

THE AMPELMANN DDT
Development of the Ampelmann DDT data analyzing tool

 JUNE 3,2016
AMPELMANN

Devin van Tuijll

Acknowledgements

You are about to read my thesis report, which is meant as a reference guide for future Ampelmann

employees who want to use the developed tool. It is also for my mentors from The Hague University

Of Applied Sciences.

This thesis has been written to gain a bachelor degree in engineering. The thesis period was

scheduled from the 8th of February 2016 until the 3rd of June 2016.

During my graduation period, I had the opportunity to witness and operate the Ampelmann System

itself. I have developed myself in ways of communicating, programming and planning. I found the

graduation period at Ampelmann very interesting and learnful.

First of all I would like to thank Martijn Krutzen and Niels van der Geld, for guiding and helping me

whenever it was necessary during these 17 weeks and for sharing their knowledge.

Another thanks goes out to the other Motion Control Engineers and in particular Roman Janssen,

Jurjen de Vriend and Alexander Verweij, who had several interesting ideas for my tool and were able

to help whenever necessary. I would also like to thank Olaf Orlandini for working out my front page

logo idea.

I would like to thank Ampelmann Operations B.V. for the opportunity to grow and learn in their

company and for the opportunity to have a really great assignment in which I was able to completely

let myself go and do what I found was best.

Finally I would like to thank Suzanne D. de Jong and Theo J. Koreneef for their guidance and their

honest opinions about my progress and ideas.

June 2016, Delft

 Page 1 of 147

Summary
In this document, the development of a data analyzation tool is being described. The tool is

developed for Ampelmann Operations B.V. to help the Motion Control engineers with the debugging

process of their systems. Ampelmann Operations B.V. is a company that focusses on offshore access.

Their main product is a motion compensated gangway, which allows people to safely transfer from a

boat towards an offshore construction or another boat.

Since about four months, Ampelmann Operations B.V. is logging data with a self-made tool from the

Ampelmann Systems’ PLC to the Box-PC over an UDP connection. This Box-PC is an industrial

computer that can withstand vibrations and shocks on the rough sea environment.

The logs are in a BIN file format and a tool has been created to translate these BIN-files into CSV-

files.

But nothing more than that has been done to the logging part of the Ampelmann systems, and thus

a demand for an analyzing tool was created.

This is where the assignment focusses on; creating a data analyzation tool that is able to plot graphs

and error functions. It should also be able to derive key figures and to export selected data.

A morphological overview combined with the Kesselring method, led to a program written in Visual

Basic. This program has a hard-coded structure combined with queries to let the user select relevant

data and queries for modularity. The output of the tool shall be in the form of CSV-files, ensuring

that they can be loaded in again at any time.

The tool is able to load the CSV-files and able to refer to the conversion tool to open the BIN files.

The tool consists out of four different tabs to ensure stability and a clear overview of the functions.

The names of the tabs are related to the functionality and are named: Analyze, Query, Save&Send

and Key figures. Based on the structure of the CSV-file, the tool makes multiple treeviews of the

containing titles within the CSV-file for some of the mentioned tabs. A treeview is a visual way of

displaying all containing titles within a CSV-file in a structured way. In the analyze tab, the user is

able to plot graphs and error graphs, ensuring that a visual view is gained from the logged data. In

the query tab, a basic template has been created to ensure that future programmers/users are able

to apply queries on the tool. In the Save&Send tab, the user is able to export data, by either saving

the data locally or sending them via a mail server. In the final tab, Key figures, the user is able to

derive certain Key figures ensuring that the commonly used functions are calculated automatically.

On base of this report, the conclusion can be made that the tool is a stable way of helping the user

with debugging of the Ampelmann System. Based upon the test case, the conclusion can be made

that the tool is able to display all of the demands of the customer. The stability can be improved by

looking at the control loop for the nodes of the treeview, which lead to unexpected behavior at the

moment. Another recommendation is based on workability. The treeview can be improved by

adding more hierarchy. In this way the treeview becomes even more structured and this translates

into an even better way of debugging.

 Page 2 of 147

Inhoud
Summary ... 1

List of Symbols .. 4

List of Abbreviations ... 5

List of Images and Tables .. 6

1. Introduction .. 8

1.1 Client and Organization .. 8

1.2 Process description ... 8

2. Assignment description... 9

2.1 Problem definition .. 9

2.2 Goal: .. 9

2.3 Thesis question ... 9

2.4 Sub questions .. 9

2.5 Scope ... 9

3. Approach ... 10

4. Background sesearch .. 11

4.1 The Ampelmann System ... 11

4.2 The cylinder ... 13

4.3 End user .. 15

4.4 Data logging .. 16

4.5 Other ways of logging ... 17

4.5.1 Boundaries ... 17

4.5.2 PLC to PC application ... 17

5. Conceptual Phase .. 19

5.1 Requirements .. 19

5.2 Morphological analysis ... 20

5.2.1 Problem definition: Tool in general ... 20

5.2.2 Problem definition: Data logging ... 26

5.2.3 Problem definition: Output of data ... 29

5.3 Kesselring .. 30

5.3.1 Problem definition: Tool in general ... 30

5.3.2 Problem definition: Output of data ... 32

5.3.3 Conclusion .. 32

6. Design .. 33

6.1 Plotting data .. 33

 Page 3 of 147

6.1.1 Workability ... 35

6.2 Key figures ... 40

6.2.1 Design ... 43

6.2.2 Workability ... 43

6.3 DDT .. 44

6.4 Save / Send .. 45

6.5 Online / Query ... 48

7. Programming... 50

8 Proof of Concept .. 57

9. Conclusions ... 61

10. Recommendations .. 62

11. References .. 63

Appendix I – Plan .. 65

Appendix II – Accountability research for Kesselring method .. 83

Appendix III – Test case results ... 89

Appendix IV – Manual for Tool ... 99

Appendix V – Program .. 115

 Page 4 of 147

List of Symbols

𝐴𝑏𝑠𝑐𝑢𝑚𝑙𝑒𝑛𝑔𝑡ℎ The absolute cumulative length

𝐴𝑣𝑒𝐶𝑜𝑛𝑒𝑟𝑟 The average control error of two given functions a and b

𝐸𝑟𝑟𝑔𝑟𝑎𝑝ℎ(𝑥) The resulting graph function

𝐹𝑎𝑒𝑟𝑟(𝑥) One of two functions of which the error graph needs to be calculated

for

𝐹𝑏𝑒𝑟𝑟(𝑥) One of two functions of which the error graph needs to be calculated

for

𝐹𝑎𝑎𝑐𝑒(𝑖) One of two functions to calculate the average control error for

𝐹𝑏𝑎𝑐𝑒(𝑖) One of two functions to calculate the average control error for

𝑙𝑠𝑡𝑟𝑜𝑘𝑒 Necessary stroke lengths for compensation

𝑀𝑎𝑥𝑓𝑢𝑛𝑐 Maximum value of a function

𝑀𝑒𝑎𝑛 The mean of a function

𝑀𝑖𝑛𝑓𝑢𝑛𝑐 Maximum value of a function

𝑛𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 Total amount of criteria

𝑛𝑐𝑠𝑣 The amount of items in the CSV file row

𝑝𝑘𝑒𝑠 Amount of points per conceptual choice on a certain criteria

𝑇𝑘𝑒𝑠 Total amount of points per conceptual choice

𝑤𝑘𝑒𝑠 Weightfactor per conceptual choice on a certain criteria

𝑥𝑐𝑠𝑣 A value from the read in CSV file

𝑥𝑒𝑟𝑟𝑔𝑟𝑎𝑝ℎ A value that runs from the first item in the CSV file row until the last

 Page 5 of 147

List of Abbreviations

6-DoF Six Degrees Of Freedom

BIN Binary file

CSV Comma Separated Value file

DDT Devin Data Tool

DoF Degrees of Freedom

FOG Fibre Optic Gyrocompass

GUI Graphical User Interface

HMI Human Machine Interface

HPU Hydraulic Power Unit

MRU Motion Reference Unit

PLC Programmable Logic Controller

PTA Piston Type Accumulator

TCP Transmission Control Protocol

UDP User Datagram Protocol

 Page 6 of 147

List of Images and Tables

Figure 1 - Schematic overview of phases and work packages .. 10

Figure 2 - Stewart platform in neutral ... 11

Figure 3 - Schematic workflow Ampelmann Systems .. 11

Figure 4 - Motion compensated (Engaged) Stewart platform .. 12

Figure 5 - Hydraulic flow of cylinder .. 13

Figure 6 - Cylinder Valve ... 13

Figure 7 - Ampelmann Cylinder Control ... 14

Figure 8 - Ampelmann data flow diagram .. 16

Figure 9 - Interchangeable part .. 17

Figure 10 - PLC Requests and Replies ... 17

Figure 11- Snap7 wrapper .. 18

Figure 12 - Plotting CSV Data .. 33

Figure 13 - Treeview Function .. 34

Figure 14 - Error graph function ... 36

Figure 15 - Loading Bar ... 37

Figure 16 - PLC Log converter or BIN to CSV converter. ... 38

Figure 17 - Final Result for offline tab ... 39

Figure 18 - Final result for key figures tab .. 44

Figure 19 - Logo DDT ... 44

Figure 20 - Save and Send menu options .. 45

Figure 21 - Naming of a folder when export functions are used .. 46

Figure 22 - Contents of dedicated folder .. 46

Figure 23 - Cut off line ... 47

Figure 24 - Result of cut off .. 47

Figure 25 - Query View Connected with server .. 49

Figure 26 - Error displayed and display error button pushed ... 49

Figure 27- Use case diagram ... 50

Figure 28 - Block Definition Diagram .. 51

Figure 29 - State machine for subject: Analyse / Offline .. 52

 Page 7 of 147

Figure 30 - State machine diagram for subject: Key Figures .. 53

Figure 31 - State machine for Save ... 54

Figure 32 - State machine for Send ... 55

Figure 33 - Tabcontrol function - connections between different tabs .. 56

Figure 34 - Test environment .. 57

Figure 35 – Treeview graph node error .. 60

Figure 36 - Test results speed .. 84

Figure 37- Visual basic vs java ... 84

Figure 38 - easyness comparison .. 85

Figure 39 - Result of standalone test. ... 90

Figure 40 - 32 bit hierarchy test result .. 91

Figure 41 - Reading in CSV files test result .. 92

Figure 42 – Save function test result .. 93

Figure 43 - Derive Key Figure test ... 94

Figure 44 - CSV result of manual calculation .. 95

Figure 45 - Fool proof test failure ... 96

Figure 46 - Result of graph plotting .. 98

Table 1 - Morphological overview of tool in General ... 20

Table 2 - Morphological choices for Data Logging .. 26

Table 3 - Morphological choices for Output of Data .. 29

Table 4 - Kesselring method for programming language.. 30

Table 5 - Kesselring method for data selection .. 31

Table 6 - Kesselring method for modularity ... 31

Table 7 - Kesselring Method for the output of data ... 32

Table 8 - Test case table .. 59

 Page 8 of 147

1. Introduction
1.1 Client and Organization
Ampelmann Operations B.V. is a company which has its headquarters located in Delft. The company

was founded in 2008 and has been growing ever since. They have got seven offices around the

world: In Aberdeen, Delft, Brunei, Houston, Qatar, Rio de Janeiro and Singapore.

Before 2008, it was hard to access offshore structures like windmills and oil platforms. They would

have to use helicopters or boats and rope swing towards the various systems, which costs a lot of

effort and time and was above all a very unsafe action.

The founders of Ampelmann saw their future in finding a solution to this problem. They came up

with the Ampelmann system, which is a ship-based, self-stabilizing platform that actively

compensates all vessel motions using a Stewart Platform (A platform on six cylinders to control six

degrees of freedom, respectively Surge, Sway, Heave, Roll, Pitch and Yaw) to make access to

offshore structures safe, easy and fast.

This process is done by continuously measuring the motions of the host vessel. Then, the required

lengths of the six cylinders are calculated to keep the transfer deck completely motionless. Finally,

each hydraulic actuator is controlled separately.

1.2 Process description
This report describes the development of a data analysing tool for Ampelmann. The tool is designed

to help future Motion Control engineers in debugging the Ampelmann systems, which at the

moment is hard due to the large amount of logged data and no dedicated tool to read this data with.

The results of the research are described in this report and in its appendices.

To design the tool, a morphological overview is created. In combination with the Kesselring method,

one concept has been chosen to make a proof of concept for.

In chapter two, the assignment description is explained in detail, where the user can see the

problem description and the goals. Chapter three is about the approach of the assignment. To

understand where the tool is focusing on, chapter four has been added. Chapter four describes the

background information. In chapter five, the user is able to see the conceptual choices that are

made during the graduation period. Chapter six is about the design of the concept that is chosen in

chapter five. Then the programming of the tool is explained in chapter seven, so that the underlying

connections are clear. Chapter eight gives a proof of concept, proving that the concept is working.

After chapter eight, conclusions and recommendations follow.

 Page 9 of 147

2. Assignment description
2.1 Problem definition
At this moment, troubleshooting an the Ampelmann system is done by reading data and using

experience. The problems that occur are solved by Ampelmann motion control engineers.

The problem is that it is hard to read logged data, as the data log files grow enormously due to the

available amount of data.

2.2 Goal:

Ampelmann’s solution to this problem is to implement a data analyzing tool, which can translate

logged data into an user friendly environment wherein one is able to see what the reason is some

errors occur or to adjust the Ampelmann System its settings to optimize its behavior.

The final user of this tool should be able to see data plots of the logged data and other relevant

debugging information such as control errors.

Besides checking logged data, the tool should be able to receive queries and respond with a proper

response (containing the information asked in the query).

2.3 Thesis question
“What is the most stable way of creating a data analysing tool and how can this be implemented

inside the Ampelmann system?”

2.4 Sub questions
 Who is/are the end user(s)?

 How is data currently logged?

 How can we extract data from logged files in a structured way?

 How can we show other relevant debugging data?

 How is the user able to send queries?

2.5 Scope
To get a good result in a time span of 17 weeks, the tool should at least work for an Ampelmann

hexapod’s cylinder data.

The reason an Ampelmann cylinder has been chosen, is because the whole Ampelmann system has a

lot of error functions. All these error functions are too much to program in a timespan of 17 weeks.

The cylinder holds a subset of error functions, large enough to prove the functionality of the tool.

 Page 10 of 147

3. Approach
In order to come up with an approach, the project is divided into different phases and work
packages. This is done to gain a good structure in the approach of the solution to the thesis question.

This project can be divided into five phases which are described below:

The first one is the start-up phase, wherein the actual start-up will take place. This includes defining
a plan on how to successfully make a thesis.

The second phase is the definition of the project. It will consist out of background research and the
documentation of its results. The background research consists of reading available documents to
understand the hardware of the current Ampelmann systems and understanding the Ampelmann
system software, by looking into the current software code. Also hydraulics and electrical courses
specifically designed for the Ampelmann systems will be followed.

The third phase will be about the design. Here, the actual research will be translated into a proof of
concept. This will include a morphological overview, a Kesselring method to choose the correct
solutions based on some given weight factors and working out the concepts.

Then the fourth phase is the testing of the system. The project needs to be realized and tested, to

ensure its workability and so that the outcomes of the analyzing are correct. Also a well written

report has to be created, so that documentation of the tool is always available.

The final phase is the writing of the Thesis and writing documentation, to ensure the total system is

documented.

The schematic overview for the given phases and work-packages are shown in the figure below. The

detailed description is left out and elaborated in Appendix I – Plan.

FIGURE 1 - SCHEMATIC OVERVIEW OF PHASES AND WORK PACKAGES

 Page 11 of 147

4. Background sesearch
4.1 The Ampelmann System
The Ampelmann system is a ship-based, self-stabilizing platform that actively compensates all vessel

motions using a Stewart Platform.

A Stewart platform is a platform that consists of six cylinders to give the user six degrees of freedom

(6-DoF) to move the platform upon. Another name for the Stewart platform is “hexapod”.

A schematic view is shown below wherein the Stewart platform is in its neutral position, which is the

position wherein the cylinders are send to the middle of the total stroke length. In this way it can go

down and up the same amount of meters, ensuring that the system is able to compensate sinusoid

like waveforms.

FIGURE 2 - STEWART PLATFORM IN NEUTRAL 1

The motion control loop constantly checks the current vessel/ship motions and will try to

compensate these motions by using the six hydraulic cylinders. These will try to keep the top frame

horizontal with respect to the horizon.

To understand how the cylinders are moved, a schematic flow is given to represent what is actually

happening:

FIGURE 3 - SCHEMATIC WORKFLOW AMPELMANN SYSTEMS 2

1 Cerda Salzmann, D. J. (2010, 10 7). We at sea. [1]
2 “”

 Page 12 of 147

The Motion Reference Unit or MRU, measures the vessel motions using a FOG technique. FOG
stands for Fiber Optic Gyrocompass and uses the Sagnac effect to measure its Roll, Pitch, Yaw which
are respectively the rotation amongst x, y and z. The Surge, Sway and Heave, respectively the
translation amongst x, y and z are done by an accelerometer.

The Sagnac-effect3 is the phase-shift-effect of two rotating waves that undergo a rotation
themselves. If pulses of light are send through an optic fiber coil in the clockwise and anti-clockwise
direction simultaneously and the coil itself moves, the same effect occurs. The light that moves in
the same direction as the coil moves, takes a bit longer to arrive than the opposite direction, thus
resulting in a phase shift. This phase shift can be calculated and thus the rotation angles of the
moved FOG.

The data of the FOG is send to the control unit of the Ampelmann system. The controls of the
Ampelmann systems are realized by using a PLC or Programmable Logic Controller. These controllers
are quick and reliable. The PLC contains analog inputs, analog outputs, digital inputs and digital
outputs. With these in- and outputs, the control loop of the system is able to move the cylinders
valves, which let hydraulic flow in or out and thus letting the cylinder extend or retract.

In the next figure, the position of the motion compensated (Engaged) Stewart platform is
schematically displayed. The base of the frame is attached to the boat, and it is tilted due to the
waves that hit the boat. The motion control loop calculates the necessary stroke lengths 𝑙𝑠𝑡𝑟𝑜𝑘𝑒, to
overcome the ships current angles in the 6-DOF motion, which are schematically shown in the
picture with one angle: 𝛳𝑠ℎ𝑖𝑝.

FIGURE 4 - MOTION COMPENSATED (ENGAGED) STEWART PLATFORM

3 Sagnac Effect [5]

 Page 13 of 147

4.2 The cylinder
As described in the project scope, the main goal focusses solely on a cylinder due to the large

amount of errors the total Ampelmann system has. In order to understand the project completely,

background info of the cylinder Ampelmann uses is necessary. Therefore this information will be

given in this paragraph.

The cylinders in the Ampelmann system are controlled by valves which control hydraulics, the

hydraulic flow is demonstrated below:

FIGURE 5 - HYDRAULIC FLOW OF CYLINDER 4

The hydraulic pressure comes from a diesel operated pump or electric pump and pumps oil
throughout the system, while a PTA (Piston Type Accumulator) makes sure that there is pressure
even when the hydraulic power supply is cut off. This knowledge is left out of this description, due to
its irrelevance to the project.

The valve used in the picture above is shown in detail below:

FIGURE 6 - CYLINDER VALVE

The valves that are used are proportional and they are solenoid controlled. Proportional means that
any position between fully open and fully closed can be used to send flow through the valves.
The valve is controlled by a solenoid which pushes the valve from one condition to the other
condition. In its rest condition, the springs will put the valve in the middle condition, so that it is
closed.
This valve let’s a flow come through either inwards or outwards and this controls the positioning of
the cylinder.

4 Cerda Salzmann, D. J. (2010, 10 7). We at sea. [1]

 Page 14 of 147

To ensure that the cylinder is at its desired position, there is a position transducer installed. This
transducer calculates the actual length of the cylinder and it’s length is compared to what the actual
position of the cylinder is. If the cylinder is not at the desired position, the valve control adapts to
make sure it will be. This system can be seen as following:

FIGURE 7 - AMPELMANN CYLINDER CONTROL 5

In above picture, the mentioned loop between the valve control, valve and position transducer is
easily seen. The Hydraulic Power Unit or HPU supplies the system with hydraulic pressure. The
system operators are able to operate the system with the control panel and GUI (Graphical User
Interface) that is installed on a touchscreen panel. Combined with buttons and other inputs and
outputs, they form a Human Machine Interface or HMI. They can put the Stewart platform in
different modes with this interface, while the Octans sends data towards the controller so that in a
case of motion compensation, the system knows how to respond.

The cylinders have several components as described before, and these are the ones that are meant

to be allocated to the tool. The functions on which the tool should focus, are determined by the

project owners: The control error on the cylinder length and the control error on the valve position.

Besides these error functions, the total absolute cumulative length, the minimum, maximum and the

average values of a given input are also meant to be calculated. These functions are applied to the

currently loaded in csv files over certain intervals.

5 Cerda Salzmann, D. J. (2010, 10 7). We at sea. [1]

 Page 15 of 147

4.3 End user
The end user is an important aspect in this project. The tool must be designated towards the end

user to ensure that the tool is understandable.

The end user is defined by the project owners. It is defined by the following quote:

“The tool has to be designed in such a way, that the motion control engineers of Ampelmann are able

to understand the tool almost immediately and if this is not the case, a help function should help

them to do so.”

The wishes and demands of the end user will give boundaries for the tool. A summary of what the

demands and wishes for the end user are, are shown below:

 There has to be a tool wherein the user is able to read in logged data.

 Inside the tool, graphs of logged data should be plotted.

 The tool should make it easier to select parts of data.

 The tool should be able to derive certain key figures for a selected period of time.

 The final prototype must be a standalone tool.

 A working test environment has to be made.

 The final prototype should be safe(e.g. not vulnerable for hacking, steady connections, etc.)

 The final prototype should be able to select data that is relevant to the user.

 The system should be written in a language that is known to most of the motion control

engineers.

 The system should be “fool-proof”.

 The final prototype should have a catchy name, to ensure the tool will be remembered and

used.

The education level on which the tool is based, is higher education, meaning that the end user will

have an HBO-bachelor degree or higher.

 Page 16 of 147

4.4 Data logging
In order to understand how the solution is found for the research question, the principles of how the
data logging is currently done should be known.

The data logging is currently done by sending data from the PLC to a Box-PC and possibly to a
PC/Laptop. A Box-PC is an industrial computer which is more steady than a personal computer. This
will be elaborated in the 5. Conceptual Phase chapter.

A short representation of the current system is shown in the following figure:

FIGURE 8 - AMPELMANN DATA FLOW DIAGRAM

The Ampelmann System’s electronics and the PLC are connected via standard copper wires. Whilst
this is happening, the PLC keeps track of all of the inputs and outputs of the system. The PLC stores
this data inside a buffer and once the buffer is full, the data will be transmitted towards the Box-PC.
The Box-PC is an industrial computer that is able to withstand vibrations and shocks. These
transmitted files are sent via an UDP socket-connection and stored in binary format on the Box-Pc.
This UDP-connection is a one-way connection: The PLC sends out data, without getting an
acknowledge of someone receiving it. In this way, the PLC won’t notice any remarkable drops in
computing time, whilst with a TCP-connection it would. This is because of the two-way
communication in TCP, the PLC will actively listen to what is being communicated on the dedicated
socket port.
The output files are in a binary format, which can be decoded to CSV files if the structure files are
supplied. These structure files are necessary to decode the Bin files.

The available .CSV files that are the output result, are readable data logs that contain info about time
and what has happened during that time.

 Page 17 of 147

4.5 Other ways of logging
Currently the data logging is done in the way described above. This might not be the best way of

doing this, so other methods were researched. First some boundaries are given and then the

researched methods are described.

4.5.1 Boundaries
The PLC-program should not be changed, due to the fact that it is not only used for logging, but also

for controlling the Ampelmann system.

So all interchangeable logging parts are the parts that come after the Ethernet cable that comes

from the PLC, which is displayed with X in the following figure:

FIGURE 9 - INTERCHANGEABLE PART

4.5.2 PLC to PC application
Given the boundaries above, it is still possible to connect the Ethernet cable towards a PC. However,

the data still needs to be extracted by the PC. The PC can do this by connecting to the PLC and read

its data when done by an dedicated application, because the PC cannot do this directly. One of these

ways is mentioned below.

4.5.2.1 PLC to Python
Some documents 6 7 mention the connection between a Siemens PLC and Python. Python is a

programming language with a lot of libraries.

One of these libraries is the Snap7 library. This is a python wrapper for connecting with Siemens

PLCs. To understand how this communication could be established, the basic way of how Siemens

PLCs work is described first:

FIGURE 10 - PLC REQUESTS AND REPLIES 6

6 Snap7. (n.d.). Snap7. [7]
7 Molenaar, G., & Preeker, S. (n.d.). [6]

 Page 18 of 147

As seen in Figure 10, the client can request data from the PLC. The CP,CPU and the memory will

transmit data so that the CP can send a reply back.

FIGURE 11- SNAP7 WRAPPER 8

In Figure 11 is shown how Snap7 works. Snap7 is a communication protocol between several
applications and the Siemens PLC. The application can act as a client, server or partner. Because the
same structure is used as within the Siemens PLCs, the PLC won’t notice that it is communicating
with an application instead of a Siemens Client/Server/Partner.

A big downside is that the client sends data towards the PLC as well, and this tends to slow down the
computing time of the whole PLC which can have negative consequences for the Ampelmann
system.

Another downside is that this will actively open the PLC for incoming hacking threads, which can put
the PLC in stop mode during operation.

Due to this, the way of logging remains the same as mentioned before (See 4.4 Data logging):

Logging over UDP with binary files.

8 Snap7. (n.d.). Snap7. [7]

 Page 19 of 147

5. Conceptual Phase
5.1 Requirements
First the project requirements need to be known in order to get a concept that covers the demands

of Ampelmann. A method that is useful to determine and write down requirements, is the MoSCoW-

method.

The MoSCoW-method is used to describe the main project objectives and requirements and can be

used for this project.

MUST

Product requirements:

 There has to be a tool wherein the user is able to read in logged data.

 Inside the tool, graphs of logged data should be plotted.

 The final prototype has to be in a 32-bit hierarchy.

 The final prototype has to be a standalone file.

 The tool should make it easier to select parts of data.

 The tool should be able to derive certain key figures for a selected period of time.

 There has to be a working test environment.

SHOULD

Product requirements:

 The system should be able to select data that is relevant to the user.

 The system should be written in a language that is known to most of the motion control

engineers.

 The system should be “fool-proof”.

 The final prototype should have a catchy name, to ensure that it will be remembered and

used.

 The system its graphical user interface should be easy to understand.

COULD

Product requirements:

 It could be an advantage if the final prototype will not cost a lot / anything.

WOULD

Product requirements:

 It would be great if the final prototype is a simple executable file.

 Page 20 of 147

5.2 Morphological analysis
To come up with the best solution, several options of coming to a solution need to be reviewed.

One way of doing this, is using a morphological overview which describes the different solutions for

different parts of the requirements. Both pros and cons of all parts are described. At the end of this

chapter, a final choice as concept will be made according to those advantages.

At first, the project needs to be split up in multiple sections, so that the morphological analysis can

be used upon every single part.

5.2.1 Problem definition: Tool in general
The tool needs to be designed and the way of doing that has to be determined. There are several

solutions to this problem and the morphological analysis will make sure the best solution is chosen.

The requirements for this problem from the MoSCoW-method are:

 The system must be built in a modular way.

 System should be able to select data that is relevant to the user.

 The system should be written in a language that is known to most of the motion control

engineers.

 The system should be “fool-proof”.

 It would be great if the final prototype is a simple executable file.

 The documentation must be clear. Either on paper, as commenting code.

TABLE 1 - MORPHOLOGICAL OVERVIEW OF TOOL IN GENERAL

Function: Option 1: Option 2: Option 3: Option 4: Option 5:

Code
Language

Data Selection

Modularity

 Page 21 of 147

5.2.1.1 Concept A
Concept A uses Visual Basic as programming language, in combination with a rule base selection

method and XML for modularity. Concept A is represented in Table 1 by the orange line.

Visual Basic:

Visual basic is a computer scripting language that most of the engineers at Ampelmann have

mastered. It is an easily understandable language and there are a lot of functions from which good

working GUI’s can be made. A downside is that live graphs are less easy to program, which is a

function that could make the tool better.

Pros:

 Easy GUI

 Easily understandable

 Employees already master the language

Cons:

 Live graphs not easily made

Rule Base:

The relevant selection process, as described before, is the process that should make sure that the

user of the tool will only get results that are relevant.

“Rule-based systems automate problem-solving know-how, provide a means for capturing and

refining human expertise, and are proving to be commercially viable” 9.

For this project this might come in very handy, because this ensures a certain amount of modularity.

If used correctly, it can predict the “likeliest places to look for relevant information” and “probable

causes”. A con might be that when the system is expanded in the future and more rules are added,

the system’s computation time will increase.

Pros:

 Places of relevant info

 Probable causes of failures

Cons:

 Slow computation time

9 (Hayes-Roth, 1985)[3]

 Page 22 of 147

XML:

XML is short for Extensible Markup Language, and is very useful when you want certain messages to

be in the same structure every time. It is platform independent and it is easily extendible, hence the

name. A con of XML is that not many browsers support it and it thus needs an extra application to be

implemented.

Pros:

 Easily Extendible

 Platform Independent

Cons:

 Not many supported browsers

5.2.1.2 Concept B
Concept B uses Python as programming language, Machine learning to select relevant data and

queries to ensure modularity. Concept B is represented in Table 1 by the green line.

Python:

Python is a programming language, with many built-in libraries and many libraries to extend it with.

In Python, it is very easy to plot live graphs. Python also uses indentation to make the structure of

the program in a smooth, easily readable way. Python is open-source and thus free for use. A con for

Python is that at the moment there are two supported versions, the 2.7 and 3.4 version, which may

lead to conflicting code.

Pros:

 Many Libraries

 Live graphs easy

 Smooth and readable

 Free

Cons:

 Two supported versions

Machine Learning:

Machine learning is a way of artificial intelligence, which relies on algorithms. It can predict data and

can be used for classification problems. For this project it could be useful to predict failures and to

select specific data for the user. A con of machine learning is that it is hard to implement (you will

need extra datasets for training, testing and validating) and it can be hard to visualize what is going

on.

Pros:

 Prediction of failures

 Select specific data

Cons:

 Hard implementation

 Hard visualization

 Page 23 of 147

Queries:
Queries are questions that are asked to a system which will interpret them, process them and reply
with a certain output. Inside this project, it is enabling the user to get answers on their specific
question or query. A pro of queries are that is known what the user actually wants. Another pro is
that is able to make the system modular with this. A con is that for modularity, the structure of the
queries need to be handled the same way every time, and this may take extra time to implement.

Pros:

 Clear demands (questions) of user

 Modularity is available

Con:

 Modularity implementing may take extra time

5.2.1.3 Concept C
Concept C uses Java as programming language, with a rule base selection method and queries to

ensure modularity. Concept C is represented in Table 1 by the purple line.

Java:
Java is a programming language, which aims for the WORA-solution, which means “Write once, Run
Anywhere” 10. This makes sure that the final program will work anywhere, which is a benefit.
Within Java it is also easy to plot live graphs. It’s also an open-source language, which makes it free
to use.
The cons of Java are that it can use a lot of memory, and like XML it requires an interpreter.

Pros:

 WORA solution

 Easy Live Plots

 Free

Cons:

 Memory

 Requires Interpreter

Rule Base:
See ‘Rule Base’ on page 21.

Query:
See ‘Queries’ on page 22.

10 Computer weekly [2]

 Page 24 of 147

5.2.1.4 Concept D
Concept D uses a combination of programming languages to write the tool in. It uses a rule base

structure in combination with queries and hard coding to select relevant data and it uses a

combination of XML and queries to ensure modularity. Concept D is represented by the red line in

Table 1.

The combination of programming languages is to get the best out of both. Python is good for

plotting live graphs and Visual Basic can make good GUI’s and is mastered by the engineers of

Ampelmann.

The combination of the Rule Base structure, with queries and hardcoding, is to ensure the modular

use of the final prototype. The queries will be used to let the user give in queries, which the tool will

process and translate into an output.

Python:
See ‘Python’ on page 22.

Visual Basic:
See ‘Visual Basic’ on page 21.

Rule Base:
See ‘Rule Base’ on page 21.

Hard Coding:
With hard coding, the way of selecting data is done with input of the user with predefined choices.
Pros of hard coding are that the user cannot make a mistake if programmed correctly and the user
knows which options are available. A con is that the options are limited, due to the given choices.

Pros:

 No mistakes can be made by the user if programmed correctly

 Clear options to choose from

Cons:

 Limited choices

Query:
See ‘Queries’ on page 22.

XML:
See ‘XML’ on page 21.

 Page 25 of 147

5.2.1.5 Concept E
Concept E uses visual basic as programming language, with a combination of choices for data

selection and queries for modularity. Concept E is shown in Table 1 with the black line.

Visual Basic:
See ‘Visual Basic’ on page 21.

Rule Base:
See ‘Rule Base’ on page 21.

Machine Learning:
See ‘Machine Learning’ on page 22.

Hard Coding:
See ‘Hard Coding’ on page 24.

Query:
See ‘Queries’ on page 22.

 Page 26 of 147

5.2.2 Problem definition: Data logging
The data logging currently is done by the method described in the data logging chapter. This is one

way of doing it, but there may be better ways of doing this hence the morphological overview

below.

Function: Option 1: Option 2: Option 3:

Data Logging

Data structure

TABLE 2 - MORPHOLOGICAL CHOICES FOR DATA LOGGING

5.2.2.1 Concept A
Concept A relies on the Box-PC, in combination with .Bin files. Cocnept A is shown in Table 2 -

Morphological choices for Data Loggingwith the orange line.

Box-PC:

The Box-PC is an industrial computer that is able to withstand vibrations and shocks. This is one of

the reasons it is being used at the moment in every Ampelmann system, because they need to

withstand the ships motion vibrations. Another pro is that because it already implemented in every

Ampelmann system, it is not necessary to buy a whole new item for the Ampelmann system, and

this will suppress costs of the final prototype.

A con of the Box-PC is that is a really slow computer. This is fixable, by replacing the internal hard

disk drive with a solid state drive. Solid state drives are much quicker, because they do not use the

spinning disks, but rather use a set of chips to speed up the process.

Pros:

 Already implemented, low distribution costs.

 Able to withstand shocks.

Cons:

 Slow, but this is solvable with an SSD drive.

 Page 27 of 147

Bin Files:

A Bin file is a file type which is primarily associated with ‘Binary File’. It consists out of a sequence of

bytes.

One of the major pros of binary files, is that they are relatively small in storage space. This is

convenient in the future, when the data logs will be transmitted over bad sea-internet, because they

will have to transmit small amounts of data. Binary files will most of the time be unreadable,

because the original structure has to be known in order to open the file correctly.

Pros:

 Relatively small in storage space.

 Useful with bad internet connections.

Cons:

 Hard to read without knowing its original structure.

5.2.2.2 Concept B
Concept B relies on a Raspberry Pi, in combination with CSV-files as data structure. It is shown in

Table 2 - Morphological choices for Data Logging, by the blue line.

Raspberry Pi:

The Raspberry Pi is a small programmable computer. Its major pros are that it is very small, easily

programmable (Open-source software) and is relatively cheap compared to a Box-PC. A con is the

slow Ethernet connection it has compared to a normal computer or Box-PC. Another con is that all

Box-PC’s should be replaced with the raspberry pi, or they should at least be compatible with each

other.

Pros:

 Cheap

 Compact and Small

 Easily Programmable

Cons:

 Slow Ethernet

 Replacement or combining (synergy) with existing Box-PC

CSV:

CSV stands for “Comma-Separated Values”. This data structure is text-based, which means that it is

easily readable for every user, which is a pro in comparison with Binary files. Another pro is that it is

easily editable. The cons of CSV is that confusion can be created with the use of punctuation, as the

files are separated by commas.

Pros:

 Easily Readable

 Easily Editable

Cons:

 Confusion with the use of punctuation.

 Page 28 of 147

5.2.2.3 Concept C
Concept C relies on a laptop in combination with a CSV data structure. Concept C is shown in Table 2

- Morphological choices for Data Logging, by the green line.

Laptop:

Another way of data logging is by using a laptop. The laptop has the most user friendly interface in

comparison with the Box-PC and the Raspberry Pi. Another pro is that it is a mobile, standalone

device. A con is that it is large in comparison to the Box-PC and the Raspberry Pi. Another con is that

it is more expensive to replace all the Box-PC’s rather than using the existing Box-PC’s.

CSV:

See ‘CSV’ on page 27.

5.2.2.4 Concept D
Concept B relies on the Box-PC in combination with the combination of BIN and CSV. Concept D is

shown in Table 2, by the red line.

Box-PC:

See ‘Box-PC’ on page 26.

BIN:

See ‘BIN’ on page 27.

CSV:

See ‘CSV’ on page 27.

5.2.2.5 Concept E
Concept E relies on a Box-PC with a CSV data structure. It is shown in Table 2, by the black line.

Box-PC:

See ‘Box-PC’ on page 27.

CSV:

See ‘CSV’ on page 27.

 Page 29 of 147

5.2.3 Problem definition: Output of data

The output of the data should be researched, because the system has to be able to reproduce earlier
asked queries. These queries can be stored in different ways.

Function Option 1 Option 2

Output File

TABLE 3 - MORPHOLOGICAL CHOICES FOR OUTPUT OF DATA

5.2.3.1 Concept A
Concept A relies on an output file in the form of a .CSV file. It is shown in the table above with the

red circle. This way of creating output files ensures that the files can be read in at any time and that

they are readable without needing a special program to open them. A con of a CSV file might be that

the structure is preset and that there is a possible cause for trouble for when the file needs to be

reproduced on the screen, because it is the same structure as the files that are read in as input.

Pros:

 Easily readable

Cons:

 Preset structure that can cause troubles when trying to reproduce

5.2.3.2 Concept B
Concept B relies on a dedicated output file, that contains all information to reproduce an earlier

state of the tool. It is shown in Table 3Table 1 with the blue circle. A pro of this manner is that the

output is dedicated, which implies that the output is exactly as wanted and the files have an

extension that is only able to be opened by the tool itself. A con of this manner is that it will tend to

have the property that it is unreadable without a special program to open it. The output file

extension will be in the form of .Ampelmann.

Pros:

 Dedicated output, easy for reproducing

Cons:

 Unreadable without a special program

 Page 30 of 147

5.3 Kesselring
With the morphological overviews shown in the previous chapter, it is possible to design concepts

out of them by using weight factors to determine which pros and cons are more important than the

other. A great way of displaying these weight factors is by using the Kesselring Method. This method

calculates with the weight factor, which option is the best for the final solution (This method is

designed by F. Kesselring of the Technical University of Twente11).

Each weight factor can differ from one to four, wherein one is the least important and four is the

most important. The scores of the individual choices are also numbered one to four, where 1 is the

lowest and 4 is the highest score.

The total amount of points per choice is calculated by the following formula:

𝑇𝑐ℎ𝑜𝑖𝑐𝑒 = ∑ 𝑝𝑖𝑤𝑖

𝑛𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

𝑖=1

EQUATION 1 - KESSELRING CALCULATION

Where:

𝑛𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 = 𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

𝑇𝑘𝑒𝑠 = 𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑝𝑒𝑟 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑢𝑎𝑙 𝑐ℎ𝑜𝑖𝑐𝑒

𝑝𝑘𝑒𝑠 = 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑝𝑒𝑟 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑢𝑎𝑙 𝑐ℎ𝑜𝑖𝑐𝑒 𝑜𝑛 𝑎 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

𝑤𝑘𝑒𝑠 = 𝑊𝑒𝑖𝑔ℎ𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑝𝑒𝑟 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑢𝑎𝑙 𝑐ℎ𝑜𝑖𝑐𝑒 𝑜𝑛 𝑎 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

Each grade in the Kesselring method is accounted for in Appendix II – Accountability research for

Kesselring method.

5.3.1 Problem definition: Tool in general
The first thing the Kesselring method will be used upon is the programming language. It is divided

into five categories, which compares them at speed, flexibility, easyness, experience and stability.

Then they are multiplied with a weight factor. The weight factors are based upon the demands of

Ampelmann. Therefore, speed and stability are necessarily the most highest weight factors of them

all with a weight factor of four. The other three sections are also important, but less important than

the speed and stability and are thus weighted with a factor of three.

Programming
Language

Visual Basic Python Java Combination Weight
Factor

Speed 4 3 3 3 4

Flexibility 3 4 3 4 3

Easyiness 3 3 1 2 3

Experience 3 4 1 2 3

Stability 4 3 3 2 4

Total 59 57 39 44 68

Percentage 86.8% 83.8% 57.3% 64.7% 100%

TABLE 4 - KESSELRING METHOD FOR PROGRAMMING LANGUAGE

11 Kesselring, F. (1954). Technische Kompositionslehre. Berlin [4]

 Page 31 of 147

In the table on the previous page, the difference between Visual Basic and Python is only 2 points

out of 68. This is a difference of 3%.

Java scores bad on overall score, and is thus left out of the conceptual phase.

The combination of languages doesn’t score better than the languages on their own, hence this will

be left out of the conceptual phase.

Because this difference is so marginal between Python and Visual Basic, it is not pretty clear which

system wins from the other. Therefore another factor has to eliminate the one from the other. The

practical use is still not incorporated in the comparison. Because Ampelmann employees are more

common with Visual Basic than Python, Visual Basic will be used for the conceptual design.

Data
Selection

Rule Base Machine
Learning

Hard
Coding

Query Combination Weight
Factor

Flexibility 2 3 1 2 4 3

Easyiness 2 2 4 3 3 3

Experience 1 3 4 2 3 3

Stability 1 2 3 3 4 4

Total 19 32 39 33 43 52

Percentage 36.5% 61.5% 75% 63.5% 82.7% 100%

TABLE 5 - KESSELRING METHOD FOR DATA SELECTION

In the table above, rule base, query and machine learning score the lowest. Hard coding could be a

good option, but hard coding makes the prototype les dynamical which is unwanted. A combination

of the other options comes out best with 82.7% and is thus used for the conceptual design.

The combination that will be used will become clear in the conceptual design starting on page 33.

Modularity Query XML Combination Weight Factor

Flexibility 2 2 3 3

Easyiness 2 2 1 3

Experience 3 2 1 3

Stability 3 3 4 4

Total 33 30 31 52

Percentage 63.5% 57.7% 59.6% 100%

TABLE 6 - KESSELRING METHOD FOR MODULARITY

In the table above, using queries comes out as best option. Because the differences are not too big,

it is possible to implement XML, but queries will mainly be used for modularity.

So the concept that will be used for the tool in general is concept E. It is shown on page 20 in black.

 Page 32 of 147

5.3.2 Problem definition: Output of data
The output of the data is also important, as described in the morphological analysis. This will be

shown in the table below:

Output of Data CSV Ampelmann file Weight

Flexibility 2 4 3

Easyiness 4 2 3

Experience 4 1 3

Total 30 21 36

Percentage 83.3% 58.3% 100%

TABLE 7 - KESSELRING METHOD FOR THE OUTPUT OF DATA

Table 7 suggests that a CSV file type is the best way of storing the data, due to experience and it’s

relatively easy understandable structure.

The outcome is thus equal to concept A, which is shown in table 29 with the red circle.

5.3.3 Conclusion
As a conclusion to this chapter, a summary of the chosen set-up is given:

The tool shall be programmed in Visual Basic, with assistance of Python if felt necessary. For data

selection a combination of hard coding and queries come out as best, hence the tool will focus on

both.

For modularity, queries will mainly be used and xml if found necessary.

As output, the CSV files will be used, so that the output can be used as input in the same tool

whenever necessary.

 Page 33 of 147

6. Design
To realize the conceptual choices in the previous chapter, the design for each conceptual part will be

elaborated in this chapter.

One of the requirements of Ampelmann, was to make an easy understandable graphical user

interface or GUI (see ‘5. Conceptual Phase

5.1 Requirements’).

The GUI depends on the language in which it is build. For this case it is Visual Basic.

Within Visual Basic, the programmer is able to create “Windows-style” GUI’s.

To make the GUI, the demands are split into parts. In this way, each part gets enough attention to

make it run smooth and “fool-proof”. The parts are:

 Plotting Logged Data / Offline

 Key Figures

 Saving or Sending

For each part will be elaborated which choices are made for the design.

6.1 Plotting data
For plotting data within Visual Basic, is a build-in function called Chart.

With the Chart-function, the programmer is able to give parameters for the X and Y axis of a chart so
that a graph will be made with a predefined shape (e.g. a “line-style” graph or “bar-style” graph).

To implement the chart in this project, the X and Y values should come from the CSV-files.

FIGURE 12 - PLOTTING CSV DATA (LEFT - SKETCH, RIGHT - DESIGN)

 Page 34 of 147

However, this method relies solely on the CSV-file that has been loaded and not on the user’s choice.
The user has to be able to select relevant data itself as well, for the system to function properly.
Therefore, the Treeview function was added to the system, making it more open for user input.
The Treeview function is a function that is build-in in Visual Basic. It is a structured way of displaying
data, and in combination with checkboxes, it can make the user select preferred data. It’s structure
is divided in branches, hence the name.

The second design is shown below:

FIGURE 13 - TREEVIEW FUNCTION (UPPER - SKETCH, LOWER – DESIGN)

 Page 35 of 147

6.1.1 Workability
To increase workability, several other function have been added to the tool.

X-axis:

The tool is only relying on time as X-axis, and eventually it should be interchangeable, so that any

item in the treeview can be used as X-axis. This is possible by pressing the “Change X-Axis” button.

Adjustable Scale/View:
Besides the interchangeable X-axis, the view/scale of the axis is only relying on the automatically
assigned scale, which comes forth out of the Auto Scale function in Visual Basic.

To make it possible for the user to adjust the scale, several textboxes are added to read in the user’s
preferred scale or view. The user can then apply the settings by pressing the “Apply” button or reset
to its previous values by pressing the “Reset” button.

Help Button:
A help button is added, to give the user tips on how to use the tool. The following window will pop-
up:

Select / Deselect All:
A select and deselect all button are added to let the user select all items in the treeview or to
deselect them all.

 Page 36 of 147

Error Graph:
To add more functionality to the actual data, an error graph function is added.

This graph is the difference between one graph and another. For instance the difference between
the set point of a valve and its actual position.

The calculation is done by the following formula:

𝐸𝑟𝑟𝑔𝑟𝑎𝑝ℎ(𝑥𝑒𝑟𝑟𝑔𝑟𝑎𝑝ℎ) = 𝐹𝑎𝑒𝑟𝑟(𝑥𝑒𝑟𝑟𝑔𝑟𝑎𝑝ℎ) − 𝐹𝑏𝑒𝑟𝑟(𝑥𝑒𝑟𝑟𝑔𝑟𝑎𝑝ℎ)

EQUATION 2 – ERROR GRAPH CALCULATION

Where:
𝑥𝑒𝑟𝑟𝑔𝑟𝑎𝑝ℎ = A value that runs from the first item in the CSV file row until the last.

𝐸𝑟𝑟𝑔𝑟𝑎𝑝ℎ(𝑥) = The resulting graph.

𝐹𝑎𝑒𝑟𝑟(𝑥) = One of two functions of which the error graph needs to be calculated for.
𝐹𝑏𝑒𝑟𝑟(𝑥) = One of two functions of which the error graph needs to be calculated for.

If the example of the cylinder’s set point and its actual positionn is used, and we take the absolute
value of the results per data point we get the following result:

FIGURE 14 - ERROR GRAPH FUNCTION

The red line is the error graph. In the most ideal situation, this line would be completely flat, and
thus totally 0, indicating that the cylinder is perfectly following it’s set point. In reality this will never
occur, but it will actually fluctuate around 0.

 Page 37 of 147

Absolute zero:

Another function is the absolute zero function, which scales the X-axis values to start from 0. This

convenient when debugging the system, to accurately see the amount of passed time. This will help

the Motion Control engineers to see when the PLC has started.

Information section:

An information section is added, so that the user can see relevant information when a certain action

occurs. For instance the selection of a x-axis or an error that occurs.

Loading bar:

A loading bar or progress bar is added, to let the user know the program is still working when adding

a big CSV-file. Big CSV-files will take more time to load and the progress bar will prevent the user

from thinking that the tool is frozen or crashed. The bar is displayed in the information section

mentioned above.

FIGURE 15 - LOADING BAR

Legend text and axis label text:

To make clear which line is which function, legend text has been added. Each line contains the

equivalent name as its selected item of the treeview.

Also for the axes, the label texts are shown, to see which function is shown on what axis.

 Page 38 of 147

Tab control:

To ensure that the following parts of the tool can fit on the screen, the tab control function has been

added, with each tab containing one of the four parts mentioned on page 33.

The tab control is also added to the help menu button, so that the user can see tips per tab.

Open Bin File:

Because the project owners wanted to have the functionality of opening a bin file directly, methods

were researched to implement the already existing Bin to CSV converter that has been made by one

of the motion control engineers of Ampelmann. There are two ways of doing this. One is building the

converter in the tool. The other way is by referencing directly towards the converter and letting its

output stream directly towards the tool.

The second way has been chosen, because this ensures that in future release of the converter, the

tool doesn’t have to be re-written in order to function properly. It will just reference towards the

new version of the existing converter.

FIGURE 16 - PLC LOG CONVERTER OR BIN TO CSV CONVERTER.

In Figure 16 the converter is shown. The user can load a STL-file, which contains the structure of the

binary (.BIN) file. These STL-files were provided by the converter. The user can then load in the

binary files and press the “Convert and go back to DDT” button, to convert the binary files to CSV-

files and go back to the tool.

 Page 39 of 147

Final Result:
The final result for the offline tab is shown below, containing the above mentioned functions.

FIGURE 17 - FINAL RESULT FOR OFFLINE TAB

 Page 40 of 147

6.2 Key figures
Key figures is another tab in the tab control mentioned earlier on page 39.
The benefit of key figures are that the user of the tool is able to get a quick analysis of most
commonly used key figures.

Total absolute cumulative length:
One of the commonly used key figures is checking how far a cylinder has moved since a certain
amount of time. So the tool should calculate the total amount of length that a cylinder has travelled.

This is also convenient for future use, for instance for predictive maintenance. If the average
travelled amount of distance for cylinders is known at their breaking point, predictions can be made
on when a working cylinder may break.

The total absolute cumulative length is calculated by the following formula:

𝐴𝑏𝑠𝑐𝑢𝑚𝑙𝑒𝑛𝑔𝑡ℎ = ∑ |𝑥𝑐𝑠𝑣𝑖
− 𝑥𝑐𝑠𝑣𝑖−1

|

𝑛𝑐𝑠𝑣

𝑖=1

EQUATION 3- TOTAL ABSOLUTE CUMULATIVE LENGTH

Where:

𝐴𝑏𝑠𝑐𝑢𝑚𝑙𝑒𝑛𝑔𝑡ℎ = The absolute cumulative length.

𝑛𝑐𝑠𝑣 = The amount of items in the CSV file row.
𝑥𝑐𝑠𝑣 = A value from the read in CSV file.

Mean:
The mean of a function is used commonly too. To calculate the mean, the following formula has
been used:

𝑀𝑒𝑎𝑛 = ∑
𝑥𝑐𝑠𝑣𝑖

𝑛

𝑛𝑐𝑠𝑣

𝑖=1

EQUATION 4 - MEAN OF A FUNCTION

Where:

𝑀𝑒𝑎𝑛 = The mean of a function.
𝑛𝑐𝑠𝑣 = The amount of items in the CSV file row.
𝑥𝑐𝑠𝑣 = A value from the read in CSV file.

 Page 41 of 147

Maximum:

The maximum of a function can be critical information, especially when an error has occurred peaks

are relevant. The maximum of a function is also commonly used for debugging and analyzing the

Ampelmann systems.

To calculate the maximum, the following formula has been used:

𝑀𝑎𝑥𝑓𝑢𝑛𝑐 = 𝑀𝑎𝑥{𝑥𝑐𝑠𝑣𝑖
| 𝑖 = 1 . . . 𝑛𝑐𝑠𝑣}

EQUATION 5 - MAXIMUM OF FUNCTION

Where:

𝑀𝑎𝑥𝑓𝑢𝑛𝑐 = Maximum value of a function.

𝑛𝑐𝑠𝑣 = The amount of items in the CSV file row.
𝑥𝑐𝑠𝑣 = A value from the read in CSV file.

Minimum:

The minimum of a function can also be critical information.

To calculate the minimum, the following formula has been used:

𝑀𝑖𝑛𝑓𝑢𝑛𝑐 = 𝑀𝑖𝑛{𝑥𝑐𝑠𝑣𝑖
|𝑖 = 1 … 𝑛𝑐𝑠𝑣}

EQUATION 6 - MINIMUM OF FUNCTION

Where:

𝑀𝑖𝑛𝑓𝑢𝑛𝑐 = Maximum value of a function.

𝑛𝑐𝑠𝑣 = The amount of items in the CSV file row.
𝑥𝑐𝑠𝑣 = A value from the read in CSV file.

 Page 42 of 147

Average Control Error:

The average control error of two functions is convenient to know, because the error rate can tell

whether to adjust the gains of the control loop to get an even better result, which is that the error

function becomes as close to zero as possible.

The average control error is calculated by the following formula:

𝐴𝑣𝑒𝐶𝑜𝑛𝑒𝑟𝑟 = ∑
𝐹𝑎𝑎𝑐𝑒(𝑖) − 𝐹𝑏𝑎𝑐𝑒(𝑖)

𝑛𝑐𝑠𝑣

𝑛𝑐𝑠𝑣

𝑖=1

EQUATION 7 - AVERAGE CONTROL ERROR

Where:

𝐴𝑣𝑒𝐶𝑜𝑛𝑒𝑟𝑟 = The average control error of two given functions a and b.
𝐹𝑎𝑎𝑐𝑒(𝑖) = One of two functions to calculate the average control error for.
𝐹𝑏𝑎𝑐𝑒(𝑖) = One of two functions to calculate the average control error for.
𝑛𝑐𝑠𝑣 = The amount of items in the CSV file row.

Standard Deviation:

The standard deviation is a number that gives an indication of spread. The number indicates how

much the given values differ from eachother.

𝜎 = √
∑(𝑥 − 𝑚𝑒𝑎𝑛)

𝑛𝑐𝑠𝑣

EQUATION 8 - STANDARD DEVIATION

Where:

𝜎 = The standard deviation.
𝑥 = The current value.
𝑀𝑒𝑎𝑛 = The mean as calculated in Equation 4.
𝑛𝑐𝑠𝑣 = The amount of items in the CSV file row.

 Page 43 of 147

6.2.1 Design
With above functions in mind, the design of the Key Figures tab has been made.
The formulas used, have to be applied to data that has been load in on the “offline” tab. To make it
easy for the user to understand how to apply these functions, the same treeview structure has been
used in order to have a clear overview.

The formulas selection has been implemented inside an option window, wherein the user can select
which formula he/she wants to apply to the selected data.
To show the key figures on screen, a ‘show’ button has been added.
To ensure stability and speed, the formulas can only be selected one by one. In this way, the tool can
calculate each formula once, preventing it from crashing once the tool is on the Box – PC.
The results are displayed in a separate field, with dynamic checkboxes. Each checkbox will be
created dynamically, each time the user presses the ‘show’ button. In this way, almost unlimited
amount of key figures can be displayed on screen.

6.2.2 Workability
To increase workability, several extra functionalities have been added.

Select / Deselect All:
A select and deselect all button are added to let the user select all items in the treeview or to
deselect them all.

Inverse Selection:
An inverse selection option is added to ensure that the user is able to select the other keyfigures
easily and unselect the current ones.

Delete:

A delete button is added to ensure that the user is able to delete the key figures that are unwanted /

unneccesary.

Clear All:

A clear all button is added to let the user clear the total field of key figures.

Round / Truncate:

Round and truncate buttons are added to gain the mobility to round or truncate the selected key

figure. This can be done by selecting the amount of decimals and pressing the corresponding

buttons.

Formula(s) used:

To fill up the empty space between the treeview and the options menu, a used formula window has

been created. In this way the user can see which formula has been used in order to gain the shown

result.

 Page 44 of 147

FIGURE 18 - FINAL RESULT FOR KEY FIGURES TAB

In Figure 18, the final result is shown for the key figures tab. In this picture, some key figures are

shown. The one that has been checked, has its values rounded to 1 decimal. This shows the round

function.

6.3 DDT
One of the requirements of Ampelmann was to implement a name which would not be forgotten by

the motion control engineers. After brainstorming with the mentors, the name DDT was brought up.

Simple in pronounciation and to remember. It stands for Devin’s Data Tool, referring to the name of

the maker of the tool. This has been translated into an Ampelmann logo, seen below:

FIGURE 19 - LOGO DDT

 Page 45 of 147

6.4 Save / Send
The save and send tab, is a tab wherein the user is able to export data, either via saving to the

computer or via mail.

Saving and sending is one of the requirements of the project owners. Both are ways of exporting

data and ways of compressing loads of data into smaller useful parts.

Several save and send functions have been defined by Ampelmann:

 Exporting graphs

 Exporting used CSV treeview items

 Exporting used key figures

 Exporting functions with specific cut off values

All these functions are clickable via the corresponding checkboxes, making it able to select one or

two, three, etc. of the available options.

The information about a succeeded or failed export is shown within a separate box, containing the

names of either save info or send info, which are related to the respective functions.

FIGURE 20 - SAVE AND SEND MENU OPTIONS (LEFT: SAVE , RIGHT: SEND)

In figure above, the explained options are shown as they are designed inside the program.

A file name has to be given in order for the functions to work, as they will give the files a dedicated

name. For sending, an email address is required as well.

Each saved file will be saved in a folder that contains the name of the date of the day that the

functions are used. In this way, retrieving the used functions is convienient, because the user can

search on the date as well instead of only on the file name.

 Page 46 of 147

FIGURE 21 - NAMING OF A FOLDER WHEN EXPORT FUNCTIONS ARE USED

In the figure above, the earlier mentioned way of saving files is shown. These folders contain the

selected items of the options window of the send function.

An example of its contents is shown in the figure below:

FIGURE 22 - CONTENTS OF DEDICATED FOLDER

These are the results of the save function. The first item in the above figure, contains the result of

the “cut-off” function.

This cut-off function is a function, wherein the user can say whether to look for minima or maxima

and cut out values above or below these minima or maxima. In this way, the end-user or motion

control engineer is able to check when a selected function has passed a certain key value, and this

function will then crop the values, so that a reduced file with only the requested data will come out

as output. This makes the debugging of the Ampelmann system easier, since it deletes unnecessary

data and only keeps the wanted data that is beneath a certain key figure.

Once the cut-off function has been used, the tool automatically adds a line to show the user where

the cut-off function has cut off the function. This is shown in the picture on the following page with

as example a cut-off value of maximum 15000.

In Figure 24Figure 24 - Result of cut off, on the next page, the result of the cut-off function is shown.

The flat lines indicate that there is no data on those times, and the chartview compensates by filling

up the gaps. A recommendation is to crop the flat lines at the top, because they add no significant

benefits.

These functions can also be used as a warning type of function, warning the user whenever a certain

criteria has been passed, resulting for instance in an error that lets the user know there is something

wrong.

 Page 47 of 147

FIGURE 23 - CUT OFF LINE

FIGURE 24 - RESULT OF CUT OFF

 Page 48 of 147

6.5 Online / Query
To let the end-user request specific data from the Box-PC, there should be a online tab or query tab

on the tool. Queries are commands that can be send towards a database to get potential results.

After onset of the research, the project owners decided to focus more on the analysing part and to

only set-up a basic template for in the future for the online or query mode. This due to the scope

and the availability of going online via a shared desktop application such as TeamViewer.

The template has been created with the idea in mind that the end-user should be able to use the

same program to be either the sender as the receiver, respectively the client or the server.

Therefore a design has been made wherein the user is able to let the program know whether he/she

is either client or server.

This is done by using radiobuttons, to ensure that not both options can be used at the same time.

6.5.1 Client mode
In client mode, the user can press the connect button, which will execute a command that sends a

TCP message throughout a predefined IP-address. Whenever there is a server listening, and it replies

with the suspected handshake code, a TCP connection has been set up. From that moment on, the

user would be able to send queries towards the server.

If an error occurs, a “Display Error” button will appear. Once pressed the user will get the

information needed to understand the occurring error.

6.5.2 Server mode
In server mode, the program sets up a server that is constantly looping and trying to find a client to

connect with. Once the server gets a TCP request, it replies with a handshake code to confirm the

connection and thus setting up the two-way TCP connection.

6.5.3 Design
In the future, this tab can be extended so that the queries can be send and replied to. For now, the

basic template has been set up and on the next page, in Figure 25 the tab has been shown for the

queries, with a connection Set up.

6.5.4 Modularity

Because the query tab is in the form of a basic template, the modularity of the tool is hard coded.

This is visible in many ways. For instance the exporting of data always occurs on the same way and in

the same format, ensuring that future programmers / users are able to proceed with every shape of

CSV-files, because the tool can read them. Also the code is commented intensively, ensuring that

most engineers will know how to continue in the program for future functions.

 Page 49 of 147

FIGURE 25 - QUERY VIEW CONNECTED WITH SERVER

As mentioned before when a connection fails an error message occurs, resulting in the following

image:

FIGURE 26 - ERROR DISPLAYED AND DISPLAY ERROR BUTTON PUSHED

 Page 50 of 147

7. Programming
To program the tool, the main users or actors need to be clear. For this tool the main actor is the
Ampelmann Motion Control engineer. The functionality of their input is shown below in a use case
diagram. The other actor is the tool itself, which is a system actor.

FIGURE 27- USE CASE DIAGRAM

The in- and outputs of the system are shown in the use case-diagram in the figure above. These

inputs and outputs need to be programmed in order to get a good proof of concept.

The Motion Control engineer has to be able to send requests to the tool like graphs, key figures and

queries. Also saving and sending functions have to be realized in order for the Motion Control

engineers to save the data or sending it towards the Ampelmann headquarters.

Each function within the program has to be determined on beforehand to ensure that underlying

relations are known. This will result in a more clear view on how to program the different parts in

such a way that the other parts will be able to work with it as well.

 Page 51 of 147

As said in the Design chapter on page 33, there are three main subjects:

 Plotting Logged Data / Offline

 Key Figures

 Saving or Sending

For each of these subjects, the corresponding functions are shown in a Block Definition Diagram:

FIGURE 28 - BLOCK DEFINITION DIAGRAM

Also for each of these subjects a state machine diagram is made to give a detailed overview of the

functions it contains. At the end a state machine is given for the connection between all of them.

Each of these functions are programmed in such a way that whenever the exit button is pushed, the

program quits immediately.

 Page 52 of 147

FIGURE 29 - STATE MACHINE FOR SUBJECT: ANALYSE / OFFLINE

 Page 53 of 147

FIGURE 30 - STATE MACHINE DIAGRAM FOR SUBJECT: KEY FIGURES

 Page 54 of 147

FIGURE 31 - STATE MACHINE FOR SAVE

 Page 55 of 147

FIGURE 32 - STATE MACHINE FOR SEND

 Page 56 of 147

FIGURE 33 - TABCONTROL FUNCTION - CONNECTIONS BETWEEN DIFFERENT TABS

In the figure above, the interconnection between all tabs has been shown. If the user starts the tool,

the program starts with the analyse tab. After that, every time a tab has been clicked it switches to

that particular tab. In every tab, an Idle state has been implemented. This is the state wherein the

tool is when nothing happens. As mentioned before, the user is always able to exit the tool

whenever he/she is in the Idle state.

The programming is built up in an event based structure, which lets the program go to idle state

until an event occurs. This ensures that no unnecessary background processing time is required.

To ensure stability, the loop in the Query/Online tab for the server mode is written in a multi

threaded way, so that one thread is running and looking for clients, while the other thread maintains

computational abilities for the rest of the program.

The programming code can be found in Appendix V – Program.

 Page 57 of 147

8 Proof of Concept
In order to proof that the concept is working, the designed concept must be tested. This will be done

in combination with a test case. The test case describes the different amount of tests and how these

tests are done step by step. Also the criteria on which the test is passed or failed is mentioned.

These tests are executed on a test environment, which has to be created as it is one of the

requirements.

The test environment should exist of the following parts in order to get as close as possible to a real

Ampelmann system:

 Moxa (Box-PC)

 Ethernet and/or Wi-Fi for PLC dependencies

 Power Supply

 PLC that imitates the PLC in the Ampelmann control panel one

 PLC that imitates the PLC in the Ampelmann control panel two

 DDT on monitor that is connected to Moxa

If we put this all together, we get the following result:

FIGURE 34 - TEST ENVIRONMENT

 Page 58 of 147

In the previous figure (Figure 34 - Test environment), the mentioned parts are installed, where:

 Yellow = Moxa (Box-PC)

 Green = Ethernet and/or Wi-Fi for PLC dependencies

 Purple = Power Supply

 Red = PLC that imitates the PLC in the Ampelmann control panel one

 Brown = PLC that imitates the PLC in the Ampelmann control panel two

 Blue = DDT on monitor that is connected to Moxa

With the test environment set-up, the test case can be made.

The test case will test the requirements that are testable from the requirements list.

The test case will consist of the following items for testing:

Test 1: Stand-alone test

Test 2: 32-Bit hierarchy test

Test 3: Read in CSV files test

Test 4: Export data test

Test 5: Deriving Key figures test

Test 6: Fool proof test

Test 7: Easy understandable GUI check/test

Test 8: Graph plotting test

The testcase for these tests is displayed on the next page.

Pagina 59 van 150

Test Case # Test Title Test Summary Goals Test Steps Criteria for Pass/Fail Expected Result Actual Result Notes

1 Stand-alone test
Test to check

whether the DDT can
work stand alone

Validating if the
DDT is stand alone.

1. E-mail tool executable
2. Run Executable

Pass: Executable runs without
installing

Fail: Executable doesn't run
without installing

Pass Pass --

2
32 - Bit

Hierarchy Test

Test to check
whether the DDT

works with a 32 bit
hierarchy

Validating if the
DDT is working in a

32-bit hierarchy.

1. Run the program on a 32-bit
hierarchy computer. This will
be tested on the Moxa (Box-

PC). The moxa has got a 32-bit
hierarchy.

Pass: Executable runs without
errors on hierarchy

Fail: Executable doesn't run
Pass Pass --

3
Read in CSV files

test

Test to check
whether the tool can

read in CSV files.

Validating if the
tool can read in CSV

files.

1. Run the DDT
2. Load different sets of CSV

files

Pass: Treeview will open up the
data from the CSV files

Fail: An error will occur or the
treeview will not fill with data

from the csv files

Pass Pass --

4 Export Data test

Test to check
whether the tool is

able to save and send
data

Validating if the
tool can send and

save data.

1. Run the DDT
2. Load different sets of CSV

files
3. plot graphs and request

keyfigures
4. Save or Send files.

Pass: Selected items are saved or
send on the computer

Fail: Selected items are not
saved on the computer or send

via e-mail

Pass Pass & Fail
Saving is working,
Sending not yet.

5
Deriving Key
Figures test

Test to check
whether the tool is

able to derive certain
key figures

Validating if the
tool is able to

derive key figures
from selected data.

1. Run the DDT
2. Load different sets of CSV

files
3. Derive key figures

Pass: Able to derive key figures
with values that seem logical to
the motion control engineers of

Ampelmann
Fail: Unable to derive key figures

Pass Pass --

6 Fool proof test
Test to check

whether the tool is
fool proof

Validating if the
tool is fool proof /

stable.

1. Run the DDT
2. Load different sets of CSV

files
3. Let different people with no
knowledge about the DDT try

to use every function

Pass: No crashing or unexpected
behaviour occurs Fail: Program

crashes or unexpected behaviour
occurs

Fail Fail
Checking treenodes
only works from up

to down

7
Easy

understandable
GUI test

Test to check
whether the tool is

easily
understandable

Validating if the
GUI is easy to
understand.

1. Run the DDT
2. Load different sets of CSV

files
3. Let different people with no

knowledge about the DDT
press every button.

Pass: Other engineers know how
to use the DDT, or with help of

the Manual or Help button
Fail: Other engineers fail to

understand the DDT

Pass Pass --

8
Graph plotting

test

Test to check
whether the tool is
able to plot graphs

Validating if the
tool can plot graphs
from read in data.

1. Run the DDT
2. Load different sets of CSV

files
3. Plot multiple graphs

Pass: DDT plots graphs
Fail: DDT does not plot graphs

Pass Pass --

TABLE 8 - TEST CASE TABLE

Pagina 60 van 150

The test case results are shown in the table on the previous page. These results are elaborated in

Appendix III – Test case results.

As seen in the table on the previous page, almost every test succeeded, except the sending and

saving and the fool proof test.

For the sending and saving part, the problem can be solved by programming the send part in the

following way: Save the files to a local place on the computer, grab the saved files and put them in

an attachment in an e-mail. In this way, the user is able to send the data as well.

The problem with the treenodes was that if the user would check a node whilst a node below it in

the treeview has been checked, the chart handles the newly checked node as if it is the lowest node

in the treeview.

FIGURE 35 – TREEVIEW GRAPH NODE ERROR

In the figure above, the error is more clear to see. The node with a “3” in front of it is checked later

than node “2”. But because it is above node 2 in the treeview, the chart thinks it is the last added

node and adds an identical graph to the chart and an identical name to the legend. If the two purple

boxes in the picture above are compared, this is even more clear to see.

 Page 61 of 147

9. Conclusions
After several conceptual ideas at the start, one concept was worked out in detail which resulted in

the current design.

The current design meets the requirements of Ampelmann, ensuring that all parties are pleased with

the result.

The tool has got a catchy name, Devin’s Data Tool or DDT, and has its own logo.

Due to its name, the tool will be remembered and used within the Ampelmann company.

The tool is able to load CSV files and BIN files if the STL files are loaded as well. This ensures that the

Ampelmann engineers can use the current data logging tool for the DDT.

Plotting graphs is made easy by the treeview with checkboxes. If the user checks the box, the graph

will display and vise versa. Besides the standard requirement of plotting data in a graph, the user

also has the ability to apply operations on the chart, allowing them to zoom in or scale the axis to a

value selected by themselves.

A basic template has been rolled out for query based information, wherein the user is able to

connect with a server, which is the exact same DDT program, only with one marked as server and

one marked as client. This ensures stability and consistency in the tool and no other files need to be

installed to serve as a server, which makes the tool to still be able to operate as a stand-alone tool.

The exporting of data has been realized by two functions, save and send. Saving items is made easy

by giving the user a selection of options, and saving the files locally to a dedicated folder. Sending

has not yet been realized, but will be in upcoming weeks.

The Ampelmann engineers are now also able to derive key figures for different kind of purposes.

This is made convenient by adding several features that can be applied upon the displayed key

figures. These key figures can also be exported via the save and send tab.

 Page 62 of 147

10. Recommendations
In order to gain an even better tool, several recommendations to future programmers / users are

mentioned below.

The treeview at every tab in the tool can become better, if there are more child nodes used. This

ensures that there is more hierarchy, and that there is a better overview of which subject belongs to

a certain main chapter. So for instance, every C1 and C2 from the log files, can be a group and inside

C1 and C2 there can be another level of hierarchy. These will then be groups of analog inputs, analog

outputs, digital inputs and digital outputs. In this way there will be a more simpler overview of the

nodes.

Another recommendation is to look at the loop for checking the nodes in the offline / analyse tab,

which is at the moment resulting in unexpected behaviour as mentioned within the proof of concept

chapter.

A final recommendation is to look at the scaling of the values. At the moment, the values in the CSV

files that come from the PLC are raw values, and they have to be calculated to percentages as shown

in Figure 14.

For future users, a manual has been added that can help them with learning the tool. It can be found

in Appendix IV – Manual for Tool.

 Page 63 of 147

11. References
[1] Cerda Salzmann, D. (2010, 10 7). We at sea. Retrieved from http://www.we-at-sea.org/wp-

content/uploads/2013/01/RL5-1-2004-012-Ampelmann-PhD-thesis.pdf

Computer Weekly. (n.d.). Computer Weekly. Retrieved from

http://www.computerweekly.com/feature/Write-once-run-anywhere

Hayes-Roth, F. (1985, 11 9). ACM Digital Library. Retrieved from

http://dl.acm.org/citation.cfm?id=4284.4286

Kesselring, F. (1954). Technische Kompositionslehre. Berlin.

MathPages. (n.d.). MathPages. Retrieved from http://www.mathpages.com/rr/s2-07/2-07.htm

Molenaar, G., & Preeker, S. (n.d.). Read the Docs. Retrieved from Read the Docs:

https://media.readthedocs.org/pdf/python-snap7/latest/python-snap7.pdf

Snap7. (n.d.). Snap7. Retrieved from http://snap7.sourceforge.net/

 Page 65 of 147

Appendix I – Plan

 Page 66 of 147

THE AMPELMANN DDT
Development of the Ampelmann DDT data analyzing tool

AMPELMANN

Kluyverweg 1, 2629 HS, Delft
By: Devin van Tuijll

 Page 67 of 147

1. Introduction

Nowadays all the technical tools and work we encounter must be better than its previous version is.

In the way of obtaining the best technical solution to a certain problem, one will almost always

encounter problems.

To detect and solve these problems, people will use their knowledge to “debug” the used system

and find out what the underlying cause was, so that the problem can be tackled and this will be

prevented in the future.

In this document, it will become clear which steps and measures are taken to come to a fully

working prototype of a data analyzing tool. The research and development of this system is

commissioned by Ampelmann Operations B.V. and the planning is displayed for the whole time span

of 17 weeks until 03-06-2016.

At Ampelmann Operations B.V., solving problems is nothing different than described above. Their

motion control engineers will debug the systems when they encounter problems and will use their

knowledge to solve the problems that occur.

At the moment the debugging can become much better and Ampelmann Operations B.V. gave me

the opportunity to do this for their company. The detailed description of the assignment can be

found in chapter 3.2.

The approach of this project can be found in chapter 5. It will become clear very soon, that this

project is done in phases, to ensure its structure, quality and safety.

 Page 68 of 147

2. Background

2.1 Client and Organization

Ampelmann Operations B.V. is a company which has its headquarters located in Delft. The company

was founded in 2008 and has been growing/expanding hard ever since. They’ve got a lot of offices

around the world. Ampelmann has offices in Aberdeen, Delft, Brunei, Houston, Qatar, Rio de Janeiro

and Singapore.

Before 2008, it was hard to access offshore buildings like windmills and oil platforms. They would

have to use helicopters or boats and rope swing towards the various systems, which cost a lot of

effort and time.

The founders of Ampelmann saw their future in finding a solution to this problem. They came up

with the Ampelmann system, which is a ship-based, self-stabilizing platform that actively

compensates all vessel motions using a Stewart Platform (A platform on six cylinders to ensure six

degrees of freedom) to make access to offshore structures safe, easy and fast.

This process is done by continuously measuring the motions of the host vessel. Then, the required

lengths of the six cylinders are calculated to keep the transfer deck on which people can cross to the

windmills, oil platforms, other offshore buildings or ships completely motionless. Finally, each

hydraulic actuator is controlled separately.

2.2 Stakeholders

 Ampelmann: Contractor which will use the tool later on for their company

 Ir. N. van der Geld: First company mentor, will learn certain aspects of mentoring a graduate

student, which are convenient for future graduate students.

 Ir. M. Krutzen: Second company mentor, will learn certain aspects of mentoring a graduate

student, which are convenient for future graduate students.

 Ms. S.D. de Jong: First Graduate student coordinator, will have benefits from this project,

because she will learn certain aspects of mentoring a graduate student, which are

convenient for future graduate students.

 Mr. T.J. Koreneef: Second Graduate student coordinator, which will have benefits from this

project, because he will learn certain aspects of mentoring a graduate student, which are

convenient for future graduate students.

 The Hague University of Applied Sciences: they have the potential to further improve the

reputation of the school and potentially increase the number or quality of graduate

students.

 Ampelmann Motion Control engineers: They are the ones that will use the tool for their

work.

 Page 69 of 147

3. Assignment Description
3.1 Problem Definition
At this moment, troubleshooting an the Ampelmann system is done by reading data and using

experience. The problems that occur are solved by Ampelmann motion control engineers.

The problem is that it is hard to read logged data, as the data log files grow enormously due to the

available amount of data.

3.2 Goal:

Ampelmann’s solution to this problem is to implement a data analyzing tool, which can translate

logged data into an user friendly environment wherein one is able to see what the reason is some

errors occur or to adjust the Ampelmann System its settings to optimize its behavior.

The final user of this tool should be able to see data plots of the logged data and other relevant

debugging information such as control errors.

Besides checking logged data, the tool should be able to receive queries and respond with a proper

response (containing the information asked in the query).

3.3 Thesis question
“ What is the ideal solution for a data analyzing tool, and what is the best way of implementing it on

an Ampelmann System.

3.4 Sub Questions
 How does the common Ampelmann hexapod and it’s construction work?

 How is data currently logged?

 How can we extract data from logged files in a structured way?

 How can we show other relevant debugging data?

 How is the user able to send queries?

 Page 70 of 147

3.5 Requirements
The MoSCoW method is used to describe the main project objectives and requirements and can be

used for this project.

MUST

Product requirements:

 There has to be a tool wherein the user is able to read in logged data

 Inside the tool, graphs of logged data should be plotted.

 The final prototype has to be in a 32-bit hierarchy.

 The final prototype has to be a standalone file.

 The tool should make it easier to select parts of data.

 The tool should be able to derive certain key figures for a selected period of time.

 There has to be a working test environment.

SHOULD

Product requirements:

 System should be able to select data that is relevant to the user.

 The system should be written in a language that is known to most of the motion control

engineers.

 The system should be “fool-proof”.

 The final prototype should have a catchy name, to ensure it will be remembered and used.

 The system it’s graphical user interface should be easy to understand.

COULD

Product requirements:

 It could be an advantage if the final prototype will not cost a lot / anything.

WOULD

Product requirements:

 It would be great if the final prototype is a simple executable file.

3.6 Scope
To get a good result in a time span of 17 weeks, the tool should at least work for an Ampelmann

hexapod’s cylinder data.

The reason an Ampelmann cylinder has been chosen, is because the whole Ampelmann system has a

lot of error functions, which is not reachable to implement in the tool in the time span of 17 weeks.

The cylinder obviously has less error functions than the total system, but enough to prove that the

tool is working.

 Page 71 of 147

3.7 Prerequisites
The following prerequisites have to be known in order to succeed the project:

 The thesis duration will be 17 weeks in total.

 The graduation period will be from Monday 08-02-2016 until Friday 03-06-2016.

 During the graduation period, there should be assistance in the form of a company mentor
from Ampelmann.

 Ampelmann will have a designated working place available for the student.

 Ampelmann will have a working system available for testing purposes.

3.8 Product
The final product of this project is a working prototype of a data analyzing tool.

The system should work and shall be tested on an existing Ampelmann cylinder and at the end

attempts will be made to expand it even further than only the cylinder.

3.9 Costs
Ampelmann will probably not have to buy any materials, as the tool will be a software solution. If

the logging cannot be done via a standard Ethernet connection and a connection module has to be

bought, this will be specified in the final report.

3.10 Quality
To ensure quality, weekly meetings will take place. In this way all parties are up to date and will

know what is on the planning and what has to be done.

3.11 Safety
Ampelmann strives towards safety. They are setting the standard in offshore safety and thus the

project must undergo some safety measures.

The standard safety induction video will tell new employees what the safety rules are and

Ampelmann has two main sets of rules, of which the golden rules are the safety rules:

Golden Rules:

Always intervene if you observe an unsafe act
or condition

Use fall protection when working at height

Always use the appropriate personal
protective equipment(PPE)

No working or walking under a suspended load

Follow road safety rules and drive responsibily

Do not carry out a task unless trained and
competent

Assess risks and obtain authorization before
starting work

Never work under the influence of alcohol or
drugs

Table 1 – Golden rules

 Page 72 of 147

4. Risk Analysis
This chapter is about the Risk Analysis. In order to avoid an unexpected loss of time, the risks of the

project should be determined. This is done by looking at the Risk probabilities, the impact and the

mitigating measures that have been taken in order to minimize the given risks.

4.1. External Risk Factors
Risk Absence of company coach or graduate student coach

Probability Average, both parties have a busy schedule, so this will happen often.

Impact Small, as questions can be asked to other colleagues.

Measures Finding out the planning of both parties, to ensure their availability.

Table 2 – External Risk 1

Risk Reservation Failure

Probability Average, as not every Ampelmann system can be worked upon.

Impact Major, as the testing shall be done on an real Ampelmann system.

Measures Ensure that reservation status of alternate machinery is known, and that
reservations are made quickly so it will not cause problems later in the project.

Table 3 – External Risk 2

4.2. Internal Risk Factors
Risk Miscommunication

Probability Small, as there are weekly meetings.

Impact Small-Major, the amount of impact is determined by the subject where
miscommunication is upon.

Measures Maintain good contact within the group and keep weekly meetings.

Table 4 – Internal Risk 1

Risk Missing deadlines

Probability Small, as there will be a reasonable planning made.

Impact Major, as a deadline always remains a deadline and thus is missing one never
wanted.

Measures The project must recover from any possible delays as quickly as possible and
resume work on schedule.

Table 5 – Internal Risk 2

Risk Program problems

Probability Small-Average, depending on the type of program language and detailed code, the
probability can vary from small to average.

Impact Average-Major, depending on the type of problem that occurs, this can have major
impacts, as the major part of the project is programming.

Measures Keep meeting with company coach to ensure the correct way of handling is
executed.

Table 6 – Internal Risk 3

 Page 73 of 147

Risk Thesis writing problems

Probability Small, as there is enough time calculated in to write the thesis.

Impact Average-Major, depending on what the problem is. If the document is lost, this will
have a major impact. If there is not enough time as well.

Measures Write the program on a cloud based storage location, this will tackle the lost
document problem and stick to the planning to avoid time issues.

Table 7 – Internal Risk 4

Risk No testing due to too little time

Probability Average, as this is the first time of writing a bachelor thesis.

Impact Major, as it will not proof its conceptual idea.

Measures Keep updating the planning, so that unexpected loss of time is minimized.

Table 8 – Internal Risk 5

Risk Ordering parts

Probability Small, as there probably will not be ordered many parts.

Impact Average-Major, depending on what the actual delivery time is.

Measures Research the current system, so that is known if the prototype needs extra parts.

Table 9 – Internal Risk 6

 Page 74 of 147

5. Approach

The project can be divided into different phases. Roughly speaking, into five phases.

The first one is the start-up phase, wherein the actual start-up will take place. This includes defining
a plan on how to successfully make a thesis.

The second phase is the definition of the project. It will consist out of background research and the
documentation of its results. The background research consists of reading available documents to
understand the hardware of the current Ampelmann systems (For instance by reading the
“Development of the Access System for Offshore Wind Turbines” book) and understanding the
Ampelmann system software, by looking into the current software code. Also some hydraulics and
electrical courses specifically designed for the Ampelmann systems will be followed.

The third phase will be the design phase. In this phase, the actual research will be translated into a
proof of concept. This will include a morphological overview, a Kesselring method to choose the
correct solutions based on some given weight factors and working out the concepts.

Then the fourth phase is the testing of the system. The project needs to be realized and tested, to

ensure its workability and so that the outcomes of the analyzing are correct, and a well written

report has to be created, so that documentation of the tool is always available.

The final phase is the writing of the Thesis and writing missing documentation, to ensure the total

system is documented.

First phase (Start-up phase):

5.1. Plan
 Decide the scope/deliverables of the project

 Find out the requirements of the project

 Indexing the available / required resources

 Form a Plan

 Documenting the progress and the results

 Presenting the progress and the plan to the client (Ampelmann)

Second phase (Definition phase):

5.2. Background research
 Research the Ampelmann system

 Research the current data logging

 Research the Ampelmann cylinders

 Page 75 of 147

Third phase (Design phase):

5.3. General solution finding
 Brainstorm sessions

 Make a morphological overview

 Use the Kesselring method to determine logical concepts

 Work out concepts

5.4. Specific solution finding
 Choose a concept

 Start with determining how to read in the log files

 Start with programming

 Report the results and progress

5.5. Making tool generally applicable
 Find out what is necessary to make a system generally applicable

 Determine demands of other employees

 Generalize the system

Fourth phase (Testing phase) :

5.6. Testing the tool
 Write a test case and report

 Acquire the needed materials to perform a test

 Acquire the needed competences to perform a test

 Ensure a safe test environment

 Test the made tool on the Ampelmann cylinder

 Document the results.

Fifth phase (Documentation phase) :

5.7. Documentation
 Gather all information that is available

 Write missing information/documentation

 Combine all information

 Revise the report/documentation

 Page 76 of 147

5.8. Work packages
Work packages are a great way of representing various tasks and who is executing them in what

way.

If we take a look at the Prince 2 method of creating work packages, we can say that most work

packages contain:

 The name of the person who will do the work package

 Work package name / title

 Description of work package

 Time

 Agreements

 Deliverables

The work packages for this project can be found in “Appendix I”. The structure of the work packages

is shown below in figure 1:

Figure 1 – Structure of work packages

 Page 77 of 147

6. Project Organization
In this chapter will be briefly described who the involved parties of the project are.

The current project group consists of a graduate student, two company coaches, two graduate

student coordinators and a client.

6.1. Meetings
Because the final result is for a company that relies on the outcome of the research, meetings will

take place with the company coaches, to keep both parties updated and sustain a good workflow.

The graduation period lasts 17 weeks. To ensure that everything is going as planned, a meeting will

be planned every week. If something goes not as planned, the way of working can be changed easily

because of the weekly meetings.

6.2. Contact List
Name: Role: E-Mail:

Ampelmann Client info@ampelmann.nl

N. van der Geld Company coach niels.vandergeld@ampelmann.nl

M. Krutzen Company coach martijn.krutzen@ampelmann.nl

S. De Jong Graduate student coordinator s.d.dejong@hhs.nl

T.J. Koreneef Graduate student coordinator t.j.koreneef@hhs.nl

D. van Tuijll Graduate student devinvantuijll@live.nl

Table 10 – Contact list

mailto:info@ampelmann.nl
mailto:niels.vandergeld@ampelmann.nl
mailto:martijn.krutzen@ampelmann.nl
mailto:s.d.dejong@hhs.nl
mailto:t.j.koreneef@hhs.nl
mailto:devinvantuijll@live.nl

 Page 78 of 147

7. Planning
This chapter contains the planning for the whole time span of 17 weeks, from 08-02-2016 until 03-

06-2016. This is to ensure that the project is worked upon in a structured way.

To keep the structure in this project, the phases with its work packages of the “Work Packages”-

chapter are used within the planning. In this way it is clear to see what has been done and what is

still left to do.

Figure 2 – Planning data

Figure 3 – Planning Overview

 Page 79 of 147

Appendix I: Work packages
Phase one – Start-up Phase

Work package 1: Plan

Executive: Devin van Tuijll

Description: The plan will make clear how the approach of
the project will be and what the prerequisites,
deliverables and requirements are.

Time: One week

Agreements: Must contain:

 Prerequisites

 Deliverables

 Work Packages

 Scope

 Goals

 Risk analysis

 Planning

 Requirements

Deliverables: Plan

Phase two – Definition Phase

Work package 2: Background Research

Executive: Devin van Tuijll

Description: The background research will make sure that
there is a proper knowledge achieved on
beforehand, so that the total solution can be
based upon the whole system eventually.

Time: One week

Agreements: Research the Ampelmann system

 Research the current data logging

 Research the Ampelmann cylinders

Deliverables: Documentation about research

 Page 80 of 147

Phase three – Design Phase

Work package 3: General Solution

Executive: Devin van Tuijll

Description: The general solution is the way to find a general
solution to the given problem.

Time: Two weeks

Agreements: Do Brainstorm sessions

 Make a morphological overview

 Use the Kesselring method to

determine logical concepts

 Work out concepts

Deliverables: Documentation which concludes the
morphological overview and the
Kesselring method.

 Concepts

Work package 4: Specific Solution

Executive: Devin van Tuijll

Description: Work out a concept, so that there will be a way
to start with making the program.

Time: Four weeks

Agreements: Choose a concept

 Start with determining how to read in

the log files

 Start with programming

 Report the results and progress

Deliverables: Concept choice

 Begin of Tool (Program)

Work package 5: Making tool generally applicable

Executive: Devin van Tuijll

Description: Go further with the tool in such a way that
future employees can add the total Ampelmann
system to it.

Time: Four weeks

Agreements: Find out what is necessary to make a

system generally applicable

 Determine demands of other

employees

 Generalize the system

Deliverables: Generally applicable tool

Phase four – Testing Phase

 Page 81 of 147

Work package 6: Testing the

Executive: Devin van Tuijll / Testing personnel

Description: The testing is necessary, so that is known
whether the tool is working or not.

Time: Two weeks

Agreements: Write a test case and report

 Acquire the needed materials to

perform a test

 Acquire the needed competences to

perform a test

 Ensure a safe test environment

 Test the made tool on the Ampelmann

cylinder

 Document the results.

Deliverables: Test Case

 Test Results

Phase five – Documentation Phase

Work package 7: Documentation

Executive: Devin van Tuijll

Description: At the end of the graduation period, a complete
report has to be handed over to Ampelmann
and The Hague University of Applied Sciences.
In order to do this, all necessary files to make
the tool work need to be documented (if not
already documented). This ensures future and
current employees to proceed with the tool.

Time: Three weeks

Agreements: Gather all information that is available

 Write missing

information/documentation

 Combine all information

 Revise the report/documentation

Deliverables: Complete Report and Documentation

 Working Software Engineer Tool

 Page 83 of 147

Appendix II – Accountability research for Kesselring method

 Page 84 of 147

Accountability research for Kesselring method.
Tool In General
Speed
Java is much faster than Visual Basic and Python. This has been tested by several people on the

internet. Some results are shown below:

Test Program Seconds Kilobytes GigaHertz CPU CPU load

regex-dna

 Python 3 10.58 266,312 478 23.44 49% 39% 68% 68%

 Java 8.20 749,864 929 24.44 70% 69% 82% 79%

reverse-
complement

 Python 3 3.11 266,972 800 4.56 20% 99% 2% 29%

 Java 1.17 345,940 1661 2.42 41% 43% 57% 72%

k-nucleotide

 Python 3 76.50 162,004 1937 297.12 97% 97% 97% 99%

 Java 6.82 240,412 2568 21.50 77% 71% 77% 92%

binary-trees

 Python 3 152.06 804,624 596 516.24 94% 92% 95% 91%

 Java 11.51 622,328 889 40.10 86% 86% 92% 87%

FIGURE 36 - TEST RESULTS SPEED 12

In above figure, Python is slower than Java. Visual basic is even faster according to OSnews.com:

FIGURE 37- VISUAL BASIC VS JAVA13

Hence Visual Basic scores best.

12 Full test : https://benchmarksgame.alioth.debian.org/u64q/python.html
13 Full test: http://www.osnews.com/story/5602/Nine_Language_Performance_Round-
up_Benchmarking_Math_File_I_O/page3/

https://benchmarksgame.alioth.debian.org/u64q/performance.php?test=regexdna
https://benchmarksgame.alioth.debian.org/u64q/program.php?test=regexdna&lang=python3&id=1
https://benchmarksgame.alioth.debian.org/u64q/program.php?test=regexdna&lang=java&id=5
https://benchmarksgame.alioth.debian.org/u64q/performance.php?test=revcomp
https://benchmarksgame.alioth.debian.org/u64q/performance.php?test=revcomp
https://benchmarksgame.alioth.debian.org/u64q/program.php?test=revcomp&lang=python3&id=6
https://benchmarksgame.alioth.debian.org/u64q/program.php?test=revcomp&lang=java&id=3
https://benchmarksgame.alioth.debian.org/u64q/performance.php?test=knucleotide
https://benchmarksgame.alioth.debian.org/u64q/program.php?test=knucleotide&lang=python3&id=3
https://benchmarksgame.alioth.debian.org/u64q/program.php?test=knucleotide&lang=java&id=2
https://benchmarksgame.alioth.debian.org/u64q/performance.php?test=binarytrees
https://benchmarksgame.alioth.debian.org/u64q/program.php?test=binarytrees&lang=python3&id=1
https://benchmarksgame.alioth.debian.org/u64q/program.php?test=binarytrees&lang=java&id=7

 Page 85 of 147

Flexibility
Due to the extensibility of python and it’s available packages, python scores best. Besides that,

Python does not need a lot of set-up in comparison with Java, according to Quora.com14: “Python

requires no "set up." A full python environment is already on every Linux machine, and on Macs. On

Linux, the program yum, or the Yellow dog Updater, Modified is written in python, so python is here

to stay. Java requires a substantial amount of setup. So if you want to get started with python

programming, just type python at the prompt. Now. That's it. To start with Java, call someone who

knows it.”

Easyness
The easyness of the programming language is based upon the amount of lines it takes to get the

same result.

The following picture describes these differences with a small example:

FIGURE 38 - EASYNESS COMPARISON15

If the indentation of python is calculated as well to break the if statement, Python and Visual Basic

score the same, where Java requires more symbols to get the same result.

Experience
Experience of the languages is based upon the experiences of the writer of this thesis. Before this

research, Python has been the mainly used programming language at The Hague University of

Applied Sciences. Visual Basic has also been learned, at Ampelmann. With Java, there was no

experience at all. The combination of python and visual basic was done earlier before, but on a small

scale.

Stability
Due to its structure, visual basic is just a little more stable than python and java. Also, Visual Basic

produces an exe file, which can be run whenever wanted, which is a huge advantage compared to

Java and Python.

14 https://www.quora.com/If-I-had-to-choose-between-learning-Java-and-Python-what-should-I-choose-to-
learn-first
15 https://pythonconquerstheuniverse.wordpress.com/2009/10/03/python-java-a-side-by-side-comparison/

http://en.wikipedia.org/wiki/Yellowdog_Updater,_Modified

 Page 86 of 147

Data Selection
Flexibility
With hard coding what the program must do, the flexibility is not very high, because it can only do

that was has been hard coded. With a rule base structure, there is more flexibility, because the

program is not completely shut down for other input, but it can change its output depending on the

input. Machine learning is more flexible, because it can learn how to behave on a certain way and

adapt to certain situations, making it the most flexible. With combining flexible options, the tool

tends to get more flexible, hence the four as grade.

Easyness
A rule base structure and a machine learning based structure is more difficult than a hard coded

structure and a query structure. Because hard coding is the easiest (No extra code needed to

accomplish), it gets the highest grade. A query based structure is somewhat simpler than a machine

learning based structure and a rule base structure, hence it gets a three as grade. The combination

of more of these options, has been given a three, because hard coding will always be included,

compensating for the lower grades of the other options.

Experience
The writer of this thesis has the most experience with hard coding, hence it scores the best. Machine

learning has been learned, but the experience is less than hard coding. With queries, only a little

experience has been gained in the past. With a Rule Base structure, no experience has been gained.

The combination of these options have been applied frequently in the past, giving it a three as

grade.

Stability
The stability of a rule based system scores the lowest. According to TeraData16, the rule based

systems tend to have a lower stability in the longer term, in comparison with a machine learning

system, due to its complexity how longer the system uses it. To let the rules adapt each time is very

time inefficient, and hence this is given a one as grade for stability. Machine learning scores

somewhat higher, but lower than a hard coded script, because the adaptation can become unstable

due to overfitting etcetera. Queries score the same as hard coding, because they are somehow hard

coded as well, and based upon user input. The combination scores the best, because the

programmer can use the best of both sides to get the most stable system.

16 http://www.forbes.com/sites/teradata/2015/12/15/data-science-machine-learning-vs-rules-based-
systems/#21ec7ead5be6

 Page 87 of 147

Modularity
Flexibility
Queries and XML score the same amount on flexibility. This is because they both have pros and cons

to support the fact that they have a modular construction. XML is able to give a certain structure to a

program, leaving a structure to continue to build on for future programming parts. Queries, if

programmed correctly, are able to get the requested data and send it to the user, based upon the

input the user gave on beforehand. If it is programmed correctly, the system will always be able to

respond in a correct way, no matter what the input is, making it modular. The combination scores

higher on flexibility, because this results in a two way modular structure, making it more modular

than each option on its own.

Easyness
Queries and XML score the same on easyness. Both take a certain amount of time to implement in

the tool, and both are depending on other ways of input, giving it a grade of two. The combination

scores even lower, because it takes much more time to implement it.

Experience
The writer of this thesis has had experience with queries for modularity, but less with experience on

modularity based on XML, hence XML scores lower. The combination of both has never been

experienced, giving it a one as grade.

Stability
Queries tend to be stable, as the programmed structure is able to respond to every request. XML is

stable, because it has the same structure over and over. They both score a three on this part. The

combination of both can become even more stable, if the structure of XML is used and the reply

structure of a query based setup is used, giving the combination grade a four.

Output of Data
Flexibility
A dedicated .Amp file or Ampelmann file, could be in any form, thus it scores a four on flexibility. The

CSV file scores a two, because the CSV files are always in the same structure.

Easyness
CSV files are easy to read in, and easy to read with the bare eye when opening with a text editor,

resulting in a four for Easyness. The Ampelmann file type is less easy, because the standard format is

not yet known.

Experience
The thesis writer has a lot of experience with CSV files, but none with Ampelmann files, leading to a

score of four for CSV files and a score of one for Ampelmann files.

 Page 89 of 147

Appendix III – Test case results

 Page 90 of 147

Test Results
Test 1: Standalone Test
Test:
The standalone test will be done by e-mailing only the executable file and running it. If the

executable file runs, the test has passed. If the executable doesn’t run because it needs its

dependencies, it is not standalone and thus it will fail the test.

The following test has been done on the Moxa (Box-PC), and the result is shown with a photograph.

This is to show that it works standalone and on the Moxa.

Test Result:

FIGURE 39 - RESULT OF STANDALONE TEST.

In the picture above, it is clear to see that only the ddt.exe file is included and that the tool launches

without depending on other files. This means that the test has been passed.

 Page 91 of 147

Test 2: 32-bit hierarchy test
Test:
The second test in the series of tests, is the test to validate whether the file works on a 32-bit

computer, which was a requirement from the requirements list.

To test if this is valid, the program will be executed on a 32-bit system. Since the Moxa (Box-PC) is a

32-bit system, the test is passed if the program will run. To prove that the system is operating in a

32-bit hierarchy, the system settings will be shown in the result as well. On windows XP, a system is

32 bit when there is no 64-bit information under the header “system”.

Test Result:

FIGURE 40 - 32 BIT HIERARCHY TEST RESULT

In the picture above it is clear to see that the system settings do not display information about a 64-

bit, hence the structure is 32-bit. The program itself runs smoothly without any incompatibility

problems occurring. This means that the test has been passed.

 Page 92 of 147

Test 3: Read in CSV files test
Test:
In this test, the function of reading in CSV files will be tested. The test will be done by running the

tool and loading different CSV files. If the files are loaded correctly, the data will be shown in the

treeview on the right, which result in a pass for this test. If not, the test has failed.

Test Result:

FIGURE 41 - READING IN CSV FILES TEST RESULT

In the picture above, the red box displays the treeview with the loaded data of a CSV file. This means

that the CSV files have been loaded correctly and thus the test has been passed.

 Page 93 of 147

Test 4: Export data test
Test:
In this test, the functionality of exporting data will be tested. The test will be done by reading in a

CSV file and then plotting a graph, adding some key figures and then saving or sending the files.

Test Result:

FIGURE 42 – SAVE FUNCTION TEST RESULT (TOP: FOLDER WITH RESULTS. BOTTOM: ONE OF THE RESULTS OPENED.)

In the picture above, the save function is shown and it has passed the test.

The sending of files is not yet programmed and thus this part fails the test, resulting in a pass and a

fail as end result.

 Page 94 of 147

Test 5: Deriving key figures test
Test:
This test will determine whether the key figures function is functioning properly. The test is done by

loading in a CSV file and requesting key figures. If the key figures seem logical, the test is passed. If

not the test has failed.

Test Result:

FIGURE 43 - DERIVE KEY FIGURE TEST

The output of the tool are raw values. If we look at these values and compare them to the CSV file

below, we can see that the calculation is done correctly. In the CSV file on the next page, the total

travelled length for ANA_IN_HEX_C1 is calculated manually. This is done by taking the absolute

difference between two data values and then adding the answers to get the total travelled length.

 Page 95 of 147

FIGURE 44 - CSV RESULT OF MANUAL CALCULATION

In the figure above, the calculations are down manually. The manual calculation show the same

result, confirming that the derivation of keyfigures is working properly.

 Page 96 of 147

Test 6: Fool Proof test
Test:
This test will determine whether the DDT is fool proof. The test will be done by letting inexperienced

people use the tool. If the tool doesn’t crash, it will pass the test. If it crashes or acts with

unexpected behavior, the test has failed.

Test Result:
After several people had used the tool, an error was detected. Adding graphs via the treeview in the
analyse/offline tab only works when they are checked from up to down. Otherwise it will try to add
the same last checked graph again.

FIGURE 45 - FOOL PROOF TEST FAILURE

The error occurs when a node higher in the treeview is checked later than one beneath it. For
instance in the picture above, the node labeled with 3 is checked later than the node labeled with 2,
resulting in a graph that is equal to the lowest checked one (See the legend).

This error is probably produced by the loop that checks whether a node has been checked or not. So

a recommendation is to check that control loop.

This test has thus failed.

 Page 97 of 147

Test 7: Easy Understandable GUI test
Test:
This test will determine whether the DDT GUI is easy to understand or not. The test will be done by

letting several people look at the GUI and give their opinion about the GUI. It is done at the

presentation and demonstration for almost the whole motion control engineer group.

Test Result:
The motion control engineers found the tool promising. It looked like it worked fine, despite some

minor bugs. They had several ideas for functions that are not yet programmed inside the tool. These

functions are mentioned in the recommendation area.

The GUI has passed the test.

 Page 98 of 147

Test 8: Graph plot test
Test:
This test is meant to determine whether the tool is able to plot graphs. The test will be done by

plotting multiple graphs and checking its functionality. The graphs will pass the test once the DDT

can plot multiple graphs in different colors, with the corresponding titles in the legend. It will fail if

the graphs do not plot correctly.

Test Result:

FIGURE 46 - RESULT OF GRAPH PLOTTING

In above picture, it is clear to see that multiple graphs can be plotted without flaws. This means that

the graph plotting has passed the test.

 Page 99 of 147

Appendix IV – Manual for Tool

 Page 100 of 147

 Page 101 of 147

Content

Introduction .. 102

Tabs of the Tool .. 102

Analyse .. 102

CSV .. 102

Bin ... 107

Key Figures .. 108

Save & Send .. 111

Save ... 111

Query .. 112

Troubleshooting .. 113

 Page 102 of 147

Introduction
This manual is meant for Ampelmann employees who want to use the DDT.

The DDT is designed for MCM employees to help them in the debugging process of the Ampelmann

systems.

The manual has been written by Devin van Tuijll. In case that there are any questions, please feel

free to contact him.

Tabs of the Tool
The main functionality of the tool has been broken down into four main pieces: Analyse, Query,

Save/Send and Key Figures. The manual will elaborate per chapter how to use the tool. You can

switch between tabs by simply clicking them.

FIGURE 47 - TABS OF DDT

Analyse
The analyse tab is the place that first comes up when the tool is started. Here, the user is able to

load in CSV files or BIN files. This can be done by their corresponding buttons, shown in the figure

below:

FIGURE 48 - OPEN CSV (TOP BUTTON) AND OPEN BIN (LOWER BUTTON)

CSV
When the “Open CSV File” button is pressed, the program will give a pop-up message, containing a

file locator for the desired CSV file, as shown below:

FIGURE 49 - CSV FILE LOCATOR

 Page 103 of 147

Once the file locator has been opened, the user can either select a CSV file, or select none and close

the CSV file locator. If closed, nothing happens. If a CSV file is opened, the tool tries to allocate the

data of the CSV files into arrays. During this process, a loading bar will occur and will tell how far the

process is. If this succeeds, the data titles of the CSV file will be shown in the treeview to the right, as

shown below:

FIGURE 50 - TREEVIEW AFTER LOADING CSV

This treeview is used for the X axis, which is displayed by the message above the treeview.

Here the X axis for graph plots can be selected.

If the X axis is selected, on the same place as the x axis treeview, the Y axis treeview will occur. On

top of this treeview, a select all and deselect all button will occur as shown in the following figure:

FIGURE 51 - SELECT ALL AND DESELECT ALL

With these buttons, the user is able to select or deselect the items in the treeview.

Once a node is clicked in the treeview, the user will see that the selected item will be plotted against

the earlier selected X axis, as seen in the figure on the next page.

The legend of graph is displayed just right below it, marked with the title: “Legend”.

 Page 104 of 147

FIGURE 52 - PLOTTED GRAPH AND LEGEND

From now on, it is possible to plot any graph against the selected X axis.

To zoom in, the user is able to select either a region with the mouse, or type their range in manually,

by using the options menu in the figure below:

FIGURE 53 - OPTIONS MENU

Within the options menu, the user is able to give values for: Maximum X, Maximum Y, Minimum X

and Minimum Y. Once satisfied with the values, the user can press the apply button to apply the

settings. If desired, the user can reset the settings to its previous values, by pressing the Reset

button. There is also an absolute zero checkbox, which allows the user to resample the time to start

 Page 105 of 147

from zero, which can be convenient when using the PLC timestamp since the PLC timestamp is the

time since it was turned on.

 To display the difference between two graphs, there is an error function implemented, which is

accessible by pressing the Show Control Error button. The title aims at the control error, which is for

instance the difference between the setpoint postion and the actual position of a valve. To delete

the error graph again, the user can press the “clear error graph” button. The “Show control error”

button only works if there are only two nodes selected in the treeview to the right.

The buttons are shown in the figure below:

FIGURE 54 - ERROR GRAPH BUTTON

An example of an error function could be:

FIGURE 55 - VALVE CONTROL ERROR

 Page 106 of 147

In the figure above, the absolute control error for the valves is given. This is an example of what

might be possible in the future with the tool. For now, the values are not scaled yet, so with raw

values we get the following result:

FIGURE 56 - ERRORGRAPH WITHOUT SCALING

 Page 107 of 147

Bin
Bin files can be opened as well. This can be done by pressing the “Open Bin File” button, as

described in Figure 47.

This will then open up the PLC log converter tool made by J. de Vriend. This will open up the tool,

which looks like this:

FIGURE 57 - BIN LOG CONVERTER

If you then press the browse button on the upper right side, you can select the corresponding STL

file. Then the bin files that correspond to the same type as the STL file can be loaded in. For instance:

OB38.stl can be loaded in as an STL file, and every OB38 bin file can then be loaded in as well. This is

shown in the figure below:

FIGURE 58 - OB38 EXAMPLE

If the “Convert” button is clicked, the tool converts the Bin file to a CSV file, which is automatically

opened by the DDT.

 Page 108 of 147

Key Figures
In the “Key Figures” tab, the user is able to derive key figures when a CSV file is loaded in the

“Analyse” tab.

On the right side, an exact copy of the treeview from the “Analyse” tab will occur. These nodes can

be selected to apply key figures upon. On top of the treeview, there are three buttons. A “Deselect

All”, an “Inverse” and a “Select All” button.

An example is shown below:

FIGURE 59 - TREEVIEW WITH DESELECT ALL, INVERSE AND SELECT BUTTONS

If one or more nodes are selected, the user can select which formula to apply. This is possible in the

“Options” menu, as shown below:

FIGURE 60 - OPTIONS MENU

One of these functions can be selected, which are applied to the selected nodes once the “Show”

button is clicked. The formulas in the upper part can be applied to one or more nodes, whilst the

lower half can only be applied when two nodes are selected.

 Page 109 of 147

The result of the key figure calculations are shown in the Key Figure group box on the lower part of

the tab, as seen in the figure below:

FIGURE 61 - KEY FIGURE GROUPBOX

Every created key figure can be selected by their respective checkboxes. Once one or more

checkboxes are checked, it is possible to apply certain commands to them. These commands or

functions are shown in the other “Options” group box, located on the right side of the key figures.

This options menu is shown in the figure below:

FIGURE 62 - OPTIONS MENU FOR KEY FIGURES

 Page 110 of 147

The first three are “Select all”, “Deselect All” and “Inverse Selection”, which selects, deselects or

inverse selects the current nodes that are checked.

Deleting a node can be done by clicking the “Delete Selected” button which is the button below the

“Inverse Selection” button. This will then delete the selected node(s).

The “Clear all” button will clear the whole Key Figures group box.

The last two buttons are the “Round” and “Truncate” buttons, which can round or truncate a

keyfigure, depending on which button is pushed. The user can determine the amount of decimals to

truncate or round off to and on default it is set to two. An example of the truncate function to three

decimals is shown below, where the upper is before and the lower after the truncation.

FIGURE 63 - TRUNCATION EXAMPLE

And an example for the rounding function has been given, with a rounding to two decimals:

FIGURE 64 - ROUNDING EXAMPLE

 Page 111 of 147

Save & Send
In the “Save and Send” tab, the user is able to export selected nodes, key figures, graphs and cut off

function plots.

The export is in either the way of saving to a local folder, or to send them via email.

Save
In the figure below, the “Save” group box is shown. In this box, the user is able to select which

features to export and to give a file name.

FIGURE 65 - SAVE GROUPBOX

In the file name textbox, the user gives a certain name which will be used for saving the file. The file

will be saved locally and the corresponding folder will be opened up when the user presses the save

button and the saving has succeeded.

If “Selected nodes in Offline Tab” is selected, the user can save the selected nodes in a new CSV file.

The “Offline” tab is the same as the “Analyse” tab.

If “Key Figures” is selected, the user is able to save the key figures that are displayed in the “Key

Figures” tab.

If “Graphs” is selected, the tool will save the plotted graphs from the “Analyse” tab.

If “Cut Off Function” is selected, the user is able to select a certain value for which the plots in the

“Analyse” Tab should be cut off to. The user can either select a maximum or a minimum.

If the “Save” button is clicked, a dedicated folder will be created, with the current date as name. This

has been done to ensure that there is always a good structure in saving and managing files.

If the Cut Off function is used, a CSV file will be created, which can be opened up again in the tool, so

that the cut off can be shown visually with graphs.In the figure below, an example of a dedicated

folder is shown:

FIGURE 66 - DEDICATED FOLDER EXAMPLE

 Page 112 of 147

Query
In the “Query” tab, a template has been made for sending queries and requesting data from the

same tool.

In the figure below, the connection group box is shown:

FIGURE 67 - QUERY MODE CONNECTION GROUP BOX

The user is able to select if either the client or the server side is wanted, by selecting their

corresponding radio buttons. Once selected, the tool can behave in either a server way or a client

way, guaranteeing that only the DDT is necessary to make a connection between both.

Because it is a template, the current version only uses the local host. In the future, multiple IP

addresses can be given to the program to let it connect to.

The “Display Error Info” button will let the user know what the error is in case that the “Status” label

shows that there is an error.

If the connect button is clicked in server mode, the server will start its loop for finding connecting

clients. If the connect button is clicked in client mode, the client will try to find a host.

 Page 113 of 147

Troubleshooting
In case of trouble, there is a help button located inside of the tool on the right upper side, which is

accessible from every tab.

The help button is shown below:

FIGURE 68- HELP BUTTON

Once pressed, the help menu will pop-up, containing likewise info from the manual, displayed per

tab. It also contains a F.A.Q. tab which contains the frequently asked questions.This will help finding

out errors of the tool.

The help menu is shown in the figure below:

FIGURE 69 - HELP MENU

 Page 115 of 147

Appendix V – Program

 Page 116 of 147

Imports System.Net
Imports System.Net.Sockets
Imports System.Text
Imports System.Threading
Imports System.Math
Imports System
Imports System.IO
Imports System.Drawing.Imaging
Imports System.Drawing
Imports Excel = Microsoft.Office.Interop.Excel
Imports System.Web.UI.DataVisualization.Charting
Imports System.Windows.Forms.DataVisualization.Charting

Public Class test
 'Declaration of variables that are used throughout the whole program.
 Private Shared output As String = ""
 Dim CSVarray As Array
 Dim CSVarray2 As Array
 Dim distance As Integer
 Dim n_true_counter As Integer
 Dim forcounter As Integer
 Dim namearray(500) As String
 Dim prev_xmin As Integer
 Dim prev_xmax As Integer
 Dim prev_ymax As Integer
 Dim prev_ymin As Integer
 Dim Customaxis As Boolean
 Dim Filename As String
 Dim csvclicked As Boolean = False
 Dim proceedclicked As Boolean = False
 Dim xaxis As Integer = 2
 Dim differencenamearray(1) As String
 Dim globaloutput As String
 Dim currentserieamount As Integer = 0
 Dim globaldifferencearray As Array
 Dim errorgraphpushed As Boolean = False
 Dim globalnarray As Array
 Dim checkedornotarray As Array
 Dim globallabelcounter As Integer = 0
 Dim globalk As Integer = 0
 Dim changexaxis As Integer = 0
 Dim changexaxisclicked As Boolean = False
 Dim binfilebool As Boolean = False
 Dim globalfilename As String
 Dim scaledboolean As Boolean = False
 Dim globalscaleerrarray As Array
 Dim globallabeldelete As Boolean = False
 Dim emptylabelspace(500)
 Private Sub Open_CSV_Button_Click() Handles Open_CSV_Button.Click 'Sub that
handles the click event on the "offline" tab of the tool.
 Dim Filename As String
 Static clickamount As Integer = 0
 Dim Rowlength As Integer
 Dim Columnlenght As Integer
 Dim FieldCounter As Integer = 0
 Dim Counter2 As Integer = 0
 Dim Counter3 As Integer = 0
 Dim Counter4 As Integer = 0
 Dim Counter5 As Integer = 0
 clickamount = clickamount + 1 'Variable to count the amount of clicks on the
"Open CSV File" Button.
 CSVloadinglabel.Visible = True 'Loading info in the infoscreen is shown
 ProgressBar1.Visible = True 'Loading info in the infoscreen is shown
 Chart2.Visible = True 'Show the graphchart

 Page 117 of 147

 If binfilebool = False Then
 OpenFileDialog1.ShowDialog() 'Show the dialog
 Filename = OpenFileDialog1.FileName 'Attach Filename to the selected item
 ElseIf binfilebool = True Then
 Filename = Me.globalfilename
 End If

 ProgressBar1.Value = 10 'Set the progress to a certain value
 Try
 Using MyReader As New Microsoft.VisualBasic.
 FileIO.TextFieldParser(Filename)
 MyReader.TextFieldType = FileIO.FieldType.Delimited
 MyReader.SetDelimiters(",") 'Read through data with , as delimiter.

 Dim currentRow As String()
 While Not MyReader.EndOfData
 Try
 currentRow = MyReader.ReadFields() 'Read all fields on the
current line, return them as an array of strings and proceed to the next line.
 Dim currentField As String
 For Each currentField In currentRow
 FieldCounter = FieldCounter + 1 'Count all fields.
 Rowlength = currentRow.GetLength(0) 'Get the length of the
rows.
 Next
 Catch ex As Microsoft.VisualBasic. ' Catch exception
 FileIO.MalformedLineException
 MsgBox("Line " & ex.Message &
 "is not valid and will be skipped.", 0, "DDT")
 End Try
 End While
 End Using
 Catch f As Exception
 GoTo line2
 End Try
 ProgressBar1.Value = 30
 Columnlenght = FieldCounter / Rowlength
 Dim CSVarray((Columnlenght - 2) * clickamount, (Rowlength - 1) * clickamount)
As Double
 Try
 Using MyReader As New Microsoft.VisualBasic.
 FileIO.TextFieldParser(Filename)
 MyReader.TextFieldType = FileIO.FieldType.Delimited
 MyReader.SetDelimiters(",") 'Read through data with , as delimiter.

 Dim currentRow As String()
 While Not MyReader.EndOfData
 Try
 currentRow = MyReader.ReadFields()
 Dim currentField As String
 For Each currentField In currentRow
 If Counter4 > Rowlength - 1 Then 'Skip the first line
which contains a string
 If Counter2 > Rowlength - 1 Then 'Proceed when the end
of the column has reached with the next column
 Counter3 = Counter3 + 1
 Counter2 = 0
 End If
 CSVarray(Counter3, Counter2) = currentField 'Address
the values to the array
 Counter2 = Counter2 + 1
 End If
 Counter4 = Counter4 + 1

 Page 118 of 147

 Next
 Catch ex As Microsoft.VisualBasic.
 FileIO.MalformedLineException
 MsgBox("Line " & ex.Message &
 "is not valid and will be skipped.", 0, "DDT")
 End Try
 End While
 End Using
 Catch g As Exception
 GoTo line2
 End Try
 ProgressBar1.Value = 50
 Me.CSVarray = CSVarray
 Dim Namearray(Rowlength - 1) As String
 Try
 Using MyReader As New Microsoft.VisualBasic.
 FileIO.TextFieldParser(Filename)
 MyReader.TextFieldType = FileIO.FieldType.Delimited
 MyReader.SetDelimiters(",") 'Read through data with , as delimiter.

 Dim currentRow As String()
 While Not MyReader.EndOfData
 Try
 currentRow = MyReader.ReadFields()
 Dim currentField As String
 For Each currentField In currentRow
 If Counter5 <= Rowlength - 1 Then
 Namearray(Counter5) = currentField
 Counter5 = Counter5 + 1
 End If
 Next
 Catch ex As Microsoft.VisualBasic.
 FileIO.MalformedLineException
 MsgBox("Line " & ex.Message &
 "is not valid and will be skipped.", 0, "DDT")
 End Try
 End While
 End Using
 Catch h As Exception
 GoTo line2
 End Try
 ProgressBar1.Value = 70 'Set the progressbar value to 70%
 For i = 0 To Counter5 - 1
 CSVOfflineTreeview.Nodes.Add(Namearray(i)) ' Add the data to the treeviews
 TreeViewKeyFigures.Nodes.Add(Namearray(i)) ' '
 PreviousTreeview.Nodes.Add(Namearray(i)) ' '
 TreeViewXAxis.Nodes.Add(Namearray(i)) ' '
 Me.namearray(i) = Namearray(i) ' Give the global name array the same
values as the local one.
 Next
 ProgressBar1.Value = 80 'Set the progressbar value to 80%
 Me.Filename = Filename
 'Show and hide buttons and labels.
 Me.csvclicked = True
 Label8.Visible = True
 CSVOfflineTreeview.Visible = True
 TreeViewXAxis.Visible = True
 Opencsvofflinelabel.Visible = False
 ProgressBar1.Value = 100
 Select_All_KeyTreeview_Button.Visible = True
 Deselect_All_KeyTreeview_Button.Visible = True
 InverseKey_Button.Visible = True
line2:
 ProgressBar1.Visible = False

 Page 119 of 147

 CSVloadinglabel.Visible = False
 xaxisselectionlabel.Visible = True
 End Sub
 Private Sub SelectAll_Click(sender As Object, e As EventArgs) Handles
SelectAll.Click ' Handles the select all button on the offline tab
 Dim parent As TreeNode
 For Each parent In CSVOfflineTreeview.Nodes 'Loop through the CSV Offline
Treeview nodes
 parent.Checked = True ' Check all checkboxes
 Next

 End Sub

 Private Sub DeselectAll_Click(sender As Object, e As EventArgs) Handles
DeselectAll.Click ' Handles the deselect button on the offline tab
 Dim parent As TreeNode

 For Each parent In CSVOfflineTreeview.Nodes 'Loop through the CSV Offline
Treeview nodes
 parent.Checked = False 'Uncheck all checkboxes
 Next

 End Sub
 Private Sub Aftercheck(sender As Object, e As EventArgs) Handles
CSVOfflineTreeview.AfterCheck 'Handles what has to happen after a checkbox in the
treeview on the offline tab has been checked or unchecked
 Dim n_counter As Integer = 0
 Dim n_array(500)
 Dim m_array(500)
 Dim Amount As Integer
 Dim seriecounter As Integer = 0
 Dim n As TreeNode
 Dim deletecounter As Integer = 0
 Dim m As TreeNode
 Dim xaxis As Integer
 Dim emptyarrayindex As Integer = 0
 Static previouscheckedarray(500)
 Dim deletenumber As Integer = 0
 Dim previoustreeviewcheckedcounter As Integer = 0
 Dim delete As Boolean = False
 Dim lbl(500) As Label
 Dim deleteamount As Integer = 0
 Static lblcount As Integer = 0
 For q = 0 To 500
 lbl(q) = New Label
 lbl(q).Text = ""
 Next

 xaxis = Me.xaxis
 Chart2.ChartAreas(0).CursorX.IsUserSelectionEnabled = True
'Let the user select a region to zoom into with the mouse on the X-axis
 Chart2.ChartAreas(0).CursorY.IsUserSelectionEnabled = True
'Let the user select a region to zoom into with the mouse on the Y-axis
 Amount = CSVarray.GetLength(0)
'Get the lenght of the column of the csv file

 For Each n In CSVOfflineTreeview.Nodes
 If n.Checked = True Then
 n_array(n_counter) = n.Index
'Fill an array with the necessary index values. This is to overcome a problem that
occurs when checking a box and another one has already been checked.
 n_counter = n_counter + 1
 infolabel.Text = namearray(n.Index) & " is now selected!"
'Display the info on the infolabel

 Page 120 of 147

 n.Tag = "checked"
 ElseIf n.Checked = False And PreviousTreeview.Nodes(n.Index).Checked =
True And Me.changexaxis = 0 Then ' Check if the current value was checked before to
know which graph to delete
 'n.index = the number which now is deselected.
 n.Tag = "remove"
 delete = True

 End If
 Next

 If delete = True Then
 For Each n In CSVOfflineTreeview.Nodes
 If n.Tag = "checked" Then 'If the current node has
a "checked" tag
 deletecounter = deletecounter + 1 'Count 1 up at the
deletecounter for each node that doesn't need to be deleted
 ElseIf n.Tag = "remove" And Me.changexaxis = False Then 'If the
node is tagged for removal and the user hasn't changed the x axis
 Try
 Chart2.Series.RemoveAt(deletecounter) 'Try to
remove the current one
 LegendGroup.Controls.RemoveAt(deletecounter) 'Remove
the legendtext
 'Get the created empty space
 globallabeldelete = True ' Set the
global variable for a deleted label to true
 emptylabelspace(deleteamount) = deletecounter * 13
'
 deleteamount = deleteamount + 1
 Catch

 GoTo line2 'On
failure, exit the for loop
 End Try
 Me.currentserieamount = Me.currentserieamount - 1 'Remove
one from the seriecounter, to make the global seriecounter even again.
 n.Tag = ""
 GoTo line2
 End If
 Next
 delete = False 'Set the delete boolean back to false to reset the
delete procedure.
 End If

line2:
 For j = 0 To 500
 If n_array(j) Is Nothing Then
 emptyarrayindex = j
 GoTo Line1
 End If
 Next

Line1:

 For i = Me.currentserieamount To emptyarrayindex - 1 'Start with the last
added serie
 Chart2.ChartAreas(0).CursorX.IsUserSelectionEnabled = True
'Let the user select a region to zoom into with the mouse on the X-axis
 Try
 Chart2.Series.Add(i) 'Add a serie
 If Me.xaxis = 1 Or Me.xaxis = 0 Then
 Chart2.Series(i).XValueType = ChartValueType.Time

 Page 121 of 147

 Chart2.Series(i).ChartType =
DataVisualization.Charting.SeriesChartType.Line 'Make a line-style
graph instead of a bar-style
 End If
 Chart2.Series(i).ChartType =
DataVisualization.Charting.SeriesChartType.Line 'Make a line-style
graph instead of a bar-style
 Catch
 Chart2.Series.Add(i + 1) 'Add a serie +1 if the serie already
exists.
 If Me.xaxis = 1 Or Me.xaxis = 0 Then
 Chart2.Series(i + 1).XValueType = ChartValueType.Time
 Chart2.Series(i + 1).ChartType =
DataVisualization.Charting.SeriesChartType.Line 'Make a line-style
graph instead of a bar-style
 End If
 Chart2.Series(i).ChartType =
DataVisualization.Charting.SeriesChartType.Line 'Make a line-style
graph instead of a bar-style
 End Try

 'Chart2.Series(i).LegendText = namearray(n_array(i))
'Set the legend text to the correct relevant name
 LegendGroup.Controls.Add(lbl(i))
 lbl(i).Text = namearray(n_array(i))
 lbl(i).Size = New Size(400, 13)
 If globallabeldelete = False And deleteamount = 0 Then
 lbl(i).Location = New Point(6, 30 + lblcount) 'Give the correct
location of the new label
 lblcount = lblcount + 13
 End If

 If globallabeldelete = True And Not deleteamount = 0 Then
 lbl(i).Location = New Point(6, 30 + emptylabelspace(deleteamount))
'Give the correct location of the new label
 deleteamount = deleteamount - 1
 globallabeldelete = False ' Reset that a label has been deleted
 End If

 Chart2.ApplyPaletteColors() 'Let the program be able to access the colors
of the series
 lbl(i).ForeColor = Chart2.Series(i).Color

 For k = 0 To Amount - 1
 If Not xaxis = -1 And Not Me.xaxis = 1 Then
 Chart2.Series(i).Points.AddXY(CSVarray(k, xaxis), CSVarray(k,
n_array(i))) 'Add Data points to make the graph.
 ElseIf Me.xaxis = 1 Then
 Chart2.Series(i).Points.AddXY(CSVarray(k, xaxis), CSVarray(k,
n_array(i))) 'Add Data points to make the graph.
 Else
 Chart2.Series(i).Points.AddXY(CSVarray(k, 2), CSVarray(k,
n_array(i))) 'Add Data points to make the graph.
 End If
 Next
 Me.currentserieamount = Me.currentserieamount + 1
 Next

 globalnarray = n_array

 previouscheckedarray = n_array
 For Each n In CSVOfflineTreeview.Nodes

 Page 122 of 147

 If n.Checked = True Then
 PreviousTreeview.Nodes(n.Index).Checked = True 'copy the checkboxes in
another treeview for deleting purposes
 ElseIf n.Checked = False Then
 PreviousTreeview.Nodes(n.Index).Checked = False 'copy the checkboxes
in another treeview for deleting purposes
 End If
 Next

 End Sub

 Private Sub ApplyButton_Click(sender As Object, e As EventArgs) Handles
ApplyButton.Click ' Handles what happens when the apply button is pushed on the
offline tab.
 Dim seriecounter As Integer = 0

 seriecounter = Chart2.Series.Count

 If seriecounter > 0 Then 'Prevent applying settings before a serie has been
added
 Dim newxarray(CSVarray.GetLength(0) - 1) As String
 Me.prev_xmin = Chart2.ChartAreas(0).AxisX.Minimum 'Store the current
values of the scale for later use in the reset button.
 Me.prev_xmax = Chart2.ChartAreas(0).AxisX.Maximum
 Me.prev_ymin = Chart2.ChartAreas(0).AxisY.Minimum
 Me.prev_ymax = Chart2.ChartAreas(0).AxisY.Maximum
 If Not X_Min_TextBox.Text = vbNullString Then 'check if the boxes are
not empty.
 Chart2.ChartAreas(0).AxisX.Minimum = X_Min_TextBox.Text
 infolabel.Text = "Custom axis values applied!"
 Customaxis = True 'Set customaxis to true for other parts in
the tool
 End If
 If Not X_Max_TextBox.Text = vbNullString Then
 Chart2.ChartAreas(0).AxisX.Maximum = X_Max_TextBox.Text
 infolabel.Text = "Custom axis values applied!"
 Customaxis = True
 End If
 If Not Y_Min_TextBox.Text = vbNullString Then
 Chart2.ChartAreas(0).AxisY.Minimum = Y_Min_TextBox.Text
 infolabel.Text = "Custom axis values applied!"
 Customaxis = True
 End If
 If Not Y_Max_TextBox.Text = vbNullString Then
 Chart2.ChartAreas(0).AxisY.Maximum = Y_Max_TextBox.Text
 infolabel.Text = "Custom axis values applied!"
 Customaxis = True
 End If
 If Abs_Zero.Checked = True Then 'Make the timestamp start from 0
 For i = 0 To CSVarray.GetLength(0) - 1
 newxarray(i) = CSVarray(i, xaxis) - CSVarray(0, xaxis)
 Chart2.Series(0).Points(i).AxisLabel = newxarray(i).ToString
 Chart2.ChartAreas(0).AxisX.Interval = 10000
 Next
 End If
 Else
 MsgBox("No graph to apply settings to.", 0, "DDT")
 End If
 End Sub

 Private Sub Reset_Button_Click(sender As Object, e As EventArgs) Handles
Reset_Button.Click 'Handles the reset button on the offline tab.

 If Me.Customaxis = True Then

 Page 123 of 147

 Chart2.ChartAreas(0).AxisX.Minimum = Me.prev_xmin
 Chart2.ChartAreas(0).AxisX.Maximum = Me.prev_xmax
 Chart2.ChartAreas(0).AxisY.Minimum = Me.prev_ymin
 Chart2.ChartAreas(0).AxisY.Maximum = Me.prev_ymax
 X_Min_TextBox.Text = "" 'Delete the text in the boxes.
 X_Max_TextBox.Text = ""
 Y_Min_TextBox.Text = ""
 Y_Max_TextBox.Text = ""

 infolabel.Text = "Axis settings set back to default!"
 Me.Customaxis = False
 Else
 MsgBox("Nothing to reset.", 0, "DDT")
 End If

 End Sub

 Private Sub Aftercheck2(sender As Object, e As TreeViewEventArgs) Handles
TreeViewXAxis.AfterCheck ' Handles the treeview for the x-axis.
 Dim n As TreeNode
 Dim counter As Integer = 0
 For Each n In TreeViewXAxis.Nodes 'Loop through the x-axis treeview. This
will only happen once, because only 1 can be clicked per time.
 If n.Checked = True Then
 Me.xaxis = n.Index 'Select the x-axis
 MsgBox(namearray(n.Index) & " is selected as x-axis.", 0, "DDT")
 infolabel.Text = namearray(n.Index) & " is selected as x-axis."
 counter = counter + 1
 End If
 Next
 If counter > 0 Then 'If an x axis has been chosen, hide the x axis
treeview
 TreeViewXAxis.Visible = False
 xaxisselectionlabel.Visible = False
 SelectAll.Visible = True
 DeselectAll.Visible = True
 Change_X_Xaxis.Visible = True
 End If
 If Not Me.xaxis = 1 Then
 Chart2.ChartAreas(0).AxisX.Title = namearray(xaxis)
 ElseIf Me.xaxis = 1 Then
 Chart2.ChartAreas(0).AxisX.Title = namearray(xaxis) & " [Hours:Minutes]"
 End If

 Me.changexaxis = 0
 End Sub

 Private Sub Change_X_Xaxis_Click(sender As Object, e As EventArgs) Handles
Change_X_Xaxis.Click 'Handles the change x-axis button.
 Dim amount As Integer = 0
 Dim newxaxis As Integer = 2
 Me.changexaxis = 1
 System.Threading.Thread.Sleep(1000)
 amount = Me.currentserieamount
 xaxisselectionlabel.Visible = True
 SelectAll.Visible = False
 DeselectAll.Visible = False
 MsgBox("Please select a new x-axis in the treeview to the right.", 0, "DDT")

 TreeViewXAxis.Nodes(Me.xaxis).Checked = False
 TreeViewXAxis.Visible = True
 Me.changexaxis = 1
 For i = amount - 1 To 0 Step -1
 Chart2.Series.RemoveAt(i)

 Page 124 of 147

 CSVOfflineTreeview.Nodes(globalnarray(i)).Checked = False 'Uncheck the
previous checked values for the y axes, to overcome that double x-axis are used, which
will give an error.
 Next
 Me.changexaxis = 1

 Me.currentserieamount = 0
 End Sub

 Private Sub Help_Button_Click(sender As Object, e As EventArgs) Handles
Help_Button.Click ' Handles the global help button.
 My.Forms.Form2.Show() ' Show the second form.
 End Sub

 Private Sub SaveButton_Click(sender As Object, e As EventArgs) Handles
SaveButton.Click ' Handles the event that happens when the save button is clicked.
 Dim never As Boolean = False
 Dim array(500)

 If FilenameTextbox.Text = vbNullString Or FilenameTextbox.Text.Contains("/")
Or FilenameTextbox.Text.Contains("\") Or FilenameTextbox.Text.Contains(":") Or
FilenameTextbox.Text.Contains("*") Or FilenameTextbox.Text.Contains("?") Or
FilenameTextbox.Text.Contains("<") Or FilenameTextbox.Text.Contains(">") Or
FilenameTextbox.Text.Contains("|") Or FilenameTextbox.Text.Contains(Chr(34)) Then
 MsgBox("Please type in a valid filename.", 0, "DDT") 'Display a message
when the filename contains characters that are not allowed.
 Else

 Dim regDate As Date = Date.Now() 'Get the current time.
 Dim strDate As String = regDate.ToString("dd MM yyyy") 'Translate the
current time into a specific format
 If (Not System.IO.Directory.Exists("Savefile " & strDate)) Then 'Make a
folder with the time string if it doesn't exist already.
 System.IO.Directory.CreateDirectory("Savefile " & strDate)
 End If
 If Not SaveCheck1.Checked = True And Not SaveCheck2.Checked = True And Not
SaveCheck3.Checked = True And Not SaveCheck4.Checked = True Then ' check whether the
boxes are checked
 MsgBox("Please check at least one of the check boxes.", 0, "DDT")
 Else
 If SaveCheck1.Checked = True Then
 Dim objWriter As New System.IO.StreamWriter("Savefile " & strDate
& "/" & FilenameTextbox.Text & ".csv")
 Dim n As TreeNode
 Dim counter As Integer = 0

 For Each n In CSVOfflineTreeview.Nodes
 If n.Checked = True Then
 array(counter) = n.Index ' fill an array to be able to get
the checked values later on
 counter = counter + 1
 End If
 Next

 Dim savearray(CSVarray.GetLength(0), counter) 'make an array for
the selected nodes
 For k = 0 To counter - 1
 For m = 0 To CSVarray.GetLength(0) - 1
 savearray(m, k) = CSVarray(m, array(k)) 'Store the values
in the array
 Next
 Next

 Page 125 of 147

 For i = 0 To counter - 1
 objWriter.Write(namearray(array(i))) 'write the names
 If i < counter - 1 Then 'only write a comma when the line is
not at it's end
 objWriter.Write(",")
 End If
 Next

 objWriter.Write(objWriter.NewLine) 'Write a new line, to seperate
the head titles from the numbers.

 For j = 0 To CSVarray.GetLength(0) - 1
 For k = 0 To counter - 1
 objWriter.Write(savearray(j, k)) 'Write the values in line
shape (from left to right)
 If k < counter - 1 Then 'only write a comma when the line
is not at it's end
 objWriter.Write(",")
 End If
 Next
 If j < CSVarray.GetLength(0) - 1 Then
 objWriter.Write(objWriter.NewLine) 'After every line,
write an empty line for the next piece of code, if the code is not yet at the end
 End If
 Next

 objWriter.Close() 'Close the stream
 Process.Start("Savefile " & strDate)
 End If

 If SaveCheck2.Checked = True Then ' If box two is checked
 Dim m As CheckBox
 Dim objWriter As New System.IO.StreamWriter("Savefile " & strDate
& "/" & FilenameTextbox.Text & ".txt") 'Open up a textfile
 objWriter.WriteLine(strDate) ' Write the current date to the file
 For i = 0 To globallabelcounter - 1 ' For each keyfigure
 m = GroupBox6.Controls(i)

 objWriter.WriteLine(m.Text) 'write the keyfigure result in the
text file
 If i = globallabelcounter - 1 Then
 objWriter.Close() 'Close the file when all keyfigures are
written to the file.
 Keyfiguressaveinfo.Text = "The Keyfigures are saved in:
" & "Savefile" & strDate & "/" & FilenameTextbox.Text & ".txt"
 Process.Start("Savefile " & strDate)
 End If
 Next
 End If
 If SaveCheck3.Checked = True Then ' If box three is checked.
 Chart2.SaveImage("Savefile " & strDate & "/" &
FilenameTextbox.Text & ".png", System.Drawing.Imaging.ImageFormat.Png) ' Save the
chart as a png file.
 Graphsaveinfo.Text = "The Graphs have been saved!"
 Process.Start("Savefile " & strDate)
 End If
 If SaveCheck4.Checked = True Then
 If MaxCutOff_Rad.Checked = True And MaxCutOff_Text.Text <>
vbNullString And IsNumeric(MaxCutOff_Text.Text) Then
 Dim arraylength As Integer
 Dim n As TreeNode
 Dim counter As Integer = 0
 Dim counter1 As Integer = 0
 Dim counter2 As Integer = 1

 Page 126 of 147

 Chart2.Series.Add(Me.currentserieamount)
 For r = 0 To CSVarray.GetLength(0) - 1

Chart2.Series(Me.currentserieamount).Points.AddXY(CSVarray(r, Me.xaxis),
MaxCutOff_Text.Text)
 Next
 Chart2.Series(Me.currentserieamount).ChartType =
DataVisualization.Charting.SeriesChartType.Line

 For Each n In CSVOfflineTreeview.Nodes
 If n.Checked = True Then
 array(counter) = n.Index ' fill an array to be able to
get the checked values later on
 counter = counter + 1
 End If
 Next
 If counter = 0 Then
 GoTo line1
 End If

 Dim savearray(CSVarray.GetLength(0), counter) 'make an array
for the selected nodes
 For k = 0 To counter - 1
 For m = 0 To CSVarray.GetLength(0) - 1
 savearray(m, k) = CSVarray(m, array(k)) 'Store the
values in the array
 Next
 Next

 Dim cutoffarray(CSVarray.GetLength(0), counter)
 For a = 0 To counter - 1
 For g = 0 To CSVarray.GetLength(0) - 1
 If MaxSmaEqu_Rad.Checked = True Then

 If savearray(g, a) <= MaxCutOff_Text.Text Then
 cutoffarray(counter1, 0) = CSVarray(g, 1)
'Store timestamp data
 cutoffarray(counter1, counter2) = savearray(g,
a)
 counter1 = counter1 + 1 'Count one up

 End If
 ElseIf MaxSma_Rad.Checked = True Then
 If savearray(g, a) < MaxCutOff_Text.Text Then
 cutoffarray(counter1, 0) = CSVarray(g, 1)
'Store timestamp data
 cutoffarray(counter1, counter2) = savearray(g,
a)
 counter1 = counter1 + 1 'Count one up

 End If
 Else
 GoTo line1
 End If
 Next
 counter2 = counter2 + 1
 counter1 = 0

 Next

 Dim objWriter As New System.IO.StreamWriter("Savefile " &
strDate & "/" & FilenameTextbox.Text & "CutOff" & ".csv")
 objWriter.Write(namearray(0) & ",") 'Write the timestamp

 Page 127 of 147

 'write the names
 For i = 0 To counter - 1
 objWriter.Write(namearray(array(i))) 'write the names
 If i < counter - 1 Then 'only write a comma when the line
is not at it's end
 objWriter.Write(",")
 End If
 Next

 For o = 0 To cutoffarray.GetLength(0)
 If IsNothing(cutoffarray(o, 0)) Then 'If there is nothing
left in the array, get the length of the total filled part
 arraylength = o 'Get the length of the total filled
array
 GoTo line2 'exit the for loop
 End If
 Next
line2:
 objWriter.Write(objWriter.NewLine) 'Write a new line, to
seperate the head titles from the numbers.

 For j = 0 To arraylength - 1
 For l = 0 To counter
 objWriter.Write(cutoffarray(j, l)) 'Write the values
in line shape (from left to right)
 If l < counter Then 'only write a comma when the line
is not at it's end
 objWriter.Write(",")
 End If
 Next
 If j < arraylength - 1 Then
 objWriter.Write(objWriter.NewLine) 'After every line,
write an empty line for the next piece of code, if the code is not yet at the end
 End If
 Next
 objWriter.Close()
 Process.Start("Savefile " & strDate)
 ElseIf MaxCutOff_Rad.Checked = True And (MaxCutOff_Text.Text =
vbNullString Or Not IsNumeric(MaxCutOff_Text.Text)) Then 'If the radiobutton is
checked, but it is empty or contains something other than numbers display a warning
 MsgBox("Enter a valid number.", 0, "ddt")
 End If
 If MinCutOff_Rad.Checked = True And MinCutOff_Text.Text <>
vbNullString And IsNumeric(MinCutOff_Text.Text) Then
 Dim arraylength As Integer
 Dim n As TreeNode
 Dim counter As Integer = 0
 Dim counter1 As Integer = 0
 Dim counter2 As Integer = 1
 arraylength = CSVarray.GetLength(0)

 For Each n In CSVOfflineTreeview.Nodes
 If n.Checked = True Then
 array(counter) = n.Index ' fill an array to be able to
get the checked values later on
 counter = counter + 1
 End If
 Next
 If counter = 0 Then
 GoTo line1
 End If
 Dim savearray(CSVarray.GetLength(0), counter) 'make an array
for the selected nodes
 For k = 0 To counter - 1

 Page 128 of 147

 For m = 0 To CSVarray.GetLength(0) - 1
 savearray(m, k) = CSVarray(m, array(k)) 'Store the
values in the array
 Next
 Next

 Dim cutoffarray(CSVarray.GetLength(0), counter)
 For a = 0 To counter - 1
 For g = 0 To CSVarray.GetLength(0) - 1

 If MinGreaEqu_Rad.Checked = True Then

 If savearray(g, a) >= MinCutOff_Text.Text Then
 cutoffarray(counter1, 0) = CSVarray(g, 1)
'Store timestamp data
 cutoffarray(counter1, counter2) = savearray(g,
a)
 counter1 = counter1 + 1
 End If

 ElseIf MinGrea_Rad.Checked = True Then
 If savearray(g, a) > MinCutOff_Text.Text Then
 cutoffarray(counter1, 0) = CSVarray(g, 1)
'Store timestamp data
 cutoffarray(counter1, counter2) = savearray(g,
a)
 counter1 = counter1 + 1

 End If

 Else
 GoTo line1
 End If
 Next
 counter2 = counter2 + 1
 counter1 = 0
 Next

 Dim objWriter As New System.IO.StreamWriter("Savefile " &
strDate & "/" & FilenameTextbox.Text & "CutOff" & ".csv")
 objWriter.Write(namearray(0) & ",") 'Write the timestamp

 For i = 0 To counter - 1
 objWriter.Write(namearray(array(i))) 'write the names
 If i < counter - 1 Then 'only write a comma when the line
is not at it's end
 objWriter.Write(",")
 End If
 Next

 For o = 0 To cutoffarray.GetLength(0)
 If IsNothing(cutoffarray(o, 0)) Then 'If there is nothing
left in the array, get the length of the total filled part
 arraylength = o 'Get the length of the total filled
array
 GoTo line3 'exit the for loop
 End If
 Next
line3:
 objWriter.Write(objWriter.NewLine) 'Write a new line, to
seperate the head titles from the numbers.

 For j = 0 To arraylength - 1
 For l = 0 To counter

 Page 129 of 147

 objWriter.Write(cutoffarray(j, l)) 'Write the values
in line shape (from left to right)
 If l < counter Then 'only write a comma when the line
is not at it's end
 objWriter.Write(",")
 End If
 Next
 If j < arraylength - 1 Then
 objWriter.Write(objWriter.NewLine) 'After every line,
write an empty line for the next piece of code, if the code is not yet at the end
 End If
 Next
 objWriter.Close()
 Process.Start("Savefile " & strDate)
 ElseIf MinCutOff_Rad.Checked = True And (MinCutOff_Text.Text =
vbNullString Or Not IsNumeric(MinCutOff_Text.Text)) Then 'If the radiobutton is
checked, but it is empty or contains something other than numbers display a warning
 MsgBox("Enter a valid number.")
 End If
 End If

 End If
 End If
 If never = True Then
line1:
 MsgBox("No nodes were checked", 0, "DDT")
 End If

 End Sub

 Private Sub SendButton_Click(sender As Object, e As EventArgs) Handles
SendButton.Click
 If EmailTextbox.Text = vbNullString Then
 MsgBox("Please type In a valid e-mail address.", 0, "DDT")
 End If
 If Not SendCheck1.Checked = True And Not SendCheck2.Checked = True And Not
SendCheck3.Checked = True Then
 MsgBox("Please check at least one Of the check boxes.", 0, "DDT")
 End If
 End Sub

 Public Sub Connect(ByVal serverIP As String, ByVal message As String)
 Dim output As String = ""
 While (True)
 System.Threading.Thread.Sleep(10)
 Try
 ' Create a TcpClient.
 ' The client requires a TcpServer that is connected
 ' to the same address specified by the server and port
 ' combination.
 Dim port As Int32 = 13
 Dim client As New TcpClient(serverIP, port)

 ' Translate the passed message into ASCII and store it as a byte
array.
 Dim data(255) As [Byte]
 data = System.Text.Encoding.ASCII.GetBytes(message)

 ' Get a client stream for reading and writing.
 ' Stream stream = client.GetStream();
 Dim stream As NetworkStream = client.GetStream()

 ' Send the message to the connected TcpServer.
 stream.Write(data, 0, data.Length)

 Page 130 of 147

 output = "Sent: " + message
 MsgBox(output)

 ' Buffer to store the response bytes.
 data = New [Byte](255) {}

 ' String to store the response ASCII representation.
 Dim responseData As String = String.Empty

 ' Read the first batch of the TcpServer response bytes.

 If stream.DataAvailable Then
 Dim bytes As Int32 = stream.Read(data, 0, data.Length)
 responseData = System.Text.Encoding.ASCII.GetString(data, 0,
bytes)
 output = responseData
 End If

 If output = "Goodbye" Then
 Me.globaloutput = output
 Status_Label.Text = "Connected"
 Error_Info_Button.Visible = False
 GoTo line1
 Else
 Status_Label.Text = "No response from server."
 End If
 ' Close everything.
 stream.Close()
 client.Close()
 Catch e As ArgumentNullException
 output = "ArgumentNullException: " + e.ToString()
 Me.globaloutput = output
 MsgBox(output)
 Status_Label.Text = "Argument Null error. Click the button below to
find out more."
 Error_Info_Button.Visible = True

 Catch e As SocketException
 output = "SocketException: " + e.ToString()

 Me.globaloutput = output
 Status_Label.Text = "No response from server. Click the button below
to find out more."
 Error_Info_Button.Visible = True

 End Try
 End While
line1:
 End Sub

 Private Sub Connect_Button_Click(sender As Object, e As EventArgs) Handles
Connect_Button.Click
 'In this code example, use a hard-coded
 'IP address And message.
 Dim serverIP As String = "localhost"
 Dim message As String = "Hello"
 Connect(serverIP, message)

 End Sub

 Private Sub Error_Info_Button_Click(sender As Object, e As EventArgs) Handles
Error_Info_Button.Click

 Page 131 of 147

 MsgBox("No connection with Server. Press the connect button again, or try
restarting the server via TeamViewer.")
 End Sub

 Private Sub Show_Button_Click(sender As Object, e As EventArgs) Handles
Show_Button.Click ' Handles the show button click event on the keyfigures tab
 Dim n As TreeNode
 Dim indexarray(500)
 Dim indexcounter As Integer
 indexcounter = 0
 Dim emptyarrayindex As Integer
 Dim countarray As Array
 countarray = Me.CSVarray
 Dim k As Integer
 Dim arraylenght As Integer
 Dim biggerprevious As Integer = 0
 Dim smallerprevious As Integer = 999999999
 Dim summation As Double = 0
 Dim summation2 As Double = 0
 Dim currentvalue As Double = 0
 Dim mean As Double = 0
 Dim lbl(500) As CheckBox
 Dim treenodecheckcounter As Integer = 0
 'Dim w As TreeNode
 Dim summation3 As Integer = 0
 Dim arraylength As Integer = 0
 Dim average As Integer = 0
 Dim executed As Boolean = False
 Dim namedifferencearray(1)
 Dim biggererrorprevious As Integer = 0

 If Me.csvclicked = True Then 'If a CSV file has been loaded in the
offline tab, proceed
 arraylength = CSVarray.GetLength(0)
 arraylenght = countarray.GetLength(0)
 Dim differencearray(arraylength)
 Opencsvofflinelabel.Visible = False
 For q = 0 To 500
 lbl(q) = New CheckBox
 lbl(q).Text = ""
 Next
 k = Me.globalk 'Get the location value
 If Not Mean_Rad.Checked = True And Not Tot_Len_Rad.Checked = True And Not
Max_Rad.Checked = True And Not Min_Rad.Checked = True And Not AvgConErr_Rad.Checked =
True And Not ConErrMax_Rad.Checked = True And Not ConErrMin_Rad.Checked Then
 MsgBox("Please check an option first.", 0, "DDT") ' If no option has
been checked, show a warning message
 Else
 For Each n In TreeViewKeyFigures.Nodes 'Loop through all nodes in the
keyfigures tab treeview
 If n.Checked = True Then
 indexarray(indexcounter) = n.Index
 indexcounter = indexcounter + 1
 End If
 Next
 If Not indexcounter = 0 Then
 For j = 0 To 500
 If indexarray(j) Is Nothing Then
 emptyarrayindex = j
 GoTo Line1
 End If
 Next
Line1:

 Page 132 of 147

 For i = 0 To emptyarrayindex - 1
 If Tot_Len_Rad.Checked Then
 For j = 1 To arraylenght - 1
 currentvalue = Abs(countarray(j, indexarray(i)) -
countarray(j - 1, indexarray(i))) 'Calculate cummulative absolute distance
 summation = summation + currentvalue 'Sum all
values
 Next
 GroupBox6.Controls.Add(lbl(i)) 'Add a label
 lbl(i).Text = "Total travelled length of " &
namearray(indexarray(i)) & " is " & summation & "." 'Add text to the label
 lbl(i).Size = New Size(400, 15)
 lbl(i).Location = New Point(6, 30 + k) 'Give the
correct location of the new label
 lbl(i).Tag = "totlen"
 k = k + 15 'Change the location +15
 summation = 0 'Reset the summation
 End If

 If Mean_Rad.Checked = True Then
 For l = 0 To arraylenght - 1
 mean = countarray(l, indexarray(i)) / arraylenght
 summation2 = summation2 + mean
 Next
 GroupBox6.Controls.Add(lbl(i))
 lbl(i).Text = "The mean of " & namearray(indexarray(i)) &
" is " & summation2 & "."
 lbl(i).Size = New Size(400, 15)
 lbl(i).Location = New Point(6, 30 + k) 'Give the correct
location of the new label
 lbl(i).Tag = "mean"
 k = k + 15 'Change the location +15
 summation2 = 0 'Reset the summation
 End If

 If Max_Rad.Checked = True Then
 For m = 0 To arraylenght - 1
 If biggerprevious > countarray(m, indexarray(i)) Then
'If the previous value was larger, than the larger value is the most large and the
current value is smaller
 biggerprevious = biggerprevious
 Else
 biggerprevious = countarray(m, indexarray(i))
'If the previous value was smaller, the larger one is the current one
 End If
 Next
 GroupBox6.Controls.Add(lbl(i))
 lbl(i).Text = "The max of " & namearray(indexarray(i)) & "
is " & biggerprevious & "."
 lbl(i).Size = New Size(400, 15)
 lbl(i).Location = New Point(6, 30 + k) 'Give the correct
location of the new label
 lbl(i).Tag = "max"
 k = k + 15 'Change the location +15

 End If

 If Min_Rad.Checked = True Then
 For o = 0 To arraylenght - 1
 If smallerprevious < countarray(o, indexarray(i)) Then
' check whether the previous value if smaller, if so than the current one is larger
and hence the previous one remains the smallest
 smallerprevious = smallerprevious

 Page 133 of 147

 Else
 smallerprevious = countarray(o, indexarray(i))
'The other way around as the one above.
 End If
 Next
 GroupBox6.Controls.Add(lbl(i))
 lbl(i).Text = "The min of " & namearray(indexarray(i)) & "
is " & smallerprevious & "."
 lbl(i).Size = New Size(400, 15)
 lbl(i).Location = New Point(6, 30 + k) 'Give the correct
location of the new label
 lbl(i).Tag = "min"
 k = k + 15 'Change the location +15
 End If

 If AvgConErr_Rad.Checked = True And executed = False Then
 If Not indexcounter = 2 Then
 MsgBox("Please select two checkboxes from the
treeview.")
 Else
 For y = 0 To 1
 namedifferencearray(y) = namearray(indexarray(y))
'Store the name in the difference array for comparing two functions
 Next

 For t = 0 To arraylength - 1
 differencearray(t) = CSVarray(t, indexarray(0)) -
CSVarray(t, indexarray(1)) 'Substract both functions to get the difference.
 Next

 For p = 0 To arraylength - 1
 summation3 = differencearray(p) + summation3
 Next

 average = summation3 / (arraylength - 1)
 GroupBox6.Controls.Add(lbl(i))
 lbl(i).Text = "The average error of " &
namedifferencearray(0) & " and " & namedifferencearray(1) & " is " & average & "."
 lbl(i).Size = New Size(10000, 15)
 lbl(i).Location = New Point(6, 30 + k)
 lbl(i).Tag = "avgerr"
 k = k + 15
 executed = True
 End If
 End If

 If ConErrMax_Rad.Checked = True Then
 If Not indexcounter = 2 Then
 MsgBox("Please select two checkboxes from the
treeview.")
 Else
 For y = 0 To 1
 namedifferencearray(y) = namearray(indexarray(y))
 Next

 For t = 0 To arraylength - 1
 differencearray(t) = CSVarray(t, indexarray(0)) -
CSVarray(t, indexarray(1)) ' get the difference
 Next

 For p = 0 To arraylength - 1
 If biggererrorprevious >= differencearray(p) Then
' If the previous biggest error is bigger than the current one

 Page 134 of 147

 biggererrorprevious = biggererrorprevious
'The previous error is the biggest
 ElseIf biggererrorprevious < differencearray(p)
Then 'If the previous biggest error is smaller than the current one
 biggererrorprevious = differencearray(p)
'The biggest error is the current one
 Else
 MsgBox("An error occured.")
 End If
 Next
 GroupBox6.Controls.Add(lbl(i))
 lbl(i).Text = "The maximum control error of " &
namedifferencearray(0) & " and " & namedifferencearray(1) & " is " &
biggererrorprevious & "."
 lbl(i).Size = New Size(10000, 15)
 lbl(i).Location = New Point(6, 30 + k)
 lbl(i).Tag = "ConerrMax"
 k = k + 15
 executed = True
 End If
 End If
 Me.globalk = k
 Me.globallabelcounter = Me.globalk / 15 'Count the amount of
labels and put the result in the global label counter
 Next
 Else
 MsgBox("Select an item in the treeview to the right.", 0, "DDT")
 End If
 End If

 Else
 MsgBox("Select a CSV file in the 'Offline' Tab!", 0, "DDT")

 End If

 End Sub

 Private Sub Mean_Rad_CheckedChanged(sender As Object, e As EventArgs) Handles
Mean_Rad.CheckedChanged 'Handles what to do when the mean radiobutton has been checked
or unchecked
 Static checkcounter As Integer = 0
 checkcounter = checkcounter + 1
 If checkcounter Mod 2 > 0 Then ' If the button is checked
 Formula.Visible = True ' Show the formula
 MeanFor.Visible = True
 MeanLabel.Visible = True
 Else 'else
 Formula.Visible = False 'hide the formula
 MeanFor.Visible = False
 MeanLabel.Visible = False
 End If
 End Sub

 Private Sub Tot_Len_Rad_CheckedChanged(sender As Object, e As EventArgs) Handles
Tot_Len_Rad.CheckedChanged 'Handles what to do when the total length radiobutton has
been checked or unchecked
 Static checkcounter As Integer = 0
 checkcounter = checkcounter + 1
 If checkcounter Mod 2 > 0 Then ' If the button is checked
 Formula.Visible = True ' Show the formula
 TotLenFor.Visible = True

 Page 135 of 147

 TotAbsLenLabel.Visible = True
 Else
 Formula.Visible = False
 TotLenFor.Visible = False
 TotAbsLenLabel.Visible = False
 End If
 End Sub

 Private Sub Max_Rad_CheckedChanged(sender As Object, e As EventArgs) Handles
Max_Rad.CheckedChanged 'Handles what to do when the maximum radiobutton has been
checked or unchecked
 Static checkcounter As Integer = 0
 checkcounter = checkcounter + 1
 If checkcounter Mod 2 > 0 Then ' If the button is checked
 Formula.Visible = True ' Show the formula
 Maxform.Visible = True
 MaxLabel.Visible = True
 Else
 Formula.Visible = False
 Maxform.Visible = False
 MaxLabel.Visible = False
 End If
 End Sub

 Private Sub Min_Rad_CheckedChanged(sender As Object, e As EventArgs) Handles
Min_Rad.CheckedChanged 'Handles what to do when the minimum radiobutton has been
checked or unchecked
 Static checkcounter As Integer = 0
 checkcounter = checkcounter + 1
 If checkcounter Mod 2 > 0 Then ' If the button is checked
 Formula.Visible = True ' Show the formula
 MinForm.Visible = True
 MinLabel.Visible = True
 Else
 Formula.Visible = False
 MinForm.Visible = False
 MinLabel.Visible = False
 End If
 End Sub
 Private Sub Showerrorgraphbutton_Click(sender As Object, e As EventArgs) Handles
Showerrorgraphbutton.Click 'Show the error graph, which is a graph that substracts
two graphs from eachother.
 Dim errorarray As Array
 Dim n As TreeNode
 Dim m As TreeNode
 Dim mindexarray(1)
 Dim indexcounter As Integer = 0
 errorarray = Me.CSVarray
 Dim ncounter As Integer = 0
 Dim differencenamearray As Array
 differencenamearray = Me.differencenamearray

 If csvclicked = True And Me.errorgraphpushed = False Then 'If a csvfile has
been opend and the error graph has not yet been shown on screen
 Dim arraylength As Integer = errorarray.GetLength(0)
 Dim differencearray(arraylength)
 For Each n In CSVOfflineTreeview.Nodes 'loop through all nodes
 If n.Checked = True Then
 ncounter = ncounter + 1 'Count all checked nodes
 End If
 Next
 Chart2.Series(0).XValueType = ChartValueType.Double
 Chart2.Series(1).XValueType = ChartValueType.Double

 Page 136 of 147

 If ncounter > 2 Then 'if more than two nodes are checked, give a
warning.
 MsgBox("Please select only two nodes in the treeview.", 0, "DDT")
 ElseIf ncounter = 2 Then

 Chart2.Series.Add(Me.currentserieamount) ' Add a new serie, which will
contain the error graph

 For Each m In CSVOfflineTreeview.Nodes
 If m.Checked = True Then 'loop thourgh all nodes
 mindexarray(indexcounter) = m.Index 'Fill an array with the
values on which places the treeview are checked
 indexcounter = indexcounter + 1
 End If
 Next

 For z = 0 To 1
 differencenamearray(z) = namearray(mindexarray(z))
 Next

 For i = 0 To arraylength - 1
 differencearray(i) = errorarray(i, mindexarray(0)) - errorarray(i,
mindexarray(1)) ' The error is the difference between the actual value and the wanted
value. Therefore a substraction is used.

 Next
 For j = 0 To arraylength - 1
 Chart2.Series(Me.currentserieamount).Points.AddXY(errorarray(j,
xaxis), differencearray(j)) ' Add the relevant datapoints to plot the
error graph
 Chart2.Series(Me.currentserieamount).ChartType =
DataVisualization.Charting.SeriesChartType.Line 'Make a line-style
graph instead of a bar-style
 Chart2.Series(Me.currentserieamount).LegendText = "Error Graph"
 Next
 Me.globaldifferencearray = differencearray
 Me.errorgraphpushed = True
 Chart2.Series(0).XValueType = ChartValueType.Time
 Chart2.Series(1).XValueType = ChartValueType.Time
 Chart2.Series(2).XValueType = ChartValueType.Time

 Me.currentserieamount = Me.currentserieamount + 1
 Else
 MsgBox("Select two nodes from the treeview.", 0, "DDT")
 End If

 ElseIf csvclicked = True And Me.errorgraphpushed = True Then
 MsgBox("The error graph is already shown.")
 Else
 MsgBox("Please select a CSV file first.", 0, "DDT")
 End If

 End Sub

 Private Sub AvgConErr_Rad_CheckedChanged(sender As Object, e As EventArgs) Handles
AvgConErr_Rad.CheckedChanged
 Static checkcounter As Integer = 0
 checkcounter = checkcounter + 1
 If checkcounter Mod 2 > 0 Then
 Formula.Visible = True
 Averagelabel.Visible = True
 AveConErr_Pic.Visible = True
 Else
 Formula.Visible = False

 Page 137 of 147

 Averagelabel.Visible = False
 AveConErr_Pic.Visible = False
 End If
 End Sub

 Private Sub ClearErrorGraph_Button_Click(sender As Object, e As EventArgs) Handles
ClearErrorGraph_Button.Click
 If errorgraphpushed = True Then
 Chart2.Series.RemoveAt(Me.currentserieamount - 1)
 Me.currentserieamount = Me.currentserieamount - 1
 Me.errorgraphpushed = False
 Else
 MsgBox("There is no plotted error graph.", 0, "DDT")
 End If

 End Sub

 Private Sub DeleteGraph_Button_Click(sender As Object, e As EventArgs)

 If Not Me.currentserieamount = 0 And Not errorgraphpushed = True Then
 Chart2.Series.RemoveAt(Me.currentserieamount - 1)
 Me.currentserieamount = Me.currentserieamount - 1
 Try
 CSVOfflineTreeview.Nodes(globalnarray(Me.currentserieamount)).Checked
= False
 Catch
 GoTo Line3 'A catch has been used to overcome a crash. Instead it now
produces a messagebox.
 Finally
 End Try
Line3:
 ElseIf errorgraphpushed = True Then
 MsgBox("First delete the error graph by pressing the 'Clear Error Graph'
button.", 0, "DDT")
 Else
 MsgBox("There is no graph to delete.", 0, "DDT")
 End If

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles
Clear_All_Key_Button.Click
 If globallabelcounter <> 0 Then
 For i = globallabelcounter - 1 To 0 Step -1
 Me.globalk = 0
 GroupBox6.Controls(0).Dispose()
 Next
 Me.globallabelcounter = 0
 Else
 MsgBox("No Keyfigures Present.", 0, "DDT")
 End If

 End Sub

 Private Sub Deselect_All_Key_Button_Click(sender As Object, e As EventArgs)
Handles Deselect_All_KeyTreeview_Button.Click
 Dim parent As TreeNode
 For Each parent In TreeViewKeyFigures.Nodes
 parent.Checked = False
 Next
 End Sub

 Private Sub Select_All_Key_Button_Click(sender As Object, e As EventArgs) Handles
Select_All_KeyTreeview_Button.Click

 Page 138 of 147

 Dim parent As TreeNode
 For Each parent In TreeViewKeyFigures.Nodes
 parent.Checked = True
 Next
 End Sub

 Private Sub Round_Key_Button_Click(sender As Object, e As EventArgs) Handles
Round_Key_Button.Click
 Dim m As CheckBox
 Dim changestring As String
 Dim islocation As Integer
 Dim stringlength As Integer
 Dim dotlocation As Integer
 Dim substringlength As Integer
 Dim finalstring As String
 Dim roundinteger As Integer
 Dim rounding As Boolean
 Dim truncateinteger As Integer
 If globallabelcounter > 0 Then

 For i = 0 To globallabelcounter - 1
 m = GroupBox6.Controls(i)
 If m.Checked = True Then
 changestring = m.Text
 If changestring.Contains("is") Then 'Detect the word is, to
know where the numerical value will start.
 islocation = changestring.IndexOf("is") + 2
 Else
 MsgBox("Error.", 0, "DDT")
 End If
 stringlength = changestring.Length - 1 ' Get the length of the
string until the dot.
 Dim tempstring As String = changestring.Substring(islocation,
(stringlength - islocation)) 'Get string which contains the numerical(single/double)
value.
 Dim finalbeginstring As String = changestring.Substring(0,
islocation) ' Get the first part of the string to use at the end.
 If tempstring.Contains(".") Then
 dotlocation = tempstring.IndexOf(".") + 1
'Search the location of the dot for truncation, + 1 for the number to start with
 substringlength = tempstring.Length
 Dim subsubstring As String = tempstring.Substring(dotlocation,
(substringlength - dotlocation))
 Dim beginpartstring As String = tempstring.Substring(0,
dotlocation)
 If OneDec_Rad.Checked = True And subsubstring.Length >= 1 Then
' Rounding of numbers
 Dim roundstring As String = subsubstring.Substring(1, 1)
 roundinteger = roundstring
 Dim truncatestring As String = subsubstring.Substring(0,
1)
 truncateinteger = truncatestring
 If roundinteger >= 5 And truncateinteger < 9 Then
 finalstring = finalbeginstring & beginpartstring &
truncatestring + 1
 m.Text = finalstring
 ElseIf roundinteger < 5 And truncateinteger <= 9 Then
 finalstring = finalbeginstring & beginpartstring &
truncatestring
 m.Text = finalstring
 ElseIf roundinteger >= 5 And truncateinteger = 9 Then
 finalstring = finalbeginstring & " " & beginpartstring
+ 1 & "." & 0
 m.Text = finalstring

 Page 139 of 147

 End If
 ElseIf subsubstring.Length < 1 And OneDec_Rad.Checked = True
Then
 MsgBox("Truncation is not possible.", 0, "DDT")
 End If
 If TwoDec_Rad.Checked = True And subsubstring.Length >= 2 Then
 Dim truncatestring As String = subsubstring.Substring(0,
2)
 Dim firstnumber As String = subsubstring.Substring(1, 1)
 Dim secondnumber As String = subsubstring.Substring(2, 1)

 If firstnumber < 9 And secondnumber >= 5 Then
 finalstring = finalbeginstring & beginpartstring &
truncatestring + 1
 m.Text = finalstring
 ElseIf firstnumber <= 9 And secondnumber < 5 Then
 finalstring = finalbeginstring & beginpartstring &
truncatestring
 m.Text = finalstring
 ElseIf firstnumber = 9 And secondnumber >= 5 Then
 finalstring = finalbeginstring & " " & beginpartstring
+ 1 & "." & "00"
 m.Text = finalstring
 End If

 ElseIf subsubstring.Length < 2 And TwoDec_Rad.Checked = True
Then
 MsgBox("Truncation is not possible.", 0, "DDT")
 End If
 If ThreeDec_Rad.Checked = True And subsubstring.Length >= 3
Then
 Dim truncatestring As String = subsubstring.Substring(0,
3)
 Dim firstnumber As String = subsubstring.Substring(2, 1)
 Dim secondnumber As String = subsubstring.Substring(3, 1)

 If firstnumber < 9 And secondnumber >= 5 Then
 finalstring = finalbeginstring & beginpartstring &
truncatestring + 1
 m.Text = finalstring
 ElseIf firstnumber <= 9 And secondnumber < 5 Then
 finalstring = finalbeginstring & beginpartstring &
truncatestring
 m.Text = finalstring
 ElseIf firstnumber = 9 And secondnumber >= 5 Then
 finalstring = finalbeginstring & " " & beginpartstring
+ 1 & "." & "000"
 m.Text = finalstring
 End If
 ElseIf subsubstring.Length < 3 And ThreeDec_Rad.Checked = True
Then
 MsgBox("Truncation is not possible.", 0, "DDT")
 End If
 If FourDec_Rad.Checked = True And subsubstring.Length >= 4
Then
 Dim truncatestring As String = subsubstring.Substring(0,
4)
 Dim firstnumber As String = subsubstring.Substring(3, 1)
 Dim secondnumber As String = subsubstring.Substring(4, 1)

 If firstnumber < 9 And secondnumber >= 5 Then
 finalstring = finalbeginstring & beginpartstring &
truncatestring + 1
 m.Text = finalstring

 Page 140 of 147

 ElseIf firstnumber <= 9 And secondnumber < 5 Then
 finalstring = finalbeginstring & beginpartstring &
truncatestring
 m.Text = finalstring
 ElseIf firstnumber = 9 And secondnumber >= 5 Then
 finalstring = finalbeginstring & " " & beginpartstring
+ 1 & "." & "0000"
 m.Text = finalstring
 End If
 ElseIf subsubstring.Length < 4 And FourDec_Rad.Checked = True
Then
 MsgBox("Truncation is not possible.", 0, "DDT")
 End If
 If FiveDec_Rad.Checked = True And subsubstring.Length >= 5
Then
 Dim truncatestring As String = subsubstring.Substring(0,
5)
 Dim firstnumber As String = subsubstring.Substring(4, 1)
 Dim secondnumber As String = subsubstring.Substring(5, 1)

 If firstnumber < 9 And secondnumber >= 5 Then
 finalstring = finalbeginstring & beginpartstring &
truncatestring + 1
 m.Text = finalstring
 ElseIf firstnumber <= 9 And secondnumber < 5 Then
 finalstring = finalbeginstring & beginpartstring &
truncatestring
 m.Text = finalstring
 ElseIf firstnumber = 9 And secondnumber >= 5 Then
 finalstring = finalbeginstring & " " & beginpartstring
+ 1 & "." & "00000"
 m.Text = finalstring
 End If
 ElseIf subsubstring.Length < 5 And FiveDec_Rad.Checked = True
Then
 MsgBox("Truncation is not possible.", 0, "DDT")
 End If
 If OneDec_Rad.Checked = False And TwoDec_Rad.Checked = False
And ThreeDec_Rad.Checked = False And FourDec_Rad.Checked = False And
FiveDec_Rad.Checked = False Then
 Dim truncatestring As String = subsubstring.Substring(0,
2)
 Dim firstnumber As String = subsubstring.Substring(1, 1)
 Dim secondnumber As String = subsubstring.Substring(2, 1)

 If firstnumber < 9 And secondnumber >= 5 Then
 finalstring = finalbeginstring & beginpartstring &
truncatestring + 1
 m.Text = finalstring
 ElseIf firstnumber <= 9 And secondnumber < 5 Then
 finalstring = finalbeginstring & beginpartstring &
truncatestring
 m.Text = finalstring
 ElseIf firstnumber = 9 And secondnumber >= 5 Then
 finalstring = finalbeginstring & " " & beginpartstring
+ 1 & "." & "00"
 m.Text = finalstring
 End If
 End If
 Else
 MsgBox("Nothing to truncate.", 0, "DDT")
 End If
 Else

 Page 141 of 147

 End If
 m.Checked = False
 Next
 Else
 MsgBox("No Keyfigures Present.", 0, "DDT")
 End If
 End Sub

 Private Sub Select_All_KeyCheck_button_Click(sender As Object, e As EventArgs)
Handles Select_All_KeyCheck_button.Click
 Dim m As CheckBox
 For i = 0 To globallabelcounter - 1
 m = GroupBox6.Controls(i)
 m.Checked = True
 Next
 End Sub

 Private Sub Deselect_All_KeyCheck_Button_Click(sender As Object, e As EventArgs)
Handles Deselect_All_KeyCheck_Button.Click
 Dim m As CheckBox
 For i = 0 To globallabelcounter - 1
 m = GroupBox6.Controls(i)
 m.Checked = False
 Next
 End Sub

 Private Sub DeleteSelected_Key_Button_Click(sender As Object, e As EventArgs)
Handles DeleteSelected_Key_Button.Click
 Dim m As CheckBox
 Dim indexarray(500)
 Dim truecounter As Integer = 0

 For i = 0 To Me.globallabelcounter - 1
 m = GroupBox6.Controls(i)
 If m.Checked = True Then 'First check which checkboxes are selected
 indexarray(truecounter) = i
 truecounter = truecounter + 1
 End If
 Next
 For j = 0 To truecounter - 1
 GroupBox6.Controls(indexarray(j)).Dispose()
 Me.globallabelcounter = Me.globallabelcounter - 1
 Me.globalk = Me.globalk - 15
 truecounter = truecounter - 1
 Next

 End Sub

 Private Sub Server_Rad_CheckedChanged(sender As Object, e As EventArgs)
 Static checkcounter As Integer = 0
 checkcounter = checkcounter + 1
 If checkcounter Mod 2 > 0 Then
 'StartServer_Button.Visible = True
 Else
 ' StartServer_Button.Visible = False
 End If
 End Sub

 Private Sub StartServer_Button_Click(sender As Object, e As EventArgs)
 Dim TestThread As New System.Threading.Thread(AddressOf Serverthread)
 TestThread.Start()
 End Sub

 Private Sub Serverthread()

 Page 142 of 147

 End Sub

 Private Sub InverseSelectionButton(sender As Object, e As EventArgs) Handles
InverseSelection_Button.Click
 Dim m As CheckBox
 For i = 0 To Me.globallabelcounter - 1
 m = GroupBox6.Controls(i)
 If m.Checked = True Then
 m.Checked = False
 ElseIf m.Checked = False Then
 m.Checked = True
 End If
 Next
 End Sub
 Public Structure BinFileInfo
 Public FileName As String
 Public FileSize As Int64
 Public StartTime As Date
 Public EndTime As Date
 Public StartLogBytePos As Int64
 Public StopLogBytePos As Int64
 End Structure

 Private Sub OpenBinClick(sender As Object, e As EventArgs) Handles
Open_Bin_Button.Click
 Dim m As Message
 Process.Start("PLC_LOG_CONVERTER.exe")

 Static pcount As Integer = 0
 While (True)
 System.Threading.Thread.Sleep(100)
 Dim p() As Process
 p = Process.GetProcessesByName("PLC_LOG_CONVERTER")
 If p.Count > 0 Then
 pcount = pcount + 1
 MsgBox("Close this whenever ready.")
 Else
 ' Process is not running
 If pcount > 0 Then
 Exit While
 GoTo line1
 Else
 MsgBox("Fileconverter has not been opened.")
 End If
 End If
 End While
line1:
 Me.binfilebool = True
 'MsgBox("Now select the CSV File that has been made. If it's not made, press
the open bin file button again.")
 'OpenFileDialog1.ShowDialog()
 'Me.globalfilename = OpenFileDialog1.FileName

 ' Open the file using a stream reader.
 Using sr As New StreamReader("Filelocation.txt")
 Dim line As String
 ' Read the stream to a string and write the string to the console.
 line = sr.ReadToEnd()
 Me.globalfilename = line
 End Using
 Open_CSV_Button_Click()
 End Sub
 Private Sub fileopenthread()

 Page 143 of 147

 End Sub

 Private Sub Inverse_Click(sender As Object, e As EventArgs) Handles
InverseKey_Button.Click
 Dim n As TreeNode
 For Each n In TreeViewKeyFigures.Nodes
 If n.Checked = True Then
 n.Checked = False
 ElseIf n.Checked = False Then
 n.Checked = True
 End If
 Next
 End Sub

 Private Sub Button1_Click_1(sender As Object, e As EventArgs) Handles
Button1.Click
 Dim m As CheckBox
 Dim changestring As String
 Dim islocation As Integer
 Dim stringlength As Integer
 Dim dotlocation As Integer
 Dim substringlength As Integer
 Dim finalstring As String
 Dim roundinteger As Integer
 Dim rounding As Boolean
 Dim truncateinteger As Integer
 If globallabelcounter > 0 Then

 For i = 0 To globallabelcounter - 1
 m = GroupBox6.Controls(i)
 If m.Checked = True Then
 changestring = m.Text
 If changestring.Contains("is") Then 'Detect the word is, to
know where the numerical value will start.
 islocation = changestring.IndexOf("is") + 2
 Else
 MsgBox("Error.", 0, "DDT")
 End If
 stringlength = changestring.Length - 1 ' Get the length of the
string until the dot.
 Dim tempstring As String = changestring.Substring(islocation,
(stringlength - islocation)) 'Get string which contains the numerical(single/double)
value.
 Dim finalbeginstring As String = changestring.Substring(0,
islocation) ' Get the first part of the string to use at the end.
 If tempstring.Contains(".") Then
 dotlocation = tempstring.IndexOf(".") + 1
'Search the location of the dot for truncation, + 1 for the number to start with
 substringlength = tempstring.Length
 Dim subsubstring As String = tempstring.Substring(dotlocation,
(substringlength - dotlocation))
 Dim beginpartstring As String = tempstring.Substring(0,
dotlocation)
 If OneDec_Rad.Checked = True And subsubstring.Length >= 1 Then
' Rounding of numbers
 Dim truncatestring As String = subsubstring.Substring(0,
1) ' Handles what to do when 1 decimal is selected
 m.Text = finalbeginstring & beginpartstring &
truncatestring
 End If
 If TwoDec_Rad.Checked = True And subsubstring.Length >= 2 Then
 Dim truncatestring As String = subsubstring.Substring(0,
2) ' Handles what to do when 2 decimal is selected

 Page 144 of 147

 m.Text = finalbeginstring & beginpartstring &
truncatestring
 End If
 If ThreeDec_Rad.Checked = True And subsubstring.Length >= 3
Then
 Dim truncatestring As String = subsubstring.Substring(0,
3) ' Handles what to do when 3 decimal is selected
 m.Text = finalbeginstring & beginpartstring &
truncatestring
 End If
 If FourDec_Rad.Checked = True And subsubstring.Length >= 4
Then
 Dim truncatestring As String = subsubstring.Substring(0,
4) ' Handles what to do when 4 decimal is selected
 m.Text = finalbeginstring & beginpartstring &
truncatestring
 End If
 If FiveDec_Rad.Checked = True And subsubstring.Length >= 5
Then
 Dim truncatestring As String = subsubstring.Substring(0,
5) ' Handles what to do when 5 decimal is selected
 m.Text = finalbeginstring & beginpartstring &
truncatestring
 End If
 If OneDec_Rad.Checked = False And TwoDec_Rad.Checked = False
And ThreeDec_Rad.Checked = False And FourDec_Rad.Checked = False And
FiveDec_Rad.Checked = False Then
 Dim truncatestring As String = subsubstring.Substring(0,
2)
 m.Text = finalbeginstring & beginpartstring &
truncatestring ' Default function
 End If
 Else
 MsgBox("Nothing to truncate.", 0, "DDT")
 End If
 Else

 End If
 m.Checked = False
 Next
 Else
 MsgBox("No Keyfigures Present.", 0, "DDT")
 End If
 End Sub

 Private Sub SaveCheck4_CheckedChanged(sender As Object, e As EventArgs) Handles
SaveCheck4.CheckedChanged ' Handles the cutoff function checkbox
 Static checkcounter As Integer = 0
 checkcounter = checkcounter + 1
 If checkcounter Mod 2 > 0 Then 'If it is checked, show the following items:
 MaxCutOff_Rad.Visible = True
 MinCutOff_Rad.Visible = True
 Else 'Else reset/hide the following items
 MaxCutOff_Rad.Visible = False
 MinCutOff_Rad.Visible = False
 MaxCutOff_Rad.Checked = False
 MinCutOff_Rad.Checked = False
 End If

 End Sub

 Private Sub MinCutOff_Rad_CheckedChanged(sender As Object, e As EventArgs) Handles
MinCutOff_Rad.CheckedChanged
 Static checkcounter As Integer = 0

 Page 145 of 147

 checkcounter = checkcounter + 1
 If checkcounter Mod 2 > 0 Then 'If it is checked, show the following items:
 'MinEqu_Rad.Visible = True
 MinGreaEqu_Rad.Visible = True
 MinGrea_Rad.Visible = True
 MinCutOff_Text.Visible = True
 Else 'Else reset/hide the following items
 'MinEqu_Rad.Visible = False
 MinGreaEqu_Rad.Visible = False
 MinGrea_Rad.Visible = False
 'MinEqu_Rad.Checked = False
 MinGreaEqu_Rad.Checked = False
 MinGrea_Rad.Checked = False
 MinCutOff_Text.Visible = False
 End If
 End Sub

 Private Sub MaxCutOff_Rad_CheckedChanged(sender As Object, e As EventArgs) Handles
MaxCutOff_Rad.CheckedChanged
 Static checkcounter As Integer = 0
 checkcounter = checkcounter + 1
 If checkcounter Mod 2 > 0 Then 'If it is checked, show the following items:
 'MaxEqu_Rad.Visible = True
 MaxSmaEqu_Rad.Visible = True
 MaxSma_Rad.Visible = True
 MaxCutOff_Text.Visible = True
 Else 'Else reset/hide the following items
 'MaxEqu_Rad.Visible = False
 MaxSmaEqu_Rad.Visible = False
 MaxSma_Rad.Visible = False
 'MaxEqu_Rad.Checked = False
 MaxSmaEqu_Rad.Checked = False
 MaxSma_Rad.Checked = False
 MaxCutOff_Text.Visible = False
 End If
 End Sub

 Private Sub ConErrMax_Rad_CheckedChanged(sender As Object, e As EventArgs) Handles
ConErrMax_Rad.CheckedChanged
 Static checkcounter As Integer = 0
 checkcounter = checkcounter + 1
 If checkcounter Mod 2 > 0 Then ' If the button is checked
 Formula.Visible = True ' Show the formula
 MinForm.Visible = True
 MinLabel.Visible = True
 Else
 Formula.Visible = False
 MinForm.Visible = False
 MinLabel.Visible = False
 End If
 End Sub

 Private Sub Showabsconerr_Click(sender As Object, e As EventArgs)
 Dim errorarray As Array
 Dim n As TreeNode
 Dim m As TreeNode
 Dim mindexarray(1)
 Dim indexcounter As Integer = 0
 errorarray = Me.CSVarray
 Dim ncounter As Integer = 0
 Dim differencenamearray As Array
 differencenamearray = Me.differencenamearray

 Page 146 of 147

 If csvclicked = True And Me.errorgraphpushed = False Then 'If a csvfile has
been opend and the error graph has not yet been shown on screen
 Dim arraylength As Integer = errorarray.GetLength(0)
 Dim differencearray(arraylength)
 For Each n In CSVOfflineTreeview.Nodes 'loop through all nodes
 If n.Checked = True Then
 ncounter = ncounter + 1 'Count all checked nodes
 End If
 Next

 If ncounter > 2 Then 'if more than two nodes are checked, give a
warning.
 MsgBox("Please select only two nodes in the treeview.", 0, "DDT")
 ElseIf ncounter = 2 Then

 Chart2.Series.Add(Me.currentserieamount) ' Add a new serie, which will
contain the error graph

 For Each m In CSVOfflineTreeview.Nodes
 If m.Checked = True Then 'loop thourgh all nodes
 mindexarray(indexcounter) = m.Index 'Fill an array with the
values on which places the treeview are checked
 indexcounter = indexcounter + 1
 End If
 Next

 For z = 0 To 1
 differencenamearray(z) = namearray(mindexarray(z))
 Next
 For i = 0 To arraylength - 1
 differencearray(i) = Abs(errorarray(i, mindexarray(0)) -
errorarray(i, mindexarray(1))) ' The error is the difference between the actual value
and the wanted value. Therefore a substraction is used.

 Next
 For j = 0 To arraylength - 1

Chart2.Series(Me.currentserieamount).Points.AddXY(Abs(errorarray(j, xaxis)),
Abs(differencearray(j))) ' Add the relevant datapoints to plot the error
graph
 Chart2.Series(Me.currentserieamount).ChartType =
DataVisualization.Charting.SeriesChartType.Line 'Make a line-style
graph instead of a bar-style
 Chart2.Series(Me.currentserieamount).LegendText = "Error Graph"
 Next
 Me.globaldifferencearray = differencearray
 Me.errorgraphpushed = True
 Me.currentserieamount = Me.currentserieamount + 1
 Else
 MsgBox("Select two nodes from the treeview.", 0, "DDT")
 End If

 ElseIf csvclicked = True And Me.errorgraphpushed = True Then
 MsgBox("The error graph is already shown.")
 Else
 MsgBox("Please select a CSV file first.", 0, "DDT")
 End If

 End Sub

 Private Sub Button2_Click(sender As Object, e As EventArgs) Handles Button2.Click
 Dim percentarrayone(CSVarray.GetLength(0))
 Dim percentarraytwo(CSVarray.GetLength(0))
 Dim errarray(CSVarray.GetLength(0))

 Page 147 of 147

 Dim lbl(3) As Label

 lbl(1) = New Label
 lbl(2) = New Label
 lbl(3) = New Label

 LegendGroup.Controls.Add(lbl(1))
 LegendGroup.Controls.Add(lbl(2))
 LegendGroup.Controls.Add(lbl(3))

 Chart2.Series.Add(0)
 Chart2.Series.Add(1)
 Chart2.Series(0).ChartType = DataVisualization.Charting.SeriesChartType.Line
 Chart2.Series(1).ChartType = DataVisualization.Charting.SeriesChartType.Line
 Chart2.ChartAreas(0).CursorX.IsUserSelectionEnabled = True
'Let the user select a region to zoom into with the mouse on the X-axis
 Chart2.ChartAreas(0).CursorY.IsUserSelectionEnabled = True
'Let the user select a region to zoom into with the mouse on the Y-axis
 'Chart2.Series(0).LegendText = "Valve Position"
'Set the legend text to the correct relevant name
 'Chart2.Series(1).LegendText = "Valve Setpoint"
 For t = 0 To CSVarray.GetLength(0) - 1
 percentarrayone(t) = (CSVarray(t, 43) * 100) / 13824
 percentarraytwo(t) = (((CSVarray(t, 19) * 2000) / 27648) - 1000) / 10
 Next

 For k = 0 To CSVarray.GetLength(0) - 1
 Chart2.Series(0).Points.AddXY(CSVarray(k, 1), percentarrayone(k))
 Chart2.Series(1).Points.AddXY(CSVarray(k, 1), percentarraytwo(k))
 Next

 For j = 0 To CSVarray.GetLength(0) - 1
 errarray(j) = Abs(percentarrayone(j) - percentarraytwo(j))
 Next

 Chart2.Series.Add(2)
 Chart2.Series(2).ChartType = DataVisualization.Charting.SeriesChartType.Line
 ' Chart2.Series(2).LegendText = "Absolute Valve Control Error"
 For i = 0 To CSVarray.GetLength(0) - 1
 Chart2.Series(2).Points.AddXY(CSVarray(i, 1), errarray(i))
 Next
 Chart2.Series(0).XValueType = ChartValueType.Time
 Chart2.Series(1).XValueType = ChartValueType.Time
 Chart2.Series(2).XValueType = ChartValueType.Time
 Chart2.ChartAreas(0).AxisX.Title = "Time [Hours:Minutes]"
 Chart2.ChartAreas(0).AxisY.Title = "Position [%]"
 Chart2.ApplyPaletteColors()
 lbl(1).Text = "Valve Position"
 lbl(1).ForeColor = Chart2.Series(0).Color
 lbl(2).Text = "Valve Setpoint"
 lbl(2).ForeColor = Chart2.Series(1).Color
 lbl(3).Text = "Absolute Valve Control Error"
 lbl(3).ForeColor = Chart2.Series(2).Color
 lbl(1).Size = New Size(400, 13)
 lbl(2).Size = New Size(400, 13)
 lbl(3).Size = New Size(400, 13)
 lbl(1).Location = New Point(6, 33) 'Give the correct location of the new label
 lbl(2).Location = New Point(6, 46) 'Give the correct location of the new label
 lbl(3).Location = New Point(6, 59) 'Give the correct location of the new label
 End Sub

End Class

