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Abstract

Nursing homes are challenged to develop sta�ng strategies that
enable them to e�ciently meet the healthcare demand of their resid-
ents. In this study, we investigate how demand for care and support
fluctuates over time and during the course of a day, using demand data
from three independent nursing home departments of a single Dutch
nursing home. This demand data is used as input for an optimiza-
tion model that provides optimal sta�ng patterns across the day. For
the optimization we use a Lindley-type equation and techniques from
stochastic optimization to formulate a Mixed-Integer Linear Program-
ming (MILP) model. The impact of both the current and proposed
sta�ng patterns, in terms of waiting time and service level, are in-
vestigated. The results show substantial improvements for all three
departments both in terms of average waiting time as well as in 15
minutes service level. Especially waiting during rush hours is signific-
antly reduced, whereas there is only a slight increase in waiting time
during non-rush hours.
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1 Introduction

Like many Western countries, the Netherlands is plagued by increasing finan-
cial pressure on its Long-Term Care (LTC) system. Between 2009 and 2012,
the Dutch public spending on LTC increased by more than 20% and on av-
erage accounted for more than 40% of the total public healthcare spending
[12]. With 4.3% of GDP in 2014, the Dutch public spending on LTC was
the highest among the OECD countries [26]. In addition, recent projection
scenarios show a non-negligible increase in public spending on LTC over the
forthcoming decades [21][30][17].

In an attempt to reduce the growth rate of the expenditures on LTC,
without compromising on quality, radical reforms were introduced by the
Dutch government at the start of 2015 [38][23]. Under these reforms, the
responsibility for most formal long-term care services has been decentralized
and taken over by local authorities. New clients requiring lighter types of
care no longer receive an indication for admitted care. Instead, they now
receive care at home. As a result, the care needs of nursing home clients are
becoming more severe as healthier people are drawn away from nursing home
facilities.

Together with ongoing budget cuts, these reforms have put serious pres-
sure on Dutch nursing homes, which face the challenge of providing high-
quality, cost-e�cient care in a rapidly changing healthcare landscape. Con-
sequently, most nursing homes are searching for ways to further streamline
their care and support activities with the purpose of lowering costs while
maintaining an appropriate quality level of care [36]. The relevance of Qual-
ity of Care (QoC) in a nursing home di↵ers from many other service settings.
Often, nursing home residents are in need of ongoing assistance with basic
activities of daily living due to physical or psychological disabilities. There-
fore, in order to make it possible for nursing home residents to live their lives
according to their own daily routines, the necessary care and support should
be delivered as close as possible to the time preferences of the residents.

Capacity planning plays a key role in ensuring that an organization has
the capability to respond su�ciently to the level of demand experienced, see
e.g. [19]. For nursing homes, care workers are by far the most important
resource. This is due to the fact that care workers are responsible for the
daily care and supervision of the residents and their labor costs account for
a significant proportion of the total healthcare expenditure [11]. As such,
capacity planning in a nursing home setting consists for an important part
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of workforce planning. A prominent question that arises in this context is:
how to create a sta�ng plan that meets the demand of the nursing home
residents as closely as possible, without overstretching the available sta�ng
hours?

In daily nursing home practice, sta�ng decisions are often made without
a sound rational basis. In our view, nursing homes could greatly benefit from
a more rational sta�ng approach. Hence, our preliminary hypothesis is that
a mathematically-based sta�ng method leads to beter performance in terms
of meeting the time preferences of residents for care and support activities.

E↵ective workforce planning starts with insight in and understanding of
demand patterns [15]. Regarding the healthcare demand in a nursing home,
a distinction should be made between ‘scheduled care’ (i.e., ‘care by appoint-
ment’) [20][25] and ‘unscheduled care’ (i.e., ‘care on demand’) [36]. This
study focuses primarily on scheduled care, for which it is possible, based on
the needs and preferences of the residents, to make a fairly detailed planning
in advance. In the sequel, the predefined activities of scheduled care with a
preferred starting time are referred to as Preferred Activity Times (PATs).
In this study, we investigate how PATs fluctuate over time and during the
course of a day, using data from three independent nursing home depart-
ments of a single Dutch nursing home. The PAT-data is the input for an
optimization model that provides optimal sta�ng patterns across the day.
The impact of both the current and proposed sta�ng patterns, in terms of
waiting time and service level, are investigated.

1.1 Available literature

There is a growing body of Operations Research (OR) literature on capacity
planning in healthcare. However, the vast majority of the ‘OR in health-
care’ literature is on capacity decisions in hospitals [27] and to date the area
of nursing home care has received hardly any attention. This finding is in
line with [18], which provides an overview of studies in the field of OR and
Management Science (MS) in healthcare and found that the body of OR/MS
literature directed to residential care services is limited. To the best of our
knowledge, [20][25][24][36] are the only studies that examined capacity plan-
ning issues in a nursing home context using OR-methods. The results of
these studies show that, by using a data-driven approach, extensive gains in
performance can be achieved. The authors of [24] show that a more flexible
allocation of care workers has a substantial positive e↵ect on the performance
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in terms of meeting the time preferences of the nursing home residents. How-
ever, we could find no study in which a more advanced algorithm is used to
determine the optimal sta�ng pattern in a nursing home setting. We think
that an important reason for this is the lack of (reliable) data. According to
[34], most of the available data is qualitative and largely unstructured and
often not used for decision making.

The allocation of care workers in a home care setting has been studied
more extensively, see e.g. [13][22][28]. When it comes to home care, care
workers are assigned to care and support activities, which should be carried
out within a client-specific time window. As these activities are performed at
the clients’ homes, the spatial component is a crucial element. This schedul-
ing problem is related to the vehicle routing problem with time windows,
which is known to be NP-hard, see e.g. [8]. Since home care organizations
usually have to schedule tens or hundreds of activities, approximation meth-
ods (or heuristics) have been proposed to give satisfactory outcomes within
an acceptable time frame.

The primary objective of this study is to determine the appropriate ca-
pacity level across the day, such that waiting times of clients are avoided as
much as possible. This di↵ers from the area of nurse scheduling in hospit-
als, where the goal is to construct actual workforce plans, see e.g. [5] for
a comprehensive review. The papers that are most closely related are [37]
and [39]. These two papers use Markovian models to describe nursing work-
load at an inpatient hospital department. Thereby, they take admissions and
discharges into account and the fluctuations in demand while a patient oc-
cupies a bed. The assumptions of their models are crucially di↵erent. Both
papers assume stationary demand process, whereas there are large peaks in
demand corresponding to natural moments of activities in daily living. In
addition, the Markovian assumptions being used in [37] [39] can be ques-
tioned in this setting. Moreover, the authors do not consider di↵erences in
capacity across the day. Finally, we like to note that the impact of waiting
in an inpatient hospital setting is considerably di↵erent from nursing home
situtions. For inpatients the length of stay is in the order of days, causing
some inconveniences if they have to wait (for example for help with washing).
In nursing homes, waiting times directly a↵ect the daily routine, while clients
are long-term dependent on care being provided.

There are other application areas, like call centers, that have a much
longer tradition in applying (advanced) OR-methods to workforce planning,
see e.g. [2][7][6][10]. Like in a nursing home setting, the capacity in a call
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center cannot be inventoried and salaries typically account for a large share
of the total operating costs. In order to meet the demand in a cost-e�cient
manner, call center managers vary the number of agents to track the predict-
able variability in the number of calls. Workforce planning in a call center
is typically solved using a four-step hierarchical framework: (1) workload
prediction, (2) determining sta�ng levels, (3) shift scheduling, (4) rostering,
It should be noted that shift scheduling refers to generating shifts such that
the required sta�ng levels are met, whereas rostering refers to the pairing of
shifts into rosters and the assignment of employees to the rosters; see [6] or
[14] for additional background. In call centers, step (1) is already advanced,
see e.g. [3][32][35] for forecasting only the arrival pattern. Also, all four
steps are traditionally executed separately, where multi-server queues play
a prominent role for determining the required sta�ng capacity in step (2).
For our nursing home, we essentially carry out steps (1) - (3), albeit step
(1) now involves basic data analysis. As there is no obvious queueing model
available, we combine steps (2) and (3).

Outside the field of OR there are numerous studies that address the re-
lationship between sta�ng levels and QoC in a nursing home setting. The
literature study of [33] provides a systematic overview. The authors con-
clude that existing studies mainly focus on clinical outcomes as a measure
of QoC and it is di�cult to draw conclusions and o↵er recommendations
based on existing studies. In the more recent study of [4], which also uses
clinical outcomes as measure, no consistent evidence was found for a positive
relationship between sta�ng levels and QoC.

1.2 Contribution and outline

The study of capacity planning in nursing home care is still in its infancy,
whereas there is a growing interest among nursing home managers and policy-
makers for this topic. The main contribution of this paper is that we provide
a mathematical optimization approach for sta�ng, resulting in more timely
care delivery and a better balanced workload for the care workers. For the
optimization we use real-life PAT-data, which is scarce. As such, the data
analysis is of interest on its own. Moreover, for the optimization we apply a
Lindley-type equation and techniques from stochastic optimization to formu-
late a Mixed-Integer Linear Programming (MILP) model. This formulation
di↵ers from the standard call center shift-scheduling literature.

The remainder of this paper is structured as follows. A brief description
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Table 1: Type of care per department

Department Type of care

C Somatic care
D Somatic care
E Psychogeriatric care

of the empirical context is provided in Section 2. Section 3 investigates how
the PATs and workload fluctuate over time and during the course of a day.
Next, in Section 4, we propose a MILP model for determining the optimal
sta�ng patterns and provide an overview of the simulation approach used in
this study to explore the impact of the sta�ng patterns in terms of waiting
times and service level. In Section 5, we present the numerical results of
the current and proposed sta�ng levels. Section 6 concludes and points out
possible directions for further research.

2 Empirical context

The nursing home departments under study provide accommodation for
people who require assistance with daily activities such as washing, dress-
ing, eating, drinking and taking medication. Furthermore, medical attention
is given as required. In this study, the following definition of nursing home
applies: “a facility with a domestic-styled environment that provides 24-hour
functional support and care for persons who require assistance with activit-
ies of daily living and who often have complex health needs and increased
vulnerability” [29, p. 183]. Table 1 shows that the type of care di↵ers per
department.

In order to make it possible for nursing home residents to live their lives
according to their own daily routines, all departments aim to deliver the
necessary care as close as possible to the time preferences of the residents.
The time preferences are inventoried on a regular basis, using a standardized,
systematic method.

To adequately meet the demand of the residents, it is crucial to maintain
an appropriate number and mix of care workers during the course of a day.
The care worker-to-resident ratios currently applied by departments C, D
and E, which have been provided to us by the nursing home manager, are
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Figure 1: Care worker-to-resident ratios

shown in Figure 1. This figure also shows worker-to-resident ratios that are
based on a study of The Netherlands Institute for Health Services Research
(NIVEL) [16] among a large sample of Dutch nursing homes. There seems
to be a reasonable fit between the ratios used by the nursing homes under
study and the ratios presented by NIVEL. We note that the peak around
15:00 hours presented in the NIVEL study is due to information transfer
between shifts.

For the delivery of care and support, the departments under study make
use of the so-called di↵erentiated practice. Based on their education and
expertise, care workers are hierarchically divided into four distinct qualific-
ation levels (QLs). Depending on the required education and complexity of
care, healthcare tasks are assigned to a healthcare worker with that specific
qualification level. As the aim of this study is to provide insight on an ag-
gregate level, task requirements in terms of qualification levels are not taken
into account.

3 Demand and workload analysis

Three separate datasets were used (one for each department). Each dataset
contains the PAT data of 91 days, from January 1 until April 4, 2014, and
consists of the following variables:
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Table 2: Number of residents and size of dataset
Dep. Number of residents Average rows Average rows of data per day

of data per day / Number of residents

C 34 175 5.1
D 28 257 9.2
E 33 251 7.6

Total 95 683 7.2

• Resident ID – the ID of a specific resident.

• Preferred Activity Time (PAT) – the preferred starting time of the
healthcare activity.

• Date – the date of the PAT.

• Task description – a brief description of the activity (i.e. healthcare
task) entered as free text.

• Expected service time – expected duration of the activity in minutes.

Table 2 shows the size of the datasets and the number of residents per
department. The final column gives the average number of care activities
per resident.

The analysis is structured as follows. First, for each department, the
demand patterns (Subsection 3.1) and care duration (Subsection 3.2) are
analyzed. In Subsection 3.3, the average workload over the course of a day is
examined and essentially follows from the combination of demand patterns
and care durations. Finally, Subsection 3.4 elaborates on the assumptions
regarding the demand for unscheduled care.

3.1 PAT-analysis

To get an impression of the demand patterns, we divide the days into time
periods (time buckets) of 5 (or 30) minutes and calculate the number of PATs
within each time bucket over the course of a day. Observe that this only
involves the prefered starting time of activities. We let T denote the number
of time intervals; for time buckets of 5 (or 30) minutes, T equals 288 (or
48). Let Xt,d(y) be the number of PATs in interval t at day d 2 {1, . . . , 91},
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Table 3: Results of the Friedman test
5 minute intervals 30 minute intervals

Department p-value p-value

C 0.9063 0.999
D <2.2e-11 <2.2e-11
E 1 1

for department y, where y 2 {C,D,E}. For department y this results in a
matrix of the form:

0

BBB@

X1,1(y) X1,2(y) · · · X1,91(y)
X2,1(y) X2,2(y) · · · X2,91(y)

...
...

. . .
...

XT,1(y) XT,2(y) · · · XT,91(y)

1

CCCA

The first step is to determine to what extent the PATs vary between days
within each department. Hence, the following assumption is tested: For
y 2 {C,D,E},

Xt,1(y) = Xt,2(y) = Xt,3(y) = . . . = Xt,91(y), t = 1, 2, . . . , T. (1)

Because the distribution for the number of PATs in a time interval is
unknown, we use the non-parametric Friedman test. Table 3 shows the results
of the Friedman test for both 5 and 30 minute intervals. The test results
show that only department D has a p-value < 0.05. This allows a tentative
conclusion to be drawn, indicating that only for department D the PATs vary
between days. An interaction plot was used to analyze further the outcome
of department D (see Appendix A). The interaction plot shows a di↵erent
pattern for the first 10 days compared to the final 81 days. In fact, after day
10 the interaction plot indicates that there are little di↵erences between the
days.

Next, we investigate the daily PAT patterns in more detail using the
column vectorX(y) = (X1(y), X2(y), ..., XT (y))0, whereX t(y) =

1
91

P91
d=1 Xt,d(y)

represents the average number of PATs at time t for department y (here 0

denotes transpose). To compare the demand patterns of the departments we
plotted the relative PAT-values during intervals of 30 minutes in relation to
the total number of residents on the vertical axis (see Figures 2, 3 and 4). To
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smooth out the inconsistencies in the first 10 days of department D, a 20%
trimmed mean is used to determine the PAT-values per interval.

The plots show there is considerable fluctuation in PATs over the course
of a day. Most of the fluctuation can be explained by the major activities
of daily living. Between 0:00 and 6:00 hours there are hardly any activ-
ities (some residents have medication though). During the early morning,
most residents need help with getting out of bed, washing, and/or dressing.
Around lunch and dinner time, there is need for assistance with feeding.
Finally, at the end of the day, some of the residents need assistance with get-
ting to bed. Furthermore, it can be observed that during some intervals the
peaks exceed 100%. This is because some residents have more than one PAT
during some time intervals of 30 minutes. Departments C and E have clearly
fewer PATs, but the peaks are comparable to department D. Although peaks
are dominated by the activities in daily living, we see that there are some
di↵erences in the exact times that peaks occur.

3.2 Duration of scheduled care

In addition to the number of PATs, the workload is determined by the dur-
ation of care delivery. The average ‘expected’ care delivery times for C, D
and E are 13.2, 10.0 and 12.4 minutes, respectively, with a standard devi-
ation of 11.2, 10.3 and 8.9 minutes. Most care delivery times are short and
take 0–5 (or 5–10) minutes. However, there is considerable variation in care
delivery times with activities that may take well over half an hour. We refer
to Appendix B for figures of the ‘expected’ care delivery times. There is no
data available on realized care durations. For the simulations, we assume
that the care durations follow a lognormal distribution, as such a family of
distributions is used more often for durations; see e.g. [9] for a call center
example.

3.3 Workload analysis scheduled care

Based on the PATs and care delivery durations, this subsection examines the
workload and current sta�ng levels. The workload provides the aggregate
demand for care. That is, the workload at time t is the number of residents
who need care at time t ignoring capacity constraints. As such, it prescribes
the required number of care workers at any time if demand would have been
met directly (no waiting is allowed). In addition, the workload (i.e. the
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required number of care workers) is compared with the real-life sta�ng levels.
As there is hardly any scheduled care during the night, we consider the time
frame 7:00–23:00 hours. Now, we indicate how the workload and sta�ng
levels are determined and then compare them to assess whether there is a
mismatch. In contrast to Subsection 3.1, the workload and sta�ng levels are
here sampled at multiples of 5 minutes, i.e. 7:00, 7:05, . . ..

Current sta�ng levels The sta�ng levels are determined by the actual
worker-to-resident ratios, see Figure 1. Let Rt be the care worker-to-resident
ratio in interval t and I(y) the number of residents of department y. The
current available capacity in interval t for department y is then Ct(y) =
RtI(y), rounded to the nearest integer.

Workload Let Lt,d(y) be the workload at day d at instant t, for department
y, where t = 1 denotes the first epoch of 07:00 hours and y 2 {C,D,E}. Put
di↵erently, Lt,d(y) represents all running activities plus starting activities at
time t, day y, and department y. For department y, St,d(y) denotes the
cumulative number of start times at day d until time t, i.e. the number of
PATs between 7:00 hours and t, and Et,d(y) denotes the cumulative number
of end times at day d before time t. Then, Lt,d(y) is determined by

Lt,d(y) = St,d(y)�Et,d(y), t = 1, 2, . . . , T, d = 1, . . . , 91, y 2 {C,D,E}.

We then consider the average workload L(y) = (L1(y), L2(y), . . . , LT (y))0,
where Lt(y) =

1
91

P91
d=1 Lt,d(y) is the averaged workload at time t for depart-

ment y.
The workload (i.e. the number of residents in need of care) and the avail-

able capacity are visualized together in Figures 5, 6 and 7. The figures show
that, at some moments during the day, the available capacity is insu�cient to
meet the time preferences of the residents. Hence, residents sometimes have
to wait until a care worker is available to provide the necessary care and/or
support. Especially during morning care (7:00–9:00 hours) the workload is
high. This finding is in line with the findings of [25] and [31]. Further-
more, analysis of the task descriptions corresponding to the (high) peaks in
demand shows that some peaks are caused by ‘serving co↵ee and tea’ and
‘giving medicines’. Observe that we lose some information regarding the
workload process by sampling the workload at instants that are multiples
of 5 minutes. It should be noted that all PAT’s are multiples of 5 minutes
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and the majority of the care durations are also multiples of 5 minutes. As a
consequence, the loss of information is relatively small and the workload is
largest at moments that are multiples of 5 minutes.

The workload can also be analyzed for random care durations. Let Ti be
the starting time of PAT i, and let Si be the random variable denoting the
duration of PAT i. At time t � Ti, the probability that PAT i has not yet
been finished is a Bernoulli random variable with probability P(Si � t� Ti).
Consequently, we obtain the mean and variance of the workload at time
t = 1, 2, . . . , T as

ELt =
X

i:Tit

P(Si � t�Ti), and VarLt =
X

i:Tit

P(Si � t�Ti)(1�P(Si � t�Ti)).

(2)
A similar argument can be used to analyze the case in which Ti is also a
random variable.

3.4 Unscheduled care

To make assumptions about the demand and service times of unscheduled
healthcare tasks, we use the assumptions and results as presented in [24].
This study shows that it is reasonable to assume Poisson arrivals. In addition,
regarding the delivery times of unscheduled healthcare tasks, the analysis
presented in [36] indicates that the hyperexponential distribution gives the
best fit with the data. In this case we evidently have that the workload due
to unscheduled care follows a Poisson random variable at any moment.

4 Shift scheduling and waiting times

4.1 Shift scheduling

In this section, we schedule shifts that lead to minimal waiting times for
scheduled care activities. In the call center domain, determining sta�ng
levels and shift scheduling are often done as two consecutive and separate
steps. This is often a reasonable approximation, as call lengths are in the
order of minutes such that stationary models per interval are reasonable
approximations of system performance. In the nursing home context, there
are no obvious queueing models available for the performance analysis of
waiting times; this is due to the deterministic and time-dependent arrival
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pattern of PATs in combination with random activity times and the multi-
server nature of the sta↵. Below, we develop a MILP algorithm for the shift
scheduling problem that uses slightly simplified queueing dynamics that are
appropriate at a tactical level. Assigning care workers to tasks (operational
decision) is outside the scope of this study.

Next, we first outline the performance of a given combination of shifts
and then describe the MILP for the optimal shift combination. Let K be the
number of possible shift types and let xk be the number of care workers that
are scheduled for shift type k. As before, we discretize time such that sta�ng
levels and care activities may only start at epochs t = 1, 2, . . . , T . We denote
atk = 1 if shift type k works during interval t, and atk = 0 otherwise. Hence,
with the matrix (atk)t,k the user defines which types of shifts are possible. The

sta�ng level during interval t is then ct =
PK

k=1 xkatk, for t = 1, 2, . . . , T .
The main assumption that we are going to make is that a team of c care
workers work as a single care worker at speed c. This assumption is valid
when there are su�cient residents (at least c) waiting for assistance, and is
consistent with the level of aggregation for tactical capacity decisions. The
key element is that this assumption avoids that we have to keep track of the
individual status of each of the care workers.

The performance measure we are going to consider for the optimization
is the backlog at the start of interval t, denoted as Qt. During interval t, the
new amount of work that has to be completed is given by Lt. Formally, for
department y, it holds that Lt =

R t+1

t Ls(y)ds, which can easily be calculated
from the data. As the workload is more or less constant during 5-minute
intervals, Lt for department y can also be approximated by Lt(y) as displayed
in Figures 5–7. The available capacity is ct, which is determined by xk,
k = 1, . . . , K. This provides the following Lindley-type of recusion relation:

Qt+1 = max{Qt + Lt � ct, 0}.

For a given realization of Lu, u = 1, . . . , T , there is an almost linear relation
between Qt+1 and Qt (upto the max{·, 0} operator); this is exploited in the
MILP formulation. We are now going to capture the randomness in the
workload by introducing scenarios. Specifically, we consider S realizations
of the workload pattern L(s)

t , for s = 1, . . . , S and t = 1, . . . , T . These
scenarios are generated by simulating the workload process using random
care durations and unscheduled care activities. Then, we have the following
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deterministic recursion for the backlog in scenario s:

q(s)t+1 = max{q(s)t + L(s)
t � ct, 0}.

As ct is a linear function of the decision variables xk, we may use standard
tricks to incorporate the backlog in an MILP.

Sets

S Number of scenarios.
T Number of time epochs.
K Total number of shift types.

Input parameters

atk 1 if shift type k works interval t, 0 otherwise.

L(s)
t Workload for interval t for scenario s.

C Maximum number of sta�ng hours.
cmin Minimum required sta�ng level at any moment.
M Large constant (or weight).

Decision variables

xk Number of care workers for shift type k.

q(s)t Backlog at instant t for scenario s.
ct Capacity at time t, being fully determined by xk.

Table 4: Notation used for the shift scheduling problem.

We specify the basic shift scheduling problem as follows, with the notation
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given in Table 4:

Minimise M
1

S

SX

s=1

TX

t=1

q(s)t +
KX

k=1

xk (3)

subject to ct =
KX

k=1

xkatk, t = 1, . . . , T (4)

q(s)t+1 � q(s)t + L(s)
t � ct, t = 1, . . . , T � 1, s = 1, . . . , S (5)

TX

t=1

ct  C (6)

ct � cmin, t = 1, . . . , T (7)

q(s)t � 0, t = 1, . . . , T, s = 1, . . . , S (8)

xk 2 N0, k = 1, . . . , K (9)

Here, M is a positive weight such that the weighted combination of the total
average backlog per scenario and the number of shifts is minimized in (3).
In our experiments, we let M be large such that the backlog is minimized
first and then, if possible, the least number of shifts to obtain this is taken
(giving a preference for longer shifts). Equation (4) gives the sta�ng capacity
at time t in terms of the shifts. Equation (5), jointly with the minimization,
provides Lindley’s recursion for each scenario. Equation (6) provides that
the total number of sta�ng hours per day (excluding the night shifts) does
not exceed the budget C, whereas (7) quarantees that at any moment at
least cmin care wokers are available. Finally, (8) provides that backlogs are
non-negative and (9) makes sure that an integer number of each shift type
is scheduled (including 0).

This basic shift scheduling problem works well for the three departments
under study. In some cases, it might be worthwile to modify the formulation,
see Remark 1.

Remark 1 Depending on the practical situation, it is possible to choose
alternative formulations. Two key elements are the backlog at the end of
the day and the control of shift lengths. First, we note that the former is
captured as q(s)T is taken into account; if the transfer of work to the night

shift should be avoided a (soft) constraint on q(s)T can be included. As the
total amount of capacity is su�cient in our case, backlogs are small, also
at the end of the day. Secondly, the shift lengths are now controlled by
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choosing appropriate shift types xk and in the objective function (3). We
note that there are many other choices, e.g. by using a sta�ng budget and
di↵erentiating the costs of certain shift types. An alternative view is to use
the current formulation to determine the sta�ng capacity across the day,
and then apply a standard shift scheduling approach using the just obtained
sta�ng capacity per interval.

4.2 Waiting time analysis

To gain insight into the performance of the nursing home departments, in
terms of meeting the time preferences of their residents, a Python-based
simulation model is used. We simulate the operation during daytime, i.e.,
7:00-23:00, using a discrete-event simulation approach. For each simulation
round, the department under study is ‘filled’ with new residents. Together
with their PATs for scheduled care and corresponding expected service times,
each resident is randomly chosen from the empirical dataset of the corres-
ponding department. In addition, demand for unscheduled healthcare tasks
is generated according to a Poisson process, with hyperexponential durations
(see Subsection 3.4. Furthermore, it is assumed that the provision of care and
support is on a FCFS basis. In this fully reactive approach, no distinction
is made between scheduled and unscheduled care. The simulation procedure
can be described as follows:

• Each day is divided into time buckets of 1 minute (t = 1, 2, . . . , 960).

• Starting at time 7:00 (t = 1), for every time step, healthcare tasks
based on PATs are assigned to the first available care workers.

• When a resident has a care request during the handling of an earlier
PAT (i.e., an additional PAT), this additional request will be adhered
to by the same care worker. The waiting time for this additional PAT
is set to 0.

• When all care workers are busy, a virtual queue is filled with the re-
maining activities.

• PATs are served on a FCFS basis.

• When a care worker is providing care during change of shifts, he or she
will first complete the task.
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As explained above, when all care workers are busy, a virtual queue is
filled with the remaining activities. Based on this approach, we calculate the
following waiting time measures:

• Average waiting time at time t – The average time a task has spent in
the queue (for all tasks in the queue) at time t.

• Total average waiting time – The average waiting time over all t.

• Overall 15 minute service level – The % of care requests for which a
care worker was present with the resident within 15 minutes1.

The performance measures are averaged over all simulation runs.

5 Numerical insights

This section presents the optimal sta�ng patterns for the departments under
study, using the MILP algorithm as described in Subsection 4.1. In addition,
we explore the impact of the proposed sta�ng levels in terms of waiting
times and service level, whereby the total available sta�ng hours are kept
the same as in the current situation. The total available number of sta�ng
hours per day for departments C, D and E are respectively 82, 64 and 82.
For the current sta�ng pattern we refer to Figure 1.

5.1 Experimental design

For our numerical experiments, we made the following choices:

• The ratio of demand for scheduled care tasks to unscheduled tasks
is 80-20%. This assumption is based on an estimation made by the
managers of the departments under study.

• The demand for unscheduled care follows a Poisson process with rates
3, 4, 4 per hour for departments C, D, E, respectively.

• The care durations for unscheduled care are hyperexponentially dis-
tributed with p̂1 = 0.10, p̂2 = 0.90, µ̂1 = 0.11, µ̂2 = 0.56 (see [36][24]).
These parameters can be interpreted as follows: with probability p̂2 =

1In the Netherland, a 15 minute target is regularly used [12, 25].
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0.90, the client has a minor request taken on average 1/µ̂2 = 1.79
minutes, whereas with probability p̂1 = 0.10 the client has a large re-
quest taking 1/µ̂1 = 9.28 minutes on average.

• For safety reasons, the minimum number of care workers at every mo-
ment is 2 (per department), i.e. cmin = 2.

• There are 8hr and 4hr shifts, with a preference for 8hr shifts. Breaks
are not taken into account.

• Shifts can start at full hours only.

• The care durations of scheduled care follow a lognormal distribution,
where the mean corresponds to the estimated activity duration and the
standard deviation is taken to be 10 minutes.

5.2 Sta�ng optimization

For department C we experimented with the number of simulated scenarios,
see Table 5. A scenario corresponds to a realization of the workload process
across a single day. Such a realization is obtained by simulation using the
design described above in Subsection 5.1. It can be observed that the number
of scenarios has little influence on the results. This can be directly explained
by the fact that the variability in the workload is relatively small compared
to the mean, which can be analyzed using Equation (2) and Subsection 3.4.
In particular, the largest value of the standard deviation of the workload is
1.96 for department C (at 21:05), and only 1% of the instants the stand-
ard deviation of the workload exceeds 1.5, whereas the expected workload is
considerably larger (see Figure 5). Similar conclusions can be drawn for de-
partments D and E. To be on the safe side, we used 100 scenarios throughout
the rest of the experiments. All computations were performed on an Intel
i7 CPU with 3.1 GHz and 16 GB RAM. The MILP was solved using the
lpSolveAPI package in R.

The results of the MILP approach as presented in Subsection 4.1 can be
found in Figure 8. It can be observed that the optimal sta�ng levels during
the day di↵er substantially from the current levels as presented in Figure 1.
Specifically, we see that the sta�ng during the morning and evening based
on the MILP is larger than the current sta�ng, at the expense of sta�ng
during the late morning and afternoon. Hence, the MILP-based sta�ng

20



Table 5: Influence of number of simulated scenarios for department C

Number of sims Average waiting time 15 min. SL CPU time

1 3.1 95.2% 39 s
5 3.0 96.2% 228 s
10 3.0 95.6% 468 s
20 3.1 95.8% 1192 s
50 3.1 95.4% 3181 s
100 2.9 95.9% 5946 s
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Figure 8: Optimal sta�ng pattern for departments C, D and E

better follows the demand pattern across the day. However, from Table 7
is can be seen that, in order to adequately follow the demand pattern, a
relatively large number of shorter shifts (i.e., 4hr shifts) is required.

5.3 Waiting time and service level

The performance of the proposed sta�ng patterns from Figure 4.1 are com-
pared with the current sta�ng levels. To do so, we used the simulation from
Subsection 4.2. Using a 99% confidence level, and a maximum acceptable
confidence interval width of 2 minutes, it was found that a minimum number
of 2000 simulation runs is required.

Table 6 shows the main numerical results. We see a substantial improve-
ment for all three departments both in terms of average waiting time as well
as in 15 minutes service level. For instance, for department C we see a reduc-
tion of the average waiting time of about 70% (from 9.59 to 2.89 minutes)
when changing from the current to the MILP-proposed sta�ng pattern. Also,
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Figure 9: Waiting time (in minutes) during the day: current (black) versus
optimal (red) for departments C, D and E

the service level can be increased by more than 12 percentage points for all
departments, reaching a 15 minutes service level of at least 95% for depart-
ments C and E. The waiting time across the day is visualized in Figure 9.
As expected, waiting reduces significantly during rush hours, whereas there
is only a slight increase in waiting time during non-rush hours. For example,
during the morning rush hour the maximum average waiting times for de-
partments C, D and E drop from 35, 45 and 35 minutes to around 12, 15 and
8 minutes, respectively.

6 Conclusions & Discussion

The key message of this paper is that nursing homes could greatly benefit
from a more mathematically driven sta�ng approach. The results show
substantial improvements for all three departments both in terms of average
waiting time as well as in 15 minutes service level. Especially waiting during
rush hours is significantly reduced, whereas there is only a slight increase in
waiting time during non-rush hours. Furthermore, as the proposed sta�ng
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Table 6: Overview main results
Current Dep. C Dep. D Dep. E

Av. waiting time 9.59 minutes 14.49 minutes 10.34 minutes
15 min. SL 78.5% 70.9% 77.4%

Optimal Dep. C Dep. D Dep. E

Av. waiting time 2.89 minutes 7.20 minutes 3.37 minutes
15 min. SL 96.0% 83.5% 95.0%

pattern is more balanced, it allows for a more evenly spread workload for the
care workers. The workload pattern is obtained using data about residents’
prefered activity times. Then, the shift scheduling algorithm is formulated as
an MILP relying on elements that finds its roots in stochastic optimization
and the celebrated Lindley recursion.

The findings presented in this study are of great societal value as it shows
that mathematical driven sta�ng approaches can greatly support nursing
homes in their search for ways to further reduce their costs while maintain-
ing an appropriate quality level of care. In our opinion, an important first
step would be to introduce objective performance measures regarding timely
delivery of care and support (e.g., mean waiting time and service levels).
Nursing homes should have a su�cient information system to make it pos-
sible to work with those types performance measures. However, in practice,
there is a lack of reliable and valid data. Fortunately, due to developments in
technology (e.g., ICT support for domestic tasks, robotics and registration
systems), data generation is likely to increase rapidly in the near future. As
such, an important future challenge will be to transform these data into tools
that support decision making. This will be a challenging task as nursing home
processes have many complex characteristics and research on nursing home
operations from an applied mathematical perspective is still in its infancy.

Furthermore, the results show that, in order better follow the demand
pattern across the day, a relatively large number of shorter shifts (i.e., 4hr
shifts) is required. Consequently, in order to implement a mathematically
driven sta�ng approach, su�cient sta�ng flexibility must be ensured. In
this case, we should distinguish between numerical and functional flexibility.
Numerical flexibility can be defined as the ability of terms to adjust the
number of workers, or the level of worked hours, in line with changes in the
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level of demand for them [1]. Numerical flexibility could, for example, be
achieved by creating a flex pool. A flex pool consists of care workers who
are ‘on call’ and available for work as and when required. Supplementing
a core team of full-time care workers with flex pool workers allows nursing
home managers to balance their sta�ng levels better over the course of a
day. Functional flexibility can be defined as internal flexibility and refers to
the ability of care workers to perform a broader range of tasks, which makes
it possible to assign them to di↵erent tasks and jobs [1]. In practice, nursing
homes often consists of multiple departments. As such, within a full-shift,
a care worker could be assigned to multiple departments. In addition, long-
term care organization often provide both nursing home care (i.e., intramural
care) and home care (i.e., extramural care). It would therefore be possible to
divide some of the full-shifts into two shorter intra- and extramural shifts.

This study is limited in scope due to some simplifying assumptions. To
model capacity at a tactical level, we neglected some decision at the op-
erational level. For instance, sta↵ utilization and residents’ waiting times
depend on the di↵erent qualification level of the care workers as well as the
assignment of care workers to activities (typically leading to NP-hard prob-
lems). Also, the results for the current shift scheduling algorithm does not
take breaks into account (although that would be an easy adjustment). We
envisage that such breaks are typically taken when time permits. In fact,
we see in practice that health organizations utilize the flexibility of human
capacity to some extent. Finally, we note that the data set is restricted to
three departments of a single nursing home. Although the timing of activit-
ies of daily living seems rather universal, data from other sources would be
valuable.

Acknowledgements: The authors would like to thank Ruben van de Geer
for support with the modification of the simulation model.
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A Interaction plot department D

The plot below displays PAT levels, which imply that, on some day d, a level
x is attained when at least one of the Xt,d(y) is equal to x. Each dot in the
interaction plot represents a PAT-level.

Days

# 
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Figure 10: Interaction plot for department D (5 minute intervals)
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Figure 13: Distribution of care delivery times for department E
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Table 7: Required number of shifts

Dep. Number of Number of
4hr shifts 8hr shifts

C 12 4
D 8 4
E 14 3

Total 34 11

C Number of shifts

Table 7 shows the required number of 4hr and 8hr shifts in the optimal
situation.
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