff_Text.Text = vbNullString Or Not IsNumeric(MaxCutOff_Text.Text)) Then 'If the radiobutton is checked, but it is empty or contains something other than numbers display a warning MsgBox("Enter a valid number.", 0, "ddt") End If If MinCutOff Rad.Checked = True And MinCutOff Text.Text <> vbNullString And IsNumeric(MinCutOff Text.Text) Then Dim arraylength As Integer Dim n As TreeNode Dim counter As Integer = 0Dim counter1 As Integer = 0 Dim counter2 As Integer = 1 arraylength = CSVarray.GetLength(0) For Each n In CSVOfflineTreeview.Nodes If n.Checked = True Then array(counter) = n.Index ' fill an array to be able to get the checked values later on counter = counter + 1End If Next If counter = 0 Then GoTo line1 Fnd Tf Dim savearray(CSVarray.GetLength(0), counter) 'make an array for the selected nodes For k = 0 To counter - 1 Page 127 of 147 HOGESCHOOL

For m = 0 To CSVarray.GetLength(0) - 1 savearray(m, k) = CSVarray(m, array(k)) 'Store the values in the array Next Next Dim cutoffarray(CSVarray.GetLength(0), counter) For a = 0 To counter - 1 For g = 0 To CSVarray.GetLength(0) - 1 If MinGreaEqu_Rad.Checked = True Then If savearray(g, a) >= MinCutOff_Text.Text Then cutoffarray(counter1, 0) = CSVarray(g, 1) 'Store timestamp data cutoffarray(counter1, counter2) = savearray(g, a) counter1 = counter1 + 1 End If ElseIf MinGrea Rad.Checked = True Then If savearray(g, a) > MinCutOff_Text.Text Then cutoffarray(counter1, 0) = CSVarray(g, 1) 'Store timestamp data cutoffarray(counter1, counter2) = savearray(g, a) counter1 = counter1 + 1 End If Flse GoTo line1 End If Next counter2 = counter2 + 1counter1 = 0Next Dim objWriter As New System.IO.StreamWriter("Savefile " & strDate & "/" & FilenameTextbox.Text & "CutOff" & ".csv") objWriter.Write(namearray(0) & ",") 'Write the timestamp For i = 0 To counter - 1 objWriter.Write(namearray(array(i))) 'write the names If i < counter - 1 Then 'only write a comma when the line is not at it's end objWriter.Write(",") End If Next For o = 0 To cutoffarray.GetLength(0) If IsNothing(cutoffarray(o, 0)) Then 'If there is nothing left in the array, get the length of the total filled part arraylength = o 'Get the length of the total filled array GoTo line3 'exit the for loop End If Next line3: objWriter.Write(objWriter.NewLine) 'Write a new line, to seperate the head titles from the numbers. For j = 0 To arraylength - 1 For 1 = 0 To counter HAAG DE Page 128 of 147


```
objWriter.Write(cutoffarray(j, 1)) 'Write the values
in line shape (from left to right)
                                If 1 < counter Then 'only write a comma when the line
is not at it's end
                                    objWriter.Write(",")
                                End If
                            Next
                            If j < arraylength - 1 Then
                                objWriter.Write(objWriter.NewLine) 'After every line,
write an empty line for the next piece of code, if the code is not yet at the end
                            End If
                        Next
                        objWriter.Close()
                        Process.Start("Savefile " & strDate)
                    ElseIf MinCutOff_Rad.Checked = True And (MinCutOff_Text.Text =
vbNullString Or Not IsNumeric(MinCutOff_Text.Text)) Then 'If the radiobutton is
checked, but it is empty or contains something other than numbers display a warning
                        MsgBox("Enter a valid number.")
                    End If
                End If
            End If
        End If
        If never = True Then
line1:
            MsgBox("No nodes were checked", 0, "DDT")
        End If
    End Sub
    Private Sub SendButton_Click(sender As Object, e As EventArgs) Handles
SendButton.Click
        If EmailTextbox.Text = vbNullString Then
            MsgBox("Please type In a valid e-mail address.", 0, "DDT")
        End If
        If Not SendCheck1.Checked = True And Not SendCheck2.Checked = True And Not
SendCheck3.Checked = True Then
            MsgBox("Please check at least one Of the check boxes.", 0, "DDT")
        End If
    End Sub
    Public Sub Connect(ByVal serverIP As String, ByVal message As String)
        Dim output As String = ""
        While (True)
            System.Threading.Thread.Sleep(10)
            Try
                ' Create a TcpClient.
                ' The client requires a TcpServer that is connected
                ' to the same address specified by the server and port
                ' combination.
                Dim port As Int32 = 13
                Dim client As New TcpClient(serverIP, port)
                ' Translate the passed message into ASCII and store it as a byte
array.
                Dim data(255) As [Byte]
                data = System.Text.Encoding.ASCII.GetBytes(message)
                ' Get a client stream for reading and writing.
                ' Stream stream = client.GetStream();
                Dim stream As NetworkStream = client.GetStream()
                ' Send the message to the connected TcpServer.
                stream.Write(data, 0, data.Length)
DE
                                                                         Page 129 of 147
      HOGESCHOOL
```



```
output = "Sent:
                                   " + message
                MsgBox(output)
                ' Buffer to store the response bytes.
                data = New [Byte](255) {}
                ' String to store the response ASCII representation.
                Dim responseData As String = String.Empty
                ' Read the first batch of the TcpServer response bytes.
                If stream.DataAvailable Then
                    Dim bytes As Int32 = stream.Read(data, 0, data.Length)
                    responseData = System.Text.Encoding.ASCII.GetString(data, 0,
bytes)
                    output = responseData
                End If
                If output = "Goodbye" Then
                    Me.globaloutput = output
                    Status Label.Text = "Connected"
                    Error Info Button.Visible = False
                    GoTo line1
                Else
                    Status_Label.Text = "No response from server."
                End If
                ' Close everything.
                stream.Close()
                client.Close()
            Catch e As ArgumentNullException
                output = "ArgumentNullException: " + e.ToString()
                Me.globaloutput = output
                MsgBox(output)
                Status_Label.Text = "Argument Null error. Click the button below to
find out more."
                Error_Info_Button.Visible = True
            Catch e As SocketException
                output = "SocketException: " + e.ToString()
                Me.globaloutput = output
                Status Label.Text = "No response from server. Click the button below
to find out more."
                Error_Info_Button.Visible = True
            End Try
        End While
line1:
    End Sub
    Private Sub Connect Button Click(sender As Object, e As EventArgs) Handles
Connect Button.Click
        'In this code example, use a hard-coded
        'IP address And message.
        Dim serverIP As String = "localhost"
        Dim message As String = "Hello"
        Connect(serverIP, message)
    End Sub
```

Private Sub Error_Info_Button_Click(sender As Object, e As EventArgs) Handles
Error_Info_Button.Click


```
MsgBox("No connection with Server. Press the connect button again, or try
restarting the server via TeamViewer.")
    End Sub
    Private Sub Show_Button_Click(sender As Object, e As EventArgs) Handles
Show_Button.Click ' Handles the show button click event on the keyfigures tab
        Dim n As TreeNode
        Dim indexarray(500)
        Dim indexcounter As Integer
        indexcounter = 0
        Dim emptyarrayindex As Integer
        Dim countarray As Array
        countarray = Me.CSVarray
        Dim k As Integer
        Dim arraylenght As Integer
        Dim biggerprevious As Integer = 0
        Dim smallerprevious As Integer = 999999999
        Dim summation As Double = 0
        Dim summation2 As Double = 0
        Dim currentvalue As Double = 0
        Dim mean As Double = 0
        Dim 1b1(500) As CheckBox
        Dim treenodecheckcounter As Integer = 0
        'Dim w As TreeNode
        Dim summation3 As Integer = 0
        Dim arraylength As Integer = 0
        Dim average As Integer = 0
        Dim executed As Boolean = False
        Dim namedifferencearray(1)
        Dim biggererrorprevious As Integer = 0
        If Me.csvclicked = True Then
                                            'If a CSV file has been loaded in the
offline tab, proceed
            arraylength = CSVarray.GetLength(0)
            arraylenght = countarray.GetLength(0)
            Dim differencearray(arraylength)
            Opencsvofflinelabel.Visible = False
            For q = 0 To 500
                lbl(q) = New CheckBox
                lbl(q).Text = ""
            Next
                                'Get the location value
            k = Me.globalk
            If Not Mean Rad.Checked = True And Not Tot Len Rad.Checked = True And Not
Max Rad.Checked = True And Not Min Rad.Checked = True And Not AvgConErr Rad.Checked =
True And Not ConErrMax Rad.Checked = True And Not ConErrMin Rad.Checked Then
                MsgBox("Please check an option first.", 0, "DDT")
                                                                    ' If no option has
been checked, show a warning message
            Else
                For Each n In TreeViewKeyFigures.Nodes 'Loop through all nodes in the
keyfigures tab treeview
                    If n.Checked = True Then
                        indexarray(indexcounter) = n.Index
                        indexcounter = indexcounter + 1
                    End If
                Next
                If Not indexcounter = 0 Then
                    For j = 0 To 500
                        If indexarray(j) Is Nothing Then
                            emptyarrayindex = j
                            GoTo Line1
                        End If
                    Next
Line1:
DE
         AAG
                                                                         Page 131 of 147
```



```
For i = 0 To emptyarrayindex - 1
                        If Tot Len Rad.Checked Then
                            For j = 1 To arraylenght - 1
                                currentvalue = Abs(countarray(j, indexarray(i)) -
countarray(j - 1, indexarray(i))) 'Calculate cummulative absolute distance
                                summation = summation + currentvalue
                                                                             'Sum all
values
                            Next
                            GroupBox6.Controls.Add(lbl(i))
                                                                 'Add a label
                            lbl(i).Text = "Total travelled length of " &
namearray(indexarray(i)) & " is " & summation & "." 'Add text to the label
                            lbl(i).Size = New Size(400, 15)
                            lbl(i).Location = New Point(6, 30 + k)
                                                                         'Give the
correct location of the new label
                            lbl(i).Tag = "totlen"
                            k = k + 15
                                            'Change the location +15
                            summation = 0 'Reset the summation
                        End If
                        If Mean Rad.Checked = True Then
                            For 1 = 0 To arraylenght - 1
                                mean = countarray(1, indexarray(i)) / arraylenght
                                summation2 = summation2 + mean
                            Next
                            GroupBox6.Controls.Add(lbl(i))
                            lbl(i).Text = "The mean of " & namearray(indexarray(i)) &
" is " & summation2 & "."
                            lbl(i).Size = New Size(400, 15)
                            lbl(i).Location = New Point(6, 30 + k) 'Give the correct
location of the new label
                            lbl(i).Tag = "mean"
                            k = k + 15 'Change the location +15
                            summation2 = 0 'Reset the summation
                        End If
                        If Max_Rad.Checked = True Then
                            For m = 0 To arraylenght - 1
                                If biggerprevious > countarray(m, indexarray(i)) Then
'If the previous value was larger, than the larger value is the most large and the
current value is smaller
                                    biggerprevious = biggerprevious
                                Else
                                    biggerprevious = countarray(m, indexarray(i))
'If the previous value was smaller, the larger one is the current one
                                End If
                            Next
                            GroupBox6.Controls.Add(lbl(i))
                            lbl(i).Text = "The max of " & namearray(indexarray(i)) & "
is " & biggerprevious & "."
                            lbl(i).Size = New Size(400, 15)
                            lbl(i).Location = New Point(6, 30 + k) 'Give the correct
location of the new label
                            lbl(i).Tag = "max"
                            k = k + 15 'Change the location +15
                        End If
                        If Min Rad.Checked = True Then
                            For o = 0 To arraylenght - 1
                                If smallerprevious < countarray(o, indexarray(i)) Then</pre>
' check whether the previous value if smaller, if so than the current one is larger
and hence the previous one remains the smallest
                                    smallerprevious = smallerprevious
                                                                         Page 132 of 147
     HAAGS
```



```
Else
                                    smallerprevious = countarray(o, indexarray(i))
'The other way around as the one above.
                                End If
                            Next
                            GroupBox6.Controls.Add(lbl(i))
                            lbl(i).Text = "The min of " & namearray(indexarray(i)) & "
is " & smallerprevious & "."
                            lbl(i).Size = New Size(400, 15)
                            lbl(i).Location = New Point(6, 30 + k) 'Give the correct
location of the new label
                            lbl(i).Tag = "min"
                            k = k + 15 'Change the location +15
                        End If
                        If AvgConErr_Rad.Checked = True And executed = False Then
                            If Not indexcounter = 2 Then
                                MsgBox("Please select two checkboxes from the
treeview.")
                            Else
                                For y = 0 To 1
                                    namedifferencearray(y) = namearray(indexarray(y))
'Store the name in the difference array for comparing two functions
                                Next
                                For t = 0 To arraylength - 1
                                    differencearray(t) = CSVarray(t, indexarray(0)) -
CSVarray(t, indexarray(1)) 'Substract both functions to get the difference.
                                Next
                                For p = 0 To arraylength - 1
                                    summation3 = differencearray(p) + summation3
                                Next
                                average = summation3 / (arraylength - 1)
                                GroupBox6.Controls.Add(lbl(i))
                                lbl(i).Text = "The average error of " &
namedifferencearray(0) & " and " & namedifferencearray(1) & " is " & average & "."
                                lbl(i).Size = New Size(10000, 15)
                                lbl(i).Location = New Point(6, 30 + k)
                                lbl(i).Tag = "avgerr"
                                k = k + 15
                                executed = True
                            End If
                        End If
                        If ConErrMax Rad.Checked = True Then
                            If Not indexcounter = 2 Then
                                MsgBox("Please select two checkboxes from the
treeview.")
                            Else
                                For y = 0 To 1
                                    namedifferencearray(y) = namearray(indexarray(y))
                                Next
                                For t = 0 To arraylength - 1
                                    differencearray(t) = CSVarray(t, indexarray(0)) -
CSVarray(t, indexarray(1)) ' get the difference
                                Next
                                For p = 0 To arraylength - 1
                                    If biggererrorprevious >= differencearray(p) Then
' If the previous biggest error is bigger than the current one
```

HAAG


```
biggererrorprevious = biggererrorprevious
'The previous error is the biggest
                                    ElseIf biggererrorprevious < differencearray(p)</pre>
Then
        'If the previous biggest error is smaller than the current one
                                        biggererrorprevious = differencearray(p)
'The biggest error is the current one
                                    Else
                                        MsgBox("An error occured.")
                                    End If
                                Next
                                GroupBox6.Controls.Add(lbl(i))
                                lbl(i).Text = "The maximum control error of " &
namedifferencearray(0) & " and " & namedifferencearray(1) & " is " &
biggererrorprevious & "."
                                lbl(i).Size = New Size(10000, 15)
                                lbl(i).Location = New Point(6, 30 + k)
                                lbl(i).Tag = "ConerrMax"
                                k = k + 15
                                executed = True
                            End If
                        End If
                        Me.globalk = k
                        Me.globallabelcounter = Me.globalk / 15 'Count the amount of
labels and put the result in the global label counter
                    Next
                Else
                    MsgBox("Select an item in the treeview to the right.", 0, "DDT")
                End If
            End If
        Else
            MsgBox("Select a CSV file in the 'Offline' Tab!", 0, "DDT")
        End If
    End Sub
    Private Sub Mean Rad CheckedChanged(sender As Object, e As EventArgs) Handles
Mean_Rad.CheckedChanged 'Handles what to do when the mean radiobutton has been checked
or unchecked
        Static checkcounter As Integer = 0
        checkcounter = checkcounter + 1
        If checkcounter Mod 2 > 0 Then ' If the button is checked
                                        ' Show the formula
            Formula.Visible = True
            MeanFor.Visible = True
            MeanLabel.Visible = True
        Else
                                        'else
            Formula.Visible = False
                                        'hide the formula
            MeanFor.Visible = False
            MeanLabel.Visible = False
        End If
    End Sub
    Private Sub Tot_Len_Rad_CheckedChanged(sender As Object, e As EventArgs) Handles
Tot_Len_Rad.CheckedChanged 'Handles what to do when the total length radiobutton has
been checked or unchecked
        Static checkcounter As Integer = 0
        checkcounter = checkcounter + 1
        If checkcounter Mod 2 > 0 Then ' If the button is checked
            Formula.Visible = True ' Show the formula
            TotLenFor.Visible = True
DE
                                                                         Page 134 of 147
     HOGESCHOOL
```



```
TotAbsLenLabel.Visible = True
    Else
        Formula.Visible = False
        TotLenFor.Visible = False
        TotAbsLenLabel.Visible = False
    End If
End Sub
```

```
Private Sub Max_Rad_CheckedChanged(sender As Object, e As EventArgs) Handles
Max_Rad.CheckedChanged 'Handles what to do when the maximum radiobutton has been
checked or unchecked
        Static checkcounter As Integer = 0
        checkcounter = checkcounter + 1
        If checkcounter Mod 2 > 0 Then ' If the button is checked
            Formula.Visible = True ' Show the formula
            Maxform.Visible = True
            MaxLabel.Visible = True
        Flse
            Formula.Visible = False
            Maxform.Visible = False
            MaxLabel.Visible = False
        End If
    End Sub
    Private Sub Min_Rad_CheckedChanged(sender As Object, e As EventArgs) Handles
Min_Rad.CheckedChanged 'Handles what to do when the minimum radiobutton has been
checked or unchecked
        Static checkcounter As Integer = 0
        checkcounter = checkcounter + 1
        If checkcounter Mod 2 > 0 Then ' If the button is checked
            Formula.Visible = True ' Show the formula
            MinForm.Visible = True
            MinLabel.Visible = True
        Else
            Formula.Visible = False
            MinForm.Visible = False
           MinLabel.Visible = False
        End If
   End Sub
    Private Sub Showerrorgraphbutton_Click(sender As Object, e As EventArgs) Handles
Showerrorgraphbutton.Click 'Show the error graph, which is a graph that substracts
two graphs from eachother.
        Dim errorarray As Array
        Dim n As TreeNode
        Dim m As TreeNode
        Dim mindexarray(1)
        Dim indexcounter As Integer = 0
        errorarray = Me.CSVarray
        Dim ncounter As Integer = 0
        Dim differencenamearray As Array
        differencenamearray = Me.differencenamearray
        If csvclicked = True And Me.errorgraphpushed = False Then 'If a csvfile has
been opend and the error graph has not yet been shown on screen
            Dim arraylength As Integer = errorarray.GetLength(0)
            Dim differencearray(arraylength)
            For Each n In CSVOfflineTreeview.Nodes 'loop through all nodes
                If n.Checked = True Then
                                                    'Count all checked nodes
                    ncounter = ncounter + 1
                End If
```

```
Next
```

```
Chart2.Series(0).XValueType = ChartValueType.Double
Chart2.Series(1).XValueType = ChartValueType.Double
```



```
If ncounter > 2 Then
                                   'if more than two nodes are checked, give a
warning.
                MsgBox("Please select only two nodes in the treeview.", 0, "DDT")
            ElseIf ncounter = 2 Then
                Chart2.Series.Add(Me.currentserieamount) ' Add a new serie, which will
contain the error graph
                For Each m In CSVOfflineTreeview.Nodes
                    If m.Checked = True Then 'loop thourgh all nodes
                        mindexarray(indexcounter) = m.Index 'Fill an array with the
values on which places the treeview are checked
                        indexcounter = indexcounter + 1
                    End If
                Next
                For z = 0 To 1
                    differencenamearray(z) = namearray(mindexarray(z))
                Next
                For i = 0 To arraylength - 1
                    differencearray(i) = errorarray(i, mindexarray(0)) - errorarray(i,
mindexarray(1)) ' The error is the difference between the actual value and the wanted
value. Therefore a substraction is used.
                Next
                For j = 0 To arraylength - 1
                    Chart2.Series(Me.currentserieamount).Points.AddXY(errorarray(j,
xaxis), differencearray(j))
                                       ' Add the relevant datapoints to plot the
error graph
                    Chart2.Series(Me.currentserieamount).ChartType =
DataVisualization.Charting.SeriesChartType.Line
                                                                 'Make a line-style
graph instead of a bar-style
                    Chart2.Series(Me.currentserieamount).LegendText = "Error Graph"
                Next
                Me.globaldifferencearray = differencearray
                Me.errorgraphpushed = True
                Chart2.Series(0).XValueType = ChartValueType.Time
                Chart2.Series(1).XValueType = ChartValueType.Time
                Chart2.Series(2).XValueType = ChartValueType.Time
                Me.currentserieamount = Me.currentserieamount + 1
            F1se
                MsgBox("Select two nodes from the treeview.", 0, "DDT")
            End If
        ElseIf csvclicked = True And Me.errorgraphpushed = True Then
            MsgBox("The error graph is already shown.")
        Else
            MsgBox("Please select a CSV file first.", 0, "DDT")
        End If
    End Sub
    Private Sub AvgConErr_Rad_CheckedChanged(sender As Object, e As EventArgs) Handles
AvgConErr Rad.CheckedChanged
       Static checkcounter As Integer = 0
        checkcounter = checkcounter + 1
        If checkcounter Mod 2 > 0 Then
            Formula.Visible = True
            Averagelabel.Visible = True
            AveConErr_Pic.Visible = True
        Else
            Formula.Visible = False
```

DE


```
Averagelabel.Visible = False
            AveConErr Pic.Visible = False
        End If
    End Sub
    Private Sub ClearErrorGraph_Button_Click(sender As Object, e As EventArgs) Handles
ClearErrorGraph_Button.Click
        If errorgraphpushed = True Then
            Chart2.Series.RemoveAt(Me.currentserieamount - 1)
            Me.currentserieamount = Me.currentserieamount - 1
            Me.errorgraphpushed = False
        Else
            MsgBox("There is no plotted error graph.", 0, "DDT")
        End If
    End Sub
    Private Sub DeleteGraph_Button_Click(sender As Object, e As EventArgs)
        If Not Me.currentserieamount = 0 And Not errorgraphpushed = True Then
            Chart2.Series.RemoveAt(Me.currentserieamount - 1)
            Me.currentserieamount = Me.currentserieamount - 1
            Try
                CSVOfflineTreeview.Nodes(globalnarray(Me.currentserieamount)).Checked
= False
            Catch
                GoTo Line3 'A catch has been used to overcome a crash. Instead it now
produces a messagebox.
            Finally
            End Try
Line3:
        ElseIf errorgraphpushed = True Then
            MsgBox("First delete the error graph by pressing the 'Clear Error Graph'
button.", 0, "DDT")
        Else
            MsgBox("There is no graph to delete.", 0, "DDT")
        End If
    End Sub
    Private Sub Button1 Click(sender As Object, e As EventArgs) Handles
Clear All Key Button.Click
        If globallabelcounter <> 0 Then
            For i = globallabelcounter - 1 To 0 Step -1
                Me.globalk = 0
                GroupBox6.Controls(0).Dispose()
            Next
            Me.globallabelcounter = 0
        Else
            MsgBox("No Keyfigures Present.", 0, "DDT")
        End If
    End Sub
    Private Sub Deselect_All_Key_Button_Click(sender As Object, e As EventArgs)
Handles Deselect_All_KeyTreeview_Button.Click
        Dim parent As TreeNode
        For Each parent In TreeViewKeyFigures.Nodes
           parent.Checked = False
        Next
    End Sub
    Private Sub Select_All_Key_Button_Click(sender As Object, e As EventArgs) Handles
Select_All_KeyTreeview_Button.Click
DE
                                                                         Page 137 of 147
```



```
Dim parent As TreeNode
        For Each parent In TreeViewKeyFigures.Nodes
            parent.Checked = True
        Next
    End Sub
    Private Sub Round_Key_Button_Click(sender As Object, e As EventArgs) Handles
Round_Key_Button.Click
       Dim m As CheckBox
        Dim changestring As String
       Dim islocation As Integer
        Dim stringlength As Integer
        Dim dotlocation As Integer
        Dim substringlength As Integer
        Dim finalstring As String
        Dim roundinteger As Integer
        Dim rounding As Boolean
        Dim truncateinteger As Integer
        If globallabelcounter > 0 Then
            For i = 0 To globallabelcounter - 1
                m = GroupBox6.Controls(i)
                If m.Checked = True Then
                    changestring = m.Text
                    If changestring.Contains("is") Then
                                                            'Detect the word is, to
know where the numerical value will start.
                        islocation = changestring.IndexOf("is") + 2
                    Else
                        MsgBox("Error.", 0, "DDT")
                    End If
                    stringlength = changestring.Length - 1 ' Get the length of the
string until the dot.
                    Dim tempstring As String = changestring.Substring(islocation,
(stringlength - islocation)) 'Get string which contains the numerical(single/double)
value.
                    Dim finalbeginstring As String = changestring.Substring(0,
islocation) ' Get the first part of the string to use at the end.
                    If tempstring.Contains(".") Then
                        dotlocation = tempstring.IndexOf(".") + 1
'Search the location of the dot for truncation, + 1 for the number to start with
                        substringlength = tempstring.Length
                        Dim subsubstring As String = tempstring.Substring(dotlocation,
(substringlength - dotlocation))
                        Dim beginpartstring As String = tempstring.Substring(0,
dotlocation)
                        If OneDec Rad.Checked = True And subsubstring.Length >= 1 Then
' Rounding of numbers
                            Dim roundstring As String = subsubstring.Substring(1, 1)
                            roundinteger = roundstring
                            Dim truncatestring As String = subsubstring.Substring(0,
1)
                            truncateinteger = truncatestring
                            If roundinteger >= 5 And truncateinteger < 9 Then
                                finalstring = finalbeginstring & beginpartstring &
truncatestring + 1
                                m.Text = finalstring
                            ElseIf roundinteger < 5 And truncateinteger <= 9 Then</pre>
                                finalstring = finalbeginstring & beginpartstring &
truncatestring
                                m.Text = finalstring
                            ElseIf roundinteger >= 5 And truncateinteger = 9 Then
                                finalstring = finalbeginstring & " " & beginpartstring
+ 1 & "." & 0
                                m.Text = finalstring
     HAAGS
                                                                         Page 138 of 147
```


These	End If ElseIf subsubstring.Length < 1 And OneDec_Rad.Checked = True
Then	<pre>MsgBox("Truncation is not possible.", 0, "DDT") End If</pre>
2)	<pre>If TwoDec_Rad.Checked = True And subsubstring.Length >= 2 Then Dim truncatestring As String = subsubstring.Substring(0,</pre>
2)	<pre>Dim firstnumber As String = subsubstring.Substring(1, 1) Dim secondnumber As String = subsubstring.Substring(2, 1)</pre>
truncatestring + 1	<pre>If firstnumber < 9 And secondnumber >= 5 Then finalstring = finalbeginstring & beginpartstring &</pre>
	<pre>m.Text = finalstring ElseIf firstnumber <= 9 And secondnumber < 5 Then finalstring = finalbeginstring & beginpartstring &</pre>
truncatestring	<pre>m.Text = finalstring ElseIf firstnumber = 9 And secondnumber >= 5 Then</pre>
+ 1 & "." & "00"	finalstring = finalbeginstring & " " & beginpartstring
	<pre>m.Text = finalstring End If</pre>
Then	<pre>ElseIf subsubstring.Length < 2 And TwoDec_Rad.Checked = True</pre>
	<pre>MsgBox("Truncation is not possible.", 0, "DDT") End If</pre>
Then	<pre>If ThreeDec_Rad.Checked = True And subsubstring.Length >= 3</pre>
3)	<pre>Dim truncatestring As String = subsubstring.Substring(0,</pre>
5)	<pre>Dim firstnumber As String = subsubstring.Substring(2, 1) Dim secondnumber As String = subsubstring.Substring(3, 1)</pre>
truncatestring + 1	<pre>If firstnumber < 9 And secondnumber >= 5 Then finalstring = finalbeginstring & beginpartstring &</pre>
-	<pre>m.Text = finalstring ElseIf firstnumber <= 9 And secondnumber < 5 Then finalstring = finalbeginstring & beginpartstring &</pre>
truncatestring	<pre>m.Text = finalstring ElseIf firstnumber = 9 And secondnumber >= 5 Then finalstring = finalbeginstring & " " & beginpartstring</pre>
+ 1 & "." & "000"	m.Text = finalstring
	End If ElseIf subsubstring.Length < 3 And ThreeDec_Rad.Checked = True
Then	<pre>MsgBox("Truncation is not possible.", 0, "DDT") End If</pre>
Then	<pre>If FourDec_Rad.Checked = True And subsubstring.Length >= 4</pre>
4)	<pre>Dim truncatestring As String = subsubstring.Substring(0,</pre>
,	<pre>Dim firstnumber As String = subsubstring.Substring(3, 1) Dim secondnumber As String = subsubstring.Substring(4, 1)</pre>
	<pre>If firstnumber < 9 And secondnumber >= 5 Then finalstring = finalbeginstring & beginpartstring &</pre>
truncatestring + 1	m.Text = finalstring
HOGESCH	

touncatestains	<pre>ElseIf firstnumber <= 9 And secondnumber < 5 Then finalstring = finalbeginstring & beginpartstring &</pre>
truncatestring	<pre>m.Text = finalstring ElseIf firstnumber = 9 And secondnumber >= 5 Then finalstring = finalbeginstring & " " & beginpartstring</pre>
+ 1 & "." & "0000"	<pre>m.Text = finalstring End If</pre>
Then	ElseIf subsubstring.Length < 4 And FourDec_Rad.Checked = True
men	<pre>MsgBox("Truncation is not possible.", 0, "DDT") End If</pre>
Then	<pre>If FiveDec_Rad.Checked = True And subsubstring.Length >= 5</pre>
	<pre>Dim truncatestring As String = subsubstring.Substring(0,</pre>
5)	<pre>Dim firstnumber As String = subsubstring.Substring(4, 1) Dim secondnumber As String = subsubstring.Substring(5, 1)</pre>
truncatestring + 1	<pre>If firstnumber < 9 And secondnumber >= 5 Then finalstring = finalbeginstring & beginpartstring &</pre>
	<pre>m.Text = finalstring ElseIf firstnumber <= 9 And secondnumber < 5 Then finalstring = finalbeginstring & beginpartstring &</pre>
truncatestring	<pre>m.Text = finalstring Floot Contemport - D And according to Them </pre>
	<pre>ElseIf firstnumber = 9 And secondnumber >= 5 Then finalstring = finalbeginstring & " " & beginpartstring</pre>
+ 1 & "." & "00000"	<pre>m.Text = finalstring End If</pre>
Then	<pre>ElseIf subsubstring.Length < 5 And FiveDec_Rad.Checked = True</pre>
inch.	<pre>MsgBox("Truncation is not possible.", 0, "DDT") End If</pre>
And ThreeDec_Rad.Checke FiveDec_Rad.Checked = F	<pre>If OneDec_Rad.Checked = False And TwoDec_Rad.Checked = False d = False And FourDec_Rad.Checked = False And alse Then</pre>
2)	<pre>Dim truncatestring As String = subsubstring.Substring(0,</pre>
-,	<pre>Dim firstnumber As String = subsubstring.Substring(1, 1) Dim secondnumber As String = subsubstring.Substring(2, 1)</pre>
truncatestring + 1	<pre>If firstnumber < 9 And secondnumber >= 5 Then finalstring = finalbeginstring & beginpartstring &</pre>
	<pre>m.Text = finalstring ElseIf firstnumber <= 9 And secondnumber < 5 Then finalstring = finalbeginstring & beginpartstring &</pre>
truncatestring	<pre>m.Text = finalstring ElseIf firstnumber = 9 And secondnumber >= 5 Then finalstring = finalbeginstring & " " & beginpartstring</pre>
+ 1 & "." & "00"	m.Text = finalstring End If
Els	End If
	MsgBox("Nothing to truncate.", 0, "DDT") If
	C C Page 140 of 147


```
End If
                m.Checked = False
            Next
        Else
            MsgBox("No Keyfigures Present.", 0, "DDT")
        End If
    End Sub
    Private Sub Select_All_KeyCheck_button_Click(sender As Object, e As EventArgs)
Handles Select_All_KeyCheck_button.Click
        Dim m As CheckBox
        For i = 0 To globallabelcounter - 1
            m = GroupBox6.Controls(i)
            m.Checked = True
        Next
    End Sub
    Private Sub Deselect_All_KeyCheck_Button_Click(sender As Object, e As EventArgs)
Handles Deselect_All_KeyCheck_Button.Click
        Dim m As CheckBox
        For i = 0 To globallabelcounter - 1
            m = GroupBox6.Controls(i)
            m.Checked = False
        Next
    End Sub
    Private Sub DeleteSelected_Key_Button_Click(sender As Object, e As EventArgs)
Handles DeleteSelected_Key_Button.Click
        Dim m As CheckBox
        Dim indexarray(500)
        Dim truecounter As Integer = 0
        For i = 0 To Me.globallabelcounter - 1
            m = GroupBox6.Controls(i)
            If m.Checked = True Then 'First check which checkboxes are selected
                indexarray(truecounter) = i
                truecounter = truecounter + 1
            End If
        Next
        For j = 0 To truecounter - 1
            GroupBox6.Controls(indexarray(j)).Dispose()
            Me.globallabelcounter = Me.globallabelcounter - 1
            Me.globalk = Me.globalk - 15
            truecounter = truecounter - 1
        Next
    End Sub
    Private Sub Server_Rad_CheckedChanged(sender As Object, e As EventArgs)
        Static checkcounter As Integer = 0
        checkcounter = checkcounter + 1
        If checkcounter Mod 2 > 0 Then
            'StartServer Button.Visible = True
        Else
                  StartServer_Button.Visible = False
        End If
    End Sub
    Private Sub StartServer_Button_Click(sender As Object, e As EventArgs)
        Dim TestThread As New System.Threading.Thread(AddressOf Serverthread)
        TestThread.Start()
    End Sub
    Private Sub Serverthread()
DE
```


End Sub

```
Private Sub InverseSelectionButton(sender As Object, e As EventArgs) Handles
InverseSelection_Button.Click
        Dim m As CheckBox
        For i = 0 To Me.globallabelcounter - 1
            m = GroupBox6.Controls(i)
            If m.Checked = True Then
                m.Checked = False
            ElseIf m.Checked = False Then
                m.Checked = True
            End If
        Next
    End Sub
    Public Structure BinFileInfo
        Public FileName As String
        Public FileSize As Int64
        Public StartTime As Date
        Public EndTime As Date
        Public StartLogBytePos As Int64
        Public StopLogBytePos As Int64
    End Structure
    Private Sub OpenBinClick(sender As Object, e As EventArgs) Handles
Open_Bin_Button.Click
        Dim m As Message
        Process.Start("PLC_LOG_CONVERTER.exe")
        Static pcount As Integer = 0
        While (True)
            System.Threading.Thread.Sleep(100)
            Dim p() As Process
            p = Process.GetProcessesByName("PLC_LOG_CONVERTER")
            If p.Count > 0 Then
                pcount = pcount + 1
                MsgBox("Close this whenever ready.")
            Else
                ' Process is not running
                If pcount > 0 Then
                    Exit While
                    GoTo line1
                Flse
                    MsgBox("Fileconverter has not been opened.")
                End If
            End If
        End While
line1:
        Me.binfilebool = True
        'MsgBox("Now select the CSV File that has been made. If it's not made, press
the open bin file button again.")
        'OpenFileDialog1.ShowDialog()
        'Me.globalfilename = OpenFileDialog1.FileName
        ' Open the file using a stream reader.
        Using sr As New StreamReader("Filelocation.txt")
            Dim line As String
            ' Read the stream to a string and write the string to the console.
            line = sr.ReadToEnd()
            Me.globalfilename = line
        End Using
        Open_CSV_Button_Click()
    End Sub
    Private Sub fileopenthread()
DE
                                                                         Page 142 of 147
     HOGESCHOOL
```


End Sub

```
Private Sub Inverse_Click(sender As Object, e As EventArgs) Handles
InverseKey_Button.Click
       Dim n As TreeNode
        For Each n In TreeViewKeyFigures.Nodes
            If n.Checked = True Then
                n.Checked = False
            ElseIf n.Checked = False Then
                n.Checked = True
            End If
        Next
    End Sub
    Private Sub Button1_Click_1(sender As Object, e As EventArgs) Handles
Button1.Click
        Dim m As CheckBox
        Dim changestring As String
        Dim islocation As Integer
        Dim stringlength As Integer
        Dim dotlocation As Integer
        Dim substringlength As Integer
        Dim finalstring As String
        Dim roundinteger As Integer
        Dim rounding As Boolean
        Dim truncateinteger As Integer
        If globallabelcounter > 0 Then
            For i = 0 To globallabelcounter - 1
                m = GroupBox6.Controls(i)
                If m.Checked = True Then
                    changestring = m.Text
                    If changestring.Contains("is") Then 'Detect the word is, to
know where the numerical value will start.
                        islocation = changestring.IndexOf("is") + 2
                    Flse
                        MsgBox("Error.", 0, "DDT")
                    End If
                    stringlength = changestring.Length - 1 ' Get the length of the
string until the dot.
                    Dim tempstring As String = changestring.Substring(islocation,
(stringlength - islocation)) 'Get string which contains the numerical(single/double)
value.
                    Dim finalbeginstring As String = changestring.Substring(0,
islocation) ' Get the first part of the string to use at the end.
                    If tempstring.Contains(".") Then
                        dotlocation = tempstring.IndexOf(".") + 1
'Search the location of the dot for truncation, + 1 for the number to start with
                        substringlength = tempstring.Length
                        Dim subsubstring As String = tempstring.Substring(dotlocation,
(substringlength - dotlocation))
                        Dim beginpartstring As String = tempstring.Substring(0,
dotlocation)
                        If OneDec_Rad.Checked = True And subsubstring.Length >= 1 Then
' Rounding of numbers
                            Dim truncatestring As String = subsubstring.Substring(0,
1) ' Handles what to do when 1 decimal is selected
                           m.Text = finalbeginstring & beginpartstring &
truncatestring
                        Fnd Tf
                        If TwoDec_Rad.Checked = True And subsubstring.Length >= 2 Then
                           Dim truncatestring As String = subsubstring.Substring(0,
  ' Handles what to do when 2 decimal is selected
2)
                                                                         Page 143 of 147
      HOGESCHOOL
```



```
m.Text = finalbeginstring & beginpartstring &
truncatestring
                        End If
                        If ThreeDec_Rad.Checked = True And subsubstring.Length >= 3
Then
                            Dim truncatestring As String = subsubstring.Substring(0,
3) ' Handles what to do when 3 decimal is selected
                            m.Text = finalbeginstring & beginpartstring &
truncatestring
                        End If
                        If FourDec_Rad.Checked = True And subsubstring.Length >= 4
Then
                            Dim truncatestring As String = subsubstring.Substring(0,
4) ' Handles what to do when 4 decimal is selected
                            m.Text = finalbeginstring & beginpartstring &
truncatestring
                        Fnd Tf
                        If FiveDec_Rad.Checked = True And subsubstring.Length >= 5
Then
                            Dim truncatestring As String = subsubstring.Substring(0,
5) ' Handles what to do when 5 decimal is selected
                            m.Text = finalbeginstring & beginpartstring &
truncatestring
                        End If
                        If OneDec_Rad.Checked = False And TwoDec_Rad.Checked = False
And ThreeDec_Rad.Checked = False And FourDec_Rad.Checked = False And
FiveDec_Rad.Checked = False Then
                            Dim truncatestring As String = subsubstring.Substring(0,
2)
                            m.Text = finalbeginstring & beginpartstring &
truncatestring ' Default function
                        End If
                    Else
                        MsgBox("Nothing to truncate.", 0, "DDT")
                    End If
                Else
                End If
                m.Checked = False
            Next
        Else
            MsgBox("No Keyfigures Present.", 0, "DDT")
        End If
    End Sub
    Private Sub SaveCheck4 CheckedChanged(sender As Object, e As EventArgs) Handles
SaveCheck4.CheckedChanged ' Handles the cutoff function checkbox
        Static checkcounter As Integer = 0
        checkcounter = checkcounter + 1
        If checkcounter Mod 2 > 0 Then 'If it is checked, show the following items:
            MaxCutOff Rad.Visible = True
            MinCutOff Rad.Visible = True
        Else 'Else reset/hide the following items
            MaxCutOff Rad.Visible = False
            MinCutOff Rad.Visible = False
            MaxCutOff Rad.Checked = False
            MinCutOff_Rad.Checked = False
        End If
    End Sub
```

Private Sub MinCutOff_Rad_CheckedChanged(sender As Object, e As EventArgs) Handles
MinCutOff_Rad.CheckedChanged


```
checkcounter = checkcounter + 1
        If checkcounter Mod 2 > 0 Then 'If it is checked, show the following items:
            'MinEqu Rad.Visible = True
            MinGreaEqu Rad.Visible = True
            MinGrea_Rad.Visible = True
            MinCutOff_Text.Visible = True
        Else 'Else reset/hide the following items
            'MinEqu_Rad.Visible = False
            MinGreaEqu_Rad.Visible = False
            MinGrea_Rad.Visible = False
            'MinEqu_Rad.Checked = False
            MinGreaEqu_Rad.Checked = False
            MinGrea_Rad.Checked = False
            MinCutOff_Text.Visible = False
        End If
    End Sub
    Private Sub MaxCutOff_Rad_CheckedChanged(sender As Object, e As EventArgs) Handles
MaxCutOff Rad.CheckedChanged
        Static checkcounter As Integer = 0
        checkcounter = checkcounter + 1
        If checkcounter Mod 2 > 0 Then 'If it is checked, show the following items:
            'MaxEqu Rad.Visible = True
            MaxSmaEqu_Rad.Visible = True
            MaxSma_Rad.Visible = True
            MaxCutOff_Text.Visible = True
        Else 'Else reset/hide the following items
            'MaxEqu_Rad.Visible = False
            MaxSmaEqu_Rad.Visible = False
            MaxSma_Rad.Visible = False
            'MaxEqu_Rad.Checked = False
            MaxSmaEqu_Rad.Checked = False
            MaxSma_Rad.Checked = False
            MaxCutOff_Text.Visible = False
        End If
    End Sub
    Private Sub ConErrMax_Rad_CheckedChanged(sender As Object, e As EventArgs) Handles
ConErrMax_Rad.CheckedChanged
        Static checkcounter As Integer = 0
        checkcounter = checkcounter + 1
        If checkcounter Mod 2 > 0 Then ' If the button is checked
            Formula.Visible = True ' Show the formula
            MinForm.Visible = True
            MinLabel.Visible = True
        Else
            Formula.Visible = False
            MinForm.Visible = False
           MinLabel.Visible = False
        End If
    End Sub
    Private Sub Showabsconerr Click(sender As Object, e As EventArgs)
        Dim errorarray As Array
        Dim n As TreeNode
        Dim m As TreeNode
        Dim mindexarray(1)
        Dim indexcounter As Integer = 0
        errorarray = Me.CSVarray
        Dim ncounter As Integer = 0
        Dim differencenamearray As Array
        differencenamearray = Me.differencenamearray
```



```
If csvclicked = True And Me.errorgraphpushed = False Then 'If a csvfile has
been opend and the error graph has not yet been shown on screen
           Dim arraylength As Integer = errorarray.GetLength(0)
           Dim differencearray(arraylength)
            For Each n In CSVOfflineTreeview.Nodes 'loop through all nodes
                If n.Checked = True Then
                    ncounter = ncounter + 1
                                                    'Count all checked nodes
                End If
           Next
           If ncounter > 2 Then
                                   'if more than two nodes are checked, give a
warning.
                MsgBox("Please select only two nodes in the treeview.", 0, "DDT")
            ElseIf ncounter = 2 Then
                Chart2.Series.Add(Me.currentserieamount) ' Add a new serie, which will
contain the error graph
                For Each m In CSVOfflineTreeview.Nodes
                    If m.Checked = True Then
                                               'loop thourgh all nodes
                        mindexarray(indexcounter) = m.Index 'Fill an array with the
values on which places the treeview are checked
                        indexcounter = indexcounter + 1
                    End If
                Next
                For z = 0 To 1
                    differencenamearray(z) = namearray(mindexarray(z))
                Next
                For i = 0 To arraylength - 1
                    differencearray(i) = Abs(errorarray(i, mindexarray(0)) -
errorarray(i, mindexarray(1))) ' The error is the difference between the actual value
and the wanted value. Therefore a substraction is used.
                Next
                For j = 0 To arraylength - 1
Chart2.Series(Me.currentserieamount).Points.AddXY(Abs(errorarray(j, xaxis)),
Abs(differencearray(j)))
                                     ' Add the relevant datapoints to plot the error
graph
                    Chart2.Series(Me.currentserieamount).ChartType =
DataVisualization.Charting.SeriesChartType.Line
                                                                'Make a line-style
graph instead of a bar-style
                    Chart2.Series(Me.currentserieamount).LegendText = "Error Graph"
                Next
                Me.globaldifferencearray = differencearray
                Me.errorgraphpushed = True
                Me.currentserieamount = Me.currentserieamount + 1
            Else
                MsgBox("Select two nodes from the treeview.", 0, "DDT")
            Fnd Tf
        ElseIf csvclicked = True And Me.errorgraphpushed = True Then
           MsgBox("The error graph is already shown.")
        Flse
           MsgBox("Please select a CSV file first.", 0, "DDT")
        Fnd Tf
    End Sub
    Private Sub Button2_Click(sender As Object, e As EventArgs) Handles Button2.Click
        Dim percentarrayone(CSVarray.GetLength(0))
        Dim percentarraytwo(CSVarray.GetLength(0))
        Dim errarray(CSVarray.GetLength(0))
DE
                                                                        Page 146 of 147
     HOGESCHOOL
```



```
Dim lbl(3) As Label
       lbl(1) = New Label
       lbl(2) = New Label
       lbl(3) = New Label
       LegendGroup.Controls.Add(lbl(1))
       LegendGroup.Controls.Add(lbl(2))
       LegendGroup.Controls.Add(lbl(3))
       Chart2.Series.Add(0)
       Chart2.Series.Add(1)
       Chart2.Series(0).ChartType = DataVisualization.Charting.SeriesChartType.Line
       Chart2.Series(1).ChartType = DataVisualization.Charting.SeriesChartType.Line
       Chart2.ChartAreas(0).CursorX.IsUserSelectionEnabled = True
'Let the user select a region to zoom into with the mouse on the X-axis
       Chart2.ChartAreas(0).CursorY.IsUserSelectionEnabled = True
'Let the user select a region to zoom into with the mouse on the Y-axis
        'Chart2.Series(0).LegendText = "Valve Position"
'Set the legend text to the correct relevant name
        'Chart2.Series(1).LegendText = "Valve Setpoint"
       For t = 0 To CSVarray.GetLength(0) - 1
           percentarrayone(t) = (CSVarray(t, 43) * 100) / 13824
           percentarraytwo(t) = (((CSVarray(t, 19) * 2000) / 27648) - 1000) / 10
       Next
       For k = 0 To CSVarray.GetLength(0) - 1
           Chart2.Series(0).Points.AddXY(CSVarray(k, 1), percentarrayone(k))
           Chart2.Series(1).Points.AddXY(CSVarray(k, 1), percentarraytwo(k))
       Next
       For j = 0 To CSVarray.GetLength(0) - 1
           errarray(j) = Abs(percentarrayone(j) - percentarraytwo(j))
       Next
       Chart2.Series.Add(2)
       Chart2.Series(2).ChartType = DataVisualization.Charting.SeriesChartType.Line
        ' Chart2.Series(2).LegendText = "Absolute Valve Control Error"
       For i = 0 To CSVarray.GetLength(0) - 1
           Chart2.Series(2).Points.AddXY(CSVarray(i, 1), errarray(i))
       Next
       Chart2.Series(0).XValueType = ChartValueType.Time
       Chart2.Series(1).XValueType = ChartValueType.Time
       Chart2.Series(2).XValueType = ChartValueType.Time
       Chart2.ChartAreas(0).AxisX.Title = "Time [Hours:Minutes]"
       Chart2.ChartAreas(0).AxisY.Title = "Position [%]"
       Chart2.ApplyPaletteColors()
       lbl(1).Text = "Valve Position"
       lbl(1).ForeColor = Chart2.Series(0).Color
       lbl(2).Text = "Valve Setpoint"
       lbl(2).ForeColor = Chart2.Series(1).Color
       lbl(3).Text = "Absolute Valve Control Error"
       lbl(3).ForeColor = Chart2.Series(2).Color
       lbl(1).Size = New Size(400, 13)
       lbl(2).Size = New Size(400, 13)
       lbl(3).Size = New Size(400, 13)
       lbl(1).Location = New Point(6, 33) 'Give the correct location of the new label
       lbl(2).Location = New Point(6, 46) 'Give the correct location of the new label
       lbl(3).Location = New Point(6, 59) 'Give the correct location of the new label
   End Sub
```

