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Summary
In certain single-core mono-processor configurations, e.g. embedded control systems
like robotic applications comprising many short processes, process context switches
may consume a considerable amount of the available processing power. Reducing
the number of context switches decreases the execution time and thereby increases
the performance of the application.
Furthermore, the end-to-end processing time suffers from the idle time of the
processor, because, for example, processes have to wait for controllers executing
some task. By relaxing the rules for synchronous communication via channels in
the process-algebraic specification language Communicating Sequential Processes
(CSP), we are able to reduce the end-to-end processing time.
As we consider robotic applications only, often consisting of processes with identical
periods, release times and deadlines, we restrict these applications to periodic
real-time processes executing on a single-core mono-processor.
Because these processes can be represented by finite, deterministic, labelled, acyclic,
directed multigraphs, we address these two problems using graph theory. We
introduce a model of computation that, based on these graphs, shows an improved
performance when we multiply these graphs. This multiplication is based on a
synchronised graph product for which we have developed three versions; the Vertex-
Removing Synchronised Product (VRSP), the Dot Vertex-Removing Synchronised
Product (DVRSP) and the Extended Dot Vertex-Removing Synchronised Product
(EVRSP). The VRSP is solely developed to reduce the number of context switches.
The DVRSP and the EVRSP are an extension of the VRSP and deal with
the reduction of the end-to-end execution time of a set of Periodic Hard Real-
Time Control Processes (PHRCPs). Of course, these multiplications preserve the
behaviour of the PHRCPs represented by these graphs.
Our research is based on three research questions, where we define the various
graph products, prove that these products will give a performance gain (under
certain conditions) and elaborate the numerical and combinatorial aspects of these
graph products.
We introduce the notion of a consistent and an inconsistent set of graphs (represent-
ing periodic real-time processes). Consistency is based on the contraction of graphs
together with the sink and the source of the Cartesian Product of these graphs,
where the sink and the source have to be invariant over the graph multiplication
by the synchronised product, VRSP. We show that consistency and associativity
of the VRSP are closely related in the sense that a set of graphs under the VRSP
is associative if all pairs of graphs in the set of graphs and their products under
the VRSP are consistent.
Whether or not a significant performance gain is achieved by combining processes
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depends on the ratio of the context-switch time and the calculation time of the
processes itself; clearly, this depends on the type of hardware and operating system
used. But still, if the Periodic Hard Real-Time Control System (PHRCS) does not
fulfil the requirements with respect to the deadline of its PHRCPs, calculating all
possible products of two or more graphs may produce a set of graphs for which
the processes they represent comprise a PHRCS that will fulfil the requirements
with respect to deadline and memory occupancy.
To increase the chance that such a PHRCS exists, we develop two theorems that
decompose the graphs into smaller graphs. Decomposition of the graphs gives a
new set of graphs from which the VRSP gives outcomes that were not available
in the original set of graphs. It could well be that these new outcomes contain
a solution for the PHRCPs, whereas the original set of graphs did not contain a
solution.
We show that the number of possible combinations of multiplications of graphs by
the VRSP follows the Bell number (Bn) series if the multiplication is associative.
Therefore we develop heuristics that calculate a set of multiplied graphs that may
fulfil the requirements with respect to deadline and memory occupancy.
To emphasize the necessity of associativity, we study the multiplication by the
VRSP when the multiplication is not associative. We give proof that this mul-
tiplication follows the Bessel number (B̃n) series by calculating the number of
different forests, where a set of multiplied graphs under the VRSP is represented
by a binary tree. The numbers in the Bessel number series are a magnitude larger
than the numbers in the Bell number series and this is, as for consistency, a reason
why associativity is necessary.
All in all, we have five advantages provided by our graph theoretical approach:

- the length of the longest paths of the graphs is reduced, thereby reducing
the number of context switches of the processes represented by these graphs,

- in a distributed computing system, for example, a processor-coprocessor
combination, the end-to-end processing time of processes can be reduced.

- it eases the design by taking away the burden of separating the writing
actions and reading actions in time, which eliminates the necessity of the
modelling of a buffer,

- it gives more flexibility by indexing the reading actions,
- it allows multiple write actions to the same channel.



Samenvatting
In bepaalde single-core configuraties met één processor, b.v. embedded control
systems zoals robotic applications die uit vele korte processen bestaan, kunnen de
context switches van een proces een aanzienlijke hoeveelheid van de beschikbare
processing power verbruiken. Het verminderen van het aantal context switches
vermindert de executietijd en verhoogt daardoor de prestaties van de toepassing.
Bovendien is de end-to-end executietijd van de processen langer dan strict noodza-
kelijk, bijvoorbeeld omdat de processen moeten wachten op controllers die een
taak uitvoeren. Door de regels voor synchrone communicatie via kanalen in de
procesalgebraïsche specificatietaal Communicating Sequential Processes (CSP) te
versoepelen, kunnen we de end-to-end executietijd verkorten.
Omdat we alleen rekening houden met robotic applications, vaak bestaande uit
processen met identieke periodes, releasetijden en deadlines, beperken we deze
applicaties tot periodieke real-time processen die worden uitgevoerd op een single-
core mono-processor.
Omdat deze processen kunnen worden gerepresenteerd door finite, deterministic,
labelled, acyclic, directed multigraphs, benaderen we deze twee problemen door
middel van grafen theorie. We introduceren een verwerkingsmodel dat op basis
van deze grafen verbeterde prestaties vertoont wanneer we deze grafieken ver-
menigvuldigen. Dit model is gebaseerd op een gesynchroniseerd graafproduct
waarvoor we drie versies hebben ontwikkeld; het Vertex-Removing Synchronised
Product (VRSP), het Dot Vertex-Removing Synchronised Product (DVRSP) en
het Extended Dot Vertex-Removing Synchronised Product (EVRSP). Het VRSP is
uitsluitend ontwikkeld om het aantal context switches te verminderen. Het DVRSP
en het EVRSP zijn een uitbreiding van het VRSP en gaan over de reductie van
de end-to-end executietijd van een verzameling Periodic Hard Real-Time Control
Processes (PHRCPs). Natuurlijk behouden deze vermenigvuldigde grafen het
gedrag van het PHRCPs vertegenwoordigd door deze grafen.
Ons onderzoek is gebaseerd op drie onderzoeksvragen, waarin we de verschillende
graafproducten definiëren, bewijzen dat deze producten een prestatiewinst oplev-
eren (onder bepaalde voorwaarden) en de numerieke en combinatorische aspecten
van deze graafproducten uitwerken.
We introduceren het concept van een consistente- en een inconsistente reeks grafen
(die periodieke real-time processen vertegenwoordigen). Consistentie is gebaseerd
op de compositie van grafen samen met de sink en de source van het Cartesian
product van deze grafen, waarbij de sink en de source invariant moeten zijn ten
opzichte van de graafvermenigvuldiging door het gesynchroniseerde product, VRSP.
We laten zien dat consistentie en associativiteit van het VRSP nauw verwant zijn
in de zin dat een reeks grafen onder het VRSP associatief is als alle paren grafen
in de reeks grafen en hun producten onder het VRSP consistent zijn.
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Of een significante prestatiewinst al dan niet wordt behaald door het combineren
van processen, hangt af van de verhouding tussen de context-switch tijd en de
executietijd van de processen zelf; dit is duidelijk afhankelijk van het type hardware
en besturingssysteem dat wordt gebruikt. Maar toch, als het Periodic Hard Real-
Time Control System (PHRCS) niet voldoet aan de vereisten met betrekking tot
de deadline van zijn PHRCPs, kan het berekenen van alle mogelijke producten
van twee of meer grafen een reeks grafen opleveren waarvoor de processen die ze
vertegenwoordigen, een PHRCS opleveren dat zal voldoen aan de vereisten met
betrekking tot deadline en geheugenbezetting.
Om de kans te vergroten dat zo’n PHRCS bestaat, ontwikkelen we twee stellingen
die de grafen ontleden in kleinere grafen. Decompositie van de grafen geeft een
nieuwe reeks grafen waarvan het VRSP resultaten geeft die niet berekenbaar waren
in de originele set grafen. Het zou best kunnen dat de producten van deze nieuwe
reeks grafen een oplossing bevatten voor de PHRCPs, terwijl de originele set grafen
geen oplossing bevatte.
We laten zien dat het aantal mogelijke combinaties van grafen door het VRSP de
Bell number (Bn) reeks volgt als de vermenigvuldiging associatief is . Daarom
ontwikkelen we heuristieken die een reeks vermenigvuldigde grafen berekenen die
kunnen voldoen aan de vereisten met betrekking tot deadline en geheugenbezetting.
Om de noodzaak van associativiteit te benadrukken, bestuderen we de ver-
menigvuldiging met het VRSP wanneer de vermenigvuldiging niet associatief is.
We bewijzen dat deze vermenigvuldiging de Bessel number (B̃n) reeks volgt door
het aantal verschillende forests te berekenen, waarbij een reeks vermenigvuldigde
grafen onder het VRSP wordt vertegenwoordigd door een binary tree. De getallen
in de Bessel number reeks groeien veel sneller en zijn van een andere orde dan de
getallen in de Bell number reeks en dit is, wat de consistentie betreft, een reden
waarom associativiteit noodzakelijk is.
Al met al zijn er vijf voordelen van onze grafentheoretische benadering:

- de lengte van de langste paden van de grafieken wordt verkleind, waardoor
het aantal context switches van de processen die door deze grafen worden
gerepresenteerd wordt verminderd,

- in een gedistribueerd computersysteem, bijvoorbeeld een processor / copro-
cessorcombinatie, kan de end-to-end executietijd van de processen worden
verminderd.

- het vergemakkelijkt het ontwerpen van een PHRCS door het asynchroon
maken van de schrijfacties en leesacties naar een kanaal in de tijd, waardoor
de noodzaak van het modelleren van een buffer wordt geëlimineerd,

- het geeft meer flexibiliteit door de leesacties te indexeren,
- het staat meerdere schrijfacties op hetzelfde kanaal toe.
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1
Introduction

In this thesis, we introduce and elaborate new graph-theoretical methods for
analysing and optimising the behaviour of sets of synchronising parallel processes.
We focus on processes that occur in Cyber-Physical Systems (CPSs), and are
derived from a formal specification of such a CPS at the design level. These
processes have strong requirements with respect to their timely execution and
memory occupancy. We focus on optimising the execution time of the processes,
taking into account that the memory requirements have to be met.
For a feasible implementation and resource-aware execution, it is advantageous
and often necessary to combine sets of parallel processes that synchronise on
certain actions. The graph-theoretical approach we have been developing in this
thesis, clarifies and captures what we mean by combining sets of synchronising
processes, and demonstrates how such combinations can be analysed and utilised
in a systematic way.

1.1 Context
The creation of control software for CPSs is challenging, because the physical part
of the CPS has great influence on the cyber part of the CPS, i.e. the interaction of
the hardware and the software processes, and thereby possibly compromising the
timely execution of these processes. Because we consider software processes only, in
the sequel we mean by a process in the context of a CPS always a software process.
The physical part of a CPS enforces restrictions on the tardiness of the control
software (i.e. the cyber part of a CPS), which leads to far-reaching consequences.
The deadlines of the processes have to be met because missing a series of deadlines
in an arguably short period of time destabilises the CPS and leads inevitably to a
catastrophe. Therefore, the processes are not allowed to be tardy.
The processes we consider are periodic. They are executed within every period,
where the periods are repeating, equidistant time intervals of, for example, a 1 ms
duration.

1
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Each process has:
- a release time: this is the first time the process starts executing,
- a period: this is the time frame available for the process to execute,
- a relative deadline: this is the point in time with respect to the beginning of
the current period, before which the process must have finished execution,

- a worst-case execution time: this is the maximum length of time the process
may need to execute its task during a period.

A CPS comprising this kind of processes is a Periodic Hard Real-Time Control
System (PHRCS).
We further restrict the CPSs to Embedded Control Systems (ECSs), like in robotic
applications. To be able to design and maintain ECSs, we have to be able to
reason about the behaviour of ECSs. Therefore the verification and validation1 of
ECSs are essential.
With respect to the behaviour of the CPS, in particular, for safety-critical systems,
two issues are important: the safety property and the liveness property2. Whenever
the safety property is not met, this leads to the situation where something bad,
not envisioned by the designer, will happen. As an example, when in a computer-
controlled, surgical robot a series of deadlines is missed by the actuators positioning
the surgical knife, serious wounds can be inflicted onto the patient, which is
obviously something bad. Important aspects of the liveness property are freedom
from deadlock and freedom from starvation3, where freedom from starvation
implies freedom from deadlock. Especially deadlock avoidance is of interest
because whenever a series of processes is deadlocked, they all miss their deadline
with a catastrophe as a result. This real-time property, not being allowed to miss a
deadline, enforces directly that the PHRCS must fulfil both the safety property as
well as the liveness property with respect to timeliness. To be able to reason about
timeliness, we need some kind of model representing the behaviour of the ECS in
time that makes this reasoning possible. When there exists a model checker for
such a model these real-time properties can be checked.
There are several ways to model the control part of the CPS, e.g. using formal
specification languages like Communicating Sequential Processes (CSP) (Hoare,
1978), Finite State Processes (FSP) (Magee and Kramer, 1999), Temporal Logic of
Actions (TLA+) (Lamport, 2002), Language Of Temporal Ordering Specification

1“Verification. The process of determining whether or not the products of a given phase of
the software development cycle fulfil the requirements established during the previous phase.
Validation. The process of evaluating software at the end of the software development process to
ensure compliance with software requirements.” (Boehm, 1984, page 75)

2“Safety properties are assertions of the kind ‘nothing bad ever happens’” and “liveness
properties are assertions of the kind ‘something good eventually happens’”.(Klapuri et al., 1999,
page 70)

3“A situation . . . in which all the programs continue to run indefinitely but fail to make any
progress is called starvation.” (Tanenbaum and Woodhull, 2005, page 89) and “A set of processes
is deadlocked if each process in the set is waiting for an event that only another process in the
set can cause.” (Tanenbaum and Woodhull, 2005, page 239)
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(LOTOS) (ISO, 1987), or using object oriented methodologies like Real-Time
Unified Modelling Language (RT-UML) (Gomaa, 2000; Douglass, 2014; Object
Management Group (OMG), 2015), MARTE (Bran and Gérard, 2014; Object
Management Group (OMG), 2015).
Among others, formal specification languages like CSP and TLA+ have model-
checking support. A CSP model can be checked by a model checker like FDR (FDR,
2016). TLA+ is a mathematical approach using the temporal logic of actions (Lam-
port, 2002) and contains the TLC model checker. Techniques like RT-UML, do
not have such model checkers. Schäfer et al. (2001) describe for the Unified
Modelling Language (UML) a prototype tool for automatically verifying “whether
the interactions expressed by a collaboration can be realized by a set of state
machines.” The tool does not check the safety property and liveness property. For
these reasons the choice of a formal specification language is obvious.
Another reason to choose a formal specification language for our research, in
particular, a process algebra, is that at the Robotics and Mechatronics group of
the University of Twente a line of research for software for robotic applications is
based on process algebra. This line of research has led to the software tool-chain
Twente Embedded Real-time Robotic Application (TERRA) (Bezemer et al., 2012)
and LUNA Universal Networking Architecture (LUNA) (Bezemer et al., 2011).
Designing ECSs using process algebras has two issues with respect to the real-time
specifications of ECSs, which we are going to explain in more detail in the sequel:

- The usage of process algebras leads to fine-grained4 concurrency of the
constituent processes of the ECS. Therefore, ECSs comprise many short
processes, where the process context switches may consume a considerable
amount of the available processing power.

- Processes may have to wait for devices that produce information on which
the control software has to act. As this is based on the rendezvous principle,
it often happens that such a process is delayed, while it could perform other
actions.

An approach to solve these two issues related to timeliness of ECSs is:
- Combining processes, thereby reducing the number of context switches, which
decreases the execution time and thereby increases the performance of the
ECS.

- Introducing a new modelling feature, which disconnects the processes involved
in a rendezvous. By disconnecting the processes involved in the rendezvous,
the end-to-end processing time of a set of processes can be reduced.

Both issues are dealt with during the design phase of the control software.
Our target systems are ECSs, like robotic applications, coming from the area

4A monolith of, for instance, one process is hard to design due to the complexity of such
a process; the process has to meet all the cyber-part requirements of the CPS. A divide and
conquer strategy leads to a division into many processes, where each process has to meet a subset
of the requirements, and therefore to fine-grained concurrency.
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of CPSs, where “a Cyber-Physical System (CPS) is a system of collaborating
computational elements controlling physical entities” (Bagnato et al., 2014). Within
these ECSs, our emphasis lies on the timeliness of the system. Because of the
deadlines that have to be met, time-critical issues caused by a delay like latency and
jitter have to be dealt with. But these kinds of delays are not always surmountable.
For our systems, where the processes often consist of reading a sensor value y,
calculating a steering value resulting from a control law fpyq and writing this value
to an actuator, the deadline of a process is essential. When this series of actions is
not performed in the available time-frame, the application will expose behaviour
that violates the requirements. As an example, Surface-Mount Technology (SMT)
Component-Placement Systems are used to place Surface-Mounted Devices (SMDs)
onto a Printed-Circuit Board (PCB). Such precision-positioning equipment executes
its task at high speed, with high precision. The lack of precision due to a deadline
miss could misplace the component and thereby the PCB could be useless or
arguably worse, could lead to a PCB that is used in some system, where it on an
irregular basis produces catastrophic errors. As observed in Heemels and Muller
(2006): “From a control point of view, time delay, consisting of the combination
of both the latency and jitter, which includes computation times, communication
delays and probably a reaction time of the sensors or actuators, is an undesired
phenomenon that should be kept as small as possible. In control engineering,
it is well known (Franklin et al., 2001) that these time-delays can degrade the
performance of the controlled system and can even cause instability of this system.”
We distinguish two kinds of timeliness for systems: hard real time and soft real
time (Kopetz, 1997). Whenever a deadline is missed in a hard real-time system the
consequences are catastrophic. For a soft real-time system after a deadline miss,
the system may still execute, probably with less functionality, and may recover to
normal operation.
The usability of a system after a deadline miss can be expressed in a utility
function (Buttazzo, 2004) with respect to timeliness. For hard real-time systems,
the utility function upτq drops to ´8 instantaneous at a deadline miss (Figure 1.1a).
For soft real-time systems, the utility function is a continuous function that, after
a missed deadline, decreases to zero as time passes by (Figure 1.1b).
Among others, we have on the one hand that the real-time system might be fully
event driven, where for each event a deadline is specified. On the other hand,
the real-time system might be periodic, where for the tasks that execute within
a certain period, deadlines are specified. We are describing systems that contain
periodic processes but where processes can be event driven.
In fact, one may argue that our systems lie in between hard real-time systems
and soft real-time systems. According to the observation in Heemels and Muller
(2006), there can be a series of deadline misses before the system becomes unstable.
Assuming that an unstable system is a catastrophe, the utility function drops to
´8 after a series of deadline misses. The behaviour where a single deadline miss
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τ Ñ 8
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0
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´8

(a) hard real-time systems
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0
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(b) soft real-time systems

Figure 1.1: Utility function upτq, adapted version of Buttazzo (2004), page 231.

is just a small decrease in utilisation, but a series of deadlines is catastrophic, is
shown in Figure 1.2.
Buttazzo (2004) defines firm real-time as “executing a task after its deadline does
not cause catastrophic consequences, but there is no benefit for the system, thus
the utility function is zero after the deadline.” In line with Buttazzo (2004), we
define for periodic real-time systems, firm real-time as “infrequent deadline misses,
less than k deadline misses in a given time frame of t s, will not be catastrophic for
the system. The utility function upτq degrades to zero for one period after each
deadline miss. But when at least k deadline misses occur within a given time frame
of t s, this will lead instantaneously to a catastrophe and the utility function upτq
degrades to ´8 at the kth deadline miss.” Obviously, t and k are a consequence
of the requirements of the application. The timing requirements of firm real-time
systems are not as strict as the requirements of hard real-time systems. When
we design a system that does not violate the hard real-time requirements, it will
also not violate the firm real-time requirements. Therefore we will consider our
systems as if they are hard real-time systems.
In CPSs we have a set of computational elements that control physical devices.
The computational elements are collaborating to achieve some task, in our case a
robotic application. From a software point of view, this is a PHRCS comprising
computational elements represented by Periodic Hard Real-Time Control Pro-
cesses (PHRCPs), controlling machines, i.e. external devices through sensors and
actuators.
The behaviour of PHRCSs can be modelled using process-algebraic specifica-
tions (Schneider, 1999). We use process-algebraic specifications because they are
formal manners to describe concurrent systems. A process-algebraic specification
(for example, given in the form of a Finite State Process (FSP) (Magee and Kramer,
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Figure 1.2: Utility function upτq for firm real-time systems.

1999)) can be implemented using Finite State Machines (FSMs). In essence, an
FSM is a labelled and directed graph.
The processes described in an algebraic specification contain synchronous and
asynchronous actions. Synchronous actions in processes lead to an overhead
that is a result of context switches5 in the system which executes the software
representing the processes. Furthermore, the end-to-end processing time of a set
of processes has to be reduced if the end-to-end processing time jeopardises the
real-time requirements. As an example, this happens when one or more processes
are waiting because they are involved in a rendezvous, no other process, apart
from the processes involved in the rendezvous, is ready to execute, and one of the
processes involved in the rendezvous is waiting, e.g. for some hardware action to
finish.
Whenever a series of deadlines in an arguably short period of time of one or more
processes is not met, this will lead to a catastrophe in the PHRCS and therefore a
reduction of the overhead is essential.
Obviously, a designer can model the system in such a manner that overhead and
excessive end-to-end processing time of a set of processes are avoided or reduced
by the model. If this is required from the designer, it puts a burden on the
designer and may lead to a system that does not fulfil all requirements or is
error-prone. Taking away the need for performance on a design level gives the

5In the literature, there are several interpretations of a context switch. For example, according
to Li et al. (2007) a “context switch refers to the switching of the CPU from one process or thread
to another”, whereas the interpretation of Pinto et al. (2012) is given by “When the application
makes a system call it issues a software interruption that causes a context switch transferring
the control to the kernel code, which then executes operations on behalf of the calling process.”
We follow the interpretation given by Li et al. (2007).
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designer freedom of choice within the design alternatives without violating the
hard real-time requirements.
The aim of our research is to improve the performance of concurrent systems
described in a formal, testable manner, such that the system will behave as envi-
sioned by the designer. Therefore, the focus of this thesis lies on the improvement
of the performance of PHRCSs during the development of these systems, resulting
in systems that have a reduced overhead by executing fewer context switches and
less end-to-end processing time of a set of processes.

1.2 Problem description
Although software development has matured in the last decades, software is still
designed by humans. The support of tooling during the design cycle has improved
the quality of the software. Out of the range of open problems on design level (for
example, inconsistencies in software models (Spanoudakis and Zisman, 2001)) we
consider only the performance of the system with respect to the effort the designer
has to put into the design. As soon as performance is an issue the designer has to
address this performance issue and that may affect the design with, for example,
less functionality as a result. A tool can address the performance issue and release
the designer of taking performance into account during the design cycle.
Veldhuijzen (2009) measured that in control systems designed with the process
algebra CSP context switches can lead to a considerable overhead of 20%.
Two reasons for the issue of superfluous context switches can be given for the
overhead of such systems:

- the overhead due to the synchronisation of actions of processes, because of
which the processes will execute in the proper order. This leads to two6

extra context switches for every process except the first, that is participating
in the synchronisation, and

- the overhead due to the passing of a series of variable values from one process
to the other. This leads to two6 extra context switches for each passing of a
value of one process to the other.

Although both reasons can be dealt with on design level, the second reason is more
of an implementation nature. As our focus lies on the design part of the software
engineering process, the second reason is not taken into account.
Currently, we have no measurements showing deadline misses due to excessive
end-to-end processing time provoked by the rendezvous of two or more processes.
Still, we see this as a problem that could easily be solved with the introduction of
a modelling feature disconnecting the processes involved in a rendezvous. This

6There are two extra context switches because, for every action of a process, Synchronisation
Software (SyncSw) has to be informed of the action that a process wants to execute. Therefore
there is one context switch performed by the Real-Time Operating System (RTOS) from a
process to the Synchronisation Process and there is one context switch performed by the RTOS
from the Synchronisation Process to the process.
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feature can be used during the design of the control software. Therefore we have
two issues to solve:

1. reducing the number of context switches during one period of execution of
the PHRCS,

2. reducing the end-to-end processing time of a set of processes during one
period of execution of the PHRCS.

1.3 Research questions
For the first issue of Section 1.2, we can reduce the number of context-switches by
means of a transformation of a set of parallel processes specified in some process-
algebraic formalism into graphs, after which we can use tools (graph products) that
multiply these graphs. When transforming the results of the graph products back
to processes, this will lead to a new set of possibly parallel processes for which the
threads that are an implementation of these processes have fewer context switches.
As we are dealing with hard real-time systems, this improvement must occur for
those situations where the involved processes are behaving in such a manner that
they fully consume their worst-case execution time. Of course, we cannot neglect
issues like power consumption. However, an improvement of the performance may
give the processor the possibility to go into a power down mode and thereby saving
energy. Still, we consider this a side effect, which should not obscure our goal,
timeliness in PHRCSs.
For the second issue of Section 1.2, a solution would be the introduction of a new
parallel operator together with new writing actions and reading actions which
disconnect the processes performing these actions. Obviously, this will only lead
to a performance improvement, if by using such an operator the timeliness is
guaranteed, whereas the timeliness would be violated without the usage of this
operator.
The two issues lead to three research questions:

1. How can the number of context switches be reduced for periodic hard real-
time systems, which are developed using process algebras, by means of a
graph-theoretical approach in such a manner that the performance of the
system is improved?

2. What are the algebraic and graph-theoretical properties of the graph-theoretical
approach, which are developed using process algebras, that reduce the number
of context-switches for periodic hard real-time systems in such a manner
that the performance of the system is improved?

3. How can the reduction of the end-to-end processing time of a set of processes
during every period of any periodic hard real-time system, which is developed
using the process algebra CSP, be achieved by means of an extension of the
graph-theoretical approach of research question one?
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1.4 Approach
From Section 1.2 it follows that the aim of our research is to improve the perform-
ance of PHRCSs by the reduction of the overhead due to the number of context
switches and by reduction of the end-to-end processing time of a set of processes
by disconnecting processes involved in a rendezvous.
Firstly, for synchronising actions we have to investigate whether such an improve-
ment can be obtained by graph multiplication, of which we expect they will lead
to fewer context switches.
Secondly, we are going to elaborate the graph-theoretical characteristics of the
graph multiplication. This includes a study on the decomposition of graphs under
the graph multiplication.
Finally, we extend input/output related actions as defined in the CSP process
algebra for which we expect to achieve a further improvement with respect to
reducing the end-to-end processing time of a set of processes. This implies that
we have to extend the CSP process algebra with new operators that introduce
asynchronous readers and writers. We study the impact on the graph multiplication,
which will lead to an adapted version of this graph multiplication.
Because we expect that the changes for the extended input/output related actions
are minor with respect to the graph-theoretical characteristics of the graph multi-
plication, the graph-theoretical characteristics of the extended graph multiplication
are outside the scope of this research.

1.5 Outline
In Chapter 2, we describe the background for which we introduce a new graph
product that we call the Vertex-Removing Synchronised Product (VRSP). We
give the system architecture for which we created the VRSP and describe the
relationship between processes and graphs. We introduce the optimisation of
graphs by VRSP leading to fewer context-switches for the threads that are an
implementation of the processes that represent these graphs. We elaborate the
characteristics of process algebra as far as they are of importance for the VRSP.
We introduce a new type of communication, half-synchronisation, which enriches
process algebra.
In Chapter 3, based on our publication in the 35th International Conference on
Communicating Process Architecture (Boode et al., 2013), we prove for finite,
deterministic, labelled, acyclic, directed multigraphs, which contain synchronising
arcs that the VRSP gives a performance gain. For these proofs we use several
stages of the VRSP, each of which handles a different aspect of the graph product;
the Cartesian Product, the Weak Synchronised Product, the Reduced Weak
Synchronised Product and the final resulting product: the VRSP. The reason for
using these intermediate products is that it eases the argumentation and proof.
In Chapter 4, based on our publication in the 36th International Conference on
Communicating Process Architecture (Boode and Broenink, 2014), we present
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a case study showing the advantage of the VRSP. We give the overall system
architecture for which our optimisation is meant and present and compare the
heuristics that will achieve this optimisation, based on our case study. We introduce
a lattice for which each vertex represents a different outcome of the VRSPs of
the graphs (a possible solution) representing the set of processes specified by the
designer of the PHRCPs.
In Chapter 5, we give the combinatorial aspects of the VRSP. When the VRSP
is associative the number of possible outcomes is given by the Bell number (Bn)
series and when the VRSP is not associative this number is given by the Bessel
number (B̃n) series (Comtet, 1974).
In Chapter 6, we elaborate the graph-theoretical properties of the VRSP. These
properties are based on the definitions of the binary operation on a set and the
associativity and commutativity of this binary operation. We define the notion of
consistency of pairs of graphs, based on the contraction of graphs with respect to
a set of arcs.
In Chapter 7, we introduce two graph decomposition theorems which divide a
graph G representing a process P into two graphs G1, G2 representing the processes
P1, P2 in such a manner that the behaviour of the processes P1 and P2 during the
parallel execution of P1 and P2 is identical to the behaviour of the process P . The
two graph decomposition theorems are based on the contraction of sets of vertices.
In Chapter 8, based on our publication in the 38th International Conference
on Communicating Process Architecture (Boode and Broenink, 2016) and our
publication in the 39th International Conference on Communicating Process
Architecture (Boode and Broenink, 2017), we describe a special case of input and
output in CSP. We introduce the half-synchronous parallel alphabetised operator,
which gives an ordering to actions with respect to different processes. To support
the claim that the PHRCS has an improved performance, we give an example,
where a performance gain is achieved for a PHRCS comprising a processor, an
FPGA and two controllers.
We extend the half-synchronous parallel alphabetised operator by indexing the
reading actions and allowing multiple asynchronous writing actions to the same
channel. We elaborate this extension in a case study, the Controlled Emergemcy
Stop (CES), showing a performance gain for the end-to-end processing time of a
set of PHRCPs.
In Chapter 9, we summarise the results of our research and finish with the
recommendations for further research.



2
About Process Algebra, Graph Theory, and

Periodic Hard Real-time Control Systems

Our line of research lies in the intersection of Process Algebra, Graph Theory and
Cyber-Physical Systems (CPSs). For this reason, we introduce in this chapter the
process-algebraic topics and the graph-theoretical topics with respect to CPSs (in
particular Periodic Hard Real-Time Control Systems (PHRCSs)) that are relevant
for our research.
We use graph theory to solve a performance problem with respect to context
switches in PHRCSs. Furthermore, we extend the process algebra CSP to reduce
the end-to-end processing time of a set of processes engaged in a rendezvous.
We incorporate this extension of CSP in our graph-theoretical solution of the
context-switch problem in such a manner that the end-to-end processing time is
indeed reduced. We study the effects that our solutions have on PHRCSs.
Whenever confusion can arise in the use of processes in the case of process algebra,
and processes in the case of a process executing on some operating system, we will
use process to indicate a process-algebraic process, and we will use thread when
we mean a process or thread that executes on some operating system.
The processes are implemented as threads on the target system, where there is a
one-to-one relationship between the set of processes and the set of threads (see
Figure 2.1). On the target system, the result of the transformation of processes to
graphs will be stored in a FSM like data structure in the threads. Whenever a
process performs an action, the related thread will execute a state transition in its
FSM. Processes can perform an action only if all processes that have that action
in their alphabet are in a state which allows that action and all these processes
will perform this action at the same time, atomically (atomicity is defined in
Definition 2.2.4 on page 17). To support this synchronisation of actions, we need
synchronisation software (the Synchronisation Software Server in Figure 2.1) that
controls the transitions representing these actions. Due to the synchronisation
requirements, the state transitions will lead to context switches. These context
switches are the first one of the two causes of the performance problem we want
to address.

11
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Graph theory is used to combine the FSMs (leading to fewer processes and
therefore to fewer threads) by which we expect to achieve fewer context switches.
For example, if two threads want to perform a state transition based on an action
a, for both threads two1 context switches have to be performed, which adds up
to four context switches. If the two FSMs of the threads are combined, only one
thread containing the combined FSM has to perform a state transition based on
action a, leading to only two1 context switches.
The processes are designed using software tooling running on a general purpose
computer (workstation). The threads run on a target system, the PHRCS. There-
fore we start in Section 2.1 with a description of the relation between the design
of the PHRCS using a general purpose computer and the execution of the PHRCS
on a target system, i.e. the design level with no real-time requirements on the
design process versus the execution level with hard real-time requirements on the
PHRCPs. We explain in which manner the graph-theoretical approach is used
on the general purpose computer and what the impact is of this approach on the
target system.
In Section 2.2 we describe the relation between processes and graphs. The mo-
tivation for the new graph product that we are going to introduce is that it may
lead to fewer context switches and, when the requirements on deadline or memory
occupancy are violated, the process of graph multiplication can decide whether
a combination of graphs exists that fulfil the requirements of the application
with respect to deadline and memory occupancy. Furthermore, we describe the
importance of a weak-bisimulation of processes with respect to the notion of a
contraction of graphs. We show the equivalence of a weak-bisimulation on design
level and consistency of graphs on execution level.
As we are going to manipulate the processes by means of transforming the related
graphs, we address the algebraic characteristics of the graph multiplication operator,
the VRSP, and the ` operator in Section 2.3.
We finish in Section 2.4 with an introduction of the process-algebraic operators
we use for the VRSP and the new process-algebraic operators we introduce for
asynchronous writers and asynchronous readers and their impact on the VRSP.
Using these new process-algebraic operators we reduce the end-to-end processing
time of a set of threads, which is the second one of the two causes of the performance
problem we want to address.

2.1 System Architecture
In Figure 2.1 the relation is given between the general purpose computer, on which
the design and implementation takes place, and the target system, which executes
the implementation.

1A context switch from the thread to the SyncSw and a context switch from the SyncSw to
the thread.
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During the design phase, the requirements of the application lead to a series of
processes, represented by the FSP1 to FSPn in Figure 2.1.
In the implementation phase, each FSPi is transformed into a thread that will be
executed on the target system, Thread1 through Threadn in Figure 2.1.
The threads form the logic of the application, which may change depending on the
requirements of the application, whereas the Services, the Real-Time Operating
System (RTOS) and the Device Drivers (DDs) are fixed, designed only once, for a
specific hardware platform.
The threads are FSM-driven (represented by the graphs G1 through Gn in Fig-
ure 2.1) and have to communicate with the Synchronisation Software (SyncSw).
The SyncSw is responsible for the synchronisation of the actions that the threads
want to execute.
The Hardware-Dependent Software (HDS) and the Algorithmic Software (AlgSw)
are FSM-driven as well. In general, they will have all hardware or algorithmic
actions as labels in their alphabet. For example, if a thread can execute an action
motor.X.go.10, motor X will make 10 revolutions per second, the HDS FSM will
have a motor.X.go.10-labelled transition. Because both the thread and the HDS
are able to execute motor.X.go.10, the SyncSw will notify both of this action.
The HDS will execute the software implemented for motor.X.go.10 and will send
the appropriate commands to the DD controlling motor.X. The HDS and the
thread will make a state transition based on the motor.X.go.10-action. In the

FSP1 FSP2 FSPn

Design level General Purpose Computer

Thread1
(G1)

Thread2
(G2)

Threadn
(Gn)

Synchronisation
Software

Hardware
Dependent
Software

Algorithmic
Software

Execution level Target System

Services

RTOS/Device Drivers

Device
Driver

Figure 2.1: System Architecture.
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architecture, shown in Figure 2.1, every action of a process on design level leads to
a series of context switches for the threads; the threads, sending their information
on the action to the SyncSw, the SyncSw deciding whether any message has to be
send to these threads and the threads receiving the acknowledgement so they can
execute the action (Boode and Broenink, 2014).

2.2 Processes and Graphs
Processes can be represented by directed graphs. By multiplication of these graphs
according to the VRSP we are going to introduce, we obtain a graph which
represents a process that may have fewer context switches than the original set of
processes. For this purpose we have developed a VRSP, a binary relation with
symbol n, (Boode et al., 2013; Boode and Broenink, 2014; Boode et al., 2015).
In Figure 2.2 we give the expected behaviour of the processes with respect to
execution time and memory occupancy when we optimise by multiplication of the
graphs representing these processes by the VRSP. The set of parallel processes
P1|| ¨ ¨ ¨ ||Pn is represented by the set of graphs

n
ř

i“1
Gi. The process P , which is

strongly bisimilar (Definition 2.2.1 on page 15) to P1|| ¨ ¨ ¨ ||Pn, is represented by
n
n
i“1
Gi. Because the VRSP operates on two graphs, every VRSP of two graphs will

reduce the number of graphs representing the process-algebraic specification by
one and therefore one process less on the Number of Graphs abscissa.
Graph multiplication according to the VRSP is (worst-case) exponential with
respect to memory occupancy if the graphs do not synchronise. This happens
when the alphabets of the processes represented by these graphs do not share
actions. By selecting processes that synchronise heavily, the memory occupancy of
the multiplication of these processes can decrease. This happens (best case) when
the alphabets of the processes represented by these graphs are identical. How the
multiplications of a set of graphs will grow with respect to memory occupancy
depends on the degree of synchronisation of the chosen graphs.
In Figure 2.2 the blue line shows a set of graphs that synchronise heavily. At the
right side of the blue line, this is shown by a decreasing memory occupancy. The
middle of the blue line shows that the multiplied graphs do not synchronise heavily
any-more and the left side of the blue line shows that the last multiplications have
little synchronisation.
As a contrast, the red line shows a set of graphs that do not synchronise heavily
from the beginning (the right side) of the multiplications. While multiplying, the
graphs synchronise continuously less. Note the logarithmic scale for the memory
occupancy.
The graph multiplication is necessary when the threads cannot meet the hard
real-time requirements of the application; a series of deadline misses in an arguably
short period of time is a catastrophe. When multiplying the graphs, the memory
occupancy may grow, even exponentially. Therefore it is possible that no set of
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Figure 2.2: Maximal synchronisation (blue line) versus minimal synchronisation (red
line).

multiplied graphs exists that fulfil the requirements of the application with respect
to the deadline and memory occupancy. In this case, either the system has to be
redesigned or more powerful hardware has to be chosen.
The relation between concurrent processes and graphs in relation to bisimulation
(Definition 2.2.1 and Definition 2.2.2) and graph multiplication is shown in Fig-
ure 2.3 on page 17. Our definitions of a strong bisimulation and weak bisimulation
are based on Milner (1989).

Definition 2.2.1.
Let P be a set of states and let Act be a set of actions. Then a binary relation
S Ď P ˆ P is a strong bisimulation if pP,Qq P S implies, for all α P Act,
(i) Whenever P α

Ñ P 1 then, for some Q1, Q α
Ñ Q1 and pP 1, Q1q P S

(ii) Whenever Q α
Ñ Q1 then, for some P 1, P α

Ñ P 1 and pP 1, Q1q P S

Milners definition implies that for two processes that are strongly bisimilar, the
set of traces of one process is identical to the set of traces of the other process,
but not vice versa. We denote two strong-bisimilar processes P1, P2 as P1 „ P2.
The kind of bisimilarity defined in Definition 2.2.1 is too strong when we want to
describe the behaviour of parallel processes, because processes that are strongly
bisimilar are in fact indistinguishable. We want the processes to have on the one
hand displaying unique, therefore asynchronous, behaviour and on the other hand
displaying behaviour synchronously with some of the other processes. If we consider
the asynchronous behaviour of a process as silent actions τ for the other processes,
we can use the definition of a weak bisimulation, given in Definition 2.2.2.



16 On the Automation of Periodic Hard Real-Time Processes

For a set of states P with α P Act, X,X 1, Y, Y 1 P P , we write X α
ñ Y if and only if

- if α ‰ τ , we have X τ˚
Ñ X 1

α
Ñ Y 1

τ˚
Ñ Y

- if α “ τ . we have X τ˚
Ñ Y , where τ˚ stands for a (possibly empty) sequence

of τ -labelled transitions.
Then a weak bisimulation is defined as follows:

Definition 2.2.2.
Let P be a set of states and let Act be a set of actions. A binary relation S Ď PˆP
is a weak bisimulation if pP,Qq P S implies, for all α P Act,

(i) Whenever P α
Ñ P 1 then, for some Q1, Q α

ñ Q1 and pP 1, Q1q P S

(ii) Whenever Q α
Ñ Q1 then, for some P 1, P α

ñ P 1 and pP 1, Q1q P S

Using the weak bisimulation we can define consistency of processes. We want two
processes to be consistent if each process on its own is able to exhibit the same
behaviour as when the process is part of the two processes in parallel. In the sense
of observable behaviour, this means that whenever a process is not engaging in
an action of another process, it does not have that action in its alphabet; from a
synchronisation point of view, that action is not observable by the process. Hence,
we redefine the silent, not observable, action τ as an asynchronous action for any
process P . Then consistency of processes is defined in Definition 2.2.3.

Definition 2.2.3.
Let τ represent any asynchronous action of either the process P or the process Q.
Then the processes P and Q are consistent if and only if they are weakly bisimilar,
denoted as P « Q.

For graphs, we have defined the notion of consistency of graphs, denoted as „,
in Chapter 5, on page 73, which is based on the contraction of graphs, in such a
manner that our interpretation of a weak-bisimulation on design level is equivalent
to consistency on execution level.
Next to the weak-bisimulation, we also need the strong-bisimulation because
whenever a set of parallel processes P behaves in a strong-bisimular fashion to
one process Q, P is consistent with Q. As an example, in Figure 2.3 we show
the transformations, where G1, G2 are consistent graphs, P1||P2 and P1,2 are
strongly bisimilar and P1 and P2 are weakly bisimilar. Threads executed on our
target system will provoke a context switch whenever an action is executable.
In such a system synchronisation software must exist that is responsible for the
synchronisation of threads. These threads can only execute a certain action if all
threads in the system for which the related process has this action in its alphabet
(visible to other processes) are able to execute the action.
On the level of design, processes synchronise over an action atomically. For this syn-
chronisation, we use the definition of atomicity of Lomet (1976) (Definition 2.2.4).
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P1 « P2 ô pP1||P2 P1,2q„

G1 „ G2 pG1 `G2

õ õ

G1 nG2q„ô

Figure 2.3: Relation between weak bisimilarity and strong bisimilarity of processes,
and consistency of graphs.

On the implementation level, this requires software that controls the threads for
which the related process is synchronising over an action. This will not be atomic
in the sense that the atomic action over which processes synchronise, cannot be
executed by the threads at the same moment in time. The execution of the action
by one thread will follow the execution of the action by the other thread. In the
meantime, the threads can be interrupted by other threads (not involved in the
synchronisation). The synchronisation software has to assert that the execution of
the synchronised action by the involved threads is atomic as far as these threads
are concerned.

Definition 2.2.4. (Lomet, 1976) Actions are atomic if they can be considered, so
far as other processes are concerned, to be indivisible and instantaneous, such that
the effects on the system are as if they were interleaved as opposed to concurrent.

We use Lomets definition of atomicity from the perspective of a process-algebraic
(is design) level.
The components under consideration are PHRCPs, with identical priorities, dead-
lines and release times. They differ only in their behaviour which may lead to
different computation times.

2.3 Algebraic and Graph Theoretical Characteristics
The characteristics of addition and multiplication in group theory deal with, for a
given operator and a given set, idempotency, distributivity, associativity, commut-
ativity and invertibility. From the definition of the VRSP given in Section 6.1.2 it
is obvious that the VRSP is idempotent, commutative and not distributive. We
give conditions and prove in Section 6.4 for which the VRSP is associative. Because
invertibility has no meaning in process algebra, we can disregard invertibility of
graphs under the VRSP.
In process algebra, it is often claimed that the parallel operator is associative (Hoare,
1978; Magee and Kramer, 1999; Schneider, 1999). Hoare (1978) shows this by
mentioning that for the choice operator “A process which first does x and then
makes a choice is indistinguishable from one which first makes the choice and then
does x” followed by the remark that for the same reasons the parallel operator is
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associative. So in Hoare’s view, the usage of an operator leads to distinguishing
(or not) between processes, whereas in our view it should be isomorphic (or not).
In a way, Roscoe (2010) solves this by creating an alphabetised parallel operator
x||y, which is associative if the alphabets of all the processes are taken into account
and therefore the processes are allowed to change their behaviour depending
on the context in which they operate, ((Ax||yBqxYy||zC “ Ax||yYzpBy||Czq).
Furthermore, Roscoe remarks that pP ||

X

Qq||
X

R “ P ||
X

pQ||
X

Rq is weak (in that both

interfaces are the same) associative and that it is hard to construct a universally
applicable associative law for pP ||

X

Qq||
Y

R “ P ||
X

pQ||
Y

Rq, X ‰ Y .

As another example, Magee and Kramer (1999) just mention that their parallel
operator is associative.
In process algebra the behaviour of two parallel processes depends on the other
processes in the parallel execution. In fact, one may argue that the parallel operator
is an n-ary operator instead of a binary operator.
We have the classic view on associativity of a binary operator ˝ on a set S. First
of all, S has to be closed under ˝. Secondly, pa ˝ bq ˝ c “ a ˝ pb ˝ cq for all a, b, c P S.
Therefore, for our graph product, each multiplication of two graphs must be unique
and must not depend on other graphs in the multiplication. But this is as well not
the case for the parallel operator in process algebra.

2.4 Operators in Process Algebra and Graphs
The transformation of process algebras into graphs is well known. As an example
Vrancken (1997) shows transformations of processes to graphs for ACPε (Bergstra
and Klop, 1989). For our goal, PHRCPs, we are only interested in a subset of
the operators of a process algebra; the choice and parallel operator. We use
FSP (Magee and Kramer, 1999) and CSP (Hoare, 1978) as the process algebras to
formulate our examples and case studies.
The rendezvous protocol is implicit in process algebra, as two (or more) pro-
cesses are only allowed to have a transition with respect to a certain label if all
processes containing this label in their alphabet are in a state where they can
perform this transition. These processes will perform this transition simultaneously.
Such a transition is performed atomically. Therefore, the rendezvous protocol is
synchronous.
We introduce half-synchronisation as a form of communication in between syn-
chronisation and a-synchronisation.



3
Minimising the Length of a Graph

This chapter is based on our paper presented at the CPA 2013 conference (Boode
et al., 2013).
In certain single-core, mono-processor configurations (for example embedded
control systems in robotics comprising many short processes) process context
switches may consume a considerable amount of the available processing power.
Li et al. (2007) showed that the average cost of a context switch varies from 3.8µs 1

to over 1ms 2. Veldhuijzen (2009) showed that the cost of a context switch is
on average 7.7µs 3. Clearly, these figures depend on the hardware and software
being used. To what extent a system is suffering from context switches depends
roughly on the ratio between the context switch and the process action; the higher
the time consumption of an action, the less relevant the time consumption of the
context switch.
As we are considering systems with many short processes, it can be advantageous
to combine processes, in order to reduce the number of context switches, thereby
increasing the performance of the application. We restrict these configurations to
robotic applications. We consider periodic real-time processes executing on a single-
core mono-processor, because robotic applications (like embedded control systems)
often consist of processes with identical periods, release times and deadlines. The
processes typically have a period of 1 ms. This observation makes it reasonable to
assume that the release time, the periods and the deadlines for the constituent
processes of the application are the same. As we consider periodic real-time
processes, for every process activity (i.e. action), there must be an upper bound

1Measured on a 2.0 GHz Intel Pentium Xeon processor, running under the Linux 2.6.17 kernel
with Redhat 9.

2For context switches, Li et al. (2007) distinguish between direct and indirect costs with
respect to the processing power. The direct costs consist of issues like saving and restoring
registers, translation table look-aside buffer entries that need to be reloaded, flushing of the
processor pipeline, but also kernel code that has to execute. Indirect costs include cache misses
caused when there is a context switch to a process whose cache lines have been reused. Such
costs may degrade performance in a significant way.

3Measured on a 560 MHz Intel Pentium IV processor, running under the QNX operating
system.
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for which the action has finished executing; otherwise one cannot guarantee the
timeliness of the process. As an example, consider 100 very short processes,
containing in average 3 actions, running at 1 kHz, so a period of 1 ms. Using the
minimum context switch time consumption given by Li et al. (2007), the context
switches will need more than the available processing time in one period.
When looking at programs, we distinguish between the specification level and the
execution level. On the one hand, there is the specification of a set of parallel
processes (for example, in CSP (Hoare, 1985)); on the other hand, there is the
execution of processes representing the specification, on a computer system, running
under an operating system.
At the specification level, a process defines a series of actions. Processes sharing
the same action can only perform this action if all processes sharing this action
are ready to perform this action; this is atomic and performed as one action.
At the execution level, as soon as a process has to synchronise with another process4,
a context switch has to be executed, to let the execution be continued by that
other process. Such a context switch consumes time. One can reduce the number
of these synchronisation-related context switches by combining communicating
processes.
At the specification level, a set of parallel real-time processes can be represented by
a graph consisting of several components. A single process is represented by one
component, which is a connected, finite, labelled, acyclic, directed multigraph5,
consisting of vertices, arcs between pairs of vertices and labels associated with the
arcs. A label is a string representing the (name of an) action and a number repres-
enting the worst-case execution time of the action. With each name, exactly one
worst-case execution time value is associated. Our interpretation of a component,
representing a process, is that the vertices represent states and the arcs together
with their labels represent the actions that are necessary to move from one state
to another. Components have different arc sets, but some of their arcs may have
the same label, meaning that they represent the same action.
The execution of a process is, from a graph-theoretical point of view, represented
by a series of arcs: a path through the graph. In process terms, this is called
a trace. Such a path has a length, which is the summation over the worst-case
execution-time values of the labels associated with the arcs in the path. Our goal
is to reduce the worst-case execution time of the set of parallel processes, which
is represented by the summation over the maximum path length of each graph,
by combining synchronising processes. In graph-theoretical terms this leads to
combining graphs, using notions like the Cartesian product of graphs and the
synchronised product of graphs that we are going to introduce in this chapter.

4To synchronise actions, both processes have to do extra work and at least one of them will
have to yield the processor (assuming single-core execution), causing a context switch.

5These graphs are (slightly) more general than labelled transition systems in that they may
have more than one starting and finishing point (used in intermediate stages of the graph
transformations described later).
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Via a design methodology, a process specification has to be transformed into a
program. We insert into this transformation three steps, of which this thesis
describes the second one. Firstly, we transform the process specification into a
set of graphs. Secondly, where possible and meaningful (in terms of performance
gain), we take synchronised products of subsets of the set of graphs, and thirdly,
this set of synchronised products is transformed into a process specification.
Before we specify the model that we use to analyse the performance of periodic
real-time processes, we introduce the necessary graph-theoretical and process-
algebraical terminology in Section 3.1. In Section 3.2, we introduce periodic
real-time processes as finite, labelled, acyclic, directed multigraphs, and we present
an overview of existing synchronised products. In Section 3.3, we discuss the
transformation of a set of graphs to its Cartesian product, where we show that
the longest path length for a set of graphs is identical to the longest path length
of the Cartesian product of this set of graphs. In Section 3.4 the synchronisation
constraints (disregarded by the Cartesian product) are met by means of the weak
synchronised product of a set of parallel processes. In Section 3.5 the reduced weak
synchronised product of a set of parallel processes is introduced, where not-specified
behaviour represented by the Cartesian product is removed. In Section 3.6 the
Vertex-Removing Synchronised Product (VRSP) is introduced. We prove that the
longest path length of the VRSP of a set of graphs is at most the longest path
length of the disjoint union of these graphs. We present sufficient conditions for
which the application of the VRSP leads to a reduction of the longest path length.
We finish with our conclusions in Section 3.7.

3.1 Terminology
We use Bondy and Murty (2008) and Schneider (1999) for terminology and notation
on graphs and processes not defined here and consider finite, labelled, acyclic,
directed multigraphs only.
So, if we use G to denote a graph, we will always mean a finite, labelled, acyclic,
directed multigraph. Thus G consists of a set of vertices V , a multi-set of arcs
A, and a mapping λ : A Ñ L, where L is a set of label pairs6. An arc a P A
which is directed from a vertex u P V (the tail) to a vertex v P V (the head) will
usually be denoted as a “ uv; the reverse arc will be denoted as vu. Note that we
allow multiple arcs from u to v, but that we do not allow uv and vu to be present
in the same graph. For each arc a P A, λpaq P L consists of a pair plpaq, tpaqq,
where lpaq is a string representing an action and tpaq is a positive real number
representing the worst-case execution time of the action represented by lpaq. If
an arc has multiplicity k ą 1 then all copies have different labels; otherwise, we
could replace two copies of an arc with identical labels by one arc, because they
represent exactly the same action at the same stage of the process. If two arcs
a, b P A have labels λpaq “ plpaq, tpaqq and λpbq “ plpbq, tpbqq such that lpaq “ lpbq,

6We shall also use the notation V pGq and ApGq to denote the vertices and arcs of a graph G.
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then this implies that tpaq “ tpbq; this follows since lpaq “ lpbq means that the arcs
a and b represent the same action at different stages of a process.
A directed path in G is a sequence of distinct vertices v1v2 . . . vk of G such that
vjvj`1 P A for j “ 1, . . . , k ´ 1. The length of a path v1v2 . . . vm is defined as
m´1
ř

i“1
tpvivi`1q. A directed path defines a total ordering on its arcs: v1v2 ă v2v3 ă

. . . ă vk´1vk.
A directed cycle is a directed path v1v2 . . . vk together with an additional arc vkv1,
and is denoted by v1v2 . . . vkv1. An acyclic graph does not contain any directed
cycles.
In general, a finite, labelled, acyclic, directed multigraph G consists of several
components, where each component, Gi, is weakly connected (i.e. all vertices are
connected by sequences of arcs, ignoring arc directions) and corresponds to one
sequential process. For such components, `pGiq is defined as the maximum length
taken over all directed paths in Gi. For the whole graph, which corresponds to a
parallel set of sequential processes that each must run to completion, the maximum
path length, `pGq, is the sum of all the individual `pGiq. A partial ordering on the
arcs of a weakly connected graph is induced from the total orderings of its directed
paths: a ă b if and only if a and b are ordered in some directed path within the
graph.
For components Gi and Gj , an arc ai with label λpaiq in component Gi is a
synchronising arc with respect to components Gi and Gj , if and only if there
exists an arc aj with label λpajq in component Gj and λpaiq “ λpajq. If it is clear
from the context, we omit the ‘with respect to components Gi and Gj ’ part of the
definition.
Time and processes are thoroughly described in CSP (for example, by Schneider
(1999)). Our view of time in a process is that each action takes some time to
execute and this time is directly linked to the label of the action. For every process
P , the actions of the process constitute the process alphabet set AP , which consists
of labels. A label in a process is identical to a label in a graph: both are identical
strings of characters with an identical associated value.
Whenever in a certain state s of a process P a choice exists out of n actions, where
an action is labelled pli, tiq, into m ď n states s1, . . . , sm, this is represented in the
graph G by the vertex u P V pGq representing the state s, the vertices v1, . . . , vm P
V pGq representing the states s1, . . . , sm, respectively, and n arcs a1, . . . , an P ApGq,
with tail u and head vj , j P t1, . . . ,mu and with labels λpaiq “ pli, tiq, i “ 1, . . . , n.
Viewed as CSP processes, components are combined in parallel using the CSP
alphabetised parallel operator with alphabet sets defined by the labels on their
respective arcs. For an arc of a component Gi whose label does not occur on an arc
of another component Gj , the corresponding action is not blocked from execution.
One of the cases in which a graph G representing a set of parallel processes is said
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to be ill-defined or inconsistent is when this set of processes contains a deadlock. In
Definition 6.2.1 on page 73, we define consistency of graphs in a broader context.
Components Gi “ pVi, Ai, tλpaq|a P Aiuq and Gj “ pVj , Aj , tλpaq|a P Ajuq are
said to be independent if and only if tλpaq|a P Aiu X tλpaq|a P Aju “ H.
The in-degree (out-degree) of a vertex v in a graph G is defined as the number of
arcs with head v (tail v) and denoted by d´Gpvq pd

`
Gpvqq.

The Cartesian product G1lG2 of G1 and G2 is defined as the graph on vertex set
V1,2 “ V1 ˆ V2 (the Cartesian product of the vertex sets) with two types of arcs.
Arcs of type 1 (type 2) are between pairs pv1, v2q P A1,2 and pw1, w2q P A1,2 with
pv1, w1q P A1 and v2 “ w2 (with v1 “ w1 and pv2, w2q P A2), so arcs of type 1 and
2 correspond to arcs of G1 and G2, respectively. For k ě 3, the Cartesian product
G1lG2l . . .lGk is defined recursively as ppG1lG2ql . . .qlGk.
Since we only consider finite, labelled, acyclic, directed multigraphs, paths, etc.,
for convenience we skip the adjective, finite, labelled, acyclic, directed multi where
possible in the sequel.

3.2 Periodic Real-time Processes as Labelled Directed
Acyclic Graphs

The rationale behind modelling processes by graphs is, that a process is always in
a certain state, where via performing an action another state is reached. Similarly,
from a specific vertex in a graph another vertex can be reached by passing through
the arc between them. A PHRCP must not contain loops with an unbounded
number of iterations; otherwise it may happen that a deadline is missed due to this
unbounded number of iterations in such a loop consuming an unbounded amount
of execution time. Therefore, a process must be acyclic and can be defined as a
labelled, directed, acyclic graph. If the process specification contains cycles, these
cycles must be bounded with a fixed upper limit known during the design phase
of the PHRCS. In such a case the cycles can be unfolded leading to an acyclic
directed graph.
Hence, a set of parallel real-time periodic processes can be modelled as a graph G
with components Gi. For our purpose of improving the performance of real-time
periodic applications, we are going to show how the execution time might be
reduced by combining components of graphs. A set of parallel processes and its
combination into one process has to have identical behaviour (i.e. traces and
failures7 of the set of parallel processes must be the same as those of the combined
processes).
Several products of graphs for combining a set of graphs into one graph have been
defined in the literature, like strong products, synchronised products, etc. None

7There are no divergences8 as the processes being combined are finite (repeated periodically
by the real-time application).

8“A divergence is a finite trace during or after which the process can perform an infinite
sequence of consecutive internal actions.”(FDR, 2016)
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of these products is sufficient for our purposes. The strong product as defined
by Bondy and Murty (2008) is a labelled, acyclic, directed graph that is order-
preserving, but the arcs that produce a synchronised arc are not removed from the
graph. In other words, behaviour is added to the original process set. Synchronised
products have been defined by authors like Aiguier et al. (2005), Caucal and
Hassen (2008), Hammal (2007) and Wöhrle and Thomas (2004). The definition
by Hammal (2007) does not take into account that for a certain graph a certain
label may occur more than once in a path, so the definition does not preserve
the order. The definition by Caucal and Hassen (2008) is used to synchronise
languages where the synchronised product of languages G and H is the disjunction
of these languages and is also not order-preserving.
For these reasons, these definitions do not meet our requirements, as the product of
graphs we have in mind has to be order-preserving and our graphs have to reflect
the behaviour of the processes on which the graphs are based. The definition by
Aiguier et al. (2005) stems from Input Output Symbolic Transition Systems and
turns out to be almost similar to our product, although the terminology is different.
Even the definition by Wöhrle and Thomas (2004) does not fit our needs, although
this product preserves the order as shown in Figure 3.1 (the dashed arc is the
synchronising arc). In their approach it is possible for the synchronised product of
two weakly connected graphs (shown on the left of Figure 3.1) to contain again
two or more weakly connected graphs (shown on the right of Figure 3.1, where
the diamond-shaped component and the isolated vertex represents states and
transitions unreachable according to the synchronisation rules).

v3

v2

v1

u1 u2 u3

pu1,v3q pu2,v3q pu3,v3q

pu1,v2q pu2,v2q pu3,v2q

pu1,v1q pu2,v1q pu3,v1q

Figure 3.1: Synchronising product according to Wöhrle and Thomas.

At first sight, the Cartesian product of graphs seems to be a good way to express
the combination of the corresponding parallel processes. However, this product
represents the interleaved execution of the processes and does not take into account
the synchronisations required by the processes which must execute synchronising
actions atomically. Therefore, we propose a modification of the synchronised
product by Wöhrle and Thomas (2004) that will be developed in a number of
steps. Figure 3.2 shows an example of five graphs, where dashed arcs represent
synchronising actions.
The example shows five steps, where the VRSP is built from a set of graphs.
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These five steps are elaborated in Sections 3.3 through 3.6, where also the formal
definitions of the corresponding products are given.
In the upper left of Figure 3.2, G1 and G2 represent two processes with one
synchronising arc (the dashed arc in both graphs); G1

Ř

G2 denotes the disjoint
union of these two graphs.

G1

G2

G1
Ř

G2

G1lG2

G2 aG2

G2�G2G2 nG2

Figure 3.2: Transformations from parallel (
Ř

) via the Cartesian product (l), the weak
synchronised product (a), the reduced weak synchronised product (�) to the VRSP
(n).

In the upper middle of Figure 3.2, G1lG2 is the Cartesian product of the graphs
G1 and G2. The vertices are the cross-product of the original vertices and the
transitions between them are in one of two dimensions (one for each of the original
graphs). This corresponds to the CSP interleaving of the two processes (i.e. where
each is free to engage in actions, regardless of whether they are held in common).
Clearly, this is not a suitable serialisation of the original parallel system. This will
be explained in more detail in Section 3.3.
On the right of Figure 3.2, G1 a G2 is the weak synchronised product of the
(original) graph G1

Ř

G2. It is derived from G1lG2 by removing arcs representing
common actions if those arcs proceed from a vertex in only one of the dimensions
(i.e. the action was engaged in by only one of the original processes). Common arcs
remain always in the form of two-dimensional parallelograms (one dimension for
each original process engaging in the action). If there is a deadlock in the system,
this will appear as vertices with no out-flowing arcs. This will be explained in
more detail in Section 3.4.
In the lower middle of Figure 3.2 G1�G2 is the reduced weak synchronised product
of G1 and G2. It is derived from G1a G2 by (iteratively) removing all vertices that
have been left with no in-flowing arcs (other than those in the Cartesian product
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that had none - i.e. the starting points), together with the out-flowing arcs from
those removed vertices. This will be explained in more detail in Section 3.5.
Finally, in the lower left of Figure 3.2 G1 nG2 is the VRSP of G1 and G2. This
collapses the common action parallelograms into single action arcs across the
diagonal, leaving the two isolated vertices. The same iterative process from the
third step (for removing vertices with no in-flowing arcs and their out-flowing arcs)
cleans up. This will be explained in more detail in Section 3.6.

3.3 The Cartesian Product of a Set of Parallel Processes
To visualise all our transformations we use a simplified version of an untimed
example by Oguz et al. (2012) given in Listing 3.1, shown in Figure 3.3. The
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Figure 3.3: Untimed sequence control processes of a mobile robot

example contains three serial processes running in parallel, synchronising on
their common actions respectively. Clearly, they can be serialised simply by
concatenating them, removing the middle Skips and merging the common actions to
a single occurrence. The example is chosen to illustrate the stages of transformation
and kept simple for this purpose. In Appendix I, Listing 1 and the related graph
transformation in Figure 1 give a (slightly) more complex, and interesting example.
The process SEQUENCE_CONTROL in Listing 3.1 is tail recursive, each element of the
recursion being one period of the control logic. We use the constituent processes
of this period for our transformations (starting in Figure 3.4). We assume that
the actions have a given upper bound time value. We abbreviate the actions
and their related upper bound time values in the several product figures, e.g.
(read_distance_sensors, 120 µsq will become rds. As before, a dashed or dotted
arc represents a synchronising arc. The graph SQ=MS+RS+OD representing the
processes MS = MOTOR_SPEED, RS = ROBOT_SPEED and OD = OBJECT_DISTANCE
and using abbreviated actions is given in Listing 3.2.
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� �
OBJECT_DISTANCE = read_distance_sensorsÑ compute_object_distanceÑ

distance_measÑ Skip;

ROBOT_SPEED = distance_measÑ compute_robot_speedÑ robot_speedÑ Skip;

MOTOR_SPEED = robot_speedÑ compute_motor_speedÑ write_motor_speed_setpoint
Ñ Skip ;

SEQUENCE_CONTROL = pOBJECT_DISTANCE ‖ ROBOT_SPEED ‖ MOTOR_
SPEEDq;SEQUENCE_CONTROL;� �

Listing 3.1: Description of the SEQUENCE_CONTROL process.

� �
MS “ {pV pG1q, ApG1q, tλpaq|a P ApG1quq}

{(tv1, v2, v3, v4u, tv1v2, v2v3, v3v4u, tpv1v2, rsq, pv2v3, cmsq, pv3v4, wmssquq}

RS “ {pV pG2q, ApG2q, tλpaq|a P ApG2quq}
{(tv5, v6, v7, v8u, tv5v6, v6v7, v7v8u, tpv5v6, dmq, pv6v7, crsq, pv7v8, rsquq}

OD “ {pV pG3q, ApG3q, tλpaq|a P ApG3quq}
{(tv9, v10, v11, v12u, tv9v10, v10v11, v11v12, u, tpv9v10, rdsq, pv10v11, codq, pv11v12, dmquq}� �

Listing 3.2: Definition of the graph representing the SEQUENCE_CONTROL process.

The Cartesian product of the graph SQ, MSlRSlOD, contains 64 states.
Therefore, we do not show the formal definition of the graph. From Figure 3.4,
it can be checked that `pMS `RS `ODq, which is `pMSq ` `pRSq ` `pODq, is
equal to `pMSlRSlODq. Next, we will show that this holds in the general case
for finite, labelled, acyclic, directed multigraphs.
In the Cartesian product G1lG2 of G1 and G2 we distinguish between two types
of arcs. Arcs of type G1 (type G2) are between pairs pv1, w1q P V pG1lG2q
and pv2, w2q P V pG1lG2q with v1v2 P ApG1q and w1 “ w2 (with v1 “ v2 and
w1w2 P ApG2q), so arcs of type G1 and type G2 correspond to (are in fact copies
of) arcs of G1 and G2, respectively.

For k ě 3, the Cartesian product
k
l
i“1
Gi “ G1lG2l . . .lGk is defined recursively

as ppG1lG2ql . . .qlGk.

If no ambiguity can arise, we write lGi for
k
l
i“1
Gi. In this product of k directed

graphs, we distinguish between arcs of type Gi for i “ 1, . . . , k, analogously as for
the case k “ 2.
Note that in case the Gi are labelled, the labels of the arcs of type Gi in lGi
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Figure 3.4: Sequence control processes of a mobile robot, from ` to l.

correspond to the labels of the arcs of Gi: each copy of an arc a P ApGiq in lGi
has label λpaq. If Gi is a multigraph an arc a P ApGiq can appear more than once
in Gi, but in that case, the copies of a in Gi have distinct labels, so each of the
copies can be identified by its label. In lGi similarly, we can distinguish the copies
of a by their labels (λ1paq, λ2paq, . . .).
For the sequel, we need a number of useful properties of acyclic directed graphs.
Most of these properties are straightforward and easy to prove - see Bang-Jensen
and Gutin (2008).
Let G be an acyclic directed (multi-)graph. Then G has at least one vertex v1
with in-degree 0. If we delete v1 and all the arcs with tail v1 from G, we obtain a
new acyclic directed (multi-)graph, so we can again find a vertex v2 with in-degree
0, etc. We can repeat this procedure as long as there are vertices, and we obtain
a so-called acyclic ordering v1, v2, . . . of the vertex set of G. It is important to
observe that this ordering implies that arcs of G can only exist from vi to vj with
i ă j. We will use a slightly different (partial) ordering for our purposes, as follows.
We assume throughout that all our graphs Gi are acyclic, directed multigraphs.
For the moment, we disregard the labels, so in the following paragraphs the length
of a directed path is just the number of arcs.
For each Gi we define Si0, also called the source of Gi, to denote the set of vertices
with in-degree 0 in Gi, Si1 the set of vertices with in-degree 0 in the graph obtained
from Gi by deleting the vertices of Si0 and all arcs with tails in Si0, and so on, until
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the final set Siti contains the remaining vertices with in-degree 0 and there are no
arcs in the remaining graph. We also define the sink of Gi as the set of vertices
with out-degree 0 in Gi. As in the acyclic ordering, this ordering implies that arcs
of Gi can only exist from a vertex in Sij1 to a vertex in Sij2 if j1 ă j2. This also
implies that the vertices of Siti have out-degree 0 in Gi, and that ti is the length of
a longest directed path in Gi, so ti “ `pGiq. In fact, all longest directed paths of
Gi have their starting vertex in Si0 and their terminating vertex in Siti . If a vertex
v P V pGiq is in the set Sij in the above ordering, we also say that v is at level j in
Gi. Note that a vertex v of level j ą 0 can only be reached from a vertex of level
smaller than j, and that there always exists at least one vertex u of level j ´ 1
with uv P ApGiq. Similarly, there exists a directed path of length p between some
(not any) vertex at level j and some (not any) vertex at level j ` p, but no longer
directed paths (but possibly shorter directed paths). So, in particular, if there is a
directed path of length p from a vertex u to a vertex v, and u is at level j, then v
is at level at least j ` p.
Apart from the inheritance of (copies of) the arcs and labels, the Cartesian product
preserves some other important properties for our analysis. First of all, we show
that the Cartesian product of a series of acyclic graphs G1, G2, . . . , Gk is again an
acyclic graph, and that the length of a longest path in the Cartesian product is
the sum of the lengths of longest paths in Gi, i “ 1, 2, . . . , k. In fact, we prove
the stronger statement that each longest path P in lGi corresponds to longest
paths in all Gi, in the sense that P contains exactly one copy of each of the
arcs of a longest path Qi in Gi, i “ 1, 2, . . . , k. We say that P is the interleaved
concatenation of these Qi.

Lemma 3.3.1. Let Gi be an acyclic graph for i “ 1, 2, . . . , k. Then lGi is acyclic
and every longest path in lGi is the interleaved concatenation of longest paths Qi
in Gi, i “ 1, 2, . . . , k. In particular, `plGiq “ `pG1q ` `pG2q ` . . .` `pGkq.

Proof. First note that it suffices to prove the statements for k “ 2, since for
integers k ě 3, G1lG2l . . .lGk is ppG1lG2ql . . .qlGk, hence G11lG12, and the
result follows by induction. So we want to prove that G1lG2 is acyclic and that
every longest path in G1lG2 is the interleaved concatenation of longest paths Q1
and Q2 in G1 and G2, respectively.
It is easy to show that there exists a path in G1lG2 that is the interleaved
concatenation of two longest paths Q1 and Q2 in G1 and G2, respectively. In
fact, if P “ p1p2 . . . pk1 and Q “ q1q2 . . . qk2 are two vertex-disjoint (longest)
paths, then clearly PlQ contains the path pp1, q1qpp1, q2q . . . pp1, qk2qpp2, qk2q

. . . ppk1 , qk2q with a length that is the sum of the lengths of P and Q.
The key to the remaining part of our proof are the following observations on paths
in G1lG2. Consider a (longest) path P in G1lG2 that starts with a subpath Q1
of type G1 arcs only, followed by a subpath R1 with a first arc of type G2 (and
with R1 possibly containing arcs of type G1 as well). Then Q1 corresponds directly
to a path Q11 in G1 (with the first coordinates of the vertex pairs corresponding to
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the vertices in Q1 as the vertices of Q11; all the second coordinates are identical
and equal to one particular vertex of V pG2q), while the vertex pairs corresponding
to the two vertices of the arc connecting the end of Q1 to the beginning of R1
have the same first coordinate x P V pG1q. The vertex pairs corresponding to the
vertices of R1 keep this first coordinate x as long as the arcs are of type G2. In
case these arcs are followed by an arc of type G1, this arc of type G1 corresponds
to an arc in G1 starting from x. So, all the subsequent subpaths of P with only
arcs of type G1 correspond directly to paths Q11, Q12, . . . in G1, and similarly all
the subsequent subpaths of P with only arcs of type G2 correspond directly to
paths R11, R12, . . . in G2. Moreover, there is an arc in G1 between the end vertex
of Q11 and the first vertex of Q12 (if any), and so on, and similarly for R11 and R12,
and so on (if any) in G2. By symmetry, the same observations can be made if the
path P starts with an arc of type G2, and contains arcs of both types.
To prove that G1lG2 is acyclic, suppose that it is not and contains a cycle C.
Then the first and last vertices of C are identical, say equal to pp1, q1q. It is
clear that C contains arcs of both types; otherwise C corresponds directly to a
cycle in G1 or G2, contradicting our assumption that G1 and G2 are both acyclic.
Assuming, without loss of generality, that the first k ě 1 arcs of C are of type G1,
p1 is the first vertex of a path Q11 “ p1p2 . . . pk`1 in G1, with the corresponding
subpath of C in G1lG2 consisting of vertex pairs ppi, q1q, i “ 1, . . . , k ` 1. Then
the first arc of type G2 in C we encounter is from ppk`1, q1q to ppk`1, q2q for some
q1q2 P ApG2q, and so on, so q1 is the first vertex of a path R11 in G2, as in the
above argumentation. Since pp1, q1q also appears as the last vertex of C, by similar
arguments p1 and q1 both appear as the last vertex of two paths Q1t and R1s in
G1 and G2, respectively. Since by the above argumentation all the subpaths of
type Q1i are connected, this implies that G1 contains a cycle, a contradiction. This
proves that G1lG2 is acyclic.
Suppose now that P is a longest path in G1lG2. Assume that P has length
`pG1lG2q ą `pG1q ` `pG2q. Using the above argumentation and the fact that
G1lG2 is acyclic, the two paths Q and R formed by the Q1i in G1 and the R1i
in G2, respectively, together have length `pG1lG2q ą `pG1q ` `pG2q, but this
contradicts that the length of Q is at most `pG1q and the length of R is at most
`pG2q. Together with the above arguments, this shows that P has length exactly
`pG1q` `pG2q and that P is the interleaved concatenation of the two longest paths
Q and R in G1 and G2, respectively. This completes the proof of Lemma 3.3.1.

Remark 3.3.2. The expression in Lemma 3.3.1 on the length of longest paths in
the Cartesian product is not valid if we drop the condition that each of the Gi
is acyclic. It is easy to present counterexamples. For instance, consider G1lG2,
where G1 consists of two arcs connecting 3 unique vertices and G2 has two arcs
between two vertices, but in opposite directions (i.e. a cycle). As can be observed
in Figure 3.5, the longest path lengths of G1 and G2 are 2 and 1, respectively9,
making their sum 3. However, G1lG2 contains a directed path of length 5.

9The vertices in a directed path must be distinct - see Section 3.1.
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G1

G2

G1 lG2

Figure 3.5: Cyclic graph counterexample.

Remark 3.3.3. The notion of the level of a vertex in an acyclic directed graph,
that we introduced before, has a natural extension to the Cartesian product, in
the following sense. For a vertex pv1, v2, . . . , vkq P V plGiq we define the level
vector pf1, f2, . . . , fkq, in which fi denotes the level of vertex vi in Gi. Then
the vertices with in-degree 0 in lGi are precisely all vertices with level vector
p0, 0, . . . 0q, whereas level vector pt1, t2, . . . , tkq with ti “ `pGiq corresponds to all
vertices that are terminals of some longest path in lGi. For each integer vector
px1, x2, . . . , xkq with 0 ď xi ď fi, there exists a vertex in lGi with this level
vector, and if xi ă fi, there also exists an arc of type Gi between a vertex with
level vector px1, x2, . . . , xi, . . . , xkq and px1, x2, . . . , xi ` 1, . . . , xkq. This implies
that there are several longest paths in lGi, each represented by adding one of
the total of t1 ` . . . tk units to one of the coordinates in the level vector between
subsequent vertices on the path. On the other hand, there cannot be any arcs in
lGi between a vertex with level vector px1, x2, . . . , xi, . . . , xkq and a vertex with
level vector py1, y2, . . . , xi ´ 1, . . . , ykq; all arcs imply an increase (by 1 or more) in
precisely one entry of the level vector, while the other entries remain the same.
This shows how the partial ordering on the vertices of an acyclic directed graph
has a natural extension to the Cartesian product. The same holds for the partial
ordering on the arcs. Since the Cartesian product is again acyclic, we can define
the same ordering there. So we define that for a, b P AplGiq, a ă b if and only if
a precedes b on some directed path in lGi. From the structure it then follows
that the ordering of the arcs in the individual Gi is preserved in the Cartesian
product, in the following sense. If a ă b for two arcs a, b P AplGiq of the same
type Gi, then for the corresponding arcs a1 of a in Gi and b1 of b in Gi, it holds
that a1 ă b1 in Gi. The simplest way to see this is by the level vectors: if b1 ă a1,
then the level of the head of b1 in Gi is smaller than the level of the tail of a1 in Gi,
but then the corresponding coordinate in the level vector of the head (and thus of
the tail) of b is also smaller than that of the tail (and thus of the head) of a in
lGi, contradicting that there is a directed path in lGi in which a precedes b.

Remark 3.3.4. In the above proof, we did not specifically consider the possibility
of having multiple arcs, and we did not use the labels in our arguments, for
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convenience. It is obvious that the proof is the same if we allow multiple arcs
because any directed path can contain at most one of these arcs, and we have
already indicated how we can identify the corresponding arc in Gi from the
inherited labels. It is also rather straightforward how the proof should be adapted
if we consider weighted arcs and the length of a path is the sum of the weights of
its arcs. The crucial observation is that every arc with a specific weight in G1lG2
corresponds to either an arc in G1 or an arc in G2 with exactly the same weight,
so instead of a contribution of 1 (which can be interpreted as weight 1) of an arc
to the length of a path, we then have to use this specific weight. The weights have
no influence on the level vectors since the levels of the vertices are determined by
the (non)existence of arcs, not by their weights. Of course, longest paths in terms
of the highest total weight do not necessarily coincide with longest paths in terms
of the largest number of arcs, so longest paths in the weighted sense may jump
more than one unit in one of the coordinates of the level vector. Note, however,
that these paths still start in a vertex with level vector p0, 0, . . . , 0q and terminate
in a vertex with level vector pt1, t2, . . . , tkq (where the ti refer to the unweighted
case of Remark 3.3.2 above).

Remark 3.3.5. An (acyclic) directed graph can have an exponentially high
number of longest paths in terms of its number of vertices n. Consider for instance
such a graph G with a square number of vertices, with

?
n vertices of level i for all

i “ 1, 2, . . . ,
?
n, and arcs between any two vertices from a lower level to a higher

level, all with weight 1. Then the number of longest paths in G is
?
n
?
n, so clearly

exponential in n. We give the general case in Appendix II.

3.4 The Weak Synchronised Product of a Set of Parallel
Processes

The Cartesian product of graphs is an adequate model for the interleaved execution
of processes as long as the graphs represent independent processes. The model
fails if the processes are not independent, for instance in case the processes must
synchronise over certain actions.
The different paths in the Cartesian product represent all possible (interleaved)
traces of the constituent processes, thereby also representing behaviour that is
simply impossible, due to synchronisation. For this reason, we need a more restrict-
ive notion than the Cartesian product of graphs. As for the Cartesian product,
this has to be order-preserving. This product we are going to introduce next is
based on the synchronised product by Wöhrle and Thomas (2004). Figure 3.6 gives
for our example the transformation of SQ “ MSlRSlOD consisting of the
Cartesian product of the graphs MS,RS,OD to the weak synchronised product
MS aRS aOD.
The weak synchronised product G1 aG2 of G1 and G2 is defined as the graph on
vertex set V pG1q ˆ V pG2q (the Cartesian product of the vertex sets) and arc set
A1,2 with four types of arcs.
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Figure 3.6: Sequence control processes of a mobile robot, from l to a.

The first two types correspond to arcs in G1 and G2 that have labels that only
appear in one of G1 and G2. We call this set of arcs the asynchronous arc set
and denote it by Aa1,2. Therefore, Aa1,2 is the set of all pairs pv1, xqpv2, xq with
x P V pG2q and the associated label λpv1v2q (a-type G1 arcs) or py, w1qpy, w2q with
y P V pG1q and the associated label λpw1w2q (a-type G2 arcs), where for arcs
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v1v2 P ApG1q label λpv1v2q does not appear in G2 and for arcs w1w2 P ApG2q
label λpw1w2q does not appear in G1.
The other types correspond to arcs in G1 and G2 with the same label. We call
this set of arcs the synchronous arc set and denote it by As1,2.
Therefore, As1,2 is the set of all arcs pv1, w1qpv2, w1q, pv1, w1qpv1, w2q, pv1, w2q
pv2, w2q, pv2, w1qpv2, w2q, with the associated label λpv1v2q, where for arcs v1v2 P
ApG1q and w1w2 P ApG2q label λpv1v2q “ λpw1w2q. The first and third are s-type
G1-arcs and the others are s-type G2-arcs.
For k ě 3, the weak synchronised product G1 aG2 a . . .aGk is defined recursively
as ppG1 aG2qa . . .qaGk. If no confusion can arise, we denote it as aGi.
Although this weak synchronised product, like the Cartesian product, might
represent behaviour that is not allowed by the original process specification, we
will use it as an intermediate result. For example, in Figures 3.2 and 3.6, it is
possible in both the Cartesian product and the weak synchronised product to
reach a vertex that represents a non-reachable state in the process specification,
by using only one of the synchronous arcs of a parallelogram.
We will first show that longest paths cannot be longer than in the Cartesian
product, and that this new product also preserves acyclicity and the order on the
arcs.

Lemma 3.4.1. Let Gi be an acyclic graph for i “ 1, 2, . . . , k. Then aGi is acyclic
and `paGiq ď `plGiq.

Proof. As in the proof of Lemma 3.3.1, it suffices to prove the statements for
k “ 2, since for integers k ě 3, the weak synchronised product G1 aG2 a . . .aGk
is defined recursively as ppG1 a G2q a . . .q a Gk, hence G11 a G12, and the result
follows by induction.
It is obvious from the definitions that G1 aG2 is a spanning subgraph of G1lG2,
i.e., that the vertex set of G1lG2 equals the vertex set of G1aG2, and that the arc
set of G1aG2 is a subset of the arc set of G1lG2. From this observation, it follows
by Lemma 3.3.1 that G1 aG2 is acyclic and that `pG1 aG2q ď `pG1lG2q.

Remark 3.4.2. It is not difficult to give examples of labelled, directed, acyclic
graphs G1 and G2 with `pG1 aG2q ă `pG1lG2q.

For example, Figure 3.7 shows G1 consisting of one directed path v1v2v3 with labels
λpv1v2q “ a and λpv2v3q “ b, and G2 also consisting of one directed path w1w2w3
with λpw1w2q “ b and λpw2w3q “ a. In the context of processes, this example
is ill-defined in the sense that it is immediately clear that the two processes are
deadlocked from the start. The graph representing this pathological example is
inconsistent. In Figure 3.8, we give a three-dimensional example where we show
that such a pathological case can occur distributed over several graphs, although
only the final step reduces the out-degree of the source to zero. The source vertex
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Figure 3.7: Two-dimensional pathological case.

in Figure 3.8 is marked by a circle around the vertex. From three dimensions it is
not difficult to extend to n-dimensions.
We are now going to show that inconsistency can always be concluded if `paGiq ă
`plGiq. By induction, we can again restrict our attention to the case that k “ 2.
Let P be a longest path in G1lG2. Then P is the interleaved concatenation of
two longest paths R and Q in G1 and G2, respectively. Let R “ r1r2 . . . rk1 and
Q “ q1q2 . . . qk2 . If P is not a longest path in G1 aG2, there is at least one label
λ that appears on arcs in both R and Q. Consider the first label on R (starting
from r1) that also appears in Q – say this is label λ1 that appears on rj . If λ1 is
also the first label on Q that appears in both Q and R, say on qt, then R a Q
contains a path of length j ` t corresponding to the subpath of P of length j ` t
from the starting vertex.
Continuing this way, if all labels that appear in both Q and R also appear in the
same order in Q and R (with possible repetitions, also in the same order), then
G1aG2 contains a path with the same length as P . So, if `pG1aG2q ă `pG1lG2q,
then we may assume there is an ith instance of a label λr on R that is also the ith
instance of that label on Q, and a jth instance of a label λq on Q that is also the
jth instance of that label on R, and such that λr is after λq on R but before λq
on Q. But then the process is ill-defined in a similar way as in the pathological
example, a situation that can and should be avoided.
For the sequel, we are going to assume that the processes are defined and specified
in such a way, that the above unwanted situation does not occur and that the
related graphs Gi are therefore consistent. This then automatically implies that
for consistent graphs Gi, `paGiq “ `plGiq.

Remark 3.4.3. From the fact that aGi is a spanning subgraph of lGi, it
follows that the ordering of the arcs in the individual Gi is preserved in the weak
synchronised product, in the following sense. If a ă b for two arcs a, b P ApaGiq
of a-type or s-type for the same Gi, then for the corresponding arcs a1 of a in Gi
and b1 of b in Gi, it holds that a1 ă b1 in Gi.
This can be seen by using the level vectors. Suppose b1 ă a1, Then the level of
the head of b1 in Gi is smaller than the level of the tail of a1 in Gi. This means
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Figure 3.8: Three-dimensional pathological case from G1`G2`G3, through G1 lG2`

G3, G1 aG2 `G3, pG1 aG2qlG3 to G1 aG2 aG3.

that the corresponding coordinate in the level vector of the head (and thus of
the tail) of b is also smaller than that of the tail (and thus of the head) of a in
aGi, contradicting that there is a directed path in aGi in which a precedes b.
Therefore, the supposition is false.

Remark 3.4.4. The weak synchronised product, like the Cartesian product,
may still represent behaviour that is not possible by the specification of the
corresponding set of processes, as can be seen in the examples in Figures 3.2 and
3.6 (l ñ a). One obvious thing we can do about this is, that we iteratively
remove vertices (and the related arcs) that have an in-degree ‰ 0 in the Cartesian
product but have an in-degree “ 0 in the weak synchronised product.
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3.5 The Reduced Weak Synchronised Product of a Set of
Parallel Processes

The reduced weak synchronised product G1�G2 of G1 and G2 is defined as the
graph obtained from the weak synchronised product G1 a G2 of G1 and G2 by
first removing all vertices with level 0 in G1 aG2 that have level ą 0 in G1lG2,
together with all the arcs that have one of these vertices as a tail.
This is then repeated in the newly obtained graph, and so on, until there are no
more vertices with level 0 in the current graph that have level ą 0 in G1lG2. The
resulting graph for our standard example is shown in Figure 3.9.
For k ě 3, the reduced weak synchronised product G1�G2�. . .�Gk is defined
recursively as ppG1�G2q�. . .q�Gk, and denoted as �Gi if no confusion can arise.
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Figure 3.9: Sequence control processes of a mobile robot, from a to �.

Lemma 3.5.1. Let Gi be an acyclic graph and let � Gi be the reduced weak
synchronised product of Gi for i “ 1, 2, . . . , k. Then `p�Giq “ `paGiq.

Proof. One direction is clear: since �Gi is a subgraph of aGi, we have that
`p�Giq ď `paGiq. For the other direction, consider a longest path P in aGi.
By previous arguments, we know that P starts in a vertex v with level vector
p0, 0, . . . , 0q and terminates in a vertex w with level vector pt1, t2, . . . , tkq. For each
vertex x ‰ v, w on P , d´pxq ě 1 and d`pxq ě 1. This implies that none of the
vertices of P is removed from aGi, so P is a path and therefore a longest path in
�Gi. This completes the proof of Lemma 3.5.1.
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Remark 3.5.2. Note that the paths that represent the behaviour of the specified
processes, all start in the source of the graph and end in the sink of the graph.
Because we only remove vertices that are not in the source of the graph and have
an in-degree of zero, behaviour not specified by the original set of processes is
removed.

Remark 3.5.3. Also note that, although this newly introduced product may filter
out vertices and arcs representing unwanted process behaviour, it does not filter
out all unwanted behaviour, see Figure 3.9. In Section 3.6, we translate additional
restrictions into our product.

3.6 The VRSP of a Set of Parallel Processes
The VRSP of G1 and G2, G1 nG2, is defined from the reduced weak synchronised
product, by first replacing quadruples of arcs that represent synchronised arcs as
follows.
Replace each parallelogram of arcs pv1, w1qpv2, w1q, pv1, w1qpv1, w2q, pv1, w2q
pv2, w2q and pv2, w1qpv2, w2q with λppv1, w1qpv2, w1qq “ λppv1, w1qpv1, w2qq =
λppv1, w2qpv2, w2qq “ λppv2, w1qpv2, w2qq, by one diagonal arc pv1, w1qpv2, w2q with
label λppv1, w1qpv2, w2qq “ λppv1, w1qpv2, w1qq. These new arcs of G1 n G2 are
called synchronous arcs, and the set of these arcs is denoted as As1,2. This interme-
diate stage is shown in Figure 3.10.
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Secondly, all vertices with level 0 in the resulting graph that have level ą 0 in
G1lG2 are removed, together with all the arcs that have one of these vertices as a
tail. This is then repeated in the newly obtained graph, and so on, until there are
no more vertices with level 0 in the current graph that have level ą 0 in G1lG2.
The resulting graph is called the VRSP of G1 and G2 and denoted as G1 n G2.
The set of arcs consisting of the other remaining (asynchronous) arcs of G1 nG2
is denoted as Aa1,2.
For k ě 3, the VRSP G1 nG2 n . . .nGk is defined recursively as ppG1 nG2qn
. . .qnGk, and denoted as nGi if no confusion can arise.
The resulting graph for our standard example is shown in Figure 3.11.
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Figure 3.11: Sequence control processes of a mobile robot, from the intermediate stage
to n.

Lemma 3.6.1. Let Gi be an acyclic graph and let nGi be the VRSP of Gi for
i “ 1, 2, . . . , k. Then `pnGiq ď `p�Giq.

Proof. As in the proof of Lemma 3.3.1, it suffices to prove the statement for k “ 2,
since for integers k ě 3, the VRSP G1 nG2 n . . .nGk is defined recursively as
ppG1 nG2qn . . .qnGk, hence G11 nG12, and the result follows by induction.
From the definitions of the reduced weak synchronised product and the VRSP,
it follows that the vertex set of G1 nG2 is a subset of the vertex set of G1�G2,
and the asynchronous arc set Aa1,2 of G1 n G2 is a subset of the asynchronous
arc set of G1�G2. For the synchronous arc set As1,2 of G1 n G2 every arc re-
places a quadruple of arcs in G1�G2, as follows: tpv1, w1qpv2, w1q, pv1, w1qpv1, w2q,
pv1, w2qpv2, w2q, pv2, w1qpv2, w2qu with an associated label λppv1, w1qpv2, w1qq
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= λppv1, w1qpv1, w2qq = λppv1, w2qpv2, w2qq “ λppv2, w1qpv2, w2qq in G1�G2 is
replaced by pv1, w1qpv2, w2q with the associated label λppv1, w1qpv2, w2qq =
λppv1, w1qpv2, w1qq. Clearly, the length of (a longest path in) the graph with
vertex set tpv1, w1q, pv1, w2q, pv2, w1q, pv2, w2qu and arc set tpv1, w1qpv2, w1q,
pv1, w1qpv1, w2q, pv1, w2qpv2, w2q, pv2, w1qpv2, w2qu is twice the length of the arc
pv1, w1qpv2, w2q. This shows that the length of a longest path in the VRSP is not
greater than the length of a longest path in the reduced synchronised product (but
it will be smaller if synchronisation occurs between the constituent paths). From
these observations it follows that, because G1�G2 is acyclic, G1 nG2 is acyclic
and `pG1 nG2q ď `pG1�G2q.

Remark 3.6.2. The proof of Lemma 3.6.1 shows that combining processes may

lead to a performance gain, where the gain G is defined by G “
k
ř

i“1
`pGiq´`p

k
n
i“1
Giq.

It is clear from the above that a gain is only guaranteed if `pnGiq ă `p�Giq.
Logically, this means that we can only be sure of a gain if there exist distinct
indices i and j such that for every longest path P in Gi and for every longest
path Q in Gj , the paths P and Q contain at least one synchronising arc, so there
are arcs a P ApP q and b P ApQq with λpaq “ λpbq. To get a performance gain we
need necessary and sufficient conditions that will reduce the length of the VRSP
with respect to the length of its constituent graphs. It is obvious (follows from
Lemma 3.6.1) that a reduction can only be achieved by synchronising arcs. As
the length of a graph is defined as the size of its longest paths, we only have to
consider the synchronisation of synchronising arcs in longest paths.

Lemma 3.6.3. Let Gi be an acyclic graph for i “ 1, 2, . . . , k. Then `pnGiq “
`pG1q ` `pG2q ` . . .` `pGkq if and only if every Gi has at least one longest path
without synchronising arcs.

Proof.
Note that it suffices to prove the statement for k “ 2, since for integers k ě 3,
G1 nG2 n . . .nGk is ppG1 nG2qn . . .qnGk, hence G11 nG12, and the result follows
by induction.
Firstly, we prove that if `pG1 nG2q “ `pG1q` `pG2q then G1 and G2 have at least
one longest path without synchronising arcs.
The proof is by contraposition. Suppose that all longest paths P “ p1p2 . . . pk1 , Q “
q1q2 . . . qk2 of G1 and G2, without loss of generality, contain at least one synchron-
ising arc a with label λpaq, say from pi to pi`1 and qj to qj`1. The VRSP of
paths P and Q is P 1lQ1 Y ppipi`1 n qjqj`1q Y P 2lQ2, with P 1 “ p1p2 . . . pi,
P 2 “ pi`1 . . . pk1 ,Q1 “ q1q2 . . . qj , Q2 “ qj`1 . . . qk2 . Therefore, it follows that
`pP nQq “ `pP 1lQ1q ` `pppipi`1 n qjqj`1qq ` `pP

2lQ2q.
Note that pipi`1 and qjqj`1 have the same label and therefore the same weight
t. Therefore, `ppipi`1lqjqj`1q “ 2ˆ t “ 2ˆ `ppipi`1 n qjqj`1q (due to the syn-
chronisation constraint) and it follows that `pP n Qq “ `pP 1lQ1q ` `pppipi`1 n

qjqj`1qq``pP
2lQ2q “ `pP 1lQ1q`t``pP 2lQ2q ă `pP 1lQ1q`2ˆt``pP 2lQ2q “
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`pP 1lQ1q` `pppipi`1lqjqj`1qq` `pP
2lQ2q, `pPlQq so the VRSP will reduce the

length of the longest paths in G1 and G2. This leads to `pG1lG2q ą `pG1 nG2q.
Therefore the supposition is false and G1 and G2 have at least one longest path
without synchronising arcs.
Secondly, we prove that if G1 and G2 have at least one longest path without
synchronising arcs then `pG1 nG2q “ `pG1q ` `pG2q.
By Lemma 3.3.1 `pG1lG2q “ `pG1q ` `pG2q. If P “ p1p2 . . . pk1 and Q “

q1q2 . . . qk2 are two vertex-disjoint longest paths without synchronising arcs of
G1, G2 respectively, then clearly PlQ contains the path PQ, where PQ denotes
the path PQ “ pp1, q1qpp1, q2q . . . pp1, qk2qpp2, qk2q . . . ppk1 , qk2q. By the definition
of G1 aG2, it follows that G1 aG2 contains the path PQ, even so by definition
G1�G2 and G1 nG2 contain the path PQ. As `pPQq “ `pG1q ` `pG2q it follows
that `pG1q ` `pG2q “ `pG1 nG2q. This completes the proof of Lemma 3.6.3.

We need necessary and sufficient conditions to get to `pnGiq ă `p�Giq.

Theorem 3.6.4. Let Gi be an acyclic graph for i “ 1, 2, . . . , k. Then `pnGiq ă
`p�Giq if there exists Gn, Gm, n ‰ m, 1 ď n,m ď k, such that each longest path
in Gn, Gm, contains at least one same labelled synchronising arc.

Proof. Again it suffices to prove the statements for k “ 2, since for integers k ě 3,
G1 nG2 n . . .nGk is ppG1 nG2qn . . .qnGk, hence G11 nG12, and the result follows
by induction.
From Lemma 3.6.3 we have that every Gi has at least one longest path without
synchronising arcs if and only if `pG1 nG2 n . . .nGkq “ `pG1q ` `pG2q ` . . .`
`pGkq, therefore, as both G1 and G2 contain only longest paths with at least
one synchronising arc, both G1 and G2 do not contain a longest path without
synchronising arcs. From this observation it follows that `pG1nG2q ‰ `pG1q``pG2q.
By Lemma 3.6.1, `pG1 nG2q ď `pG1�G2q, it follows that `pG1 nG2q ă `pG1q `
`pG2q. Together with the observation that `pG1�G2q “ `pG1q ` `pG2q this gives
`pG1 nG2q ă `pG1�G2q.

Remark 3.6.5. Theorem 3.6.4 seems rather restrictive, but we cannot loosen the
requirements on two graphs containing only longest paths with synchronising arcs,
to one graph containing only longest paths with synchronising arcs and another
graph containing at least one longest path containing a synchronising arc. Of
course, this will lead to `pG1 n G2q ă `pG1�G2q, but the graph G1 n G2 will
represent a process with a deadlock, namely a longest path v1v2 ¨ ¨ ¨ vk without a
synchronising arc in, for example, G1 and any longest path w1w2 ¨ ¨ ¨wn with a
synchronising arc wiwj , j ă n in G2, will produce a path in G1 nG2 with a last
vertex pvk, wiq in stead of pvk, wnq. In Boode et al. (2013) the erroneous conclusion
was that Theorem 1 could be relaxed.
In fact, any path in both graphs must contain synchronising arcs. A formal
definition of consistency that solves these problems is given in Definition 6.2.1 on
page 73.
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3.7 Conclusions
With Theorem 3.6.4, we have proved that if one wants to reduce the worst-case
performance of periodic real-time parallel processes, one can combine processes,
where all longest traces for both processes must contain synchronising actions. To
reach this point we have introduced graph products that can help us to analyse and
combine a number of parallel processes. We were able to identify the pathological
cases in a natural manner by introducing the weak synchronised product. This
made it visible that a set of parallel processes may contain unwanted behaviour,
for example, a deadlocked state. We have shown in the proof of Lemma 3.6.1 and
Remark 3.4.1, that we can filter out this unwanted or ill-defined behaviour.
We informally introduced the notion of a consistent and an inconsistent set of
graphs (representing real-time periodic processes). The latter represents behaviour
of processes that is unwanted, but might appear in a not-trivial process specification.
From our proof, it follows that one can detect whether such a situation occurs in
a process specification: one just has to find paths of which the length is reduced
when the weak synchronised product is taken.
Finally, we have shown how to get to the VRSP. More importantly, we have shown
that potentially we can use the VRSP to improve the worst-case performance of
parallel processes. The performance gain is significant if the set of parallel processes
will miss deadlines if not synchronised, but will meet its deadlines if synchronised.
Whether such a significant performance gain is achieved by combining processes
cannot be guaranteed and depends on the ratio of the context switch time and
the calculation time of the processes itself; clearly, this depends on the type of
hardware and operating system used.



4
The VRSP

This chapter is based on our paper presented at the CPA 2014 conference (Boode
and Broenink, 2014).
Embedded control systems, like periodic real-time robotic applications, can be
designed using formal methods like process algebras. While designing, the designer
distributes the required behaviour over up to several hundreds of processes. These
processes often synchronise over actions, e.g. to assert that a set of processes will
be ready to start executing at the same time. Another example is the mutual
exclusion of resources, where a number of processes are allowed in their critical
section.
Due to this synchronisation, the application suffers from a considerable overhead
related to extra context switches. We recognise two kinds of sources for these
context switches, synchronisation over an action by two or more processes and a
series of I/O actions between two processes, of which the former is the issue of this
chapter. As explained in the introduction, the latter is not a part of this research.
In Boode et al. (2013) we defined periodic real-time processes as finite, labelled,
acyclic, directed multigraphs, where these graphs are closely related to state
transition systems. As, per action, there is a context switch, the longest path in
such a graph is the most time consuming with respect to the context switch and
therefore the worst case. We introduced in Boode et al. (2013) a Vertex-Removing
Synchronised Product (VRSP) to reduce the number of context switches. The
VRSP is based on the synchronised product of Wöhrle and Thomas (2004), which
is used in model-checking synchronised products of infinite transition systems.
The VRSP reduces the number of context switches and realises a performance gain
for periodic real-time applications. This is achieved by (repetitively) combining
two graphs representing two processes that synchronise over some action. The
resulting process will have only one context switch per synchronising action, where
the two processes each have a contest switch per synchronising action (Boode
et al., 2013).
For our applications, short processes often consist of three or four sequential
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actions, where the first and the last action synchronise with other processes. For
these applications, a significant performance gain is expected.
An example of an overall system architecture1 is described in Figure 4.1.

P1 P2 Pn

P1, ¨ ¨ ¨ , Pn Ñ G1, ¨ ¨ ¨ , Gn Ñ G11, ¨ ¨ ¨ , G
1
m Ñ P1, ¨ ¨ ¨ , Pm

nT T´1

this thesis

P 11 P 12 P 1m

Design level General Purpose Computer

Thread1
(G1)

Thread2
(G2)

Threadn
(Gn)

Synchronisation
Software

Hardware
Dependent
Software

Algorithmic
Software

Execution level Target System

Services

RTOS/Device Drivers

Device
Driver

Figure 4.1: Overall System Architecture.

On Design level the designer gives a specification using some process algebra.
Using the VRSP this set of processes is transformed into a set of processes which
will meet their deadlines and fit into the available memory. This new set of
processes is transformed into Threads containing Finite State Machines (FSMs),
where each FSM represents the behaviour of the corresponding process.

1The first author’s students at the InHolland University of Applied Sciences implement such
a system as part of their curriculum.
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The Synchronisation Software is the controller of the whole system. It decides
whether a process is allowed to do a step in its FSM. To make hardware interaction
possible, the Hardware-Dependent Software contains as well an FSM, but related
to an action/event is also some hardware interaction. This is also the case for
Algorithmic Software, e.g. representing 20-SIM models, where together with a
step in the FSM also some algorithm is executed.
In this manner, there is a clear separation of concerns between the application and
the hardware controlling software.
The contribution of this chapter is an improvement on the design cycle and is
illustrated in Figure 4.2.

P “ tP1, . . . , Pnu G “ tG1, . . . , Gnu

G1 “ tG11, . . . , G
1
muP 1 “ tP 11, . . . , P

1
mu

VRSP

T pP q

T´1
pG1q

Figure 4.2: The design cycle.

In this cycle we start with the process specification P written in some process-
algebraic form. By a transformation function T, T : P Ñ tGiu, we get a set of
finite, labelled, acyclic, directed multigraphs. Using the VRSP, the set of graphs
is transformed into a new set of graphs. For this new set of graphs, either the
processes that they represent meet their deadline and fit into the available memory,
or there is no set of processes with strong-bisimilar behaviour with respect to
the original set of processes that will do so. In the former case, we again obtain
a specification in some process-algebraic form by using the inverse T´1 of the
transformation function T .
To be able to compose the set of graphs in a meaningful manner, the VRSP has to be
idempotent, commutative and associative. We formalise these algebraic properties
in Chapter 6. There we show that the VRSP is idempotent and commutative, and
we characterise in which cases the VRSP is associative.
Furthermore, we investigate the number of different ways the VRSP can result in
a combination of graphs. These products are represented by a lattice. The lattice
shows all possible outcomes in case the VRSP is associative. An outcome forms a
solution (defined in Section 4.2) for our PHRCS if the processes represented by the
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outcome do not miss their deadlines and fit in the available memory. The number
of outcomes grows extremely fast in terms of the number of processes. Therefore,
we give heuristics for obtaining a solution. These heuristics are not guaranteed to
find such a solution, let alone an optimal solution.
An introduction, giving some intuition for the used terminology, is given in
Section 4.1. In Section 4.2 we define the notion of solution and outcome for a set
of graphs. In Section 4.3 we give a lattice representation of all outcomes of the
VRSPs for a set of graphs. In Subsection 4.4.1 through 4.4.3 we give heuristics
for calculating a solution for the initial set of graphs. In Section 4.5 we present a
case-study where the performance of a model of a Production Cell is optimised.
In Section 4.6 we give the conclusions.

4.1 The VRSP
In this section, we give an informal introduction to the VRSP.
In Boode et al. (2013, p. 58) we have stated that “At specification level, a set of
parallel real-time processes can be represented by a graph consisting of several
components. A single process is represented by one component, which is a finite
labelled weighted directed multigraph, consisting of vertices, arcs between pairs of
vertices and labels associated with the arcs.”
Processes which have no action in common will execute interleaved when the
generalised parallel operator is used. These actions are called asynchronous actions
and are represented by asynchronous arcs. The interleaved execution of processes
can be represented by the Cartesian product of the components (Figure 4.3).
To build the Cartesian product of two components, each component is copied over
all vertices of the other component and vice versa. In this manner, a path through
the Cartesian product will be identical to traversing in an interleaved manner
through the components.
Processes that have actions in common, will synchronise over these so-called
synchronous actions. The VRSP adds to the Cartesian product that whenever
there is a quadrangle of arcs with identical labels in the Cartesian product, this
is replaced by one diagonal arc with the same label. These arcs that represent
synchronous actions are called synchronous arcs. In this manner, there is a jump
from one copy to the other for both participating components. Because these
jumps will lead to unreachable vertices, all these vertices (and their arcs) will be
removed from the product (see Figure 4.4.)
The two processes represented by the components G1 and G2 contain two and
three actions. To execute the processes represented by these components, there
will be five context switches. By using the VRSP to create the process represented
by G1 nG2, the number of context switches is reduced by two. In our case study
we see such improvements occur, because there at least a tock action2 is part of

2Roscoe (1998) defines the tock-action as “the drum-beat of the passage of time as an explicit
event.”
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Figure 4.3: The Cartesian product G1lG2 of G1 and G2.
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Figure 4.4: The VRSP G1 nG2 of G1 and G2.

every process and will be part of synchronisation. We use `pGiq to denote the
maximum length of a path in a component. This represents the longest trace in
the process that is represented by the component. For a set of parallel processes,
this leads to a set of components, where the length of a longest path of the graph
is then a summation over the length of a longest path of each component of the
graph,

ř

i

`pGiq.

In general, the processes represented by these components may suffer from dead-
locks. Two processes, represented by components G1 and G2, are consistent if the
following holds. For every path P of G1 there exists a subgraph P 1 with an arc
set corresponding to the arcs of P (one arc for each arc of P , so P 1 is a set of
paths) such that P 1 is contained in a path Q of G1 nG2 (so Q may contain arcs
corresponding to arcs of G2). We require an analogous property for paths of G2.
Additionally, we require that the source and the sink of G1 nG2 are the Cartesian
product of the sources and sinks of G1 and G2, respectively. The formal definition
of consistency of graphs will be given in Definition 6.2.1 on page 73.
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Deadlock freedom implies pairwise consistency, but not vice versa. Deadlock is
caused be a cycle of committed attempts to synchronise and, if that cycle has a
length greater than 2, the system will be pairwise consistent. If we reduce such a
deadlock cycle down to just 2 processes through the VRSP, those two processes
will not be consistent - exposing the deadlock. So, without deadlock freedom, the
VRSP does not preserve pairwise consistency - see Figure 4.5. In fact, this shows
that we have to check the consistency whenever we apply the VRSP.
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a b
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G1 nG2
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Figure 4.5: The VRSP is not preserving pairwise consistency.

The first such check will take n2 operations. However, after combining processes
A and B to get process AB say, we only need to check that AB is consistent with
each of the remaining processes. We do not need to re-check pairwise consistency
within those remaining processes since they have not changed and the previous
check still holds. So, subsequent checks for pairwise consistency will take only n
operations. If we continue until a single process remains without any pairwise
consistency check failing, the system must have been deadlock free.
However, we also need pairwise consistency for the VRSP to be associative (see
Figure 4.6). Without associativity the behaviour of the resulting process(es)
corresponding to the VRSP of the associated graphs would depend on the order
in which we compute the VRSP.
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Figure 4.6: Non-associativity of not pairwise consistent components.
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4.2 The Solution Set for the VRSP
So far, we have mentioned that we seek a solution for our performance problem
of reducing the number of context-switches for a PHRCS, but we did not specify
what a solution is for a set of graphs.
If we start with two graphs G1 and G2, there are two options: we take the disjoint
union G1 ` G2 or we apply the (commutative) VRSP and take G1 n G2. If we
start with three graphs G1, G2 and G3, we have quite a few more options: apart
from taking G1 `G2 `G3, G1 ` pG2 nG3q, G2 ` pG1 nG3q and G3 ` pG1 nG2q,
we can take the VRSP of all three of the graphs; in the latter case, we have one or
three different options, depending on whether the VRSP is associative or not. No
matter whether the VRSP is associative or not, we will use the term (different)
outcome for each of the (different) options. We let NωpGq denote the number of
different outcomes when we apply the VRSP to the graph G “ ΣωpGqi“1 Gi. In case
the components of G are chosen in such a way that the VRSP is guaranteed to be
associative, we indicate this by using Na

ωpGq instead of NωpGq.
We say an outcome is a solution if the processes they represent meet the require-
ments with respect to the deadlines and the memory occupancy.

4.3 The VRSP as a Lattice
By applying the the VRSP in order to produce a solution for our optimisation
problem, in the worst case we have to calculate all outcomes. We are going to
show in Chapter 5 that the number of outcomes is given by the Bell number in
case the VRSP is associative, and by the Bessel number in case the VRSP is
non-associative. In the remainder of this chapter we only deal with the associative
case.
Using the binary operations ` (the disjoint union of graphs) and n (the VRSP of
graphs) we can depict all the possible outcomes in a lattice (Birkhoff, 1984). As
shown in Figure 4.7, the top node of this lattice represents

n
ř

i“1
Gi “ G1 `G2 `

. . .`Gn and the bottom node of this lattice represents
n
n
i“1
Gi. Furthermore, two

nodes in the lattice are adjacent (from top to bottom) if in the graph represented
by the upper node, two components are multiplied by the VRSP, leading to a
disjoint union of components represented by the lower node. As an example, there
are exactly three ways to produce G1 nG3 nG4`G2 from G1`G2`G3`G4: by
first applying the VRSP to G1 and G3, and then applying the VRSP to G1 nG3
and G4; by first applying the VRSP to G1 and G4, and then applying the VRSP
to G1 nG4 and G3; and finally, by applying the VRSP to G3 and G4, and then
applying the VRSP to G3 n G4 and G1. These three ways are depicted by the
thick lines in Figure 4.7.
The first position in the index of a node in Figure 4.7 is related to G1, the second
to G2, and so on. All zeros in the index stand for the disjoint union of all the
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graphs related to the positions of the zeros. All integers i ‰ 0 stand for the VRSP
of all the graphs related to the positions of the is. Note that different integers in
the index denote disjoint unions of the VRSPs corresponding to these integers.
For example, the node v10122 denotes G1 nG3 `G2 `G4 nG5.
The nodes in the lattice represent all possible outcomes when we apply ` and n.

v0000

v1100 v1010 v1001 v0110 v0101 v0011

v1110 v1122 v1212 v1101 v1221 v1011 v0111

v1111

Figure 4.7: The lattice for G1 to G4. In bold the possible paths from v0000 to v1011.

For a graph G “
ωpGq
ř

i“1
Gi, the depth of the lattice is ωpGq ´ 1. A node represents

a solution G if `pGq ď D and sizepGq ď M, where D is the deadline of the
application, sizepGq is the amount of memory needed to store the data structure
representing the graph G andM is the available memory to store the data structure
representing G.

4.4 Algorithms
Periodic real-time processes are defined as components of a finite, labelled, acyclic,
directed multigraph. A longest path in such a graph represents the most time
consuming with respect to context switches. If two processes are synchronizing
over an action and one combines two such processes into one process, it reduces
the process context switch overhead.
Unfortunately, the number of possible outcomes and therefore the number of
choices follows the Bell number. Calculating all possible additions over products is
not tractable for sufficiently large n (e.g n ą 20). Therefore, out of n components,
the heuristics will always combine two components into one new component. In
this (greedy) manner at most n´ 1 products have to be calculated.
There are several orders to synchronise the processes. All of them form some kind
of path through the lattice generated by all outcomes of the VRSP for a graph G.
We describe three heuristics for obtaining a solution in Section 4.4.1 through 4.4.3.
Appendix III gives the various pseudocodes.
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4.4.1 The Largest Alphabetical Intersection
A simple algorithm is the Largest Alphabetical Intersection (LAI). For each pair of
components, the size of the synchronising alphabet is calculated. At each iteration,
the two components with the largest alphabetical intersection are multiplied. This
gives no guarantee that a solution will be found that fits in the available memory.
Also the length `pGi nGjq of Gi and Gj may be equal to the length of the sum
`pGi `Gjq of Gi and Gj . Because we do not require that every longest path in
Gi synchronises over some action with a full path in Gj . If the two components
synchronise over arcs originating in the same vertex, it may be that another choice
of components gives a better improvement of the performance of the represented
processes. As shown in Figure 4.8, although the common label set is of size n, the
length of the components is reduced by only one.
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Figure 4.8: Synchronising over choice.

It could even be that the product of two components, due to state-space explosion,
is not calculable. LAI is given in Appendix III, Algorithm 5.

4.4.2 Maximising Synchronising Arcs
An adaptation of the algorithm in Section 4.4.1 is the maximisation of the number
of synchronising arcs, Maximal Synchronising Arc set (MSA). The number of
synchronising arcs is determined by their label. Without stating the algorithm we
select those two components out of the set of components where the number of
synchronising arcs is maximal.
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Clearly, this algorithm will only work for components where the set of component
pairs with the largest synchronising set contains more than one element. Otherwise,
if one component has a synchronising arc set (pairwise with all other components),
greater than the synchronising arc set of all other components (pairwise with all
other components), then this component will become a greedy one. It will always
be selected as one of the components for multiplication.

4.4.3 Minimising Not Synchronising Arcs
The disadvantage of LAI and MSA is that they do not optimise with respect to
the Cartesian part of the synchronised product. The algorithm for minimising
the not-synchronising arc set, Minimal Not-Synchronising Arc set (MNSA) tries
to give the least vertex space explosion. Unfortunately, this is not always the
case. As an example, the components G1 and G2 that synchronise over arcs that
are at the beginning (G1) and arcs that are at the end (G2), may have a very
large asynchronous arc set, but the G1 nG2 is linear with respect to the size of
G1`G2. Without stating the algorithm we have that the selected Gi and Gj have
the smallest asynchronous arc set. The disadvantage, with respect to MSA, is
that for the first iterations the improvement of the length of the components may
be minimal.

4.5 The Production Cell Case Study
As a case study we use a Production Cell given in Figure 4.9 (Groothuis et al.,
2009). This Production Cell has six optical sensors and six motors. Each motor
also contains an angle sensor. For the control loop, the duty cycle is 1 ms.
Veldhuijzen (2009) shows that the cost for a context switch is on average 7.7µs on
a 560 MHz Pentium IV processor, running under the QNX operating system. We
use this value to give an estimate of the average action-related overhead.
The memory occupancy is given in hypothetical units, where each unit represents
the maximum amount of memory needed for a data structure to store one vertex
and its out-flowing arcs. Clearly, for our small example, the memory occupancy is
not really a problem, but in a real application with more than e.g. 100 processes,
the exponential growth of memory needs may make the application not feasible.
To analyse the Production Cell, we give an FSP 3 model of the concurrent processes
in Section 4.5.1, followed by a description of the processes in Section 4.5.2. The
impact and an example of the synchronised product are discussed in Section 4.5.3.
In Section 4.5.4 we analyse the performance data and show the time and space-
related behaviour of the presented algorithms. In Section 4.5.5 we discuss the
results so far.

3For our case-study the specification in FSP is more compact than e.g. CSP, although it lacks
some of the nice features of CSP (Hoare, 1978).
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Figure 4.9: Production Cell.

4.5.1 Overview of the Concurrent Processes
For simplicity, out of the six angle sensors, we only model the angle sensor of the
rotation unit. An overview of concurrent processes of the Production Cell is given
in Listing 4.1. For the sixteen processes, this means that in the worst case 60
action related context switches per period will be executed. As the duty cycle is
1 ms, this results in an average overhead of about 46%.� �
||ProductionCell “

pfeederBelt : Sensor ||feederUnit : Sensor ||mouldingUnit : Sensor ||

extractionUnit : Sensor ||extractionBelt : Sensor ||rotationUnit : Sensor ||

feederBelt : Motor ||feederUnit : Motor ||angleRotationUnit : Sensor ||

extractionUnit : Motor ||extractionBelt : Motor ||rotationUnit : Motor ||

extractionUnit : Magnet ||angleRotationUnit : Magnet ||MoulderDoor ||

Clockq {ttock{tfeederBelt, feederUnit,mouldingUnit, extractionUnit,

extractionBelt, rotationUnit, angleRotationUnitu.tocku.� �
Listing 4.1: Concurrent Processes of the Production Cell.

For the Production Cell, the six motors and six optical sensors and one angle sensor
are represented by motor and sensor processes. The two magnets are represented
by two magnet processes. Because of the real-time constraints, we have a clock
process containing a timer that expires every 1 ms. These sixteen processes lead
to 10,480,142,147 nodes in the lattice.
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4.5.2 Process Description
In Listing 4.2, we give a description of the processes of the Production Cell. Where
necessary a tock action transition is included in the model to avoid deadlocks not
related to STOP. All processes synchronise at least over the tock action. This
ensures that all processes will reach the final state represented by the sink of the
related component.
MoulderDoor contains five tock actions because it synchronises with feeder-
Unit.Sensor, feederUnit.Motor and extractionUnit.Sensor. The components repres-
enting the processes MoulderDoor and feederUnit.Motor are given in Figure 4.10.

MoulderDoor

feederUnit.Motor

ext
ractionUnit.sensorValue

mouldingUnit.sensorValue feederUnit.computeMotorSpeed feederUnit.setMotorSpeed tock

tock

moulderDoor.computeMotorSpeed moulderDoor.setMotorSpeed

tock

tock
tock

tock

tock

feederUnit.sensorValue feederUnit.computeMotorSpeed feederUnit.setMotorSpeed tock

Figure 4.10: Components representing the parallel processes MoulderDoor and feeder-
Unit.Motor.

4.5.3 The VRSPs of the Production Cell
The synchronised product of the processes MoulderDoor and feederUnit.Motor
is given in Figure 4.11. It shows a reduction of the longest path length of three.
This means that by taking this product, there are three fewer context switches.
The memory occupancy is extended by seven units (Appendix IV, Table 2).
Other synchronised products show a reduction of the longest path length (by two) as
well as a reduction of the memory occupancy (by six), like extractionUnit.Sensor
and extractionUnit.Motor. In these cases, the first action of one component
synchronises with the almost last component of the other component. This leads
almost to a linearisation of the two components.
If the tock action is the only event over which is synchronised, the synchronised
product will suffer from a state space explosion4.

4The tock action is at the end of each path.
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� �
Motor “ psensorV alueÑ pcomputeMotorSpeedÑ setMotorSpeedÑ tock Ñ MotorStop

|tock Ñ MotorStopq

|tock Ñ MotorStopq,

MotorStop “ STOP.

Sensor “ preadSensor Ñ calculateSensorV alueÑ psensorV alueÑ tock Ñ SensorStop

|tock Ñ SensorStopq

|tock Ñ SensorStopq,

SensorStop “ STOP.

Magnet “ psensorV alueÑ pangleZeroÑ contractionÑ tock Ñ MagnetStop

|anglePI Ñ releaseÑ tock Ñ MagnetStop

|tock Ñ MagnetStopq

|tock Ñ MagnetStopq,

MagnetStop “ STOP.

MoulderDoor “ pmouldingUnit.sensorV alueÑ pfeederUnit.computeMotorSpeed

Ñ feederUnit.setMotorSpeedÑ tock

Ñ MoulderDoorStop

|tock Ñ MoulderDoorStopq

|extractionUnit.sensorV alueÑ pmoulderDoor.computeMotorSpeed

Ñ moulderDoor.setMotorSpeedÑ tock

Ñ MoulderDoorStop

|tock Ñ MoulderDoorStopq

|tock Ñ MoulderDoorStopq,

MoulderDoorStop “ STOP.

Clock “ poneMilliSecondTimer Ñ tock Ñ STOP q.� �
Listing 4.2: Description of the Production Cell.

4.5.4 Performance of the Production Cell
In Table 4.1 the memory occupancy and the longest paths of the components
representing the processes in the Production Cell are given. The memory occupancy
M is an indication of the amount of memory that will be used for the processes
representing the components. It describes the usage of memory in relation to the
space complexity. M consists of the number of vertices and the number of arcs
used for

ř

i

n
j
Gi,j . The memory needed in practice depends on the kind of data

structures that will be used for the implementation of the specification. The longest
path, `pGiq, reflects the maximum number of action related context switches for
each process.



56 On the Automation of Periodic Hard Real-Time Processes

mouldingUnit.sensorValue

mouldingUnit.sensorValue feederUnit.computeMotorSpeed feederUnit.setMotorSpeed tock
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ext
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Figure 4.11: The Synchronised Product of the components MoulderDoor and feeder-
Unit.Motor.

i Processi `pGiq M i Processi `pGiq M

1 feederBelt.Sensor 4 11 9 feederBelt.Motor 4 11
2 feederUnit.Sensor 4 11 10 feederUnit.Motor 4 11
3 mouldingUnit.Sensor 4 11 11 extractionUnit.Motor 4 11
4 extractionUnit.Sensor 4 11 12 extractionBelt.Motor 4 11
5 extractionBelt.Sensor 4 11 13 rotationUnit.Motor 4 11
6 rotationUnit.Sensor 4 11 14 MoulderDoor 4 19
7 angleRotationUnit.Sensor 4 11 15 angleRotationUnit.Magnet 4 12
8 Clock 2 5 16 extractionUnit.Magnet 4 12

Table 4.1: Worst-case number of action-related context switches per process.

We use for the new concurrent process specification, the three algorithms that will
calculate up to fifteen synchronised products. A calculation of the expected gain
of the Production Cell specification is given in Appendix IV, Table 2.
Based on Table 2, Figure 4.12 describes the behaviour of the three algorithms with
respect to (the hypothetical values) M and D. The abscissa represents the length
of the graph G. This stands for the number of action-related context switches.
The ordinate represents the 2log of the amount of memory used to store the graph
related data.
For the Production Cell, M is the amount of memory available in the target
system represented by M in Figure 4.12 and D is the deadline for every period
represented by D in Figure 4.12. The deadline D is 1 ms and is based on two
parameters. Firstly, the calculation of the application and secondly, the overhead
of the synchronised actions. The dotted ellipse shows the component compositions
that fulfil the requirements.
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Figure 4.12: Performance of MNSA, LAI, MSA.

Figure 4.12 shows that for our case study the MNSA algorithm has a slightly better
performance with respect to memory utilisation, compared to the LAI algorithm,
but the area within the ellipse fulfils the requirements and there LAI is slightly
better than MNSA.
The MSA algorithm behaves poorly because within the process specification
the MoulderDoor process contains the most synchronising actions with respect
to the other processes. In the component representing the MoulderDoor are
five occurrences of the tock action. For this reason, the MoulderDoor (and,
while traversing through the lattice, its synchronised product with repeatedly
the other components) component will always be chosen for synchronisation with
remaining components. Figure 4.12 shows that the reduction of the `pGq leads to
a state space explosion from the fifth synchronised product onwards (`pGq “ 47,
2 logpMq «10.7).
Of course, it depends on the requirements of the application which vertex in the
lattice will be chosen as a basis to produce the new process specification. In
our case study, this could arguably lead to the choice of v1223345012334253 which
is reached after 10 iterations using the LAI algorithm. The improvement is in
this case approximately 16% of a duty cycle. The reduction of the number of
context switches is slightly better than the number of context switches produced
by MNSA. The best case gives an overhead reduction of approximately 20% of a
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duty cycle. Unfortunately, this case suffers from a state space explosion and may
not be tractable.
In practice, a choice will be made, based on the question "How much memory
do we have?". Based on that question the best reduction of the length of the
components will be taken for the new process specification.

4.5.5 Discussion
In practice, the number of parallel processes, and therefore the number of compon-
ents of the graph G, is often limited to 15 to 20 processes. Our simple case study
comprises 16 processes, but complex CPSs may have 50 or more processes. For
15 processes, there are Bp15q « 109 nodes in the related lattice; for 20 processes,
there are Bp20q « 5 ¨ 1013 nodes in the lattice. Depending on the speed of the
computing system it may take several days to calculate an optimal solution out of
all outcomes for 20 processes (assuming the algorithm that calculates an optimal
solution uses not more than the available memory to store the intermediate data).
Each extra process will result in almost 10 times as much execution time. For this
reason with the technology of today, an upper limit of 20 processes is probably
still tractable.
In our case, the new set of processes is calculated off-line during the design process
and forms no burden on an active real-time system.

4.6 Conclusions
A set of processes that does not meet its deadline or does not fit in the avail-
able memory might be transformed into a set of processes that will fulfil both
requirements.
We have used a lattice to show all possible combinations of additions of products
of components. The size of the lattice is exponential with respect to the number
of components and is given by the Bell number.
In practice, the number of parallel processes, and therefore the number of com-
ponents of the graph G, is often limited to 15 or 20 processes, but complex CPSs
may have 50 or more processes. With the technology of today, an upper limit of
20 processes is probably still tractable, whereas for complex CPSs of 50 processes
or more a heuristic like the ones we proposed must be used.
Clearly, for applications containing hundreds of processes heuristics like MNSA or
LAI will give an educated guess which outcomes have to be calculated. Calculations
using these heuristics show a performance improvement at the cost of an increasing
memory occupancy. In our case, the new set of processes is calculated off-line
during the design process and forms no burden on an active real-time system. In
real-time systems, where on-the-fly processes are added to the system, our approach
will only work for the initial set of processes due to the extensive calculations that
are necessary.



5
The Number of Outcomes when Applying

the VRSP

In the previous chapters, we showed how the performance of a PHRCS might be
improved by the use of the VRSP, in particular, if the set of parallel processes
of the PHRCS does not meet the requirements regarding timeliness or memory
occupancy. We showed as well that, while applying the VRSP to a set of graphs,
there are many different outcomes.
In this chapter, we give an expression for the number of possible different outcomes,
when applying the VRSP to a set of graphs. We start in Section 5.1 by presenting
some additional terminology on trees and forests that we need for our analysis.
In Section 5.2, we deal with the associative case. We show that in this case the
number of possible outcomes is equal to the Bell number. In Section 5.3, we
deal with the non-associative case. We show that in this case the number of
possible outcomes is equal to the Bessel number. We finish in Section 5.4 with the
conclusions containing a numerical comparison of the non-associative case and the
associative case.

5.1 Terminology of Trees and Forests
We use Bondy and Murty (2008) for terminology and notations on graphs not
defined here.
Let T be a tree, so a connected acyclic (undirected) graph. We orient the tree by
replacing each of the edges of T by an arc, in precisely one of the two directions,
so we obtain an acyclic weakly connected directed graph, which we call a ditree.
A source in a ditree is a vertex with in-degree 0. This is usually referred to as
a leaf. A sink in a ditree is a vertex with out-degree 0. We call such a vertex a
target of the ditree. We say that a ditree D is a target tree if D has the following
properties. Each vertex except for the leaves has in-degree 2; each vertex except
for one has out-degree 1; the unique vertex of D (if D has more than one vertex)
with in-degree 2 and out-degree 0 is called the target of D.
The target v of a target tree D will be interpreted as the VRSP of two graphs
that are represented by the two in-neighbours u and w of v in D. If u is a target
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vertex of D´ v, then analogously u can be interpreted as the VRSP of two graphs,
etc. On the other hand, each of the ways to compute the product of the graphs
G1, . . . , Gn can be represented as a target tree on n leaves and n ´ 1 internal
vertices (non-leaves).
A forest is a graph that consists of one or more ditrees.

5.2 The Associative Case
Let G be a graph with components G1, . . . , Gn. To compute the number of
different outcomes Na

ωpGq we consider a set S “ tG1, . . . , Gnu. In a partition of S
we interpret each element of the partition as a multiplication by the VRSP of the
components in that element. The number of partitions of the set S is given by the

Bell number Bn with Bn`1 “
n
ř

k“0

ˆ

n
k

˙

Bk, B0 “ 1; a proof is given in Cohn et al.

(1962). We illustrated this for n “ 4 with the lattice described in Figure 4.7 on
page 50.

5.3 The Non-Associative Case
Counting the number of different outcomes NωpGq for the VRSP of a graph G if
the VRSP is not associative is not straightforward. We are going to prove that
NωpGq is equal to the Bessel number B̃ωpGq by showing that NωpGq satisfies the
recurrence relation of the Bessel numbers.
Each outcome can be represented by a forest of binary ditrees. To determine
NωpGq it is sufficient to determine the number of different forests consisting of
ditrees with ωpGq leaves in total. We give an example in Figure 5.1 showing all 37
forests with in total four leaves.
To determine NωpGq, we can apply a result due to Erdős (1993). Erdős (1993)
defines a semi-labelled tree as a rooted tree with labelled leaves and a semi-labelled
forest F as a forest consisting of semi-labelled trees. By taking the Gi as the
labels of the leaves, these semi-labelled trees are the same trees as our ditrees.
Furthermore, Erdős (1993) uses the double factorial. We adopt Erdős’ definition
that p´1q!! “ 1 and that k!! “ kpk ´ 2qpk ´ 4q ¨ ¨ ¨ 1 for all odd positive integers k.
Let bpn, iq denotes the number of binary semi-labelled forests with n leaves and i
ditrees. Due to Erdős (1993) we have the following expression for bpn, iq.

bpn, iq “

ˆ

2n´ i´ 1
i´ 1

˙

p2n´ 2i´ 1q!!

Let Fn be the number of forests with n leaves distributed over 1, . . . , n ditrees.
Then Fn “

n
ř

i“1
bpn, iq, n ě 1. It is sufficient to prove that Fn “ B̃n, n ě 1. We do

this in Theorem 5.3.4 by showing that Fn satisfies the recurrence relation of the
Bessel numbers.
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#forests
1 2 3 4 bp4, 4q 1

1 4 2 3 bp4, 3q 61 3 2 41 2 3 4

3 4 1 22 4 1 32 3 1 4

1 4 2 3 bp4, 2q 12` 31 3 2 41 2 3 4

2 3 1 41 3 2 41 2 3 4

2 4 1 31 4 2 31 2 4 3

4 3 1 21 3 4 21 4 3 2

2 3 4 14 3 2 14 2 3 1

1 4 2 3 bp4, 1q 15

37

1 3 2 41 2 3 4

2 3 1 41 3 2 41 2 3 4

2 4 1 31 4 2 31 2 4 3

3 4 1 21 4 3 21 3 4 2

3 4 2 12 4 3 12 3 4 1

Figure 5.1: Number of forests of binary ditrees for n “ 4.
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First, we prove bpn` 1, 1q “ p2n´ 1qbpn, 1q, n ě 1, bpn` 1, 2q “ p2n´ 1qbpn, 2q,
n ě 2, and bpn` 1, iq “ p2n´ 1qbpn, iq ` bpn´ 1, i´ 2q, n ě i ě 3. Then we prove
that Fn “ B̃n, n ě 0.
Lemma 5.3.1. bpn` 1, 1q “ p2n´ 1qbpn, 1q, n ě 1.

Proof. To prove the equality, it is sufficient to prove that

bpn` 1, 1q “ p2n´ 1qbpn, 1q or
ˆ

2n
0

˙

p2n´ 1q!! “ p2n´ 1q
ˆ

2n´ 2
0

˙

p2n´ 3q!! or

p2n´ 1q!! “ p2n´ 1qp2n´ 3q!! or

p2n´ 1q!! “ p2n´ 1q!!

The final equality indeed holds, completing the proof of Lemma 5.3.1.

Lemma 5.3.2. bpn` 1, 2q “ p2n´ 1qbpn, 2q, n ě 2.

Proof. To prove the equality, it is sufficient to prove that

bpn` 1, 2q “ p2n´ 1qbpn, 2q or
ˆ

2n´ 1
1

˙

p2n´ 3q!! “ p2n´ 1q
ˆ

2n´ 3
1

˙

p2n´ 5q!! or

p2n´ 1qp2n´ 3q!! “ p2n´ 1qp2n´ 3qp2n´ 5q!! or

p2n´ 1q!! “ p2n´ 1q!!

The final equality indeed holds, completing the proof of Lemma 5.3.2.

Lemma 5.3.3. bpn` 1, iq “ p2n´ 1qbpn, iq ` bpn´ 1, i´ 2q, n ě i ě 3.

Proof. To prove bpn ` 1, iq “ p2n ´ 1qbpn, iq ` bpn ´ 1, i ´ 2q, n ě i ě 3, it is
sufficient to prove that
ˆ

2n´ i` 1
i´ 1

˙

p2n´ 2i` 1q!! “ p2n´ 1q
ˆ

2n´ i´ 1
i´ 1

˙

p2n´ 2i´ 1q!! `

ˆ

2n´ i´ 1
i´ 3

˙

p2n´ 2i` 1q!!

This is equivalent to showing:
p2n´ 2i` 1qp2n´ i` 1qp2n´ iq
p2n´ 2i` 2qp2n´ 2i` 1q

ˆ

2n´ i´ 1
i´ 1

˙

p2n´ 2i´ 1q!! “

p2n´ 1q
ˆ

2n´ i´ 1
i´ 1

˙

p2n´ 2i´ 1q!!`

pi´ 1qpi´ 2qp2n´ 2i` 1q
p2n´ 2i` 2qp2n´ 2i` 1q

ˆ

2n´ i´ 1
i´ 1

˙

p2n´ 2i´ 1q!! or
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p2n´ i` 1qp2n´ iq
p2n´ 2i` 2q “ p2n´ 1q ` pi´ 1qpi´ 2q

p2n´ 2i` 2q or

p2n´ i` 1qp2n´ iq “ p2n´ 1qp2n´ 2i` 2q ` pi´ 1qpi´ 2q or

4n2 ´ 4ni` i2 ` 2n´ i “ 4n2 ` 2n´ 4ni´ i` i2

The final equality indeed holds, completing the proof of Lemma 5.3.3.

To complete this section, we are now going to show that Fn satisfies the recurrence
relation of the Bessel number B̃n.

Theorem 5.3.4. Fn`1 “ p2n´ 1qFn ` Fn´1, n ě 2, F1 “ 1, F2 “ 2.

Proof. Firstly, we have Fn “
n
ř

i“1
bpn, iq. Next, it is clear that F1 “ 1, F2 “ 2,

bpn,´1q “ 0, and bpn, n` 1q “ 0, n ě 1. Using Lemmas 5.3.1, 5.3.2 and 5.3.3 we
obtain:

bpn` 1, 1q “p2n´ 1qbpn, 1q ` bpn´ 1,´1q
bpn` 1, 2q “p2n´ 1qbpn, 2q ` bpn´ 1, 0q

...
bpn` 1, nq “p2n´ 1qbpn, nq ` bpn´ 1, n´ 2q

bpn` 1, n` 1q “p2n´ 1qbpn, n` 1q ` bpn´ 1, n´ 1q

and it follows that

Fn`1 “
n`1
ÿ

i“1
bpn` 1, iq “ p2n´ 1q

n`1
ÿ

i“1
bpn, iq `

n`1
ÿ

i“1
bpn´ 1, i´ 2q “

p2n´ 1qFn ` Fn´1

This completes the proof of Theorem 5.3.4.

Theorem 5.3.4 shows that Fn “ B̃n, n ě 0.

5.4 Conclusions
The consistency requirement assures that the VRSP is associative and therefore
the number of (different) outcomes Na

ωpGq is equal to the Bell number Bn. This is
a vast improvement with respect to the Bessel number series, B̃n.
Hence, the consistency requirement ensures that not only deadlocks are avoided,
but also that the set of possible (different) outcomes is, although rapidly growing,
an order of magnitude smaller than the set of possible (different) outcomes without
associativity.
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In Table 5.1 we show the expansion of Bn and B̃n for relatively small n.

n 0 1 2 3 4 5 6 7 8 9 10 11

Bn 1 1 2 5 15 52 203 877 4140 21147 115975 678570
B̃n 1 1 2 7 37 266 2431 27007 353522 5329837 90960751 1733584106

n 12 13 14 15 16

Bn 4213597 27644437 190899322 1382958545 10480142147
B̃n 36496226977 841146804577 21065166341402 569600638022431 16539483668991901

Table 5.1: Expansion of Bn and B̃n.



6
Consistency of Processes and Graphs

As we have already mentioned in Chapter 1, a PHRCS must behave as envisioned
by the designer and comply with the established safety requirements. An important
aspect of this behaviour is that the PHRCPs must be consistent in the sense that
every process must reach a predefined final state before the end of each period.
Since we use graphs to represent and deal with these processes, it is natural to try
to determine the counterpart of consistency of processes in terms of the associated
graphs. In this chapter, we will introduce a notion of consistency of graphs. We
will show that the consistency of graphs is equivalent to the consistency of the
associated processes.
We start with some additional definitions and terminology in Section 6.1. In
Section 6.2, we define the notion of consistency of graphs under the VRSP and
analyse its characteristics. In Section 6.3 we formalise the concept of consistency
of processes. We show that this consistency concept of processes is equivalent
with the consistency of the associated graphs. In Section 6.4, we discuss relevant
algebraic properties of the VRSP. We conclude this chapter with some additional
discussion and remarks in Section 6.5.

6.1 Terminology
We use Bondy and Murty (2008), Hell and Nešetřil (2004) and Hammack et al.
(2011) for terminology and notations on graphs not defined here.

6.1.1 Graph Basics
In the previous chapters, the graphs we considered consisted of a vertex set, an
arc set, a set of label pairs, and a mapping assigning the label pairs to the arcs.
Although we allowed multiple arcs, we did not treat them in a mathematically
very rigorous way. In order to meet our needs with respect to multiple arcs, we
adapt the definition of a graph slightly by adding an incidence function, in the
following way.
Throughout this chapter, unless we specify explicitly that we consider other types
of graphs, all graphs we consider are finite, deterministic, labelled, acyclic, directed
multigraphs, i.e., they may have multiple arcs. Such graphs consist of a vertex set
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V (representing the states of a process), an arc set A (representing the actions,
i.e., transitions from one state to another), a set of labels L (in our applications
in fact a set of label pairs, each representing a type of action and the worst-case
duration of its execution), and two mappings. The first mapping µ : AÑ V ˆ V
is an incidence function that identifies the tail and head of each arc a P A. In
particular, µpaq “ pu, vq means that the arc a is directed from u P V to v P V ,
where tailpaq “ u and headpaq “ v. We also call u and v the ends of a. The
second mapping λ : A Ñ L assigns a label pair λpaq “ p`paq, tpaqq to each arc
a P A, where `paq is a string representing the (name of an) action and tpaq is the
weight of the arc a. This weight tpaq is a real positive number representing the
worst-case execution time of the action represented by `paq.
Let G denote a graph according to the above definition. We sometimes use V pGq
instead of V , ApGq instead of A, etcetera, in order to avoid confusion. An arc
a P ApGq is called an in-arc of v P V pGq if headpaq “ v, and an out-arc of v if
tailpaq “ v. The in-degree of v, denoted by d´pvq, is the number of in-arcs of v
in G; the out-degree of v, denoted by d`pvq, is the number of out-arcs of v in G.
The subset of V pGq consisting of vertices v with d´pvq “ 0 is called the source
of G, and is denoted by S1pGq. The subset of V pGq consisting of vertices v with
d`pvq “ 0 is called the sink of G, and is denoted by S2pGq.
For disjoint nonempty sets X,Y Ď V pGq, rX,Y s denotes the set of arcs of G with
one end in X and one end in Y . If the head of the arc a P rX,Y s is in Y , we call
a a forward arc (of rX,Y s); otherwise, we call it a backward arc.
The acyclicity of G implies a natural ordering of the vertices into disjoint sets, as
follows. We define S0pGq to denote the set of vertices with in-degree 0 in G (so
S0pGq “ S1pGq), S1pGq the set of vertices with in-degree 0 in the graph obtained
from G by deleting the vertices of S0pGq and all arcs with tails in S0pGq, and
so on, until the final set StpGq contains the remaining vertices with in-degree 0
and out-degree 0 in the remaining graph. Note that these sets are well-defined
since G is acyclic, and also note that StpGq ‰ S2pGq, in general. If a vertex
v P V pGq is in the set SjpGq in the above ordering, we say that v is at level j in
G. This ordering implies that each arc a P ApGq can only have tailpaq P Sj1pGq
and headpaq P Sj2pGq if j1 ă j2.
A graph G is called weakly connected if all pairs of distinct vertices u and v of
G are connected through a sequence of distinct vertices u “ v0v1 . . . vk “ v and
arcs a1a2 . . . ak of G with µpaiq “ pvi´1, viq or pvi, vi´1q for i “ 1, 2, . . . , k. We
are mainly interested in weakly connected graphs, or in the weakly connected
components of a graph G. If X Ď V pGq, then the subgraph of G induced by X,
denoted as GrXs, is the graph on vertex set X containing all the arcs of G which
have both their ends in X (together with L, µ and λ restricted to this subset of
the arcs). If X Ď V pGq induces a weakly connected subgraph of G, but there is no
set Y Ď V pGq such that GrY s is weakly connected and X is a proper subset of Y ,
then GrXs is called a weakly connected component of G. In the sequel, throughout
we omit the words weakly connected, so a component should always be understood
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as a weakly connected component. In contrast to the notation in the textbook of
Bondy and Murty (2008), we use ωpGq to denote the number of components of a
graph G.
We denote the components of G by Gi, where i ranges from 1 to ωpGq of G.
In that case, we use Vi, Ai and Li as shorthand notation for V pGiq, ApGiq and
LpGiq, respectively. The mappings µ and λ have natural counterparts restricted

to the subsets Ai Ă ApGq that we do not specify explicitly. We use G “
ωpGq
ř

i“1
Gi

to indicate that G is the disjoint union of its components, implicitly defining its
components as G1 up to GωpGq. In particular, G “ G1 if and only if G is weakly
connected itself.
A graph G is called deterministic1 if its arcs have the following property. If λpaq “
λpbq for two arcs a P A and b P A with headpaq ‰ headpbq, then tailpaq ‰ tailpbq.
An arc a with label pair λpaq in a graph G is a synchronising arc with respect to
another graph H, if and only if there exists an arc b P ApHq with label pair λpbq
such that λpaq “ λpbq.
We assume that two different arcs with the same head and tail have different labels;
otherwise, we replace such multiple arcs by one arc with that label, because these
arcs represent exactly the same action at the same stage of a process. Hence, we
require that the following property holds for all the graphs we consider: any two
distinct arcs a P A and b P A with µpaq “ µpbq have λpaq ‰ λpbq.
For each pair pvi, vjq P V pGq ˆ V pGq, we let Apvi, vjq “ ta P ApGq | µpaq “
pvi, vjqu, and we let tmpvi, vjq “ max

aPApvivjq
tpaq.

A sequence of distinct vertices v0v1 . . . vk and arcs a1a2 . . . ak of G is a (directed)
path2 in G if µpaiq “ pvi´1, viq for i “ 1, 2, . . . , k. We denote such a path by
P “ v0a1v1a2 . . . akvk, and we define its weight as wpP q “

ř

aiPApP q

tpaiq.

A path from a vertex of the source of G to a vertex of the sink of G is called a full
path (of G).
The path length of Gi, denoted by `pGiq, is the maximum of wpP q taken over all
full paths P of Gi.

The path length of a graph G “
ωpGq
ř

i“1
Gi, denoted by `pGq, is defined as `pGq “

ωpGq
ř

i“1
`pGiq.

In the next section, we introduce a (directed labelled multigraph) analogue of the
1This is equivalent to determinism in the set of processes which is represented by the graph G.
2There is a close relationship between a trace and a directed path; “a trace is a sequence of

visible actions in the order they are observed.” (Roscoe, 2010, page 29), a trace b1b2 . . . bn of
a process Q is represented by a path P “ v0a1v1 . . . vn´1anvn in G, `paiq “ bi, i “ 1, 2, . . . , n
where the process Q is represented by the graph G.
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Cartesian product of two graphs and several other products we derive from it,
resulting in what we call the VRSP.

6.1.2 Graph Products
In Chapter 3, we defined the VRSP in five steps, from the disjoint union of graphs,
via the Cartesian product, the weak synchronised product, the reduced weak
synchronised product to the VRSP. In the remaining part of this thesis, it is more
convenient to define the VRSP alternatively, by combining the first three steps of
the former definition.
Instead of defining products for general pairs of graphs, for notational reasons we
find it convenient to define those products for two components Gi and Gj of a
disconnected graph G. We start by introducing the next analogue of the Cartesian
product.
The Cartesian product GilGj of Gi and Gj is defined as the graph on vertex
set Vi,j “ Vi ˆ Vj , and arc set Ai,j consisting of two types of labelled arcs. For
each arc a P Ai with µpaq “ pvi, wiq, an arc of type i is introduced between tail
pvi, vjq P Vi,j and head pwi, wjq P Vi,j whenever vj “ wj ; such an arc receives
the label λpaq. This implicitly defines parts of the mappings µ and λ for GilGj .
Similarly, for each arc a P Aj with µpaq “ pvj , wjq, an arc of type j is introduced
between tail pvi, vjq P Vi,j and head pwi, wjq P Vi,j whenever vi “ wi; such an arc
receives the label λpaq. This completes the definition of Ai,j and the mappings
µ and λ for GilGj . So, arcs of type i and j correspond to arcs of Gi and Gj ,
respectively, and have the associated labels. For k ě 3, the Cartesian product
G1lG2l ¨ ¨ ¨lGk is defined recursively as ppG1lG2ql ¨ ¨ ¨ qlGk. This Cartesian
product is commutative and associative, as can be verified easily and is a well-known
fact for the undirected analogue.
Since we are particularly interested in synchronising arcs, we modify the Cartesian
product GilGj according to the existence of synchronising arcs, i.e., pairs of arcs
with the same label pair, with one arc in Gi and one arc in Gj .
The first step in this modification consists of ignoring (in fact deleting) the
synchronising arcs while forming arcs in the product, but additionally combining
pairs of synchronising arcs of Gi and Gj into one arc, yielding the intermediate
product which we denote by Gi bGj .
To be more precise, Gi bGj is obtained from GilGj by first ignoring all except
for the so-called asynchronous arcs, i.e., by only maintaining all arcs a P Ai,j for
which µpaq “ ppvi, vjq, pwi, wjqq, whenever vj “ wj and λpaq R Lj , as well as all
arcs a P Ai,j for which µpaq “ ppvi, vjq, pwi, wjqq, whenever vi “ wi and λpaq R Li.
Additionally, we add arcs that replace synchronising pairs ai P Ai and aj P Aj with
λpaiq “ λpajq. If µpaiq “ pvi, wiq and µpajq “ pvj , wjq, such a pair is replaced by
an arc ai,j with µpai,jq “ ppvi, vjq, pwi, wjqq and λpai,jq “ λpaiq. We call such arcs
of Gi bGj synchronous arcs.
The second step in this modification consists of removing (from Gi b Gj) the
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vertices pvi, vjq P Vi,j and the arcs a with tailpaq “ pvi, vjq, in the case that pvi, vjq
has level ą 0 in GilGj but level 0 in Gi bGj . This is then repeated in the newly
obtained graph, and so on, until there are no more vertices at level 0 in the current
graph that are at level ą 0 in GilGj . This finds its motivation in the fact that
in our applications, the states that are represented by such vertices can never be
reached, so are irrelevant.
The resulting graph is called the vertex-removing synchronised product (VRSP for
short) ofGi andGj , and denoted asGinGj . For k ě 3, the VRSPG1nG2n¨ ¨ ¨nGk
is defined recursively as ppG1 nG2qn ¨ ¨ ¨ qnGk. The VRSP is commutative, but
not associative in general, in contrast to the Cartesian product. However, as we
will observe later in this chapter, associativity of the VRSP is guaranteed if we
require the graphs on which we apply the VRSP to be pairwise consistent, a notion
we are going to define in Section 6.2.
In our analysis and exploitation of synchronising processes, it is crucial that we
consider situations that are feasible with respect to time and memory constraints.
This requires that we look at different combinations of the set of all processes,
allowing several subsets of synchronised processes to run in parallel. Translated
to products of the components G1, G2, . . . , GωpGq, of a graph G, we need the
concept of a disjoint union of the VRSP of subsets of the set of all components.
To be more precise, we consider a partition π “ tI1, I2, . . . , Isu of the index
set I “ t1, 2, . . . , ωpGqu, and let Ji denote a permutation of the elements of
Ii for i “ 1, 2, . . . , s. We let Gπ

n
“

s
ř

i“1
n
jPJi

Gj denote the disjoint union of s

graphs, each of which is obtained by taking the VRSP of the components of G
indexed by a permutation Ji of Ii, for i “ 1, 2, . . . , s. If Ji “ tj1, j2, . . . , jku, then
n
jPJi

Gj “ Gj1nGj2n¨ ¨ ¨nGjk . Note that we do not assume that j1 ă j2 ă . . . ă jk.

This reflects that in case n is non-associative, Gj1 nGj2 nGj3 is in general not
isomorphic to Gj2 nGj1 nGj3 .
We denote the set of all possible VRSPs of subsets of the components of the graph
G as S “ t n

jPJi
Gj | Ji is any permutation of a nonempty subset of Iu, and say

that G “
ωpGq
ř

i“1
Gi generates S.

Note that we allow subsets (index sets) of cardinality 1; in such cases the VRSP
has no meaning, but we just take the component associated to this index in the
disjoint union.
We let S denote the set of all possible disjoint unions of VRSPs of the components
of G, hence S “

Ť

πPΠ
Gπ

n
, where Π is the set of all partitions of I “ t1, 2, . . . , ωpGqu

into nonempty sets. The cardinality of S is the number of different outcomes
NωpGq defined in Chapter 5. Such a combination, i.e., an element of S, is called a
solution if the requirements for timeliness and memory occupancy are met.
In a process algebraic specification, a deadlock means that one or more processes
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are not able to continue execution. This may happen when the process has reached
its final state and has stopped, or this may happen if there is a cycle of processes
waiting for one another or if a process is waiting for a process that has reached its
final state. We consider the former as normal system behaviour, whereas the latter
two are a deadlock. The case where a process is waiting for a process that has
reached its final state is typical for our PHRCPs. An example of such behaviour
is shown in Figure 6.4. Therefore a set of processes contains a deadlock if at least
one of the processes cannot reach its final state. As a consequence, we define
a deadlock for graphs as follows: the VRSP Gi n Gj of two graphs Gi and Gj
contains a deadlock if and only if there exists a vertex pair pvi, vjq P Vi ˆ Vj with
an out-degree d`ppvi, vjqq “ 0 in Gi n Gj and an out-degree d`ppvi, vjqq ą 0 in
GilGj .
Recall that our processes are acyclic, but are started again at every period of the
PHRCS. Therefore, whenever two processes P1 and P2 are consistent, this means
that in their parallel execution both processes will reach their set of final states.
For the two components G1 and G2 representing these two processes, this means
that the sinks of G1 and G2 must represent the final states of P1 and P2. But for
G1 nG2 this only makes sense if the sink of V pG1 nG2q represents the final states
of the process P1,2 (where P1,2 is strongly bisimilar to P1||P2). We will introduce
several contraction concepts in graphs to describe and analyse consistency of the
associated processes. This is explained and formalised by the concepts of a weak
contraction, a strong contraction and a pseudopath in the sequel.

6.1.3 Graph Isomorphism and Graph Contraction
The isomorphism we introduce in this section is an analogue of a known concept
for unlabelled graphs, but involves statements on the labels.
Formally, an isomorphism from G to H consists of two bijections φ : V pGq Ñ V pHq
and ψ : ApGq Ñ ApHq such that for all a P ApGq µpaq “ pu, vq if and only if
µpψpaqq “ pφpuq, φpvqq and λpaq “ λpψpaqq. Since we assume that two different
arcs with the same head and tail have different labels, however, the bijection
ψ is superfluous. The reason is that, if pφ, ψq is an isomorphism, then ψ is
completely determined by φ and the labels. In fact, if pφ, ψq is an isomorphism
and µpaq “ pu, vq for an arc a P ApGq, then ψpaq is the unique arc b P ApHq with
µpbq “ pφpuq, φpvqq and label λpbq “ λpaq. Thus, we may define an isomorphism
from G to H as a bijection φ : V pGq Ñ V pHq such that there exists an arc
a P ApGq with µpaq “ pu, vq if and only if there exists an arc b P ApHq with
µpbq “ pφpuq, φpvqq and λpbq “ λpaq.
We distinguish two types of contractions. The first type contracts vertices in
G1 nG2 related to asynchronous arcs of graphs G1 and G2 and is called a weak
contraction. The second type contracts a set of vertices without taking into account
whether the arcs belonging to these vertices are synchronous or asynchronous and
is called a strong contraction.
Let a P ApGq with µpaq “ pu, vq. By contracting a we mean replacing u and v
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by a new vertex uv, deleting all arcs b P ApGq with µpbq “ pu, vq or µpbq “ pv, uq,
and for any x ‰ u, v replacing each pair of arcs c P ApGq and d P ApGq with
µpcq “ pu, xq, µpdq “ pv, xq and λpcq “ λpdq by one arc e with µpeq “ puv, xq and
λpeq “ λpcq, and, similarly replacing each pair of arcs c P ApGq and d P ApGq with
µpcq “ px, uq, µpdq “ px, vq and λpcq “ λpdq by one arc e with µpeq “ px, uvq and
λpeq “ λpcq.
To define the notion of weak contraction, let T be the set of asynchronous arcs in
G1 n G2 that correspond to arcs in G1. Then the weak contraction of G1 n G2
with respect to G1, denoted by ρG1pG1 n G2q, is defined as the graph obtained
from G1 nG2 by successively contracting each arc a P T . Likewise, let T be the
set of asynchronous arcs in G1 nG2 that correspond to arcs in G2. Then the weak
contraction of G1 nG2 with respect to G2, denoted by ρG2pG1 nG2q, is defined as
the graph obtained from G1 nG2 by successively contracting each arc a P T . We
also use Gρ1 as shorthand for ρG2pG1 nG2q and Gρ2 as shorthand for ρG1pG1 nG2q.
Let H be a subgraph of G1 n G2. Then in ρG2pG1 n G2q, H corresponds to a
subgraph H 1 of G1. We denote this H 1 by ρG2pHq, and say that H is mapped
to ρG2pHq by ρG2 . We use similar terminology and notation with respect to for
ρG1pHq.
We now turn to the definition of strong contraction. Let X be a nonempty proper
subset of V pGq, and let Y “ V pGqzX. Then to obtain the strong contraction of
G with respect to X, we first replace X by a new vertex x̃, deleting all arcs with
both ends in X, delete all arcs a P ApGq with µpaq “ pu, vq for u P X and v P Y
by an arc c with µpcq “ px̃, vq and λpcq “ λpaq, and replace each arc b P ApGq
with µpbq “ pu, vq for u P Y , and replace v P X by an arc d with µpdq “ pu, x̃q and
λpdq “ λpbq. If after this contraction there are arcs with the same ends and labels,
then these arcs are replaced by one arc with the same ends and label. We denote
the resulting graph as G{X, and say that G{X is the strong contraction of G with
respect to X.
We use the strong contraction in particular to remove non-determinism, in the
following way. Recall that non-determinism occurs in a graph G if there is a set of
arcs B P ApGq with the same tail and label, but different heads. In this case, let
us denote such a set of different heads by Z. In G{Z, all the arcs of B (with heads
in Z) are replaced by one arc with the same tail and label and a new head. So,
this removes the non-determinism from G caused by the arc set B. If there occurs
non-determinism in the graph G{Z, we iteratively repeat the above contraction
procedure until the resulting graph is deterministic. We denote the resulting graph
by Gδ.
Let H be a subgraph of G. Then in Gδ, the graph that corresponds to H is
denoted by Hδ. We say that H is mapped to Hδ by δ.
The above two types of contractions play a key role in our notion of consistency of
graphs. Before we define this notion, we first introduce one additional concept.
This concept relates paths in G1nG2 to paths in pGρ1qδ and pG

ρ
2q
δ, in the following

way.
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A full path P of G1 n G2 is called a pseudopath if ρG2pP q is isomorphic to a
full path in G1, and ρG1pP q is isomorphic to a full path in G2. Note that in
this case pρG2pP qq

δ is a unique full path in pGρ1qδ, and pρG1pP qq
δ is a unique

full path in pGρ2qδ, that satisfy this condition. In particular, P is a full path in
pρG2pP qq

δ n pρG1pP qq
δ. We often say there exists a full path in G1 (G2) for a

pseudopath in G1 nG2 if we mean that these paths exist in the above sense when
pGρ1q

δ – G1 (and pGρ2qδ – G2). Similarly, we often say there exists a pseudopath
in G1nG2 for every full path in G1 (G2) if we mean that there exists a pseudopath
P in Q n R for full paths Q in G1 and R in G2.
As an example, Figure 6.1 shows the pseudopath pv1, w1qcpv2, w1qapv2, w2qspv3, w3q
bpv4, w3qdpv4, w4q in G1 n G2 and the full paths v1cv2sv3bv4 in G1 and w1aw2s
w3dw4 in G2. In this example the dashed arc in G1 n G2 is a synchronous arc
and the result of the synchronising, dashed arcs in both components G1 and G2.
The dotted arcs in G1 and the normal (not dotted and not dashed) arcs in G2 are
not-synchronising arcs.

G1

G2

G1 nG2

w1 w2 w3 w4

v1

v2

v3

v4

pv1, w1q pv1, w2q

pv2, w1q pv2, w2q

pv3, w3q pv3, w4q

pv4, w3q pv4, w4q

a s d

c

s

b

a

c c

a

s

d

b b

d

Figure 6.1: Full paths in G1 and G2, and pseudopaths in G1 nG2.

6.2 Consistency of Graphs under the VRSP
In this section, we introduce the concept of consistency of graphs, formalised in
Definition 6.2.1. With respect to processes this concept is vital; processes that
are not consistent contain deadlocks which violate the safety requirements of a
PHRCS. The lack of consistency is therefore unacceptable in a PHRCS.
It is natural to look for a notion of consistency of graphs that is equivalent to
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consistency of the associated processes. We will show that the following definition
meets our requirements. As we will see, this definition relies heavily on the two
types of contractions.

Definition 6.2.1. Components G1 and G2 are consistent, denoted as G1 „ G2,
if and only if the following two requirements hold:

1. pGρ1qδ – G1 and pGρ2qδ – G2.
2. S1pG1 nG2q “ S1pG1q ˆ S

1pG2q and S2pG1 nG2q “ S2pG1q ˆ S
2pG2q.

We will show what the above definition implies for the existence of pseudopaths,
and in fact give an equivalent characterisation of consistency of components in
terms of pseudopaths. But first we continue with three examples to show that both
requirements in the above definition are essential for consistency of the associated
processes.
Two examples where the weak contraction of G1 nG2 violates the first requirement
are given in Figure 6.2 and Figure 6.3.
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G2

Gρ1G1 nG2

v1

v2

v3

u1

u2

u3

pu1, v1q

pu3, v1q

pu1, v3q

pu3, v3q

b
e

a

a

d

b

e

d

d

e

pu1, v1qpu1, v3q

pu3, v1qpu3, v3q

e

Figure 6.2: Inconsistent components G1 and G2 violating requirement 1 (G1 fl Gρ1).

In Figure 6.2, there does not exist a full path in Gρ1 isomorphic to the full path
u1bu2au3 of G1, therefore the processes P1 and P2 represented by G1 and G2,
respectively, can never perform either action a or action b. Hence, P1 and P2 are
inconsistent. When G1 and G2 comply with requirement 1, this situation cannot
occur. In Figure 6.3, the graph Gρ1 is a non-deterministic graph, representing a
non-deterministic process. Therefore requirement 1 is necessary to eliminate the
non-determinism from Gρ1.
An example that violates the second requirement is given in Figure 6.4.
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G1

G2

G1 nG2

Gρ1

Gρ1{Xi

pGρ1q
δ – Gρ1{Xi{Xj

v1

v2 v3

v4v5 v6

v7 v8

u1

u2

u3

u4

pu1, v1q

pu1, v2q

pu1, v7q

pu2, v3q

pu2, v8q

pu3, v4q pu4, v4qpu1, v5q pu2, v6q

ũ1
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Figure 6.3: Non-deterministic graph Gρ1 with only a weak contraction of G1 n G2,
violating requirement 1.
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Figure 6.4: Inconsistent components G1 and G2 violating requirement 2.

Although the processes P1 and P2 represented by, respectively, the graphs G1 and
G2 in Figure 6.4, seem to be consistent in the sense that every action is part of a
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trace of P1||P2, P1 suffers from a deadlock if P2 performs the action with label
c represented by the arc c with µpcq “ pv1, v2q, λpcq “ c in G2. This situation is
prevented if the graphs G1 and G2 (and therefore the processes P1 and P2) comply
with requirement 2.
These examples show clearly that both requirements of consistency are necessary
to exclude a deadlock in the processes represented by the components.
Next, we are going to establish an equivalent characterization of consistency
of graphs in terms of the existence of pseudopaths. We first make the following
observation. Suppose that G1 and G2 are consistent, and that P is a full path in G1
and Q is a full path in G2. Then, clearly pρQpP nQqqδ – P and pρ

P
pP nQqqδ – Q,

and every full path in P nQ is thus a pseudopath in P nQ.
Next, we first state and prove the following consequences of Definition 6.2.1 in
terms of the existence of pseudopaths.

Lemma 6.2.2. Suppose that the components G1 and G2 are consistent. Then

(i) all full paths of G1 nG2 are pseudopaths;

(ii) for any two full paths Q in G1 and R in G2 there exists a pseudopath in
G1 nG2.

Proof. Let G1 and G2 be consistent components of a graph. Then, by Defini-
tion 6.2.1, pGρ1qδ – G1 and pGρ2qδ – G2, and S1pG1 nG2q “ S1pG1q ˆ S

1pG2q and
S2pG1 nG2q “ S2pG1q ˆ S

2pG2q.
To prove (i), let P be an arbitrary full path of G1 nG2. It is sufficient to show
that P is a pseudopath of G1 nG2, hence that ρG2pP q is isomorphic to a full path
of G1. Then by symmetry, ρG1pP q is isomorphic to a full path of G2. From the
definition of ρG2 and δ, we know that P is mapped to a unique path pρG2pP qq

δ.
Let Q denote the full path in G1 isomorphic to pρG2pP qq

δ. Similarly, let R denote
the full path in G2 isomorphic to pρG1pP qq

δ. Then P is isomorphic to a path in
Qn R. If Q is not a full path in G1, then clearly P is not a full path in Qn R.
This contradicts the assumptions and completes the proof of (i).
To prove (ii), let Q be a full path of G1, and R be a full path of G2. Consider
any full path P of QnR. It is sufficient to show that P is a pseudopath of QnR.
This follows immediately from (i).

We now show that the converse of Lemma 6.2.2 also holds. Hence, we obtain a
characterisation of consistency in terms of pseudopaths.

Lemma 6.2.3. Let G1 and G2 be two components of a graph G. If all full paths
in G1 nG2 are pseudopaths, and for any two full paths Q in G1 and R in G2 there
exists a pseudopath in G1 nG2, then G1 and G2 are consistent.
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Proof. Let G1 and G2 be components of a graph G satisfying (i) and (ii) of
Lemma 6.2.2. We are going to show that G1 and G2 are consistent by proving
that G1 and G2 satisfy the two requirements of Definition 6.2.1.
We first claim that S1pG1 nG2q “ S1pG1q ˆ S

1pG2q and S2pG1 nG2q “ S2pG1q ˆ
S2pG2q. Let pv, wq P S1pG1q ˆ S

1pG2q and pp, qq P S2pG1q ˆ S
2pG2q. Then there

exists a full path Q in G1 from v to p, and there exists a full path R in G2 from
w to q. By (ii) of Lemma 6.2.2 there exists a pseudopath P in G1 n G2 from
pv, wq to pp, qq. Hence pv, wq P S1pG1 n G2q and pp, qq P S2pG1 n G2q. Thus
S1pG1q ˆ S1pG2q Ď S1pG1 n G2q, and S2pG1q ˆ S2pG2q Ď S2pG1 n G2q. By (i)
of Lemma 6.2.2, clearly S1pG1 n G2q Ď S1pG1q ˆ S1pG2q and S2pG1 n G2q Ď
S2pG1q ˆ S

2pG2q. This completes the proof that G1 and G2 satisfy requirement 2
of Definition 6.2.1.
We next prove that G1 and G2 satisfy requirement 1 of Definition 6.2.1. We
already observed that if H is a subgraph of G1 nG2, then in Gρ1 “ ρG2pG1 nG2q,
ρG2pHq

δ is isomorphic to a unique subgraph of G1, and pGρ1qδ is isomorphic to a
unique subgraph of G1. To show that pGρ1qδ – G1, we use the obvious observation
that an arbitrary arc a of G1 is contained in a full path Q of G1. By (ii) of
Lemma 6.2.2, for this path Q, there exists a pseudopath P in G1 nG2 such that
ρG2pP q is isomorphic to Q. As we have argued before, P is mapped to a unique
path pρG2pP qq

δ in pGρ1qδ. This implies that pGρ1qδ contains a unique arc that is in
one-to-one correspondence with the arc a of G1. Together with the fact that pGρ1qδ
is isomorphic to a unique subgraph of G1, this shows that pGρ1qδ – G1. Similarly,
pGρ2q

δ – G2, completing the proof of Lemma 6.2.3.

In the next section, we show that the consistency of graphs that we defined in the
current section corresponds to the consistency of the associated processes.

6.3 The Consistency of Processes Compared with the Con-
sistency of Graphs

In this section, we will show that the consistency of graphs is equivalent to
the consistency of the associated processes. Recall that there is a one-to-one
correspondence between the processes and graphs that we consider, and also
between traces and paths. But first, for convenience, we repeat the relevant
definitions of consistency of processes given in Chapter 2.
Let P be a set of states and let Act be a set of actions. Let τ represent any
asynchronous action of either the process P or the process Q.
For a set of states P with α P Act, X,X 1, Y, Y 1 P P , we write X α

ñ Y if and only if

- if α ‰ τ , we have X τ˚
Ñ X 1

α
Ñ Y 1

τ˚
Ñ Y

- if α “ τ , we have X τ˚
Ñ Y , where τ˚ stands for a (possibly empty) sequence

of τ -labelled transitions.
Then a weak bisimulation is defined as follows:
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A binary relation S Ď P ˆ P is a weak bisimulation if pP,Qq P S implies, for all
α P Act,
(i) Whenever P α

Ñ P 1 then, for some Q1, Q α
ñ Q1 and pP 1, Q1q P S

(ii) Whenever Q α
Ñ Q1 then, for some P 1, P α

ñ P 1 and pP 1, Q1q P S
When there is a weak or strong bisimulation between two processes, we call these
two processes weakly or strongly bisimilar. The processes P and Q are consistent
if and only if they are weakly bisimilar, denoted as P « Q.
We continue with the relevant notions for traces of processes with respect to
paths of graphs. We call a trace T of a process P equivalent to a path Q of
a graph G if there is a one-to-one correspondence between the actions of the
trace T and the labels of the arcs of the path Q, preserving the order of these
actions and these labels, i.e., if T is a trace pl1, t1qpl2, t2q . . . pln, tnq then Q is a
path u0a1u1a2u2 . . . un´1anun, with λpaiq “ pli, tiq, i “ 1, . . . , n, and if Q is a
path u0a1u1a2u2 . . . un´1anun, with λpaiq “ pli, tiq, i “ 1, . . . , n, then T is a trace
pl1, t1qpl2, t2q . . . pln, tnq.
We define a trace from a begin state to a final state of a process P as a full trace.
With the definition of a full trace of a process we have the equivalence of a full
path in a graph.
A pseudotrace T in P1||P2 is a full trace in P1||P2 for which there exist a full trace
T1 in P1, a full trace T2 in P2 such that T is a full trace in T1||T2. Note that,
although we do not construct a process P „ P1||P2, the notion of a pseudotrace is
equivalent to the notion of a pseudopath.
Firstly, similar to the weak contraction of graphs, we map a process P which
is strongly bisimilar to P1||P2 onto the processes P 11 and P 12. We achieve this
by removing all silent actions of P2 from P which gives P 11, and by removing
all silent actions of P1 from P which gives P 12. Each action α has a from-state
and a to-state, where the action α is a transition from the from-state to the
to-state. The removal of a silent action is in fact the contraction of the from-state
and the to-state into one new state, thereby removing the silent action from the
process. This contraction is similar to the weak contraction of a graph and is
denoted by the function ζ which maps a process onto a process, ζP2pP q “ P 11 and
ζP1pP q “ P 12. Note that if there is both a silent action and a non-silent action
from some from-state to a to-state, the removal of the silent action will lead to a
loop of the non-silent action. But this cannot happen for consistent processes.
Secondly, in the same manner we can map a process that is not deterministic onto
a process that is deterministic by contracting the to-states of actions with the
same from-state and identical labels. This contraction is then similar to the strong
contraction of a graph and is denoted by the function ξ, defined by ξpP 11q “ P 21
and ξpP 12q “ P 22 .
Finally, we define the function ϑ that maps a process P „ P1||P2 onto its constituent
processes P 21 and P 22 as ϑP2pP q “ ξpζP2pP qq “ P 21 and ϑP1pP q “ ξpζP1pP qq “ P 22 .
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Note that for non-consistent processes P1 and P2 the processes P 21 or P 22 are not
strongly bisimilar to P1 or P2, respectively, and that for consistent processes P1
and P2 the processes P 21 or P 22 are strongly bisimilar to P1 or P2, respectively.
Because there is a one-to-one correspondence between a process P and the graph
G representing this process P , there exists a bijective mapping T that transforms
a process P into a process G. Then we have for consistent graphs G1 and G2
representing the processes P1 and P2, respectively, the following series of mappings:

P1||P2
T
Ñ G1 `G2

Ò ϑ Ó n

P
T´1
Ð G1 nG2

Because of the one-to-one correspondence of full traces and full paths, pseudotraces
and pseudopaths and the equivalence of the function ϑ for processes and the weak
and strong contraction of graphs, we have that, without repeating the proofs
for processes similar to the consistency related proofs for graphs, consistency for
graphs is equivalent to consistency for processes.

6.4 Associativity of the VRSP
We already noticed before that the VRSP is not associative in general. However,
if the components are strongly pairwise consistent, in the sense we are going to
define next, the picture changes. In Theorem 6.4.1, we show that the VRSP is
associative over a set of strongly pairwise consistent components.
Let G be a graph generating S. Then we say that the components of G are
strongly pairwise consistent if all disjoint components of S are pairwise consistent.
We say that the VRSP is associative over a set of components S if pG1 nG2qnG3
is isomorphic to G1 n pG2 nG3q for all disjoint components G1, G2, and G3 of S.

Theorem 6.4.1. The VRSP is associative over any set of strongly pairwise
consistent components.

Proof. Let G1, G2, and G3 be any triple of disjoint components from a set of
strongly pairwise consistent components. By Requirement 2 of Definition 6.2.1,
S1pG1 nG2q “ S1pG1q ˆ S

1pG2q and S2pG1 nG2q “ S2pG1q ˆ S
2pG2q. Together

with the fact that the Cartesian product is associative over sets, this immediately
shows that S1ppG1 nG2qnG3q “ S1pG1 n pG2 nG3qq and S2ppG1 nG2qnG3q “
S2pG1 n pG2 n G3qq. Clearly, both pG1 n G2q n G3 and G1 n pG2 n G3q have
vertex sets corresponding to subsets of V pG1q ˆ V pG2q ˆ V pG3q. It is sufficient to
show that every arc in pG1 nG2qnG3 is in one-to-one correspondence with an
arc in G1 n pG2 nG3q.
Let a be an arbitrary arc in pG1nG2qnG3 with µpaq “ pppu1, u2q, u3q, ppv1, v2q, v3qq.
Clearly, a lies on a full path P in pG1nG2qnG3. By Lemma 6.2.3, P is a pseudopath
in pG1 nG2qnG3, and there exist full paths R in G1 nG2 and Q3 in G3, such
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that P is a path in R n Q3. Similarly, R is a pseudopath in G1 n G2, so there
exist full paths Q1 and Q2 in G1 and G2, respectively, such that P is a path in
pQ1 nQ2qnQ3.
We distinguish two cases, and for each case two subcases, depending on whether a
is the result of synchronising arcs in G1, G2 and G3 or not.
In the proofs for the subcases, we often use p to denote an arc in Q1 with
µppq “ pu1, v1q, q to denote an arc in Q2 with µpqq “ pu2, v2q, and r to denote an
arc in Q3 with µprq “ pu3, v3q.
Case 1 a is an asynchronous arc of pQ1 nQ2qnQ3. There are two subcases:

Case 1.1 a is the result of an asynchronous arc xpq in Q1 nQ2 and an arc r in
Q3.
In this subcase, it is obvious that a is an arc in the Cartesian product
pQ1lQ2qlQ3. Hence, because the Cartesian product is associative,
there is nothing to prove.

Case 1.2 a is the result of a synchronous arc xpq in Q1 nQ2 and an arc r in
Q3.
In this subcase, µpxpqq “ ppu1, u2q, pv1, v2qq for two arcs p and q with
λpxpqq “ λppq “ λpqq. Furthermore, λprq ‰ λpxpqq.
For the arcs xpq and r we have a quadrangle of arcs xpqr1 in pQ1 n
Q2q n Q3 with µpxpqr1q “ pppu1, u2q, u3q, ppu1, u2q, v3q and xpqr2 in
pQ1nQ2qnQ3 with µpxpqr2q “ pppv1, v2q, u3q, ppv1, v2q, v3q and λprq “
λpxpqr1q “ λpxpqr2q, and we have arcs xpqr3 in pQ1 nQ2qnQ3 with
µpxpqr3q “ pppu1, u2q, u3q, ppv1, v2q, u3q and xpqr4 in pQ1 nQ2q nQ3
with µpxpqr4q “ pppu1, u2q, v3q, ppv1, v2q, v3q and λpxpqq “ λpxpqr3q “
λpxpqr4q.
For the arcs q and r we have a quadrangle of arcs xqr1 in Q2nQ3 with
µpxqr1q “ ppu2, u3q, pu2, v3qq and λprq “ λpxqr1q, xqr2 in Q2nQ3 with
µpxqr2q “ ppv2, u3q, pv2, v3qq and λprq “ λpxqr2q, xqr3 in Q2nQ3 with
µpxqr3q “ ppu2, u3q, pv2, u3qq and λpqq “ λpxqr3q, and xqr4 in Q2nQ3
with µpxqr4q “ ppu2, v3q, pv2, v3qq and λpqq “ λpxqr4q.
For the arcs xqr1 and p we have the arc xqrp1 in pQ2 nQ3qnQ1 with
µpxqrp1q “ pppu2, u3q, u1q, ppu2, v3q, u1qq and λprq “ λpxqrp1q.
For the arcs xqr2 and p we have the arc xqrp2 in pQ2 nQ3qnQ1 with
µpxqrp2q “ pppv2, u3q, v1q, ppv2, v3q, v1qq and λprq “ λpxqrp2q.
For the arcs xqr3 and p we have the arc xqrp3 in pQ2 nQ3qnQ1 with
µpxqrp3q “ pppu2, u3q, u1q, ppv2, u3q, v1qq and λppq “ λpxqrp3q.
For the arcs xqr4 and p we have the arc xqrp4 in pQ2 nQ3qnQ1 with
µpxqrp4q “ pppu2, v3q, u1q, ppv2, v3q, v1qq and λppq “ λpxqrp4q.
Because pQ2 nQ3qnQ1 – Q1 n pQ2 nQ3q, and there is a bijection
from V ppQ1 nQ2qnQ3q to V pQ1 n pQ2 nQ3qq, we have a one-to-one
correspondence between the arcs xpqri and xqrpi (for i “ 1, . . . , 4).
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Since there clearly is a one-to-one correspondence between xpqri and
xqrpi , i “ 1, . . . , 4, this is in particular the case for a.

Case 2 a is a synchronous arc of pQ1 nQ2qnQ3. There are two subcases:
Case 2.1 a is the result of an asynchronous arc xpq in Q1 nQ2 and an arc r in

Q3.
In this subcase, we have the quadrangle of arcs xpq1 with µpxpq1q “
ppu1, u2q, pv1, u2qq and xpq2 with µpxpq2q “ ppu1, v2q, pv1, v2qq with
λpxpq1q “ λpxpq2q “ λppq, and xpq3 with µpxpq3q “ ppu1, u2q, pu1, v2qq
and xpq4 with µpxpq4q “ ppv1, u2q, pv1, v2qq with λpxpq3q “ λpxpq4q “
λpqq. Furthermore, either λppq “ λprq or λpqq “ λprq.
Firstly, we are going to prove this subcase for λppq “ λprq.
For the arc xpq1 and r we have arcs xpqr1 in pQ1 n Q2q n Q3
with µpxpqr1q “ pppu1, u2q, u3q, ppv1, u2q, v3q and xpqr2 in pQ1 n

Q2q n Q3 with µpxpqr2q “ pppu1, v2q, u3q, ppv1, v2q, v3q and λprq “
λpxpqr1q “ λpxpqr2q, and we have arcs xpqr3 in pQ1 nQ2qnQ3 with
µpxpqr3q “ pppu1, u2q, u3q, ppu1, v2q, u3q and xpqr4 in pQ1 nQ2qnQ3
with µpxpqr4q “ pppv1, u2q, v3q, ppv1, v2q, v3q and λpqq “ λpxpqr3q “
λpxpqr4q.
For the arcs q and r we have a quadrangle of arcs xqr1 in Q2nQ3 with
µpxqr1q “ ppu2, u3q, pu2, v3qq and λprq “ λpxqr1q, xqr2 in Q2nQ3 with
µpxqr2q “ ppv2, u3q, pv2, v3qq and λprq “ λpxqr2q, xqr3 in Q2nQ3 with
µpxqr3q “ ppu2, u3q, pv2, u3qq and λpqq “ λpxqr3q, and xqr4 in Q2nQ3
with µpxqr4q “ ppu2, v3q, pv2, v3qq and λpqq “ λpxqr4q.
For the arcs xqr1 and p we have the arc xqrp1 in pQ2 nQ3qnQ1 with
µpxqrp1q “ pppu2, u3q, u1q, ppu2, v3q, v1qq and λprq “ λpxqrp1q.
For the arcs xqr2 and p we have the arc xqrp2 in pQ2 nQ3qnQ1 with
µpxqrp2q “ pppv2, u3q, u1q, ppv2, v3q, v1qq and λprq “ λpxqrp2q.
For the arcs xqr3 and p we have the arc xqrp3 in pQ2 nQ3qnQ1 with
µpxqrp3q “ pppu2, u3q, u1q, ppv2, u3q, v1qq and λpqq “ λpxqrp3q.
For the arcs xqr4 and p we have the arc xqrp4 in pQ2 nQ3qnQ1 with
µpxqrp4q “ pppu2, v3q, v1q, ppv2, v3q, v1qq and λpqq “ λpxqrp4q.
Since there clearly is a one-to-one correspondence between xpqri and
xqrpi , i “ 1, . . . , 4, this is in particular the case for a.
Secondly, we are going to prove this subcase for λpqq “ λprq.
For the arc xpq1 and r we have arcs xpqr1 in pQ1 n Q2q n Q3
with µpxpqr1q “ pppu1, u2q, u3q, ppu1, v2q, v3q and xpqr2 in pQ1 n

Q2q n Q3 with µpxpqr2q “ pppv1, u2q, u3q, ppv1, v2q, v3q and λprq “
λpxpqr1q “ λpxpqr2q, and we have arcs xpqr3 in pQ1 nQ2qnQ3 with
µpxpqr3q “ pppu1, u2q, u3q, ppv1, u2q, u3q and xpqr4 in pQ1 nQ2qnQ3
with µpxpqr4q “ pppu1, v2q, v3q, ppv1, v2q, v3q and λppq “ λpxpqr3q “
λpxpqr4q.
For the arcs q and r we have the arc xqr in Q2 nQ3 with µpxqrq “
ppu2, u3q, pv2, v3qq and λprq “ λpxqrq.
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For the arc xqr and p we have the quadrangle of arcs xqrp1 in pQ2 n
Q3qnQ1 with µpxqrp1q “ pppu2, u3q, u1q, ppv2, v3q, u1qq, xqrp2 in pQ2n
Q3q n Q1 with µpxqrp2q “ pppu2, u3q, v1q, ppv2, v3q, v1qq and λprq “
λpxqrp1q “ λpxqrp2q, and µpxqrp3q “ pppu2, u3q, u1q, ppu2, u3q, v1qq,
xqrp3 in pQ2 nQ3qnQ1 with µpxqrp4q “ pppv2, v3q, u1q, ppv2, v3q, v1qq
and λppq “ λpxqrp3 “ λpxqrp4q.
Because pQ2 nQ3qnQ1 – Q1 n pQ2 nQ3q, and there is a bijection
from V ppQ1 nQ2qnQ3q to V pQ1 n pQ2 nQ3qq, we have a one-to-one
correspondence between the arcs xpqri and xqrpi (for i “ 1, ¨ ¨ ¨ , 4).
Since there clearly is a one-to-one correspondence between xpqri and
xqrpi , i “ 1, . . . , 4, this is in particular the case for a.

Case 2.2 a is the result of a synchronous arc xpq in Q1 nQ2 and an arc r in
Q3.
In this subcase, µpxpqq “ ppu1, u2q, pv1, v2qq for two arcs p and q with
λpxpqq “ λppq “ λpqq “ λprq.
For the arcs xpq and r we have an arc xpqr in pQ1 nQ2qnQ3 with
µpxpqrq “ pppu1, u2q, u3q, ppv1, v2q, v3q and λprq “ λpxpqrq.
For the arcs q and r we have an arc xqr in Q2 nQ3 with µpxqrq “
ppu2, u3q, pv2, v3qq and λprq “ λpxqrq.
For the arcs xqr and p we have the arc xqrp in pQ2 nQ3qnQ1 with
µpxqrp1q “ pppu2, u3q, u1q, ppv2, v3q, v1qq and λprq “ λpxqrpq.
Because pQ2 nQ3qnQ1 – Q1 n pQ2 nQ3q, and there is a bijection
from V ppQ1 nQ2qnQ3q to V pQ1 n pQ2 nQ3qq, we have a one-to-one
correspondence between the arcs xpqr and xqrp.
Since there clearly is a one-to-one correspondence between xpqr and
xqrp, this is in particular the case for a.

In all possible cases, we have shown that a is in one-to-one correspondence with an
arc a1 in G1npG2nG3q with µpa1q “ ppu1, pu2, u3qq, pv1, pv2, v3qqq and λpaq “ λpa1q.
This completes the proof of Theorem 6.4.1.

6.5 Discussion and Conclusions
Consistency is essential for a set of processes P that are represented by a graph G.
Firstly, consistency guarantees that there are no deadlocks in the set of processes
represented by the graph G, which is of vital importance to PHRCS. Secondly,
consistency guarantees associativity and therefore (together with commutativity)
we can multiply the elements of a set of graphs by the VRSP in any order and
achieve the same result. This is especially important for the heuristics we developed,
because they may calculate the VRSP of the same (sub)set of graphs in different
order. Thirdly, the number of possible outcomes when the VRSP is associative
follows the Bell number, which is a magnitude smaller than the Bessel number
(in case of non-associativity). Fourthly, our view on associativity has led to the
notion of consistency of a set of components of a graph G. Via contractions we
have shown that sets of pairwise-consistent components are deadlock free, in a
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sense that differs slightly from process algebra. Finally, we are now sure that the
heuristics we have developed will calculate isomorphic graphs when multiplied by
the VRSP. Furthermore, for a limited set of graphs we can calculate all different
outcomes and we are certain that if a solution exists, we will find it.
But what if we have a set of processes for which there does not exist a solution
using the VRSP? One way out, for which we introduce and develop the tools in
the next chapter, is to use the VRSP in order to enable new combinations of
subprocesses of the original set of processes, without changing the functionality
and behaviour of the total set of new (sub)processes.



7
The Decomposition by the VRSP

This chapter is based on our paper Boode and Broersma (submitted). Our research
is based on partitioning the components of a graph G in such a manner that the
multiplication by the VRSP of the components in each partition results in a timely
execution of the processes represented by these partitions. It is possible that
there does not exist a partition for such a graph G that meets the requirements
with respect to the deadline or memory occupancy. But it might be beneficial
if we are able to decompose the components for the following reason: when one
or more components of the graph G are decomposed, new partitions are possible
and it could well be that in the set of new partitions a solution exists that did
not exist in the original set of partitions of G. Therefore, we investigate whether
decompositions are possible and we introduce two decomposition theorems.
The decomposition of graphs has been extensively researched on unlabelled undirec-
ted graphs in, for example, Hammack et al. (2011). For instance, Sabidussi (1960)
has shown that every finite connected undirected unlabelled graph can be decom-
posed uniquely into its prime factors with respect to the Cartesian product. In our
case, the graphs are finite, deterministic, labelled, acyclic, directed multigraphs, of
which we show that under certain conditions they can be decomposed into smaller
graphs. In fact, we show that any undirected unlabelled graph of sufficient size can
be labelled in such a manner that such a graph can be decomposed into smaller
graphs.

7.1 The First Decomposition Result
We start this section by presenting and proving our first decomposition theorem,
of which an illustrative small example is given in Figure 7.1. We assume that the
graphs we want to decompose are connected; if not, we can apply our decomposition
result to the components separately. Let us start by explaining the example of
Figure 7.1 first.
At the top of Figure 7.1 we depicted a small graph G, together with a partition of
its vertex set into two nonempty sets X and Y , such that rX,Y s contains forward
arcs only. Note that in the figure we indicated labels (label pairs) λpaq, etc. just
by a, etc. The rest of the figure shows the graph G{Y on the left, the graph G{X
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G

X Y

G{X

G{Y

Z

G{Y bG{X

u1 u2 u3 u4
a b c

d

x̃ u3 u4
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d
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ỹ
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b
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pu1, x̃q

pu2, x̃q

pỹ, x̃q

a

pu1, u3q

pu2, u3q

pỹ, u3q

pu1, u4q

pu2, u4q

pỹ, u4q

a a

c

c

c

b

d

Figure 7.1: Decomposition of G – G{Y n G{X. The set Z from the proof of The-
orem 7.1.1 and the graph isomorphic to G induced by Z in G{Y b G{X are indicated
within the dotted region (except for the arc with label d).

at the top, and the graph G{Y b G{X; this graph is the result of maintaining
the asynchronous arcs and replacing the synchronising arcs by synchronous arcs
in the Cartesian product G{YlG{X. The set of vertices that remain after the
second step in the modification are indicated by Z (the vertices in the dotted
region). In this example, it is clear that Z induces a graph isomorphic to G. So, in
this example G – G{Y nG{X. Our first decomposition theorem states sufficient
conditions for this conclusion to hold in general. We will show that none of these
conditions can be omitted without violating the conclusion.

Theorem 7.1.1. Let G be a graph, let X be a nonempty proper subset of V pGq,
and let Y “ V pGqzX. Suppose that all the arcs of rX,Y s have distinct labels and
that the arcs of G{X and G{Y corresponding to the arcs of rX,Y s are the only
synchronising arcs of G{X and G{Y . If S1pGq Ď X and rX,Y s has no backward
arcs, then G – G{Y nG{X.

Proof. It clearly suffices to define a mapping φ : V pGq Ñ V pG{Y nG{Xq and to
prove that φ is an isomorphism from G to G{Y nG{X.
Let x̃ and ỹ be the new vertices replacing the sets X and Y when defining G{X
and G{Y , respectively. Consider the mapping φ : V pGq Ñ V pG{Y nG{Xq defined
by
φpvq “ pv, x̃q for all v P X and φpwq “ pỹ, wq for all w P Y .
Then φ is obviously a bijection if V pG{Y n G{Xq “ Z, where Z is defined as
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Z “ tpv, x̃q | v P XuYtpỹ, wq | w P Y u. We are going to show this later by arguing
that all the other vertices of G{YlG{X will disappear from G{Y b G{X. But
first, we are going to prove the following claim.

Claim 7.1.2. The subgraph of G{Y bG{X induced by Z is isomorphic to G.

Proof. Obviously, φ is a bijection from V pGq to Z. It remains to show that this
bijection preserves the arcs and their labels. By the definition of the Cartesian
product, for each arc a P ApGq with µpaq “ pu, vq for u P X and v P X, there
exists an arc b in G{Y b G{X with µpbq “ ppu, x̃q, pv, x̃qq “ pφpuq, φpvqq and
λpbq “ λpaq. Likewise, for each arc a P ApGq with µpaq “ pu, vq for u P Y and
v P Y , there exists an arc b in G{Y bG{X with µpbq “ ppỹ, uq, pỹ, vqq “ pφpuq, φpvqq
and λpbq “ λpaq. Next, consider an arc a P ApGq with µpaq “ pu, vq for u P X
and v P Y . For such an arc, in G{YlG{X there exist four arcs with label λpaq,
namely the arcs with µ “ ppu, x̃q, pỹ, x̃qq, µ “ ppỹ, x̃q, pỹ, vqq, µ “ ppu, x̃q, pu, vqq,
and µ “ ppu, vq, pỹ, vqq. In G{Y b G{X, these four arcs are replaced by one arc
b with µpbq “ ppu, x̃q, pỹ, vqq “ pφpuq, φpvqq and λpbq “ λpaq. Since there are no
backward arcs in rX,Y s, the above arcs are the only arcs in G{Y bG{X induced
by the vertices of Z. This completes the proof of Claim 7.1.2.

We continue with the proof of Theorem 7.1.1. It remains to show that all other
vertices of G{Y bG{X, except for the vertices of Z, disappear from G{Y bG{X.
This is clear for the vertex pỹ, x̃q: all the arcs of G{YlG{X corresponding to the
arcs of rX,Y s are synchronising arcs of G{Y and G{X, so they disappear from
G{Y b G{X. Hence, pỹ, x̃q has in-degree 0 (and out-degree 0) in G{Y b G{X,
while it has level ą 0 in G{YlG{X. For the other vertices, the argument is as
follows.
The vertex set of G{YlG{X consists of ZYtpỹ, x̃qu and the vertex set XˆY . We
will argue that all vertices of X ˆ Y will eventually disappear from G{Y bG{X.
First of all, we claim that all pu, vq P X ˆ Y have level ą 0 in G{YlG{X. This
is obvious if u has level ą 0 in GrXs or v has level ą 0 in GrY s. Now let
pu, vq P XˆY such that u has level 0 in GrXs and v has level 0 in GrY s. Then the
claim follows from the fact that v has at least one in-arc from a vertex in X, since
S1pGq Ď X. In fact, since v has only in-arcs from vertices in X and u has no in-arcs
at all, pu, vq has level 0 in G{Y b G{X. Hence, all vertices pu, vq P X ˆ Y such
that u has level 0 in GrXs and v has level 0 in GrY s disappear from G{Y bG{X,
together with all the arcs with tail pu, vq for all such vertices pu, vq P X ˆ Y . If
after this first step there are still vertices of X ˆ Y left in G{Y b G{X, we can
repeat the above arguments step by step for such remaining vertices pu, vq P XˆY
for which pu, vq has the lowest level in what has remained from G{Y bG{X. Since
G{Y bG{X is acyclic, it is clear that all vertices of X ˆ Y disappear one by one
from G{Y bG{X. This completes the proof of Theorem 7.1.1.

We are next going to provide some examples to show that none of the essential
conditions in Theorem 7.1.1 can be omitted without violating the conclusion. First
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of all, it is clear that we need a proper partition of V pGq into nonempty sets;
otherwise, the contractions cannot be carried out and the whole discussion is
meaningless. In fact, the result is only meaningful if both of the partite sets have
at least two vertices. For the other conditions, we show by small examples that
they are essential for the validity of the conclusion.
One of the requirements is that the arcs of rX,Y s have distinct labels. The example
in Figure 7.2 clearly shows that we cannot omit this requirement. Note that all
the other conditions of Theorem 7.1.1 are met by this example graph.

G
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u1
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pỹ, u6q
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pỹ, u4q
s

s

s

s

d

c

Figure 7.2: Failing decomposition of G into G{X and G{Y , when there exist two
different arcs with identical labels in rX,Y s.

The next requirement is that the arcs of G{X and G{Y corresponding to the arcs
of rX,Y s are the only synchronising arcs of G{X and G{Y . The examples in
Figure 7.3 show that this requirement cannot be omitted, without violating the
conclusion, if we keep satisfying the other conditions of Theorem 7.1.1.
The case where GrY s and rX,Y s have arcs with the same label is similar to the
example in the right half of Figure 7.3, by symmetry arguments.
Another essential requirement is that S1pGq Ď X, as the example graph of Fig-
ure 7.4 shows. Here, S1pGq Ę X, but X still contains a vertex of S1pGq.
For the final requirement that rX,Y s has no backward arcs, the situation is a
bit different. In principle, the decomposition would still work fine if all the other
conditions are met, but the problem here is that contraction may lead to graphs
with directed cycles. So, such situations do not yield useful results in the context
of our applications, and formally we did not define the VRSP for such graphs. An
example is shown in Figure 7.5. Without giving the details, we observe that the
decomposition is valid, i.e., G – G{Y n G{X, but both G{Y and G{X contain
directed cycles (of length 2). Note, that the graph G in this figure admits another
partition that satisfies all the conditions of Theorem 7.1.1.
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Figure 7.3: Failing decomposition of G into G{X and G{Y , when GrXs and GrY s (left
example) or GrXs and rX,Y s (right example) have arcs with the same label.
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pu3, x̃q

a b

a b

c c c c

d

Figure 7.4: Failing decomposition of G in G{Y and G{X, where S1pGq Ę X and X
contains a vertex of S1pGq.

In fact, any acyclic directed graph has a partition of its vertex set into sets X and
Y such that rX,Y s only contains forward arcs, simply obtained by partitioning
the graph according to the levels of its vertices: putting all vertices at level ă j
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in X and all vertices at level ě j in Y for a suitable value of j. Clearly, such
partitions are easy to find, also algorithmically.
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d
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d
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f

ỹ u2
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a

b
e

d

f

Figure 7.5: Decomposition of G in G{X and G{Y , where rX,Y s contains both backward
and forward arcs.

To conclude this section, we add a few remarks on the use of Theorem 7.1.1.
Although this theorem has been presented for one (connected) graph G, we recall
that the motivation behind the theorem is that the result enables us to replace

a graph G “
ωpGq
ř

i“1
Gi representing ωpGq processes by a new graph G1 “

ωpG1q
ř

i“1
G1i

if at least one of the components Gi of G satisfies the conditions of the theorem.
Obviously, Theorem 7.1.1 has quite a few restrictive requirements, so it is rather
easy to come up with examples for which the theorem cannot be applied. On
the other hand, there are cases in which we can still apply the theorem if the
conditions are not met, e.g., if rX,Y s has some backward arcs but G{X and G{Y
are acyclic. In the next section, we present an alternative decomposition method
for cases in which Theorem 7.1.1 cannot be applied.

7.2 The Second Decomposition Result
In the second decomposition result, we are dealing with a partition of the vertex
set into three instead of two nonempty sets. From this alternative partition, we
again derive two new graphs: one by subsequently contracting two of the sets of
the partition, and one by contracting only the third set. Formally, we define this
as follows.
Let X1, X2 and Y be three disjoint subsets of V pGq, where only X2 is allowed
to be empty, such that Y “ V pGqzpX1 Y X2q. We use G{X1{X2 as shorthand
for pG{X1q{X2. In the second decomposition theorem, we give a number of
conditions that together guarantee that G – G{Y n G{X1{X2. An example of
this decomposition in which Y is a vertex cut that separates X1 and X2 in G is
given in Figure 7.6. A second example, in which Y is not a vertex cut is given in
Figure 7.7. As with Theorem 7.1.1, it is not difficult to give examples to show that
none of the sufficient conditions can be omitted without violating the conclusion.
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Figure 7.6: Decomposition of G in G{X1{X2 and G{Y , where Y is a vertex cut that
separates X1 and X2 in G.

Theorem 7.2.1. Let G be a graph, and let X1, X2 and Y “ V pGqzpX1 Y X2q
be three disjoint subsets of V pGq, where only X2 is allowed to be empty. Suppose
that all the arcs of rX1, Y s have distinct labels, all the arcs of rY,X2s have distinct
labels, all the arcs of rX1, X2s have distinct labels, the arcs of rX1, X2s have no
labels in common with any arcs in rX1, Y sYrY,X2s, and that the arcs of G{X1{X2
and G{Y corresponding to the arcs of rX1, Y s Y rY,X2s Y rX1, X2s are the only
synchronising arcs of G{X1{X2 and G{Y . If S1pGq Ď X1, and rX1, Y s, rY,X2s
and rX1, X2s have no backward arcs, then G – G{Y nG{X1{X2.

Proof. The proof is analogous to the proof of Theorem 7.1.1. First, we observe
that if X2 is empty, Theorem 7.2.1 is identical to Theorem 7.1.1. Therefore, we
assume that X2 is not empty.
It suffices to define a mapping φ : V pGq Ñ V pG{Y nG{X1{X2q and to prove that
φ is an isomorphism from G to G{Y nG{X1{X2.
Let x̃1, x̃2 and ỹ be the new vertices replacing the sets X1, X2 and Y when
defining G{X1{X2 and G{Y , respectively. Consider the mapping φ : V pGq Ñ
V pG{Y n G{X1{X2q defined by φpuq “ pu, x̃1q for all u P X1, φpvq “ pv, x̃2q for
all v P X2 and φpwq “ pỹ, wq for all w P Y .
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Then φ is clearly a bijection if V pG{Y n G{X1{X2q “ Z, where Z is defined as
Z “ tpu, x̃1q | u P X1u Y tpv, x̃2q | v P X2u Y tpỹ, wq | w P Y u. We are going
to show this later by arguing that all the other vertices of G{YlG{X1{X2 will
disappear from G{Y b G{X1{X2. But first we are going to prove the following
claim.

Claim 7.2.2. The subgraph of G{Y bG{X1{X2 induced by Z is isomorphic to G.

Proof. Obviously, φ is a bijection from V pGq to Z. It remains to show that this
bijection preserves the arcs and their labels. By the definition of the Cartesian
product, for each arc a P ApGq with µpaq “ pu, vq for u P X1 and v P X1, there
exists an arc b in G{Y bG{X1{X2 with µpbq “ ppu, x̃1q, pv, x̃1qq “ pφpuq, φpvqq and
λpbq “ λpaq. Likewise, for each arc a P ApGq with µpaq “ pu, vq for u P Y and v P Y ,
there exists an arc b in G{Y bG{X1{X2 with µpbq “ ppỹ, uq, pỹ, vqq “ pφpuq, φpvqq
and λpbq “ λpaq, and for each arc a P ApGq with µpaq “ pu, vq for u P X2 and
v P X2, there exists an arc b in G{Y bG{X1{X2 with µpbq “ ppu, x̃2q, pv, x̃2qq “
pφpuq, φpvqq and λpbq “ λpaq. Next, first consider an arc a P ApGq with µpaq “
pu, vq for u P X1 and v P Y . For such an arc, in G{YlG{X1{X2 there exist four
arcs with label λpaq, namely the arcs with µ “ ppu, x̃1q, pỹ, x̃1qq, µ “ ppỹ, x̃1q, pỹ, vqq,
µ “ ppu, x̃1q, pu, vqq, and µ “ ppu, vq, pỹ, vqq. InG{Y bG{X1{X2, these four arcs are
replaced by one arc b with µpbq “ ppu, x̃1q, pỹ, vqq “ pφpuq, φpvqq and λpbq “ λpaq.
Secondly, consider an arc a P ApGq with µpaq “ pu, vq for u P Y and v P X2.
For such an arc, in G{YlG{X1{X2 there also exist four arcs with label λpaq,
namely the arcs with µ “ ppỹ, uq, pv, uqq, µ “ ppv, uq, pv, x̃2qq, µ “ ppỹ, uq, pỹ, x̃2qq,
and µ “ ppỹ, x̃2q, pv, x̃2qq. In G{Y b G{X1{X2, these four arcs are replaced by
one arc b with µpbq “ ppỹ, uq, pv, x̃2qq “ pφpuq, φpvqq and λpbq “ λpaq. Thirdly,
consider an arc a P ApGq with µpaq “ pu, vq for u P X1 and v P X2. For such
an arc, in G{YlG{X1{X2 there also exist four arcs with label λpaq, namely the
arcs with µ “ ppu, x̃1q, pu, x̃2qq, µ “ ppu, x̃1q, pv, x̃1qq, µ “ ppv, x̃1q, pv, x̃2qq, and
µ “ ppu, x̃2q, pv, x̃2qq. In G{Y bG{X1{X2, these four arcs are replaced by one arc
b with µpbq “ ppu, x̃1q, pv, x̃2qq “ pφpuq, φpvqq and λpbq “ λpaq. Since there are no
backward arcs in rX1, Y s, rY,X2s and rX1, X2s, the above arcs are the only arcs
in G{Y b G{X1{X2 induced by the vertices of Z. This completes the proof of
Claim 7.2.2.

We continue with the proof of Theorem 7.2.1. It remains to show that all other
vertices of G{Y bG{X1{X2, except for the vertices of Z, disappear from G{Y b

G{X1{X2. This is clear for the vertex pỹ, x̃1q: all the arcs of G{YlG{X1{X2
corresponding to the arcs of rX1, Y s are synchronising arcs of G{Y and G{X1{X2,
so they disappear from G{Y bG{X1{X2. Hence, pỹ, x̃1q has in-degree 0 in G{Y b

G{X1{X2, while it has level ą 0 in G{YlG{X1{X2. For the other vertices, the
argument is as follows.
The vertex set of G{YlG{X1{X2 consists of the union of ZYtpỹ, x̃1q, pỹ, x̃2qu and
the vertex sets pX1 YX2q ˆ Y , X1 ˆ tx̃2u and X2 ˆ tx̃1u. We will argue that all
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vertices of pX1 YX2q ˆ Y , X1 ˆ tx̃2u and X2 ˆ tx̃1u, as well as the vertex pỹ, x̃2q
will eventually disappear from G{Y bG{X1{X2.
Firstly, we claim that all pu, vq P X1 ˆ Y have level ą 0 in G{YlG{X1{X2.
This is obvious if u has level ą 0 in GrX1s or v has level ą 0 in GrY s. Now
let pu, vq P X1 ˆ Y such that u has level 0 in GrX1s and v has level 0 in GrY s.
Then the claim follows from the fact that v has at least one in-arc from a vertex
in X1, since S1pGq Ď X1. In fact, since v has only in-arcs from vertices in X1
and u has no in-arcs at all, pu, vq has level 0 in G{Y b G{X1{X2. Hence, all
vertices pu, vq P X1ˆY such that u has level 0 in GrX1s and v has level 0 in GrY s
disappear from G{Y b G{X1{X2, together with all the arcs with tail pu, vq for
all such vertices pu, vq P X1 ˆ Y . If after this first step there are still vertices of
X1 ˆ Y left in G{Y bG{X1{X2, we can repeat the above arguments step by step
for such remaining vertices pu, vq P X1 ˆ Y for which pu, vq has the lowest level in
what has remained from G{Y b G{X1{X2. Since G{Y b G{X1{X2 is acyclic, it
is clear that all vertices of X1 ˆ Y disappear one by one from G{Y bG{X1{X2.
Now, since pỹ, x̃2q has possibly only in-arcs from vertices pu, vq P X1 ˆ Y , pỹ, x̃2q
will disappear as well.
Next, we claim that all pu, vq P X2 ˆ Y have level ą 0 in G{YlG{X1{X2. This
is obvious if u has level ą 0 in GrX2s or v has level ą 0 in GrY s. Now let
pu, vq P X2 ˆ Y such that u has level 0 in GrX2s and v has level 0 in GrY s. Then
the claim follows from the fact that u has at least one in-arc from a vertex in Y ,
since rY,X2s has only forward arcs. In fact, since u has only in-arcs from vertices
in Y and v has no in-arcs at all, pu, vq has level 0 in G{Y b G{X1{X2. Hence,
all vertices pu, vq P X2 ˆ Y such that u has level 0 in GrX2s and v has level 0 in
GrY s disappear from G{Y bG{X1{X2, together with all the arcs with tail pu, vq
for all such vertices pu, vq P X2ˆ T . If after this first step there are still vertices of
X2 ˆ Y left in G{Y bG{X1{X2, we can repeat the above arguments step by step
for such remaining vertices pu, vq P X2 ˆ Y for which pu, vq has the lowest level in
what has remained from G{Y bG{X1{X2. Since G{Y bG{X1{X2 is acyclic, it is
clear that all vertices of X2 ˆ Y disappear one by one from G{Y bG{X1{X2.
We continue with the claim that all pu, x̃1q P X2 ˆ tx̃1u have level ą 0 in
G{YlG{X1{X2. This is obvious if u has level ą 0 in GrX2s. Now let
pu, x̃1q P X2 ˆ tx̃1u such that u has level 0 in GrX2s. Then the claim follows from
the fact that u has at least one in-arc from a vertex in Y , since rY,X2s has only for-
ward arcs. In fact, since u has only in-arcs from vertices in Y and x̃1 has no in-arcs
at all, pu, x̃1q has level 0 in G{Y bG{X1{X2. Hence, all vertices pu, x̃1q P X2ˆtx̃1u
such that u has level 0 in GrX2s disappear from G{Y bG{X1{X2, together with
all the arcs with tail pu, x̃1q for all such vertices pu, x̃1q P X2 ˆ tx̃1u. If after this
first step there are still vertices of X2ˆtx̃1u left in G{Y bG{X1{X2, we can repeat
the above arguments step by step for such remaining vertices pu, x̃1q P X2 ˆ tx̃1u
for which pu, x̃1q has the lowest level in what has remained from G{Y bG{X1{X2.
Since G{Y bG{X1{X2 is acyclic, it is clear that all vertices of X2ˆtx̃1u disappear
one by one from G{Y bG{X1{X2.
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Finally, we claim that all pu, x̃2q P X1 ˆ tx̃2u have level ą 0 in G{YlG{X1{X2.
This is obvious if u has level ą 0 in GrX1s. Now let pu, x̃2q P X1 ˆ tx̃2u such that
u has level 0 in GrX1s. Then the claim follows from the fact that x̃2 has at least
one in-arc from a vertex in Y , since rY,X2s has only forward arcs. Noting that
x̃2 has only in-arcs from vertices in Y , and all u P S1pGq Ď X1 have no in-arcs at
all, clearly for all u P S1pGq Ď X1, pu, x̃2q has level 0 in G{Y bG{X1{X2. Hence,
all vertices pu, x̃2q P X1 ˆ tx̃2u such that u has level 0 in GrX1s disappear from
G{Y bG{X1{X2, together with all the arcs with tail pu, x̃2q for all such vertices
pu, x̃2q P X1 ˆ tx̃2u.
If after this first step there are still vertices of X1 ˆ tx̃2u left in G{Y bG{X1{X2,
we can repeat the above arguments step by step for such remaining vertices
pu, x̃2q P X1 ˆ tx̃2u for which pu, x̃2q has the lowest level in what has remained
from G{Y bG{X1{X2. Since G{Y bG{X1{X2 is acyclic, it is clear that all vertices
of X1 ˆ tx̃2u disappear one by one from G{Y bG{X1{X2.
This completes the proof of Theorem 7.2.1.

We are next going to provide some examples to show that none of the essential
conditions in Theorem 7.2.1 can be omitted without violating the conclusion. First
of all, it is clear that we need a proper partition of V pGq into nonempty sets X1, Y
and a possibly empty set X2; otherwise, the contractions cannot be carried out
and the whole discussion is meaningless. In fact, the result is only meaningful if
at least the partite sets X1 and Y have at least two vertices. But, note that if
we would allow X1 to be empty instead of X2, Theorem 7.2.1 is also identical to
Theorem 7.1.1. Then we replace Y in Theorem 7.2.1 by X and X2 in Theorem 7.2.1
by Y . For the other conditions, we show by small examples that they are essential
for the validity of the conclusion.
One of the requirements is that the arcs of rX1, Y s, rY,X2s and rX1, X2s have
distinct labels, and LprX1, X2sq X LprX1, Y s Y rY,X2sq “ H. The example in
Figure 7.8 clearly shows that we cannot omit this requirement. Note that all the
other conditions of Theorem 7.1.1 are met by this example graph.
The next requirement is that the arcs of G{X1{X2 and G{Y corresponding to the
arcs of rX1, Y s Y rY,X2s Y rX1, X2s are the only synchronising arcs of G{X1{X2
and G{Y . The examples in Figure 7.9 show that this requirement cannot be
omitted, without violating the conclusion, if we keep satisfying the other conditions
of Theorem 7.2.1.
The case where only GrY s and rX1, Y s, or GrY s and rY,X2s have arcs with the
same label is similar to the example in the right half (where pu1, x̃1 has no out-arcs)
respectively the left half (where pu6, x̃2 has no out-arcs) of Figure 7.3, by symmetry
arguments.
Another essential requirement is that S1pGq Ď X1, as the example graph of
Figure 7.10 shows. Here, S1pGq Ę X, but X1 still contains a vertex of S1pGq.
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Figure 7.7: Decomposition of G in G{X1{X2 and G{Y , where Y does not separate X1
and X2 in G.
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Figure 7.8: Failing decomposition of G in G{X1{X2 and G{Y , where rX1, Y s has arcs
with identical labels.

For the final requirement that rX1, Y s, rY,X2s and rX1, X2s have no backward arcs,
the situation is a bit different. In principle, the decomposition would still work
fine if all the other conditions are met, but the problem here is that contraction
may lead to graphs with directed cycles.
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Figure 7.9: Failing decomposition of G in G{X1{X2 and G{Y , where the arcs of
G{X1{X2 and G{Y corresponding to the arcs of rX1, Y s Y rY,X2s Y rX1, X2s are not the
only synchronising arcs of G{X1{X2 and G{Y .
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So, such situations do not yield useful results in the context of our applications,
and formally we did not define the VRSP for such graphs. An example where
rX1, X2s contains backward arcs is shown in Figure 7.11. The examples where
rX1, Y s and rY,X2s contain backward arcs are similar to the example given in
Figure 7.11. Without giving the details, we observe that the decomposition is
valid, i.e., G – G{Y nG{X1{X2, but G{X1{X2 contains three directed cycles.
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Figure 7.10: Failing decomposition of G in G{X1{X2 and G{Y , where X2XS
1
pGq ‰ H.
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Figure 7.11: Failing decomposition of G in G{X1{X2 and G{Y , where rX1, X2s has
backward arcs.

7.3 Applications for Undirected Graphs

We developed the decomposition tools of the previous sections for labelled acyclic
directed multigraphs, since these graphs appeared as natural models for the
processes and actions in the application area of robotics. In this section, we will
show how the tools can be applied to decomposing undirected graphs.
The idea is simple. Let G “ pV,Eq be a connected undirected (simple or
multi)graph. We can orient G, i.e., give directions to the edges of E (repla-
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cing each edge uv P E by one arc a with µpaq “ pu, vq or µpaq “ pv, uq), in such a
way that the resulting directed graph is acyclic. This is a well-known fact. One
way to do this, is by just starting at an arbitrary vertex v P V , replacing all edges
incident with v by out-arcs of v, considering the graph G´ v, and repeating this
procedure until no edges are left in the remaining graph.
Once we have this connected directed acyclic graph D, we can use any of its
suitable arc cuts for our purpose of defining a decomposition. One of the obvious
choices would be an arc cut rX,Y s consisting of the arcs between vertices at
level ď j and level ě j ` 1 for a suitable choice of j, i.e., a choice such that
|X| ě 2 and |Y | ě 2. But many other options are possible, in general. It is not
difficult to see that any connected graph on at least four vertices admits such a
decomposition. If we then assign different labels to all the arcs of D, the arcs in
rX,Y s are the only synchronising arcs of D{X and D{Y , and all the conditions of
Theorem 7.1.1 are satisfied. This means that D can be decomposed in D{X and
D{Y . This decomposition implies a decomposition for the associated undirected
graph G. Such decompositions might turn out to be useful, e.g., as an ingredient
of induction proofs within structural graph theory or of recursive methods within
algorithmic graph theory. We have no concrete examples to illustrate this.

7.4 Conclusions
In this chapter, we have shown that we can decompose a graph into smaller graphs
in such a manner that the VRSP of the decomposed graphs is isomorphic to the
original graph. This has led to two theorems, of which the second is a generalisation
of the first. In general, these decompositions are not prime decompositions. As
an example, if a graph is the Cartesian product of two graph G1 and G2, our two
theorems do not decompose the product G1lG2 into factors G11 and G12 isomorphic
to the two graphs G1 and G2. Therefore, theory has to be developed similar to the
seminal paper of Sabidussi (1960) on the decomposition of graphs by the Cartesian
product.



8
Asynchronous Readers and Writers

This chapter is based on our papers presented at the CPA 2016 conference (Boode
and Broenink, 2016) and the CPA 2017 conference (Boode and Broenink, 2017).
In PHRCSs, where the control software is designed using process algebras like
CSP, information is communicated in a synchronous manner. Even actions in CSP
like c!x : T and c?x : T that are interpreted as writing a value x to a channel c
and reading a value x from a channel c are just a convenience for c.x on both the
writing and the reading side (Schneider, 1999). Therefore, the transfer of data is
achieved by synchronisation. Hence, from a process-algebraic point of view, there
is no time delay for data transmission between a writing and a reading process,
because the data is already available in both the writing and the reading process.
Of course, an implementation of these writing and reading actions can be different,
e.g. in the sense that the data is sent by a message via a channel from one thread
to the other.
Often it is necessary to disconnect the synchronous writing and reading in time; for
instance, if a hard real-time thread (e.g. a control loop) has to write a value to a
channel, it should not be delayed by a soft real-time thread (e.g. a sequencer) that
has to read this value from the channel; otherwise the hard real-time process may
miss its deadline. Such an issue can be solved by using a buffer in the CSP-model
where a writing process stores its data and the reading process eventually reads
the data1.
Modelling a buffer during the design process in such a manner that it performs
its task in the target system without error is arguably not trivial and error-
prone. To avoid the use of a buffer process in the CSP model, we propose a
new process-algebraic operator for CSP that separates the writing and reading in
time. The advantages of such a process-algebraic operator are threefold. Firstly,
disconnecting the writing and reading in time by means of this process-algebraic
operator at design level (and thereby obsoleting the use of a buffer at design
level) eases the task of a designer if such disconnections are required from the

1The writing to and reading from a buffer process is performed by synchronising actions
between the writing process and the buffer process and synchronising actions between the buffer
process and the reading process.
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perspective of performance of the application. Secondly, when the buffer is a
part of the model2 it will appear like all other processes in the target system as
a thread. To transfer data from the writer thread to the reader thread requires
context-switches from the writer thread to the buffer thread and context-switches
from the buffer thread to the reader thread. But, if the buffer is a consequence
of a process-algebraic operator, it can, for example, be implemented as a shared
memory thereby avoiding the buffer-related context-switches. Thirdly, instead
of adapting the model of a buffer process for every new application, the buffer
mechanism as part of the implementation of a new process-algebraic operator has
to be designed and implemented only once.
In line with these disconnections of writing and reading lies a broadcast of data
where the sender (writer) process and receiver (reader) process have to be discon-
nected for performance reasons. In this case, we have one writing process and one
or more (synchronous) reading processes. This idea can be extended to one or
more (asynchronous) writing processes, and groups of reading processes that read
synchronously together with the other reading processes of the same group and
read asynchronously with reading processes that are not in the same group.
To achieve these ideas we introduce in this chapter two new CSP operators which
disconnect the writing and reading in time.
In Section 8.1 based on Boode and Broenink (2016), we give for CSP a half-
synchronous alphabetised parallel operator αóβ with alphabets α, β, together with
half-synchronous actions c¡x : T and c¿x : T that lies in between synchronous and
asynchronous writing and reading; a writer writes asynchronously with respect to
a group of readers and the group of readers read synchronously.
We give the syntax and the semantics of the half-synchronous alphabetised parallel
operator, together with a case study showing the advantage of this operator with
respect to memory occupation and performance.
In Section 8.2 based on Boode and Broenink (2017), we extend the half-synchronous
alphabetised parallel operator αóβ with alphabets α, β, into the extended half-
synchronous alphabetised parallel operator αõβ with alphabets α, β, such that
the writers and readers are allowed to write and read asynchronously (one or
more (asynchronous) writers and one or more groups of (synchronous) readers.
We achieve this by adding an index to the ¿ symbols such that reading actions
with the same index read synchronously and reading actions with a different index
read asynchronously. As an example, for asynchronous reading of the processes
P1, P2 and P3, the actions c¡x : T P P1, c¿x : T P P2 and c¿x : T P P3 become
c¡x : T P P1, c¿1x : T P P2 and c¿2x : T P P3. Note that we allow more than one
process to write to the same channel. Allowing only one process to write to a
channel is a restriction from the early versions of CSP (Hoare, 1978), but lifted to
any-to-any channel in, for example, Welch and Martin (2000).
We give the syntax and the semantics of the extended half-synchronous alphabetised

2The model according to our system architecture given in Figure 2.1 on page 13.
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parallel operator, together with a case study showing the advantage of the extended
half-synchronous alphabetised parallel operator with respect to memory occupation
and performance.
We finish in section 8.3 with a discussion and a conclusion on the advantages of
the (extended) half-synchronous operator.

8.1 The Half-Synchronous Operator
One of the problems that a designer may encounter, is the situation where a
process has to communicate a certain value with one or more processes. If this has
to be executed synchronously, formal languages like Communicating Sequential
Processes (CSP) (Hoare, 1978) supply such a mechanism inherently. But if the
actions of writing and reading are asynchronous, languages like CSP have no
operator that support this. Therefore an arguably complex design has to be made
to enforce asynchronous writing and reading.
A mechanism by which the writer and the readers have an optional communic-
ation is described by Gruner et al. (2008), called the optional parallel operator,
denoted as ò. This mechanism is still synchronous in the sense that during the
communication the writer and only those readers that are able to receive that data
are engaging in the data transfer. All other processes that could receive the data
will not engage in the data transfer because they are not in the appropriate state
yet. In this manner, the characteristics of synchronous interaction are relaxed to a
subset of the reading processes.
Another approach is given by Marwedel (2010) who describes an extended rendez-
vous, by which the acknowledgement from the receiver to the sender is delayed,
such that the receiver can perform checks or calculations on the received data.
We propose a half-synchronous action which allows a process to write a value x
over a channel c, without the requirement that the reading processes must be in
a state where they can read the value x over a channel c. The writing action is
denoted as ¡ (c ¡x : T ) and the reading action is denoted as ¿ (c ¿x : T ). This
means that we adjust the alphabetised parallel operator,

X
||
Y
, in a similar fashion

as Gruner et al. (2008) and introduce the half-synchronous alphabetised parallel
operator

X
ó
Y
.

For simplicity, we require that the reading processes execute their action c ¿x : T
synchronously3. In Section 8.2, this requirement is relaxed to a definition of the
half-synchronous action, where the writing and reading processes are divided into
sets which are set-wise asynchronous, but intra-set-wise synchronous, giving full
flexibility to the asynchronous writes and reads.

3Like all synchronous actions, this is handled by the Synchronisation Software as described in
Chapter 4.
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The advantages of the
X
ó
Y
operator are three-fold;

- it reduces the complexity of the design, eliminating arguably complex process
specifications:
˛ it is not necessary to use a buffer process in the model to achieve
asynchronous writing and reading,

˛ the writes (¡) and reads (¿) are asynchronous, which makes it possible
to have an order of writes and reads that would lead to a deadlock in
case they were written synchronously (!, ?),

- the performance of the periodic hard real-time application is improved by
reducing the number of actions involved in this asynchronous writing and
reading of the processes,

- the waiting time of the processor or coprocessor can be reduced in a distrib-
uted computing system, for example, a processor-coprocessor combination.

Our interest is of a graph-theoretical nature and we will show an adaptation
of the Vertex-Removing Synchronised Product (VRSP) which supports the half-
synchronous actions and the

X
ó
Y
operator. The adjusted version of the VRSP is

called the Dot Vertex-Removing Synchronised Product (DVRSP), denoted as
‚

n.

8.1.1 Semantics of the Half-Synchronous Operator
In, for example, CSP (Hoare, 1978) one has the possibility to let a process write a
value via a variable that will be read by another process using channels. Schneider
(1999) describes the communication over a channel as “If c is a channel name of
type T , and v is a particular value of type T , then the CSP expression c !v Ñ P
describes a process which is initially willing to output v along channel c, and
subsequently behave as P” and “If processes P pxq are defined for each x P T
then the CSP input expression c ?x : T Ñ P pxq describes a process which is
initially ready to accept any value x of type T along channel c”. But this is still
synchronous.
According to Hoare (1978) c !v Ñ P1 can be written as c.v Ñ P1 and c ?v Ñ P2
can be written as c.v Ñ P2 where c.v is just an action over which the processes
P1 and P2 synchronise. Hoare (1978, page 134) observes “the convention that
channels are used for communication in only one direction and between only two
processes”.
For our purpose this communication restricted to two processes in a synchronous
manner is too restrictive. Often there is the need for one writer and n readers, for
example, in the situation where a process wants to multicast a message to several
other processes. It is well known that a designer using, for example, CSP or the
Calculus of Communicating Systems (CCS) has sufficient operators to describe
any problem at hand (Roscoe, 1998). But such a description may become quite
complicated, as an example, if a designer wants to model the observer design
pattern (Gamma et al., 1994). To ease the design of concurrent systems an operator
supporting such patterns would be convenient from a pragmatic point of view.
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Remark 8.1.1. The concept of reading and writing to a buffer is not a rendezvous.
An undefined time may elapse between the writing to and the reading from the
buffer. Although in a rendezvous there is communication, possibly passing of
data between the participating processes, in process algebra a rendezvous is just
a synchronising action. If data is passed from one process to another during a
rendezvous this is atomic; there is no time elapse between the writing and the
reading of the processes.

Writing to and reading from a buffer lies in between synchronous and asynchronous
communication in the sense that the writer does not have to wait for the reader to
do the writing action, but the readers will read synchronously.
Communication via a buffer can be modelled using a synchronising action, which
separates the writing of x and the reading of x in time. By this abstraction, the
buffer, which is used on the implementation level, is not visible in the model.
As a simple CSP example in Listing 8.1, the processes A,B synchronise over a
sync action which separate the write.x and read.x in time. The alphabet of A is
X and the alphabet of B is Y .

A = write.x Ñ sync Ñ SKIP
B = sync Ñ read.x Ñ SKIP
AB = A

X
||
Y
B

Listing 8.1: Reading from and writing to a buffer.

The graphs G1, G2 and G1 nG2 representing the processes A,B and AB are given
in Figure 8.1.
Note that Roscoe (2010) gives a more eloquent description of a buffer, which we
give in Listing 8.2.

Buff N
xy

“ left?x : T Ñ Buff N
xxy

Buff N
ŝ xyy

“ #s ă N ´ 1 & pSTOP
d
left?x : T Ñ Buff N

xxŷ ŝ xyy
q

l right!y Ñ Buff Ns

Listing 8.2: Reading from and writing to a buffer (Roscoe, 2010).

The optional parallel operator ò, described by Gruner et al. (2008), requires that
‘any one or more of these processes may synchronise with their environment.’ It is
up to the process whether it will engage in this synchronisation.
Using this operator, the designer cannot model a system where the writing process
does not have to wait for a reading process that will synchronise with the writing
process. At least one reading process must synchronously communicate with the
writing process. Because we want to separate the writing action and the reading
actions in time, we cannot use this free choice of synchronisation. Instead, we
introduce an operator that disconnects the synchronisation of the writing process
and the reading processes. We call this operator the half-synchronous parallel
alphabetised operator denoted by

X
ó
Y
.
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write.x sync

sy
nc

re
ad

.x

write.x

sync
read.x

G1 n G2

G2

G1

Figure 8.1: G1, G2 and G1 nG2.

As symbols for the half-synchronous actions we use for reading ¿ and for writing ¡.
We denote an action that contains the ¡ as ¡-action and an action that contains
the ¿ as ¿-action. The semantics of

X
ó
Y
is that

- the ¡-action is asynchronous and unique with respect to the ¡-actions of
other processes and

- the ¿-action is enabled if the related ¡-action (see Definition 8.1.2) has been
executed.

Whenever there is more than one process containing related ¿-actions, these actions
are synchronous.
The rationale is that we want to be able to model one writer and n readers where
the waiting-time of the readers is, although timely in a real-time fashion, undefined.
In this manner, the writer can continue its task without being delayed by the
readers. The readers will read atomically as if in one action. This is where the
VRSP shows its strength; the length of the graph is reduced if the processes have
the reading of a value on all of their longest paths. The behaviour is closely related
to the observer pattern (Gamma et al., 1994)4.
We use the big-step relational semantics described in Nakata and Uustalu (2009) to
separate the writing and reading in time. Following Nakata and Uustalu (2009), the
proposition ps, σq Ñ ps1, σ1q states that in state σ the statement s one-step reduces
to s’ with the next state being σ1. These are exactly the same as one would use for
an inductive semantics, which leads to the terminal many-step reduction relation

4The observer pattern describes the behaviour of objects, where one object informs other
objects of the occurrence of some event, for example, a state change. The half-synchronous
operator is a part of the description of the behaviour of processes. Arguably one might say that
within the design cycle the half-synchronous operator acts on a more abstract level than the
observer pattern.
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and allows the possibility of infinitely many steps. The proposition ps, σqù τ
expresses that running s from state σ results in the trace τ .
Here we deviate from Nakata and Uustalu (2009). Let a

ù denote a trace which
contains a as an action. Let αpùq denote the alphabet containing the actions
in ù. Of course, the CSP semantics of an action apply. In Figure 8.2, the
relational semantics of the

X
ó
Y

operator is given, whereby the alphabets of
P,Q1, ¨ ¨ ¨ , Qn, R are denoted as X,Y1 ¨ ¨ ¨ , Yn, Z, respectively. Furthermore, for
alphabets A1, A2, ¨ ¨ ¨ , An we define A1 XA2 X ¨ ¨ ¨ XAn “ pA1 ¨A2 ¨ . . . ¨Anq and
A1YA2Y¨ ¨ ¨YAn “ pA1, A2, . . . , Anq. For ease of reading we omit in Figure 8.2 for
the parallel operator the alphabets, therefore Qi YióYj Qj is denoted as Qi ó Qj .
From a graph-theoretical point of view these relational semantics give a restriction
on the parallel actions, because a ¿-action has to wait for the related ¡-action, as
shown in the first rule in Figure 8.2. Therefore, if a full trace τ contains a read,
then τ must also contain a related write before the read, hence c ¡x : T, c ¿x :
T P τ ñ c ¡x : T ă c ¿x : T 5. The definition of related actions is given in
Definition 8.1.2:

Definition 8.1.2. Two actions are related if and only if
- one action contains the ¡ precisely once and does not contain the ¿, and the
other action contains the ¿ precisely once and does not contain the ¡,

- the prefix of the labels of both actions with respect to the ¡ and ¿ is identical
and

- the postfix of the labels of both actions with respect to the ¡ and ¿ is identical.

8.1.2 Impact on the VRSP
Of course, the ó operator leads to an adjustment of the definition of the VRSP
(n) and its intermediate stage (b) into the DVRSP (

‚

n) and its dot intermediate
stage (

‚

b).
As an example in Figure 8.4 we show the graph representing the case where n values
are written by process P1 and all or none are read by process P2

6. The processes
P1 and P2 are represented by graphs G1 and G2 in Figure 8.3 and Figure 8.4.
Because the DVRSP is defined in two stages, we give the dot intermediate stage
of G1, G2 and G1

‚

bG2, in Figure 8.3 and the DVRSP of G1, G2 and G1
‚

nG2, in
Figure 8.4. Note that G1

‚

bG2 consists of three components and G1
‚

nG2 consists of
one component. Two components are removed in the second stage of the DVRSP,
because the level of the sources of these components are zero, whereas the level
of these vertices in the Cartesian product of G1, G2 and G1lG2 are greater than
zero.

5The order of two arcs v1v2, w1w2 is denoted by v1v2 ă w1w2 if there exist a path from v2
to w1.

6 The waitForNextPeriod action in Figure 8.4 is defined as a method in the class Realti-
meThread in the Real-Time Specification for Java (Bollella, 2000; Wellings, 2004).
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P
c ¡ x:T
ù P 1, Q1

c ¿ x:T
Ñ Q11, ¨ ¨ ¨ , Qn

c ¿ x:T
Ñ Q1n

P ó Q1ó¨ ¨ ¨ ó Qn
c ¡ x:T
ù P 1óQ1 ó ¨ ¨ ¨ó Qn

c ¿ x:T
Ñ P 1ó Q11ó ¨ ¨ ¨ó Q

1
n

, c ¿x:TRpX,Zq

Qi
c ¿ x:T
Ñ Q1i, Qj

y
ÑQ1j

QióQj
y
ÑQióQ1j

, y ‰ c ¿x : T, c ¿x : T P pYi ¨Yjq, y R pX,Yk“1,¨¨¨n,j‰k, Zq

P ù P 1, Qi
c ¿ x:T
Ñ Q1i

P ù P 1
, c ¡x : T R αpùq, pαpùq ¨ pY1, ¨ ¨ ¨ , Yn, Zqq “ H

Qi
c ¡ x:T
Ñ Q1i, Qj

c ¡ x:T
Ñ Q1j

SKIP
, i ‰ j

Figure 8.2: Relational semantics of the half-synchronous operator for a specification
comprising the processes P,Q1, ¨ ¨ ¨ , Qn, R.

Remark 8.1.3. The definition of a label has to be augmented. Boode et al. (2013)
have given as a definition for a label “For each arc a P A, λpaq P L consists of a
pair plpaq, tpaqq, where lpaq is a string representing an action and tpaq is a positive
real number representing the worst-case execution time of the action represented
by lpaq”. lpaq is augmented by the restriction that whenever ¿ and ¡ are in lpaq,
the arc with label λpaq is either representing a reading or writing action.

Remark 8.1.4. Let the processes P1 and P2, represented by graphs G1 and G2
respectively, half-synchronise over some writing action c ¡xi : T of P1 and some
reading action c ¿xi : T of P2 on some channel c. Then an arc representing a
reading action c ¿xi : T on some channel c, only makes sense in the product
G1

‚

bG2 if every path from the source of G1
‚

bG2 to the arc representing the reading
action c ¿xi : T contains an arc representing a related writing action c ¡xi : T .
Therefore, let b be an arc in ApG2q with µpbq “ pu2, v2q, λpbq “ c ¡xi : T, u2, v2 P
V pG2q. Then, for an arc a with µpaq “ pu1, v1q, λpaq “ c ¿xi : T , u1, v1 P V pG1q,
there must be an arc b in every path from the source of G1

‚

bG2 to the vertex
pu1, v2q P V pG1

‚

bG2q. Whenever this is not the case, i.e. there is no other process
with a writing action c ¡xi : T , the reading process will encounter a deadlock when
the reading action c ¿x : T is the only action the reading process can execute.
The opposite, where a writing action c ¡xi : T is not followed by a related reading
action c ¿x : T , is not prohibited. Although seemingly useless, we do not prohibit
the writing of values without reading.

For two graphs Gi and Gj , an arc a P Ai with µpaq “ pui, viq is related to an



8. Asynchronous Readers and Writers 107
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Figure 8.3: The intermediate stage of the DVRSP of G1 and G2, G1
‚

bG2.

arc b P Aj with µpbq “ puj , vjq if in the processes represented by Gi and Gj ,
the actions they represent are related. Related actions can lead to a form of
inconsistency that is not covered by Definition 6.2.1 as is shown in Figure 8.10
on page 117 where there is a path representing a trace with a writing action that
is followed by two related reading actions. Therefore we have to incorporate the
number of related writing actions and related reading actions in each path from
the source to the sink of a graph in Definition 6.2.1. But first, we have to define
how we are counting the number of related writing and reading actions in a path,
which we will use in the enhanced definition of consistency of graphs, and adapt
the definition of the VRSP leading to the DVRSP.
The path write cardinality of a path P of a graph G with respect to an arc a in P
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Figure 8.4: Half-synchronous writing and reading of G1
‚

nG2 and its factors G1, G2.

with µpaq “ pu, vq, λpaq “ c¡x : T , denoted as P pc¡x : T q, is defined as the number
of occurrences of writing actions c¡x : T in the path P .
The path read cardinality of a path P of a graph G with respect to an arc a in
P with µpaq “ pu, vq, λpaq “ c¿x : T , denoted as P pc¿x : T q, is defined as the
number of occurrences of reading actions c¿nx : T in the path P .
The related writing and reading actions also have an impact on the VRSP, therefore
we adjust the definition of the VRSP leading to the definition of the DVRSP.
As before, we modify the Cartesian product GilGj according to the existence
of synchronising arcs, but now with the extra constraint that arcs a P ApG1q, b P
ApG2q, λpaq “ λpbq where the labels contain a ¡ character, are removed.
The first step in this modification consists of ignoring the synchronising arcs while
forming arcs in the product, but additionally combining pairs of synchronising
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arcs of Gi and Gj into one arc, yielding the intermediate product which we denote
by Gi

‚

bGj . To be more precise, Gi
‚

bGj is obtained from GilGj by first ignoring
all except for the so-called asynchronous arcs, i.e., by only maintaining all arcs
a P Ai,j for which µpaq “ ppvi, vjq, pwi, wjqq, whenever vj “ wj and λpaq R Lj , as
well as all arcs a P Ai,j for which µpaq “ ppvi, vjq, pwi, wjqq, whenever vi “ wi
and λpaq R Li.This set of arcs is denoted by Aai,j . Additionally, we add arcs that
replace synchronising pairs ai P Ai and aj P Aj with λpaiq “ λpajq and ¡ not in
lpajq. If µpaiq “ pvi, wiq and µpajq “ pvj , wjq, such a pair is replaced by an arc
ai,j with µpai,jq “ ppvi, vjq, pwi, wjqq and λpai,jq “ λpaiq and ¡ not in lpaiq. The
set of these so-called synchronous arcs of Gi

‚

bGj is denoted by Asi,j . Note that
synchronous arcs containing a ¡ are not maintained.

Furthermore, let Q be a path from the source of Gi
‚

bGj to the vertex pwi, wjq P Vi,j
and let R be any full path of Gi

‚

bGj , then the second step in this modification
consists of removing (from Gi

‚

bGj) all arcs a of any path Q with the following
condition: a is an arc of Q and µpaq “ ppvi, vjq, pwi, wjqq, λpaq “ lr, ¿ in lr, for
which there exists a related arc b P Ai,j with µpbq “ ppvk, vlq, pwk, wlqq, λpbq “ lw, ¡
in lw, and where for Q and all R: Qplrq ą Qplwq and Qplrq ď Rplwq. Followed by
removing the vertices pvi, vjq P Vi,j and the arcs a with tailpaq “ pvi, vjq, whenever
pvi, vjq has level ą 0 in GilGj and pvi, vjq has level 0 in Gi

‚

bGj . This is then
repeated in the newly obtained graph, and so on, until there are no more vertices
at level 0 in the current graph that are at level ą 0 in GilGj .
The resulting graph is called the Dot Vertex-Removing Synchronised Product
(DVRSP) of Gi and Gj , denoted as Gi

‚

nGj . For k ě 3, the DVRSP
G1

‚

nG2
‚

n . . .
‚

nGk is defined recursively as ppG1
‚

nG2q
‚

n . . .q
‚

nGk.
Using the path write cardinality and the path read cardinality, we define the
consistency of graphs as follows.
Graphs Gi and Gj are consistent if and only if the following three requirements
apply:

1. pρGipGi
‚

nGjqq
δ – Gj and pρGj pGi

‚

nGjqq
δ – Gi.

2. S1pGi
‚

nGjq “ S1pGiq ˆ S
1pGjq and S2pGi

‚

nGjq “ S2pGiq ˆ S
2pGjq.

3. Whenever Q and R are paths from the source to the sink of Gi pGj , Gi
‚

nGjq,
Qpc¡x : T q “ Rpc¡x : T q and Qpc¿kx : T q “ Rpc¿kx : T q.

Without consistency of the graphs, deadlocks with respect to the ó operator are
possible in the processes represented by these graphs. Only a read from x - read
from y combination is prone to deadlocks, because a read from x (or a read from y)
is a synchronous action. So if two processes, both reading from x and reading from
y in series, have their reads from x and reads from y interchanged, both processes
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A1 = c ¡ x : T Ñ SKIP
B1 = c ¿ x : T Ñ SKIP
A1B1 = A1

X1
ó
Y 1

B1

Listing 8.3: Reading from and writing to a buffer.

may deadlock7. Obviously, if two graphs contain identical writing actions, the
processes representing these graphs may deadlock as well.

Remark 8.1.5. Such deadlocks cannot occur for the optional parallel operator
because then the effect will be that one of the two processes will not participate in
the reading from either x or y.

Remark 8.1.6. The order in which a process reads is not relevant with respect
to a process that only writes. For example, if the first process writes to a channel
x and then writes to a channel y and the second process reads from a channel y
and then reads from a channel x this will not give a deadlock. The result will be
that the second process cannot start reading from the channel x before there is
written to the channel y.

From a performance point of view, the graph representing the example given in
Listing 8.1 has a length of `pG1 nG2q “ 3 8, whereas for the process representing
G1 nG2 the same behaviour is achieved by the process A1B1 given in Listing 8.3.
The length of the graph representing the process A1B1 is 2. Although this reduces
the number of context switches, the synchronisation software has to deal with the
order of execution of the c ¡x : T action and the related c ¿x : T action. Therefore
the performance gain depends on the time the synchronisation software needs to
control the order of the actions. The alphabet of A1 is X 1 and the alphabet of B1
is Y 1.

8.1.3 Case Study of the Half-Synchronous Alphabetised Parallel Op-
erator

To show that the new operators are useful, we consider a system that runs at 1 kHz,
so with a period of 1 ms. A part of the system consists of an application process
and a controller process. The controller process communicates, for example, via
memory mapped I/O with a coprocessor performing a Fast Fourier Transform
(FFT) on the received data.

7 The writing and reading show a close resemblance with databases, where there are trans-
actions writing and reading data concurrently. As an example, Bernstein et al. (1987) show
that the order in which data is written and read matters with respect to the consistency (in
the sense of interference) of the data. They distinguish three types of execution of transactions;
Recoverable executions, Avoiding Cascading Aborts executions and Strict executions. Of course,
the updates of the data in database systems have to be committed (the updates are considered
valid) or aborted (they are considered as if the updates never happened), which is an aspect of
data we do not take into account.

8In this example the execution time related to an arc a, tpaq, is one by default.
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Application = c1 ! x1 : T Ñ c2 ? y1 : T Ñ
¨ ¨ ¨

c1 ! x8 : T Ñ c2 ? y8 : T Ñ
display_fpy1, ¨ ¨ ¨ , y8q ÑSKIP

Controller = c1 ? x1 : T Ñ writeCoProc.x1 Ñ readCoProc.y1 Ñ c2 ! y1 : T Ñ
¨ ¨ ¨

c1 ? x8 : T Ñ writeCoProc.x8 Ñ readCoProc.y8 Ñ c2 ! y8 : T Ñ SKIP

System1 = Application
A
||
C
Controller

Listing 8.4: Reading from and writing to a buffer.

Assume that the application process has to calculate eight values via the coprocessor.
Let the controller process have priority over the application process. Furthermore,
the actions of the application process and of the actions of the controller process
take 10 µs to execute. This includes context switches, state changes in the processes
and the like. The coprocessor takes 70 µseconds to calculate the FFT on each data
item. Although the related9 !-actions and ?-actions communicate as a rendezvous,
so in a sense atomically, their interaction takes 20 µseconds. This leads to a simple
CSP specification given in Listing 8.4 using !-actions and the ?-actions, where the
alphabet of Application is A and the alphabet of Controller is C.
In Figure 8.5 we show the time line for System1 with the application process (AP),
the control process (CP) and the coprocessor (CoP). Obviously, there is a deadline
miss because System1 needs more than one ms to execute.
Using the new ó operator and the ¡-actions and the ¿-actions, this leads to an
equally simple CSP specification given in Listing 8.5.

AP

CP

CoP

0 100 200 300 400 500 600 700 800 900 1000 1100

Figure 8.5: Time line of the application process, the control process and the coprocessor,
using ! operator and ? operator.

In Figure 8.6 we show the time line for System2 with the application process
(AP), the control process (CP) and the coprocessor (CoP). Now during the time

9Related in a similar fashion as defined for the ¡-actions and ¿-actions in Definition 8.1.2.
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Application = c1 ¡ x1 : T Ñ ¨ ¨ ¨ Ñ c1 ¡ x8 : T Ñ
c2 ¿ y1 : T Ñ ¨ ¨ ¨ Ñ c2 ¿ y8 : T Ñ
display_fpy1, ¨ ¨ ¨ , y8q ÑSKIP

Controller = c1 ¿ x1 : T Ñ writeCoProc.x1 Ñ readCoProc.y1 Ñ c2 ¡ y1 : T Ñ
¨ ¨ ¨

c1 ¿ x8 : T Ñ writeCoProc.x8 Ñ readCoProc.y8 Ñ c2 ¡ y8 : T Ñ
SKIP

System2 = Application
A
ó
C
Controller

Listing 8.5: Reading from and writing to a buffer.

that the coprocessor is executing, the application process is writing the x2, ¨ ¨ ¨ , x8
values via channel c. Furthermore, the reading of the y1, ¨ ¨ ¨ , y7 is as well executed
during the execution of the coprocessor. System2 is an improvement of System1
by 140 µseconds as the time line in Figure 8.6 shows.

AP

CP

CoP

0 100 200 300 400 500 600 700 800 900 1000

Figure 8.6: Time line of the application process, the control process and the coprocessor,
using ¡ operator and ¿ operator.

8.2 Extension of the Half-Synchronous Operator to Asyn-
chronous Readers

Although reading actions are asynchronous for the half-synchronous alphabetised
parallel operator, the readers are still synchronising their reading actions. Fur-
thermore, the writers will deadlock if they are trying to invoke the same writing
action. In this section, we lift these restrictions such that the readers are allowed
to read synchronously as well as asynchronously, and the writers are allowed to
write the same value asynchronously.
To achieve this kind of reading by readers, we add an index to the ¿ symbols such
that reading actions with the same index read synchronously and reading actions
with a different index read asynchronously. For example, for the processes P1, P2
and P3 we have that actions c¡x:T of P1, c¿x:T of P2 and c¿x:T of P3 become
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c¡x:T of P1, c¿1x:T of P2 and c¿2x:T of P3. Furthermore, we allow more than
one process to write to the same channel.
In the following sections, we introduce the extension of the half-synchronous
operator with synchronous or asynchronous readers and asynchronous writers,
the extended half-synchronous alphabetised parallel operator (

X
õ
Y
), and describe

the semantics of the
Yi
õ
Yj
. Furthermore, we describe the impact of

Yi
õ
Yj

on
the VRSP and the DVRSP, which leads to the definition of the Extended Dot
Vertex-Removing Synchronised Product (EVRSP). We finish with a case study of
the

Yi
õ
Yj
, the Controlled Emergency Stop, showing the advantages of the newly

introduced
Yi
õ
Yj
.

Remark 8.2.1. Of course, we could index the asynchronous writes in a similar
fashion as the asynchronous reads. We choose not to, because the writing at any
point in time, when delivering identical objects to the readers, would lead to the
passing of one object only, delaying all threads, but the last, that participate in
the synchronisation. This is counter-intuitive to the idea that threads can write
on a channel asynchronously, with the guarantee that their instance of an object
is written to the channel at that point in time. An adaptation of the optional
parallel operator of Gruner et al. for writers would solve this issue.

8.2.1 Semantics of the Extended Half-Synchronous Alphabetised Par-
allel Operator

Let P “ tP1, ¨ ¨ ¨ , Qu be the set of processes containing an asynchronous ¡´action.
Let π be a partition tI1, I2, . . . , Isu of the index set I “ t1, 2, . . . ,mu. Let Q “
tQj | j P Ii, Ii P πu be the set of processes containing an indexed asynchronous
¿i ´ action.
Furthermore, in Figure 8.7 we give

- the semantics of the extended half-synchronous operator,
- if we need more than one process P we use Pi; otherwise we use P , and
- the alphabets of P, P1, ¨ ¨ ¨ , R,Q1, ¨ ¨ ¨ , Qn, R are denoted as X,X1 ¨ ¨ ¨ , Xm,
Y1 ¨ ¨ ¨ , Yn, Z, respectively.

For ease of reading, we omit the alphabets for the extended half-synchronous
operator, therefore Qi Yiõ YjQj is denoted as Qi õ Qj .

Remark 8.2.2. The ¿i-action is prone to deadlocks. If one process contains
an action c¿ix : T followed by an action c¿jx : T, i ‰ j and another process
contains the same actions in reversed order the two processes may deadlock.
Because we consider processes represented by consistent graphs only, such a
process specification is inhibited.

8.2.2 The EVRSP of the Extended Half-Synchronous Alphabetised
Parallel Operator

As we are taking into account pairs of consistent graphs only, an action c¿nx : T
in one process without an action c¡x : T in any process is inhibited, because
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Pi
c ¡ x:T
Ñ P 1i , Pj

c ¡ x:T
Ñ P 1j

pPiõPjq Ñ ppP 1iõPjq ‘ ppPiõP
1
jqq

Pk
c ¡ x:T
ù P 1k, Qi

c ¿i x:T
Ñ Q1i, Qj

c ¿j x:T
Ñ Q1j

pPkõQiõQjq
c ¡ x:T
ù pP 1kõ QiõQjqÑppP

1
kõ Q

1
iõQjq‘pP

1
kõQiõQ

1
jqqÑpP

1
kõQ

1
iõQ

1
jq

,

i ‰ j,

P
c ¡ x:T
ù P 1, Qi1

c ¿i x:T
Ñ Q1i1 , ¨ ¨ ¨ , Qij

c ¿i x:T
Ñ Q1ij

PõQi1õ¨ ¨ ¨õQij
c ¡ x:T
ù P 1õQi1õ¨ ¨ ¨õ QijÑP

1õ Q1i1õ¨ ¨ ¨õ Q
1
ij

, Ii “ ti1, ¨ ¨ ¨ , iju,

P ù P 1, Qj
c ¿i x:T
Ñ Q1j

P ù P 1
, c ¡x : T R αpùq, pαpùq ¨ pY1, ¨ ¨ ¨ , Yn, Zqq “ H,

Qi
c ¿i x:T
Ñ Q1i, Qj

y
ÑQ1j

QiõQj Ñ QiõQ1j
, y ‰ c ¿i x : T, c ¿i x : T P Yju

Figure 8.7: Relational semantics of the extended half-synchronous operator for a
specification comprising the processes P,Q1, ¨ ¨ ¨ , Qn, R.

the process may end in a deadlock and the deadlock violates the consistency
requirements. But we still have to address issues like

- a series of identical writing actions c¡x : T in one process and the related
reading actions c¿nx : T in another process,

- a series of consecutive identical writing actions c¡x : T to the same channel
by different processes.

These issues are not inhibited by the semantics of αõβ . As an example, the processes
P1, P2, P3 and P123 in Listing 8.6 are represented by the graph in Figure 8.9,

which contains consistent components G1, G2, G3 leading to G123 “

3
˛

n
i“1
Gi (the

EVRSP, denoted as
˛

n, is defined in the sequel). A schema of the processes
given in Listing 8.6, is given in Figure 8.8. This process schema describes the
communication flow of the involved processes and shows that there is no predefined
order in which P1 and P2 communicate with P3. It follows that the components
representing these processes must be G1, G2, G

1
13

10 and G123, given in Figure 8.9,
10Because G1 – G2 the choice for G23 leads to the same result.
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P1 = c ¡ x : T Ñ SKIP
P2 = c ¡ x : T Ñ SKIP
P3 = c ¿1 x : T Ñ c ¿1 x : T Ñ SKIP
P13 = P1 õ P3

P123 = P1 õ P2 õ P3

Listing 8.6: Two processes writing via the same channel.

because G213
˛

nG2 fl G123. Therefore, it is clear that component G123 in Figure 8.9
represents the behaviour of the concurrent process P123. But it is not clear what
the component should be that represents the concurrent process P13 given in
Listing 8.6, because the writing action could be related to the first reading action
or to the second reading action.

P1 P2

Channel

P3

Figure 8.8: Process schema describing the communication flow of the processes P1, P2, P3
(Listing 8.6).

Therefore, there are two choices for this example given by the components G113
and G213 in Figure 8.9. Following the process sketch in Figure 8.8, the component
G113 should be chosen because the first two actions can be executed directly by
the processes that represent these components, whereas the process representing
component G213 has to wait for the writing action c¡x : T of the process representing
component G2.
This problem becomes even worse if we consider the processes given in Listing 8.7.
The graph representing the processes of Listing 8.7 contains a path represented
by the trace doX1 Ñ c ¡x : T Ñ doY2 Ñ c ¿1 x : T Ñ c ¿1 x : T Ñ SKIP (the
thick and dotted arrows in Figure 8.10 11), which is obviously wrong. But the
dashed and dotted arrows in Figure 8.10 represent a trace that has to be possible.
The problem lies in the black vertex in Figure 8.10, that allows two traces to be
possible with a different number of writing actions.

11For ease of reading the not-relevant labels are removed in Figure 8.10.
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Figure 8.9: ComponentsG1, G2, G3, G123 “

3
˛

n
i“1
Gi, andG113 “ G1

˛

nG3 orG213 “ G1
˛

nG3

representing processes P1, P2, P3, P123 and P13 (Listing 8.6).

P1 = doX1 Ñ c ¡ x : T Ñ SKIP
l

doX2 Ñ c ¡ x : T Ñ c ¡ x : T Ñ SKIP
P2 = doY1 Ñ c ¿1 x : T Ñ SKIP

l

doY2 Ñ c ¿1 x : T Ñ c ¿1 x : T Ñ SKIP
P12 = P1 õ P2

Listing 8.7: Ambiguity of a writing process and a reading process via the same channel.

Because the components G1 and G2 are consistent according to Definition 6.2.1,
we have to adjust Definition 6.2.1 incorporating the number of writes and reads in
each path from the source to the sink of a component.
Obviously, the components representing the processes in Listing 8.7 are not
consistent. But the processes in Listing 8.6 are consistent and therefore the
EVRSP has to determine the order of the reading actions with respect to the
writing actions.
For the EVRSP whenever two processes contain identical ¡-actions, these ac-
tions are treated asynchronously. For indexed ¿-actions, the index makes the
¿-actions different and therefore the EVRSP handles these actions identical to the
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DVRSP. Hence, theVRSP must be extended to handle the ¡-actions for components
representing different processes only.
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Figure 8.10: Components G1, G2 and G12 “

2
˛

n
i“1
Gi representing processes P1, P2 and

P12 of Listing 8.7.

But first, we have to adapt the definition of the VRSP leading to the definition of
the EVRSP, after which, we can define the definition of consistency of graphs for
the EVRSP.
The the Extended Dot Vertex-Removing Synchronised Product (EVRSP) of Gi
and Gj , Gi

˛

nGj is constructed in two steps, where the definition of the intermediate
stage of the DVRSP is identical to the intermediate stage of the EVRSP, Gi

‚

bGj “

Gi
˛

bGj , with
- vxwx P Ai,j is an arc with operator ¿n in lpvxwxq “ lr,

- Q is a path from the source of Gi
˛

bGj through wx,

- R is the path from the source to the sink of Gi
˛

bGj .

Again, we modify the Cartesian product GilGj according to the existence of
synchronising arcs, but now with the extra constraint that labels containing a ¡
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character are asynchronous i.e., pairs of arcs with the same label pair without a ¡
character, with one arc in Gi and one arc in Gj .
The first step in this modification consists of ignoring the synchronising arcs while
forming arcs in the product, but additionally combining pairs of synchronising
arcs of Gi and Gj into one arc, yielding the intermediate product which we
denote by Gi

˛

bGj . To be more precise, Gi
˛

bGj is obtained from GilGj by first
ignoring all except for the so-called asynchronous arcs, i.e., by only maintaining
all arcs a P Ai,j for which µpaq “ ppvi, vjq, pwi, wjqq, whenever vj “ wj and
λpaq R Lj or vj “ wj and λpaq P Lj and ¡ in lpaq, as well as all arcs a P Ai,j for
which µpaq “ ppvi, vjq, pwi, wjqq, whenever vi “ wi and λpaq R Li or vi “ wi and
λpaq P Li and ¡ in lpaq. This set of arcs is denoted by Aai,j . Additionally, we add
arcs that replace synchronising pairs ai P Ai and aj P Aj with λpaiq “ λpajq and
¡ not in lpajq. If µpaiq “ pvi, wiq and µpajq “ pvj , wjq, such a pair is replaced by
an arc ai,j with µpai,jq “ ppvi, vjq, pwi, wjqq and λpai,jq “ λpaiq and ¡ not in lpaiq.
The set of these so-called synchronous arcs of Gi

˛

bGj is denoted by Asi,j .

The second step in this modification consists of removing (from Gi
˛

bGj) the
vertices pvi, vjq P Vi,j and the arcs a with tailpaq “ pvi, vjq, whenever pvi, vjq has
level ą 0 in GilGj and pvi, vjq has level 0 in Gi

˛

bGj and all arcs vxwx P Ai,j for
which there exists a related arc vywy P Ai,j , with operator ¿n in lpvxwxq for which
there does not exist at least n related arcs vywy with operator ¡ in lpvywyq with
vywy ă vxwx. This is then repeated in the newly obtained graph, and so on, until
there are no more vertices at level 0 in the current graph that are at level ą 0 in
GilGj .

The resulting graph is called the EVRSP of Gi and Gj , denoted as Gi
˛

nGj .

For k ě 3, the EVRSP G1
˛

nG2
˛

n ¨ ¨ ¨
˛

nGk is defined recursively as ppG1
˛

nG2q
˛

n

¨ ¨ ¨ q
˛

nGk.

Remark 8.2.3. Because arcs viwi with ¿ P lpviwiq are indexed, the arcs viwi
with labels that differ only by their indices represent asynchronous actions.

Remark 8.2.4. The EVRSP allows two or more processes to write a value to the
same channel.

Components Gi and Gj are consistent if and only if the following three requirements
apply:

1. pρGipGi
˛

nGjqq
δ – Gj and pρGj pGi

˛

nGjqq
δ – Gi.

2. S1pGi
˛

nGjq “ S1pGiq ˆ S
1pGjq and S2pGi

˛

nGjq “ S2pGiq ˆ S
2pGjq.

3. Whenever Q and R are paths from the source to the sink of Gi pGj , Gi
˛

nGjq,
Qpc¡x:T) = Rpc¡x : T q and Qpc¿kx:T) = Rpc¿kx : T q.
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In Figure 8.11 we give an example that shows the stages of the EVRSP. Figure 8.11.a
shows the Cartesian product of components G1, G3 given in Figure 8.9. The dotted
arcs in Figure 8.11.b are selected for removal. For the arcs u1u3 and u3u5 both
with label c¿1x : T , there exists a related arc u1u2 with label c¡x : T . Then,
because P1 “ u1u2, P2 “ u1 ¨ ¨ ¨u6, P1pc¿1x : T q “ 1 ą P1pc¡x : T q “ 0 and
P1pc¿1x :T q “ 1 ď P2pc¡x :T q “ 2, u1u3 and u3u5 are removed in Figure 8.11.c.
The last stage of the EVRSP removes u3, u5 and the arcs that have u3, u5 as a tail
because d´G1lG3

pu3q “ d´G1lG3
pu5q “ 1 and d´

G1
˛

bG3

pu3q “ d´
G1

˛

bG3

pu5q “ 0, which

leads to Figure 8.11.d.
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Figure 8.11: The EVRSP from G1lG3 paq, two stages of G1
˛

bG3 pb, cq, to G1
˛

nG3 pdq.

8.2.3 Case Study of the Extended Half-Synchronous Alphabetised
Parallel Operator

To show that the extended operators are useful, we consider a system that runs
at 1 kHz, so with a period of 1 ms. The hardware of the system consists of one
processor, two controllers, an FPGA, two sensors and two actuators.
A part of the system must be able to perform a controlled emergency stop. This
part, running on the processor, consists of a Controlled Emergemcy Stop (CES)
thread, two Application threads (A1 and A2) and two Controller threads (C1 and
C2).
Assume that the total data used by these threads does not fit in the L2 cache,
therefore every context switch leads to a cache flush. This increases the context-
switch time (Li et al., 2007). According to Li et al. (2007) due to L2 cache flushes
the context-switch time can take up to 1.5 ms for the hardware and software under
consideration. In average Li et al. (2007) measured a context-switch time of 3.8
µs.
Taking into account the measured timing for a context switch, we assume that the
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worst-case context-switch time for our example is 20 µs. Because the CES case
study describes a fictive PHRCS, we use estimated guesses for the timing of all
actions of the processes, the controllers, the FPGA and the devices.
Each Application process controls the behaviour of one Controller thread. Each
Controller process communicates, for example, via memory mapped I/O, with a
controller responsible for the behaviour of a sensor and an actuator.
To calculate the values that drive the actuators, the Controller threads interact with
an Algorithmic Software process (Alg.Soft.). The Algorithmic Software process
calculates, for example, the FFT of the data by communicating via memory mapped
I/O to an FPGA. The FPGA performs a FFT on the data. This architecture is
shown in Figure 8.12.
Furthermore, assume that

- the controller threads and the algorithmic software thread have priority over
the application threads,

- the CES and Application threads have equal priority,
- the Controller threads have equal priority,
- the actions of the CES thread, the Application threads and the Controller
threads take 20 µs to execute, this includes context switches, state changes
in the threads and the like,

- the Algorithmic Software takes 130 µs to calculate the FFT on each data
item, which includes the calculation time of the FPGA. It buffers commands
from the Controller threads.

- the Controller takes 80 µs to read the sensor value and 160 µs to write the
actuator value to the actuator.

This leads to a simple CSP specification given in Listing 8.8 using the extended
half-synchronous operator, the ¡-actions and the indexed ¿i-actions, where the
alphabet of CES is CES, the alphabet of Ai is Ai and the alphabet of Cj is Cj .

Remark 8.2.5. The c2¡stop of A1 and A2 are asynchronous writes. Because both
A1 and A2 perform this action and the C1 and C2 read this action only once, one
of the writes is not read. This is an example of a writing without reading, which
is intended, as the C1 and C2 have to start stopping as soon as possible.

Remark 8.2.6. Because the reads have different indexes, the C1 and C2 do not
delay one another.

Remark 8.2.7. The c1-channel is unidirectional because CES only writes to A1
and A2. The c2-channel is bidirectional because A1 and A2 write to C1 and C2
and vice versa.

The graphs representing the processes in Listing 8.8 are given in Figure 8.13. The
behaviour not modelled in Listing 8.8, the ¨ ¨ ¨ , are left out of Figure 8.13.
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Figure 8.12: Communication Flow of the Controlled Emergency Stop.

Remark 8.2.8. It is up to the process software to handle the state transitions.
This includes the handling of guarded actions, which are labels in the graph.

The processes C1, C2 in Listing 8.8 are synchronising over the c2¿1boot-action and
waitForNextPeriod-action. Only the waitForNextPeriod-action occurs in all longest
paths. But still the worst-case performance is improved by the execution time of
one waitForNextPeriod-action, together with two context switches.
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CES = readStatus.sÑ ps ““ stop; c1¡stopÑ ack Ñ writeStatus.bootÑ CES1

l

s ““ boot; c1¡bootÑ ack Ñ writeStatus.initÑ CES1q

l

¨ ¨ ¨

s ““ ¨ ¨ ¨ Ñ CES1 )
CES1 = waitForNextPeriodÑ SKIP

A1 = c1¿1stopÑ c2¡stopÑ c2¿1stopAck1 Ñ A11

l

c1¿1bootÑ c2¡bootÑ c2¿1bootAck1 Ñ A11

l

¨ ¨ ¨

A11 = ack Ñ waitForNextPeriodÑ SKIP

A2 = c1¿2stopÑ c2¡stopÑ c2¿2stopAck2 Ñ A21

l

c1¿1bootÑ c2¡bootÑ c2¿1bootAck2 Ñ A21

l

¨ ¨ ¨

A21 = ack Ñ waitForNextPeriodÑ SKIP

C1 = c2¿1stopÑ readSensor.s1 Ñ writeAlgSoft.s1 Ñ readAlgSoft.v1 Ñ

writeAC1.v1 Ñ readAckAC1 Ñ c2¡stopAck1 Ñ C11

l

c2¿1bootÑ resetSensorS1 Ñ writeInitAC1 Ñ readAckAC1 Ñ c2¡bootAck1

Ñ C11

l

¨ ¨ ¨

C11 = waitForNextPeriodÑ SKIP

C2 = c2¿2stopÑ readSensor.s2 Ñ writeAlgSoft.s2 Ñ readAlgSoft.v2 Ñ

writeAC2.v2 Ñ readAckAC2 Ñ c2¡stopAck2 Ñ C21

l

c2¿1bootÑ resetSensorS2 Ñ writeInitAC2 Ñ readAckAC2 Ñ c2¡bootAck2

Ñ C21

l

¨ ¨ ¨

C21 = waitForNextPeriodÑ SKIP

System = CES
CES

õ
A1YA2YC1YC2

ppA1 A1
õ
A2

A2qA1YA2
õ
C1YC2

pC1 C1
õ
C2

C2qq

Listing 8.8: The Controlled Emergency Stop Process Specification.
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Therefore for the EVRSP of C1, C2 and C1
˛

nC2, there is some gain. The memory
occupancy is not quadratic with respect to the number of vertices of C1 and C2,
because of the order that the ¡-actions and ¿-actions impose on the product. For
A1, A2 and CES the gain is better, because both the ack-action and waitForNext-
Period-action are on all longest paths.
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Figure 8.13: Graphs CES, A1,A2, C1 and C2.

For example, in Figure 8.14 a longest path of A1
˛

nA2 contains eight arcs, whereas
a longest path of A1 plus a longest path of A2 is equal to 10. This reduces
the overhead of synchronisation considerably. Also, the memory occupancy with
respect to the number of vertices and arcs is 26 vertices and 39 arcs for A1

˛

nA2
and 16 vertices and 16 arcs (two times 8 vertices and 8 arcs) for A1 and A2.
All other products are left out because the number of vertices these graphs contain
makes the figures unreadable.
One trace given in Listing 8.9, is of particular interest because it shows a longest
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path in the combined graph representing the System process for a stop-action and
a boot-action shown in Listing 8.8.
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Figure 8.14: Graph A1
˛

nA2.

readStatus.s, 20 Ñ c1¡stop, 20 Ñ c1¿1stop, 20 Ñ c1¿2stop, 20 Ñ c2¡stop, 20 Ñ c2¿1stop,

20 Ñ readSensor.s1, 80 Ñ c2¿2stop, 20 Ñ readSensor.s2, 80 Ñ c2¡stop, 20 Ñ writeAlg

Soft.s1, 130ÑwriteAlgSoft.s2, 130Ñ readAlgSoft.v1, 20ÑwriteAC1.v1, 160Ñ read

AckAC1, 20 Ñ c2¡stopAck1, 20 Ñ c2¿1stopAck1, 20 Ñ readAlgSoft.v2, 20 Ñ writeAC2

.v2, 160 Ñ readAckAC2, 20 Ñ c2¡stopAck2, 20 Ñ c2¿1stopAck2, 20 Ñ ack, 6012

Ñ writeStatus.boot, 20 Ñ waitForNextPeriod, 100 13
Ñ SKIP

Listing 8.9: Trace of the CES.

The worst-case execution time is the summation over the time part of the labels.
To stop both the actuators in our example, this adds up to 1240 µs. Because the

12The processes CES,A1 and A2 synchronise over the ack-action. Therefore the execution
time adds up to 60 µs.

13The processes CES,A1, A2, C1 and C2 synchronise over the waitForNextPeriod-action.
Therefore the execution time adds up to 100 µs.
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controllers for the sensors and actuators, and the FPGA are running partially in
parallel, the execution time is 940 µs.
Although there is no deadline-miss in this fictive example for the stop part of the
CES, when the model would support the writing to and reading from buffers, the
best-case execution time increases. For example, when adding three buffers where
each buffer has two actions to perform, there is an extra 120 µs execution time.
This leads to an execution time in the best case of 1060 µs. Then a deadline-miss
seems inevitable.
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Figure 8.15: Time line of the stop-part of the Controlled Emergency Stop.

In Figure 8.15 the time line of a possible trace of the stop part of the CES is given.
Each grey block represents the time that the thread is executing. The label of
each hardware related action contains the overall time. If applicable, this includes
the time the hardware needs to reply. The dashed arrows represent a call to the
hardware and the reply from the hardware.
The stop part of the CES takes 940 µs to execute (Figure 8.15). This can
be improved by using the EVRSP of the graphs, SynchronisedSystem “

CES
˛

nA1
˛

nA2
˛

nC1
˛

nC2. The actions that synchronise are waitForNextPeriod
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and ack, therefore the processor needs at most 820 µs to execute the thread
represented by the graph SynchronisedSystem.
The improvement with respect to timeliness can be easily seen when we model the
CES using standard CSP as shown in Figure 8.16, although this example gives an
improvement of only 50µs. Obviously, in a more complex standard-CSP example
where buffers have to be modelled, the performance would be significantly worse.
The c2.stop, 20 actions of A1, A2, C1 and C2 are executed atomically, therefore it is
immaterial which of the processes A1, A2, C1 and C2 executes the action c2.stop, 20
first. In fact the priority inheritance protocol (Sha et al., 1990) is implemented for
the processes A1, A2 and C1, C2 for the action c2.stop, 20.
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Figure 8.16: Time line of the stop-part of the Controlled Emergency Stop without
asynchronous readers and writers.

8.3 Discussion and Conclusions
Firstly, in this chapter we have discussed a new

X
ó
Y
operator and the new ¡-action

and ¿-action, that delay the reading of a process from a buffer. The
X
ó
Y
operator

together with the ¡-action and ¿-action are an abstraction of a buffer, therefore
the designer does not have to model the buffer as well. In this manner, the writing
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process does not have to wait for the reading process to synchronise. There are
three advantages of the

X
ó
Y
operator in combination with the DVRSP

- it eases the design by taken away the burden of separating the writing and
reading in time,

- the length of the longest paths is reduced, if the operators are part of all the
longest paths of the participating graphs,

- in a distributed computing system, for example, a processor-coprocessor
combination, the waiting time of the processor can be reduced.

The first advantage will make the design less error-prone and therefore the design
phase needs less time. Furthermore, the overall design cycle will gain because the
improved description on design level will lead to less effort for the implementation
and less effort for testing. The second and third advantage will lead to an
application which needs less execution time, thereby reducing the possibility of a
deadline miss.
Secondly, we have discussed an extension of the

X
ó
Y

operator, the new
X
õ
Y

operator and the ¡-action together with the new ¿
i
-action, that delay the reading

of a process from a buffer. The
X
õ
Y

operator together with the ¡-action and
¿
i
-action are an abstraction of a buffer, therefore the designer does not have to

model the buffer as well. In this manner, the writing process does not have to
wait for the reading process to synchronise. There are five advantages of the

X
õ
Y

operator in combination with the EVRSP with respect to standard CSP:
1. it eases the design by taking away the burden of separating the writing

actions and reading actions in time, which eliminates the necessity of a
buffer,

2. it gives maximum flexibility by indexing the reading actions,
3. it allows multiple writing actions to the same channel,
4. the length of the longest paths is reduced, if the writing actions and reading

actions are part of all the longest paths of the participating graphs,
5. in a distributed computing system, for example, a processor-coprocessor

combination, the waiting time of the processor or coprocessor can be reduced.
The first advantage makes the design less error-prone and therefore the design
phase needs less time. The absence of a buffer leads to fewer actions that have to
be performed by the involved threads and therefore to a reduction of the utilisation
of the processor,
Furthermore, the overall design cycle gains because the improved description on
the design level leads to less effort for the implementation and less effort for testing,
achieved by the second and third advantage.
The fourth advantage is due to the EVRSP only and leads to an application that
needs less execution time,
The fifth advantage is due to a reduction of the end-to-end execution time during
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one period and therefore leads to an application for which the possibility of a
deadline-miss is reduced.
If no buffer is needed in the design, the utilisation of the processor remains the same
with respect to using synchronous writing actions and reading actions, because
the disconnection of reading actions and writing actions still leads to threads that
execute these actions. In such a situation, the disconnection of reading actions
and writing actions is especially useful if there is no gain possible by using the
EVRSP. This happens when the multiplication of any two components leads to a
memory occupancy that exceeds the available memory in the target system.



9
Conclusions and Recommendations

In this thesis, we have shown that a considerable performance gain can be achieved
for Periodic Hard Real-Time Control Systems (PHRCSs) developed with process
algebras using graph theory. The performance gain originates in two aspects of
PHRCSs: reduction of the overhead by context switches and reduction of the end-
to-end processing time of Periodic Hard Real-Time Control Processes (PHRCPs).
To reach this goal we have introduced several forms of a synchronised product:
the Vertex-Removing Synchronised Product (VRSP), the Dot Vertex-Removing
Synchronised Product (DVRSP) and the Extended Dot Vertex-Removing Syn-
chronised Product (EVRSP). Furthermore, we have studied the graph-theoretical
and number-theoretic aspects of these synchronised products. This has led to
three research questions of which the conclusions and evaluation are elaborated
in Section 9.1 through Section 9.3. We finish with a preview of future work in
Section 9.4.

9.1 Reduction of Context Switches
To answer the first research question,“How can the number of context switches be
reduced for periodic hard real-time systems, which are developed using process
algebras, by means of a graph-theoretical approach in such a manner that the
performance of the system is improved?”, we introduced a Vertex-Removing
Synchronised Product (VRSP) for which we proved in Theorem 3.6.4 that the
length of two components G1 and G2 can be reduced if all longest paths of one
component, say G1 and at least one longest path of the other component, say G2,
contain at least one synchronising arc. Together with transformation functions
T, T´1, which map the processes onto graphs and vice versa, this shows that we
can reduce the worst-case performance of periodic real-time parallel processes, by
combining two processes, where all longest traces for one process must contain
synchronising actions and the other process must contain at least one longest trace
with at least one synchronising action.
To prove Theorem 3.6.4 we have introduced a VRSP for which we created four
stages to ease the prove of Theorem 3.6.4:

- The first stage is the Cartesian product. The source and sink of the Cartesian
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product are used to identify which vertices and their arcs have to be removed
in the third and fourth stage.

- The second stage is the weak synchronised product. For the weak syn-
chronised product, we were able to identify a pathological case in a natural
manner. This made it visible that a set of parallel processes may contain
unwanted behaviour, e.g. a deadlocked state. We have shown in the proof
of Lemma 3.6.1 and Remark 3.4.1, that we can filter out this unwanted or
ill-defined behaviour of processes by finding paths that shrink under the
weak synchronised product.

- The third stage, the reduced weak synchronised product removes the vertices
and their arcs for which the in-degree is zero, whereas the in-degree of the
vertex in the Cartesian product has an in-degree greater than zero.

- The fourth stage replaces quadrangles with identical labels by their diagonal
arc, after which again vertices and their arcs for which the in-degree is zero,
whereas the in-degree of the vertex in the Cartesian product has an in-degree
greater than zero, are removed.

We informally introduced the notion of a consistent and an inconsistent set of
graphs (representing real-time periodic processes) in Chapter 3 and formalised
this notion in Chapter 6. Consistency is based on the contraction of components
together with the sink and the source, where the sink and the source have to be
invariant over the graph multiplication by the VRSP.
Whether or not a significant performance gain is achieved by combining processes
depends on the ratio of the context-switch time and the calculation time of the
processes itself; clearly, this depends on the type of hardware and operating system
used. But still, if the Periodic Hard Real-Time Control System (PHRCS) does
not fulfil the requirements with respect to the deadline of its Periodic Hard Real-
Time Control Processes (PHRCPs), calculating all possible products of two or
more components may produce a set of components for which the processes they
represent comprise a PHRCS that will fulfil the requirements with respect to
deadline and memory occupancy.
To increase the chance that such a PHRCS exist, we decompose the components.
Decomposition of the components gives a set of components from which the VRSP
can be taken. If all combinations of components are calculated, this will lead to sets
of components of which a subset will contain solutions that fulfil the requirements
with respect to the deadline and the memory occupancy of the PHRCPs. From
this set, the designer has to choose a solution that is most feasible with respect to
the other requirements or future design. For example, if it is foreseen that new
non-hard real-time functionality is required, the designer may choose the solution
consuming the least memory as this new functionality will not be a burden to the
deadline of the PHRCS.
In general, a choice will be made based on the question "How much memory do we
have?". Based on that question the best reduction of the length of the components



9. Conclusions and Recommendations 131

has to be taken for the new process specification. Furthermore, the number of
parallel processes, and therefore the number of components of the graph G, is
often limited to 15 or 20 processes. For 15 processes, there are B15 « 109 vertices
in the related lattice, where each vertex in the lattice represents a unique set of
components representing the PHRCPs of the PHRCS. But for 20 processes there
are B20 « 5 ¨ 1013 vertices in the lattice. Depending on the speed of the computing
system it may take several days to calculate an optimal solution out of all partitions
for 20 processes (assuming the algorithm that calculates an optimal solution uses
not more than the available memory to store the intermediate data). For each
extra process, this will result in almost 10 times as much execution time. For this
reason with the technology of today, an upper limit of 20 processes is probably
still tractable. For larger sets of processes, we have developed heuristics that will
calculate a set of components by continuously multiplying two components by the
VRSP until a graph is obtained comprising only one component. The drawback
of these heuristics is that they may miss a solution and only calculate sets of
components that have a deadline miss or do not fit in the available memory.
Furthermore, we have achieved the goal that a set of processes that does not
meet its deadline or does not fit in the available memory can be transformed
by decomposition and graph multiplication by the VRSP into a set of processes
that will fulfil both requirements, or if the set of processes does not fulfil both
requirements then the designer has to redesign the set of processes or more powerful
hardware has to be used.
Clearly, for applications containing hundreds of processes heuristics must be used
that will give an educated guess which partitions have to be calculated. In our
case, the new set of processes is calculated off-line during the design process and
forms no burden on an active real-time system.
In real-time systems, where on-the-fly processes are added to the system, our
transformation will only work for the initial set of processes due to the extensive
calculations that are necessary.
Because the components have to be pairwise consistent, to compose the original
set of components, the designer is limited in his description of the system. But by
using a model checker like e.g. FDR3, this should not be an issue.
We finished the first research question, “How can the number of context switches
be reduced for periodic hard real-time systems, which are developed using process
algebras, by means of a graph-theoretical approach in such a manner that the
performance of the system is improved?”, with a small case study, the Production
Cell, in the reproduction of our paper (Boode and Broenink, 2014) in Chapter 4
which showed the advantages of our graph product.
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9.2 Graph-Theoretical Properties of the Reduction Oper-
ator

The second research question, “What are the algebraic and graph-theoretical
properties of the graph-theoretical approach, which are developed using process
algebras, that reduce the number of context-switches for periodic hard real-time
systems in such a manner that the performance of the system is improved?”, is
mainly based on graph theory and is meant to give an inventory of these graph-
theoretical properties. We have given proof and examples that show the correctness
and usability of the reduction operator VRSP.
The proofs strongly rely on the notion of consistency. When the set of components
and their products are pairwise consistent then the set of components is commut-
ative, idempotent and associative. Furthermore, we have shown that the VRSP
does not distribute over the + operator.
Consistency is essential because otherwise, the VRSP would not be associative.
Apart from e.g. deadlocks for a set of processes, the number of solutions for a
set of components representing these processes follows the Bessel number (B̃n)
series, as we have proved in Chapter 5. The numbers in the Bessel number series
are a magnitude larger than the numbers in the Bell number (Bn) series and
this is another reason why associativity is necessary. Finding a solution for a
non-associative set of components under the VRSP is only feasible for a much
smaller set of components with respect to an associative set of components under
the VRSP. For example, when associativity applies for a set of 16 components a
solution can be found in a reasonable amount of time, whereas for a non-associative
set of components this would be 11 components only (Table 5.1 on page 64).
Another improvement that we achieved is the development of theory to factor
the components in sub-components and use the VRSP on these components. We
constructed and proved theorems that decompose components. Factorisation of
a set of pairwise consistent components and their products, into their factors, is
again a set of components for which this set of components and their products
are pairwise consistent under the VRSP. Although this enlarges the number of
combinations of components, this may give a solution that is not available in the
original set of components.

9.3 End-to-end Processing-Time Reduction Operator
The third research question, “How can the reduction of the end-to-end processing
time of a set of processes during every period of any periodic hard real-time system,
which is developed using the process algebra Communicating Sequential Processes
(CSP), be achieved by means of an extension of the graph-theoretical approach
of research question one?”, has led to two proposals for a new operator and the
related writing action and reading action on process-algebraic level. Based on these
proposals, two graph products are given for which a considerable performance
improvement can be achieved.
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The end-to-end processing time reduction deals with two aspects of passing inform-
ation between processes, synchronous and asynchronous. In case of asynchronous
communication, a process is allowed to pass information and continue execution,
whereas synchronous communication follows the rendezvous design pattern which
leads to a suspension of the sending process till the receiving process has finished
handling the passed information by sending an acknowledgement.
In Chapter 8 we have discussed a new

X
ó
Y
operator together with the new ¡-action

and ¿-action, which delay the reading of a process from a buffer. We have extended
the

X
ó
Y
operator and the ¡-action and ¿-action with the introduction of the

X
õ
Y

operator and the ¡-action together with the new ¿
i
-action. The

X
õ
Y

operator
together with the ¡-action and ¿

i
-action are an abstraction of a buffer, therefore

the designer does not have to model the buffer as well. In this manner, the writing
process does not have to wait for the reading process to synchronise.
The advantages of the

X
õ
Y
operator in combination with the Extended Dot Vertex-

Removing Synchronised Product (EVRSP) with respect to standard CSP are that
it eliminates the necessity of a buffer, while at the same time it allows multiple
writing actions to the same channel, reduces the length of the longest path and
reduces the end-to-end processing time of processes. Furthermore, the design is
less error-prone and therefore the design, implementation and test phase need less
time.
If no buffer is needed in the design, the utilisation of the processor remains the
same with respect to using synchronous writing actions and synchronous reading
actions, because the disconnection of reading actions and writing actions still leads
to threads that execute these actions. In such a situation, the disconnection of
reading actions and writing actions is especially useful if there is no more gain
possible by using the VRSP. This happens when the multiplication of any two
components leads to a memory occupancy that exceeds the available memory in
the target system.
Of course, there is also a drawback when using the EVRSP. The designer has
to figure out whether the disconnection of reads and writes leads to a greater
reduction of the end-to-end execution time in one period than using synchronous
writing actions and reading actions.

9.4 Future Work
Graph-theoretical point of view
This research is restricted to periodic hard real-time applications, where the periods,
release times and deadlines are the same. This can be extended to applications
where this is not the case. Such a relaxation of the set of PHRCPs leads to a
Real-Time System (RTS) where, for example, if the RTS is an event driven system,
the real-time requirements are met because only the events and not the tasks have
a hard deadline.
For the VRSP and the EVRSP this relaxation can only be achieved by relaxing
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the constraints on the components we are considering. Because we are only taking
into account finite, deterministic, labelled, acyclic, directed multigraphs, we can
remove the constraint that our graphs have to be acyclic. But then we have to
reconsider the definition of the VRSP and the EVRSP because the VRSP and the
EVRSP are based on a sink and a source of the Cartesian product of a pair of
components, which relies on the components being acyclic. For the same reason,
the definition of consistency of components has to be adapted. Furthermore, to
construct a model of an event driven RTS, we have to adapt the labels of the arcs
of the components in such a manner that besides the execution time of the event
also the relative deadline of the event is taken into account. But then the VRSP
and therefore the EVRSP have to be redefined, because the choice out of two
asynchronous arcs (belonging to different components) representing these events,
is not free any more, but depends on the laxity1 of the event.
Another issue is that the periods of all processes are the same. Lifting this
requirement to any period for all processes, leads to scheduling issues, because we
cannot adapt the VRSP and the EVRSP in such a manner that, for instance, by
taking the Least Common Multiple of the periods, we create the VRSP and the
EVRSP of sequences of components.
A totally different area would be the extension into a system containing one
or more multi-core processors. Because for such systems the synchronisation of
processes, distributed over several cores and possibly in different processors, by
the synchronisation software will consume more time. Therefore the processes
have to be distributed over the processors and their cores in such a manner that
synchronisation of actions of processes in different processors and in different
cores on the longest paths of the processes is minimised, while maximising the
synchronisation of processes in the same core. Ultimately, even processes can
be distributed over different cores, possibly on different processors. This will
lead to a major change of the VRSP and the EVRSP and adjustment of the
heuristics calculating the VRSP and the EVRSP. For such a change, the theory
we have developed must be expanded, so that the characteristics with respect to
consistency of graphs and the decomposability of graphs are meaningful and the
related theorems are proved.
All these issues are related to Cyber-Physical Systems (CPSs). But there are
also open issues for the two decomposition theorems we developed. Although
we can decompose a graph using these two theorems, the decompositions are in
general not decompositions into prime graphs. For example, the two theorems do
not decompose a graph which contains a subgraph that can be decomposed into
subgraphs for which their Cartesian product is isomorphic to the original subgraph.
Therefore, theory has to be developed similar to the seminal paper of Sabidussi
(1960) on the decomposition of graphs by the Cartesian product and we have
to prove that this decomposition theorem together with our two decomposition

1The laxity of an event is the relative deadline of the event minus the remaining execution
time of the event.
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theorems are the only decompositions possible and lead to a decomposition into
prime graphs.

Application point of view
Although we have dealt in this thesis with the most important issues, several issues
in our design cycle have not been addressed yet.
With respect to system architectures, we have mentioned in Boode and Broenink
(2014) the necessity of the transformation functions T and T´1 (Figure 4.2 on
page 45), which transform a process algebraic specification into a set of graphs and
vice versa. However, these transformation functions are not defined yet. Therefore
an interface to any tool-chain is missing.
Perhaps the most important issue in the lack of tooling is the development of
an interface to the TERRA tool; an integration of the VRSP, or ultimately the
EVRSP, into the TERRA tool seems necessary. For the TERRA tool the model
of computation is based on the vertex of a component as being the point where
the required behaviour is calculated, whereas for the VRSP and the EVRSP the
behaviour is represented by the arcs of the component. These two views are the
dual of one-another and require either a change of the VRSP and the EVRSP,
or a converter converting a set of the VRSP (EVRSP) components into TERRA
models and vice versa. Because TERRA can produce machine readable CSP,
CSPM (Scattergood, 1998), it is obvious that the transformation function T can
be straightforward, but the transformation function T´1 has to map a graph
representing a CSP specification onto a TERRA model, which contains structures
not available in CSP. Therefore, it is not obvious that such a transformation
function is possible without a change of the TERRA tool.
Furthermore, there is no fully operational tool-chain that automatically, based
on the process-algebraic specification together with the VRSP, produces software
which can be compiled and built, thereby producing a set of PHRCPs. Also, tooling
that supports the choice for synchronous writing actions and reading actions versus
the EVRSP has to be developed, this all, in spite of the implementation by de
Boer (2016) of the VRSP.
The end result to go for could be allowing cyclic and non-deterministic process
specifications distributed over several multi-core processors and study the impact
on the VRSP and the EVRSP, leading to an implementation into the TERRA
tool.
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Appendices
I Choice in Two Parallel Processes
In Listing 1, we give an example of the serialisation of two processes containing
choice. Two processes synchronise over the actions a, c, and e. According the
process specification of Listing 1, two traces can occur, dÑ cÑ e and aÑ bÑ e.� �
G1 = paÑ bÑ G11q

l

pdÑ cÑ G11q

G11 = eÑ Skip;

G2 = paÑ G12q

l

pcÑ G12q

G12 = eÑ Skip;
G = G1 ta,b,c,d,eu ‖ ta,c,eu G2� �

Listing 1: Description of the CHOICE in two parallel processes.

The last stage of Figure 1 shows the graph representing these two traces.
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Figure 1: Choice in two parallel processes, from
Ř

via l,a, � to n.
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Assuming that the weight of all arcs is 1, the graph consisting of the two components
G1 and G2 has 8 vertices and a length `pG1q``pG2q “ 5, whereas the synchronised
product `pG1nG2q has 5 vertices and a length `pG1nG2q “ 3. This example shows
a gain for both the memory occupancy, as the performance of the application.

II Complexity of the Number of Full Paths
Let a graph G with multiplicity mi,j ď m for arcs vivj consist of vertices
v1, . . . , vn`1 with d´pv1q “ 0, d´pvi`1q ą 0, d`pviq ą 0, d`pvn`1q “ 0 and arcs
vivj , 0 ă i ă j ď n ` 1. Then the number of full paths (from the source to
the sink) in G are, for V pGq “ tv1, v2u, not more than m full paths from v1
to v2, for V pGq “ tv1, v2, v3u not more than m ` m2 full paths from v1 to v3
(i.e. v1v2v3, v1v3), such that the number of full paths that end in vn`1 is not
more than m times the summation over the number of paths starting in v1
and ending in v1 through vn plus one. Hence let fi be the number of paths
starting in v1 and ending in vi then fn ď mp1 ` f1 ` f2 ` . . . ` fn´1q, with
f1 “ 0, f2 “ m1,2 ď m,n ě 2. Then fn ` fn´1 ď mp1 ` f1 ` . . . ` fn´1q `
mp1` f1 ` . . .` fn´2q “ 2mp1` f1 ` . . .` fn´2q `mfn´1 “ 2fn´1 `mfn´1 ñ
fn ď pm` 1qfn´1 ñ fn ď pm` 1qn´2.f2 ď mpm` 1qn´2.

III Algorithms
In Chapter 4, we have given an overview of a software architecture in which our
VRSP reduces the number of context switches (Figure 4.1 on page 44).
In Chapter 6 we have defined the Vertex-Removing Synchronised Product (VRSP).
A classification for the associativity of graph products is given by Imrich and
Izbicki (1975). Based on this classification, Hammack et al. (2011) give an
incidence function for the multiplication table for associative graph products,
δ : V pGq ˆ V pGq Ñ t∆, 1, 0u, with

δpg, g1q “

$

&

%

∆ if g “ g1,
1 if g ‰ g1 and gg1 P EpGq,
0 if g ‰ g1 and gg1 R EpGq.

As Hammack et al. (2011) observes, there should be some definite rule that
determines the edge set of the product. In our case we can establish such a
function for the arc set of the intermediate stage of the VRSP, but not for the
VRSP, as we will show in the sequel.
The heuristics in the appendix of Boode and Broenink (2014) use functions
δpg, g1q : V pGq ˆ V pGq Ñ t∆, 0, 1u and δintpg, g1q : V pGq ˆ V pGq Ñ t∆, 0, 1a, 1su
that calculate the Cartesian product and the intermediate stage of the VRSP.
For the intermediate stage of the VRSP we have an adapted version of the incidence
function of Hammack et al. (2011). The (a)synchronous arc set of a graph is always
relative to the (a)synchronous arc set of another graph. Therefore our incidence
function for a graph G1 is always relative to a graph G2. For the intermediate
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stage of the VRSP the incidence function is defined as δint : V pG1q ˆG2 V pG1q Ñ
t∆, 0, 1a, 1su, with

δintpg, g
1q “

$

’

’

&

’

’

%

∆ if g “ g1,
0 if g ‰ g1 and gg1 R ApG1q,
1a if g ‰ g1 and gg1 P AapG1q pλpgg

1q R LpG2qq,
1s if g ‰ g1 and gg1 P AspG1q pλpgg

1q P LpG2qq.

We give in table 1 the multiplication table for the intermediate stage of the VRSP
b using the incidence function δint. In Table 1 the ∆ represents a single vertex
(g “ g1), the 0 represents two not adjacent vertices and the 1, 1a or 1s represent
two adjacent vertices.

G1 bG2 ∆ 0 1a 1s
∆ ∆ 0 1 0
0 0 0 0 0
1a 1 0 0 0
1s 0 0 0 1

Table 1: The intermediate stage of the VRSP.

As observed by Hammack et al. (2011), if the second row and second column
contain only zeros, then the product is associative.
For the VRSP we cannot define the δsyn function because for g “ g1, δsynpg, g1q “ ∆
or δsynpg, g1q “ H in the VRSP. This depends on whether the vertex g in the
intermediate stage of the VRSP is removed or not when calculating the VRSP.
Figure 4.6 on page 48 shows an example of non-associative components under
the VRSP. Therefore, the associativity of the VRSP is not trivial. The incidence
function δint is used in the algorithms that calculate the intermediate stage of the
VRSP of two components Gi and Gj .
In Algorithm 4, we describe the general structure of how to implement the algorithm,
which contains a call to the specific calculation method calcAlgorithmpGq. In
Algorithm 4 the subroutine pairwiseConsistentpGq checks for a graph G “

ř

i

Gi

whether the VRSP over two of its components is still pairwise consistent with
the other components. A breadth first search will solve this for each remaining
combination. The subroutines calcSize and calcDeadline are a summation over
the size of all vertices and their out-flowing arcs. The subroutines calcCartSize
and calcSyncProd are (worst case) the product of the vertex and arc sizes.
Algorithm 1 calculates the Cartesian product, Algorithm 2 calculates the inter-
mediate product and Algorithm 3 calculates the synchronised product of two
components Gi and Gj .
The pseudo-code of the Largest Alphabetical Intersection (LAI) is given in Al-
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gorithm 5. Because the pseudo-code of the other two calcAlgorithmpGq’s is
likewise straightforward, they are left out.
The pseudo-code of the Minimal Memory Occupancy (MMO) is given in Al-
gorithm 6. MMO is almost identical to LAI, but requires more computation, as
the VRSP of all products has to be calculated. No attempt has been made to
optimise these algorithms, although that is necessary for usage in a tool-chain.

Algorithm 1 Calculating the Cartesian product
Require: Gi,Gj
1: V pGilGjq “ V pGiq ˆ V pGjq

2: ApGilGjq “ H

3: for each gi, g
1
i
P V pGiq and g P V pGjq do

4: switch (δpgi, g
1
i
q)

5: case ∆, 0:
6: break
7: case 1:
8: ApGilGjq “ ApGilGjq

Ť

tpgi, gqpg
1
i
, gqu

9: for each λpgig
1
i
q P LpGiq do

10: LpGilGjq “ LpGilGjq
Ť

tλppgi, gqpg
1
i
, gqq|λppgi, gqpg

1
i
, gqq “ λpgig

1
i
qu

11: end switch
12: for each gj, g

1
j
P V pGjq and g P V pGiq do

13: switch (δpgj, g
1
j
q)

14: case ∆, 0:
15: break
16: case 1:
17: ApGilGjq “ ApGilGjq

Ť

tpg, gjqpg, g
1
j
qu

18: for each λpgjg
1
j
q P LpGjq do

19: LpGilGjq “ LpGilGjq
Ť

tλppg, gjqpg, g
1
j
qq|λppg, gjqpg, g

1
j
qq “ λpgjg

1
j
qu

20: break
21: end switch
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Algorithm 2 Calculating the Intermediate Product
Require: Gi,Gj
1: V pGi b Gjq “ V pGiq ˆ V pGjq

2: ApGi b Gjq “ H

3: for each gi, g
1
i
P V pGiq and gj P V pGjq do

4: switch (δintpgi, g
1
i
q)

5: case ∆, 0, 1s:
6: break
7: case 1a:
8: ApGi b Gjq “ ApGi b Gjq

Ť

tpgi, gjqpg
1
i
, gjqu

9: for each λpgig
1
i
q P LpGiq do

10: LpGi b Gjq “ LpGi b Gjq
Ť

tλpgi, gjqpg
1
i
, gjq|λpgi, gjqpg

1
i
, gjq “ λpgig

1
i
q

11: break
12: end switch
13: for each gj, g

1
j
P V pGjq and gi P V pGiq do

14: switch (δintpgj, g
1
j
q)

15: case ∆, 0, 1s:
16: break
17: case 1a:
18: ApGi b Gjq “ ApGi b Gjq

Ť

tpgi, gjqpgi, g
1
j
qu

19: for each λpgjg
1
j
q P LpGjq do

20: LpGi b Gjq “ LpGi b Gjq
Ť

tλpgi, gjqpgi, g
1
j
q|λpgi, gjqpgi, g

1
j
q “ λpgjg

1
j
q

21: break
22: end switch
23: for each gi, g

1
i
P V pGiq and gj, g

1
j
P V pGjq do

24: switch (δintpgi, g
1
i
q)

25: case ∆, 0, 1a:
26: break
27: case 1s:
28: switch (δintpgj, g

1
j
q)

29: case ∆, 0, 1a:
30: break
31: case 1s:
32: ApGi b Gjq “ ApGi b Gjq

Ť

tpgi, gjqpg
1
i
, g1
j
q|λpgi, g

1
i
q “ λpgjg

1
j
qu

33: for each λpgig
1
i
q P LpGiq do

34: LpGi b Gjq “ LpGi b Gjq
Ť

tλpgi, gjqpg
1
i
, g1
j
q|λpgi, gjqpg

1
i
, g1
j
q “ λpgig

1
i
q “ λpgjg

1
j
qu

35: break
36: end switch
37: break
38: end switch

Algorithm 3 Calculating the VRSP
Require: GilGj,Gi ˆ Gj

1: Gi n Gj “ Gi ˆ Gj

2: for each g P V pGilGjq do

3: calculate levelpgqGilGj

4: for each g P V pGi n Gjq do

5: calculate levelpgqGinGj

6: for each g P V pGi n Gjq do

7: if levelpgqGilGj
‰ 0 and levelpgqGinGj

“ 0 then

8: for each pg, g1q P ApGi n Gjq do

9: ApGi n Gjq “ pApGi n Gjqzgg
1q

10: V pGi n Gjq “ pV pGi n Gjqzgq

11: for each g P V pGi n Gjq do

12: calculate levelpgqGinGj

13: LpGi n Gjq “ H

14: for each pg, g1q P ApGi n Gjq do

15: LpGi n Gjq “ LpGi n Gjq
Ť

tλpgg1qu
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Algorithm 4 Calculating a General VRSP Heuristic
Require: G “

n
ř

i“1
Gi, D = deadline, M “ available memory in target system

1: sizeG “ calcSizepGq

2: deadlG “ calcDeadlinepGq

3: for i “ 1 to n ´ 1 do
4: if sizeG ď M and deadlG ď D then
5: return G
6: else
7: if  pairwiseConsistentpGq then
8: return H

9: else
10: pi, jq “ calcAlgorithmpGq

11: G “ pG
Ť

pGi n GjqqzpGi
Ť

Gjq

12: sizeG “ sizeG ´ calcSizepGi
Ť

Gjq ` calcSizepGi n Gjq

13: deadlG “ deadlG ´ calcDeadlinepGi
Ť

Gjq ` calcDeadlinepGi n Gjq

Algorithm 5 Calculating the Largest Alphabetical Intersection

Require: G “
k
ř

i“1
Gi

1: first “ 1
2: second “ 2
3: num “ 0
4: for i “ 1 to k ´ 1 do
5: for j “ i ` 1 to k do
6: newNum “ |LpGiq

Ş

LpGjq|

7: if pnewNum ą num then
8: num Ð newNum
9: first Ð i

10: second Ð j

11: return pfirst, secondq

Algorithm 6 Calculating the Minimal Memory Occupancy

Require: G “
k
ř

i“1
Gi

1: first “ 1
2: second “ 2
3: mem “ 8

4: for i “ 1 to k ´ 1 do
5: for j “ i ` 1 to k do
6: newMEM “ mpGi n Gjq

7: if pnewMEM ă memq then
8: mem Ð newMem
9: first Ð i

10: second Ð j

11: return pfirst, secondq

IV Memory versus Deadline Table
With every iteration two components are multiplied using the VRSP. So for n “ 0
we have the set of graphs representing the original parallel specification. For
n “ 15 all components have been multiplied. For all three algorithms, the length
of the graph, `pGq, gives a measure for the number of context switches in the
representing processes. The function mpGq calculates the number of vertices and
arcs that is used by the graph G. It gives a measure what can be expected as far
as the memory occupancy is concerned.
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Iteration

aaaaaaaaaaa

ř

i

n
j
Gi,j

Algorithms
MNSA LAI MSA

n Node in lattice `pGq M `pGq M `pGq M
0 V0000000000000000 62 175 62 175 62 175
1 V1000000010000000 60 169 - - - -

V0000000001000100 - - 59 182 - -
V0000000000000101 - - - - 60 183

2 V1200000012000000 58 163 - - - -
V1000000012000200 - - 57 176 - -
V0000000001000101 - - - - 57 218

3 V1230000012000300 56 177 - - - -
V1200000012000200 - - 55 197 - -
V0100000001000101 - - - - 55 338

4 V1234000012400300 54 171 - - - -
V1203000012300200 - - 53 191 - -
V0100000001100101 - - - - 53 475

5 V1234500012450300 52 165 - - - -
V1223000012300200 - - 50 300 - -
V0101000001100101 - - - - 51 546

6 V1234560012456300 50 159 - - - -
V1223400012340200 - - 48 294 - -
V0111000001100101 - - - - 49 1,618

7 V1234567012456370 48 153 - - - -
V1223450012345200 - - 46 288 - -
V1111000001100101 - - - - 48 7,855

8 V1234567812456378 47 159 - - - -
V1223456012345260 - - 44 282 - -
V1111000011100101 - - - - 46 11,925

9 V1223456712345267 43 283 - - - -
V1223456012345263 - - 42 292 - -
V1111000011101101 - - - - 45 54,133

10 V1223345612334256 42 358 - - - -
V1223345012334253 - - 41 484 - -
V1111100011101101 - - - - 43 242,771

11 V1222234512223245 41 4,381 - - - -
V1222234012223242 - - 40 11,978 - -
V1111110011101101 - - - - 42 367,945

12 V1222233412223234 39 4,563 - - - -
V1222234312223242 - - 39 11,990 - -
V1111111011101101 - - - - 41 1,630,657

13 V1222233112223231 38 4,689 - - - -
V1222233312223232 - - 38 12,190 - -
V1111111111101101 - - - - 40 3,465,960

14 V1222211112221211 37 18,318 - - - -
V1222211112221212 - - 37 13,734 - -
V1111111111111101 - - - - 38 4,810,387

15 V1111111111111111 36 7,960,961 36 7,960,961 36 7,960,961

Table 2: Memory occupancy and worst-case execution time.
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104, 111, 126

definition, 17

Bell number, viii, 10, 49, 50, 58, 63,
81, 132

definition, 60
Bessel number, viii, 10, 59, 63, 81,

132
definition, 63

bisimilarity, 14, 17
strong, 15, 16, 45, 70, 77, 78
weak, 15, 16, 77
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(CCS), 102

Cartesian product, 9, 20, 21, 23–25,
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Communicating Sequential

Processes, vii, 2, 3, 7, 9–11,
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132, 134

definition n, 73
definition

‚

n, 109
definition

˛

n, 119
definition of processes, 16

Controlled Emergency Stop, 119,
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Cyber-Physical System (CPS), 1–5,
11

deadlock, 23, 25, 34, 42, 47, 48, 63,
75
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free, 47, 48, 81

Decomposition Theorem
first, 84
second, 89

Dot Vertex-Removing Synchronised
Product

definition, 108
Dot Vertex-Removing Synchronised

Product (DVRSP),
‚

n, vii,
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Synchronised Product

definition, 118
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Synchronised Product
(EVRSP),

˛
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alphabetised parallel
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X
õ
Y
, 100, 133
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Fast Fourier Transform (FFT), 110,
111, 120

Field Programmable Gate Array
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Y
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memory occupancy, 1, 12, 14, 15, 49,
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