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ABSTRACT 

 
 USE OF KINECT V2 SENSOR IN UPPER EXTREMITY STROKE REHABILITATION 
 
 by 
 
 KISHAK ZAKKA CINFWAT 
 
 
About 15 million suffer from strokes annually. Strokes are caused by cardiovascular problems, leading 
to paralysis or weakness of the extremities affecting patient independence thus requiring rehabilitation. 
Recently, virtual reality and other gaming systems have been developed and tested for functional 
rehabilitation and especially home use. This study examines the suitability of the Microsoft Kinect v2 
in detecting Activities of Daily Living (ADL) within a hand function assessment procedure called the 
Southampton Hand Assessment Procedure (SHAP) using the adaptive boosting algorithm within the 
Kinect v2 SDK. Data from a group of 14 students was used. The results showed that the ADL tasks 
comprising; pouring from a carton, pouring from a jug, opening a glass jar, picking up coins, lifting a 
light tin and heavy jar across a barrier were detected with Root Mean Square confidence values below 
the minimum 0.95 recommended for deployment in an application or game. This implies further data 
would be required to train the detector for reliable detection. The use of mixed grasping strategies for 
some tasks may have affected the initial detection accuracy for the last two detectors. There is potential 
of the Kinect v2 in stroke rehabilitation and assessment.  
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CHAPTER 1 

 

RATIONALE 

This chapter introduces the causes of strokes, its global prevalence and highlights the role of 

rehabilitation as a key part of stroke management. It also examines current challenges in stroke 

rehabilitation. This leads to the research questions of the thesis project. 

 

1.1 Introduction 

According to the World Heart Federation (WHF), about 15 million people suffer from strokes annually 

with 5 million dying as a result, while 6 million end up with permanent disability globally (World 

Heart Federation 2016). The problem appears to be global, with prevalence of strokes spread across 

racial and geographic boundaries indicating a worldwide burden (Thrift et al. 2014). Although some 

researchers like Mackay et al. (2004) places Asian and black African populations as more predisposed 

to strokes, the global prevalence is significant. 

In Europe and the USA, according to Vogiatzaki & Krukowski (2016), about 3% of the entire 

public health budget is expended on dealing with the effects of strokes. This is significant, considering 

the fact that there are other health concerns affecting the society and the fact that deaths from strokes 

are on the decline implying the number of stroke patients that survive is on the increase (Hughes et al. 

2014; Thrift et al. 2014) thus, increasing the demand for specialized rehabilitation to regain full or 

partial independence.  

 

1.2 Strokes 

Strokes are caused by cessation of blood supply to the brain due to the narrowing, blockage or rupture 

of a blood vessel in the brain causing cerebral hypoxia (Waugh & Grant 2014). Sometimes, 

spontaneous intracranial haemorrhaging due to prolonged hypertension or other cardiovascular 

problems are also identified as causes of strokes (Waugh & Grant 2014).  

  Severe haemorrhaging often leads to death due to the increased Intra Cranial Pressure 

(ICP) which builds up from the lost blood within the cranium thereby damaging the brain cells further 

by exerting pressure on brain within the cranial cavity. The less severe variety, with less ICP often 

causes paralysis, loss of sensitivity, loss of speech, loss of vision and other symptoms that are often 

associated with strokes (Waugh & Grant 2014). There are also minor strokes called Transient Ischemic 
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Attacks (TIA) often caused by short cessation of blood flow to the brain but resolves within 24 hours. 

TIAs often signal a stroke or indicates a cardiovascular problem (Waugh & Grant 2014). 

The typical physical presentation of strokes includes various forms of weakness, numbness, 

stiffness and paralysis of various types, ranging from dysphagia; affecting swallowing, general 

paralysis or hemiplegia; one-sided paralysis or hemiparesis; muscle weakness of one part of the body. 

Other presentations include foot drop, incontinence, seizures or epilepsy, spasticity etc. (Stroke 2016).  

There are other emotional and cognitive issues that occur after a stroke but the emphasis of this thesis 

and most physical rehabilitation efforts are on restoring limb function, which allows for re-integration 

into society by increasing functional independence. 

 

1.3 Stroke Management 

Strong et al (2007) posit that the reduction in mortality from strokes has led to an increase in persons 

requiring rehabilitation and admittance into long term care facilities. One of the major problems with 

strokes is the disability that often affects the survivor. This disability often creates further problems due 

to the loss of independence for the survivor coupled with the loss of self esteem, productivity loss in 

the working class stroke sufferer. This category of people would require some sort of continuous or 

routine care-giving depending on the severity of the stroke and disability.  

  According to Adams Jr. (2016), the management of a stroke from the onset of an 

attack involves emergency services where the victim is taken to a hospital where the suspicion of a 

stroke is confirmed, the cause of the stroke is evaluated through advanced imaging technologies and 

then treatments which could include surgery, aimed at controlling medical and neurological 

complications of the stroke are commenced. Thereafter, treatment therapies to prevent reoccurrences 

are initiated and after patient stabilization, rehabilitation activities are commenced to restore lost 

functionality (Vogiatzaki & Krukowski 2016; Wu et al. 2012). These rehabilitation activities comprise 

of disability assessment, goal setting, intervention or rehabilitation and reassessment in a cyclic fashion 

(Langhorne et al., 2011) as shown in figure 1.1 below. 
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Figure 1.1 Stroke rehabilitation process 

1.3.1 Stroke rehabilitation 

In this report, the rehabilitation of motor capabilities is the primary interest. Stroke severity is often 

classified as mild, moderate and severe. This classification is based on the domains of neurologic 

impairment; the domains include; motor, sensory, vision, language, cognition and affect. While the 

severity of impairment is classified into 3 levels (Kelly-Hayes et al. 1998) and shown in the table 1.1 

below: 

Table 1.1 Stroke Severity classifications 

Severity of Impairment 
Level A:            Minimal or no neurological deficit due to stroke in the above domains. 
Level B:            Mild/moderate deficit due to stroke in ≥ 1 domain. 
Level C:            Severe deficit due to stroke in ≥ 1 domain. 
Source: Kelly-Hayes et al. (1998) 

 

Strokes often disrupt the performance of Activities of daily Living (ADL) and the in ability to function 

is another means of stroke severity classification (Kelly-Hayes et al 1998). All patients presenting these 

varying levels of stroke impairment benefit from rehabilitation (Teasell & Hussein 2016; Nordin et al. 

2012). 

There is a difference in the duration of rehabilitation required to achieve a significant 

restoration of motor function and this is related to the level of severity of the stroke. According to 

Teasell & Hussein (2016), prior studies indicated that the intensity of the rehabilitation routines, in 

terms of time spent in therapy, showed benefit en route function restoration.  

  The success outcomes of rehabilitation are often measured by the restoration of 

functional independence, strength, sensory discrimination, and fine motor skills (Byl et al 2008).  These 
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are the motor and sensory faculties that are affected by strokes and to achieve a restoration of the stroke 

survivor’s independence, the same must be significantly restored. 

 

1.4 Activities of Daily Living (ADL) 

According to the World Confederation for Physical Therapy (WCPT 2014, p.4) “Activities of daily 

living (ADL) — are the daily self-care activities required to function in the home and/or outdoor 

environment. They may be classified as basic or instrumental.” The basic ADL include; dressing, 

eating, mobility, toileting and hygiene while the instrumental Activities of Daily Living (IADL) 

include; shopping, housekeeping, managing finances, preparing meals and using transport (Kelly-

Hayes et al. 1998). The basic ADL are shown in figure 1.2 below. 

  The loss of motor and other functions due to strokes often affects the individual’s 

ability to carry out activities of daily living (ADL). This leads to a significant dependence on others to 

function within society and often to survive (Loue & Sajatovic 2008). The aim of rehabilitation is often 

the restoration of the capability to carry out some, if not all of these ADL thereby significantly reducing 

the level of dependence of the stroke survivor on others for survival and as emphasized by Sveen et al. 

(2004), where the self facilitated participation in leisure activities appear to be a significant indicator of 

well-being after a stroke. 

 

Figure 1.2 Basic Activities of Daily Living 

 

ADL are typical areas of concern when determining disability from strokes and even other accidents 

involving trauma to the muscle, skeleton or nervous system. Disability tests, like the Wolf Motor 

Function Tests (WMFT) are often used determine the level of impairment in stroke patients and 
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subsequent improvements from therapy can be tracked by repeated administration of the same test 

(Vogiatzaki & Krukowski 2016). Reaching and grasping impairments are often key areas of focus in 

rehabilitation because they impact significantly on self sustenance or ADL like eating, drinking, 

bathing and even movement in paraplegia.  

 

1.4.1 Reaching and grasping in ADL: 

Reaching and grasping are key motor skills required for ADL involving the upper extremity (Levin et 

al 2015). It is said that motor control is made up of gross motor and fine motor skills. The detection of 

gross motor skills is significantly easier than that of fine motor skills. The objective of functional upper 

extremity rehabilitation often focuses on the restoration of both gross and fine motor skills which are 

useful for carrying out basic ADL not strength and range of motion (Thrasher et al 2008). Kim & Kim 

(2015) also highlight the importance of the hands in ADL. 

 

  

1.5 Main Rehabilitation Approaches: 

In the past, stroke rehabilitation emphasized strengthening, regaining of flexibility and motion of 

affected limbs via physical exercises. Dobkin (2009) indicated that even certain robot assisted therapies 

only succeeded in strengthening proximal muscles without functional improvements in the upper 

extremity for ADL. However, recent approaches are goal oriented i.e. targeted at achieving an ADL 

(Hochstenbach-Waelen & Seelen 2012). Here task specific exercise routines aimed at restoring specific 

skills are performed by the patient.  

Rehabilitation motions and actions required to achieve a particular ADL are considered as 

functional rehabilitation. In rehabilitation efficacy assessment, performance of ADL is used to 

determine the effectiveness of rehabilitation therapy (Loue & Sajatovic 2008). Functional rehabilitation 

or task oriented rehabilitation approaches are sometimes augmented with functional electrical 

stimulation (FES) as reported by Freeman et al (2015) where low energy signals are applied to the limb 

being exercised in a bid to stimulate the nerves at the affected limb while the exercise routines are 

implemented. 

Conclusions drawn from rehabilitation studies indicate that repetition, intensity and task 

oriented therapy are often beneficial to the patient undergoing therapy (Standen et al. 2015; Alankus et 
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al. 2010). Also, studies have shown that a significant challenge in out-patient therapy continuation has 

been the sustenance of motivation and morale in the person undergoing rehabilitation (Hocine et al. 

2015; Standen et al. 2015). According to Alankus et al. (2010) only about 31% of stroke patients 

accurately perform recommended therapeutic routines in out-patient scenarios. Attempts at solving 

these and the personnel shortage can be achieved through the deployment of assistive technology or 

automation of the rehabilitation therapy activities. Saposnik (2015) highlighted the challenges of 

conventional stroke therapy to include: Time and labour intensive procedures, restricted availability, 

adherence defaults, overall modest benefit, high cost and inconvenient travel requirements. 

 

1.6 Technology in stroke rehabilitation 

Rehabilitation of stroke patients is usually the task of physiotherapists and other specialists. The classic 

routines of physical and occupational therapy are labour intensive and time consuming. According to 

Zhou & Hu (2008), research into human motion capture with a view to applications in rehabilitation 

has been ongoing since the 1980’s. In recent years, technological advances in pervasive computing 

have been applied to reduce the personnel requirements of rehabilitation through automation of 

processes like the use of rehabilitation robots (Loureiro et al. 2011), employing serious computer 

gaming together with other e-health paradigms to facilitate therapy and also track patient improvement 

remotely (Vogiatzaki & Krukowski 2016).  

The recent technological advances in rehabilitation, especially with assistive technologies, 

apart from reducing or eliminating personnel demand, are systems capable of eliciting morale and 

motivation in the patient. Several of such systems have been developed and tested (Hocine et al. 2015).  

The application areas of these assistive technologies span; assessment, goal setting and therapy or 

intervention and then reassessment in a cyclic process (Langhorne et al., 2011). Sometimes a cocktail 

or multiple approaches are deployed at the same time for example robot assisted movement with 

Functional Electrical Stimulation (FES). Some possible pathways are shown in figure 1.3 below: 
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Figure 1.3 Pathways from Stroke to rehabilitation using assistive technologies 

The modern rehabilitation systems are expected to be low cost when compared to out-patient therapy 

and therefore suitable for out-patient home use. The non-clinical setting application of therapy, 

according to Vogiatzaki & Krukowski (2016) is said to have facilitated quicker patient response to the 

therapy and recovery because of the familiar environment and perceived comfort of the home while the 

accuracy and frequency of execution of the prescribed routine can be monitored and recorded.  

Despite the potential of these assistive technologies, their adoption for clinical and out-patient 

use has been slow. A mix of awareness, education, cost reduction and improvement in system design 

were presented as likely approaches to improve adoption of these assistive rehabilitation technologies 

(Hughes et al. 2014). According to Zhou & Hu (2008), the development of recovery or rehabilitation 

systems, six issues need to be taken into account: cost, size, weight, function, operation, and 

automation. This makes the selection of the sensor system required for rehabilitation a non-trivial task 

given that the cost, size, weight, function, operation and automation could be severely impacted by the 

sensor choice. 

 

 

1.7 ATARGET 

This thesis is based on an internship at the University Medical Centre, Groningen (UMCG) under the 

Adaptive Trainer using Augmented Reality Gaming for Exercise Therapy (ATARGET) project. The 

research project focuses on the use of Kinect v2 for the capture of upper extremity movements, 

analysing the sensor data and coupling to an augmented reality app as part of the development of an 

exercise gaming system.  This system, when developed would aid in functional rehabilitation of stroke 
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patients, athletes and others recovering from major injuries by being deployed as a Virtual Reality (VR) 

rehabilitation game.  

A functional rehabilitation system, capable of measuring the functional movement of a patient 

undergoing, comparing against other records while facilitating the therapy would be a useful addition 

to the arsenal of clinicians involved in rehabilitation or physiotherapy which has become a significant 

healthcare requirement due to pathologies like strokes which are common in the large, global ageing 

population and in younger adults due to lifestyle choices or other unknown factors.  

 

1.8 Stakeholders 

Rehabilitation is often required for all survivors of strokes. This therapy often takes place in clinical 

settings and sometimes at home; in an out-patient setting, with familiar surroundings and surrounded 

by friends and family. Some of the immediate stakeholders involved in the project are presented in 

table 1.2 below. 

Table 1.2 Stakeholders of the ATARGET project at UMCG 

UMCG  The UMCG provides the materials for this project and is the location 
where the stroke management often commences; from patient 
stabilization to rehabilitation. 

Centre for Human Movement 
Sciences  

Responsible for studies and research activities related to human motion 
and rehabilitation. The supervisors of the project are from the research 
centre. 

Hanze University of Applied 
Sciences 

Providing academic supervision and are therefore stakeholders. The 
supervisors are expected to provide coaching and necessary support 
where needed throughout this project. The assessors for this project are 
Corina Vogt and Ronald van Elburg.  

Patients  Patients in this study comprises of individuals recovering from strokes 
and in need of upper extremity rehabilitation especially in an out-patient 
scenario. Others who could benefit from the systems could patients 
recovering from other upper extremity injuries. 

 

 

1.9 Research Question 

In the light of the ATARGET project, an attempt to explore the Kinect v2 within stroke rehabilitation, a 

research question was developed: 

How well can the Kinect v2 detect Activity of Daily Living (ADL) motions when used in an upper 

extremity rehabilitation gaming or impairment assessment environment? 

• How ADL related upper extremity movements are detected from Kinect v2 sensor data? 

• How reliable will the results be? 
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It is expected that the ability of the Kinect v2 to accurately detect the perfromance of ADL would aid in 

the automation of various aspects of rehabilitation as exercise games, functional assessment systems 

etc. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 2 
 

SITUATIONAL AND THEORETICAL ANALYSIS 

This chapter discusses the suitability of the Kinect sensors for rehabilitation systems especially 

considering the power of the Natural User Interface for health games, the power of Virtual Reality in 

rehabilitation, and the AI methods employed in systems involving the Kinect for activity detection, 

with the newest Kinect, Kinect v2 expected to enable the improved detection of both fine and gross 

motor skills. 

 

 

2.1 Health Gaming in Stroke Rehabilitation 

In recent years, significant efforts have been made to apply computer games, e-health and sensors to 

achieve less direct clinician intervention, reduce costs, sustain motivation, track progress and even 

dynamically alter the therapy using such systems (Vogiatzaki & Krukowski 2016; Freeman et al. 

2015). Laver et al. (2013) published a review of tele-rehabilitation systems which employed 

information and communication technologies to facilitate remote rehabilitation monitoring. 

Several rehabilitative gaming technologies have been applied in the past few years. These 

range from robot mediated gaming approaches (Freeman et al. 2015; Loureiro et al. 2011), Virtual 

reality based gaming systems (Standen et al. 2015), and augmented/virtual reality based games 

(Vogiatzaki & Krukowski 2016; Yeh et al. 2013) with adaptive attributes and sometimes dynamically 
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difficulty adjustment (Hocine et al 2015). 

 

 

2.1.1 Virtual reality in rehabilitation 

Games or applications considered as Virtual Reality (VR) games or applications, cover approaches to 

gaming or interaction within an artificial or surrogate 3D environment (Ojha, 1994). These games have 

been applied to rehabilitation and particularly to the rehabilitation of upper extremity conditions 

(Saposnik 2015; da Silva Cameirão et al 2011).  

Levin et al. (2015) highlighted the use of Virtual Reality (VR) for post stroke recovery from 

upper limb disabilities such as arm paresis, citing the understanding that improvements may be 

achieved through sensory-motor learning and adaptive plasticity of the brain through the repetition of a 

variety of ADL related tasks in a visually rich training environment that incorporates cognitive 

challenges and VR is one method of creating such a training environment.  

Similarly, according to several authors e.g. (Gatica-Rojas & Méndez-Rebolledo 2014; Lucca 

2009), the choice of virtual reality environment for rehabilitation relies on the understanding that the 

motor imagery of the individual performing the rehabilitation task is capable of aiding the functional 

rearrangement of the damaged motor cortex i.e. the creation of alternate pathways for information and 

signal transfer within the brain 

  A simplified VR system is made up of input processors, simulation processors and 

rendering processors which interact with a world database. The rendering processor; which is the 

output stage is capable of producing haptic and other forms of feedback as shown in figure 2.1 below. 

It is important to note that the role of the database is integral to gesture recognition which is a key 

element of any software architecture of the virtual reality system (Maleshkov & Chotrov 2013). The 

gesture database references the specific objective of the interaction within the virtual or augmented 

environment. As shown by Yang & Kim (2002), performance evaluation, motion data processing, 

performance simulation, guidance and object control rely on a database which often includes gestures 

in a human immersive game environment. 
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Figure 2.1 A possible VR training system architecture (Yang & Kim 2002) 

 

Such VR or augmented reality rehabilitation systems are interactive, capable of providing audio, visual 

and haptic feedback while measuring the level of motor impairment and recovery as the system is used.  

The possibility of varying the environment could reduce boredom and facilitate motivation within the 

rehabilitation process (Morel et al 2015). 

  The older VR systems employed gloves embedded with sensors or some visual tracking on the 

gloves like colour bands to indicate the wrist and elbows in order to facilitate tracking of the patients’ 

arms during exercise. With the advent of the Kinect with its skeletal tracking, the need for ‘cyber’ 

gloves has been eliminated for the Kinect VR rehabilitation systems e.g. SeeMe (Brontes Processing, 

2014) which offers a virtual reality gaming system based on the Kinect V1 or V2 but focuses on range 

of motion, strength, movement quality, movement awareness and proprioception which could be of 

interest to upper extremity rehabilitation in stroke patients. 

 

  

2.2 Sensors in Gaming and Rehabilitation. 

To achieve accurate patient and object tracking in these e-health rehabilitation games, several sensors 

have been developed or adapted for the capture of the desired motion data of the affected limb. This 

data is needed for rehabilitation, assessment and monitoring (Mousavi et al 2014). Typically, the 

motion capture data supplied by the sensor facilitates computation for adaptive capabilities of the 

games.  
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 Several sensor systems have been used in rehabilitation. These include accelerometers and 

gyroscopes embedded in a bracelet (Wu et al. 2014). Others like Hortal et al. (2013) discussed the use 

of electroencephalographic (EEG) electrode data to decode the movement velocity of the human upper 

limb to be applied in a future rehabilitation system. These examples show that several sensor 

technologies are being explored for their potential application in rehabilitation. 

 Camera systems for marker and marker-less motion tracking have been applied for stroke 

rehabilitation gaming and Alankus et al. (2010) describe a system employing the Nintendo Wii made 

by Sony Corporation of Japan and another system employing an ordinary web camera for use in 

rehabilitation games. Paquin (2014) also analysed a commercial Nintendo Wii based systems for fine 

motor recovery in chronic stroke in community level rehabilitation. These together with Kinect based 

systems provide an overview of the range of sensors deployed in rehabilitation and rehabilitation 

games. 

 

2.3 Natural User Interfaces (NUIs) and Motion Capture 

According to Liu (2010, p.1) Natural User Interface (NUI) “...is an emerging computer interaction 

methodology which focuses on human abilities such as touch, vision, voice, motion and higher 

cognitive functions such as expression, perception and recall” 

In order to develop an electronic exercise gaming system or rehabilitation monitoring system, 

there is need to capture human motion data (Schwarz et al. 2012). Recent advances in sensors have led 

to the use of cameras and other marker-less systems which eliminate the need for cumbersome markers 

or suits. These new systems employ sensors that are non-intrusive on the user of the gaming system 

fitting the NUI paradigm.  

One of the most common marker-less sensors in current use is the Microsoft Kinect. van 

Teijlingen et al. (2012) documented the Kinect sensor’s rise to prominence among game application 

developers, researchers and hobbyist. They also highlighted the key advantages to include lower sensor 

cost,  unobtrusiveness, robustness despite lower fidelity when compared to industry gold standards for 

motion capture and activity detection.  

 

2.4 Kinect Sensor 

The Microsoft Kinect is a motion sensing camera initially designed as an accessory to the Microsoft 
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gaming system; Xbox (Microsoft, 2015). The Kinect sensor as shown in figure 2.2 is equipped with an 

RGB camera, a depth sensing capability and a microphone array. In July, 2014 Kinect version 2 with a 

new System Development Kit (SDK) was released to the public. It boasted of significant improvements 

on the capabilities of the Kinect v1 and the existing SDKs. 

 

 

Figure 2.2 Front view of the Kinect v2 sensor. 

 

The RGB camera and depth sensors together enable full-body 3-Dimension motion capture capabilities 

through skeletal tracking and thereby facilitate gesture recognition with further processing (Chang, 

Chen & Huang 2011). Schwarz et al. (2012) refer to the depth camera in the Kinect v1 as a Time of 

Flight (ToF) camera, which were hitherto expensive pieces of equipment but useful for various 

computer vision and image processing tasks. 

 Alabbasi et al. (2015) lists the major areas of Kinect sensor applications to include; retail 

marketing, healthcare, 3D-modeling and reconstruction, education, sign language recognition, robotics, 

control and natural language interface.  

  The Kinect sensor had already been adjudged to be sufficient for field use in ergonomic 

assessment of workplaces by Dutta (2012) when compared to a Vicon motion capture system which 

was used in the study as the gold standard. The root-mean-squared errors (SD) of 3-D markers were 

0.0065 m (0.0048 m), 0.0109 m (0.0059 m), 0.0057 m (0.0042 m) in the x, y and z directions 

respectively. Similarly, Clark et al. (2012) showed the Kinect as having an acceptable validity as 

compared to a 3D camera employed as a reference motion capture device for postural assessment 

where they found the inter class correlation (ICC) difference to be 0.06 ± 0.05; range, 0.00 - 0.16. 

Zhou et al. (2014) also showed that the Kinect is capable of being used to detect postures 

under scenarios where parts of the body are occluded and because of its depth camera system which 
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based on Infrared emitted light, can work effectively under low illumination conditions.  

 

2.5.1 Skeletal tracking: Kinect v1 Vs Kinect v2 

One of the significant improvements in the Kinect v2 is the anatomically improved skeleton rendering 

compared to Kinect v1. This improves the sensor viability for clinical application and the inclusion of 

the hand tip and thumb joints which qualify the hand state of the skeleton in view. A comparison of the 

Kinect v1 and Kinect v2 rendered skeletons are shown in figure 2.3 below. 

 

Figure 2.3 Kinect v1 and Kinect v2 skeleton positions relative to the human body (Valoriani & Giorio 

2015) 

 

The Kinect v2 has several data capture advantages over the Kinect V1 and these include an 

anatomically correct skeleton and the inclusion of hand tip and thumb joints which allow for the 

detection of more fine motor actions (Valoriani  &  Giorio 2015) than was possible with the Kinect v1. 

Apparently, the development of fine motor rehabilitation systems lags behind gross motor systems. 

Loureiro et al (2011) indicate that comparatively less work has been done on fine motor rehabilitation 

devices ans systems generally. In previous studies, comparing the Kinect v1 and other industrial 

skeletal tracking systems, the Kinect performed as well as industrial grade systems for gross motor 

detection with the main weakness being the detection of fine motor activity (Galna et. al 2014).  

The Kinect v2 device improvements hold a significant promise for new and improved Kinect 

sensor applications in health, fitness, education and training, entertainment, gaming, movies, and 

communications (Alabbasi et al. 2015). The key improvements in the Kinect v2 sensor are summarized 

in table 2.1 below. 
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Table 2.1 Key improvements in Kinect version 2. 

Feature Benefits 

Improved body  
tracking 

The enhanced fidelity of the depth camera, combined with improvements in 
the software, has led to a number of body tracking developments. The latest 
sensor tracks as many as six complete skeletons (compared to two with the 
original sensor), and 25 joints per person (compared to 20 joints with the 
Kinect v1 sensor). The tracked positions are more anatomically correct and 
stable and the range of tracking is broader. 

Depth sensing 
512 x 424  
30 Hz  
FOV: 70 x 60  
One mode: .5–4.5 
meters 

With higher depth fidelity and a significantly improved noise floor, the sensor 
gives you improved 3D visualization, improved ability to see smaller objects 
and all objects more clearly, and improves the stability of body tracking. 

1080p color camera  
30 Hz (15 Hz in low 
light) 

The color camera captures full, beautiful 1080p video that can be displayed in 
the same resolution as the viewing screen, allowing for a broad range of 
powerful scenarios. In addition to improving video communications and video 
analytics applications, this provides a stable input on which to build high 
quality, interactive applications. 

New active infrared 
(IR) capabilities  
512 x 424  
30 Hz 

Sensor has nighttime view capability, the new IR capabilities produce a 
lighting-independent view—and you can now use IR and color at the same 
time. 

Wider/expanded field 
 of view 

A larger area of a scene to be captured by the camera. As a result, users can be 
closer to the camera and still in view, and the camera is effective over a larger 
total area. 

Source: Microsoft (2015) 

 

A significant number of rehabilitation systems have the Kinect sensor as part of the architecture. Some 

of the Kinect systems were for physical rehabilitation e.g. (van Diest et al. 2013; Chang, Chen & 

Huang 2011) or neurological condition assessment, not necessarily related to strokes (Galna et al. 

2014) but a significant number of studies were related to stroke conditions as presented in a review by 

Webster & Celik (2014) with over two dozen papers reviewed for Kinect based studies related to 

strokes. 

 The Kinect has been described as low cost sensor device, portable and simple to set up 

(Huang, Cheng, & Chiang 2013; Clark et al. 2012) thus, suitable for deployment in multiple 

applications within e-health paradigm. The problems of illumination change, background clutter, partial 

or full occlusion highlighted as a challenge of vision based hand gesture recognition systems 

highlighted by Zhu, Yang, & Yuan (2013) are mitigated by the Kinect sensor design. 

 

2.6 Gesture Recognition from Kinect Sensor Data 

The Kinect sensor provides depth sensing data used in developing exercise games, such applications 
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draw strength in the developments of Natural User Interface (NUI) but the successful deployment of 

such systems relies on the robustness and execution speed of gesture recognition (Miranda et al. 2012) 

i.e. the realisation of real-time gesture recognition.  

   Several methods have been explored to realize gesture, posture or activity 

recognition as the case might be. To achieve gesture recognition with execution time variability, 

specified time constraint approaches were applied. Huang et al (2013) used Dynamic Time Wrapping 

(DTW) in a Kinect based dance assessment system to align timing and length differences between 

dance sequences. 

  For the actual gesture or activity recognition, Cottone et al (2014) applied a series of machine 

learning techniques first, by clustering the obtained joint data, then classifying the data employing a 

multiclass Support Vector Machine (SVM) then each activity was modeled as a sequence of known 

postures employing Hidden Markov Models (HMM).  Earlier, Miranda (2012) had implemented a 

Kinect gesture recognition system employing a multi-class classifier Support Vector Machine and 

decision forests. 

 To achieve these results, several algorithms had to be developed and the skeletal joint data 

extracted and transformed to achieve recognition. This approach, though successful suffers from 

immediate applicability and would require advanced technical training to extract the skeletal joint data, 

develop and apply detection algorithms.  

In the Kinect v2 SDK, a combination of heuristic recognition and machine learning methods 

are used in the ‘Visual Gesture Builder’ Application Program Interface (API) for gesture detection. The 

machine learning methods are ensemble methods namely; random forests and adaptive boosting 

(adaboost). According to Hastie et al. (2005) ensemble learning is based on building a prediction model 

based on the collective ability of simpler models. This significantly reduces the skill set required to 

develop gesture recognition.  

In the Kinect v2 SDK, the ensemble methods of machine learning offered are found to be very 

useful, with adaboost determining if a gesture is being performed or not, while random forest 

determines the progress of a gesture being performed (Relyea & Marien 2013).  

 

 

2.6.1 Random Forests 
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Random forests are based on decision trees. It is also an ensemble classification method. Given a 

collection of data and from the data, some subset is randomly selected with or without replacement. 

These subsets of data are employed to create trees. These collection of trees now make the forest. The 

randomly generated trees include some error but are capable of correctly predicting some events if 

placed in a committee (Hastie et al. 2005). 

  If given a training set X = {x1, x2, x3….xn} with responses Y = {y1, y2, y3, . . ., yn}, bagging 

implies a selection M times of a random sample with replacement from the given data set and fitting 

the trees to these samples. 

For m = 1, 2, . . . , M; 

1. Sample, with replacement, n training examples from X, Y; call these Xm, Ym. 

2. Train a decision or regression tree fm on Xm, Ym. 

After using the samples for training, predictions for unseen samples e.g. x' are made by averaging the 

predictions from all the individual regression trees from equation 2.1 below. Therefore, the majority 

vote from the tree generated from the random data results in a robust prediction of the dependent 

variable. 

 

 

 

2.6.2 Adaptive Boosting (Adaboost) 

The idea behind boosting is based on the concept of ‘weak classifiers’ i.e. classifiers that are just 

slightly better than an unbiased coin toss for a two class problem with output Y as equation 2.2.  

 

 

 

The weighted majority vote from the predictions of the weak classifiers results in a powerful predictor 

(Wang & Wang 2007; Hastie et al. 2005) as represented by equation 2.3 below.  
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With α1, α2,…, αm calculated by theboosting algorithm and weighting the contribution of every 

 respectively. These weak classifiers and inaccurate rules sum up to become a highly robust 

classifier or prediction rule (Schapire 2013). The weak classfiers can be generated from neural 

networks, decision trees or any other classifiers for that matter. The adaboost is considered to be fast, 

simple to program, with versatile applications but it is also susceptible to uniform noise and could 

result in over fitting (Relyea & Marien 2013). 

 

Figure 2.4 Schematic for Adaptive boosting (Hastie et al. 2005) 

 

2.7 Features of Interest in Upper Extremity Rehabilitation 

The challenge of detecting upper extremity motions using the Kinect required the use of body stream 

data particularly the skeletal tracking. The features of interest are the joint data for the upper extremity 

from the hip upwards. These are recorded and modeled as a skeleton on the depth data captured within 

a temporal sequence. 

Specifically, the hand-tip, thumb, wrist, elbow and shoulder joints would sufficiently capture 

the gross and fine motor movements required for the performance of ADL. The Kinect v2 SDK already 

detects some inbuilt hand states like the open hand, closed hand or lasso which is represented by the 

closed hand with both the middle and index fingers pointing upward (Microsoft 2015). 
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CHAPTER 3 

CONCEPTUAL MODEL 

This chapter presents the use of the Kinect sensor as a NUI for the marker-less capture of ADL data 

that could be used for upper extremity rehabilitation. The use of the Kinect v2 in developing gesture 

detection database based on hand function tests and common hand grasp patterns are discussed. Next, 

the role of the Kinect v2 Visual Gesture Builder API to facilitate the gesture detection is presented. 

 

3.1 Kinect for Functional Rehabilitation 

There have been a significant number of studies employing the Kinect as a sensor for stroke 
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rehabilitation as reviewed by Webster &  Celik (2014). However, there appears to be a shortage of 

recent reports based on the Kinect v2 although most of the papers do not specifically state the specific 

sensor version types, date of publication of the papers prior to 2014 often ruled out the use of the most 

recent Kinect sensor. 

  The promise of the Kinect v2 appears bright due to the enhanced skeletal data available about 

the hands, particularly the thumb and tip of the fingers. These additional skeletal data points would be 

useful in detecting fine motor skills often required for ADL. A particular interest will be placed on 

reaching and grasping because they embody a significant portion of the gross and fine motor skill 

respectively and all required in achieving basic ADL. 

 

 

3.2 Functional Rehabilitation and ADL 

The goal of functional rehabilitation is the restoration of basic ADL skills (WCPT, 2014) through 

physical exercise, gaming and other assistive technologies. Rehabilitation is made possible through 

gaming and other assistive technologies by the NUI the Kinect presents, the variety and the fidelity of 

the Kinect data streams. The ability to accurately determine therapeutic but functional motion 

prescribed would be beneficial in many respects. 

  An ADL detector could serve as evaluation data for clinicians to track the progress of 

a patient and the efficacy of prescribed routines in a simple e-health rehabilitation scenario by also 

employing the microphone array and the RGB camera over a network, connecting the clinician and 

patient in real-time.  

  The ADL database could be used within the gaming frame work to develop several 

interaction and adaptation strategies which truly makes the games automatically adjust difficulty to 

facilitate motivation. 

The accurate detection of the motions commonly associated with ADL namely; reaching, 

grasping, transportation and releasing (Podobnik et al 2009; Štrbac et al. 2014; Barsotti et al. 2015), 

would be valuable for functional rehabilitation using assistive technologies. 

 

3.3 Hand Function Tests 

As discussed earlier, Langhorne et al (2011) highlighted the activities stroke management to include 
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assessment, goal setting, intervention or rehabilitation and reassessment in a continuous fashion. The 

assessments are usually carried out in the form of hand or arm function tests. For example, Paquin 

(2014) evaluated stroke patients after a sustained use commercial video gaming on fine motor recovery 

in chronic stroke the tests used to test improvement were the Jebsen Hand Function Test (JHFT), Box 

and Blocks Test (BBT), Nine Hole Peg Test (NHPT), Stroke Impact Scale (SIS). All these tests, like 

the Wolf Motor Function Test (WMFT) involve reaching, grasping and transferring activities which are 

useful in determining level of motor impairment. 

Concerning grasping, which is a key requirement for fine motor function, the common natural 

patterns include tip, tripod, power, lateral, spherical, extension etc (Light et al 2002) these grasp 

patterns as shown in Figure 3.1 below are important to the achievement of ADL. 

 

Figure 3.1 Hand grasping classification (Light et al 2002) 

Furthermore, the table below associates some ADL with their natural or common grip classification 

(Kyberd et al 2009). These highlight the importance of reaching and grasping strategies for the 

performance of ADL. 

Table 3.1 Grip classifications for some common ADL tasks 

NO. TASK NATURAL GRIP CLASSIFICATION 

1 Pick up coins Tip 

2 Undo buttons Tip/tripod 

3 Simulate food cutting Tripod/power 

4 Simulate page turning Extension 

5 Remove jar lid Spherical 
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6 Pour water from jug Lateral 

7 Pour water from carton Spherical 

8 Move empty tin Power/Spherical 

9 Move full jar Power/Spherical 

Source: Kyberd et al (2009) 

 

3.3.1 Southampton Hand assessment Procedure (SHAP) 

The Southampton Hand Assessment Procedure (SHAP) was originally designed to assess prosthetic 

arms use for ADL (SHAP Assessors Protocol, 2016). SHAP is now used to assess upper extremity 

impairment and track improvement after treatments of the upper extremity () and the kit available at the 

Centre of Human Movement Sciences, UMCG. 

  The test comprises activities involving the transfer of abstract and daily use objects of varying 

weights in a goal directed manner within a defined workspace while the task performance is self timed. 

Functional impairment is assessed based on the deviation of the time of task performance compared to 

the minimum normal task performance averages.  

 

3.4 Conceptual Model 

This model shows the use of the Kinect v2 and its associated SDK particularly the Gesture Builder 

Application Programming Interface (API). The envisaged system as shown in figure 3.1 would sense 

the motion made by the patient or user in a rehabilitation game scenario. Based on a database of desired 

manipulative gestures that can be performed within a virtual or augmented reality game, a verification 

of the real-time motion being performed matching a desired functional goal could be realised. This 

could be used then to track progress or systematically alters the next task to facilitate motivation or 

simply increments a counter to keep scores. The same approach could apply to an assessment system 

within a game or as a stand-alone VR based functional assessment system.  

 The database would be developed using the Kinect v2 data from ADL tasks performed form 

the SHAP the data would be collected, the training set tagged and fed to the adaboost algorithm for 

training, after training a different data set will be applied for analysis. Data used for analysis could be 

tagged and supplied for training while fresh data is captured for analysis. Until the desired level of 

detection is achieved. The process is illustrated in Figure 3.2 below. 

 
Kinect Motion 

Capture 

Analysis 
Data 

 

Training Data 
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Figure 3.2 Conceptual model of a Kinect v2 gesture recognition database for a rehabilitation game or 

assessment scenario. 

 

The development of a database for use within the rehabilitation game using the Kinect v2 is fairly 

straight forward. In the case of this project, the emphasis is in upper extremity rehabilitation therefore 

the manipulative or ADL gestures would be performed while seated. 

The Kinect sensor would be employed to capture the motions of the subject during an activity. A subset 

of the ADL tasks in the SHAP would be utilized to develop and test the database. The desired gestures 

would be recorded by the Kinect v2, the range of motion of interest tagged and these tagged clips built 

into the detection database using the AI algorithms within the Visual Gesture Builder. Recorded 

untagged clips would be used to test the accuracy of detection of the desired motion. If the desired level 

as are not reached, more clips are captured, tagged and added to the solution. It is expected that the 

added clips with sufficient variation would improve the accuracy of the gesture database. 
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3.4 Hypothesis 

In the light of the foregoing, the hypothesis to be tested is that, with sufficient data, the desired ADL 

represented by upper extremity data captured by the Kinect v2 would be detected reliably by the 

detector developed using the Visual Gesture Builder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 

RESEARCH DESIGN 

This chapter describes the experiments carried out to generate data used to develop and test the 

performance of the Kinect v2 gesture database for the detection of some basic ADL motions involving 

reaching and grasping with the Kinect Visual Gesture Builder (VGB). It also describes experiment 

participants, ethical considerations and also indicates what data will be assessed to determine the 

success of failure of the ADL detector.  
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4.1 System Requirements 

Microsoft recommends or requires the following computer hardware to effectively interface with the 

Kinect v2: A graphics processor ≥ DirectX 11, USB 3.0 and Windows 8 operating system and onwards. 

Table 4.1 Kinect v2 System Requirement 

S/No Hardware Specification Required Recommended 

1 Central Processing Unit (CPU) i7   

2 Random Access Memory 

 

4GB   

3 Graphics Processing Unit 

 

DirectX 11   

4 Universal Serial Bus (USB) 3.0   

5 Operating System (OS) Windows 8.0/8.1/10   

Source: Kaplan & Relyea (2013) 

 

4.2 Experimental Setup 

The proposed experiments will be based on the upper extremity actions or gestures of basic ADL i.e. 

skills which facilitate the realization of dressing, eating, mobility, toileting and hygiene as required in 

common hand function tests. 

The assessment of improvement or responsiveness to therapy is determined by the repeated 

administering any standardized function test (Langhorne et al., 2011). Some of these function test 

elements could be used within the game for rehabilitation training and therefore used to automatically 

detect improvement by recording the performance data. 

For example, picking and transferring a ball from a fixed position to another referenced 

position on a table, the subject would be required to sit on a chair facing a table with height around the 

level of the patient’s arms and elbows at 90 degrees. The ball, cup or drinking bottle will be placed on a 

table in front of the patient at a full arms length along the anterior-posterior plane at an 

anthropometrically comfortable position. To investigate if the performance of an ADL task can be 

detected reliably by the Kinect v2, the Southampton Hand Assessment Procedure (SHAP) test (SHAP 

Assessors Protocol, 2016) was used. SHAP includes a battery of tests on abstract objects and objects of 

daily use. The ADL part of the test was selected as the areas of interest. 

25 
 



 

Figure 4.1 SHAP test kit opened. 

 

An experimental protocol was developed, from the comprehensive SHAP test protocol and was used in 

the final data capture. The experiment only involved a subset of the ADL tasks from the comprehensive 

SHAP test. These include; pouring from a carton, lifting a heavy jar, pouring from a jug, picking up 

coins from a flat surface and lifting an empty tin. See Appendix A for the protocol. 

As shown in figure 4.2, a chair would be required to allow the arm and hand to be placed at 

about the same level as the table surface, where the SHAP tray containing the object of the ADL task is 

placed on.  

 

Figure 4.2 Setting for the SHAP ADL experiments 

Three repetitions of the manipulative gesture were captured with the Kinect v2, for gesture recognition 

building and offline detection testing. The sensor was placed about 1.1 m above the ground level and 

test subject, placed about 2m from the sensor to locate the subject within the operating range of the 

Kinect v2 to maximize the accuracy of the data. Tao et al (2013) had indicated that the optimal position 

for the Kinect v1 in an upper extremity evaluation or detection scenario was between 1.45m and 1.75m 
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from the user at 0.15m left or right. 

For this data capture, the tray was placed 0.1m off the edge of the 0.75m high table. This 

region corresponds to the least depth accuracy error zone (< 2mm) in the vertical and horizontal planes 

of the Kinect v2 field of view as presented by Yang et al. (2015) are depicted in the hatched green 

areas. The zones and the respective capture accuracy are depicted in Figure 4.3 below. 

 

Figure 4.3 Accuracy error distribution of Kinect v2. Yang et al (2015) 

 

4.3 Participants 

Given the relatively short duration of the study and its exploratory nature, the data desired for  use was 

to be made up of available healthy individuals aged between 18-40. 

Conscious attempts were  made to recruit participants across both genders, with a significant 

variation in morphological characteristics and age range to eliminate any bias, while enriching the 

training and testing data sets. 

 

 

4.4 Data 

The data captured involved Kinect v2 body stream clips of each of the participants performing the 

experiments which included the 6 selected ADL with 3 repetitions of each.  The clips with the most 

reliably tracked skeletons per participant would be split into two groups with a ratio of 2/3 to 1/3 as 

suggested by Relyea & Marien (2013) implying about 67% used for training while 33% used to test the 
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accuracy of the developed database for each of the selected gestures. 

 

4.5 Using Visual Gesture Builder™ 

The gesture builder allows for the application of AI or machine learning to the recognition of gesture 

problems. Without serious consideration of computing resource constraints, the gesture builder, which 

is a new part of the Kinect v2 System Development Kit (SDK) allows for the gesture detection to 

become a data driven challenge and capable of detecting a gesture start and end as a discrete task or the 

progress in between the two or more points by using tagged captured data. 

 

Figure 4.4 Visual Gesture Builder database building process 

 

Figure 4.4 shows the process of using gesture builder for the detection of gestures. It also allows for 

testing and analysis of results with the option of a live preview. For each gesture or sets of gestures to 

be detected, the motion clips of the action are recorded and placed within the desired project. 

\thereafter, each clip in the training set is tagged by selecting the start to the end of the ADL motion. 

After tagging is complete, the project is compiled to train the detector, it reports on its choice of weak 

classifiers for the training set and then the detector is now available for detection of the desired motion.  

With the testing or analysis component, data from different participants is loaded to the 

analysis heading. The clips are then analysed against the training set. The analysis automatically tags 

the test data. If the tagging is inaccurate, the test clips could be properly tagged and moved to the 

training group, compiled and re-tested.  The test clip moved to training is replaced by a new clip for 

testing. 
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Figure 4.5 Visual Gesture Builder IR and Body Data Display 

 

The VGB employs two algorithms; the adaboost for detecting discrete states in a Boolean fashion 

{True or False} and the random forest progress which is capable of detecting the progress of any 

captured motion, all these are methods of ensemble learning as discussed earlier. The overall workflow 

and the data utilization is shown in Figure 4.6. 

 

Figure 4.6 Kinect v2 visual gesture builder workflow. 

 

4.6 Detection Assessment 

The detection of the chosen ADL is based on the use of project analysis results of the VGB where the 

weighting factors of each final classifier will be recorded and finally the number of frames, the Root 

Mean Square (RMS) of the confidence values of detection will be displayed. This data would help in 

assessing the performance of machine learning algorithm (Fawcett, 2006). The closer the RMS value is 

to 1 or 100%, the better.  

  In a multiclass supervised learning scenario, involving multiple activities as done by 

Kim & Kim (2015), each activity detector or database was compared against all the activities captured 

in the study. Similarly, in this case, the emphasis is on the capability of the AI algorithms within the 
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Visual Gesture Builder to detect motor actions within an ADL function test scenario, with a restricted 

training dataset.  The result will be a multiclass confusion matrix showing the performance of each 

gesture database against all the other ADL activities captured in the entire experiment. This is based on 

a suggestion by Luger (2005) for developing multiclass SVM. This will determine the specificity of 

each gesture detector within the developed database 

A live verification of the database with the Kinect under data capture conditions will be 

carried out to determine the accuracy of the analysis results of the Visual Gesture Builder. 

 

4.7 Ethical Consideration 

As required by the UMCG, the study was approved by the local medical ethical committee (Approval 

reference: 2016.05.08_1) the study was carried out in agreement with the guidelines of the Helsinki 

protocol. Specific care was taken to ensure the consent of participants in the experiment was expressly 

obtained and documented by filling out a consent forms. The gender and age of the participants will be 

the data presented to forestall the possibility of using the data to easily identify the participant and the 

data will not be publicly presented in any person identifiable form except where permission is sought 

and granted. The consent form used is attached in Appendix B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5 
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RESEARCH RESULTS 

This chapter presents the results of the experiment carried out with the SHAP kit and the level of 

detection achieved at the preliminary stage. It presents the performance of the adaboost algorithm and 

features utilized in training the detector for each of the ADL tasks selected. 

 

5.1 Demographics 

As at the time of reporting 15 participants mainly students of Hanze University and University of 

Groningen in the Netherlands 26.5 ± 4.7 years, 10 males and 5 females participated in the experiment, 

they all signed the consent forms as required by the ethics committee of the Human movement science 

department at the UMCG. One set of data was not used in the study because part of it was lost.  

 

Figure 5.1 Age and Gender of experiment participants. 

 

 

5.2 Data Management 

The data collected was screened to ensure that the skeleton for each experiment tracked the depth 

image during ADL task completion. The data was coded and placed in different folders. Unsuitable 

samples; where the skeleton was not tracked or task execution was wrongly executed by the participant 

were clearly marked and not used for training or analysis.  

 

 

5.3 Using Visual Gesture Builder (VGB) 

The visual gesture builder API is very intuitive and requires more familiarity with simple settings 

which can be applied using the wizard. For the selected SHAP tasks, the settings of the training mask 
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were as shown in Figure 5.2. The joints from the hip to the lower extremity were ignored. Furthermore, 

during training for each gesture, the left arm joint data was ignored except for the opening a lid task 

where the task required the use of both hands, as such, the left arm was not ignored for that case as 

shown in the project settings table 5.1 below. 

 

Figure 5.2 Joint mask selection on VGB wizard 

 

Table 5.1 VGB project settings for the 6 SHAP ADL Tasks 

Name Value 
Carton 
Pour 

Jar 
lifting 

Jug 
pouring 

Open 
Lid 

Pick 
Coin 

Tin 
Lifting 

Accuracy Level 0.95       
Number of Weak Classifiers at 
Runtime 1000 

      

Filter Results TRUE       
Auto Find best Filtering Parameter TRUE       
Weight of False positives During Auto 
Find 0.5 

      

Manual Filter Params: Num of Frames 
to Filter 5 

      

Manual Filter Params: Threshold 0.001       
Duplicate and Mirror Data during 
Training TRUE 

      

% CPU for Training 95       
Use Hands Data TRUE       
Ignore Left Arm TRUE    FALSE   
Ignore Right Arm FALSE       
Ignore Lower body TRUE       
 

For each of the data clips, the gesture desired was tagged after placement in the training folder of the 
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VGB. After all the loaded clips were tagged and verified, the gesture detector was built.  

 

 

5.4 Adaboost Training and Analysis 

Microsoft development and training teams recommend the use of 66 -70% of data samples for training 

and 30 – 33% for analysis. This ratio has been applied by Štrbac & Popović (2014) and Bhattacharya et 

al (2012) to Kinect detectors or classifiers. In this case 9 participants’ data or skeleton tracked clips 

were used for training while the other 5 were used for analysis.  This corresponded to 64: 36 for 

training and analysis respectively. 

The algorithm generated a pool of classifiers based on the 38 features. Microsoft does not 

provide definitions for these 38 features (Microsoft 2015b) attempts to define them except for the 

angles which are relative positions of the 25 joints in 3-D Cartesian plane would be speculative at best. 

A column plot of the number of weak classifiers, against the features for each of the selected SHAP 

ADL tasks is presented below: 

 

 

Figure 5.3 Plot of weak classifiers pool against features for selected SHAP tasks. 
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The feature with the highest number of weak classifiers for all the tasks was the skeletal angles with all 

except one ADL task i.e. the picking up coins, exceeding 600 weak classifiers generated during 

training. Subsequently, for 9 data sets submitted for training each unique ADL detector, the top 10 

weak classifiers were produced and used by the adaboost algorithm for developing each detector. These 

top 10 weak classifiers and obtained results are presented below. 

 

5.4.1 Pouring from a milk carton 

This activity is intended to mimic the pouring of a liquid from a carton into another vessel using one 

hand. For detecting this task, the top 10 weak classifiers generated for the task are shown below 

indicating the features of interest. The angles of the hand tip, hand and  wrist of the right hand was used  

together with the muscle torque at  the neck. 

 

Table 5.2 Top 10 Weak classifiers for Pouring from the milk carton 

Features  Inferred Joint fValue Alpha 
MuscleTorqueZ( Neck ) Used ≥ 0.099997 1.34668 
Angles( Head, ShoulderRight, HandRight ) Rejected < 94.000000 1.061935 
MuscleTorqueZ( Neck ) Used ≥ 0.299997 0.640294 
Angles( HandTipRightHandRightWristRight ) Used ≥ 104.000000 0.63746 
DiffMuscleForceY( ElbowRightWristRight ) Rejected ≥ -0.200000 0.635382 
DiffPositionZ( HipRightShoulderLeft ) Used < 0.000000 0.627732 
DiffPositionY( ElbowRightSpineMid ) Used ≥ 0.000000 0.552879 
DiffPositionZ( Head ShoulderLeft ) Used < 0.000000 0.542786 
Angles( Head ShoulderRightElbowRight ) Used < 116.000000 0.470378 
MuscleTorqueZ( HandRight ) Used ≥ 0.099997 0.464355 

 

A screen capture of the VGB with training and analysis data is shown below. The training data set is 

indicated by the upper rectangle while the lower rectangle marks the test or analysis data. After 

analysing the clips presented to test the detector, the Root Mean Square Value for the confidence was 

0.90 which was significant given that 1 is the maximum but less than the 0.95 required to guarantee 

robust detection.  

34 
 



 

Figure 5.4 Screen shot of the VGB with carton pouring task training, analysis data and analysis result. 

 

 

5.4.2 Lifting jar across a barrier 

This task is aimed at assessing the ability of the subject in lifting relatively heavy object across a raised 

barrier and placed safely on the other side. The glass jar is filled with water to add to the weight of the 

otherwise empty jar. The top 10 weak classifiers for this ADL task are shown in the table below. The 

angles between the head, shoulder and right hand tip was part of the weak classifiers was used.  

 

Table 5.3 Top 10 Weak classifiers for lifting a filled jar across a barrier 

Features Inferred Joints fValue Alpha 
Angles( Head, ShoulderRight, HandTipRight) Used < 100.0000 1.042535 
MuscleTorqueZ( Neck ) Used ≥ 0.199997 0.641804 
MuscleTorqueX( ShoulderLeft ) Used ≥-1.500003 0.632365 
DiffPositionY( ElbowRight, SpineMid ) Used ≥ 0.000000 0.623027 
Angles( Head, ShoulderRight, ThumbRight ) Reject ≥ 94.000000 0.411252 
MuscleTorqueX( HipRight ) Reject < 0.099997 0.410128 
MuscleTorqueY( ShoulderRight ) Reject ≥ 0.099997 0.406564 
VelocityZ( Head ) Used < -0.000003 0.371035 
DiffPositionY( HipLeft, SpineBase ) Used < 0.000000 0.365892 
Angles( Head, ShoulderRight, HandTipRight) Reject < 112.000000 0.360691 

 

The figure below shows the screen shot with the training, analysis data and analysis result. The Root 

Mean Square Value of the confidence was 0.59 which is low and would require further training to 

improve the detector. The training, analysis and RMS results are marked in the red rectangles. 
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Figure 5.5 Screen shot of the VGB with jar lifting task training, analysis data and analysis result. 

 

 

5.4.3 Pouring from a jug 

This task is similar to the carton pouring task except that the grasping strategy for the jug differs from 

that of the carton. After training the tagged clips, the top 10 weak classifiers are shown in the table 

below. The differential position of the right hand and the tip was used while the angles of the thumb, 

hand and wrist was rejected after training at this point. 

 

Table 5.4 Top 10 Weak Classifiers for pouring from a jug 

Features Inferred Joints fValue Alpha 
MuscleTorqueZ( Neck ) Used ≥ 0.099997 1.325125 
DiffPositionX( HipRight, HandTipRight ) Used ≥ 0.000000 1.289062 
Angles( ThumbRight, HandRight, WristRight ) Rejected ≥ 96.000000 0.677088 
Angles( Head, ShoulderRight, ElbowRight ) Used < 134.000000 0.660001 
DiffPositionZ( HipLeft, SpineMid ) Used ≥ 0.000000 0.440424 
MuscleTorqueX( ShoulderRight ) Rejected < -5.000000 0.421238 
MuscleTorqueZ( ShoulderLeft ) Used < -0.000003 0.39333 
MuscleTorqueZ( HandRight ) Used ≥ 0.099997 0.378896 
DiffPositionZ( HipLeft, HipRight ) Used ≥ 0.000000 0.366383 
Angles( SpineMid, Head, ShoulderLeft ) Used < 44.000000 0.362104 

 

Like the carton pouring task, the detector had a significant Root Mean Square confidence which was 

0.83 as shown on the screen capture below alongside the location of the training and analysis data sets. 

The RMS value is significant but below the suggested 0.95 required for deployment level detectors or 
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databases. It is expected that with further data, the RMS will improve until it reaches the desired levels. 

 

Figure 5.6 Screen shot of the VGB with jug pouring task training, analysis data and analysis result 

 

 

5.4.4 Opening a jar’s lid 

This ADL task requires the use of two hands one to steady the jar, while the other hand which is being 

assessed opens the jar lid. After tagging the training data, the algorithm produced the top 10 weak 

classifiers below. In this detector the weak classifiers had significant left hand data. The only data used 

for the right hand was the wrist refinement. 

 

Table 5.5 Top 10 Weak Classifiers for opening a jar’s lid 

Feature Inferred Joint  fValue Alpha 
DiffPositionY( HandRight, SpineMid ) Rejected   ≥ 0.00000 0.857054 
DiffPositionX( HandLeft, ShoulderLeft ) Used ≥ 0.000000 0.773892 
RefinementWrist HAND: ( Right ) Used ≥ 0.010000 0.772312 
DiffPositionX( ElbowLeft, ShoulderLeft ) Used ≥ 0.000000 0.662979 
Angles( Head, ShoulderLeft, ElbowLeft ) Used < 138.000000 0.554752 
Angles( WristLeft, ElbowLeft, ShoulderLeft ) Rejected  ≥ 96.000000 0.544208 
Angles( Head, ShoulderLeft, ElbowLeft ) Used < 142.000000 0.473123 
DiffPositionY( HandLeft, HandTipLeft ) Rejected  < 0.000000 0.470146 
MuscleTorqueX( HandLeft ) Used < -0.300003 0.458506 
DiffPositionZ( Head, SpineBase ) Used ≥ 0.000000 0.440264 

 

The Root Mean Square value of the confidence for the detector as measured by the test clips was 0.76 
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which is low. The mean RMS value, location of the training and analysis data sets are shown in the 

screen capture below. Further training would be required to improve the detector. 

 

Figure 5.7 Screen shot of the VGB with Jar opening task training, analysis data and analysis result 

 

 

5.4.5 Picking up coins 

This task employs primarily the use of the fingers to retrieve four coins, 2, 2 pennies and 2, penny coins 

off the tray to an empty jar. After tagging the training data set, the training algorithm produced the top 

10 weak classifiers below.  The weak were dominated by the angles involving the hand tip, wrist 

refinement and the pre-built hand states, especially the open state. 

 

Table 5.6 Top 10 Weak Classifiers for picking up coins 

Features Inferred Joint fValue Alpha  
Angles( Head, ShoulderRight, HandTipRight) Used < 106.0000 0.786924 
Angles( SpineMid, Head, HandTipRight ) Used < 44.0000 0.572314 
VelocityZ( HandRight ) Used < -0.100003 0.559919 
RefinementWrist HAND: ( Right ) Used ≥ 0.200000 0.453572 
RefinementWrist HAND: ( Right ) Used ≥ 0.020000 0.291309 
MusclePower( HandTipRight ) Used < 0.000000 0.290396 
VelocityY( ElbowRight ) Rejected ≥ -0.000003 0.281013 
HandDifferenceMultiClass( Right, OPEN, UNKNOWN) Used < 0.480000 0.269386 
HandValueMultiClass( Right, CLOSED ) Rejected < 0.400000 0.242479 
MuscleTorqueZ( ShoulderLeft ) Used < 1.199998 0.206369 
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The figure below shows the screen shot with the training, analysis data sets and analysis result. The 

Root Mean Square Value of the confidence was 0.74 which is low for detecting the coin picking task. 

This result would require improvement by supplying further tagged and assessment data clips. 

 

Figure 5.8 Screen shot of the VGB with coin picking task training, analysis data and analysis result 

 

 

5.4.6 Lifting an empty tin across a barrier 

This ADL task, while similar to the jar lifting task primarily differs in terms of the weight of the objects 

to be moved.  After tagging and training, the top 10 weak classifiers produced are shown below. The 

hand refinement and hand state values were some of the weak classifiers used. 

 

Table 5.7 Top 10 Weak Classifiers for lifting an empty tin across a barrier 

Features Inferred Joint fValue Alpha 
DiffPositionY( WristRight, SpineMid ) Used ≥ 0.000000, 1.110713 
Angles( Head, ShoulderRight, SpineShoulder ) Used ≥ 54.000000, 0.655838 
MuscleTorqueZ( Neck ) Used ≥ 0.099997, 0.651089 
DiffPositionX( Head, HipLeft ) Used < 0.000000, 0.468952 
VelocityX( ShoulderRight ) Used ≥ -0.000003, 0.463269 
DiffPositionZ( Head, HipRight ) Used ≥ 0.000000, 0.437275 
Angles( HandRight, WristRight, ElbowRight ) Rejected < 84.000000, 0.434455 
RefinementWrist HAND: ( Right ) Used ≥ 0.100000, 0.424425 
DiffPositionY( HandRight, ElbowRight ) Rejected < 0.000000, 0.421168 
HandDifferenceRaw( Right, LASSO, CLOSED ) Used < 0.480000, 0.382012 
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The Root Mean Square value of the confidence for the detector as measured by the test clips was 0.64 

which is low. The mean RMS value, location of the training and analysis data sets are shown in the 

screen capture below. This detector would require further training to achieve significant confidence 

levels. 

 

Figure 5.9 Screen shot of the VGB with Tin Lift task training, analysis data and analysis result 

 

 

5.5 General detector comparison 

To further test the system, live previews are possible with the Gesture Viewer; a preview of the 

solution is also possible allowing the Kinect v2 to display real-time the detection of which task was 

being carried out with the developed database as a reference. The ability of the detectors to 

discriminate between the tasks would be highly valued. Based on this idea, each task detector was 

tested with other task testing or analysis clips to investigate its discriminatory ability. The results of the 

tests are presented as a confusion matrix below. 
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Figure 5.10  Multiclass confusion matrix for the selected SHAP tasks 

 

 

The matrix in figure 5.9 shows the comparison of the detectors against test data for each ADL task in 

the experiment. For a successful system, the diagonal elements of matrix ought to have had the darkest 

shades corresponding to ≥ 0.95 while the off diagonal elements lightest. This would indicate accurate 

detection of gestures and discrimination between gestures. The ideal condition will be a diagonal 

matrix with sparse of diagonal elements. 

At this iteration, only two detectors showed the necessary promise; carton pouring and jug 

pouring at 0.90 and 0.83 respectively while opening a jar and picking a coin show potential for 

improvements with subsequent training with more data. 

The performance of the jar lifting task and the tin lifting task were initially confounding but, 

on close examination, it appears there was a failure on the part of the Supervising researcher to monitor 

the lifting strategy for the tin and jar lifting task therefore, a mix of strategies were used by the test 

subjects. A number of subjects used spherical grasp instead of the recommended power grasp. For the 

other tasks with relatively good average RMS confidence values, the grasp strategies were fairly 

consistent,   
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

This chapter highlights the key results of the study carried out. It discusses the results obtained in the 

study in relation to the research questions and hypothesis presented earlier in the report. The chapter 

also presents recommendations for further work. 

 

6.1 Conclusion 

The art of supervised learning or unsupervised learning requires features extraction from the data 

collected for intelligence extraction. The Kinect v2 sensor as shown in the results Figure 5.1 indicates 

that the detector mainly relies on the angles of the skeletal data among the 38 features that are available 

for use in developing the gesture detector.  The features appear intuitive but no formal definitions are 

provided in any publicly available documentation (Microsoft 2015) attempts to define them would 

involve significant speculation. 

For each of the ADL tasks, a detector or database was developed. The general performance of 

the database was low except for the carton pouring  and the jug pouring tasks which when compared 

with the test data clips showed a RMS confidence of  0.90 and 0.83 for the tasks respectively, The next 

best RMS confidence were the jar opening and picking a coin tasks with  RMS confidence of 0.76 and 

0.74 while the least detection confidence was by the apparently the simple task of lifting a water filled 

jar and empty tin across a barrier that was the least accurately detected for the given data set at 0.59 and 
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0.64 respectively.  

These results are at a point in the data capture, training and testing iteration, it is expected that 

with further data capture, training and testing, the detection within class will improve while out of class 

detection reduces. In an activity detection scenario Kim & Kim (2015)  obtained scores ranging from  

0.85-0.96 in class detection and 0.06-0.11 between classes with many cases of outright discrimination 

resulting in a  matrix with sparse off diagonal elements employing neural networks. 

There appears to be a poor detection overall given that for product level development, it is 

recommended that confidence values for detection should be ≥ 0.95. For the given data collected, the 

detectors show promise but fail to meet the required levels. However, with further data collection and 

further training and analysis iterations, the gesture detector would improve significantly and hopefully 

approach the required ≥ 0.95. 

A close observation of the data showed that the grasping strategy for some of the tasks like the 

jar and tin lifting task were carried out with mixed strategies, some subjects used a spherical grasp 

while a lateral grasp was expected, this was observed earlier but was allowed to see how well the 

detector will handle the mixed strategy employed by the subjects. 

For the data collected, given the relatively short time of the study only 15 subjects were 

captured and only 14 subjects’ data was used. This is low given the complexity of the tasks and the 

requirement of a 66:34 split between the training and assessment data sets, it is thus improper to move 

a poorly detected test case to training as it will render the ratios unbalanced unless there is extra data 

for re-assessment. 

Another challenge is that the training mainly consisted of positively tagged data and all 

excluded or untagged was perceived as negative, this is a recommended practice, but to improve or 

modify the gesture detector, there is the option of recording a confounding gesture and tagging it as a 

negative gesture and supplied to training. 

The top 10 weak classifier data for each of the gesture detector revealed the key features 

considered by the algorithm in arriving at the detection. The idea being that the weak classifiers will be 

improved with iterations of training. This weak classifier list for a highly reliable gesture detector is 

said to be a valuable tool for investigating the features required to detect the said gesture and therefore 

available for heuristic detection within the Kinect gesture detection development framework. 

Live preview for each discrete gesture is possible i.e. at the project level while the whole set of 
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gestures could be previewed together with each detector detecting its specific gesture. This idea leads 

to the development of the confusion matrix which was developed by testing the 6 ADL trained set with 

test data for other activities to assess the gesture detector specificity. The resulting matrix confirmed 

the similarity of the pouring task using the jug and the carton, while interestingly, the poorest detectors 

at 0.59 and 0.64 for the jar and tin lifting tasks appeared to detect the pouring tasks this obviously 

indicates the unreliability of the gesture detectors at that point. 

Based on the results obtained so far, it is possible to conclude that the Kinect v2 sensor and its 

associated SDK, especially the Visual Gesture Builder has the potential for detecting ADL activities 

which can be used within rehabilitation games or assessment systems. To conclude affirmatively the 

RMS values for each detector would be above the 0.95 value for each detector to be used reliably. This 

recommended value of average RMS was not realised for any of the 6 detectors due to the shortage of 

time to acquire more data for training and analysis. 

 

6.2 Recommendations 

There needs to be more data captured  for training and testing of the gesture detectors to achieve the 

required ≥ 0.95 RMS confidence. In the case of this study, 20 subjects were initially envisaged but only 

14 person data was used.  Further data should be collected in an ongoing fashion to investigate the 

anticipated improvement of the gesture detectors without reference to the initial 20 person proposal. 

It was observed that the objects of the SHAP kit occluded the skeleton in some cases and the 

suggested the possibility of missing details of the hand tip and thumb with the Kinect v2 placed 

frontally. It would be worthwhile investigating the placement of the Kinect overhead at a 60 degree 

angle or more to offer a better view of the skeletal features interest especially if fine motor detection is 

required. There are applications where Head and Shoulder Profile (HASP) from Kinect depth images 

have been used for human traffic detection and counting (Zhu & Wong 2013). It would be possible to 

utilize skeletal data from such a view for gesture assessment as it minimizes occlusions.  

It is expected that if the gesture detection accuracy of ≥ 0.95 is achieved for all tasks, an 

automation of the SHAP could be developed given that it will be possible to count the number of 

frames within the detected gesture block, as such, the time of completion of the task can be 

successfully calculated. This feature, available in the Kinect v2 SDK would make the test automation 

possible. 
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Similarly, it would also be possible to develop a virtual SHAP test given that with the actual 

SHAP test, some items in the kit are glassware liable to be dropped by patients. The shattering of the 

glassware could cause injury and unnecessary replacement costs. These could be mitigated by a VR 

SHAP testing system based on the Kinect V2. 
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APPENDIX A 

EXPERIMENTAL PROTOCOL FOR KINECT V2 VISUAL GESTURE BUILDER GESTURE 

DATABASE IN STROKE REHABILITATION USING THE SNAP ADL TOOLKIT 

1. PURPOSE: 

This experiment is aimed at generating data used in a gesture database which will be used to determine 

the accuracy and reliability of the Visual Gesture Builder database of the Kinect v2 in stroke 

rehabilitation. 

The experiment would be based mainly on items from the Southampton Hand Assessment procedure 

(SNAP). 

2. MATERIALS:  

The materials required will include; 

a) Kinect v2 sensor 

b) Height adjustable chair 

c) Height adjustable table 

d) Southampton Hand Assessment Protocol (SHAP) testing kit. 

e) Tripod for Kinect mounting 

50 
 



f) Measuring tape 

g) Towel 

3. METHODS:  

Experimental setup:  

a) Subject posture: seated in chair encouraging an erect posture and feet flat on the floor.  

b) Height of table: variable height but at the level of the last costal rib.  

c) Distance from table:  Subjects elbow comes to the table edge.  

d) Hands: resting on the table.  

e) Kinect: Mounted on 60 cm above the height of the table and 150-200cm from subject. 

 

It is expected that 20 individuals will perform 3 repetitions of each of the selected SHAP manipulative 

Activity of Daily Living (ADL) gestures to ensure sufficient training and testing data capture. The 

whole experiment will last 10 - 15 minutes per person, including the time taken to explain the 

procedures. 

 

4. EXPERIMENTS: 

In the normal SHAP experiments, the test subject self times, however, in this study, the objective is the 

collection of the skeletal data while the manipulative action is carried out therefore the timing aspect of 

the testing will not be carried out. A self paced speed will be recommended. 

A. Pick Up Coins 

• Preparation: Arrange the two 2p and two 1p coins in the designated areas on the 

board. Place the glass jar in the designated spot for this task with the lid removed.  

• Instruction: Pick up each coin in turn by sliding the coin to the edge of the board 

using a tip or tripod grip and drop each coin into the glass jar. Move from right to 

left.  

• Repeat: Reset the task for the participant. 

B. Remove Jar Lid 

• Preparation: The lid should be placed on the empty glass jar and tightened only with 

sufficient force as would be expected for everyday use/self storage. The jar should be 

placed in the designated area on the form board. 
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• Instruction: Both hands should be used for this task. Pick up the jar using a power 

grip with the non-dominant hand, undo the lid and return both the jar and the lid to 

the designated areas on the platform. 

• Repeat: Reset the task for the participant. 

C. Pour Water From Jug 

• Preparation: Fill the glass jug with 100ml of water (100ml is marked on the jug). 

Place the jug in the designated area of the form board with the handle of the glass jug 

pointing the right for right-handed participants, and to the left for left-handed 

participants. Place the glass jar (without the lid) on the designated left area for right-

handed participants and the right for left-handed participants. 

• Instruction: Lift the glass jug by the handle using a lateral grip and pour the water 

into the glass jar.  

• Repeat: Reset the task for the participant. 

D. Pour Water From Carton 

• Preparation: Empty the glass jar from the previous task and replace the jar in the 

same position on the form board. Fill the carton with 200ml of water (measured out 

in the glass jug). Place the carton in the designated area on the form board with the 

spout of the carton pointing toward to glass jar (according to the handedness defined 

for the previous task). 

• Instruction: Pick up the carton using a power grip and show how to pour the water 

into the glass jar.  

• Repeat: Reset the task for the participant. 

E. Move A Full Jar 

• Preparation: Fill the glass jar with water to the top of the label and tighten the lid. 

Place the jar in the designated area on the form board, on the left side of the board for 

right-handed participants and the right side of the board for left-handed participants. 

Place the empty carton lengthways along the middle of the form board (without 

obstructing the timer unit) to create a barrier. 

• Instruction: Lift the jar over the carton using a power grip and place on the opposite 

side of the form board in the designated area. 
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• Repeat: Reset the task for the participant. 

F. Move An Empty Tin Can 

• Preparation: Place the empty tin (with the plastic lid on) in the same position on the 

board as defined for the jar in the previous task and keep the carton in the same 

position on the form board creating a barrier. 

• Instruction: Lift the tin over the carton using the power grip and place on the 

opposite side of the form board in the designated area. 

• Repeat: Reset the task for the participant. 

5. CONTROLS:  

In the development and testing of a Kinect Gesture Builder database, it is recommended to use 2/3 of 

the collected data for training and the 1/3 data for analysis. This grouping of data will be randomly 

done to eliminate any bias. 

 

 

 

 

6. CONTENT OF THE SNAP KIT 

QUANTITY ITEM UTILIZED 
1 Test case containing all SHAP equipment   
1 Backboard mounted in case with lock & key, door hand and zip   
1 SHAP form-board   
1 Foam insert containing all objects   
1 Timer unit   
6 Lightweight abstract objects   
6 Heavyweight abstract objects   
1 Lock and key mounted on backboard   
1 Zip mounted on backboard   
4 Coins (2 x 1p and 2 x 2p)   
1 Button board with 4 buttons attached   
1 Plasticine block   
1 Knife   
1 Note card   
1 Glass jar with lid   
1 Glass jug   
1 Cardboard juice carton   
1 Empty tin with plastic lid   
1 Door handle mounted on backboard   
1 Metal arrow unit   
1 Screwdriver   
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APPENDIX B 

CONSENT TO PARTICIPATE IN AN EXPERIMENT (DUTCH) 

TOESTEMMINGSVERKLARING 

Voordeelnameaan het wetenschappelijkonderzoek: 

Titelonderzoek:Hoebetrouwbaarkan de Kinect v2 arm- enhandbewegingenherkennen?  

Verantwoordelijkeonderzoeker:Claudine Lamoth, AlessioMurgiaenKishakCinfwat 

- Ik verklaar op een voor mij duidelijke wijze te zijn ingelicht over de aard, methode, doel en [indien 

aanwezig] de risico’s en belasting van het onderzoek. Ik ben in de gelegenheid gesteld om vragen 

over het onderzoek te stellen en mijn vragen zijn naar tevredenheid beantwoord. 

- Ik begrijp dat ik mijn deelname op ieder moment, om wat voor reden dan ook, mag en kan 

beëindigen zonder dat hieraan enige consequenties verbonden zijn. 

- Ik weet dat de gegevens en resultaten van het onderzoek alleen geanonimiseerd en vertrouwelijk 

aan derden bekend gemaakt zullen worden.  

- Ik geef toestemming dat bevoegde personen van het Centrum voor Bewegingswetenschappen 
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inzage kunnen krijgen in mijn gegevens en onderzoeksgegevens.  

- Ik geef toestemming om de gegevens te verwerken voor de doeleinden zoals beschreven in de 

informatiebrief.  

- Ik stem toe met deelname aan het onderzoek. 

Naam : 

Geboortedatum : 

Handtekening : Datum 

------------------------------------------------------------------------------------------------------------- 

In te vullen door onderzoeker: 

Ondergetekendeverklaartdat de hierbovengenoemdepersoonzowelschriftelijkalsmondeling over het 

bovenvermeldeonderzoekgeïnformeerd is. Hij/zijzalresterendevragen over het 

onderzoeknaarvermogenbeantwoorden. De deelnemerzal van eeneventuelevoortijdigebeëindiging van 

deelnameaanditonderzoekgeennadeligegevolgenondervinden. 

Naam : 

Functie : 

Handtekening : Datum 
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