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Abstract

This bachelor research consists of creating two two-dimensional light band scattering simulations
using the method of moments technique applied to the scalar wave approximation and the small
perturbation method taken from Tsang et al. (2001). The simulations are verified for wavelengths
in the far infrared ranging from 30 µm to 65 µm and are then used to simulate band scattering
from 30 µm to 210 µm which represents the SAFARI detection range (ESA, 2014). It is shown
that with the current manufacturing capabilities present within SRON, proper scattering surfaces
cannot be achieved. The test samples for the light scattering experiments are aluminum type
6061 plates and are sandblasted using various pressures, nozzle distances, exposure times, and
grain sizes. An artificial neural network (ANN) is created with the purpose of imitating the
sandblasting process. Taguchi’s orthogonal arrays scheme is used to create a training set and the
network was verified against 5 samples with different parameters. A surface profile analysis tool
is written in MATLAB which can detrend, extrapolate, and perform several hypothesis tests on
the measured profile data. The analysis of these statistics has shown that due to the variable
irregularities of the entire surface profile, extensive care must be taken when applying filters to
separate the drift component from the rough component of the measured profile. Additionally it
is investigated whether independent component analysis (ICA) can be applied in the case when
a flat test sample is processed with two different types of grains sequentially.
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Chapter 1

Rationale

SPICA (Space Infra-Red Telescope for Cosmology and Astrophysics telescope) is part of the
JAXA (Japanese space agency) (JAXA, 2003) future science program and is planned for launch
at the end of 2026. High sensitivity photometric observations in the MIR/FIR are made pos-
sible thanks to the large 3 m telescope which is actively cooled to 5 K to effectively eliminate
the non-astronomical photon noise. Figure 1.1 shows a 3D rendering of the entire observatory.
The thermal environment required by the telescope and the instruments will be maintained by a
combination of passive cooling (via dedicated solar and thermal shields combined with radiators)
and active cooling, using a number of mechanical coolers to provide base temperatures of 4.5 K
and 1.7 K (Ferlet et al., 2009).

Figure 1.1: 3D rendering of SPICA, taken from Klandermans (2013)

One of the main goals of SPICA will be to provide a multidisciplinary approach to determining
the conditions for planetary system formation. This includes the first detection of the most
relevant species and mineral components in the gas and dust of protoplanetary disks at the time
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of planet formation. SPICA will have the unique ability to observe water ice in all environments
and thus fully explore the impact of water ice on planetary formation and evolution as well as
the emergence of habitable planets (ESA, 2014).

It will also provide direct imaging and low-resolution mid-infrared spectroscopy of young giant
exoplanets (Goicoechea et al., 2009), which will allow the study of the physics and composition
of their atmospheres in a wavelength range particularly rich in spectral signatures (e.g. H20,
CH4, O3, silicate, NH3, and CO2) and to compare this to the planets in our Solar System for
the first time. The combination of these observations will provide key clues to the question of
whether our Solar System is unique in our universe.

The SAFARI instrument is an imaging Fourier Transform Spectrometer. It operates simultane-
ously in three wavelength bands to cover the 34 µm to 210 µm range over the full field of view.
Within one hour in a single field SAFARI will typically observe spectra for 5 − 7 individual
sources, thus allowing large area surveys yielding data for many thousands of objects. To reach
the extreme sensitivity needed to fully profit from the unique low background condition provided
by the SPICA satellite, SAFARI uses transition edge sensors (TES), which is a cryogenic detec-
tor that works by transitioning in and out of a superconducting state whenever it’s temperature
dependent resistance is changed, operated at 50 mK in the three detector arrays. SAFARI is
split into two major components - the optics and the detectors in the cold 4.5 K focal plane unit,
and the control and readout electronics in the SPICA service module.

SAFARI’s large instantaneous field of view combined with the sensitive TES detectors will allow
astronomers to very efficiently map large areas of the sky in the far infrared - in a square degreee
survey of a 1000 hours many thousands of faint sources will be detected. A large fraction of these
sources will be fully spectroscopically characterised by the instrument. Efficiently obtaining such
a large number of complete spectra will be help further our understanding of how planets like
those in our own solar system come into being, what is the true nature of out own Milky Way,
and how do galaxies form and evolve?

The big advantage of the SPICA mission is the mechanically cooled mirror, providing sky back-
ground limited observations and allowing the usage of orders of magnitude more sensitive detec-
tors. The characterization of such a sensitive imaging spectrometer requires the development of
a dedicated facility: the Optical Ground Support Equipment (OGSE). The purpose of the OGSE
is the verification of the optical performance of the instrument via aspects like radiometry and
image quality. In Figure 1.2 the OGSE with all its subunits is shown. The Focal plane Unit
(FPU) is mounted on the back side of the optical bench. The beam goes via the reimager to
the OGSE space. The reimager, with properties similar to the spacecraft telescope, provides an
accessible reimaged focal and pupil plane, which can be scanned. The beam can either be de-
flected via a flip mirror into a cryogenic calibration source or continues towards an XYZ scanner
system with a pinhole mask wheel back illuminated by an integrating sphere. The extreme low
background environment required by the ultra-sensitive detectors (few fW/pixel) demands the
use of cryogenic mechanisms capable of operating at a temperature of 4 K. To meet these criteria
a dedicated system has been designed.

In order to achieve these goals, extensive work has been done not only on designing and building
the detector, but on its performance verification and calibration. This is the entire purpose of
the AIV program and the motivation to design the necessary test equipment. Towards this goal,
work has been done on the overall design and fabrication of the optical test bench as shown in
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Figure 1.2: The SAFARI instrument is located underneath the optical test bench. The integrating
sphere is seen at bottom middle. The image was taken from Klandermans (2013).

Figure 1.2 (Ferlet et al., 2009). The bench contains the integrating sphere located at the bottom
center, a flip mirror designed to operate at 4 K, located top center, a light pipe which is connected
to the integrating sphere, allowing external light sources to be connected to it, a signal source
with several filters and an optical chopper is to the right of the flip mirror and to the left of the
mirror are located a pupil scanner and an optical reimager.

Figure 1.3 shows how the entire test bench will be arranged within the cryostat. The SAFARI
instrument is located underneath the bench and the cryostat itself has several inner compartments
for increased thermal isolation, as the inner temperature must be maintained at approximately
4 K. Once the test bench has been completed it will be placed within the cryostat along with the
SAFARI instrument. This will simulate the operating conditions of the instrument. This will
allow for the complete characterization and performance evaluation of the SAFARI instrument.
The absolute radiometric calibration process will involve the instrument to be illuminated uni-
formly by a light source with known characteristics. The idea on how to achieve this is by using
a black body cavity with a small opening port. The hot source has been designed to behave
like a Planck radiator with an emissivity coefficient close to 1. This coefficient indicates the
radiation of energy from a body according to the Stephan-Boltzmann law, compared with the
radiation of energy from a black body, which has a coefficient of 1. Achieving such an emissivity
is physically impossible, but under certain conditions, such as the low temperatures and vacuum
within the OGSE, it is possible to approximate such an emissivity coefficient. Unfortunately the
intensity of the source is too high for the sensitive SAFARI instrument, hence the iris, shutter,
and integrating sphere are used to dilute and equalize the light intensity. In Figure 1.4, the hot
source is represented as component number (3).
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Figure 1.3: Cut away view of the cryostat in which the test bench will be placed. The cryostat has
several inner isolation containers in order to maintain the temperature gradient of approximately
300 K external and 1.7 K internal. The image was taken from Klandermans (2013).

The light leaving the hot source, of which the power and spectral distribution are given by
Planck’s Law, is only dependent on the temperature of the grey body (90 K). The spatial distri-
bution of the Planck radiation can be represented as a Gaussian function, where the majority of
the light intensity is concentrated around the geometric center of the optical path and decreases
as it spreads towards the edges of said path. The light beam can be truncated with the use of
a mechanical iris and a shutter as shown in Figure 1.5. Despite the apparent simplicity of the
mechanical iris, it is worth mentioning that this device has been designed to operate at cryogenic
temperatures with minimum heat dissipation.

The iris is also represented in Figure 1.5 as component number 4, whereas the shutter is rep-
resented as component number 2. The iris will be used to regulate the intensity of the grey
body emission, whereas the shutter will be used to successively block and unblock the light pas-
sage, improving the signal to noise ratio during calibration. The hot source is connected to the
integrating sphere with the help of thermal breaks, indicated as component number 5 in Fig-
ure 1.4. The hot source is connected to a 4 K cooler which has a higher cooling capacity, whereas
the integrating sphere is connected to a 1.7 K cooler in order to create a very low background
noise level. The thermal breaks prevent the intense radiation to escape through the coupling
and scatter within the test chamber, resulting in increased noise levels during the calibration
procedure. The light leaving the gray body cavity is temporally incoherent which means that
diffraction effects are very weakly pronounced and occur very weakly on the edges of the physical
components and thus can effectively be ignored.
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Figure 1.4: Side cut of the calibration unit. Consists of a grey body radiator (3), the integrating
sphere (1), mechanical iris(4) and shutter (2). The two components are coupled optically tight
using thermal breaks (5) and the yellow components on the sides represent heat absorbers. The
image was taken from Klandermans (2013).

To achieve the desired attenuation geometrical dilution can be used, which has been designed to
be adjustable. Since the SAFARI instrument is a multipixel device, the entire field of view needs
to be illuminated with a homogeneous intensity (Klandermans, 2013). The intensity of the light
beam will be attenuated in a controlled manner using the iris and the baffles. The band equal-
ization will be performed by the integrating sphere, shown in Figure 1.4 as component number 1,
an instrument which distributes light in all directions equally, thus creating the necessary optical
output needed for the accurate calibration of the instrument. The main challenge is to create
an integrating sphere which can scatter the light efficiently and produce a uniform, spatially
incoherent distribution, maintain the temporal incoherence distribution, that is any point in the
output port should have the same spatial and spectral distribution of radiation, and lose as little
energy during this process as possible. The internal surface of the sphere must be roughened in
such a way as to reduce specular scattering and to maximize diffuse scattering. The difference
being that specular scattering obeys the laws of reflection and this can create fixed light paths
that do not distribute themselves in all directions. Diffuse scattering on the other hand does not
obey the standard laws of reflection but approximates a Lambertian scatter, which means that
the beam redistributes itself in all directions uniformly, if perpendicular to the scattering surface.
At different angles, the diffuse scattering is more prominent in certain directions than others. It
is well known, by those who know it well, that the Lambertian scatterer is a theoretical model,
and as such can never be achieved, only approximated. Figure 1.6 shows clearly the difference
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Figure 1.5: Mechanical iris used to control the optical intensity. The mechanical iris is actuated
using electromagnets and has an inbuilt control loop which uses a Hall sensor for feedback. This
allows for precise apertures to be set and kept constant. The image was taken from Klandermans
(2013).

between specular and diffuse scattering.

Currently there are no known integrating spheres which have been designed to work within the
SAFARI band. The chosen technique for roughening the inside of the sphere is sandblasting.
This is a meticulous process with multiple critical parameters and poorly understood theory. In
addition to this the aggressive environment which is created within the sandblasting chamber
means that automation is very costly, thus a human operator is necessary. This makes the man-
ufacturing of such devices both expensive and time consuming meaning that the trial and error
approach is not preferred. This thesis aims to provide the basic tools needed to properly design
an efficient integrating sphere. Thus the focus will not be on the integrating sphere itself, but
rather on understanding the fundamental physical and manufacturing processes and attempting
to model them. In this work the integrating sphere has been substituted with flat plates of the
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Figure 1.6: Difference between specular and diffuse scattering. It can clearly be seen that the
rougher the surface, the more diffuse the scattering. The image of c) represents what is known
as approximating a Lambertian scattering - equal intensities in all directions regardless of the
incident angle. Image was taken from Japan Association of Remote Sensing (1996).

same type of aluminum.

This leads to the main research questions:

Can the scattering surface fabrication process be analyzed and modeled using an artificial neural
network? To answer this question, first a review of the existing theory is given, from which an
approach will be undertaken. Then a surface analysis tool will be developed that will obtain
useful statistics which will be used in predicting the light scattering patterns and also to train
the neural network which will aid the future fabrication process. In addition to this a different
approach to removing low frequency components from the surface profiles will be investigated.

Can a numerical simulation which can predict the scattering of an incoherent light band from
30 µm to 65 µm from a rough surface, modeled as a correlated Gaussian random process, be cre-
ated and implemented? To answer this research question first a review of the existing theory is
given, from which an approach will be undertaken. Then two different simulations will be inves-
tigated and compared - one using the rigorous solution of the wave equation in two-dimensional
space and one which is designed to be a special case approximation.

In addition to this, an additional investigation was made whether independent component anal-
ysis can be used to analyze surfaces which have been processed twice under different conditions.
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The investigation was limited in nature and was aimed at obtaining some preliminary conclusions
when applying the theory to the case of fabricating scattering surfaces using sandblasting.

In order to answer these research questions, first, the understanding of the underlying processes
must be attained. The first to be investigated is the process of surface roughening for the creation
of scattering surfaces. While the topic of impact erosion has received a lot of attention in the
past few decades (Levkin et al., 1999; Abd-Elhady et al., 2006; Klinkov, 2005; Dang et al., 2013;
Rao and Buckley, 1984; Dubey and John, 2013; Tian et al., 2007; Doja and Singh, 2012; Ripken,
1969; Han et al., 2008), little attention has been given to trying to predict how surface roughness
changes depending on the impact conditions. Research has been done in the area of obtaining
surface profile descriptive statistics (Gascon and Salazar, 2011; Zhenrong et al., 2010), however
little progress has been made at modeling the deformation of surface profiles due to erosive pro-
cesses such as sandblasting (Khorasanizadeh, 2010; Slatineanu et al., 2011; Arokiadass et al.,
2011; Kamely et al., 2011; Tavares, 2005). The majority of research falls into two categories -
statistical analysis employing Design of Experiments and/or ANOVA (Slatineanu et al., 2011;
Kamely et al., 2011; Arokiadass et al., 2011), and deterministic analysis based on mechanical
physics (Tavares, 2005; Dubey and John, 2013; Evans et al., 2000). Creating rough surfaces with
known parameters is important for several industries such as optics (Zhou et al., 2011), adhesives
(Khorasanizadeh, 2010), and machining (Kleinedlerova et al., 2013) and so a more robust set of
predictive tools must be investigated.

The second major process which will be investigated is the light scattering. Unlike the case with
surface roughness analysis and prediction, an incredible amount of research has been done on
light scattering theory starting from the early 20th century up until the present day. A plethora
of theories based on various electromagnetic approximations have been developed and numeri-
cally validated (Tsang et al., 2001; Torrance and Sparrow, 1967; Maradudin, 2007; Harvey and
Shack, 1978; Mischenko et al., 1999; Mie, 1908; Schuerman, 1980). Due to the mathematical di-
versity of the different theories, an equally large field of numerical techniques has been developed
alongside (Jandhyala et al., 1998; Du and Liu, 2009; Burghignolin et al., 2002; Sanchez-Avila
and Sanchez-Reillo, 2002; Sun, 2006; Nakajima et al., 2009; Nasser, 2013; Ciarlet and Zou, 1999;
Garg, 2008; Ottusch et al., 1998; Hamilton et al., 1999). In this research the method of moments
(MoM) technique applied to the scalar wave approximation theory and the small perturbation
method (SPM), following the work of (Tsang et al., 2001), were tested against experimental data.

1.1 Previous Work

Currently very little work has been done in terms of analytically investigating the phenomenon of
light scattering at SRON. An attempt at creating a reliable light scattering simulation has been
made, however it was aimed at modeling the entire process within an integrating sphere using ray
tracing techniques (Klandermans, 2013) using the commercial software ZEMAX (Normanshire,
2012). In addition to this the results obtained from this simulation were not conclusive enough
and failed to predict experimental results (Klandermans, 2013). Attempts have been made at
manufacturing an integrating sphere using sandblasting, however due to the poor understanding
of the parameters influencing the process the scattering properties of the sphere were subpar to
expectations. Very little work has been performed in terms of understating the process of sand-
blasting, with only a few Dektak (Nanotech, 2009) measurements of aluminum plates which have
been processed under varying parameters (Ferrari and Panman, 2013). The effects of varying
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the air pressure, exposure time, distance, and grain size have been investigated independently,
but their combined effects were not. The measured profiles are only 2 mm long and thus do not
provide sufficient statistical information for any further analysis currently. In addition to this no
work has been done on creating a manufacturing procedure for the rough surfaces.

Figure 1.7: Example profile measurement. The surface has not been detrended. The y-axis is in
nm while the x-axis is in µm for the purpose of distinction.

Figure 1.7 shows one such profile measurement. As it can be seen, the profile is slowly varying
despite the fact that 18000 measuring points have been recorded, which means that it is not
possible to obtain accurate descriptive statistics. Despite the high resolution, there simply isn’t
enough detail to obtain a proper understanding of the surface topography.

According to numerical investigations into light scattering and early experimental work per-
formed at SRON, it has been concluded that higher roughness and specific correlation length
will result in better scattering of longer wavelengths in the micrometer range, as illustrated in
figure 1.8. And indeed it can be seen that the specular normalized intensity from 30 µm to
100 µm is less than 0.1. This can be interpreted in several ways - either the rough surface is
scattering excellently, or the absorption losses are very high, or both effects are prominent to a
certain extent. It is also worth mentioning that the intensity spikes between 10 µm and 30 µm are
due to photon noise. Absorption from rough surfaces has been addressed by Bergstrom (2008),
however his research focused on lasers. Losses have also been studied in cryogenically cooled
environments (Finger and Kerr, 2008) where the anomalous skin effect has been taken into con-
sideration. Unfortunately, such research is out of the scope of this work. Other techniques such
as spark erosion have been considered, but no experiments have been performed because the
process is difficult to scale.

The structure of this thesis is organized in the following manner. Chapter 2 will focus entirely
on the surface analysis. First the situational and theoretical analysis will be presented, showing
what progress has been made in the field. Following this, the conceptual model will be put for-
ward, in which the development of a surface analysis tool will be described in detail. Following
this, in the research design section of chapter 2, the choice of experiments and experimental
procedures will be discussed and defended. Finally, the research results will be analyzed and
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Figure 1.8: FTS6000 (Online, 2014) measurement of two samples processed with F-8 and F-12
grain sizes (Abrasives, 2013). The x- and y-axis are logarithmic.

discussed. Chapter 3 will focus on the development of the artificial neural network that will
facilitate the fabrication of scattering surfaces. The contents of this chapter are identical to
those of chapter 2 - an introduction to the topic will be given, followed by a conceptual model,
and finally the design of experiments and the corresponding results will be discussed. Chapter
4 will focus on the development and evaluation of a light band scattering tool based on the
MoM and SPM techniques from (Tsang et al., 2001). The chapter’s layout is identical to that
of the previous chapters. Chapter 5 is dedicated to performing a preliminary investigation of
whether more complicated surface profiles, such as one that has been processed twice under the
same conditions and with different sized grains, can be analyzed using ICA (Naik and Kumar,
2011). Once again, the chapter’s layout is identical to the previous chapters. In chapter 6 a
discussion will be given on the difficulties of creating a 3D simulation. Finally we will finish with
recommendations a conclusion and for future work in chapters 7 and 8, respectively.



Chapter 2

Surface Analysis

In this chapter the development of a surface analysis tool written in Matlab is presented. The
purpose for creating such a tool is to have a means of obtaining meaningful statistical informa-
tion directly from a surface profile measurement, which can be used in conjunction with the light
band scattering simulation or simply as a means to compare different fabrication techniques and
their various control parameters.

2.1 Situation and Theoretical Analysis

Sandblasting, as the name clearly suggests, is the process of blasting, or bombarding, a given
material with a continuous stream of small, hard particles. The first machines used sand, hence
the name, however with the advent of technology various other materials have become available,
the most common today being SiC. From an industrial point of view, sandblasting is useful
for cleaning up welds and preliminary polishing of malleable materials such as metals. Lately
sandblasting has been applied to the optics industry (Zhou et al., 2011) as a fast and cheap way
of creating surfaces with certain optical properties, improving the performance of LED screens.
In addition to this the process has been used in the study of adhesive strengths of steel pipe
coatings (Khorasanizadeh, 2010). Research like this is generally used to improve the design of
adhesive coatings allowing a wide diversification based on the different particle flow conditions
encountered in various pipes. In geology the process of sandblasting has also been recognized as
an important process in dust production and climate modeling (C. et al., 1998). And although
the process is fairly primitive, very little work has been done in terms of modeling it properly. A
further added complexity of using this process is the difficulty of automating it. The aggressive
environment created within the sandblasting chamber makes the employment of automation a
somewhat daunting task due to the environmental complexity. This means that either a static
fixture must be used, such as the one used in (Patel, 2011; Rao and Buckley, 1984), or a human
operator must control the process. The involvement of a human operator leads to the introduc-
tion of noise into the experiments, as maintaining the same distance and orientation while moving
one‘s hand at a steady rate over the entirety of the sample without trembling is highly unlikely.
Even if such mastering of one‘s hands is possible there is also the problem of the variance of
grain sizes. Currently the Federation of European Producers of Abrasives (FEPA)(Abrasives,
2013) classifies grain sizes according to a mean diameter. This suggests that the flux of particles
leaving the nozzle is fluctuating and as such can be considered as another source of noise. An-
other source of noise which must be considered is the velocity variations caused by the carrying
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medium. In certain circumstances the carrying medium is water, however during this research
an air operated sandblasting machine was used. When buffer tanks are added to dampen the
pressure oscillations the variance does decrease, however it does not disappear completely. For
certain engineering practices this is of little concern, however for the sake of completeness these
sources of noise deserve to be mentioned.

To this day a lot of research has been conducted in attempting to model and understand the
process of erosion of metals, especially in pipeline systems. Despite the numerous investigations,
very little attention has been given to fundamentally understanding how changing the roughness
of a metal changes it‘s behavior within a system. The changes in roughness are most frequently
simply described statistically and little discussion is given as to the mechanisms that form them
(Foldyna et al., 2013; Vigolo et al., 2013; Doja and Singh, 2012; Miyoshi et al., 2004). This
clearly indicates that the process of surface deformation and roughening is a very complex one.
It is, however, puzzling that very little attempts have been made at applying any sort of math-
ematical analysis. The most common approach has been to apply standard statistical analysis
tools directly to the problem, with the results often being considered as special cases related to
the specific problem at hand and not a general treatment. The problem can be reduced to two
sub-problems which have both been partially addressed, yet no bridging between them has been
made. This is mostly due to the nature of the two problems - the first one being of a purely
mechanical nature, describing the collision mechanics, whereas the second one being of a mostly
statistical nature, describing the distribution of impact material. In terms of modeling the colli-
sion mechanics, the first attempt was made by Issac Newton when he observed that regardless of
the speed a projectile is going at, if it collides with a surface that has the same density, then it
will only travel approximately one body length before it stops (Young and Laboratories, 1967).
The theory has then been expanded upon resulting in the Hertzian theory of non-adhesive elas-
tic contact, the Johnson-Kendall-Roberts model of elastic contact, the Maugis-Dugdale model of
elastic contact, the Bradley model of rigid contact, and Derjaguin-Muller-Toporov model of elas-
tic contact being some of the most prominent ones (Johnson, 1987). The problem of analyzing
the distribution of impact has been addressed by the work of Sidorchuk et al. (2004). The lack
of bridging between these two fields is the lack of a mechanism which would predict the behavior
of the surface material when being struck more than once. In addition to the analytical models,
FEM simulations have been used to study shapes which diverge from the assumptions used to
derive the above mentioned models (Negrea and Predoi, 2012).

2.2 Conceptual Model

Analysis of Dektak profile measurements is made difficult due to the necessity to separate the
drift component from the ”rough” one. The drift component is the slow varying drift found in
most direct measurements and could be due to a systematic error within the measuring device,
such as tilts and other offsets within the measuring system, or due to the sample imperfections.
The physical interpretation of removing the drift component means that the surface will not be
able to scatter very long wavelengths, but will reflect them. In the case of the drift component
being linear, the detrending process simply aligns the surface profile with a given axis on interest.
There are several standards which can be followed (Tavares, 2005), however there is one flaw in
adopting them. They represent a set of filters used to eliminate the low frequency components
present within the sample, however they are based on the assumption that the low frequency
component remains the same for the entire sample. However as one might imagine, when cutting
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any material, tensions form along the surface, with their distribution rarely being uniform. Such
tensions will always arise even if the cut was perfectly parallel to the surface. This was especially
true for the aluminum samples used in these experiments. Their thickness was approximately
3 mm, which meant that even before the sandblasting experiments were carried on them, there
would be a low frequency drift component. In addition to this, due to the clamping system
used within the sandblasting chamber, there would be additional torsion from the air pressure
as well. The final result is a very complicated profile for which there is no guarantee that it can
be predicted by the filtering standard. In order to confirm this reasoning several statistical tests
were incorporated into the analysis tool. It is worth noting that the only results from the surface
analysis tool which are being used by the scattering simulation are the standard deviation, the
correlation length, and the Laplace diversity. The rest of the analysis is used to confirm that the
earlier mentioned parameters are accurate, and to give an overall insight into the surface profile.
The results of these tests will be addressed further in this chapter. The flowchart of the surface
analysis tool is shown in figure 2.1.

Thus a different approach was used to detrend the surface measurements. Originally the use of
an extended Kalman filter was considered and implemented, however the problem of adjusting
the filter accordingly remained. Interestingly enough, the area of surface analysis shares very
little theory with the field of time series analysis, yet it is noticeable that there are similarities.
In their work, Koopman et al. (1999) have developed a free to use software written in C which is
capable of performing filtering and smoothing. An example application of the software package
can be found at the end of Chapter 6 in Durbin and Koopman (2012), which has several fasci-
nating chapters on filtering and smoothing.

The detrending technique which was adopted for the surface analysis tool was to simply fit a
2nd order polynomial onto the data. The difference between the original measurement and the
fitted polynomial represents the ”rough” profile, with the drift component being suppressed at
a certain number of lags. This approach can clearly be improved following the work of Durbin
and Koopman (2012) on smoothing and filtering. The main goal was to utilize a tool which is
self adjusting and not user dependent. Thus, when the processed sample is measured several
times at different locations, the same filter can be applied directly. And it has been shown that
measured profiles taken at different locations within the sample can have very different drift
frequencies. This choice reduces the risk of losing surface information due to improper use of
the filters set by the standards. The use of a 2nd order polynomial is somewhat arbitrary as the
choice was to simply reduce the fitting capability of a polynomial as much as possible without
creating a straight line. This approach causes the stationarity tests to reject stationarity at the
first couple of lags, however the polynomial manages to detrend the surface successfully within
100 lags. This is one definite flaw in the current design, however the errors from this approach
have been analyzed and addressed.

Following the detrending, the rough profile’s partial autocorrelation is evaluated for 100 lags.
Together with the normalized autocorrelation function developed by Bergstrom (2008) it serves
as an optical indicator to determine whether the detrending is good or bad, as an autoregres-
sive (AR) model is created from the detrended data and extrapolated for 5 million data points.
Should the AR model be unstable, several parameters will indicate this. The partial autocorre-
lation function also serves as an indicator for the appropriate number of lags that are necessary
for the creation of the AR model.

The next stage of the analysis is the creation of an AR model with 10 lags applying the Burg
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Figure 2.1: Flowchart of the surface analysis tool

method (Kay, 1999). The Yule-Walker equations were also investigated, however the predicted
surfaces had a noticeable high frequency component, which was not present in the original data.
For this reason the Burg method was chosen. The number of lags present in the AR model were
also arbitrarily chosen based on the observation that all surfaces could be accurately modeled
with 8 parameters at most. In the case when the data series can be modeled with less than 10
coefficients, their values are simply set to very low values.

A simple time series analysis is also included in the form of differencing on the data and it was
observed that there is a truncated Laplacian noise component. The rationale behind this state-
ment is that differencing can loosely be considered as the limit case of a 1st order continuous-time
RC high-pass filter as α approaches 0, which translates to the filter having a very high cut off
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frequency. The information obtained by this analysis showed that the surface generation models
used by Bergstrom (2008) and Tsang et al. (2001) could be improved upon slightly.

Following the creation of the AR model, histograms of the detrended data series, the AR extrap-
olated series, and the differenced series are computed. This information provides a quick visual
inspection as to what distribution the data might have. When the data series is small analyz-
ing a histogram is useless, however should large data series be analyzed, this tool becomes useful.

The normalized autocorrelation function (ACF) (Bergstrom, 2008) is computed for both the
detrended series and AR model. The ACF is an indicator of error of the detrending process.
Should the detrending be poor, the ACF function will have a noticeable low frequency sinu-
soidal component. Additionally the ACF can be used to investigate the presence of noise. The
most famous example is the analysis of the Brusselator, a theoretical model of an autocatalytic
chemical reaction (Gaspard, 2002), with an ACF when the model is subjected to noise. As the
noise increases, the ACF converges towards 0 faster, which is the equivalent of observing a noisy
frequency spectrum.

In addition to all the visual statistics, the Kwiatkowski−Phillips−Schmidt−Shin (KPSS), aug-
mented Dickey−Fuller (ADF), Kolmogorov−Smirnov (KS), and Jarque−Bera (JB) tests have
been included (Freedman et al., 2007). They provide a more trustworthy analysis of the de-
trended series than simply relying on visual inspections. The KPSS tests for stationarity by
performing a regression to find the ordinary least squares fit between the data and the null
model. The results of this test are also a measure of how successful the detrending technique
has been given several measurements of the same sample. The KPSS test employed in Matlab
uses tabulated data to evaluate the critical values and the p-values. The KPSS test is evaluated
from 10 to 100 lags with a step of 10 lags. This provides a more detailed assessment of the
detrending performance. The KPSS test plays an important role in demonstrating the varying
drift frequencies present within a single sample.

The ADF test determines whether the given data series have a unit root or not. This test is
used in conjunction with the KPSS test for robustness. The ADF test is set to 100 lags in order
to avoid the correlation introduced by the size of the grain. In addition to the test rejection
decision the p-value and test statistic is also evaluated.

The KS test is used to test whether the data series follows a standard normal distribution. It
works by comparing the empirical, or test, empirical cumulative distribution function with a
reference one, which can by of any kind as long as it can be computed. The implementation
of this test has given strange results, as it produced results which were conflicting other tests.
Additionally to the KS test, the JB test is also performed which also agrees with the KS test.

2.3 Research Design

The sandblasting experiments were performed inside a Skat Blast 310 machine with a large
tungsten nozzle. A sample holder was constructed which would hold 3 samples at a time. Two
types of samples were processed. A 10 × 10 × 0.3 cm type and a 3 × 6 × 0.3 cm type, which
will be referred to as type 1 and type 2, respectively. The type 1 samples were used for the
band scattering measurements, whereas the type 2 samples were used for the modeling of the
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sandblasting process. The SiC grain types were F-8, F-12, and F-16 with mean diameters of
2460 µm, 1765 µm, and 1230 µm, respectively.

The orthogonal array experimental design proposed by Taguchi can be used to provide insight
into the influence of various parameters on a system’s performance in a reduced set of experi-
ments. Once the parameters affecting a process that can be controlled have been determined, the
levels at which these parameters should be varied must be determined. In an optimum situation,
determining the resolution of a variable to test requires a proper understanding of the system’s
capability and performance. In the case of fabricating scattering surfaces using sandblasting
the only thing that was known were the maximum and minimum values each control parameter
could take. In addition to this, each parameter can differ in terms of what is a maximum and a
minimum, thus one is presented with the choice of either keeping the same parameter resolution
or to restrict all parameters to a fixed number of experiments. Often it is easier to go for the
latter choice, as was done in the current case. Also, the cost of conducting experiments must be
considered when determining the number of levels of a parameter to include in the experimental
design. Knowing the number of parameters and the number of levels, the proper orthogonal
array can be selected (Fraley et al., 2007).

The control parameters of the sandblasting machine were air pressure, nozzle distance from the
target, exposure time, and grain size. It was chosen to have a resolution of 4 levels per vari-
able, except for the grain sizes which were restricted to only 3. This would result in a total of
192 experiments which would take too much time and resources to process properly. Instead,
Taguchi’s orthogonal arrays were applied to reduce the number of experiments to 16, a more
modest number. Such a size reduction is not without consequences, of course. This number is
the bare minimum necessary to map evenly the entire system at the desired levels. The reduction
of experiments also translates to a reduction of available information, a consequence which has
also been addressed. The experimental arrangement is of a L′16 array and is shown in table 2.1.

Experiment Pressure (bar) Distance (cm) Time (s) Size (F-number)
1 3 4 60 F-16
2 3 5 90 F-12
3 3 6 120 F-8
4 3 7 150 F-16
5 4 4 90 F-8
6 4 5 60 F-8
7 4 6 150 F-16
8 4 7 120 F-12
9 5 4 120 F-16
10 5 5 150 F-8
11 5 6 60 F-12
12 5 7 90 F-16
13 6 4 150 F-12
14 6 5 120 F-16
15 6 6 90 F-12
16 6 7 60 F-8

Table 2.1: Taguchi’s orthogonal array scheme for the type 1 sandblasting experiments
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There were 3 samples per experiment in order to investigate the difficulties of distributing the
particle jet evenly. One major problem that was encountered during the process of experimen-
tation was that the F-8 particles were too large for the nozzle. Unfortunately no larger nozzle
could be obtained that would fit the Skat Blast 310’s pressure hose. For this constant mechanical
agitation, in the form of kicks and hits, had to be applied during the processing of experiments 3,
5, 6, 10, and 16. This is an experimental flaw which could not be circumnavigated and so these
experiments were repeated several times until an optically even roughness was achieved, which
was similar in appearance to that of the rest of the samples. Since there were only 3 types of
grains, the missing elements of the orthogonal array were randomly filled with one of the existing
grain types (Fraley et al., 2007).

The type 1 samples were used both for the band scattering measurements and for the evaluation of
the ANN. They were processed using random parameters which were still within the established
boundaries of the L′16 array, except for experiments 4 and 5 which would have much lower
processing times in order to test whether the ANN could accurately extrapolate their parameters.
Their control parameters are as follows

Experiment Pressure (bar) Distance (cm) Time (s) Size (F-number)
1 4.5 5 75 F-16
2 3.8 7 110 F-16
3 5.2 6 125 F-12
4 5 5 20 F-12
5 4 4.5 40 F-12

Table 2.2: Control parameters of the type 2 sandblasting experiments

The F-8 grain size was not used on the type 1 samples due to the difficulty of maintaining a
constant jet of particles over a larger surface area. The statistical analysis of such samples would
be erroneous and such surfaces could not be modeled within the scattering simulations, and as
such they were rejected. In addition to this two mixed grain experiments were performed in
which type 2 samples were sandblasted with two different grain sizes consecutively. The control
parameters were kept constant for each, decreasing the difficulty for the ICA analysis tool.

The experimental procedure was to keep the nozzle perpendicular to the surfaces while quickly
moving it over them. As it was known that there would be air pressure variations, the fast
distribution of the particle jet would ensure that the errors would be evenly distributed over
the entire surface and not clustered in specific areas. After 3 experiments the grains would be
replaced by new ones in order to mitigate the effects of reducing the grain’s mean diameter and
the sandblasting machine was carefully cleaned whenever a different grain size would be used in
order to avoid contamination.

The sources of noise in this set of experiments are many. The biggest one being the human
operator which performed the experiments. The control parameters were monitored by eye and
as such it is expected that the error is not insignificant. This is also the main argument for
selecting ANNs for mapping the control. Their associative and robust memory allows for noisy
inputs to be predicted accurately, but they still require low noise training sets. Unfortunately
this is currently the only way surface roughening can be performed at SRON.

The profiles were measured at the Faculty of Mathematics and Natural Sciences, University
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of Groningen. They were measured at 4 different locations using the same instrument settings
and stylus. The Dektak software did include detrending options, however the inner workings of
these options were unknown and as such were ignored.

The choice of the 4 measuring locations were chosen to be as equally spaced as possible. Two
measurements were taken along the length of the sample and the other two were taken along
the width of the sample. In such a way it would be possible to measure the surface roughness
ergodicity. The directions were measured in pairs for statistical significance, should there be a
large difference between any two measurements. The Dektak profilometer unit is located in a
clean room and no photos were taken of it.

2.4 Research Results

We begin the surface analysis by presenting the surface results for experiment 1 from the type
2 samples. The rest of the results will be summarized in tables for compactness. As it can
be seen from figure 2.2, the quadratic polynomial manages to fit the apparent drift component
easily. The resultant detrended surface is then determined by subtracting the raw profile with
the evaluated polynomial. It can bee seen that there is no apparent sinusoidal behavior, so by
first glance the detrending looks successful. The normalized ACF function, the KPSS, and ADF
tests will confirm this as well. Some surface profiles have more complicated drift components
than this one, however the quadratic polynomial is still more than capable of removing it.
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(a) Raw profile with the detrending polynomial evaluated using the least squares measure, shown in
green

(b) Detrended profile, optical inspection shows no apparent sinusoidal components. ACF is a better
measure of periodicity

Figure 2.2: Example of proper fabrication and detrending

The difference between the two profiles is uncanny, yet they represent two measurements at dif-
ferent locations within the same sample. This is a clear demonstration of how easily a mistake
can be done when creating deterministic filters. If the filter was adjusted to remove the drift
component of figure 2.2 it would fail to remove the one in 2.4, however if the filter was trained
on the second profile, it would overfilter the first profile.

This is also a clear indication of faulty processing. In this case, experiment 10 was done using
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(a) An example of a manufacturing irregularity

(b) The surface profile is uneven, a clear indication of faulty processing

Figure 2.3: Example of defective fabrication

grain size F-8. Next we consider the partial and normalized ACF of the profile in figure 2.2

The most noticeable difference between the partial and the normalized ACFs is that the partial
ACF decays much faster than the normalized one. This suggests that an AR model can be
created, which will not diverge. The normalized ACF is decaying which means that the noise
structure is predominant, does not seem to have long periodic oscillations which is a visual confir-
mation of a successful detrending. The somewhat periodic components with different amplitudes
are a direct result of the high measured resolution. These measurements contain 36000 data
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(a) Partial ACF, computed for 100 lags

(b) Normalized ACF, evaluated over the entire measured length

Figure 2.4: Comparison between partial and full ACFs

points over a surface profile length of 3 cm. For an F-8 grain type, with an average diameter
of 2460 µm, and given the geometry of the grain, it becomes less of a surprise that such large
correlations exist.

Next we explore the creation of an AR model based on the detrended data. The model can be
used to extrapolate surface statistics, confirming the hypothesis that the surface profiles follow
a Gaussian distribution.
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Figure 2.5: AR model evolved for 5 million data points, following the same resolution as the
measured profile

The first thing to notice in figure 2.5 is the stability. The AR model does not diverge even after
5 million data points, which was to be expected. Subsequent analysis of this extrapolation can
predict the complete distribution shape of the data, which in all cases was found to be Gaussian.

Next we consider three histograms - of the detrended profile, the AR model, and the differenced
detrended profile. As discussed earlier, differencing can be broadly considered as a discretized
first order passive high pass filter, who’s control parameter α approaches 0. Thus, differencing
gives us the highest present frequencies. For compactness the plot of the difference is omitted,
as we are only interested in the difference’s distribution.

There have been several investigations into light scattering from micro cracks (Germer, 2001),
however from a numerical and programming standpoint it is easier to work with perfectly smooth
Gaussian surface profiles. The choice can be justified if one considers the necessary surface reso-
lution involved in the simulations arguing that if such effects were included the memory require-
ments and computation time would become too big, however this is clearly unrealistic. Despite
this, the simulations remain accurate to measured data (Tsang et al., 2001; Bergstrom, 2008). In
both of these cases, the type of sensing is called active sensing, which has more relaxed accuracy
criteria. In the field of passive sensing the accuracy restrictions are as high as up to 1%. In
these cases it is definitely worthwhile to investigate in the development of more accurate surface
models. Currently the most common surfaces being used are Gaussian, ocean spectrum, and
fractal (Tsang et al., 2001), however the Gaussian case is physically impossible, as there is no
such thing as a smooth surface in a manufacturing process.
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(a) Detrended profile histogram which shows an indeterminate distribution

(b) Extrapolated profile histogram showing a Gaussian distribution

(c) Detrended profile difference histogram showing a truncated Laplacian

Figure 2.6: The induced most likely original signals
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The detrended profile appears to have a somewhat Gaussian resemblance, however once the AR
model extrapolation is evaluated the Gaussian distribution becomes much more apparent, of
course if the AR model is evolved for two orders of magnitude less points, the distribution would
resemble that of the detrended profile. Thus it appears reasonable to assume that sandblasting
produces a Gaussian random rough surface. Of course the limit case would be to process the
sample with much harder grains at much higher pressures. Then the distribution will might
become a truncated Gaussian. Naturally, not all measurements had such apparent Gaussian
distributions. However all the AR models did converge to a Gaussian distribution with different
standard deviations, as expected.

The bottom histogram is that of the differenced detrended profile. It closely resembles a trun-
cated Laplacian distribution. Several conclusions can be drawn from this observation. The most
obvious one is that this distribution has a much larger population than the Gaussian one, as
the probability distribution function’s (PDF) shape is better defined. The second conclusion is
that this is most likely the distribution of micro cracks along the surface, due to the fact that
the PDF is truncated on the positive side. The physical interpretation is that a micro crack, or
micro crater, is more likely to have a deeper center than the height of the edges.

Next we investigate the final visual analysis. The results from this test are intriguing because the
KS and JB tests both reject their null hypotheses, yet the current visual test shows otherwise.
As it can be seen in the upper half of figure 2.7, the empirical, which in this case is the measured,
cumulative distributive funtion (CDF) and the CDF of a standard normal distribution overlap
very well. This could be explained by the fact that the detrended profile is highly correlated.
The KS and JB tests fail to reject their null hypotheses when a every 100th data point is skipped,
however it was considered tampering too much with the data at hand.

Finally we consider the results of the KPSS, ADF, KS, and JB tests for the current surface
profile. The KPSS test is evaluated for every 10 lags starting from 10 and stopping at 100. It
provides a measure of how well the surface profile has been detrended. The null hypothesis is
that the process is trend stationary, which means that there is a definite trend, even around
the 0, that is being followed. The alternative is that the process is difference stationary, which
means that there are no trends whatsoever present, meaning that the series in unstable. For the
measurement that has been analyzed above the KPSS test’s decision is that between 10 and 50
lags the process can be considered to have a unit-root, that is the null hypothesis is rejected.
Above these lags the test fails to reject the null hypothesis, which means that the surface profile
is most probably trend-stationary. This is a direct measure of how successful the detrending has
been. When evaluating the surface statistics taken at a location from a sample, in one of the
cases the KPSS test reports that at all lags the process can be considered to have a unit-root,
while a different location on the same sample would be considered trend-stationary within 20
lags . This confirms the previous statements about the difficulties present when designing filters
that should detrend a surface. The confidence interval was set to 95% for all lags.

As an example, the KPSS test hypothesis decisions for type 2 sample 2 are shown in table 2.3
where it can clearly be seen that the entire y1 measurement has been considered a unit-root
process. The contrast between the other measurements, especially between y1 and y2 is indica-
tive of the complex nature of the drift component. However the ADF tests does reject the null
hypothesis of a unit-root for the case of y1. This is an example of why it is important to never
rely on a single measure.
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Figure 2.7: AR model evolved for 5 million data points, following the same resolution as the
measured profile

Lags x1 x2 y1 y2
10 1 1 1 1
20 1 1 1 1
30 1 1 1 1
40 0 0 1 1
50 0 0 1 0
60 0 0 1 0
70 0 0 1 0
80 0 0 1 0
90 0 0 1 0
100 0 0 1 0

Table 2.3: KPSS test decisions for sample 2 measured at 4 different locations. 1 represents a
unit-root process, whereas 0 represents a trend-stationary process.

The ADF test also had a confidence interval of 95% and was evaluated for 100 lags only. For
every single profile measurement the test rejected the null hypothesis of a unit root. The p-value
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and the critical value were found to be 0.00100 and −3.41230, respectively.

The KS test completely rejects the null hypothesis of the profile data having a standard normal
distribution, even though the profile data was z-scored, with a p-value of 0. The Jarque-Bera
test also rejects the null hypothesis of observing something close to a normal distribution, with a
p-value of 0.001. However, when the sample size is reduced by skipping every 100th sample point,
both tests fail to reject the null hypothesis of having data from a normal distribution (standard
in the case of the KS test). However in these cases failure to reject the null is not a proof that
the null is even approximately true at the population level. This is because with small samples
these tests have low power. As the sample size grows both tests begin to reject the data, and
they should, unless it has a perfect and exact normal distribution. And so, even if the histogram
of the AR model or the normality plots of the detrended data or the AR model show nearly
perfect similarity to a normal distribution, the fact that there are so many data points causes
the two tests to completely reject the null hypothesis.

In order to investigate this claim a simple investigation was performed - a correlated Gaussian
surface profile was generated using the same resolution for 10 million data points. This profile
was also analyzed as a regular surface profile and despite the nearly perfect visual inspections,
the KS and JB tests once again rejected the null hypothesis. For the sake of completeness, a set
of 10 million normally distributed random numbers analyzed as well, and this time the KS and
JB tests did not reject the null hypothesis.
The same analysis has been performed for every measurement which results in a total of 64
analysis being done. The analysis tool saves all the test information into a designated folder,
thus making the analysis of all the information easier.



Chapter 3

Manufacturing Control Procedure

This chapter deals with the development of a manufacturing control procedure using an artificial
neural network (ANN). It has been shown that ANNs are very potent tools for predicting surface
roughness parameters in machining (Suresh et al., 2002; Ozel and Karpat, 2004; Benardos and
Vosniakos, 2003), however currently they have not been applied to the process of sandblasting.
The rationale is to try and introduce some form of control when scattering surfaces are being
fabricated. To help achieve this an ANN is employed which has been trained using Taguchi’s
orthogonal arrays scheme. The benefit of this training choice was that it significantly reduced
the number of necessary experiments, which is also it’s main drawback. The ANN will serve in
aiding the human operator who will perform the fabrication by suggesting which parameters will
yield good results. The research design is related entirely to that of chapter 2, and in order to
avoid repetition, has been omitted from this chapter.

3.1 Situational and Theoretical Analysis

Neural networks work on the principle of establishing connections between core elements, anal-
ogous to the neuron, which operate in unison, all dependent on each other. Such networks,
despite their apparent simplicity, can be trained to perform a given task or tasks, depending on
the design. Commonly neural networks are trained so that a particular input leads to a specific
target output. The most common type of learning is called the supervised learning in which the
connection weights are adjusted so that an input signal produces a specific output, with minimal
error. Another popular training technique is called batch training, which proceeds by presenting
the network with an entire set of input parameters and output targets. The sets are then ran-
domly broken several times into two subsets, one serving for training and one serving for testing.
The batch process is iterated several times until the error between the output targets and the
network‘s predictions is minimal relative to the previous iterations. Incremental training is pop-
ular in areas where data logging is unfavorable. Such networks improve over time as more and
more data is passed through them. This type of training is referred as either ”adaptive” or ”on
line”. Several types of training functions have been developed which all serve as a means to asses
the error between the network’s output and the target output. These algorithms then adjust
the corresponding weights within the network in an attempt to minimize said error (Wilde, 2010).

The elegance and simplicity of the neural network can be demonstrated immediately. The first
part of figure 3.1 represents a single neuron with an input vector x with three elements (x1,
x2, x3), a weight matrix w with three elements (w1, w2, w3), a summing operator, and a
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Figure 3.1: An example of a single neuron and a complete neural network. Details have been
omitted for the sake of generality

transfer function f. Different transfer functions are used depending on the design of the network.
Thus, the operation of the neuron can be represented in the following manner, with the vector
multiplication representation being more compact. Should the output be a vector and not a
scalar, then it is preferable to use vector notations.

y = f

(
N∑
i=1

xiwi + boutput

)
(3.1)

Where N is the size of the input vector x. It should also be noted that sometimes the transfer
function f and the bias are omitted in diagrams in favor of aesthetics. Such is the case with the
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complete network in figure 3.1.

Thus, for a complete neural network with five input neurons, three neurons in the hidden layer
and a single output neuron, the complete equation can easily be written down in the following
manner:

y = f (g (x ·Whidden + bhidden) ·Woutput + boutput) (3.2)

With the proper choice of transfer functions and network topology, the neural network can ac-
complish incredible tasks. However the true power of these systems lies in the fact that they
posses associative memory. This allows them to still evoke a proper response, even when the
input signal is noisy or incomplete. The mathematical analysis of neural networks is still a
growing field in linear algebra. The author of (Wilde, 2010) gives a wonderful summary of the
possibilities and limits of various neural networks.

The origin of the attempts to model an artificially neural network (ANN) can be traced back to
1943 when a paper authored by neurophysiologist Warren McCulloch and mathematician Walter
Pitts tried to model the working mechanism of a neuron. Later on the concept was further devel-
oped by Donald Hebb who reasoned that neural pathways are strengthened each time they are
used. The further development of computers throughout the mid 20th century allowed prominent
scientists such as Nils Aall Barricelli, Bernard Widrow, Marcian Hoff, Teuvo Kohonen, and James
Anderson to further develop the concept. Despite this interest was lost temporarily into the field
up until the early 1980s, when John Hopfield demonstrated that ANNs with bidirectional connec-
tions are more powerful than the original architectures. This has allowed neural networks to be
applied to various problems ranging from voice recognition to control of robotic actuators. When
properly applied and trained ANNs can be used as estimators to multidimensional functions for
which analytic derivation is either unfeasible, impractical, or simply impossible (Mehrotra et al.,
1996).

Their strength, however, lies in the ability to recognize and classify patterns. As they are modeled
around mimicking the human mind, it becomes clear that ANNs are unsuitable for performing
numerical calculations, as neither are we. Despite this, with proper design and training ANNs
have found an application in predicting surface roughness in end milling and wire electrical dis-
charge machining (Esme et al., 2009; Colak et al., 2007; Ozel and Karpat, 2004). The results from
these investigations have shown that ANNs are more flexible and more capable than the current
empirical and semi-empirical models used in these areas. They are fast and easily implemented
into environments which are generally considered difficult to study in detail (Rashid and Lani,
2010; Ali and Dhar, 2010; Aguiar et al., 2008; Suresh et al., 2002). For an in depth review of the
current applications of neural networks to the field of roughness prediction the reader is directed
towards Benardos and Vosniakos (2003).

3.2 Conceptual Model

The design of the ANN was aimed towards creating a universal function approximator which is a
combination of a tan-sigmoid transfer function in the hidden layer and a linear transfer function
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in the output layer. Such a network would then be trained to represent the forward dynamics
of the plant. The opposite is impossible to achieve, as a NN should not have more outputs than
inputs. The prediction error between the plant output, which in this case is the sandblasting
machine, and the NN output is used as a training signal.

Figure 3.2: Example neural network used as a plant controller. u represents the control inputs,
yp represents the analyzed fabricated samples, and ym represents the network’s output. Image
recreated from Demuth and Beale (2002)

The neural network used previous inputs and outputs to predict future ones. Such a network can
be trained offline in batch mode with data collected from the analysis of the fabricated scattering
surfaces. As for the choice of a training algorithm, the most straight forward procedure when
working with the Matlab package is to simply use trial and error until satisfactory performance
is achieved. Of course, in more complex environments such an approach can be avoided, however
given the fact that the plant’s transfer function is unknown it is not possible to make an proper
investigation.

The ”early stopping” (Demuth and Beale, 2002) method for improving generalization is then
used. It reduces the chance of the network overfitting the data. The available data set is divided
into three subsets. The first subset is the training set, which is used for computing the gradient
and updating the network’s weights and biases. The second subset is the validation set. The
error on the validation set is monitored during the training process. The validation error will
decrease during the initial epochs alongside the training set error. When the network begins to
overfit the data, the error on the validation set should begin to rise. When this happens the
training stops and the weights and biases at the minimum of the validation error are returned.
The test set error is not used during the training. If the error in the test set reaches a minimum
at a significantly different iteration number than the validation set error, this may indicate poor
division of the data set.
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3.3 Research Results

The network was trained using the type 2 data and was tested on the type 1 data. The results are
shown in table 3.1. The network can predict the standard deviation to a reasonable accuracy,
however the correlation lengths are not well predicted. However, given that the network was
trained with only 16 data points, it’s performance is acceptable because no negative values are
present and all the results are of the same magnitude.

The neural network consists of 4 input neurons, 7 hidden layer neurons, and 2 output neurons.
The hidden neurons use the tan-sigmoid transfer function, whereas the output layer neurons use
a linear transfer function. Their number was determined by trial and error. Using above 7 neu-
rons resulted in much more frequent cases of overtraining, whereas a smaller number of neurons
resulted in poor training with predictions frequently becoming negative or far out of range. The
training algorithm for this case was chosen to be a training function that updates weight and
bias values according to conjugate gradient backpropagation with Polak-Ribire updates.

Experiment 1 2 3 4 5
Test τtest 9.2641 9.9587 10.7641 7.6112 7.8335

σtest 2.5809 2.6048 1.9280 2.0207 2.1765
Prediction τsim 7.3302 7.5180 5.8673 6.4748 6.4377

σsim 2.3272 1.7831 2.1750 4.0406 3.6911

Table 3.1: All values are multiplied by 100000 for clearer representation

The network’s weights and biases are shown in table 3.2.

Biases Hidden Output
1 2.45932 -0.30151
2 -1.49661 0.75354
3 -0.89924
4 0.11674
5 0.67269
6 1.40575
7 2.24648

Table 3.2: Neuron biases numbered in a top to bottom manner

And the hidden weights are show in table 3.3.

And the input layer weights are shown in table 3.4.

The regression analysis of the network shows that it is possible to fit a linear regression between
the inputs and the outputs of the network and that the regression is good, however the lack of
training data skews the possible accuracy.

In addition to this it can be seen in figure 3.4 that the network was trained in a very small number
of epochs, however the validation error and the test error reach a minimum with a difference of
1 epoch, which is an indication that the division of the data set is good. Once again, this is due
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Hidden Weights Output 1 Output 2
1 0.62986 0.15210
2 0.22319 0.57093
3 -0.05585 0.66485
4 1.01412 -0.42893
5 0.010812 -0.96382
6 -0.33328 -0.22910
7 -0.30337 -0.49489

Table 3.3: Hidden Weights numbered in a top to bottom manner

Input Weights Input 1 Input 2 Input 3 Input 4
1 -1.20634 0.92534 -0.28261 -1.38521
2 1.41377 -1.1470 0.77326 1.14442
3 1.53212 0.68046 -0.84186 -1.15178
4 1.12194 0.22545 0.04902 1.95192
5 0.75917 0.25323 1.55404 -1.43515
6 0.53262 1.01630 0.441112 2.01404
7 1.16680 -1.91867 0.15895 0.427061

Table 3.4: Input Weights numbered in a top to bottom manner

Figure 3.3: The regression analysis shows that the input-output relationship can be linearly fit,
however there simply is not enough data

to the lack of enough training data.

As it can be seen from table 3.1, experiments 1 trough 3 are in agreement with the measured
data. Clearly, given the small training set, one cannot expect to see an identical mapping, how-
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Figure 3.4: The network’s performance suggests that the data set has been properly divided
which suggests that there should be little overfitting

ever no negative signs are present and the values are reasonably close. In addition it can be seen
that estimating the standard deviation is much easier than estimating the correlation length of
a given sample. One possible way to interpret this is to consider the way in which the standard
deviation and the correlation length are calculated. From the work of Bergstrom (2008) it is
seen that estimating the correlation length is a more complex mathematical procedure, whereas
the standard deviation is more or less straightforward. A number of small investigations were
made into this, in which surfaces with specific standard deviations and correlation lengths would
be generated and their correlation lengths and standard deviations would be measured using the
techniques of Bergstrom (2008). It was found that the error between the generated and predicted
standard deviations was much smaller than that of the correlation lengths.

In addition to this it can be seen that experiments 4 and 5 have much larger estimation errors
in comparison with the other experiments. This is to be expected, as these two experiments
were performed using parameters that lie outside the maximum and minimum of those found in
the training set. It is worth noting however, that multiple reevaluations of the network using
the same number of hidden neurons and ratios, led to results which were occasionally much
worse than those presented in this section. Thus it can be concluded that convergence is not
always guaranteed when using such a small training set. Finally it is worth noting that the
network will not be able to predict results which require parameter selection that lies outside of
the established maximum and minimum parameters. This means that if the current fabricated
samples are incapable of scattering light in the vicinity of 210 µm, then the ANN cannot be used
to predict surfaces which will be capable of scattering in that range.
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Chapter 4

Light Band Scattering Simulation

This chapter is dedicated to the development of two light band scattering simulations based on
the works of Bergstrom (2008); Tsang et al. (2001). The overall approach to computing the scat-
tered field from a rough perfect electric conductor for a given band can be summarised as follows.
First, a wave function which obeys the Helmholtz equation is created. Following this, an open
form solution to this equation is found and the appropriate boundary conditions are chosen, in
this case being the Dirichlet boundary conditions which represent the transverse electric case for
the electromagnetic scattering problem. With the appropriate boundary condition chosen, the
wave equation is converted into matrix form following the method of moments (MoM) technique.
The scattered field is then calculated by using Huygen’s princile and the numerical solution of
the surface fields. Finally, the scattered field is expressed in terms of the bistatic scattering co-
efficient. Although changes have been made to the equations, so that they can represent a band
instead of a single wavelength, they are minor in nature and do not alter the approach taken
by Tsang et al. (2001). The second simulation relies on the small perturbation method (SPM)
and has been presented without derivation. The same modification has been made to the SPM
simulation to make it capable of simulating the scattering of entire bands of light.

4.1 Situational and Theoretical Analysis

The other major area of theoretical research which will be performed is of simulating and under-
standing how light scattering occurs. Several approaches have been briefly investigated, namely
the works of (Oren and Nayar, 1996; Schroder et al., 2011; Ticconi et al., 2011; Harvey and
Shack, 1978; Du and Liu, 2009). The problem of light scattering from a rough surface can be
formulated in various ways starting from geometric ray tracing technique to stochastic models
in combination with physical optics. The main difficulty in modeling this phenomena is that
because of the complex geometry of the surface there are no analytic solutions to the governing
equations . This means that numerical techniques must be employed extensively to approximate
a solution (Hangartner, 2002). The task is further complicated by possible singularities which
can occur during the evaluation of some of the functions as part of the numerical techniques.
The avoidance of possible singularities is a field in applied mathematics which has also received
substantial attention as numerical computation for simulations became more widely used (Knock-
aert, 1991; Nachamkin, 1990; Lee et al., 1980). Given the mathematical complexity of the field
the author has been reluctant to cite equations directly out of context for the sake of clarity.
Instead, references have been provided so that the curious reader can investigate the topics in

42



CHAPTER 4. LIGHT BAND SCATTERING SIMULATION 43

full detail.

More complicated systems such as integrating spheres have been analyzed broadly as well
(Crowther, 1996), or systems which use Gaussian beams. The case of Gaussian beam scatter-
ing (Gordon and Heyman, 2004) is a very interesting process for the development of waveguides,
where the manipulation of beam patterns is vital to the performance of the optical system. Other
works have focused on numerically investigating the curious process of backscattering in which
light is reflected back towards the emitter at certain angles of incidence. The process is closely
related to the specific surface roughness. It is a process which has numerous applications in fields
such as astronomy. Understanding and controlling backscattering is crucial in waveguide design,
as standing waves can degrade the quality of the signal (Soto-Crespo and Nieto-Vesperinas, 1988).

In (Oren and Nayar, 1996) an extensive reflectance model has been developed that relies on a
geometric optics approximation which demonstrates that for certain rough surface geometries the
Lambertian model is highly inaccurate. Despite this, the geometric optics approach is generally
considered to be limited to certain geometries too, as it fails to take effects into consideration
such as cross polarizations or the physical dimension of the wavelength. This is why the re-
flectance model does not account for wavelengths nor for the electromagnetic properties of the
surface from which scattering occurs. The ray tracing approach is generally favored because of
its simplicity as it avoids using higher level mathematics. A drawback of this approach is its
limited domain of accurate applicability and the overall amount of the mathematics involved
to take into consideration all the special cases such as shadowing and double angle reflections.
The ray tracing techniques are compromise between mathematics and implementation - proper
mathematical treatment of the theory at hand allows for more efficient and compact codes to be
created, whereas simplifications to the theory at hand, such as the ray tracing, result in more
complex codes from a programming standpoint (Bergstrom, 2008). In (Nordam et al., 2013) a
two dimensional simulation is created based on the numerical solution of the Reduced Rayleigh
Equation. Their work manages to include effects such as s- and p-polarization from a two dimen-
sional metallic or dielectric rough random surface. They conclude that while within the validity
of the Rayleigh hypothesis. This hypothesis has been criticized several times over the past cen-
tury for lack of rigor and unrealistic assumptions (Wauer and Rother, 2009). Perhaps the most
interesting optical theory is the attempt to create a matrix formulation for light scattering. This
approach is known as Mueller calculus, after an MIT physics professor who developed the idea
in 1943, which uses matrix algebra and calculus to manipulate the Stokes vectors. The theory
deals with unpolarized and partially polarized light and this makes her suitable for tackling the
phenomenon of light scattering (Letnes et al., 2012).

In (Schroder et al., 2011) the classical Rayleigh-Rice vector perturbation theory and the Gener-
alized Harvey-Shack (GHS) theory are both assessed and compared. The Rayleigh-Rice vector
perturbation theory relies on several far field approximations and limiting cases such as meet-
ing the Rayleigh smooth surface criterion (Pinel et al., 2010) which help simplify the governing
equations, whereas the Harvey-Shack theory tries to determine the transfer function of the sur-
face when light is considered an input. The Generalized Harvey-Shack theory (Krywonos et al.,
2006) is an improvement to the original theory of James Harvey (Harvey and Shack, 1978) which
was developed during the late 1970s. The advantage of the GHS theory is that it allows the
prediction of diffusely reflected light under any angle. Unfortunately the theory suffers in terms
of computational inefficiency as it requires the evaluation of multiple, depending on the resolu-
tion one desires, Fourier transforms. Even with algorithms such as the Fast Fourier Transform
(FFT), significant time can be lost. The key assumption made in the theory is that the rough
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surface would be perfectly Gaussian, which is one of the most general distributions encountered
in roughness analysis. It has been shown that the theory has a wider domain of validity with
respect to the Kirchoff approximation and the SPM. The main difference between the GHS the-
ory and the MoM technique is that the latter provides a rigorous solution to the wave equations,
whereas the former is only an approximate method (Choi and Harvey, 2013).

In (Ticconi et al., 2011) the reader can find an excellent summary of the various theories, both
empirical and analytical, of light scattering. In this paper several of the widely used parameters,
such as the Bidirectional Reflectance Distribution Function (BRDF), are derived and explained in
detail. The advantages and disadvantages of all theories are discussed and summarized. In (Kry-
wonos et al., 2006) the author provides another excellent discussion on the ranges of applicability
of several semi-empirical light scattering theories and describes their domains of application. It
is shown that due to the incredible complexity of the phenomenon of light scattering, empirical
and semi-empirical approaches have very limited domains of application and that only rigorous
solution of the wave equations are capable of describing the process in more detail. Finally,
in (Du and Liu, 2009) the authors present a very innovative analysis of the process at hand.
The authors have developed the scattering theory for various random surfaces by means of a
stochastic functional approach combined with a group-theoretic consideration, which was origi-
nally introduced by one of the author in the theory of propagation in random media.

The method of moments is a very flexible computational method. It can be used to solve
differential equations, integral equations, and integro-differential equations. One of the main
advantages of this technique lies in its variational nature of the solution, which implies that even
if the unknown function is modeled to first order accuracy, the solution is accurate to the second
order. The technique involves a reformulation of Maxwell’s equations because it makes use of
the Green’s function and Helmholtz’s equation in the case of light scattering. This allows for
open region problems such as radiation and scattering to be solved in an efficient manner. Unlike
in other computational methods, the device domain is not discretized, and only the unknown
function is discretized in the MoM approach. As a result, this method does not suffer from
numerical dispersion and the matrix sizes are smaller. The main limitation in utilizing this
technique is that the resulting matrix equations are notoriously singular. For one- and two-
dimensional problems the singularities can be avoided, however higher dimensions are noticeably
more difficult to efficiently avoid. (Garg, 2008). In summary, the MoM can be explained as
follows. A general linear, inhomogenous equation may be described in operator form as

L(u) = b (4.1)

where L is a linear operator and represents the system. The function b is known and represents
the excitation of the system and the function u represents the system’s response to a given in-
put. The unknown function u is expanded as a series of known functions which have unknown
amplitudes. The amplitudes are determined by a set of test functions w.

The first step in the process is to choose a set of linearly independent basis functions within the
domain of L, and express the unknown function u in the form of a series as shown

u =
∑
n

cnun (4.2)
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where the constants cn are unknown and are to be determined. The numerical performance of
the simulation is dependent on the choice of proper basis functions and a poor choice can lead
to a divergent solution and a waste of everybody’s time. For an exact solution, the summation
should be converted to an integral, which is computationally impossible. In addition to this it
is assumed that a proper inner product has been defined for the problem. After this the set of
already chosen test functions and the inner product between the test function and the discretized
operator and the excitation functions are computed. This results in the following equation

∑
m

∑
n

cn 〈wm, L(un)〉 =
∑
m

〈wm, b〉 (4.3)

The above equation can be written in matrix form as

Lc = b (4.4)

Should the operator matrix L be well behaved and have low conditionality, the solution can be
readily obtained. In most practical application this matrix is notoriously singular.

There are two main options for the choice of test functions - Galerkin’s method and point match-
ing. Both approaches compliment each other and depend on the problem at hand. Choosing
Dirac delta functions as basis functions avoids the necessity to compute the inner product, which
significantly reduces computational time and coding complexity. Of course, one has to make sure
that the operator equation is not too badly violated that the solution becomes unreliable. The
accuracy of the solution improves as the number of match points is increased. Galerkin’s method
makes the basis functions also the test functions. This simplifies the task of choosing proper test
functions, which makes this a popular method (Garg, 2008).

4.2 Conceptual Model

4.2.1 Method of Moments

We begin by modeling the tapered incident wave and combining it with a Planck distribution
in order to simulate the power distribution of a light band emitted by a black body. In reality
the calibration source of SAFARI is not a black body, however it can be approximated as one.
The necessity to taper an incident wave is so that the surface current is driven to zero at the
edges of the simulated surface. Should there be an abrupt change in the surface currents, ar-
tificial reflection will occur. In their book on numerical simulations, Tsang et al. (2001) have
chosen to model a Gaussian tapering window. This is convenient because the pinhole pupil of
the black body radiator in figure 1.4 generates the same light pattern. The function describing
such behavior has been slightly modified to account for the wavelength dependent normalized
power Eλ which follows a normalized, discretized Planck distribution. Since electric fields satisfy
the superposition principle, the simulation‘s results can be superimposed for a band of different
wavelengths, obeying the normalized Planck distribution

Eλ = 2hc2λ−5
(

e
hc

λ kB T − 1
)−1

(4.5)
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Where c is the speed of light in vacuum, h is Plank’s constant, and kB is Boltzmann’s con-
stant, λ is the wavelength of interest, and T is the absolute temperature. The consequent wave
representation is given as

Ψinc (r, Eλ) = Eλe
jk

(
x sin(θinc)−z cos(θinc)(1+w(r))− (x+z tan(θinc))

2

g2

)
(4.6)

where g is the tapering parameter. The additional factor in the phase, w(r) is inserted so that
Ψinc (r, Eλ) obeys the wave equation to to a second derivative.

w (r) =

(
2

(x+ z tan (θinc))
2

g2
− 1

)
k−2g−2 (cos (θinc))

−2
(4.7)

The next step is to create a surface model which is representative of the surfaces produced by
sandblasting. Originally the surface generating technique from Bergstrom (2008) was used, how-
ever detailed analysis of processed samples showed that there still is room for improvement, albeit
with negligible gain. The results from these small improvements will be discussed in Chapter 5.

A one-dimensional random rough surface can be represented as z = ζ(x), is described by a
height probability distribution and an autocovariance function (ACF). The height probability
distribution describes the height variations from a given reference, generally taken to be 0,
whereas the ACF describes the variance of the heights laterally. This way it is possible to create
surfaces which appear very smooth, yet still follow a certain distribution. The most common
height distribution is chosen to be Gaussian, however depending on the process at hand different
distributions can be used. For the purpose of this study it was assumed that the rough surface
behaves like a Gaussian. This also makes the analysis of a surface easier, as one can only work
with estimates of the correlation length and the standard deviation. The ACF function can
follow any distribution, but the most commonly occurring ones in surface analysis have been
found to be Gaussian and exponential. Bergstrom (2008) has chosen to use a Gaussian ACF

C (τ) = 〈ζ (x1 ) ζ (x2 )〉 = σ2e−
(|x1−x2 |)

2

τ (4.8)

Where σ is the height standard deviation and τ is the correlation length and x1 and x2 are
two consecutive surface points. Should the height distribution function and the ACF both be
Gaussian, it has been shown in the work of Bergstrom (2008) that the root mean square (RMS)
slope is

√
2σ/τ .

The developed algorithm works in the following manner. We create a vector, or sequence, of
random numbers Z = [x1, x2, . . ., xn]

T ∼ σN(0, 1). The discrete Fourier transform of Z is flat
over the entire frequency range and if Z were continuous the frequency range would span from
negative infinity to positive infinity. The amplitudes of each frequency are normally distributed
around the mean, 0 in this case, however every frequency is equally likely to occur. Thus, Z
is completely uncorrelated and every element is independent of the previous one. This can be
changed by introducing a windowing function, which in this case is the ACF, and convolute it with
Z. The Fourier transform simplifies this task, following the convolution theorem, by transforming
the process into a multiplicative one. The result is a band limited normal distribution, where
some frequencies are more likely to occur than others, which introduces the desired correlation.
Once the product has been computed, the inverse Fourier transform is taken, which converts
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the spatial frequency into temporal frequency. Finally, a scaling constant is given such that
the statistical representation remains unchanged. Such constants can be evaluated analytically
depending on the type of probability distribution and windowing function. While this method
produces surfaces that agree well with measurements, time series analysis has shown the presence
of a truncated Laplacian distribution, which has been interpreted as micro cracks in the metal.
Thus, the modified surface model is shown as

f (x) =

√
2L

Nτ
F−1 (F (C(τ, x)) F (Z(x))) + εx (4.9)

where εx ∼ Laplace(µ, b), where µ is the mean and b is commonly referred to the diversity and
for the case of a centered Laplace distribution is given simply by

b =

∑N
x=1 |x|
N

(4.10)

and the expected value is equal to 0 for all

E (εx|e1 , e2 , . . . eN ) = 0

It is worth noting that the modified surface generator does not truncate the Laplace distribution
for simplicity.
This numerical method is based on the formulation of integral equations for the Dirichlet prob-
lem and converting them into matrix equations using the MoM technique. Consider an incident
wave Ψinc (r, Eλ) impinging upon a random rough surface with a height profile z = f (x). In
two-dimensional scattering problems r = xx̂+ zẑ and the wavefunction Ψ (r, Eλ) is given by:

Ψ (r, Eλ) = Ψinc (r, Eλ) + Ψs (r, Eλ) (4.11)

where Ψs (r, Eλ) is the scattered wave distribution, where r denotes the field coordinates and r′

denotes the source coordinates. The wavefunction obeys the Helmholtz equation:

(
∇2 + k2

)
(Ψ) = 0 (4.12)

The two-dimensional Green’s function obeys the equation

(
∇2 + k2

)
g (r, r′) = −δ (r − r′) (4.13)

and

g (r, r′) =
j

4
H

(1)
0 (k |r − r′|) (4.14)

Let the spaces above and bellow the rough surface be denoted by region 0 (V0) and region 1 (V1).
By applying the Green’s theorem the following equation is obtained
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∫∫
V0

Ψ (r, Eλ)∇2g (r, r′)− g (r, r′)∇2Ψ (r, Eλ) dr =

−
∫
S

n̂ · (Ψ (r, Eλ)∇g (r, r′)− g (r, r′)∇Ψ (r, Eλ)) ds

+

∫
S∞

n̂ · (Ψ (r, Eλ)∇g (r, r′)− g (r, r′)∇Ψ (r, Eλ)) ds (4.15)

where S∞ is the surface at infinity. Using 4.12 and 4.13 in the left hand side of 4.15, we have

∫∫
V0

Ψ (r, Eλ)
(
−k2g (r, r′)− δ (r − r′)

)
+ g (r, r′) k2Ψ (r) dr = −

∫∫
V0

δ (r − r′) Ψ (r, Eλ) dr(4.16)

To evaluate 4.16, it is necessary to define where r′ is. It is possible for r′ to be above or bellow
the surface. It can also be infinitesimally close to the boundary. Depending on which region r′

is infinitesimally close to, it can be defined as r′+ for region 0 and r′− for region 1. Also

−
∫∫

V0

δ (r − r′) Ψ (r, Eλ) dr =

{
−Ψ (r′, Eλ) if r′ ∈ V0
0 if r′ ∈ V1

(4.17)

The surface integral at infinity in 4.15 provides the solution for the incident wave. Thus

Ψinc (r′, Eλ) +

∫
S

n̂ · (Ψ (r, Eλ)∇g (r, r′)− g (r, r′)∇Ψ (r, Eλ)) ds =

{
Ψ (r′, Eλ) if r′ ∈ V0
0 if r′ ∈ V1

(4.18)

The 0 in 4.18 corresponds to the extinction theorem. The resulting expression is interesting
because r is on the surface S, while r′ can be either in region V0 or V1. There are two ways in
which 4.18 can be solved, both requiring different assumptions and leading to different interpre-
tations. The first solution arises when the Dirichlet boundary condition is enforced, whereas the
second solution is the result of enforcing the Neumann boundary condition. The first solution is
interpreted as the transverse electric (TE) case of electromagnetic scattering, whereas the second
solution is interpreted as the transverse magnetic (TM) case of electromagnetic scattering. Since
the SAFARI instrument, as well as the bolometer used in the experiments are optical detectors,
the TE solution was used as the governing principle in the band scattering simulation. This also
makes the implementation of the theory much simpler.

The Dirichlet boundary condition is

Ψ (r, Eλ) = 0 (4.19)

for r on S. Then

Ψinc (r′, Eλ)−
∫
S

g (r, r′) n̂ · ∇Ψ (r, Eλ) ds =

{
Ψ (r′, Eλ) if r′ ∈ V0
0 if r′ ∈ V1

(4.20)
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If we let r′ approach the surface, both cases in 4.20 will approach zero, which simplifies the
problem further. For r′ and r′ on S, equation 4.20 becomes a surface integral equation for the
surface unknown n̂ · ∇Ψ (r)

Ψinc (r′, Eλ) =

∫
S

g (r, r′) n̂ · ∇Ψ (r, Eλ) ds (4.21)

In terms of applicability, equation 4.21 cannot be discretized just yet because as r′ approaches r,
g (r, r′) becomes singular. This singularity is much easier to circumnavigate than the singularity
resulting in the three-dimensional treatment of the same problem. This equation is referred to as
the electric field integral equation (EFIE) for the TE case because the electric field is oscillating
perpendicular to the x and z axis, which allows for its representation as a scalar wave.

Before the integral equation can be converted to a matrix one, a few final steps must be taken.
Firstly, we must rewrite equation 4.21 into a more practical form. We do this by understanding
that ds is a measure of the infinitesimal length that is r and that z = f (x). That is to say, the
surface profile is comprised of an infinite number of vectors r, at least in the continuous sense.
So in order to determine ds we need to determine the magnitude of the rate of change of r. In
other words

ds

dx
=

∥∥∥∥dr

dx

∥∥∥∥ (4.22)

Upon taking the derivative of r and applying the Euclidean norm onto the derivative, we end up
with a less general expression. Implementing the surface derivative into a simulation, requires
that both ”edges” of the derivative to be connected, so that surface discontinuities can be avoided
as they cause false reflections on the sides (Garg, 2008) .Rewriting the integral equation and
taking into consideration the fact that we can substitute the generalized vectors with more
concrete arguments

Ψinc (x′, f (x′) , Eλ) =

∫ L
2

− L
2

√
1 + (

df (x ′)

dx
)2g (x, f(x);x′, f(x′)) (n̂ · ∇Ψ (r, Eλ))z=f(x)dx (4.23)

where S has been limited to between−L
2 and L

2 . The component
√

1 + (df (x ′)
dx )2(n̂·∇Ψ (r, Eλ))z=f(x)

is treated as the surface unknown and it can be represented as u(x,Eλ), and Ψinc (x′, f (x′) , Eλ)
can be expressed as b(x′, Eλ) as it is a function of x′ and Eλ only, however since the wave equa-
tions are independent of intensity within the range of interest, the , Eλ is treated as a constant
and effectively ignored in the derivations. The kernel of the integral equation is

K (x′, x) = g (x, f(x);x′, f(x′)) (4.24)

Combining all of this into a more compact form yields

∫ L
2

− L
2

K (x′, x)u(x)dx = b(x′, Eλ) (4.25)
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We now can begin converting equation 4.25 into a matrix one using the technique of MoM. The
domain is −L/2 < x < L/2 is divided into N intervals, each of width ∆ = L/N . The intervals
are centered at xm,m = 1, 2, . . . , N . Thus u(x,Eλ) = uN in the Nth interval and we point
match the integral equation at x′ = xm. Thus equation 4.25 becomes

∫ L
2

− L
2

K (xm, x)u(x,Eλ)dx = b(xm, Eλ) (4.26)

Finally, equation 4.26 can be replaced by a summation, assuming that u(x,Eλ) is constant in
each interval which means that pulse basis functions are employed.

∆x

N∑
n=1
n 6=m

K (xm, xn)u (xn,Eλ) +

(∫
m

K (xm, x) dx

)
u (xm,Eλ) = b (xm,Eλ) (4.27)

The integral over the mth interval represents the diagonal of the newly created matrix equation.
This is where the singularity, also known as self patch term or contribution, is contained. Luckily
there is a way to outsmart the singularity with relatively little effort, in this case at least. The
argument of the Green’s function is small when x approaches xm, which means that a series
expansion is possible. In this case Tsang et al. (2001) have used a first order series expansion.

H
(1)
0 (ω) = j

2

π
ln
(γω

2

)
(4.28)

where ω = 1.78107241. Further approximations can be made by taking the Taylor series of f(x)
around the point xm, which results in the following

f(x) ' f(xm) + f ′(xm)(x− xm) (4.29)

Remembering that ω is equivalent to k |r − r′|, we can substitute the Taylor approximation into
the vectors and evaluate the result. The result then becomes k

∣∣(x− xm)2 + (f ′(xm)(x− xm)2
∣∣.

This allows for the following, somewhat confusing yet working, approximation to be made

∫
m

K (xm, x) dx = 2

∫ xm+∆x
2

xm

K (xm, x) dx

' j

2

∫ ∆x
2

0

1 + j
2

π
ln

(
γ

2
kx

√
1 + (f ′ (x))

2

)
dx

=
j∆x

4

(
1 + j

2

π
ln

(
γk

4
∆x

√
1 + (f ′ (x))

2

)
− 1

)
(4.30)

Thus the discretized kernel can be expressed as

Amn =

∆xK (xm, x) for n 6= m

j∆x
4

(
1 + j 2

π ln

(
γk
4 ∆x

√
1 + (f ′ (x))

2

)
− 1

)
for n = m

(4.31)
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Once the singularity has been taken care of, it is finally possible to construct the matrix equation
as well as to account for the varying power intensities

λmax∑
λmin

Au =

λmax∑
λmin

b (4.32)

Or in equation form

λmax∑
λmin

N∑
m=1

N∑
n=1

Amnunλ =

λmax∑
λmin

bmλ (4.33)

Higher order series expansions were investigated, going up to a fourth order approximation using
Maple 18, however the gain in accuracy was immeasurable due to the Monte Carlo nature of
the simulation (Sadiku, 2009) and thus the added numerical complexity was deemed unnecessary.

Now that the evaluation of unλ has been established it is possible to proceed with the calculation
of the scattered field by using Huygen’s principle. Given that Ψ (r, Eλ) and n̂ · ∇Ψ (r, Eλ) are
known, it is possible to evaluate the scattered field Ψs (r′, Eλ) by carrying out the integration of
equation 4.18. The calculation of the bistatic scattering coefficients is made possible by setting
r′ in the far field which yields the following approximation

g (r, r′) =
j

4

√
2

π kr′
e−1/4 jπejkr

′
e−jk(x sin(θ)+z cos(θ)) (4.34)

From which it follows that

(n̂ · ∇g (r, r′))z=f(x)

√
1 +

(
d

dx
f (x)

)2

=
j

4

√
2

π kr′
e−j

π
4 ejkr

′
·(

d

dx
f (x) (jk sin(θsca)− jk cos(θsca)

)
e−jk(x sin(θ)+z cos(θ)) (4.35)

Inserting equation 4.35 and equation 4.34 into equation 4.18, one obtains

Ψsca (r, Eλ) =
j

4

√
2

π kr
e−1/4 jπejkrΨ(N)

sca (θsca, Eλ) (4.36)

Where

Ψ(N)
sca (θsca, Eλ) = −

∫ ∞
−∞
−u (x,Eλ) + Ψ (x,Eλ) jk

((
d

dx
f (x)

)
sin (θsca)− cos (θsca)

)
·

e−jk(x sin(θsca)+f(x) cos(θsca))dx (4.37)

In which Ψ (x,Eλ) is the surface field and contains both x and z = f(x). From a programming
perspective this simply means that we keep track of the index and the corresponding value at
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that index. And u (x,Eλ) is proportional to the surface normal derivative, as it has been estab-
lished earlier. From a programming point of view it is sufficient to know the value of u (x,Eλ).
In order to calculate the bistatic scattering coefficient, Poynting’s vector in the direction of the
scattered field must be determined. Poynting’s vector is given as

Ssca (r′, Eλ) = − 1

2ηk
Im (Ψsca (r′, Eλ)∇Ψ∗sca (r′, Eλ)) (4.38)

When the far field approximation is applied to equation 4.38 it becomes

Ssca (r′, Eλ) = − r̂ ′

16

|Ψ (r, Eλ)|)2

η π kr
(4.39)

where r̂′ represents the direction of the field. From the far field approximation of Poynting’s
vector it is possible to calculate the total scattered power Psca, which is the integral of the
product of equation 4.39 with r′ over the range from −π2 to π

2 with respect to the scattered angle
θsca. The bistatic scattering coefficient σ(θsca, Eλ) is defined as

Psca

Pinc
=

∫ π
2

−π2
σ (θsca, Eλ) dθsca (4.40)

By taking the derivative on both sides of equation 4.40 and remembering that Psca is also
integrated with respect to θsca, an expression for σ(θsca, Eλ) can be directly obtained. The only
left unknown is then Pinc. Luckily the definition of σ(θsca, Eλ) is that its integral over the range
from −π2 to π

2 is equal to unity for non-penetrable surfaces, which also includes rough surfaces.
This means that a suitable ”normalization” factor can be chosen to represent Pinc. In their
work, Tsang et al. (2001) have chosen the following final expression to represent σ(θsca, Eλ) in
the spatial domain

σ (θsca, Eλ) =
1

8
(|Ψ (r, Eλ)|)2

√
2π−3/2k−1g−1 (cos (θ))

−1

(
1− 1 + 2 (tan (θ))

2

2k2g2 (cos (θ))
2

)−1
(4.41)

The simulation is then re-evaluated multiple times, along with new surfaces being generated
each time, for every given Eλ and the results are averaged out using iterative averaging (Sadiku,
2009). Finally, σ (θsca, Eλ) is summed for all Eλ and this gives results in the evaluation of a
scattered band of light.

4.2.2 Small Perturbation Method

A second simulation using the same light band approach was created. The method employed
was the Small Perturbation Method (SPM) which was originally developed by (Rice, 1951)
for predicting scattered fields from slightly rough surfaces. This simulation was created before
the processed samples were measured and as such was unknown whether the surface would be
considered slightly rough or very rough as compared to the wavelength. The SPM is based on
the Rayleigh hypothesis, which expresses the reflected and transmitted waves as going upwards
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and downwards. The field amplitudes are then determined from the boundary conditions. The
SPM is much faster to compute, requiring no Monte Carlo techniques whatsoever, however it
has a more limited domain of applicability than the MoM. The bistatic scattering coefficient for
the incoherent wave for the SPM is

σ (θsca, Eλ) = 2
k3 (cos (θsca))

2
cos (θinc)σ

2τe
1
4 (sin(θsca)−sin(θinc))2k2τ2

√
π

(4.42)

where σ and τ were found to be the surface standard deviation and correlation length. As it was
not mentioned in Tsang et al. (2001), it was by experimental work that the simulation’s output
was compared to their original results. At this point it is worth mentioning that the website that
has been provided by the authors has changed domain.

4.3 Research Design

Apart from the BioRad measurements, a new experimental setup was designed and assembled.
A drawing of the setup is shown bellow, excluding the amplifiers and the data acquisition devices

Figure 4.1: Light scattering measurement setup alone

The encasing and chopper mechanism have been custom made at SRON. The infrared source is
a 22 Watt ceramic element, model number 6575 from Instruments (2014). At 21 W this element
emits at a temperature of approximately 850 K. In order to create a tapered beam which would
be perpendicular to the surface, a plano-convex lens was used which had a focal distance of 3 cm.
The sample is placed at an angle of π/2 radians. The sample, lens, chopper, and 6575 encasing
are mounted to an aluminum plate, which is attached to a stepper motor rotation mechanism.
The sample is centered on the axis of rotation as to avoid creating parallaxing while rotating the
plate. The surface of the rail was covered with sandpaper in order to reduce stray reflections
from the infrared source. The distance between the sample and the 6575 encasing was measured
to be 7.3 cm. The detector utilized in the experiments was a General Purpose 4.2K Bolometer
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System from Infrared Laboratories, Laboratories (2013).

Figure 4.2: Infrared source incasing to the left, lens in center, and sample mounted onto rotating
plate to the right

The bolometer has been mounted in a side-looking configuration with a Winston cone collector,
a three position filter sector wheel, far-infrared cut-on type filters and an outer vacuum window.
The bolometer is of the composite type and features a small silicon element thermally bonded to
a suitably blackened 2.5 mm diamond absorber mounted in a cylindrical cavity. The absorbing
layer thickness has been selected to minimize fringing effects. The mounting block in turn is
bolted to an ”L” type bracket which supports the cone exit aperture. The Winston cone features
an entrance aperture of 12.7 mm at a focal ratio of 3.8 and an exit aperture of 1.6 mm and has
been gold plated to prevent tarnish and to improve thermal properties. An 800 cm−1 far infrared
cut-on type filter consisting of 0.5 mil white polyethylene stretched tightly over holder rings and
overlaid on one face with 4−8 µm diamon scatter layer.

The aperture of the bolometer was limited to approximately 1 mm in order to avoid saturation.
In addition to this, a combination of a low-pass and high-pass optical filters was used, which
created a band ranging from 30 µm to 65 µm. Unfortunately the transmission of air within this
band could not be measured. Experimental data and simulations suggest that the transmittance
of air should be low and uniform within the measured band, however no further inferences could
be made.

The chopper mechanism and the bolometer were connected to an SR-830 lock-in amplifier, which
in turn was connected to a desktop PC. The control program was written (drawn) in LabView by
Darren Hayton, SRON. The control program would change the angle between the sample and the
bolometer and then readout the length of the amplitude vector from the SR-830 lock-in amplifier.
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Figure 4.3: Optical filters elegantly mounted onto the bolometer’s window. The silicon hose is
used to recapture evaporating helium

As it can be seen from figure 4.5 the setup was not firmly connected. Due to the custom nature of
all the components utilized and the lack of an available optical bench at the time, the position of
the components had to be measured using a micrometer and a straight angle. This has definitely
led to certain angle deviations, which could not be determined. However, it is presumed that the
errors are small, in the range of a degree or two, because that was the smallest angular deviation
that was possible to measure.

4.4 Research Results

For the simulation part, 10 wavelenghts were chosen, starting from 30 µm to 65 µm. To each of
them a normalized intensity value was assigned ranging from 1 to 0. The descriptive statistics
obtained from the surface analysis tool are first normalized by the wavelength, as done in (Tsang
et al., 2001) in order to reduce the number of necessary surface points. The wavelength gets
normalized to itself, after which all surface control parameters are divided by a factor of 10. This
allows to further increase the efficiency of the simulation because as long as the ratios between
the wavelength, correlation factor, standard deviation, and Laplace diversity factor are the same,
everything else can be scaled.

The generated surface profile is a fixed multiple of the normalized wavelength. The surface pa-
rameters are scaled accordingly to the wavelength and this is how the profile can change it’s
statistics while having a fixed resolution.
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Figure 4.4: Desktop PC connected to the SR-830 lock-in amplifier. Rotating setup and bolometer
are to the right

Figure 4.5: Overview of the entire experimental setup. Emphasis on the lack of connection
between some of the components
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Figure 4.6: Normalized discretized Planck distribution

Figure 4.7: A simulated surface having σ = 21.8×10−5 m, τ = 7.83×10−5 m, b = 2.26×10−7 m,
λ = 65 µm

The tapered wave is then projected onto the surface at an angle of π/2.

When the matrix equations have been solved, the final result is the scattered band as shown in
figure 4.9.
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Figure 4.8: The incident field distribution shows where the majority of power is concentrated
along the surface. Tapering parameter g = L/7

Figure 4.9: Scattered band of 2D spherical coordinates (represented in Cartesian space) with
σ = 21.8×10−5 m, τ = 7.83×10−5 m, b = 2.26×10−7 m, λ = 30− 65 µm

It is important to note the conditionality of the operator matrix. This is a direct measure of how
erroneous the solution is. The lower the conditionality, the better.
The simulation results are compared with the measured light scatter patterns of the type 1
samples and are superimposed one over the other. A constant offset of 4◦ was observed in all
measurements. Based on this it was concluded that the error was systematic and it has been
compensated for in all figures.
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Figure 4.10: Conditionality of operator matrix. It can be seen that as the simulation proceeds,
the conditionality converges

Figure 4.11: Beam pattern measured from an unprocessed sample

The beam pattern generated by the 9575 element is by no means close to what has been sim-
ulated. This is a definite experimental design flaw and a more precise optical setup must be
assembled if experiments with higher accuracy should be performed. The specular case was not
tested simply because such a pattern could not be generated easily and given that the case is
specular, the beam patterns will be the same.
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Figure 4.12: Type 1, experiment 1: θinc = 45◦, τ = 9.26×10−5 m, σ = 2.58×10−5 m, b =
2.02×10−7 m. Measured data has been normalized. Square data points represent the simulation.
Angle error of 4◦

Figure 4.13: Type 1, experiment 2: θinc = 45◦, τ = 9.96×10−5, σ = 2.6×10−5 m, b = 2.031×10−7

m. Measured data has been normalized. Square data points represent the simulation. Angle
error of 4◦

The measured fields are in agreement with the simulation, except in figure 4.15. Under closer
inspection it was found that the sample had many smooth ”islands”, areas which were not
roughened. This is to be expected, as experiment 4 was processed for only 20 seconds. What is
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Figure 4.14: Type 1, experiment 3: θinc = 45◦, τ = 1.08×10−4 m, σ = 1.93×10−5 m, b =
2.05×10−7 m. Measured data has been normalized. Square data points represent the simulation.
Angle error of 4◦

Figure 4.15: Type 1, experiment 4: θinc = 45◦, τ = 7.61×10−5 m, σ = 2.02×10−5 m, b =
2.09×10−7 m. Measured data has been normalized. Square data points represent the simulation.
Angle error of 3.5◦

interesting however is the fact that the analysis tool did not adjust the correlation length accord-
ingly. One way to interpret this is to take the discontinuities into account. The small smooth
”islands”, though small, still represented a roughness discontinuity. This is the equivalent of
generating a rough surface of a given length, and connecting it to another rough surface via a
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Figure 4.16: Type 1, experiment 5: θinc = 45◦, τ = 1.08×10−4 m, σ = 1.93×10−5 m, b =
2.058×10−7 m. Measured data has been normalized. Square data points represent the simulation.
Angle error of 4◦

Figure 4.17: Type 1, experiment 5: θinc = 30◦, τ = 7.83×10−5 m, σ = 2.18×10−5 m, b =
2.26×10−7 m. Measured data has been normalized. Square data points represent the simulation.
Angle error of 4◦

smooth path. A similar specular peak, though much smaller, can be seen in figure 4.17. Thus,
processing times bellow 40 seconds are to be avoided, as their analysis will be flawed. However
it can be seen that the beam pattern converges to the simulation’s predictions along the edges.
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Additionally it can be concluded that the scattering surfaces are very absorbing, as evidenced
by the noisy tails found in the measured profiles. If a comparison is made between figure 4.11
and any other original measurement, a difference of approximately 40 dB was found from peak
to peak, before normalization. One could argue that this is due to the redistribution of scattered
power over a wider angle and indeed this argument cannot be disproved because the measure-
ment spans over half the plane only. However, if the simulation can be trusted then it can be
used to show that there are indeed strong signal losses. The total normalized incident power
measured from figure 4.11 is approximately −86 dB, whereas that of all simulated surfaces is
roughly −1300 dB. And since all of these measurements were made under the same conditions,
this absorption effect cannot be directly related to the transmission spectra of air. Aluminum
is generally considered as an excellent reflector for IR light, however no predictions whatsoever
can be made regarding the light losses if the sample were placed in vacuum and at cryogenic
temperatures. In addition to this, it has been planned to have the aluminum integrating sphere
coated with a thin layer of gold once the fabrication is complete in order to further reduce losses.
It the work of Klandermans (2013) an integrating sphere was coated, however this did not lead
to any significant improvement whatsoever. No analysis has been made into the effects of losses.

The SPM simulation could not predict the light scattering because it was used outside of its do-
main of validity. The performance of the simulation depends on either the Rayleigh or Frauen-
hofer smooth surface criterion, where the difference being a factor of 4 in the denominator.
Equation 4.43 shows the Rayleigh criterion. For the case of λ = 65 µm, σ = 19.3 µm and
θ = 45◦, the inequality is violated and it can be seen in figure 4.18 that the pattern differs a lot
from those computed using MoM. In fact, the difference is so big that both fields have not been
shown together, because the field computed using the MoM technique will resemble a flat line.

σ <
λ

8 cos (θ)
(4.43)

Finally, the incident angle was changed to 30◦ to show that the simulation is not designed just
for a single case. The simulation and measurements are in good agreement, however once again
there was an error of 4◦, which indicates that the error is systematic. Such an error could be
explained by the fact that there was no way to align the bolometer with the rest of the setup.

4.5 Extrapolation

After proving that the simulation can accurately predict the scattering of a light band from
a rough surface with a certain profile, it was used to extrapolate the scattering band. Since
the SAFARI instrument can detect wavelengths as far as 210 µm, it was investigated whether
the current scattering surfaces, especially those produced with the F-16 and F-12 grains could
scatter light close to a Lambertian pattern. The advantage of using a light band scattering
simulation is that based on the Planck law, the contribution of the longer wavelengths can be
directly compared to that of the shorter ones. Originally, the complete SAFARI band was sim-
ulated, however due to the Plank distribution, the contribution of the 210 µm wavelength was
indistinguishable. Two comparisons have been made. One assuming the experiments have been
done at room temperature, thus having a hot source temperature of 850 K and one assuming a
cryogenic environment in which case the temperature would be close to 90 K. Absorption cannot
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Figure 4.18: SPM simulation for θinc = 45◦, τ =1.08×10−4 m, σ =1.93×10−5 m, b =2.06×10−7

m. The wavelength range is from 30 µm to 65 µm

be modeled, however it is presumed that in the cryogenic case it will be significantly lower.

Despite the big temperature differences, the normalization shows little change. This suggests
that it might be possible to perform testing at room temperatures, which is much easier than in
a vacuumed, cryogenic environment.

As it can be seen from figure 4.20, both fields are remarkably similar. Of course, many effects
have been excluded, however this raises the possibility of comparing experiments carried out in a
room to those made in a cryostat, a much more complex environment. In addition to this, it can
be seen that in both cases the surfaces will fail to scatter. Finally, a surface that can scatter at
these wavelengths was found via simulations to have a surface roughness of σ = 1.59300×10−4

m and correlation length of τ = 5.88000×10−4 m. The effects of the Laplace diversity were too
minor to cause any severe changes and in general there is no way to control them, thus they were
kept at b = 2.05890×10−7 m. Unfortunately such parameters were not achieved in the Taguchi
training set and as such the NN cannot predict how to obtain such a surface.

4.6 Comparison of the SPM and MoM Simulations

At these wavelengths, the Rayleigh criterion is just barely satisfied. Thus, the SPM simulation
can be compared more easily with the MoM technique as shown in figure 4.21. As it can be seen,
the difference is much smaller once the Rayleigh criterion is satisfied. It is worth noting that
the Rayleigh criterion is an empirical estimate and as such it’s accuracy deteriorates when both
sides of the inequality get closer. The advantage of the MoM approach over the SPM can be
immediately seen - the SPM simulation cannot predict specular reflections. This should not be
confused as a drawback of the theory, as it was originally designed to compute only the diffuse
component of the scattered field.
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(a) Planck distribution at 850 K

(b) Planck distribution at 90 K

Figure 4.19: Comparison between the two power distributions
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(a) Scattered field at 850 K. θinc = 45◦, τ = 1.08e−4, σ = 1.93e−5, b = 2.058e−7

(b) Planck distribution at 90 K. θinc = 45◦, τ = 1.08e−4, σ = 1.93e−5, b = 2.058e−7

Figure 4.20: Comparison between the two scattered fields from 180 µm to 210 µm
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Figure 4.21: SPM simulation for θinc = 45◦, τ =1.08×10−4 m, σ =1.93×10−5 m, b =2.06×10−7

m. The wavelength range is from 180 µm to 210 µm for a Planck temperature of 850 K



Chapter 5

Complex Scattering Surfaces

In this chapter an investigation was made to determine whether samples which have been pro-
cessed with different sized grains, under the same conditions, can create a surface which can
scatter a wider ling band. Unfortunately the optical filters which were available for the ra-
diometric measurements restricted the band between 30 µm and 65 µm, so the focus shifted on
investigating whether the individual surface distributions could be separated for further analysis.
Should it be possible to separate the individual contributions of each grain size, then simulations
could easily be performed. For this purpose ICA was chosen. This investigation was only pre-
liminary in nature and as such cannot be considered thorough by any means.

5.1 Situational and Theoretical Analysis

ICA is a numerically efficient blind source separation (BSS) technique and over the years has
found several applications. The task of separating a known signal into more than one source
signals without any further information is generally referred to as an inductive inference prob-
lem. The lack of information forces one to attempt to induce the most probable solution, which
may or may not exist. The term blind is used to indicate that there is no prior information
about how the signals have been mixed or even generated. Yet despite this the theory is capable
of separating mixed source signals, and what makes this process even more fascinating is the
mathematical elegance with which this is done. The reader is directed towards Naik and Kumar
(2011) for an in depth overview of ICA.

Of course, as the process is statistically inductive in nature, there are several factors such as scal-
ing, delay, and even causality which cannot be predicted. Luckily in most practical applications
this information is not always necessary, as the goal is to recognize a pattern and not the signal’s
amplitude amplitude. The issue with causality is not favored in the biomedical field especially
in analyzing brain patterns, however there are different theories which can circumnavigate the
issue. The core of this theory is based on the assumption that different physical processes are
unrelated. An example of the theory in practice is shown in figures 5.1, 5.2, 5.3.
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(a) Original Signal 1

(b) Original Signal 2

Figure 5.1: Two arbitrarily generated signals

The two arbitrary signals are randomly and linearly added together, after which ICA is applied
to estimate the original two sources. Of course, the theory can be extended to any number of
sources. As it can be seen, the ICA theory is capable of separating the two signals, however both
signals appear to be inverted. This is a clear illustration of one of the drawbacks of this theory,
however given the simplicity of it, such drawbacks can be neglected and worked around using
conventional programming. This theory has not been applied to sandblasted surface profiles to
determine whether multiple processings can be recognized.
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(a) Original Signal 1

(b) Original Signal 2

Figure 5.2: Two independent combinations of the arbitrary signals

5.2 Conceptual Model

In addition to the surface analysis and simulation, the Infomax algorithm from Bell (1996) was
converted to an analysis tool with minor peripheral modifications and was used. The goal was
to investigate whether the individual contributions of a sample which has been processed with
two different grain types sequentially could be analyzed. It was uncertain whether the final sur-
face distribution could be considered as a linear, independent combination or a more complex
mechanism was at hand. The algorithm that used was developed by Bell and Sejnowski (1995)
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(a) Original Signal 1

(b) Original Signal 2

Figure 5.3: The induced most likely original signals

and was taken straight from Bell (1996). It was slightly modified so that it can work directly
with collected data from an Excel Workbook.

The basic working principles of the Informax algorithm will now be explained. An observation
can be assumed as a vector, which is presumed to be random for there is no information about its
composition, X = [x1, x2, . . ., xm]

T
whose m elements are mixtures of m independent elements

of another vector which must be presumed random S = [s1, s2, . . ., sm]
T

given by:
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X = A · S (5.1)

where A represents an m × m mixing matrix. This matrix is unknown and it represents the
environment in which the signals have interacted and as such can be of even more interest than
the signals themselves. The goal of ICA is to find W, which is the inverse of A, that will give
Y, the closest possible approximation of S.

Y = W ·X (5.2)

There are five assumptions which have made ICA theory possible. First, the vector S is assumed
to contain only statistically independent sources. Independence allows for a probability density
function (pdf) of m random variables, f (x1, x2, . . ., xm) to be represented as the product of m
independent pdfs - f1 (x1) f2 (x2) . . . fm (xm). Statistical independence is then formulated as the
equality between the expectation of the combined pdf and the product of the expectations of the
individual pdfs. This can be expressed mathematically as follows:

E (f1 (xi) f2 (xj)) = E (f1 (xi))E (f2 (xj)) (5.3)

Second, the mixing matrix must be square and have full rank, which can be interpreted as having
the same number of linearly independent mixtures and sources. Third, the only source of noise
in the model is the source vector S. Fourth, it is assumed that the mean of the data is equal to
0. And finally, the source signals should not have a Gaussian pdf except for a single source only
(Langlois et al., 2010).

The same code from Bell (1996) was combined with the surface generator of Bergstrom (2008)
in order to determine whether the concept will work when assuming a linear combination of the
surface processes.

5.3 Research Design

Two different samples were fabricated. The first sample, referred to as ”A” was processed for 3
minutes, at a pressure of 5 bar, at a distance of 6 cm first with grain type F-12 and later with
grain type F-16. The second sample, referred to as ”B” was processed for 4 minutes, at a pressure
of 4 bar, at a distance of 7 cm also first with grain type F-12 and later with grain type F-16. The
profiles were then measured using the Dektak instrument in the same manner as the type 1 and
2 samples. One measurement were made for each sample with a length of 3 cm. This measure-
ment was then split in half to represent two different signals, because the distributions are ergodic.

5.4 Research Results

First, the profiles were analyzed using the existing surface analysis tool. The KPSS test rejected
the null hypothesis at all lags for sample ”A”, while failing to reject the last lag with sample ”B”,
showing that the polynomial completely failed to detrend the data. Thus, a 5th order polynomial
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was used in order to improve the detrending. Figure 5.4 shows the two detrended profiles and it
can be observed that the profile of sample ”B” is more uniform than that of sample ”A”

(a) Detrended surface profile of sample ”A”

(b) Detrended surface profile of sample ”B”

Figure 5.4: Surface profiles of sample ”A” and ”B” after being detrended by a 5th order polyno-
mial

As it can be seen in figure 5.5, sample ”A” has a clear sinusoidal component, which can be
attributed to the prolonged processing time of roughly 6 minutes. The KPSS test rejects the
null hypothesis up to the 30th lag, while for sample ”B” - up to the 20th lag. And this is to be
expected, as the sinusoidal component is a sign of consistency among the noise, i.e. a drift.
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(a) ACF of sample ”A”

(b) ACF of sample ”B”

Figure 5.5: Comparison of the ACFs of sample ”A” and ”B”. Emphasis on the sinusoidal
component of ”A”

Both histograms appear Gaussian in nature but upon closer inspection, especially at their normal-
ity plots in figure 5.7, it can be seen that the distributions are truncated and slightly asymmetric.
The general fact that their distributions appear Gaussian suggests that the F-16 and F-12 grains
are too similar and their distributions are indistinguishable from one another. Should grain wear
be taken into consideration, larger grains wear out faster than smaller ones by either breaking
into smaller grains, while smaller grains have been observed to have a higher durability.
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(a) Histogram of AR model of sample ”A”

(b) Histogram of AR model of sample ”B”

Figure 5.6: Comparison between the extrapolated distributions of samples ”A” and ”B”. Sample
”A” has a truncated Gaussian

When the modified Infomax algorithm was applied to the profile measurements of samples ”A”
and ”B”, it failed to separate the two distributions. The reason why the algorithm failed is be-
cause both processes had identical parameters, with the grain types being the only difference. It
was expected that this should make the distinction more apparent, however it turned out not to
be the case. In conclusion it was found that using more than one grain type in the manufacturing
process of a scattering surface does create slight asymmetries within the surface distributions.
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(a) Histogram of AR model of sample ”A”

(b) Histogram of AR model of sample ”B”

Figure 5.7: Comparison between the normality plots of samples ”A” and ”B”

The Infomax algorithm might not be capable of separating the contributions of the two grain
types either due to their similarity, due to the fact that both distributions are Gaussian in na-
ture, or due to the fact that the process is not linear. The last two reasons violate the basic
assumptions behind ICA and make it inapplicable for this analysis.
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(a) Half of profile ”B” treated as a linear sum of two unknown signals

(b) Evaluated

Figure 5.8: Other half of profile ”B” treated as a linear sum of two unknown signals

As it can be seen, figure 5.8 is almost identical to figure 5.9, which means that no separation
has occurred. The Infomax algorithm was also implemented into a surface generator simulation,
where it was found to be capable of separating surfaces with different truncated Gaussian dis-
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(a) First estimated signal

(b) Second estimated signal

Figure 5.9: The two new estimated signals are the original signals. No separation has occurred

tributions, as shown in section 5.1. Unfortunately such distributions cannot be created using
sandblasting so other techniques must be investigated.



Chapter 6

Conclusion

The theories of scattering of electromagnetic waves, numerical techniques, neural networks, in-
dependent component analysis, statistical investigations, and time-series analysis have been im-
plemented to create a set of basic tools which will serve as the starting point for the development
of the integrating sphere, as part of the SAFARI calibration process. These tools have been im-
plemented and tested, and apart from ICA can be directly used in conjunction with sandblasting.

It has been shown that care must be taken when analyzing surface profiles, despite the task’s
simplistic nature, due to the nonuniform drift component distributions. Thus a choice was made
to create a very basic self adjusting detrending approach, instead of relying on rough surface
standard filters. This approach was not perfect, especially when dealing with higher frequency
drift components, however by carefully implementing other monitoring statistics the detrending
performance could be evaluated. Multiple statistical tools were used in the analysis of the scat-
tering surface samples so that as much information as possible could be gathered that would
reveal the properties of interest.

A very high frequency truncated Laplace distribution was found after taking the difference of the
surface profile. The distribution was modeled as noise and was added to the surface generating
algorithm. The result was a very slight increase in accuracy, however the implementation of this
error term requires higher resolutions and more precise experimental setup. The difficulty with
implementing the noise component was the fact that it was two orders of magnitude smaller than
the other structures. This meant that higher surface resolutions would have to be used in order
to include the effect. This the improvement is considered to be very minor.

Several experiments were performed to validate the assumptions, beginning from fabricating scat-
tering surfaces, using the Taguchi’s orthogonal arrays, and profile measurements, to a scattered
band measurement from 30 µm to 65 µm. The sandblasting and band scattering experimental
setups had several flaws whose presence was recognized from the obtained information, despite
the author’s best efforts.

Based on the analyzed data from the surface analysis tool, a neural network was created with the
aim of aiding a human operator with the manufacturing process. It was shown that the network
is capable of estimating system parameters within the same order of magnitude without any
negative numbers, given the minimum of statistical information with which it was trained. Should
the network be trained with more data, it is expected that it’s performance will increase, thus

79



CHAPTER 6. CONCLUSION 80

making it estimate surface control parameters more and more accurately. This will eliminate the
need to guess the manufacturing controls and will help reduce the number of faulty components
and material waste.
The developed simulation from the works of Tsang et al. (2001); Bergstrom (2008) was shown
to agree with experimental data, except for experiment 4 where roughness discontinuities were
found to be present upon optical inspection. In addition to this a systematic measuring error
of 4◦ was found present in all samples. In addition to this it was shown that with the current
fabrication capabilities it is not possible to create a scattering surface which can scatter up to
210 µm. Thus a new manufacturing technique must be chosen. A comparison was made between
a 90 K and a 850 K band scattering simulation and it was found that they are nearly identical.
This was due to the normalized Planck distribution being employed. This suggests that it might
be possible to completely forgo light scattering measurements in a cryogenic environment, de-
pending on how severe the absorption of light becomes within the material of interest. The SPM
simulation could be used successfully only in the longer wavelengths range. It was compared to
the MoM technique and it was found to still differ. The SPM simulation was partially used out
of context, as it only approximated the diffuse component of a scattered wave. Regardless, it
can still be useful if the Rayleigh criterion is satisfied. A surface which could scatter well up to
210 µm was found, however there are no current means of manufacturing it.

The Infomax algorithm by Bell and Sejnowski (1995) was implemented into a simulation and
an analysis tool and was tested on multigrain samples, however it could not separate the two
profiles. This is because both profiles were of a Gaussian nature, which contradicted one of the
five assumptions around ICA, and also because the process in general was not linear. However
the Infomax simulation could properly separate sufficiently different profiles, thus showing that
should a more careful and thought out experiment be created, ICA might produce meaningful
results.



Chapter 7

Discussions

The development of a 3D simulation is much more difficult than a 2D one. Several attempts
were made at creating such, however the avoidance of the singularity of the 3D Green’s function
proved too complex. As future recommendation, the development of a vector field 3D simulation
would provide a much more robust tool in the analysis of the process of light distribution and
it could be used to analyze other effects as well, such as light behaviour in waveguides. The de-
velopment of a 3D simulation will also require more processing power. Thus it is recommended
to obtain more powerful computers that can reduce the simulation time as this will significantly
reduce the development process. The creation of a dedicated test setup for the measurement
of light scattering will also contribute to the further understanding of the phenomenon which
will lead to more accurate design criteria. As discussed in this thesis, the experimental setup
had many possible areas of failure. In addition to this other manufacturing techniques must be
investigated in order to obtain a longer correlation length and a larger standard deviation. Areas
such as spark erosion or chemical treatment should be investigated and properly modeled.

Other areas that could benefit from these suggestions include the development of scattering or
absorbing coatings, as currently there is no other means to verify then apart from trial and error
testing. Such coatings can be used to improve the signal to noise ratio in certain setups.
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Data Analysis Code

1 % Code used to analyze the p r o f i l e measurements o f roughened samples .
I t

2 % a l s o performs a s e r i e s as t e s t s to ana lyze the in fo rmat ion .
3

4 c l e a r a l l
5 c l o s e a l l
6

7 d i r e c t o r y i n p u t = u i g e t d i r ( ’ ’ , ’ Choose d i r e c t o r y with input data
f i l e s : ’ ) ; % S e l e c t input d i r e c t o r y

8 f d e t = ( x l s r e a d ( s t r c a t ( d i r e c t o r y i n p u t , ’ \MG 2 2 1 . x l sx ’ ) , ’ MG 2 2 1
’ , ’B21 : B54020 ’ ) .∗1 e−9) ’ ; %Choose your own f i l e s . Convert to nm
from m

9

10 %
==========================================================================

11 %Image p r i n t i n g s e t t i n g s
12

13 format = ’−dpng ’ ;
14 r e s o l u t i o n = ’−r300 ’ ;
15 d i r e c t o r y o u t p u t = u i g e t d i r ( ’ ’ , ’ Choose d i r e c t o r y with output data

f i l e s : ’ ) ;
16

17 %
==========================================================================

18

19 L = 30000e−6; %Measured length . Obtained from the o r i g i n a l sample .
Dont f o r g e t to change !

20 N = length ( f d e t ) ; %Data po in t s
21 dx = L/N; %Or i g ina l s tep
22 x = l i n s p a c e (−L/2 ,L/2 ,N) ; %S p l i t in two ha lve s
23

24 %
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==========================================================================

25 %Detrend the s u r f a c e . Very bas ic , based on assumption that the d r i f t
i s o f

26 %low frequency .
27

28 [P, S , mu hat ] = p o l y f i t (x , f d e t , 5 ) ;
29 f 1 = po lyva l (P, x , S , mu hat ) ;
30

31 f i g u r e ( ’name ’ , ’ Or i g i na l Sur face and 2nd Order Detrending Polynomial ’ )
;

32 p lo t (x , f d e t , ’− ’ , x , f1 , ’−− ’ ) ;
33 x l a b e l ( ’ Lenght [m] ’ ) ;
34 y l a b e l ( ’ Heigth [m] ’ ) ;
35 t i t l e ( ’ Or i g i na l Sur face and 2nd Order Detrending Polynomial ’ ) ;
36 g r id on
37 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \Or ig ina l Sur face

and 2nd Order Detrending Polynomial ’ ) )
38

39 f d e t = f d e t − f 1 ; % Detrending occurs here
40

41 %Plot the detrended s u r f a c e
42 f i g u r e ( ’name ’ , ’ Detrended Sur face P r o f i l e ’ ) ;
43 p lo t (x , f d e t ) ;
44 x l a b e l ( ’ Lenght [m] ’ ) ;
45 y l a b e l ( ’ Heigth [m] ’ ) ;
46 t i t l e ( ’ Detrended Sur face P r o f i l e ’ ) ;
47 g r id on
48 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \Detrended

Sur face P r o f i l e ’ ) )
49

50 %
==========================================================================

51 %Plot p a r t i a l c o r r e l a t i o n , to compare with the normal ized
a u t o c o r r e l a t i o n

52 %func t i on taken from David Berg s t r m . The d i f f e r e n c e in g rad i en t i s
53 %evidence o f a s t a t i o n a r y process , and the ADF t e s t ( s ee be l low )

r e j e c t s the n u l l
54 %hypothes i s at the 5% con f idence i n t e r v a l when the l a g s are more
55 %than 1 (˜30 and g r e a t e r ) . This i s due to the imper f e c t detrend ing .
56

57 f i g u r e
58 parcor r ( f d e t , 1 0 0 )
59 x l a b e l ( ’ Lag ’ ) ;
60 y l a b e l ( ’ P a r t i a l Autoco r r e l a t i on s ’ ) ;
61 t i t l e ( ’ Sample P a r t i a l Autoco r r e l a t i on Function ’ ) ;
62 g r id on
63 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \Sample P a r t i a l
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Autoco r r e l a t i on Function ’ ) )
64

65 %
==========================================================================

66 %Estimate an AR model and e x t r a p o l a t e
67

68 N max = 5e6 ; %Evolve the proce s s f u r t h e r
69 L max = N max∗dx ;
70 x AR = l i n s p a c e (−L max/2 ,L max/2 ,N max) ; %Only used f o r p l o t t i n g
71

72 [A, NoiseVar iance ] = arburg ( f de t , 1 0 ) ;
73 f AR = f i l t e r (1 ,A, s q r t ( NoiseVar iance ) ∗ randn (N max , 1 ) ) ;
74

75 f i g u r e ( ’name ’ , ’ Extrapolated est imated AR model ’ ) ;
76 p lo t (x AR , f AR ) ;
77 x l a b e l ( ’ Lenght [m] ’ ) ;
78 y l a b e l ( ’ Heigth [m] ’ ) ;
79 t i t l e ( ’ Extrapolated est imated AR model ’ ) ;
80 g r id on ;
81 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \Extrapolated

est imated AR model ’ ) ) ;
82

83 %
==========================================================================

84 %Histograms o f the o r i g i n a l data and o f the ex t rapo la t ed AR model .
85

86 m = d i f f ( f d e t ) ; %D i f f e r e n c e the detrended s u r f a c e .
87

88 Laplace b = sum( abs (m) ) /(N−1) ; %Estimate the b parameter f o r the
Laplac ian d i s t r i b u t i o n . N−1 because d i f f takes away 1 index

89

90 bins = 80 ; %Number o f b ins
91

92 [ hdf raw , bc raw ] = h i s t ( f d e t , b ins ) ;
93 [ hdf AR , bc AR ] = h i s t ( f AR , b ins ) ;
94 [ hdf m , bc m ] = h i s t (m, b ins ) ;
95

96 f i g u r e ( ’name ’ , ’ Bar Graph o f the Historgram ’ ) ;
97 bar ( bc raw , hdf raw ) ;
98 x l a b e l ( ’ Sur face Height ’ ) ;
99 y l a b e l ( ’ P r o b a b i l i t y ’ ) ;

100 t i t l e ( ’ Histogram of Height D i s t r i b u t i o n Function f o r Height o f
Sur face P r o f i l e ’ ) ;

101 g r id on ;
102 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \Histogram of

Height D i s t r i b u t i o n Function f o r Height o f Sur face P r o f i l e ’ ) ) ;
103
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104 f i g u r e ( ’name ’ , ’ Bar Graph o f the Histogram of the AR Model ’ ) ;
105 bar (bc AR , hdf AR ) ;
106 x l a b e l ( ’ s u r f a c e he ight ’ ) ;
107 y l a b e l ( ’ p r o b a b i l i t y ’ ) ;
108 t i t l e ( ’ Histogram of Height D i s t r i b u t i o n Function f o r Height o f AR

Model Sur face P r o f i l e ’ ) ;
109 g r id on ;
110 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \Histogram of

Height D i s t r i b u t i o n Function f o r Height o f AR Model Sur face
P r o f i l e ’ ) ) ;

111

112 f i g u r e ( ’name ’ , ’ Bar Graph o f the D i f f e r e n c e Historgram ’ ) ;
113 bar ( bc m , hdf m ) ;
114 x l a b e l ( ’ Sur face Height ’ ) ;
115 y l a b e l ( ’ P r o b a b i l i t y ’ ) ;
116 t i t l e ( ’ Histogram of Height D i s t r i b u t i o n Function f o r D i f f e r e n c e o f

Sur face P r o f i l e ’ ) ;
117 g r id on ;
118 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \Histogram of

Height D i s t r i b u t i o n Function f o r D i f f e r e n c e o f Sur face P r o f i l e ’ ) ) ;
119

120 %
==========================================================================

121 %Autocovariance func t i on as de f ined by David Berg s t r m from h i s
t h e s i s . I t

122 %shows that the o s c i l l a t i o n s are slow compared to the number o f data
123 %points , because o f the high r e s o l u t i o n .
124

125 l a g s = l i n s p a c e (0 , x (N)−x (1 ) ,N) ; %Lag l eng th s
126 c = xcov ( f de t , ’ c o e f f ’ ) ; %Autocovariance func t i on
127 ac f = c (N:2∗N−1) ; %Right s ided v e r s i on
128

129 k = 1 ;
130 whi le ( a c f ( k )>1/exp (1 ) ) %Cor r e l a t i on l enght c a l c u l a t i o n
131 k = k+1;
132 end
133

134 c o r r e l a t i o n l e n g h t = 1/2∗( x (k−1)+x ( k )−2∗x (1 ) ) ;
135

136 f i g u r e ( ’name ’ , ’ Normalized ACF’ ) ;
137 p lo t ( lags , a c f ) ;
138 x l a b e l ( ’ Lag Length ’ ) ;
139 y l a b e l ( ’ Normalized ACF’ ) ;
140 t i t l e ( ’ Normalized ACF’ ) ;
141 g r id on ;
142 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \Normalized ACF’ )

) ;
143
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144 [ muhat , sigmahat ] = normf i t ( f d e t ) ; %Meand and standard dev i a t i on o f
the o r i g i n a l data

145

146 %
==========================================================================

147 %The Normalized ACF of the ex t rapo la t ed AR model i s a l s o computed .
148

149 lags AR = l i n s p a c e (0 ,x AR(N max)−x AR(1) ,N max) ; %lag l eng th s
150 c AR = xcov ( f AR , ’ c o e f f ’ ) ; %Autocovariance func t i on
151 acf AR = c AR(N max :2∗N max−1) ; %Right s ided v e r s i on
152

153 k = 1 ;
154 whi le ( a c f ( k )>1/exp (1 ) ) %Cor r e l a t i on l enght c a l c u l a t i o n
155 k = k+1;
156 end
157

158 co r r e l a t i on l engh t AR = 1/2∗(x AR(k−1)+x AR( k )−2∗x AR(1) ) ;
159

160 f i g u r e ( ’name ’ , ’ Normalized AR Model ACF’ ) ;
161 p lo t ( lags AR , acf AR ) ;
162 x l a b e l ( ’ l ag l ength ’ ) ;
163 y l a b e l ( ’ Normalized AR Model ACF’ ) ;
164 t i t l e ( ’ Normalized AR Model ACF’ ) ;
165 g r id on ;
166 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \Normalized AR

Model ACF’ ) ) ;
167

168 [ muhat AR , sigmahat AR ] = normf i t ( f AR ) ; %Meand and standard dev i a t i on
o f the ex t rapo la t ed s u r f a c e

169 s u r f a c e r a t i o = sigmahat AR/ co r r e l a t i on l engh t AR ; %The s c a t t e r i n g
r a t i o i s computed

170

171 %
==========================================================================

172 % Z−Scor ing o f the sample data so that i t can be compared to a
standard normal dev ia t e .

173 % In add i t i on the ADF t e s t i s performed to
174 s tep = 1 ; %Introduce a lag o f 100 s t ep s . Rat iona le i s that the

c o r r e l a t i o n c reated by the g r a i n s spans over s e v e r a l hundred data
po in t s and the k s t e s t and j b t e s t funct i ons ‘ l ag l enght cannot be
adjusted i n t e r n a l l y .

175

176 Y = ( f d e t − muhat ) / sigmahat ; %Real sample
177 Y AR = ( f AR − muhat AR) /sigmahat AR ; %AR model sample
178

179 Y = Y( 1 : s tep :N) ; %Introduce a lag o f ’ step ’ po in t s .
180 Y AR = Y AR( 1 : s tep : N max) ;
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181

182 %
==========================================================================

183 %Perform a bunch o f hypothes i s t e s t s on the detrended sample
184 [ h1 , pValue1 , s tat1 , cValue1 ] = k p s s t e s t ( f d e t , ’ l a g s ’ , 1 0 : 1 0 : 1 0 0 ) ; %

Test f o r l a g s s t a r t i n g from 10 to 100 us ing a step o f 10
185 [ h2 , pValue2 , s tat2 , cValue2 ] = a d f t e s t ( f d e t , ’ model ’ , ’ t s ’ , ’ a lpha ’

, 0 . 0 5 , ’ l a g s ’ ,100) ; %Here a 100 l a g s are chosen and the number can
be changed , obv ious ly .

186 [ h3 , pValue3 , k3 , cValue3 ] = k s t e s t (Y, ’ Alpha ’ , 0 . 0 5 ) ; %The k s t e s t cannot
have i t s l a g s s e t d i r e c t l y , so the undersampled z−va lue s are used .

187 [ h4 , pValue4 , jb s ta t , cValue4 ] = j b t e s t ( f d e t , 0 . 0 5 ) ; %Second t e s t to
check whether the data has a normal d i s t r i b u t i o n o f some s o r t .

188 %
==========================================================================

189 %Visua l normal i ty t e s t f o r r e a l data
190

191 f i g u r e ( ’name ’ , ’ Normality Test V i s u a l i s a t i o n f o r Measured Data ’ ) ;
192 subplot ( 2 , 1 , 1 )
193 [ f d i s t , Y values ] = ecd f (Y) ;
194 J = p lo t ( Y values , f d i s t ) ;
195 g r id on ;
196 hold on ;
197 K = plo t ( Y values , normcdf ( Y values ) , ’ r−− ’ ) ;
198 s e t (J , ’ LineWidth ’ , 2 ) ;
199 s e t (K, ’ LineWidth ’ , 2 ) ;
200 l egend ( [ J K] , ’ Empir ica l CDF’ , ’ Standard Normal CDF’ , ’ Locat ion ’ , ’SE ’ ) ;
201 subplot ( 2 , 1 , 2 )
202 np = normplot (Y) ;
203 s e t (np , ’ LineWidth ’ , 2 ) ;
204 g r id on ;
205 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \Normality Test

V i s u a l i s a t i o n f o r Measured Data ’ ) )
206

207 %
==========================================================================

208 %Visua l normal i ty t e s t f o r ex t rapo la t ed AR model
209

210 f i g u r e ( ’name ’ , ’ Normality Test V i s u a l i s a t i o n f o r Extrapolated AR Model
’ ) ;

211 subplot ( 2 , 1 , 1 )
212 [ f AR , Y values ] = ecd f (Y AR) ;
213 J = p lo t ( Y values , f AR ) ;
214 g r id on ;
215 hold on ;
216 K = plo t ( Y values , normcdf ( Y values ) , ’ r−− ’ ) ;
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217 s e t (J , ’ LineWidth ’ , 2 ) ;
218 s e t (K, ’ LineWidth ’ , 2 ) ;
219 l egend ( [ J K] , ’ Empir ica l CDF’ , ’ Standard Normal CDF’ , ’ Locat ion ’ , ’SE ’ ) ;
220 subplot ( 2 , 1 , 2 )
221 np = normplot (Y AR) ;
222 s e t (np , ’ LineWidth ’ , 2 ) ;
223 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \Normality Test

V i s u a l i s a t i o n f o r Extrapolated AR Model ’ ) )
224 %

==========================================================================

225 %Save the t e s t r e s u l t s as t ex t .
226

227 Names = [ ’ Lag c o e f f i c i e n t s : %1.4 f , %1.4 f , %1.4 f , %1.4 f , %1.4 f , %1.4 f
, %1.4 f , %1.4 f , %1.4 f , %1.4 f , %1.4 f \n\n ’ , ’ Noise Variance : %1.5e
[m]\n\n ’ , ’ Estimated Cor r e l a t i on Lenght : %1.5e [m]\n ’ , ’ Estimated
Mean : %1.5 e [m]\n ’ , ’ Estimated Standard Deviat ion : %1.5 e [m]\n\n ’ ,

’ Laplace d i v e r s i t y : %1.5e [m]\n\n ’ , ’ Estimated AR Model
Cor r e l a t i on Lenght : %1.5 e [m]\n ’ , ’ Estimated AR Model Mean : %1.5 e
[m]\n ’ , ’ Estimated AR Model Standard Deviat ion : %1.5e [m]\n\n ’ , ’
Sur face Ratio : %1.5 f \n\n ’ , ’KPSS Test D e c i s s i o n s : %1.0 f %1.0 f %1.0
f %1.0 f %1.0 f %1.0 f %1.0 f %1.0 f %1.0 f %1.0 f \n ’ , ’KPSS Test p−
va lue s : %1.5 f %1.5 f %1.5 f %1.5 f %1.5 f %1.5 f %1.5 f %1.5 f %1.5 f %1.5
f \n ’ , ’KPSS Test S t a t i s t i c s : %1.5 f %1.5 f %1.5 f %1.5 f %1.5 f %1.5 f
%1.5 f %1.5 f %1.5 f %1.5 f \n ’ , ’KPSS Test C r i t i c a l Values : %1.5 f
%1.5 f %1.5 f %1.5 f %1.5 f %1.5 f %1.5 f %1.5 f %1.5 f %1.5 f \n\n ’ , ’ADF
Test Dec i s s i on : %1.0 f \n ’ , ’ADF Test p−value : %1.5 f \n ’ , ’ADF Test

S t a t i s t i c : %1.5 f \n ’ , ’ADF Test C r i t i c a l Value : %1.5 f \n\n ’ , ’KS
Test Dec i s s i on : %1.0 f \n ’ , ’KS Test p−value : %1.5 f \n ’ , ’KS Test k
−value : %1.5 f \n ’ , ’KS Test C r i t i c a l Value : %1.5 f \n\n ’ , ’ Jarque−
Bera Test Dec i s s i on : %1.0 f \n ’ , ’ Jarque−Bera Test p−value : %1.5 f \
n ’ , ’ Jarque−Bera S t a t i s t i c : %1.5 f \n ’ , ’ Jarque−Bera Test C r i t i c a l
Value : %1.5 f \n\n ’ ] ;

228 M = [A, NoiseVariance , c o r r e l a t i o n l e n g h t , muhat , sigmahat , Laplace b
, co r r e l a t i on l enght AR , muhat AR , sigmahat AR , s u r f a c e r a t i o , h1 ,
pValue1 , s tat1 , cValue1 , h2 , pValue2 , s tat2 , cValue2 , h3 , pValue3

, k3 , cValue3 , h4 , pValue4 , jb s ta t , cValue4 ] ;
229

230 f i d = fopen ( s t r c a t ( d i r e c to ry output , ’ \Parameters . txt ’ ) , ’wt ’ ) ;
231 f p r i n t f ( f i d , Names ,M) ;
232 f c l o s e ( f i d ) ;



Appendix B

ICA Simulation Code

1 %This i s an attempt to try the Independent Component Ana lys i s ( part
o f the

2 %Blind Source Separat ion theory ) us ing the a lgor i thm des igned by Tony
Be l l

3 %et a l .
4

5 %setup
6

7 % sweep − How many times I ‘ ve gone through the data
8 % P − How many t imepo int s in the data
9 % N − How many input ( mixed ) sourc e s the re are

10 % M − How many outputs the re are
11 % L − Learning ra t e
12 % B − Batch block s i z e ( i e : how many p r e s e n t a t i o n s per weight

update )
13 % t − time step
14 % source s − NxP matrix o f the N sourc e s I read in
15 % x − NxP matrix o f mixtures
16 % u − MxP matrix o f h o p e f u l l y unmixed source s
17 % A − NxN mixing matrix
18 % w − MxN unmixing matrix
19 % wz − Zero−phase whitening : a matrix used to remove c o r r e l a t i o n s

from
20 % between the mixtures x . Use fu l as a p r e p r o c e s s i n g step .
21 % noblocks − How many b locks in a sweep
22 % oldw − Value o f w be f o r e the l a s t sweep
23 % d e l t a − w−oldw
24 % o l d d e l t a − Value o f d e l t a be f o r e the l a s t sweet
25 % angle − Angle in degree s between d e l t a and o l d d e l t a
26 % change − Squared l ength o f d e l t a vec to r
27 % Id − An i d e n t i t y matrix
28 % permute − A vector o f l ength P used to scramble the time order o f

the
29 % source s f o r s t a t i o n a r i t y during l e a r n i n g .

90
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30

31

32 c l e a r a l l
33 c l o s e a l l
34

35 P = 10000 ;
36 N = 2 ;
37 L = 10 ;
38

39 %Low frequency l a r g e amplitude s t o c h a s t i c c o n t r o l s .
40 h1 = 0 . 3 ; %Heigth or standard dev i a t i on 0 .5
41 c1 = 0 . 2 ; %Grain s i z e d e s c r i p t o r
42

43 %High frequency smal l amplitude s t o c h a s t i c c o n t r o l s .
44 h2 = 0 . 4 ; %Penetrat ion depth d e s c r i p t o r ( r e l a t e d to gra in geometry

p o s s i b l y − a measure o f the roundness o f the gra in ( ? ) ) 0 .05
45 c2 = 0 . 0 9 ; %I r r e g u l a r i t y s i z e d e s c r i p t o r
46

47 format = ’−dpng ’ ;
48 r e s o l u t i o n = ’−r300 ’ ;
49 d i r e c t o r y o u t p u t = u i g e t d i r ( ’ ’ , ’ Choose d i r e c t o r y with output data

f i l e s : ’ ) ;
50

51 %
==========================================================================

52 %D i s t r i b u t i o n s c o n t r o l
53

54 t = l i n s p a c e (−L/2 ,L/2 ,P) ;
55

56 pd1 = makedist ( ’ Normal ’ ) ;
57 t1 = truncate ( pd1,− i n f , i n f ) ;
58

59 pd2 = makedist ( ’ Normal ’ ) ;
60 t2 = truncate ( pd2,− i n f , i n f ) ;
61

62 %
==========================================================================

63 %Low frequency s t o c h a s t i c p roce s s
64

65 Z1 = h1 .∗ random ( t1 , 1 ,P) ;
66 F1 = exp (−(2∗(( t ) . ˆ 2 ) /( c1 ˆ2) ) ) ;
67 f 1 = 2/ s q r t ( p i ) ∗L/P/c1∗ i f f t 2 ( f f t 2 (Z1 ) .∗ f f t 2 (F1) ) ;
68

69 %
==========================================================================

70 %High frequency s t o c h a s t i c p roce s s
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71

72 Z2 = h2 .∗ random ( t2 , 1 ,P) ;
73 F2 = exp (−(2∗(( t ) . ˆ 2 ) /( c2 ˆ2) ) ) ;
74 f 2 = 2/ s q r t ( p i ) ∗L/P/c2∗ i f f t 2 ( f f t 2 (Z2 ) .∗ f f t 2 (F2) ) ;
75

76 %
==========================================================================

77

78 f i g u r e ( ’name ’ , ’ Sur face P r o f i l e 1 ’ ) ;
79 p lo t ( t , f 1 ) ;
80 x l a b e l ( ’ Data Points ’ )
81 y l a b e l ( ’ Amplitude [ Arb i t rary Units ] ’ ) ;
82 t i t l e ( ’ICA Simulat ion Sur face P r o f i l e 1 ’ ) ;
83 g r id on
84 hold on ;
85 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \

I C A S i m u l a t i o n S u r f a c e P r o f i l e 1 ’ ) )
86

87 f i g u r e ( ’name ’ , ’ Sur face P r o f i l e 2 ’ ) ;
88 p lo t ( t , f 2 ) ;
89 x l a b e l ( ’ Data Points ’ )
90 y l a b e l ( ’ Amplitude [ Arb i t rary Units ] ’ ) ;
91 t i t l e ( ’ICA Simulat ion Sur face P r o f i l e 2 ’ ) ;
92 g r id on
93 hold on ;
94 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \

I C A S i m u l a t i o n S u r f a c e P r o f i l e 2 ’ ) )
95

96 %Randomly combined sources , s i m i l a r s i g n a l s r e s u l t s in poor
performance o f the system

97 sou r c e s = [5∗ rand (1 , 1 ) ∗ f1−7∗rand (1 , 1 ) ∗ f 2 ;−6∗ rand (1 , 1 ) ∗ f 1+3∗rand (1 , 1 ) ∗
f 2 ] ;

98

99 f i g u r e ( ’name ’ , ’ Combined P r o f i l e 1 ’ )
100 p lo t ( t , s ou r c e s ( 1 , : ) ’ )
101 x l a b e l ( ’ Data Points ’ )
102 y l a b e l ( ’ Amplitude [ Arb i t rary Units ] ’ ) ;
103 t i t l e ( ’ICA Simulat ion Combined P r o f i l e 1 ’ ) ;
104 g r id on
105 hold on ;
106 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \

ICA Simulat ion Combined Prof i l e 1 ’ ) )
107

108 f i g u r e ( ’name ’ , ’ Combined P r o f i l e 2 ’ )
109 p lo t ( t , s ou r c e s ( 2 , : ) ’ )
110 x l a b e l ( ’ Data Points ’ )
111 y l a b e l ( ’ Amplitude [ Arb i t rary Units ] ’ ) ;
112 t i t l e ( ’ICA Simulat ion Combined P r o f i l e 2 ’ ) ;
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113 g r id on
114 hold on ;
115 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \

ICA Simulat ion Combined Prof i l e 2 ’ ) )
116

117

118 %
==========================================================================

119

120 permute = randperm (P) ; %generate a permutation vec to r
121 s = source s ( : , permute ) ; %time scrambled inputs f o r s t a t i o n a r i t y
122

123 x = s ; %Mix input s i g n a l s ( permuted )
124 mixes = sourc e s ; %Make mixed source s ( not permuted )
125

126 %==============Sphere the data
=============================================

127 mx = mean( mixes ’ ) ;
128 c = cov ( mixes ’ ) ;
129

130 x = x − mx’∗ ones (1 ,P) ; %Subtract means from mixes
131

132 wz = 2∗ inv ( sqrtm ( c ) ) ; % Get d e c o r r e l a t i n g matrix
133 x = wz∗x ; % Decor r e l a t e mixes so cov (x ’ ) = 4∗ eye (N)
134

135 %
==========================================================================

136

137 w = eye (N) ; %I n i t i t a l unmixing matrix . Can be random numbers
138 M = s i z e (w, 2 ) ; %M=N u s u a l l y
139

140 sweep = 0 ;
141 oldw = w;
142 o l d d e l t a = ones (1 ,N∗N) ;
143 Id = eye (M) ;
144

145 %
==========================================================================

146

147 T=0.0001;
148 B=30;
149

150 sweep = sweep+1;
151 t = 1 ;
152

153 noblocks = f i x (P/B) ;
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154 BI = B∗ Id ;
155

156 f o r t = t :B: t−1+noblocks ∗B
157

158 u = w∗x ( : , t : t+B−1) ;
159 w = w+T∗( BI+(1−2∗(1./(1+exp(−u) ) ) ) ∗u ’ ) ∗w;
160

161 end
162

163 d e l t a = reshape ( oldw−w, 1 ,M∗N)
164 change = d e l t a ∗ de l ta ’
165 ang le = acos ( ( d e l t a ∗ o ldde l ta ’ ) / s q r t ( ( change ) ∗( o l d d e l t a ∗ o ldde l ta ’ ) ) )
166

167 oldw = w;
168

169 %
==========================================================================

170

171 uu = w∗wz∗mixes ; %Separated sourc e s
172

173 f r e c o n s t r u c t e d = uu ( 1 , : )+uu ( 2 , : ) ; %Reconstruct the o r i g i n a l s i g n a l
174

175 r a t i o = mixes ( 2 , : ) . / f r e c o n s t r u c t e d ; %Measure the r a t i o between
them

176 mu = mean( r a t i o ) ; %Find the mean
177

178 f i g u r e ( ’name ’ , ’ Error Ratio ’ ) ; %Plot f o r enterta inment
179 p lo t ( r a t i o ) ;
180

181 new uu ( 1 , : ) = mu∗uu ( 1 , : ) ; %Renormalize
182 new uu ( 2 , : ) = mu∗uu ( 2 , : ) ; %Renormalize
183

184

185 f i g u r e ( ’name ’ , ’ Renormalized Separated P r o f i l e 1 ’ ) ; %Renormalized
unmixed sour ce s

186 p lo t ( new uu ( 1 , : ) ) ;
187 x l a b e l ( ’ Data Points ’ )
188 y l a b e l ( ’ Amplitude [ Arb i t rary Units ] ’ ) ;
189 t i t l e ( ’ICA Simulat ion Renormalized P r o f i l e 1 ’ ) ;
190 g r id on
191 hold on ;
192 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \

ICA Simulat i on Renorma l i z ed Separated Pro f i l e 1 ’ ) )
193

194 f i g u r e ( ’name ’ , ’ Renormalized Separated P r o f i l e 2 ’ ) ; %Renormalized
unmixed sour ce s

195 p lo t ( new uu ( 2 , : ) ) ;
196 x l a b e l ( ’ Data Points ’ )
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197 y l a b e l ( ’ Amplitude [ Arb i t rary Units ] ’ ) ;
198 t i t l e ( ’ICA Simulat ion Renormalized P r o f i l e 1 ’ ) ;
199 g r id on
200 hold on ;
201 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \

ICA Simulat i on Renorma l i z ed Separated Pro f i l e 2 ’ ) )
202

203 %
==========================================================================



Appendix C

ICA Analysis Code

1 %ICA Analys i s code , o r i g i n a l l y developed by Tony Bel l , s l i g h t l y
modi f i ed to

2 %be used f o r s u r f a c e a n a l y s i s purposes
3 c l e a r a l l
4 c l o s e a l l
5

6 d i r e c t o r y i n p u t = u i g e t d i r ( ’ ’ , ’ Choose d i r e c t o r y with input data
f i l e s : ’ ) ; % S e l e c t input
d i r e c t o r y

7 data1 = x l s r ea d ( s t r c a t ( d i r e c t o r y i n p u t , ’ \MG 2 2 . x l sx ’ ) , ’MG 2 2 ’ , ’
B21 : B27020 ’ ) ; %Choose your own f i l e s

8 data2 = x l s r ea d ( s t r c a t ( d i r e c t o r y i n p u t , ’ \MG 2 2 − Copy . x l sx ’ ) , ’
MG 2 2 ’ , ’B21 : B27020 ’ ) ;

9

10 N = length ( data1 ) ;
11 t = ( 1 :N) ’ ;
12

13 format = ’−dpng ’ ;
14 r e s o l u t i o n = ’−r300 ’ ;
15 d i r e c t o r y o u t p u t = u i g e t d i r ( ’ ’ , ’ Choose d i r e c t o r y with output data

f i l e s : ’ ) ;
16

17 %
==========================================================================

18 %Detrend here
19

20 i c a d a t a = [ data1 , data2 ] ;
21

22 f o r g =1:2
23

24 [P, S , mu hat ] = p o l y f i t ( t , i c a d a t a ( : , g ) , 3 ) ;
25 f 1 = po lyva l (P, t , S , mu hat ) ;
26

96
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27 f i g u r e ( ’name ’ , s t r c a t ( ’ Or i g i na l Sur face and 2nd Order Detrending
Polynomial ’ , num2str ( g ) ) ) ;

28 p lo t ( t , i c a d a t a ( : , g ) , ’− ’ , t , f1 , ’−− ’ ) ;
29 x l a b e l ( ’ Lenght [m] ’ ) ;
30 y l a b e l ( ’ Heigth [m] ’ ) ;
31 t i t l e ( s t r c a t ( ’ Or i g i na l Sur face and 2nd Order Detrending Polynomial ’ ,

num2str ( g ) ) ) ;
32 g r id on
33 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , s t r c a t ( ’ \

Orig ina l Sur face and 2nd Order Det rend ing Po lynomia l ’ , num2str ( g ) )
) )

34

35 i c a d a t a ( : , g ) = i c a d a t a ( : , g ) − f 1 ; % Detrend . Very p r i m i t i v e .
36

37 %Plot the detrended s u r f a c e
38 f i g u r e ( ’name ’ , s t r c a t ( ’ Detrended Sur face P r o f i l e ’ , num2str ( g ) ) ) ;
39 p lo t ( t , i c a d a t a ( : , g ) ) ;
40 x l a b e l ( ’ Lenght [m] ’ ) ;
41 y l a b e l ( ’ Heigth [m] ’ ) ;
42 t i t l e ( s t r c a t ( ’ Detrended Sur face P r o f i l e ’ , num2str ( g ) ) ) ;
43 g r id on
44 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , s t r c a t ( ’ \

D e t r e n d e d S u r f a c e P r o f i l e ’ , num2str ( g ) ) ) )
45

46 end
47

48 %
==========================================================================

49 P = 2 ;
50 sou r c e s = ica data ’ ; %These are the sour c e s that get mixed up

together , r i g h t ?
51

52 permute = randperm (N) ; %generate a permutation vec to r
53 s = source s ( : , permute ) ; %time scrambled inputs f o r s t a t i o n a r i t y
54

55 x = s ; %Mix input s i g n a l s ( permuted )
56 mixes = sourc e s ; %Make mixed source s ( not permuted )
57

58 %==============Sphere the data
=============================================

59 mx = mean( mixes ’ ) ;
60 c = cov ( mixes ’ ) ;
61

62 x = x − mx’∗ ones (1 ,N) ; %Subtract means from mixes
63

64 wz = 2∗ inv ( sqrtm ( c ) ) ; % Get d e c o r r e l a t i n g matrix
65 x = wz∗x ; % Decor r e l a t e mixes so cov (x ’ ) = 4∗ eye (N)
66
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67 %
==========================================================================

68

69 w = eye (P) ; %I n i t i t a l unmixing matrix . Can be random numbers
70 M = s i z e (w, 2 ) ; %M=N u s u a l l y
71

72 sweep = 0 ;
73 oldw = w;
74 o l d d e l t a = ones (1 ,P∗P) ;
75 Id = eye (M) ;
76

77 %
==========================================================================

78

79 L=0.0001;
80 B=30;
81

82 sweep = sweep+1;
83 r = 1 ;
84

85 noblocks = f i x (N/B) ;
86 BI = B∗ Id ;
87

88 f o r r = r :B: r−1+noblocks ∗B
89

90 u = w∗x ( : , r : r+B−1) ;
91 w = w+L∗( BI+(1−2∗(1./(1+exp(−u) ) ) ) ∗u ’ ) ∗w;
92

93 end
94

95 %[M,N] = s i z e (w) ;
96 d e l t a = reshape ( oldw−w, 1 ,M∗P) ;
97 change = d e l t a ∗ de l ta ’ ;
98 ang le = acos ( ( d e l t a ∗ o ldde l ta ’ ) / s q r t ( ( change ) ∗( o l d d e l t a ∗ o ldde l ta ’ ) ) ) ;
99

100 oldw = w;
101 f p r i n t f ( ’ ∗∗∗∗ sweep = %d , change = %.4 f ang le=%.1 f deg . , [N%d , M%d , P%

d , B%d , L%.5 f ]\n ’ , sweep , change , 180∗ ang le / pi , N,M,P,B, L) ;
102

103 uu = w∗wz∗mixes ; %Separated sourc e s
104

105 f r e c o n s t r u c t e d = uu ( 1 , : ) + uu ( 2 , : ) ; %Reconstruct the o r i g i n a l
s i g n a l

106

107 r a t i o = mixes ( 2 , : ) . / f r e c o n s t r u c t e d ; %Measure the r a t i o between
them

108
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109 mu = mean( r a t i o ) %Find the mean
110

111 f i g u r e ( ’name ’ , ’ Error Ratio ’ ) ; %Plot f o r enterta inment
112 p lo t ( r a t i o ) ;
113 x l a b e l ( ’ Lenght [m] ’ ) ;
114 y l a b e l ( ’ Heigth [m] ’ ) ;
115 t i t l e ( ’ Error Rat io ’ ) ;
116 g r id on
117 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \Error Rat io ’ ) )
118

119 new uu ( 1 , : ) = mu∗uu ( 1 , : ) ; %Renormalize
120 new uu ( 2 , : ) = mu∗uu ( 2 , : ) ; %Renormalize
121

122

123 f i g u r e ( ’name ’ , ’ Renormalized Separated P r o f i l e 1 ’ ) ; %Renormalized
unmixed sour ce s

124 p lo t ( new uu ( 1 , : ) ) ;
125 x l a b e l ( ’ Lenght [m] ’ ) ;
126 y l a b e l ( ’ Heigth [m] ’ ) ;
127 t i t l e ( ’ Renormalized Separated P r o f i l e 1 ’ ) ;
128 g r id on
129 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \

Renorma l i z ed Separa t ed Pro f i l e 1 ’ ) )
130

131 f i g u r e ( ’name ’ , ’ Renormalized Separated P r o f i l e 2 ’ ) ; %Renormalized
unmixed sour ce s

132 p lo t ( new uu ( 2 , : ) ) ;
133 x l a b e l ( ’ Lenght [m] ’ ) ;
134 y l a b e l ( ’ Heigth [m] ’ ) ;
135 t i t l e ( ’ Renormalized Separated P r o f i l e 2 ’ ) ;
136 g r id on
137 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \

Renorma l i z ed Separa t ed Pro f i l e 2 ’ ) )
138

139

140 %
==========================================================================

141 %Height d i s t r i b u t i o n func t i on f o r f i r s t component
142 bins = 80 ; %Number o f b ins
143

144 [ hdf1 , bc1 ] = h i s t ( new uu ( 1 , : ) , b ins ) ;
145

146 f i g u r e ( ’name ’ , ’ Bar graph o f the Historgram o f Sur face 1 ’ ) ;
147 bar ( bc1 , hdf1 ) ;
148 x l a b e l ( ’ s u r f a c e he ight ’ )
149 y l a b e l ( ’ p r o b a b i l i t y ’ )
150 t i t l e ( ’ Histogram of he ight d i s t r i b u t i o n func t i on f o r he ight o f

s u r f a c e p r o f i l e y = f ( x ) ’ )
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151 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \
B a r g r a p h o f t h e h i s t o r g r a m o f S u r f a c e 1 ’ ) )

152 %
==========================================================================

153 %Height d i s t r i b u t i o n func t i on f o r second component
154

155 [ hdf1 , bc1 ] = h i s t ( new uu ( 2 , : ) , b ins ) ;
156

157 f i g u r e ( ’name ’ , ’ Bar graph o f the Historgram o f Sur face 2 ’ ) ;
158 bar ( bc1 , hdf1 ) ;
159 x l a b e l ( ’ s u r f a c e he ight ’ )
160 y l a b e l ( ’ p r o b a b i l i t y ’ )
161 t i t l e ( ’ Histogram of he ight d i s t r i b u t i o n func t i on f o r he ight o f

s u r f a c e p r o f i l e y = f ( x ) ’ )
162 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \

B a r g r a p h o f t h e h i s t o r g r a m o f S u r f a c e 2 ’ ) )
163 %

==========================================================================

164 %Autocovariance func t i on f o r f i r s t component
165

166 l a g s = l i n s p a c e (0 , t (N)−t (1 ) ,N) ; %lag l eng th s
167

168 %Autocovariance func t i on c a l c u l a t i o n
169

170 c = xcov ( new uu ( 1 , : ) , ’ c o e f f ’ ) ; %Autocovariance func t i on
171 ac f = c (N:2∗N−1) ; %Right s ided v e r s i on
172

173 %Cor r e l a t i on l enght c a l c u l a t i o n
174 k = 1 ;
175 whi le ( a c f ( k )>1/exp (1 ) )
176 k = k+1;
177 end
178

179 c1 = 0 . 5∗ ( t (k−1)−t ( k )−2∗t (1 ) ) ; %Cor r e l a t i on l ength
180

181 f i g u r e ( ’name ’ , ’ Normalized ACF of Sur face 1 ’ ) ;
182 p lo t ( lags , a c f ) ;
183 x l a b e l ( ’ l ag l ength ’ )
184 y l a b e l ( ’ Normalized ACF’ )
185 t i t l e ( ’ Plot o f the Normalized ACF of Sur face 1 ’ )
186 g r id on
187 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \

Normal ized ACF of Surface 1 ’ ) )
188 %

==========================================================================

189 %Autocovariance func t i on f o r second component
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190

191 l a g s = l i n s p a c e (0 , t (N)−t (1 ) ,N) ; %lag l eng th s
192

193 %Autocovariance func t i on c a l c u l a t i o n
194

195 c = xcov ( new uu ( 2 , : ) , ’ c o e f f ’ ) ; %Autocovariance func t i on
196 ac f = c (N:2∗N−1) ; %Right s ided v e r s i on
197

198 %Cor r e l a t i on l enght c a l c u l a t i o n
199 k = 1 ;
200 whi le ( a c f ( k )>1/exp (1 ) )
201 k = k+1;
202 end
203

204 c1 = 0 . 5∗ ( t (k−1)−t ( k )−2∗t (1 ) ) ; %Cor r e l a t i on l ength
205

206 f i g u r e ( ’name ’ , ’ Normalized ACF of Sur face 2 ’ ) ;
207 p lo t ( lags , a c f ) ;
208 x l a b e l ( ’ l ag l ength ’ )
209 y l a b e l ( ’ Normalized ACF’ )
210 t i t l e ( ’ Plot o f the Normalized ACF of Sur face 2 ’ )
211 g r id on
212 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \

Normal ized ACF of Surface 2 ’ ) )
213 %

==========================================================================



Appendix D

MoM Band Scatter Simulation
Code

1 %This i s a 2D s c a l a r wave random s u r f a c e s c a t t e r i n g s imu la t i on
2

3 c l e a r a l l ;
4 c l o s e a l l ;
5

6 s c a l e = 10 ; %Dangerous idea
7 L = 100/ s c a l e ; %Sca l e everyth ing
8 N = 700 ; %Show me the number o f sampling po in t s per new s u r f a c e
9

10 N w = 10 ; %Number o f wavelenghts . Minimum i s 2 .
Bigger i s b e t t e r .

11 N f = 180 ; %Number o f s c a t t e r e d po in t s . Bigger
i s b e t t e r

12 N mc = 100 ; %Number o f Monte Carlo s imu la t i on s .
Bigger i s b e t t e r .

13

14 dx = L/N; %Sur face r e s o l u t i o n
15

16 x = l i n s p a c e (−L/2 ,L/2 ,N) ;
17 g = L/7 ; %Tapering Parameter
18 %

==========================================================================

19

20 %Planck d i s t r i b u t i o n parameters
21

22 h = 6.626 e−34; % Planck ’ s Constant = 4.135 x 10ˆ−15 eV s
23 c = 3e8 ; % speed o f l i g h t
24 T = 90 ; % Temperature o f the hot source
25 k = 1.38066 e−23; % Boltzmann constant in J/K
26

102
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27 lambda min = 180e−6; % Sta r t i ng wavelenght
28 lambda max = 210e−6;% Ending wavelenght
29

30 waves = l i n s p a c e ( lambda min , lambda max , N w) ; %Wavelength r e s o l u t i o n .
Can s imulate the detector ‘ s f requency range

31

32 p = 2∗ pi ∗h∗( c ˆ2) . / ( waves . ˆ 5 ) ; %Numerator
33 bT = p . / ( exp (h∗c . / ( waves∗k∗T)−1) ) ; %Planck Radiat ion

D i s t r i b u t i o n
34

35 bT = bT. /max(bT) ; %Normalized Planck
Radiat ion D i s t r i b u t i o n

36

37 %
==========================================================================

38 %Sca la r wave parameters
39

40 theta deg = 45 ; %Inc iden t ang le in degree s (
because we ‘ re a l l used to them )

41 the ta rad = theta deg ∗ pi /180 ; %Inc iden t ang le in radians ,
the magic s t u f f

42

43 %
==========================================================================

44 %Sur face c o n t r o l parameters
45

46 c l = 1 .08E−04; %Cor r e l a t i on l ength in m. This parameter i s
obta ined from the p r o f i l e a n a l y s i s code

47 he ight = 1.53E−04; %Height std in m. This parameter i s obta ined from
the p r o f i l e a n a l y s i s code

48 l a p l a c i a n h e i g h t = 2.05890 e−07; %Empir ica l guess
49 %

==========================================================================

50

51 he ight norma l i z ed = ( he ight . / waves ) . / s c a l e ; %Normalize
52 c l no rm a l i z ed = ( c l . / waves ) . / s c a l e ; %Normalize
53 waves normal ized = ( waves . / waves ) . / s c a l e ; %Normalize
54 l a p l a c i a n h e i g h t n o r m a l i z e d = ( l a p l a c i a n h e i g h t . / waves ) / s c a l e ; %

Normalize
55

56 k number=2∗pi . / waves normal ized ; %Wavenumber !
57

58 %
==========================================================================

59 %Image p r i n t i n g s e t t i n g s
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60

61 format = ’−dpng ’ ;
62 r e s o l u t i o n = ’−r500 ’ ;
63 d i r e c t o r y o u t p u t = u i g e t d i r ( ’ ’ , ’ Choose d i r e c t o r y with output data

f i l e s : ’ ) ;
64

65 %
==========================================================================

66 %I n i t i a l i z e d
67 new l i ght = ze ro s ( N f , 1 ) ;
68 f i n a l l i g h t = ze ro s ( N f , 1 ) ;
69 f i na l spm = ze ro s ( N f , 1 ) ;
70 s i n g u l a r i t y c h e c k G = ze ro s (N mc , 1 ) ;
71 i n c ident e t emp = ze ro s (N w , 1 ) ;
72 time = ze ro s (N w , 1 ) ;
73 f i n a l c o n d i t i o n a l i t y = ze ro s (N w , 1 ) ;
74

75 s tep = pi /( N f−1) ;
76 degree s = −(p i /2) : s tep : ( p i /2) ;
77 degs = degree s .∗180/ p i ;
78

79 %This a l l ows to p l o t only h a l f o f the s c a t t e r e d f i e l d ,
80 %in order to make i t e a s i e r to compare with the exper imenta l setup

which can only see h a l f o f the s c a t t e r e d f i e l d
81 h a l f = ( N f /2) : N f ;
82 gamma=1.78107241;
83

84

85 %
==========================================================================

86 t i c
87 f o r j = 1 :N w
88

89 t ex t = ’ I t e r a t i o n number − %1.0 f . Lenght − %1.0 f ( mu l t ip l e o f
wavelenght ) . Sur face po in t s − %1.0 f .\n ’ ;

90 f p r i n t f ( text , j , L ,N)
91

92 s c a l i n g =8∗pi ∗k number ( j ) ∗g∗ s q r t ( p i /2) ∗ cos ( the ta rad ) ∗(1−(1+2∗ tan (
the ta rad ) ˆ2) /(2∗ ( k number ( j ) ∗g∗ cos ( the ta rad ) ) ˆ2) ) ; %
Conservat ion o f energy s c a l e

93

94 f o r i =1:N mc
95

96 %
==========================================================================

97 %Here the s u r f a c e i s generated , f o l l o w i n g the above
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parameters .
98 %Idea taken from the t h e s i s o f David Berg s t r m and modi f i ed

to
99 %inc lude a Laplac ian no i s e component

100

101 u = rand (1 ,N) −0.5;
102 b = l a p l a c i a n h e i g h t n o r m a l i z e d ( j ) / s q r t (2 ) ;
103 l a p l a c e n o i s e = 0 − b∗ s i gn (u) .∗ l og (1−2∗abs (u) ) ;
104

105 %
==========================================================================

106

107 F i l t e r = exp(−abs ( x ) /( c l no rma l i z ed ( j ) /2) ) ;
108 Z = he ight norma l i z ed ( j ) ∗ randn (1 ,N) ; %Generate random numbers

with standard dev i a t i on ( he ight )
109 F = s q r t (2/ s q r t ( p i ) ) ∗ s q r t ( dx/ c l no rm a l i z ed ( j ) ) ∗ i f f t ( f f t (Z) .∗

f f t ( F i l t e r ) ) + l a p l a c e n o i s e ; %Empir ica l c o r r e c t i o n
110

111 %
==========================================================================

112 %The f i r s t d e r i v a t i v e i s be ing c a l c u l a t e d
113

114 dF = (1/ dx ) ∗ grad i ent (F) ;
115 dF(1) = (F(2)−F(N) ) /(2∗dx ) ; %They connect around the edges in

order to avoid d i s c o n t i n u i t i e s around the edges o f the
s u r f a c e which cause f a l s e r e f l e c t i o n s

116 dF(N) = (F(1)−F(N−1) ) /(2∗dx ) ;
117

118 %
======================================================================

119 %Tapered i n c i d e n t s c a l a r beam i s generated here , f o l l o w i n g
the id ea s o f

120 %Tsang , e t a l .
121

122 w=(2∗((( x+F∗ tan ( the ta rad ) ) /g ) . ˆ 2 )−1) . / ( ( k number ( j ) ∗g∗ cos (
the ta rad ) ) ˆ2) ;

123 P s i i n c = bT( j ) ∗exp (1 i ∗k number ( j ) ∗( x∗ s i n ( the ta rad )−F∗ cos (
the ta rad ) ) .∗(1+w)−((x+F∗ tan ( the ta rad ) ) /g ) . ˆ 2 ) ’ ; %Every
wavelenght has a c e r t a i n energy

124

125 %
======================================================================

126 %Perform the po int matching and computing o f the argument
127

128 [ xm, xn]= meshgrid ( x ) ;
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129 [Fm, Fn]= meshgrid (F) ;
130

131 d i s t anc e=k number ( j ) ∗ s q r t ( (Fm−Fn) .ˆ2 + (xm−xn ) . ˆ 2 ) ;
132 d i s t anc e ( 1 :N+1:Nˆ2) = NaN; % Replace the d iagona l o f t h i s

matrix with anything but 0 to avoid 0 s in the denominator
o f the Green ‘ s func t i on .

133

134 %
======================================================================

135 %2D Green ‘ s func t i on de f ined and used here
136

137 G=1i /4∗ b e s s e l h (0 , 1 , d i s t anc e ) ∗dx ;
138 t a y l o r=s q r t (1+dF . ˆ 2 ) ∗dx ;
139

140 G( 1 :N+1:Nˆ2)=(1 i /4) ∗dx∗(1+(2∗1 i / p i ) ∗( l og (gamma∗k number ( j ) ∗
t a y l o r /4)−1) ) ; % The badly cond i t i oned d iagona l i s
r ep laced by the approximation

141

142 s i n g u l a r i t y c h e c k G ( i ) = cond (G, 2 ) ; % The c o n d i t i o n a l i t y o f
the Green ‘ s func t i on i s recorded f o r l a t e r a n a l y s i s .

143

144 s c a t t e r e d v e c t o r=G\P s i i n c ;
145 %

==================================================================

146 % Sum up a l l the s c a t t e r e d source po in t s at every f i e l d po int
147

148 f o r m=1: N f
149

150 P s i s c a t = sum( exp(−1 i ∗k number ( j ) ∗( s i n ( degree s (m) ) ∗x+F∗
cos ( degree s (m) ) ) ) .∗ s c a t t e r e d v e c t o r ’∗ dx ) ; %Compute the

numeric i n t e g r a l o f the s c a t t e r e d f i e l d
151 normal ized = ( abs ( P s i s c a t ) ) ˆ2/ s c a l i n g ;

%Make r e a l and normal ize
152 new l i ght (m)= normal ized / i + ( ( i −1)/ i ) ∗ new l i ght (m) ;

%I t e r a t i v e mean f o r the Monte Carlo
153

154 end
155 end
156

157 f i n a l c o n d i t i o n a l i t y ( j ) = mean( s i n g u l a r i t y c h e c k G ) ;
158 f i n a l l i g h t = f i n a l l i g h t + new l i ght ;
159 time ( j ) = toc ;
160

161 end
162

163 f i n a l l i g h t = 10∗ l og10 ( f i n a l l i g h t ) ;
164
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165 %
==========================================================================

166 %Plot the Planck d i s t r i b u t i o n
167

168 f i g u r e ( ’name ’ , ’ Planck Radiat ion D i s t r i b u t i o n ’ ) ;
169 p lo t ( l i n s p a c e ( lambda min , lambda max , N w) ,bT, ’ ∗ ’ ) ;
170 x l a b e l ( ’ Wavelength [m] ’ )
171 y l a b e l ( ’ Normalized Spec t r a l Radiance ( o r i g i n a l l y [W mˆ{−2} s r ˆ{−1} nm

ˆ{−1} ]) ’ ) ;
172 t i t l e ( ’ Planck Radiat ion D i s t r i b u t i o n ’ ) ;
173 g r id on
174 hold on ;
175 l egend ( s t r c a t ( num2str (T) , ’ K ’ ) ) ; %See i f t h i s works
176 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \Planck Radiat ion

D i s t r i b u t i o n ’ ) )
177

178 %
%==========================================================================

179 %Plot the l a s t s u r f a c e p r o f i l e
180

181 f i g u r e ( ’name ’ , ’ Last Simulated Sur face ’ ) ;
182 p lo t (x ,F) ;
183 x l a b e l ( ’ Lenght [ mu l t ip l e o f wavelenght ] ’ )
184 y l a b e l ( ’ Height [ mu l t ip l e o f wavelenght ] ’ ) ;
185 t i t l e ( ’ Last Simulated Sur face ’ ) ;
186 g r id on
187 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \Last Simulated

Sur face ’ ) )
188

189 %
%==========================================================================

190 %Plot the f i n a l i n c i d e n t beam
191

192 f i g u r e ( ’name ’ , ’ Last Simulated Inc iden t F i e ld D i s t r i b u t i o n ’ ) ;
193 p lo t (x , abs ( P s i i n c ) ) ;
194 x l a b e l ( ’ Lenght [ mu l t ip l e o f wavelenght ] ’ )
195 y l a b e l ( ’ Normalized I n t e n s i t y ( o r i g i n a l l y [W mˆ{−2} s r ˆ{−1} nmˆ{−1} ]) ’

) ;
196 t i t l e ( ’ Last Simulated Inc iden t F i e ld D i s t r i b u t i o n ’ ) ;
197 g r id on
198 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \Last Simulated

Inc iden t F i e ld D i s t r i b u t i o n ’ ) )
199

200 %
==========================================================================
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201 %Plot the sum of a l l the s c a t t e r e d waves summed toge the r as one band
202

203 f i g u r e ( ’name ’ , ’ Scat t e r ed Band in 2D S p h e r i c a l Coordinates ’ ) ;
204 p lo t ( degs , f i n a l l i g h t , degs ( h a l f ) , f i n a l l i g h t ( h a l f ) , ’ r ’ ) ;
205 x l a b e l ( ’ Angle [ deg ] ’ )
206 y l a b e l ( ’ B i s t a t i c S c a t t e r i n g C o e f f i c i e n t (dB) ’ ) ;
207 t i t l e ( ’ Scat t e r ed Band in 2D S p h e r i c a l Coordinates ’ ) ;
208 g r id on
209 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \ Scat te red Band

in 2D S p h e r i c a l Coordinates ’ ) )
210

211 %
==========================================================================

212 %Plot the c o n d i t i o n a l i t y o f the Green ‘ s func t i on to determine whether
the

213 %simula t i on i s r e l i a b l e or not . Higher va lue s i n d i c a t e a badly
behaved

214 %matrix
215

216 f i g u r e ( ’name ’ , ’ C o n d i t i o n a l i t y o f Green ‘ s func t i on matrix ’ ) ;
217 p lo t ( 1 : N w , f i n a l c o n d i t i o n a l i t y , ’ ∗ ’ ) ;
218 x l a b e l ( ’Number o f I t e r a t i o n s ’ )
219 y l a b e l ( ’2−norm Condit ion Number ’ ) ;
220 t i t l e ( ’ C o n d i t i o n a l i t y o f Green ‘ s func t i on matrix ’ ) ;
221 g r id on
222 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \C o n d i t i o n a l i t y

o f Green ‘ s func t i on d i s c r e t i z a t i o n ’ ) )
223

224 %
==========================================================================

225 %Plot the time s e r i e s
226

227 f i g u r e ( ’name ’ , ’Time I t e r a t i o n s ’ ) ;
228 p lo t ( 1 : N w , time , ’ ∗ ’ ) ;
229 x l a b e l ( ’ I t e r a t i o n Number ’ )
230 y l a b e l ( ’Time per I t e r a t i o n [ s ] ’ ) ;
231 t i t l e ( ’Time I t e r a t i o n s ’ ) ;
232 g r id on
233 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \Time I t e r a t i o n s ’

) )
234

235 %
==========================================================================

236

237 %The s imulated s u r f a c e in 2D s p h e r i c a l c oo rd ina t e s i s saved to an
Excel
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238 %document . Could be changed to anything e l s e
239

240 degree s = num2cel l ( ( degs ) ) ’ ;
241 degree s = [ ’ Degrees ’ ; degree s ] ;
242

243 va lue s = num2cel l ( f i n a l l i g h t ) ;
244 va lue s = [ ’MoM’ ; va lue s ] ;
245

246 data = [ degrees , va lue s ] ;
247 x l s w r i t e ( s t r c a t ( d i r e c to ry output , ’ \ S c a t t e r e d f i e l d . x l sx ’ ) , data , 1 , ’A1

’ ) ;
248

249 %
==========================================================================

250 % Save the s imu la t i on parameters to a text f i l e in the same f o l d e r as
the

251 % simula t i on images .
252

253 headers = [ ’ Sca l e : %1.1 f \n ’ , ’Number o f Sur face Points : %1.0 f \n ’ , ’
Sur face Lenght : %1.5 e [∗waves ]\n ’ , ’ Sur face Reso lut ion : %1.3 f [
wavelenghts per po int ] \n\n ’ , ’Number o f Wavelenghts : %1.0 f \n ’ , ’
Number o f F i e ld Points : %1.0 f \n ’ , ’Number o f Monte Carlo
s imu la t i on s : %1.0 f \n\n ’ , ’ Sur face Standard Deviat ion : %1.5e [m]\n ’
, ’ Sur face Cor r e l a t i on Lenght : %1.5 e [m]\n ’ , ’ Laplace d i v e r s i t y :
%1.5 e [m]\n\n ’ , ’ Hot Source Temperature : %1.1 f [K]\n ’ , ’ S t a r t i ng
Wavelenght : %1.5 e [m]\n ’ , ’ F ina l Wavelenght : %1.5 e [m]\n ’ , ’
I n c iden t Angle : %1.3 f [ Degrees ]\n ’ , ’ Total Time : %1.3 f [ s ]\n ’ ] ;

254 v a l s = [ s ca l e , N, L , dx , N w , N f , N mc , height , c l , l a p l a c i a n h e i g h t
, T, lambda min , lambda max , theta deg , toc ] ;

255

256 f i d = fopen ( s t r c a t ( d i r e c to ry output , ’ \Simulat ion Parameters . txt ’ ) , ’
wt ’ ) ;

257 f p r i n t f ( f i d , headers , v a l s ) ;
258 f c l o s e ( f i d ) ;
259

260

261 %
==========================================================================



Appendix E

SPM Band Scatter Simulation
Code

1 c l e a r a l l
2 c l o s e a l l
3

4 N w = 50 ; %Number o f wavelenghts . Minimum i s 2 .
Bigger i s b e t t e r .

5 N f = 180 ; %Number o f s c a t t e r e d po in t s . Bigger
i s b e t t e r

6 s c a l e = 1 ;
7

8 %
==========================================================================

9 %Sca la r wave parameters
10

11 theta deg = 45 ; %Inc iden t ang le in degree s (
because we ‘ re a l l used to them )

12 the ta rad = theta deg ∗ pi /180 ; %Inc iden t ang le in radians ,
the magic s t u f f

13

14 %
==========================================================================

15 %Sur face c o n t r o l parameters
16

17 c l = 1.08000 e−04; %Cor r e l a t i on l ength in m. This parameter i s
obta ined from the p r o f i l e a n a l y s i s code

18 he ight = 1.93000 e−05; %Height std in m. This parameter i s obta ined
from the p r o f i l e a n a l y s i s code

19

20 %
==========================================================================

110
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21 %Planck d i s t r i b u t i o n parameters
22

23 h = 6.626 e−34; % Planck ’ s Constant = 4.135 x 10ˆ−15 eV s
24 c = 3e8 ; % speed o f l i g h t
25 T = 850 ; % Temperature o f the hot source
26 k = 1.38066 e−23; % Boltzmann constant in J/K
27

28 lambda min = 180e−6; % Sta r t i ng wavelenght
29 lambda max = 210e−6;% Ending wavelenght
30

31 waves = l i n s p a c e ( lambda min , lambda max , N w) ; %Wavelength r e s o l u t i o n .
Can s imulate the detector ‘ s f requency range

32

33 p = 2∗ pi ∗h∗( c ˆ2) . / ( waves . ˆ 5 ) ; %Numerator
34 bT = p . / ( exp (h∗c . / ( waves∗k∗T)−1) ) ; %Planck Radiat ion

D i s t r i b u t i o n
35

36 bT = bT. /max(bT) ; %Normalized Planck
Radiat ion D i s t r i b u t i o n

37

38 % Here we must apply the window
39

40 %
==========================================================================

41 %Normalize everyth ing
42

43 he ight norma l i z ed = he ight . / waves ; %Normalize
44 c l no rm a l i z ed = c l . / waves ; %Normalize
45 waves normal ized = waves . / waves ; %Normalize
46

47 k number=2∗pi . / waves normal ized ; %Wavenumber !
48

49 %
==========================================================================

50 %Scat te red f i e l d i n i t i a l i z a t i o n
51

52 spm f ina l = ze ro s (1 , N f ) ;
53 dan = pi /( N f+1) ;
54 degree s = −(p i/2−dan ) : dan : ( p i/2−dan ) ;
55 degs = degree s .∗180/ p i ;
56 h a l f = ( N f /2) : N f ;
57

58 %
==========================================================================

59 %Image p r i n t i n g s e t t i n g s
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60

61 format = ’−djpeg ’ ;
62 r e s o l u t i o n = ’−r300 ’ ;
63 d i r e c t o r y o u t p u t = u i g e t d i r ( ’ ’ , ’ Choose d i r e c t o r y with output data

f i l e s : ’ ) ;
64

65 %
==========================================================================

66

67 f o r i = 1 :N w
68

69 spm new = 4∗k number ( i ) ˆ3∗( cos ( degree s ) . ˆ 2 ) .∗ cos ( the ta rad ) ∗(
he ight norma l i z ed ( i ) ˆ2∗ c l no rma l i z ed ( i ) /(2∗ s q r t ( p i ) ) ) .∗ exp (−((( s i n
( degree s )−s i n ( the ta rad ) ) . ˆ 2 ) ∗k number ( i ) ˆ2∗ c l no rma l i z ed ( i )
ˆ2∗0 .25) ) ;

70 spm f ina l = ( ( i −1)/ i ) .∗ spm f ina l + spm new . / i ;
71

72 end
73

74 spm f ina l = 10∗ l og10 ( spm f ina l ) ; %Convert to dB
75

76 f i g u r e ( ’name ’ , ’ Small Perturbat ion Method ’ ) ;
77 p lo t ( degs , spm f ina l ) ;
78 x l a b e l ( ’ Angle [ degree s ] ’ )
79 y l a b e l ( ’ B i s t a t i c S c a t t e r i n g C o e f f i c i n e t [ dB ] ’ ) ;
80 t i t l e ( ’ Small Perturbat ion Method f o r D i f f u s e S c a t t e r i n g ’ ) ;
81 g r id on
82 hold on ;
83 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \Small Perturbat ion

Method f o r D i f f u s e S c a t t e r i n g ’ ) )
84

85 %
==========================================================================

86 %Plot the Planck d i s t r i b u t i o n
87

88 f i g u r e ( ’name ’ , ’ Planck Radiat ion D i s t r i b u t i o n ’ ) ;
89 p lo t ( l i n s p a c e ( lambda min , lambda max , N w) ,bT, ’ r ∗ ’ ) ;
90 x l a b e l ( ’ Wavelength [m] ’ )
91 y l a b e l ( ’ Normalized Spec t r a l Radiance ( o r i g i n a l l y [W mˆ{−2} s r ˆ{−1} nm

ˆ{−1} ]) ’ ) ;
92 t i t l e ( ’ Planck Radiat ion D i s t r i b u t i o n ’ ) ;
93 g r id on
94 hold on ;
95 l egend ( s t r c a t ( num2str (T) , ’ K ’ ) ) ; %See i f t h i s works
96 pr in t ( format , r e s o l u t i o n , s t r c a t ( d i r e c to ry output , ’ \Planck Radiat ion

D i s t r i b u t i o n ’ ) )
97
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98 %
==========================================================================

99 %The s imulated s u r f a c e in 2D s p h e r i c a l c oo rd ina t e s i s saved to an
Excel

100 %document . Could be changed to anything e l s e
101

102 degree s = num2cel l ( ( degs ) ’ ) ;
103 degree s = [ ’ Degrees ’ ; degree s ] ;
104

105 r e s = num2cel l ( spm f ina l ’ ) ;
106 r e s = [ ’SPM’ ; r e s ] ;
107

108 data = [ degrees , r e s ] ;
109 x l s w r i t e ( s t r c a t ( d i r e c to ry output , ’ \ Scat te red f i e ld SPM . x l sx ’ ) , data

, 1 , ’A1 ’ ) ;
110

111 %
==========================================================================

112

113 headers = [ ’Number o f Wavelenghts : %1.0 f \n ’ , ’Number o f F i e ld Points :
%1.0 f \n ’ , ’ Ratio Sca l e : %1.0 f \n ’ , ’ Sur face Standard Deviat ion :

%1.5 e [m]\n ’ , ’ Sur face Cor r e l a t i on Lenght : %1.5e [m]\n\n ’ , ’ Hot
Source Temperature : %1.1 f [K]\n ’ , ’ S t a r t i ng Wavelenght : %1.5e [m]\n
’ , ’ F ina l Wavelenght : %1.5 e [m]\n ’ , ’ I n c iden t Angle : %1.3 f [ Degrees
]\n ’ ] ;

114 v a l s = [ N w , N f , s ca l e , he ight , c l , T, lambda min , lambda max ,
theta deg ] ;

115

116 f i d = fopen ( s t r c a t ( d i r e c to ry output , ’ \Simulat ion Parameters . txt ’ ) , ’
wt ’ ) ;

117 f p r i n t f ( f i d , headers , v a l s ) ;
118 f c l o s e ( f i d ) ;
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Neural Network Code

1 %This s imple code c r e a t e s a f eed forward neura l network with 4 input
2 %neurons , 3 hidden l a y e r neurons , and 2 output l a y e r neurons . I t

accept s an
3 %e x c e l f i l e with a l l the nece s sa ry data and then e s t imate s the

network ,
4 %it ‘ s performance , and runs a quick t e s t with unseen data . The s i z e

and
5 %shape o f the network can change
6

7 c l e a r a l l
8 c l o s e a l l
9

10 % F 8 = 2460 ; %Mean s i z e in meters . Just to be known
11 % F 12 = 1765 ;
12 % F 16 = 1230 ;
13

14 d i r e c t o r y i n p u t = u i g e t d i r ( ’ ’ , ’ Choose d i r e c t o r y with input data
f i l e s : ’ ) ; % S e l e c t input d i r e c t o r y

15 Data = x l s r ea d ( s t r c a t ( d i r e c t o r y i n p u t , ’ \Taguchi NN. x l sx ’ ) , ’ Neural
Network ’ , ’B3 : G18 ’ ) ; %Choose your own f i l e s

16 inputs = Data ( : , 1 : 4 ) ’ ;
17 t a r g e t s = Data ( : , 5 : 6 ) ’ ;
18

19

20 % % Designing the network
21 % %==================================
22 net = f i t n e t ( [ 7 ] ) ;
23

24 net . tra inFcn = ’ t ra incgp ’ ;
25

26 net . divideParam . t ra inRat i o = 11/16 ;
27 net . divideParam . t e s tRat i o = 5/16 ;
28 net . divideParam . va lRat io = 5/16 ;
29

114
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30 [ net , t r ] = t r a i n ( net , inputs , t a r g e t s ) ;
31

32 outputs = net ( inputs ) ;
33 e r r o r s = gsubt rac t ( ta rge t s , outputs ) ;
34 performance = perform ( net , t a rge t s , outputs ) ;
35

36 t e s t d a t a = x l s r e a d ( s t r c a t ( d i r e c t o r y i n p u t , ’ \Taguchi NN. x l sx ’ ) , ’NN
Test ’ , ’B3 :G7 ’ ) ; %Choose your own f i l e s

37

38 Z = t e s t d a t a ( : , 1 : 4 ) ’ ;
39 r e a l d a t a = t e s t d a t a ( : , 5 : 6 ) ’ .∗1 e5
40

41 pred i c t ed = sim ( net , Z) .∗1 e5
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