
Inholland University of Applied Sciences &
Applied Drone Innovations Ltd.

HiPerGreen Project

Guidance Module

Improving Guidance Information by means
of Metric Optical Flow Onboard an

Unmanned Aerial System

Author:
Mark Ramaker

Supervisors:
Cock Heemskerk
Lucien Fesselet
Sander Gieling

October, 15 2019

Student: Mark Ramaker
Studentnummer: 518404
Student email: 518404@student.inholland.nl
Educational Institute: Inholland University of Applied Sciences
Domain: Techniek, Ontwerpen en Informatica(TOI)
Degree: Technische Informatica
Educational Supervisor: S.Gieling

Internship Company: ADI &
Lectureship Inholland University of Applied Sciences

Company Email: info@applieddroneinnovations.nl
Company Academic Supervisor(s): C.Heemskerk
Company Technical Supervisor(s): L.Fesselet
Company Supervisor(s) Email: cock.heemskerk@inholland.nl

lucien.fesselet@inholland.nl

2

Guidance Module - HiPerGreen project

Abstract

Currently, 5 to 25% of horticulture plants grown in greenhouses go to waste because of diseases,
bacteria, fungi, damage, and other causes. Greenhouses form an optimum climate for these factors to
grow and develop. The diseases can spread causing even higher product losses.

What the greenhouse growers need is a way of efficiently detecting diseases, bacteria, fungi, and other
plant loss causes at a low price, higher resolution and low intervals. With this, plant loss factors can
be controlled better and profits can be increased.

The HiPerGreen project is aimed at helping greenhouse farmers reach higher efficiency while using less
resources, by using an autonomous scouting Unmanned Aerial System (UAS) (Nieuws Inholland.nl,
2017) [15]. This UAS carrying an array of sensors, could autonomously detect and report on diseases
and other plant loss factors.

Autonomous navigation requires accurate location data to avoid static environmental factors, such as
windows and posts. The goal of the research done in this thesis, is to increase the localization precision
and stability through the combination of an absolute, noisy sensor called the Ultra WideBand (UWB)
and a newly designed relative (drifting over time) but stable sensor based on optical flow called the
Guidance Module (GM). With relative meaning that each measurement uses a new reference, and
absolute meaning always using the same reference.

While the original assignment only called for the design of such a relative measurement system, this
alone would not achieve the goal of increasing accuracy. This led to expanding the original assignment
with the task of determining how to combine the relative sensor with the absolute sensor to increase
the accuracy.

To achieve the goal of increasing the accuracy, the following research question is formulated: RQ. How
can the provided hardware architecture and an optical flow algorithm be used to increase
the accuracy of the UAS? To answer this research four sub research questions are formulated:

1. Theory : As little was known about the precision and theory of such systems:
SQ.I. Which significant parameters determine the accuracy of the GM?

2. Design: Using the theory to design a workable system:
SQ.II. How to design the GM such that it meets all the requirements by incorporating
the significant parameters?

3. Integration: How to combine the relative and absolute measurements:
SQ.III. How can the data from the GM and UWB be combined and filtered such
that useful positioning information is obtained?

4. Testing : To validate the theory, design and integration:
SQ.IV. Does the GM with the design considerations applied realize the goal of in-
creasing the accuracy of the UAS?

A literature study is done in order to answer the theory question. From this study several factors are
identified to have an impact on the measurement precision of the system. These factors are compiled

Mark Ramaker,
518404

I Version 2

into a list, and their interconnectedness is explained. In answering the design question, the theory
from the first sub research question is used to design and compile a list of theoretical components in
exact compliance with the requirements. In answering the integration question a literature study is
used in combination with analyses to answer the question of how to combine the relative and absolute
measurements. The testing question is answered using specific unit tests, and one integration test.
A rail system is used to create a single data set for the tests, and software simulation techniques are
used to be able to base all unit tests on the same data set. Even though special care was taken to
control all the testing parameters, it was found that the rail system still introduced a lot of noise into
the results of the tests. This made it impossible to fully validate the theory as was the goal of the
unit tests. However the results did find that the goal of increasing the precision and stability of the
localization through the combination of the relative and absolute measurement was achieved. Thus
validating the system design and sensor fusion method.

As recommendations, the author suggests that the designed relative sensor and sensor fusion method
are integrated onto a UAS for further testing, and to tune the Kalman filters used for the sensor fusion
in order to further improve the localization precision and stability. Further it is suggested to research
three dimensional height mapping for further improving optical flow precision and collision avoidance,
and to make custom hardware solutions for integrating all systems onto one Printed Circuit Board
(PCB) in order to optimize weight, size and power consumption.

II

Guidance Module - HiPerGreen project

Acronyms

ADI Applied Drone Innovations Ltd..

EKF Extended Kalman Filter.

GM Guidance Module.

GPD Gaussian Probability Distribution.

GPS Global Positioning System.

IMU Inertial Measurement Unit.

INH Inholland University of Applied Sciences.

KF Kalman Filter.

LIDAR LIght Detection And Ranging.

PCB Printed Circuit Board.

RH Relative Humidity.

SAD Sum of Absolute Difference.

SLAM Simultaneous Localization and Mapping.

TI Technische Informatica.

TOI Techniek, Ontwerpen en Informatica.

UAS Unmanned Aerial System.

UML Unified Modeling Language.

UWB Ultra WideBand.

Mark Ramaker,
518404

III Version 2

Guidance Module - HiPerGreen project

Glossary

floriculture The cultivation of flowers.

Gaussian Proba-
bility Distribution

A curve, the area under which represents the probability of something being true.
A Gaussian Probability Distribution (GPD) is a good model for certain natural
processes. The total area under the curve from −∞ to +∞ is equal to 1.

Global Position-
ing System

A navigational system using satellite signals to determine the location of a radio
receiver on or above the earth’s surface.

h264 (Also called H.264/MPEG-4 AVC) is a video compression standard commonly
used for recording, compressing, and distributing high definition video.

Inertial Measure-
ment Unit

An electronic device that uses accelerometers and gyroscopes to measure the ac-
celeration and angular rotation.

LIght Detection
And Ranging

A remote sensing method that uses light in the form of a pulsed laser to measure
ranges to objects.

Relative Humidity The amount of water vapor which is contained in the air. With saturated air
being 100% RH, and no water vapor 0% RH. The amount of water vapor which
can be present in air is temperature dependent.

Simultaneous
Localization and
Mapping

A technique which uses sensor data to simultaneously build a map of the actor’s
surroundings and use the same map for navigation.

trilateration A localization method which uses the length of the sides of (several) triangles to
determine the 3D position.

Ultra WideBand An absolute localization method using a wide radio frequency band and trilater-
ation to determine a position.

Mark Ramaker,
518404

IV Version 2

Guidance Module - HiPerGreen project

Contents

Abstract I

Acronyms III

Glossary IV

1 Introduction 2
1.1 Subject . 2
1.2 Problem Definition . 2
1.3 Relevance . 4
1.4 Goals . 4
1.5 Methods . 6
1.6 Overview . 6

2 Specifications and Requirements 7
2.1 Specifications . 7
2.2 Requirements . 9

3 Methods 10
3.1 Instrument for SQ.I. Which significant parameters determine the accuracy of

the GM? . 10
3.2 Instrument for SQ.II. How to design the GM such that it meets all the require-

ments by incorporating the significant parameters? 11
3.3 Instrument for SQ.III. How can the data from the GM and UWB be combined

and filtered such that useful positioning information is obtained? 11
3.4 Instrument for SQ.IV. Does the GM with the design considerations applied

realize the goal of increasing the accuracy of the UAS? 12

4 System Precision Factors 13
4.1 Major System Components . 13
4.2 Camera Theory . 14
4.3 Height Measurement Theory . 16
4.4 Rotational Compensation Theory . 18
4.5 Optical Flow Estimation Theory . 18
4.6 Theory Discussion . 21
4.7 List of Factors . 22

5 Theoretical System Design 23
5.1 Theoretical Optical Sensor . 23
5.2 Theoretical Height Sensor . 24
5.3 Theoretical Rotation Sensor . 24
5.4 Flow Estimator Design . 25

Mark Ramaker,
518404

V Version 2

5.5 Theoretical Components . 27

6 Sensor Fusion and State Estimation 28
6.1 The Makings of a Kalman Filter (KF) . 28
6.2 Kalman Filters and Sensor Fusion . 30
6.3 System Definition . 30
6.4 Data Transformation . 31
6.5 Filter Initialization . 32
6.6 Example Implementation . 32

7 Theory Verification 35
7.1 Methodology . 35
7.2 Test Setup . 36
7.3 Results . 38

8 Conclusion 55

9 Recommendations 58

List of Figures 60

List of Tables 61

List of Listings 62

Bibliography 64

Appendices 65

A Symmetry in Gaussian Multiplication 66

B Unit Test Definitions 70

C Guidance Module Sourcecode 73

D Smearing Simulation Sourcecode 82

E Ultra Wide Band Simulation Data 85

F The Roll Rotation Induced Measurement Ripple 86

G An Example of Optical Flow 87

H Trajectory Simulation 88

1

Guidance Module - HiPerGreen project

Chapter 1

Introduction

In this chapter, an introduction to the HiPerGreen project and the Guidance Module assignment is
given, by providing a firm background and motivation for both HiPerGreen and the Guidance Module.

Starting with an introduction to the HiPerGreen project for context, and then introducing the Guid-
ance Module assignment. Lastly, section Overview (1.6) will provide the reader with insight into how
to read this document.

The documented research has been done in the context of a bachelor graduation assignment, conducted
and authored by Mark Ramaker, student Technische Informatica (TI) at Inholland University of
Applied Sciences. The author is contracted for the Guidance Module by the HiPerGreen project in
the form of a trainee-ship. The timeline for the Guidance Module project is twenty weeks.

Applied Drone Innovations Ltd. (ADI) is carrying out the HiPerGreen project in cooperation with the
lectureship of Inholland University of Applied Sciences, see: Problem Definition (1.2). In the context
of the HiPerGreen project, the Guidance Module assignment is formulated.

1.1 Subject

The Dutch are considered one of the greatest players in the world of floriculture. To retain or solidify
this position, possible venues for increasing efficiency are continuously sought. One such method which
puts the Dutch at the top of floriculture exporters is the development of huge glass structures, called
greenhouses. These structures capture and hold the warmth of the sun and are used to transform the
usually unsuitable climate of the Netherlands into one which is very suitable for floriculture.

In greenhouses several factors play an important role in determining the financial yield of the floricul-
ture; from the quantity of plants, and their quality, to the production costs. These production costs
usually consist of materials, energy, and labor, and the yield and quality often depend on environ-
mental conditions. The quantity and quality of plants are mostly determined by the suitability of the
environment for growing them and how well they are protected from the factors that cause them to
become unsuitable for selling.

1.2 Problem Definition

Currently, around 5 to 25% of plants go to waste because of diseases, bacteria, fungi, damage, and
other causes. As greenhouses provide an optimum climate for these factors to grow and develop,
greenhouse farmers have to scout the plants in the greenhouses for these factors in order to control

Mark Ramaker,
518404

2 Version 2

the impact. However, there are several factors which complicate the scouting. Greenhouses can be
massive, sometimes covering an area of over forty thousand square meters. Combined with the fact
that manual scouting is expensive, it leads to scouting usually being done on a bi-weekly interval.
Further, after only about three days plants can start to show signs of disease further complicating
matters, because the disease could have spread far in the time period between scoutings (Hortipoint.nl,
2016) [12].

What greenhouse growers need is a better method for detecting diseases, bacteria, fungi, and other
plant loss causes at a lower price, at higher resolution and shorter intervals.

Cris Ramsey, Lucien Fesselet and Wil Simmonds from Inholland Aearonautical Engineering investi-
gated a possible solution for the greenhouse farmers with a student project called ”Drones in de Kas”.
The project prototyped a drone with a camera on board to help with scouting the plants for these
factors. With it they won the Wij Inholland award in 2016 (Wij Inholland.nl, 2016) [19].

Together with the Inholland Lector Robotica, Cock Heemskerk, and Ragna Woodall from the Domain
Technology, Design and Information Science they applied for a SIA RAAK-mkb grant, which they got
approved for in July 2016. With this grant they restarted their ”Drones in de Kas” project to become
the HiPerGreen project on 1 Oktober 2016. The HiPerGreen project spans the domains Agri, Food
& Life Sciences, Business Finance & Law, Techniek Ontwerpen & Informatica. With the HiPerGreen
project they are aiming to help greenhouse farmers reach higher efficiency while using fewer resources
by using a scouting Unmanned Aerial System (UAS) (Nieuws Inholland.nl, 2017) [15]. Figure 1.1
shows a demo UAS flying through a greenhouse.

Figure 1.1: A testing platform UAS flying through a demo greenhouse, indicating the scale that is
involved

3

The HiPerGreen project is actively involved with the Inholland Robotica lectorship and involves
several students from the above mentioned disciplines in a collaborative effort to further the goals of
the project.

An assignment carried out by Wouter de Jong focusing on the viability of several methods of scout-
ing, along with factors to be measured and which sensors to use. His study showed that climate
measurements from a drone could help greenhouse farmers by providing them with high resolution
measurements (de Jong, 2018) [7]. As a logical further development to drop human labor cost to a
minimum, the HiPerGreen project wishes to develop autonomous flying, landing, recharging and data
gathering capabilities for the UAS.

1.3 Relevance

While flying and taking measurements autonomously it is important to automatically tag measurement
data with accurate location data. Without such a tag the UAS could detect a problem, but tracing
where the problem exists would be the same as actually scouting the greenhouse, which is what the
UAS is being developed for.

Autonomous navigation also requires accurate location data to avoid static environmental factors
such as windows and posts. The stability of the measurement is important for the navigation system
to be able to control the UAS in a stable and fluid manner. Flying fluidly and being able to hold
position somewhere stably is in turn required for making pictures with the required accuracy, and for
automated landing procedures.

In the report ”Localisation of a UAS” by Lucien Fesselet, explorative research into the localization
of a UAS inside a greenhouse is carried out. The recommendations of this research included further
research into LIght Detection And Ranging (LIDAR) and Simultaneous Localization and Mapping
(SLAM), further research into Ultra WideBand (UWB) systems, further research into using a range
finder, and further research into using a single onboard camera with a tracking algorithm (Fesselet,
2018) [9].

After his thesis Lucien Fesselet continued the research into using UWB for localization, and that
has since become the main source for localization on the UAS. The UWB system uses trilateration
between base stations and a transponder to calculate an absolute position in three dimensions. It
however has an accuracy of only around ten centimeters and can be affected by reflections off the
greenhouse structures which further decreases the precision (Fesselet, 2018) [9].

Accordingly this gives rise to the need for an additional system, which can increase the accuracy and
reliability of the overall localization.

1.4 Goals

The system which the HiPerGreen team has proposed to use, to increase the accuracy and reliability
of the localization, consists of a camera, height sensor and software to determine the optical flow in the
camera images. The optical flow magnitude can then be translated into the movement of the camera
by using the height and other factors such as the viewing angle of the camera.

This system which is called the Guidance Module (GM) by the HiPerGreen team would perform
relative measurements, meaning each measurement would use a new reference.

The demand for accuracy and the unfamiliarity with the GM system approach give rise to the following
research question:

4

Main Research Question: RQ. How can the provided hardware architecture and an opti-
cal flow algorithm be used to increase the accuracy of the UAS?

Before discussing any further how a system such as the GM can influence the overall localization
accuracy, the means to determine the accuracy of the GM must be investigated. This leads to
the first sub research question:
SQ.I. Which significant parameters determine the accuracy of the GM?

The factors determining the accuracy of the GM have to be incorporated into the design both in
terms of hardware and software before validating the GM any further. This leads to the second
sub research question:
SQ.II. How to design the GM such that it meets all the requirements by incorporat-
ing the significant parameters?

With the accuracy and reliability of the relative localization measurements under control, the
question remains if and how to use such measurements to increase the accuracy and reliability
of the absolute measurements. This leads to the third sub research question:
SQ.III. How can the data from the GM and UWB be combined and filtered such
that useful positioning information is obtained?

Finally with the accuracy and reliability of the GM under control, and the knowledge of how
to use the relative measurement to increase the accuracy and reliability of the absolute mea-
surement, the addition of the GM to the UAS can be validated against the requirements of the
HiPerGreen team and the eventual stakeholders, the greenhouse farmers who wish to have a
reliable and accurate scouting technology. This leads to the final sub research question:
SQ.IV. Does the GM with the design considerations applied realize the goal of in-
creasing the accuracy of the UAS?

5

1.5 Methods

As the main research question is too broad, it will be answered through the results gathered from all
the sub research questions.

The first research question will be answered through a literature study and logical analysis which shall
be validated by peer review. This is so, because while searching for information on the subject the
author could not find any sources which actually go into detail describing which parameters determine
the accuracy of such systems.

The second research question will be answered by using design methods. Hardware design consid-
erations will be determined by criteria-analysis. The software design will be done using divide and
conquer over a few design iterations in Unified Modeling Language (UML).

The third question will be answered using a literature study. A great number of sources are available
on this subject making literature study the most logical choice.

The last research question will be answered using a number of complementary unit tests. Each of
which will serve to prove something from the theory or from the design.

1.6 Overview

The contents of this document, per chapter, are as follows:

Chapter Introduction (1) provides the reader with an introduction into the HiPerGreen project,
its goals and the GM project, which is the subject of this document.

Chapter Specifications and Requirements (2) puts forth the requirements and specifications
for the GM. Also, some of the scope is defined.

Chapter Methods (3) defines the methodology for answering each of the research questions and
the products of each step.

Chapter System Precision Factors (4) explores which factors impact the precision of the system
as described in theory through literature study, and answers the first sub research question.

Chapter Theoretical System Design (5) uses the results of the first sub research question to
design a system in terms of theoretical components in exact agreement with the requirements, and
answers the second sub research question.

Chapter Sensor Fusion and State Estimation (6) finds the method and implementation of
how to combine the absolute and relative measurement through literature study of Kalman filters,
and answers sub research question three.

Chapter Theory Verification (7) defines unit tests and an integration test, the test setup and
the various results of these tests, which answer sub research question four.

Chapter Conclusion (8) discusses the results of all sub research questions and the conclusion
to the main research question.

Chapter Recommendations (9) gives recommendations for continuing research in line with this
research, and for continuation of the project.

6

Guidance Module - HiPerGreen project

Chapter 2

Specifications and Requirements

This chapter sets forth the requirements for the Guidance Module project. It then defines the system
specifications and the environmental specifications. An analysis is done on the combined require-
ments and specifications, to determine their impact and relation to the GM prototype. This chapter
also serves as a blueprint, with which to compare the final implementation and conclusion of the
GM project, and this research. The requirements and specifications have been established in close
consultation with the HiPerGreen team during the course of the project.

2.1 Specifications

The GM will have to function on-board a UAS and inside a greenhouse. This environment will impose
design and implementation considerations. In this section, the environment and the effects of the
environment will be specified and briefly matched with possible considerations regarding the design
and implementation.

Figure 2.1: The UAS with a GM onboard.

First, the specifications with regard to the mounting of the GM, and the UAS itself:

• The GM is mounted underneath the UAS.

Mark Ramaker,
518404

7 Version 2

• The GM’s optical field of view is perpendicularly aimed at the floor when the UAS is level in
the horizontal plane.

• The UAS is a quadcopter, with four spinning rotors providing lift and control. These rotors
create vibration.

• The UAS has a maximum rotation speed of ±15◦/s.

• The UAS can accelerate with a maximum of 0.34m/s2.

• The UAS has a rotational acceleration of 213◦/s2.

Fig: 2.1 can be used to clarify some of the specifications above. Fig: 2.2 shows the basic UAS
subsystems, and where the GM is placed in its subsystem architecture.

The specifications of the Greenhouse are:

• It is usually very humid (> 90%RH).

• It is typically quite warm inside a greenhouse (> 30◦).

• A greenhouse is typically mostly constructed out of glass, and thus a reasonable amount of
daylight can be assumed to be present as well as an abundance of artificial lighting.

• A typical greenhouse floor can be observed in Fig: 1.1.

The GM is mounted below the UAS, and is observing the optical flow on the ground that moves
underneath the UAS. The environment that is the floor of the demo greenhouse can be seen in Fig:
1.1. This environment shall be used as the target environment for the GM. The surface of the floor of
the greenhouse consists of small plants with leaves, pots and potting soil, creating distinct patterns
when viewed from above. This surface also has the property that it is not very reflective which is
beneficial for optical flow algorithms see Fig: 1.1.

The vibrations that are created by the rotors can have an effect on the optics and electronics. During
this assignment, the effects of vibrations on the electronics shall only be considered to the extent that
the electronics will likely be able to withstand the vibrations. The exact effects of the vibrations on
the optics will not be explored.

Electronics and humidity do not mix well. Corrosion and short circuits can cause electronics to
misbehave or fail altogether. This assignment will not go into proving resilience to humidity. These
concerns should be addressed in further research, or when the situation demands it.

8

Figure 2.2: An overview of the UAS subsystems.

2.2 Requirements

The following requirements are the goals or demands that are set for the GM. They specify the
functionality and physical attributes for the prototype.

• The Guidance Module shall deduce movement using optical flow.

• The Guidance Module shall report the backward/forward and left/right velocity.

• The reporting frequency of the Guidance Module shall be 40 Hertz or higher.

• The Guidance Module shall be functional between the height of 1 meter and 3 meters above the
surface.

• The Guidance Module shall be able to handle speeds of up to 3 meters per second.

• The Guidance Module shall have an accuracy of better than 10 centimeters per measurement.

• An accuracy of better than 1 centimeter per measurement is preferred.

These requirements have to do with the functionality that is required of the GM, and are thus far
based on estimations from the HiPerGreen team. None of these can be determined conclusively as
the project is in the start up phase, and things are liable to change. As such, these requirements
have been selected to likely exceed the needs of the project. This provides greater margin for future
changes.

9

Guidance Module - HiPerGreen project

Chapter 3

Methods

In this chapter the methodology for answering the research question is set forth. The purpose of this
chapter is to develop the instruments with which the questions are answered as well as the blueprint
to which the answers or results must conform. The research question and sub research questions are
established in section Goals (1.4).

3.1 Instrument for SQ.I. Which significant parameters deter-
mine the accuracy of the GM?

This research question will produce a list of descriptions, of the significant parameters which govern
the system precision, gathered per system component.

The goal of this list is to make the precision of the complete system predictable by looking at the
parameters of the individual components, and also to serve as a starting point for component selection
for the HiPerGreen team. Component selection itself is outside the scope of this thesis.

This list is required as the HiPerGreen team has set requirements for the precision of the GM, and
there is no specification yet which can predict the precision of the system by looking at the individual
parameters of the components.

The list will be compiled by first determining which major components comprise the GM. This will be
done through the assignment description from the HiPerGreen team, and through looking at Honegger
et al. which describes a hardware and software system which is very similar to the GM. Next per
component a literature study will be done to find the relevant parameters. Individual parameters
and effects will be summarized and compiled into the list. This literature study per component and
summarizing into the list will continue until via discussion with a peer the list is deemed complete
enough. Finally the validity of the predictive abilities of the list will be tested in research question
four by means of unit tests.

This methodology is chosen because even though there is no single specification which can be used to
predict the system precision, there are plenty of sources available for the performance of the individual
components. Where there is prior research, information or sources available a literature study is the
default choice. The discussion with the peer will be used to determine when the list reasonably contains
enough relevant parameters. The unit tests in research question four are then used to confirm or deny
the predictions which can be made using the list. This is based on the assumption that when no
relevant parameters are left out of the list, there also will not be any significant differences between
the results of the tests and the predictions. Visa versa, when there are significant differences between

Mark Ramaker,
518404

10 Version 2

the prediction and the results it would mean that the list is incomplete or erroneous and that further
research is required.

3.2 Instrument for SQ.II. How to design the GM such that it
meets all the requirements by incorporating the significant
parameters?

This research question will produce a single set of theoretical components, meaning they are not
necessarily real, which meet the requirements when considering the list from research question one. It
will also produce a UML activity diagram which is used as the behavioral design of the optical flow
algorithm.

The set of theoretical components is used in research question four, for the baseline of the unit tests.
The activity diagram will be used for implementing the optical flow algorithm, for future reference by
the HiPerGreen team and for more clearly communicating its functioning.

For the unit tests baseline a set of viable theoretical components is needed on which variations of
the baseline test can be based. This motivates the need for this set of components. The optical
flow algorithm is an essential component of the overall system, and as such a design is desirable to
determine the behavior of the algorithm and to make it comprehensible. The design can also be used
at a later date to facilitate maintenance or adaptation of the algorithm to a different purpose.

The set of theoretical components will be compiled using back analysis of the list of parameters
per component from research question one, and the requirements. The design of the optical flow
algorithm will be based on the algorithm from (Honegger et al., 2013) [11]. During the first design
iteration the shortcomings from RQ1 will be addressed. A peer will be asked to verify whether the
design is comprehensible, whether it addresses the shortcomings from RQ1 adequately and whether
the designed algorithm accomplishes the goal of measuring optical flow. The design will be iterated
until through this peer review it is deemed sufficient.

To design these theoretical components the list of factors from RQ1 and the requirements have to be
combined. This combination will have to be reached through means of analyses as no prior methods
of combination seem to exist. An activity diagram is a wonderful tool for designing and documenting
deterministic behavior and the course of an algorithm, both of which are the goal of this design.
Because a design usually needs more then one iteration, an iterative approach is chosen, and to
mitigate designer tunnel vision peer review is used to determine the stopping point for the iterations.

3.3 Instrument for SQ.III. How can the data from the GM
and UWB be combined and filtered such that useful po-
sitioning information is obtained?

This research question will produce a description of how a Kalman filter can be leveraged for sensor
fusion, and of the advantages of using Kalman for filtering and sensor fusion (data combination).

This description is to be used to advise the HiPerGreen team on how to use the measurement of the
GM, and also to offer a solution for the integration of measurement inaccuracies, which will possibly
arise due to the relative measurement of the GM.

The usefulness of the GM is dependent on how the measurement is used by higher systems. The GM
produces relative measurements which when integrated will start to drift, and the UWB produces
jumpy measurements. Both of these characteristics are undesirable and both are inherent to the indi-
vidual systems. These undesirable characteristics can be eliminated by supplementing the downsides

11

of each of the systems with the strengths of the other. This motivates the need for sensor fusion and
thus this description.

The description will be formulated through study of common Kalman filtering literature and sum-
marizing the relevant parts in a way which is understandable and implementable for the HiPerGreen
team. The description will be validated by the HiPerGreen team. A representative of the HiPerGreen
team will be asked to ascertain whether the description is usable for the team.

Kalman filters have been chosen as the subject of this research question since there was a lot of
interest from the HiPerGreen team towards this subject, and as a preliminary literature study into
Kalman filters showed great promise. The approach is chosen because there is a good basis of literature
available on the Kalman filtering subject, making a literature study the logical choice. And since the
HiPerGreen team will be the beneficiaries of this description they seem the correct party to validate
the usefulness of the description.

3.4 Instrument for SQ.IV. Does the GM with the design con-
siderations applied realize the goal of increasing the accu-
racy of the UAS?

This research question produces a series of unit tests and the results of these tests.

The goal of these unit tests is to ascertain whether applying the theory from research question one,
the design from research question two and the sensor fusion plus filtering technology from research
question three, combined increase the localization accuracy as intended.

This is desired to determine whether the list from research question one, the design from research
question two and the sensor fusion plus filtering technology from research question three together
answer the main research question.

A set of test data will be assembled for each of the major components. This test data is over-specified
in terms of the component’s properties, for instance resolution, in relation to their baseline. The
exact amount of over-specification of the properties will be determined ahead of gathering the test
data. Through the use of software techniques the sets of test data will be reduced to the baseline
specification. For each of the parameters of the baseline a variation is reduced from the over-specified
data set, creating data sets in which only one parameter is varied in relation to the baseline. Tests will
be run on all the data sets excluding the over-specified data set. An additional test will be assembled
using the results from the baseline test and simulated UWB data to verify the sensor fusion plus
filtering performance as an integration test.

The baseline can be verified in terms of adherence to the requirements by running the test data and
comparing the results against both the requirements and the predictions from the theory. By testing
a variation of each parameter separately and comparing these results against the predicted variations,
the theory can be validated. When there are no significant differences between the predictions and
the results, it becomes reasonable to assume the theory is correct and complete enough to perform its
purpose. The performance of the sensor fusion plus filtering technology can verified through use of
the results from the baseline test and a simulated UWB, as the baseline test most closely resembles
the eventual implementation of the GM. The UWB will be simulated to simplify the testing process.
Positive results from all tests would indicate that applying the theory from research question one,
the design from research question two and the sensor fusion plus filtering technology from research
question three, together answer the main research question.

The methodology will be expanded in chapter Theory Verification (7), there the exact definition of
the tests and the results will be given.

12

Guidance Module - HiPerGreen project

Chapter 4

System Precision Factors

The aim of this chapter is to describe the major components of the GM, then collect theory on those
components, and describe the effects the characteristics of these components have on the precision.

4.1 Major System Components

The assignment as presented by Lucien Fesselet, was to improve on an experimental Raspberry PI
system. The system was comprised of a Raspberry PI camera, a HC-SR04 sonar height sensor, and a
Raspberry PI. The PI camera streamed an h264 hardware compressed video stream to the Raspberry
PI. The h264 compression performing a form of block matching optical flow and sending block vectors
as deltas between reference frames to compress the video stream. These vectors were used together
with the height measurement to transform pixel flow to scene movement. From this system the
following major system components can be distinguished: h264 compression (optical flow estimator),
HC-SR04 sonar height sensor (a height measurement), the Raspberry PI camera (camera), and the
Raspberry PI (an information processing system) see Fig: 4.1.

Figure 4.1: The Raspberry PI prototype. Consists of a HC-SR04 sonar height sensor, Raspberry PI
Camera V2.1 and the Raspberry PI 3B.

Mark Ramaker,
518404

13 Version 2

From (Honegger et al., 2013) [11] the system architecture is described as a microprocessor system
running an optical flow estimation algorithm on visual data gathered through a CMOS sensor and a
16mm lens. The flow estimation is scaled from image space to ground truth via the ultrasonic height
measurement, and corrected for rotation via 3D gyro measurements. Thus the system from (Honegger
et al., 2013) [11] can be summed up as the following major components: MT9V034 cmos imaging
sensor plus lens (camera), HRLV-MaxSonar - EZ sonar height sensor (height measurement), L3GD20
3D Gyro (rotation sensor), PX4FLow Optical flow algorithm (optical flow estimator), Cortex M4F
CPU (information processing system).

From these two sources the following major system components can be distinguished:

• A camera

• A flow estimator

• A height measurement

• A information processing system

• A rotation sensor

The information processing system has no impact on the precision of the system as long as it is
capable of processing the information withing the allotted time. It will be assumed that the system
chosen will be able to process the information, leading to this component having no impact on the
system precision. A rotation sensor is used for compensating rotation in the frame. As the GM will
be mounted on a gymbal which provides physical stabilization for mitigating rotation, another form
of rotation compensation is assumed to not be required.

A flow estimator is an algorithm which can calculate the optical flow. Optical flow is the effect of
regions of characteristic pixels moving a certain distance between two frames (pictures) a short length
of time apart. An example of optical flow can be seen in appendix G.

4.2 Camera Theory

A lens in a camera is used to project the field of view of the camera onto the imaging sensor. The
relationship between lens focal distance, object distance (height above ground), and required image
distance from the lens is governed by the relationship detailed in equation (4.1). The magnification
of a thin lens is governed by equation (4.2).

Equation 4.1 The lens equation. Where p is the object distance, q is the image distance and f is
the focal length (Pedrotti, 2008) [16].

1

p
+

1

q
=

1

f
(4.1)

Equation 4.2 The magnification equation. Where m is the magnification (ratio of image size to
object size) hi is the transverse size of the image ho is the transverse size of the object p and q are
object and image distance respectively (Pedrotti, 2008) [16].

m =
hi
ho

= −q
p

(4.2)

From the lens equation follows that focusing in a camera system with a very small image distance
(say a few millimeters) is relatively uncritical, because the object distances are so great that changes

14

in their inverse value is negligible in relation to the inverse image distance. Take for example an
image distance of q = 3mm and a object distance of p = 2000mm. This means we have a lens of
(1

3 + 1
2000)−1 ≈ 2.9955mm focal distance. Halving the object distance leaves us with (1

2.9955−
1

1000)−1 ≈
3.0044mm of image distance.

The reverse projection of the imaging sensor onto the object, also called field of view, is governed by
the inverse magnification factor; and the reverse projection of a pixel onto the object is also governed
by the reverse magnification factor. The equation for calculating projections is given in (4.3).

Equation 4.3 Projection equation. Where ho is the projected size, hi is the origin size (pixel or
sensor) and m is the magnification factor (4.2).

ho =
hi
m

(4.3)

Resolution is a term of in how many discrete areas of pixels the total scene observed by the camera
is divided (unspecified, 2015) [18]. This term has a direct relation in determining the Nyquist spatial
frequency of the camera. The magnification factor can be used to project the Nycuist spatial frequency
onto the object to determine the smallest feature frequency which is still detectable. Adapting the pro-
jection equation (4.3), the wavelength of the Nyquist spatial frequency projection can be determined
by equation (4.4).

Equation 4.4 Nyquist wavelength projection equation. Where λ is the Nyquist spatial frequency
wavelength, hs is the sensor size, m is the magnification factor (4.2) and r is the resolution of the
sensor.

λ =
hs
m

2

r
(4.4)

Imaging sensors have a period of their operating called the exposure time (unspecified, 2015) [18].
During this period photons from the scene fall onto pixels and the amount of photons will determine
the pixel brightness (unspecified, 2015) [18]. If there is movement in the scene in relation to the
camera, pixels can receive photons from larger areas of the scene. This effect is called smearing. The
magnitude of this effect is dependent on the magnitude of the movement of the scene in relation to the
camera during the exposure time. This effect can generally be thought of as increasing the projection
size and shape of the pixel onto the object, or in other words it can be thought of as a reduction of
resolution. Equation (4.5) describes the effect smearing has on the effective resolution.

Equation 4.5 Smearing equation. Where re is the effective resolution after smearing is factored in,
ra is the absolute resolution, hp is the pixel size on the sensor, and m, s, t, are magnification factor
(4.2), speed and time respectively.

re =
hpra

hp +mst
(4.5)

Another effect produced in some imaging sensors is shutter deformation. This effect is caused by
differences in the integration start and end times for different pixels (unspecified, 2015) [18]. These
times can differ when certain forms of pixel readout structure are applied (unspecified, 2015) [18]. The
magnitude of this effect is dependent on the magnitude of movement of the scene in relation to the
camera and in relation to the difference in start and end integration times.

15

4.3 Height Measurement Theory

The effect of the height measurement error in the change of pixel backwards projection has an effect
on the measurement precision of the GM. This effect can again be determined by using the projection
equation 4.3.

Height measurement for determining the object distance in flight can be done either in full three
dimensions or with simple single dimension sensors. Example solutions for three dimensions are
LiDAR, the XBOX Kinect sensor and image disparity calculations. The single dimension sensors are
mostly based on the time of flight principle.

The three dimensional measurement systems are complex, often large in physical size, heavy, power
hungry and expensive. For this reason three dimensional solutions will not be looked into further.

From the single dimensional sensors a more extensive look will be made into acoustic time of flight
systems and laser time of flight systems.

Acoustic time of flight measurement systems depend on the speed of sound. The systems generate a
sound pulse or set of pulses which is somewhat directional, this signal propagates through the air and
is reflected off surfaces (max, 2014) [2]. The system measures the time for the signal to travel to and
from the first object it is reflected off (max, 2014) [2]. Then the distance can be calculated as d = tc

2 ,
where t is the round trip time, c is the speed of sound in m/s. The result is divided by two as the
signal has to travel the distance twice [2].

The speed of sound varies based on temperature and humidity (Bohn, 1988) [5]. The magnitude of
these effects can be observed in table 4.1 and table 4.2.

The temperature dependence of the speed of sound is expressed in equation 4.6. This equation can
also be used to calculate the speed of sound when introducing water molecules. For this the fraction
of air and water molecules need to be calculated using equation 4.9, the mean molecular weight needs
to be calculated using equation 4.8 and the γ needs to be calculated using equation 4.7.

Equation 4.6 Where c is the speed of sound, γ is the ratio of the specific heat at constant pressure
to that at constant volume (1.4 for dry air), R is the universal gas constant, M is the mean molecular
weight and T is the temperature in Kelvin (Bohn, 1988) [5].

c =

√
γRT

M
(4.6)

Equation 4.7 Where γw is the ratio of the specific heat at constant pressure to that at constant
volume for the combined gas, dd (5) is the degrees of freedom for dry air molecules, fd is the fraction
of dry air molecules, dw (6) is the degrees of freedom for water molecules, and fw is the fraction of
water molecules. Adapted from (Bohn, 1988) [5].

γw =
ddfd + dwfw + 2

ddfd + dwfw
(4.7)

Equation 4.8 Where Mavg is the average molecular weight for air, Mn, Mo, Ma, Mw, are the
molecular masses for nitrogen (28), oxygen (32), argon (40) and water (18) respectively, the factors
are respectively the fractions of those molecules in dry air, fd is the fraction of non water molecules
and fw if the fraction of water molecules. Adapted from (Bohn, 1988) [5].

Mavg = (0.78Mn + 0.21Mo + 0.01Ma)fd +Mwfw (4.8)

16

Temperature Relative Humidity (%)
(◦C) 10 20 30 40 50 60 70 80 90 100

5
0.014 0.028 0.042 0.056 0.070 0.083 0.097 0.111 0.125 0.139

10
0.020 0.039 0.059 0.078 0.098 0.118 0.137 0.157 0.176 0.196

15
0.027 0.054 0.082 0.109 0.136 0.163 0.191 0.218 0.245 0.273

20
0.037 0.075 0.112 0.149 0.187 0.224 0.262 0.299 0.337 0.375

30
0.068 0.135 0.203 0.272 0.340 0.408 0.477 0.546 0.615 0.684

40
0.118 0.236 0.355 0.474 0.594 0.714 0.835 0.957 1.080 1.200

Table 4.1: Percentage increase in speed of sound (re 0 ◦C) due to moisture in air only. Temperature
effects not included except as they pertain to humidity (Bohn, 1988) [5].

Temperature Relative Humidity (%)
(◦C) 0 30 40 50 80 100

5
0.910 0.952 0.966 0.980 1.020

-

10
1.810 1.870 1.890 1.910 1.970 2.010

15
2.710 2.790 2.820 2.850 2.930 2.980

20
3.600 3.710 3.750 3.790 3.900 3.980

30
5.350 5.550 5.620 5.690 5.900 6.030

40
7.070 7.430 7.540 7.660 8.030 8.270

Table 4.2: Total percentage increase in speed of sound (re 0 ◦C) due to temperature and humidity
combined (Bohn, 1988) [5].

Equation 4.9 Where fw is the fraction of water molecules in air, fd is the fraction of dry air molecules,
Hr is the relative humidity, e(t) is the vapor pressure of water in Pascal at temperature t and p is the
ambient pressure in Pascal. Adapted from (Bohn, 1988) [5].

fw =
0.01Hre(t)

p

fd = 1− fw
(4.9)

As acoustic time of flight systems are dependent on the reflection of the signal, some surfaces which
absorb acoustic energy could limit the range or even completely make these systems unsuitable. An-
other factor which could introduce problems is if there is a source of acoustic energy nearby which
operates near the frequency of the measurement system. In that case false reflections could be detected
making the measurement completely unreliable.

Laser based time of flight systems work in a much similar way as acoustic time of flight systems.
They send out a pulse of laser light and time the round trip, for the pulse to return to a receiver.

17

Such systems do not suffer as much from environmental conditions affecting the round trip time, as
the refractive index of air is 1.00027445 for 920nm light (Lide, 2005) [14] a commonly used infrared
wavelength (stf, 2018) [3]. This means, when the speed of light in vacuum is used as opposed to that
in air, a measurement error of 1000mm

1.00027445 ≈ 999.725mm or less then a 0.3mm error per meter. The
effects of differences in air density and temperature will be an order of magnitude less still.

The laser light does reduce in intensity over distance, and the reflectiveness of the surface can also
reduce the signal intensity to below the environmental light (stf, 2018) [3]. Meaning that environmental
light also has a big effect in the effective measurement range (stf, 2018) [3].

4.4 Rotational Compensation Theory

Rotation of the camera has as a result that the backwards projection of pixels into the scene also
changes angle, and by that effect move relative to the surface. One way of thinking about this is
to envision a line perpendicularly emitted from the center of the camera, and perpendicular to the
surface. When this line rotates around the camera (as a result of the camera rotation) it creates a right
angle triangle with the surface. From this, the opposite side - the perceived translational movement
for the pixels - can be calculated using equation 4.10. Note that this assumes relatively small angles
and a starting angle perpendicular to the surface.

Equation 4.10 Where v is the opposite side - perceived translation - and h is the height of the camera
above the surface the rotation angle is φ.

v = h tan(φ) (4.10)

As an example, a rotation between two frames of 1◦ and a height of 2m results in v = 2 tan(0.1
180π) =

0.03491013 or in other words 3.4cm of perceived translation. With frame times of 1
30s at 30fps

this would be achieved at a rotational velocity of 30fps × 1◦ = 30◦/s. The introduction of such a
measurement error when uncompensated gives rise to the need to compensate for it.

Methods of compensating for this rotation could be to measure the rotation and deduct the calculated
perceived translation which results from the rotation from the measured translation. Or to stabilize
the camera such that it does not rotate relative to the surface by means of a gymbal.

A gyro can be used to measure rotation for compensation purposes. As an example the L3GD20
mems gyro from STSemiconductors specifies a 8.75mdps/lsb of sensitivity (gyr, 2013) [1]. Meaning the
smallest rotational value it can measure is 0.00875◦/s. Assuming an inter frame time of a second this
would result in a 2m tan(0.00875

180 π) = 0.000305433m or 3mm of perceived and uncorrected translation.
As most camera’s operate at or above 30fps the perceived and uncorrected translation would be at
least 1

30 times lower.

A gymbal is a mechanical stabilization device, often controlled by gyro measurements to actuate the
end effector in such a way that it is stabilized in at least two of the three rotational axes. Such a
system could theoretically be used to mitigate the need for software compensation of rotation.

4.5 Optical Flow Estimation Theory

As the goal of the GM is to do it’s function onboard a UAS where weight and power budgets are
constrained, the computational complexity of the optical flow algorithm is constrained with it.

For this reason this thesis will only look at one class of simple and fast algorithms, the block matching
algorithms.

18

For analysis of the structure of such an algorithm the open sourced code of the PX4Flow project is
used. But it should be noted that the principles of their algorithm are similar to or the same as most
other block matching algorithms.

Block matching optical flow algorithms work by dividing the reference frame (image) into discrete
blocks of pixels, 8 pixels in the example (Honegger et al., 2013) [11]. The definition of a block is given
formally in equation 4.11.

Equation 4.11 Definition of a block with dimensions m × n as a matrix of pixels (Honegger et al.,
2013) [11].

Bm,n =

p1,1 p1,2 · · · p1,n

p2,1 p2,2 · · · p2,n

...
...

. . .
...

pm,1 pm,2 · · · pm,n

 (4.11)

The algorithms use a function to correlate a block of pixels in the reference frame with a block within
a search grid in the destination frame. One such function, that is used commonly and also in the
example of (Honegger et al., 2013) [11], is the Sum of Absolute Difference (SAD) function. This
function is formally defined in equation 4.12.

Equation 4.12 Definition of the SAD function. Where A and B are two m×n pixel blocks (Honegger
et al., 2013) [11].

SAD(A,B) =

m∑
y=1

n∑
x=1

∣∣ay,x − by,x∣∣ , ay,x ∈ A, by,x ∈ B (4.12)

The reference block is compared to every block within the destination image search grid. The minimum
SAD function position within the search grid is assumed to be the best possible match, and thus the
translation of that block of pixels. This algorithm is more formally defined in equation 4.17.

19

Equation 4.17 In equation 4.13 the search window size is define as sy, sx and as a range s1, s2.
Equation 4.14 defines the reference images of A in time step k−1 and Z in time step k. Then equation
4.15 defines a reference block R in A where yA, xA are the indexed offsets in image A. In equation
4.16 a target block is defined within the search window inside Z corresponding to the offset of R in
A. Lastly equation 4.17 gives the actual algorithm as the collection O of SAD minimized target block
offsets. Based on (Honegger et al., 2013) [11].

sy ∈ Z+ | sy <
m− k

2

sx ∈ Z+ | sx <
n− l

2
s1 = {−sy, · · · , sy}
s2 = {−sx, · · · , sx}

(4.13)

A = {ai,j | ai,j ∈ [0, · · · , 255], 1 ≤ i ≤ m, 1 ≤ j ≤ n}
Z = {zi,j | zi,j ∈ [0, · · · , 255], 1 ≤ i ≤ m, 1 ≤ j ≤ n}

(4.14)

R ⊂ A,R =

{ai,j | ai,j ∈ A, sy < yA ≤ i ≤ yA + k ≤ m− sy, sx < xA ≤ j ≤ xA + l ≤ n− sx} (4.15)

By,x ⊂ Z,By,x =

{zi,j | zi,j ∈ Z, 1 ≤ yA − sy ≤ yZ ≤ i ≤ yZ + k ≤ yA + sy + k ≤ m,
1 ≤ xA − sx ≤ xZ ≤ j ≤ xZ + l ≤ xA + sx + l ≤ n} (4.16)

O = {(y, x) | SAD(R,By,x) = min{SAD(R,Bu,z) | u ∈ s1, z ∈ s2}, y ∈ s1, x ∈ s2} (4.17)

It should be noted that the algorithm as defined in equation 4.17 produces a set of SAD minimized
offsets. In practice only a single offset value is used per block, which is often the last value of the set.
The assumption that the last set value is the correct one, or that slightly less minimized SAD values
at different offsets are less valid could be incorrect. As this is how the algorithm has been defined and
the function of it will be validated by means of unit tests, the validity of this assumption will not be
explored.

Equation 4.17 formalizes that the reference block is matched on whole indices in the search window.
As an image is a discrete representation of a continuous phenomenon aliasing of discrete values is
present. Meaning that the best match can be biased to match on whole indices always with a plus
and minus half a index uncertainty. This gives an inherent limit to the accuracy of the simple block
matching algorithm. This limited accuracy can again be translated to a backwards projection into the
scene with equation 4.3.

As can be seen in equation 4.17 the search window exhaustive search has a complexity of O(n2),
which grows with the square of the window size. The same however can be said about the number of
individual blocks contained, and thus calculated, within a frame grows with O(n2) of the resolution.
This results in O(n4) worst case complexity.

Lastly a reference block with a local gradient in only one direction can only measure the displacement
in that direction (Beauchemin and Barron, 1995) [4]. It’s best matching position can be anywhere
along a line perpendicular the that gradient (Beauchemin and Barron, 1995) [4]. This means that
local intensity structures have to be sufficiently complex in order to be able to measure multi direction
optical flow (Beauchemin and Barron, 1995) [4].

20

4.6 Theory Discussion

From section Optical Flow Estimation Theory (4.5) and equation 4.17 it can be concluded that the
optical flow algorithm can in theory match up to half the wavelength of the nyquist spatial frequency in
precision. But aliasing of continuous phenomena might make this half wavelength precision unattain-
able. For this the author proposes that an effective precision of a full nyquist wavelength be specified.
As can be seen in section Camera Theory (4.2) and equation 4.4 the nyquist wavelength is dependent
on resolution, sensor size, height and the magnification factor. The effective resolution was determined
to be affected by the smearing equation 4.5, which is itself dependent on height, speed and ∆t. The
rotation of the camera sensor, and the effect of this on the backwards projection seen in equation 4.10
is only dependent on the height and the angle.

From the above it becomes clear that height plays as a factor in each of the other factors of accuracy,
but as determined in section Height Measurement Theory (4.3) the measurement of height itself is
only dependent on its own factors. Meaning that the height measurement function has a factor in
each other function, but the height measurement function is only determined by itself.

The optical flow algorithm accuracy is mostly reliant on the existence and complexity of local image
intensity structures. When these structures are missing or missing in one or more directions, the
measurement values can be erroneous. As the optical flow algorithm needs to work on a drone the
computational complexity (the amount of work) needs to be kept within certain limits. As the pixel
projection size should be kept low to minimize the nyquist spatial wavelength, and the sensor size
should be large enough that frames overlap even at high speeds, the resolution should preferably be
high. This is in direct competition with the computational complexity as smaller pixels mean a larger
search window for the same displacement, and more pixels mean more blocks to calculate. Making
this algorithm tenable in terms of computation should be considered as a factor.

21

4.7 List of Factors

Factor Description Function dependency
Camera

1
Magnification factor: determines the backwards
projection (or size) of a pixel on the ground see
equation: 4.2.

m = hi

ho
= − qp 4

2

Smearing equation: determines the effective
resolution based on speed, height, exposure time,
magnification factor and full resolution see
equation: 4.5.

re =
hpra

hp+mst 1, 4

3
Nyquist spatial wavelength: determines the smallest
wavelengths or small structures which will not be
aliased see equation: 4.4.

λ = hs

m
2
r 1, 2, 4

Height Measurement
4 Round trip time: the measurement method itself. d = tc

2 5

5 Temperature and humidity see equation: 4.6. c =
√

γRT
M -

6
Surface reflectiveness, distance and environmental
noise factors.

- -

Optical Flow

7
Local intensity complexity: is the algorithm able to
accurately match the block between reference
frames.

- -

8
Image resolution and pixel size: will the algorithm
be able to be executed onboard a constrained
environment.

- 1, 3

Rotation

9
Perceived translation: the shift of the visual plane
due to rotation see equation: 4.10.

v = h tan(φ) 4

Table 4.3: List of factors

22

Guidance Module - HiPerGreen project

Chapter 5

Theoretical System Design

In the chapter Specifications and Requirements (2), the requirement for the precision is set at better
then 10cm, and preferred at better then 1cm per measurement. For the theoretical design of the
components the aim will be the 1cm precision. For this the individual components will be budgeted
at the following:

• Optical sensor: 35%

• Height sensor: 20%

• Rotation sensor: 30%

• Unforseen factors: 15%

This distribution of the error budget is chosen semi randomly. As the author assumes the height
measurement has a far smaller impact on the overall precision, the height measurement is allocated
less of the error budget. There were no such considerations for the budgets of the optical and rotational
sensors. A part of the total precision budget has been reserved for unforseen factors.

The optical flow estimator doesn’t have its own inherent precision, it is directly dependent on the
optical sensor precision. This eliminates it from the budgeting. It however still has real performance
implications for which a design will be made in this chapter.

5.1 Theoretical Optical Sensor

The optical sensor is budgeted at 35% of the 1cm accuracy, this equates to 0.35 × 1 = 0.35cm of
ground truth. Factor 3 from the List of factors (4.3) specifies that there need to be 2 pixels for
the smallest structures which need to be accurately detected. This means that a pixel projection of
0.35

2 = 0.175cm is required. This pixel projection value should be valid for the worst case scenario of
the maximum flight height of 3m (Specifications and Requirements (2)). If this projection value is
valid for the maximum flight height it also is valid for any lower flight height as the pixel projection
will only shrink when descending.

The maximum required operating speed is 3m/s and an operating frequency of 40Hz is required
(Specifications and Requirements (2)). This equates to a maximum of 300

40 = 7.5cm displacement
per measurement interval. A frame overlap of at least 50% is arbitrarily chosen, which means the
minimum projected frame width 7.5

0.5 = 15cm is required. This minimum projected frame width should
be valid for the worst case scenario of the 1m flight height requirement. If it is valid for the minimum
flight height, it is also valid for all ascending heights as the frame size will only increase.

Mark Ramaker,
518404

23 Version 2

When taking this minimum projection up to the maximum flight height of 3m, the width of the
projection increases to 15×3 = 45cm. At the maximum flight height the pixel projection size is already
determined to be no bigger then 0.175cm, which gives a resolution for the frame of 45

0.175 = 258 pixels

(rounded up). The minimum viewing angle of the theoretical optical sensor is then arctan(15/2
100)×2 =

8.578◦. Conversely a camera with a frame width of 1024 pixels should not have a viewing angle greater
than roughly 1024

258 × 8.578 = 34◦.

If the maximum allowed amount of smearing is set to be equal to the budgeted precision of the
optical sensor, using the maximum speed, the maximum allowable exposure time can be calculated as
0.175cm
300cm/s = 0.00058s.

Taking all results together, the theoretical optical sensor has the following characteristics:

• Resolution: 258 pixels

• Viewing angle: 8.578◦

• Exposure time: < 0.00058s

• Frame rate: 40Hz

5.2 Theoretical Height Sensor

From the List of factors (4.3) factor 1 it can be seen that the height directly influences the magnification
factor, and therefore also the projection equation 4.3. The error in the measured height can therefore
be seen as creating a error in the projection. For an error in the height measurement of +1% of the
total height an exact error of +1% in the projection will be observed.

The projection error caused by the height error is expressed as a percentage. This percentage of
error carries over onto the measurement magnitude, meaning the absolute error for small displace-
ments will be small, but the absolute error will grow for larger displacements. With the maximum
displacement per measurement interval of 7.5cm, obtained through the maximum flying speed and
the operating frequency (Specifications and Requirements (2)), the maximum height error percent-
age can be calculated as the percentage of the error in relation to the maximum displacement.
The height sensor is budgeted at 20% of the total error of 1cm, making the error budget of the
height measurement 0.20 × 1cm = 0.2cm of displacement. So the height measurement can have
a maximum error of 0.2cm

7.5cm × 100 = 2.666%. This means a absolute error for the minimum flight
height of 100cm × 0.02666 = 2.666cm and an absolute error for the maximum flight height of
300cm× 0.02666 = 7.998cm.

The theoretical height sensor has the following characteristics:

• Measurement precision: < 2.666%

5.3 Theoretical Rotation Sensor

The rotation sensor has been budgeted at 30% of the 1cm total error budget, giving an error budget
of 0.30× 1cm = 0.3cm. From the List of factors (4.3) factor 9 and equation 4.10 it can be determined
that the increase of height has an increase in the effect of perceived translation from rotation. The
error of the rotation, when compensation is applied is likewise affected by the height. For this reason,
if the maximum allowable rotation error is given for the maximum flight height, it is also valid for any
height below that.

24

For the maximum flight height of 3m, the maximum of uncompensated angle can be calculated by
a variation of equation 4.10, φ = arctan(vh) or arctan(0.3

300) = 0.038◦ degrees of maximum error per
interval.

The theoretical rotation sensor has the following characteristics:

• Measurement precision: < 0.038◦/interval

5.4 Flow Estimator Design

From the List of factors (4.3) can be observed that the flow estimator has no inherent or direct role
in the precision of the system. However it does have a performance impact which must be controlled
in order to be applicable in the constrained environment of a UAS.

Most notably the complexity of the number of blocks, combined with the search grid size when
unconstrained, would present an algorithm with O(n4) complexity, with n being the number of pixels
vertically and horizontally. Further more the local image intensity structure quality needs to be
determined to get good quality block tracking.

These problems are addressed thusly:

• Image Intensity Structure Quality: In section 4.5 it was determined that flow can only be
determined in the direction of a gradient. This means that the image intensity structure quality
is equal to the amount of gradient in all directions. As such structures are less common and
also more costly to verify, the algorithm design will be limited to verifying a gradient threshold
in two directions (in the image line directions). After the search has been done and a best fit
location for the block has been found through the SAD function, it is still possible to determine
something about the quality of this match. The SAD function value for the block match is a
measure for how precise the match is, with smaller values being better. This value can be used
with a threshold to discard improper matches.

• Number of Blocks: The assumption is made that with a fixed amount of blocks a sufficiently
generalized motion vector can be deduced. As such not always all possible blocks are required.
Then the question arises which blocks to use and which ones to discard. The assumption is made
that the height measurement most accurately corresponds to the center of the frame, making
blocks more valuable for tracking the closer they are situated to the center of the frame. As
block locations can be rejected by the image intensity structure quality criteria, just using fixed
block locations might produce an insufficient number of tracked blocks. Finally a spiral search
pattern from the center of the image outwards until the block count criteria has been satisfied
or the image has been exhausted has been selected as the design compromise.

• Search Grid Size: In section 4.5 the algorithm was allowed a search grid the size of the
remaining image. This is impractical and in some instances even wrong as similar patterns could
cause false positives. In practice the search grid is limited to some value which allows the desired
maximum displacement to be tracked. In that case the search grid needs to cover all possible
magnitudes of displacement. This can be further reduced in some cases when a prediction of the
amount of movement is known. Then for small movements the search grid can be kept small and
grow dynamically when displacement is expected to be larger. The design compromise solution
which has been decided on for this problem is to move the tracking problem to higher orders
(like acceleration, jerk, etc). By offsetting the search grid by an expected displacement, the
search effectively needs to cover acceleration when speed is used as the prediction factor, or jerk
if speed and acceleration combined are used as the prediction factor. As these derivatives are
often smaller in magnitude the search grid can be further minimized.

• Frame Size and Position: As a larger magnitude of displacement is expected, the edges of the
frame opposite the direction of displacement are almost certainly not going to overlap in the next

25

frame. This means that effectively the frame size gets smaller and offset for larger displacements.
Earlier in the number of blocks discussion it was decided that blocks should be taken from the
center of the frame outwards, but for large displacements this could mean that part of the spiral
search pattern does not overlap in the next image. To counteract this it has been decided to
effectively change the frame size and position to center around the expected overlapping parts
of the frames. This is done by using the predicted displacement plus the search grid size, since
the search grid also should be fully overlapping in the next image in order to minimize edge
artifacts.

Figure 5.1: Activity design for the flow estimator.

Figure 5.1 shows the UML activity diagram which implements the design considerations. In this
diagram purposely a high level is maintained as this leaves the programmer with the freedom to
implement the design in whichever language and with whichever implementation details are deemed
necessary, while giving a solid foundation and guideline as to which behavior is required for estimating
flow. In the diagram is referred to: the certainty which is an estimate of how the prediction is expected
to vary, the prediction which is used as an offset, the horizontal gradient threshold which is the amount
of horizontal gradient that needs to be present in order to meet the intensity structure quality criteria,
the vertical gradient threshold which is the amount of vertical gradient that needs to be present in order
to meet the intensity structure quality criteria, the SAD threshold which is the maximum allowable

26

SAD value - being a measure of how close the match was. The definition of the SAD function is
given in equation 4.12; it should be noted however that in this context the definition is changed, to
limit the search field significantly using the determined search grid size.

5.5 Theoretical Components

The set of designed components:

• Camera:

– Resolution: 258 pixels

– Viewing angle: 8.578◦

– Exposure time: < 0.00058s

– Frame rate: 40Hz

• Height Sensor:

– Error: < 2.666%

• Rotation Sensor:

– Error: < 0.038◦/interval

27

Guidance Module - HiPerGreen project

Chapter 6

Sensor Fusion and State Estimation

Kalman Filters (KFs) have become popular in use since their invention in the 1960’s, mostly due to
the fact that they actually worked, were easy to implement in discrete logic and that they could be
applied without necessarily understanding or caring about the intricacies of their derivation (Zarchan
and Musoff, 2013) [20].

Since their invention, KFs have been used in applications that include providing estimates for nav-
igating the Apollo spacecraft, predicting short-term stock market fluctuations, and estimating user
location with relatively inexpensive hand-held Global Positioning System (GPS) receivers (Zarchan
and Musoff, 2013) [20].

One such application as described in (Gaylor and Lightsey, 2003) [10] uses an Extended Kalman Filter
(EKF) to accurately estimate position and velocity metrics from two data sources in a space environ-
ment while working with both absolute and relative measurements and intermittent performance of
one of the sensors. Which is in many ways similar to what the goal is to accomplish with the GM and
UWB combination. For this reason the KF will be the subject of this chapter.

In (Zarchan and Musoff, 2013) [20] it is stated that often the hardest part of implementation is: the
setting up problem. This will be the focus of this chapter, explaining the problem and deriving the
solution together with the benefits and potential pitfalls as described in literature.

6.1 The Makings of a KF

This thesis will not attempt to explain the derivations or even low working level details of a KF, but
for the reader’s understanding a short introduction is contained in this section.

A KF functions on two basic steps. The first, in which the system state x and accompanying certainty
(probability distribution) P is projected forward in time through a linear combination of the system
state and a process model F. Here the process model F can be seen as a model description of how
the state varies over time. The second step is to update the forward projected system state x̂ (where
the hat denotes a model based prediction) with a new measurement z. The predict step as it is called
can be seen in equation 6.1, and the update step can be seen in equation 6.2. These examples assume
a discrete time implementation using matrices. An overview of the matrices in equations 6.1 and 6.2
can be seen in list 6.1.

Mark Ramaker,
518404

28 Version 2

List 6.1: The Kalman filter matrices (Roger, 2015) [17]

x The system state. A column vector with dimensions (n, 1) which contains the means of the
Gaussian Probability Distributions (GPDs). These means represent the system state.

P The system state probability. A square matrix with dimensions (n, n). It describes the (co-)
variance of the GPDs of the system state x.

F The state transition function. A square matrix with dimensions (n, n). It is the system model
which propagates xk to x̂k+1 through linear combination of the system state variables (the hat
denotes a model based prediction).

Q Process noise. A square matrix with dimensions (n, n). As no model is absolute, the propagation
of xk to x̂k+1 through F increases the probability space. This prediction error is modeled as a
noise by adding a zero mean (co-) variance to the system state probability.

H The measurement function. A row vector with dimensions (1, n). Used to select a single state
variable and transform it between filter state space and measurement space.

z The measurement. In the form of a matrix with dimensions (1, 1).
R The measurement noise. Variance of z, represented as a matrix with dimensions (1, 1).
y The residual. Difference between the transformed state space of x̂ and z, in the form of a matrix

with dimensions (1, 1).
S The state uncertainty. An uncertainty of the tracked state variable after incorporating R, repre-

sented as a matrix of dimensions (1, 1).
K The Kalman gain. A scaling factor used on y to update the state mean x. It is based on P and

R and is a column vector of dimensions (n, 1).

Equation 6.1 The Kalman Filter Predict function (Roger, 2015) [17]. The hat indicates a prediction
and the subscript denotes the time step. An overview of the involved matrices can be found in list
6.1.

x̂k+1 = Fxk

P̂k+1 = FPkFT + Q
(6.1)

Equation 6.2 The Kalman Filter Update function (Roger, 2015) [17]. Where I is an identity matrix
of the correct dimensions. The hat indicates a prediction and the subscript denotes the time step. An
overview of the involved matrices can be found in list 6.1.

yk+1 = zk+1 −Hx̂k+1

Sk+1 = HP̂k+1HT + R

Kk+1 = P̂k+1HTS−1
k+1

xk+1 = x̂k+1 + Kk+1yk+1

Pk+1 = (I−Kk+1H)P̂k+1

(6.2)

A kalman filter represents the state variables it tracks as multivariate GPDs, with the mean stored
in the x vector and the multivariate co-variances stored in the P matrix (Roger, 2015) [17]. The
accumulated estimate mean and certainty is propagated through time by means of the the predict
function 6.1. From (Roger, 2015) [17] it is stated that the update can be seen as GPD multiplication.
Multiplying two GPDs together creates a new GPD with a weighted mean and a greater certainty or
smaller variance (Roger, 2015) [17].

In the predict step the variance and mean of the previous state is propagated to the next time step.

29

As the process model almost certainly will not exactly represent the process, the prediction will have
some error introduced. This error is modeled by adding a zero mean GPD to the variance and mean,
effectively this is decreasing the certainty of the prediction, or increasing the probability space of the
prediction. In the update step a new measurement is incorporated through GPD multiplication, which
increases the certainty, or decreases the state probability space (Roger, 2015) [17].

These steps are repeated each time step, propagating the estimate and incorporating measurements.
Repeating the predict and update steps, the KF will eventually converge to a degree of state certainty,
which in the case that the tracked phenomenon and process noise are Gaussian is the most optimal
state certainty and prediction attainable (Kalman, 1960) [13].

6.2 Kalman Filters and Sensor Fusion

The KF update function is identical to Gaussian multiplication (Roger, 2015) [17]. When sensor
measurements can be represented as Gaussians, the measurement is the mean and the measurement
error is Gaussian distributed, then fusion of two sensors via Gaussian multiplication produces the best
possible estimate (Kalman, 1960) [13]. The assumption is then that Gaussian multiplication can be
sequentially done on two or more sensors to produce the best possible estimate. This assumption is
true if Gaussian multiplication is symmetrical for all multiplications. This has been proven to be the
case in appendix A. Thus as Gaussian multiplication is identical to the KF update function, the KF
update function can be used to sequentially fuse multiple sensors. This is the method also used in
(Caron et al., 2006) [6].

It should be noted that when different sensors or sensors with different noise profiles are used, that the
R sensor noise factor should also be changed per update. Furthermore it could be necessary to change
the H measurement function in order to target derivative or anti-derivative values of that tracked
value.

The generalization for an i’th sensor fusion update function is presented in 6.3.

Equation 6.3 The Kalman Filter Update function for an i’th sensor fusion. Where I is an identity
matrix of the correct dimensions. The hat indicates a prediction and the subscript denotes the time
step with the i denoting the sensor in the fusion sequence. An overview of the involved matrices can
be found in list 6.1.

yk+1,i = zk+1,i −Hix̂k+1,i−1

Sk+1,i = HiP̂k+1,iH
T
i + Ri

Kk+1,i = P̂k+1,iH
T
i S−1

k+1,i

xk+1,i = x̂k+1,i−1 + Kk+1,iyk+1,i

Pk+1,i = (I−Kk+1,iHi)P̂k+1,i

(6.3)

6.3 System Definition

Kalman filters track state variables, but as of yet the state variables are undefined for the UAS.
The filter tracks and feeds information concerning navigation and flight stability to the navigation
subsystem, see Fig: 2.2. In chapter Specifications and Requirements (2) the information of interest is
defined as the absolute position, speed and acceleration of the UAS. Thus the filter states will comprise
position, speed and acceleration. These state values will be defined in a Cartesian coordinate system,
with some absolute relation to the environment - greenhouse - where the UAS is to operate.

30

With the values of interest known the dynamic behavior of the system - UAS - can be defined in
terms of changes of position, speed, and acceleration in the Cartesian coordinate space. In Cartesian
coordinate space the changes of position and speed are defined by classical mechanics. A simple
function for the system model is given in 6.4.

Equation 6.4 The state variables of each Cartesian dimension defined as a linear combination of the
previous state plus some noise factor η. Where the noise factor η models the otherwise unmodeled
variations in the state variables.

{px,k+1 , vx,k+1 , ax,k+1} = {px,k + vx,k∆t+ ax,k
∆t2

2
+ ηx,p , vx,k + ax,k∆t+ ηx,v , ax,k + ηx,a}

{py,k+1 , vy,k+1 , ay,k+1} = {py,k + vy,k∆t+ ay,k
∆t2

2
+ ηy,p , vy,k + ay,k∆t+ ηy,v , ay,k + ηy,a}

{pz,k+1 , vz,k+1 , az,k+1} = {pz,k + vz,k∆t+ az,k
∆t2

2
+ ηz,p , vz,k + az,k∆t+ ηz,v , az,k + ηz,a}

(6.4)

The model defined in 6.4 does not describe the behavior of the UAS with regards to any random time
interval. It is an approximation, which is valid for small time steps ∆t which follow consecutively,
and a correct noise factor. In the real world this noise factor is basically the dynamic nature of the
system, and is therefor not model-able as a known change. It is however model-able as a uncertainty
factor, which is exactly what can be applied in a KF. In other words the noise factor from equation
6.4 needs to fall inside the probability space of the Q process noise matrix.

6.4 Data Transformation

In section System Definition (6.3) the assumption was made that the UWB and GM produce measure-
ments as vectors inside a Cartesian coordinate space. While this assumption stands, it does not mean
that the Cartesian coordinate spaces of two sensors are the same. The spaces can still be offset, scaled
and rotated in reference to each other. In order for the KF to work with these different measurement
values they need to be inside the same Cartesian reference frame, meaning the rotation and scale need
to be the same, and in case of absolute measurements the offset should also be the same. The offset is
not important in the case of a relative measurement because this offset can be corrected in the filter
itself.

For the UAS there are three possible information sources which can be incorporated into the filter, the
UWB, GM and the Inertial Measurement Unit (IMU). The UWB provides absolute measurements so
it is assumed to already work in the world reference frame, thus requiring no transformations. The
GM measures speeds along the image lines of the optical sensor. As these lines are orientated at
some angle in respect to the UAS frame, and the UAS frame has a free orientation in respect to the
world frame, the vectors are most often rotated in respect to the world frame. As the optical sensor
remains relatively perpendicular to the ground, and internal compensation can be applied, the GM
measurement is assumed to be unaffected by pitch and roll rotations. This leaves yaw rotation which
can be transformed back using an euler angle rotation matrix, shown in equation 6.5, via multiplication
with a column vector.

31

Equation 6.5 The rotation matrix for the z axis (Diebel, 2006) [8]. Note that α is defined as clockwise
rotation. cos(α) sin(α) 0

− sin(α) cos(α) 0
0 0 1

 (6.5)

The IMU’s UAS frame can however be rotated around all three axes which complicates the reverse
transformation. The solution to this problem is outside the scope of this thesis and will be left as an
exercise to the reader, if the IMU measurement is desired in the filter.

6.5 Filter Initialization

KFs require an initial value from which to start and eventually converge to the actual system state
(Roger, 2015) [17]. Both the x and P state and state co-variance matrices need to be initialized at the
start of filtering.

The filter state x can be initialized at zero but then the uncertainty of the filter should be large to be
able to converge quickly. A more optimal and the recommended way is to use the first measurement
as the starting value. The state co-variance matrix P can be initialized with the sensor specific
R measurement variance values on the diagonals. For values which are not measured directly the
maximum assumed variance for this value can be used. The author notes that this is not the only
possible approach nor that it is the best, but it should function for most situations, and further
research is outside the scope of this thesis.

As mentioned earlier, KFs converge to the actual system state. For this reason it can be advisable to
let the filter run for a certain amount of time before using the filter results. This could be done to
ensure the filter is converged and stable before other systems start to rely on it.

6.6 Example Implementation

An example implementation of the process state x is given in equation 6.6.

Equation 6.6 An example implementation for the x process state. p, v and a with their subscripts
are respectively position, velocity and acceleration in their respective axis.

x =
(
px vx ax py vy ay pz vz az

)T
(6.6)

An example implementation of process model F for the process state of equation 6.6 is given in equation

32

Equation 6.7 An example implementation for the F process model with respect to the state definition
of equation 6.6. It is also an implementation in three dimensions of the model described in equation
6.4.

F =

1 ∆t ∆t2

2 0 0 0 0 0 0
0 1 ∆t 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 0 1 ∆t ∆t2

2 0 0 0
0 0 0 0 1 ∆t 0 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 ∆t ∆t2

2
0 0 0 0 0 0 0 1 ∆t
0 0 0 0 0 0 0 0 1

(6.7)

As can be seen in equation 6.7 the process model F needs to be defined with respect to the time step
∆t. The process noise matrix Q is defined in equation 6.8.

Equation 6.8 The process noise matrix Q can be calculated as defined here. The process model F is
taken from equation 6.7. The process noise spectral density Φs ∈ R cannot be determined right now,
and in all cases is something which should be experimentally defined to find the best working value.
It represents the white noise error of the process prediction. Calculation taken from (Roger, 2015)
[17].

Qc =

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

Φs

Q =

∆t∫
0

F(t)QcF
T (t)dt

Q =

∆t5

20
∆t4

8
∆t3

6 0 0 0 0 0 0
∆t4

8
∆t3

6
∆t2

2 0 0 0 0 0 0
∆t3

6
∆t2

2 ∆t 0 0 0 0 0 0

0 0 0 ∆t5

20
∆t4

8
∆t3

6 0 0 0

0 0 0 ∆t4

8
∆t3

6
∆t2

2 0 0 0

0 0 0 ∆t3

6
∆t2

2 ∆t 0 0 0

0 0 0 0 0 0 ∆t5

20
∆t4

8
∆t3

6

0 0 0 0 0 0 ∆t4

8
∆t3

6
∆t2

2

0 0 0 0 0 0 ∆t3

6
∆t2

2 ∆t

Φs

(6.8)

33

Equation 6.17 Example implementations for the H measurement function matrices. The measure-
ment function is defined per axis and variable type, distinguished by the subscript, where x, y and z are
the respective axis and p, v and a are the position, velocity and acceleration of each axis respectively.

Hx,p =
(
1 0 0 0 0 0 0 0 0

)
(6.9)

Hx,v =
(
0 1 0 0 0 0 0 0 0

)
(6.10)

Hx,a =
(
0 0 1 0 0 0 0 0 0

)
(6.11)

Hy,p =
(
0 0 0 1 0 0 0 0 0

)
(6.12)

Hy,v =
(
0 0 0 0 1 0 0 0 0

)
(6.13)

Hy,a =
(
0 0 0 0 0 1 0 0 0

)
(6.14)

Hz,p =
(
0 0 0 0 0 0 1 0 0

)
(6.15)

Hz,v =
(
0 0 0 0 0 0 0 1 0

)
(6.16)

Hz,a =
(
0 0 0 0 0 0 0 0 1

)
(6.17)

The implementations of the x system state and P system co-variance can be extrapolated from sec-
tions Filter Initialization (6.5), The Makings of a KF (6.1) and Example Implementation (6.6). The
individual R sensor variance values can be experimentally defined by first setting it to the expected
(or tested) variance value, and then adjusting it to make the filter perform better. There might be a
way to unequivocally determine the values for R, P and Q, but the author has not found any such
method in research. Thus the implementation of these leaves some experimentation to get the optimal
result.

The filter update function can be taken from equation 6.1 and the relevant update function is described
in equation 6.3.

34

Guidance Module - HiPerGreen project

Chapter 7

Theory Verification

In this chapter the unit tests for research question four will be defined and analyzed. With the goal
of either validating or invalidating the theory discussed in chapters 4 and 6.

7.1 Methodology

In this section the methodology for research question four as described in chapter 3 will be supple-
mented with the exact definition of the unit tests to be performed.

Each unit test will produce the following results:

• The maximum relative error: the maximum relative deviation for a single measuring step

• The average relative error: a measure of the overall single measurement step precision

• The standard deviation of the relative error: a measure of the overall single measurement
step precision

• The maximum absolute error: the largest deviation from the actual path

• The average absolute error: a measure of the overall integrated measurement precision

• The loop closure distance: the distance between the start of the path and the end of the path

• The distribution of the relative measurement error: a heat map scatter plot of the relative
error, showing the error distribution

• The integration of the measurements: a picture or graph which shows the path integration
verses the actual path

A total of eight unit tests have been devised, of which the last one is an integration test:

1. Testing the baseline components at maximum height

2. Testing the baseline components at maximum speed

3. Testing the effect of resolution

4. Testing the effect of exposure

5. Testing the effect of height error

6. Testing the effect of rotation error

7. Testing double precise specification

Mark Ramaker,
518404

35 Version 2

8. Testing sensor fusion - Integration test

These tests have been devised to each verify or invalidate one conclusion from the theory. They have
been included here in abbreviated form but the full test specifications can be seen in appendix B.

7.2 Test Setup

The test setup is aimed at simulating the flight of the UAS while controlling most environmental
variables.

Camera Setup

To simulate the camera on board of the UAS, a rail system is used inside the green house (see Fig:
7.1) to translate a camera at a fixed height, fixed angle and fixed speed.

Figure 7.1: The testsetup rail system. In the red squares from top to bottom: a steppermotor for
consistent speed, rail system control box, the Galaxy S8 phone used as a camera.

The camera used is the rear mounted camera module of a Samsung Galaxy S8 phone with the following
specifications:

• Sensor type: Samsung S5K2L2

36

• Resolution: UHD 3840x2160 pixels

• Frame rate: 30Hz

• Pixel pitch: 1.4µ

• Focal length: 4.2mm

• Viewing angle: ≈ 40◦

The specifications of the rail system and mounting locations are as follows:

• Translation speed: 14.073cm/s

• Image depth (scene to lens): 1.97m

• Height of plants: ±15cm

• Trajectory: a line of 45m

• Flow algorithm: a custom implementation of the flow estimator design from section Flow
Estimator Design (5.4) (source code provided in appendix C)

With this setup the height, angle and speed are assumed to be constant or invariable. With these vari-
ables controlled they can be reintroduced via simulation in a controlled way to verify their individual
effects.

Uncontrolled in this setup is the exposure time and thus smearing effect. As the rail system will be
moving at a comparatively slow speed and plenty of light will be available, the dynamic exposure time
of the used camera is assumed to be negligible.

Different speeds can be simulated by skipping frames in regular intervals, thus creating the illusion of
achieving a multiple of the base speed of 14.073cm/s.

Height, Angle & UWB Simulation

As discussed in the previous section, the height and angle of the camera setup are assumed to be
constant and invariable. The effects of these controlled variables can then be manipulated through
adding a simulated amount of each to the tests.

For the height this can be achieved by taking the base height and adding a zero offset noise with the
required variance to the calculations.

For the angular error this can be achieved by applying the theory from section Rotational Compensa-
tion Theory (4.4). Which states that the uncompensated rotation manifests itself in the measurement
as a translation. Thus by taking a zero mean noise with the required variance as the angular error,
calculating the perceived translation for this error and adding this to the measurement, the angular
error can be simulated.

The UWB can be simulated by taking the absolute position of the rail system and adding a zero mean
noise with the required variance to it.

Camera Specifications Simulation

As the camera is over-specified, the exactly required specifications for the tests will need to be generated
from the video footage. This is done in the following ways:

• Viewing angle: cropping the image using OpenCV

37

• resolution: scaling (sub sampling) the image using OpenCV

• Exposure time: calculating the smearing distance in pixels and performing the smearing by
combining pixels in a path using custom software (source code provided in appendix D)

• Frame rate: by redefining the frame time, and thereby in effect changing the base speed the
frame rate can be changed

Trajectory Simulation

The rail system follows a straight line trajectory. For the tests the trajectory needs to follow the sides
of a square. To achieve this the video frames will be rotated 90◦ every 4th part of the image sequence.
By rotating an additional 90◦ every 4th part of the image sequence the line trajectory is effectively
transformed into a square. All simulated variables can be adjusted through the same method. Refer
to appendix H for a picture detailing this.

Possibly Unaccounted Variables

As mentioned earlier, the height, speed and rotation of the rail system are assumed to be constant
and invariable. But the surface of the greenhouse (the image object) itself does vary in height. Plant
heights and table angle in relation to the rail are possibly going to affect the tests.

In running the rail system it was noted that it was sometimes able to rotate in the roll direction
slightly.

It is as of yet unknown if and how much these factors will influence the tests. But if deviations in the
predictions are found, these effects will be taken into account in an attempt to explain the deviations.

7.3 Results

Unit Test 1 - the baseline components at maximum height

Maximum height is 3m, see appendix: B.

• The maximum relative error: 1.6984cm

• The average relative error: 0.0028cm

• The standard deviation of the relative error: 0.1444cm

• The maximum absolute error: 50.8374cm

• The average absolute error: 22.4502cm

• The loop closure distance: 36.5122cm

38

-1.5

-1

-0.5

	0

	0.5

	1

	1.5

-1.5 -1 -0.5 	0 	0.5 	1 	1.5

Unit	test	1

relative	error	distributibution

	0

	10

	20

	30

	40

	50

	60

	70

Figure 7.2: Unit test 1 relative measurement error distribution. Scale in centimeters, color scale in
points per 0.0001cm2, and a total of 12790 points.

39

-1600

-1400

-1200

-1000

-800

-600

-400

-200

	0

	200

-1000 -800 -600 -400 -200 	0 	200 	400 	600 	800

startend

Unit	test	1

reference
measurement

Figure 7.3: Unit test 1. Scale in centimeters.

Unit Test 2 - the baseline components at maximum speed

Maximum speed is 4.2m/s, see appendix: B.

• The maximum relative error: 10.5591cm

• The average relative error: 0.0824cm

• The standard deviation of the relative error: 1.5630cm

• The maximum absolute error: 41.1311cm

• The average absolute error: 27.8082cm

• The loop closure distance: 35.1193cm

40

-8

-6

-4

-2

	0

	2

	4

	6

	8

-8 -6 -4 -2 	0 	2 	4 	6 	8

Unit	test	2

relative	error	distributibution

	1

	2

	3

	4

	5

	6

	7

	8

Figure 7.4: Unit test 2 relative measurement error distribution. Scale in centimeters, color scale in
points per 0.0064cm2, and a total of 426 points.

41

-1600

-1400

-1200

-1000

-800

-600

-400

-200

	0

	200

-1000 -800 -600 -400 -200 	0 	200 	400 	600 	800

end
start

Unit	test	2

reference
measurement

Figure 7.5: Unit test 2. Scale in centimeters.

Unit Test 3 - the effect of resolution

The resolution is halved to 129 pixels, see appendix: B.

• The maximum relative error: 5.4411cm

• The average relative error: 0.0049cm

• The standard deviation of the relative error: 0.1938cm

• The maximum absolute error: 159.4568cm

• The average absolute error: 100.7407cm

• The loop closure distance: 63.0357cm

42

-1.5

-1

-0.5

	0

	0.5

	1

	1.5

-1.5 -1 -0.5 	0 	0.5 	1 	1.5

Unit	test	3

relative	error	distributibution

	0

	5

	10

	15

	20

	25

	30

	35

Figure 7.6: Unit test 3 relative measurement error distribution. Scale in centimeters, color scale in
points per 0.0001cm2, and a total of 12790 points.

43

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

	0

	200

-1000 -800 -600 -400 -200 	0 	200 	400 	600 	800 	1000

start
end

Unit	test	3

reference
measurement

Figure 7.7: Unit test 3. Scale in centimeters.

Unit Test 4 - the effect of exposure

The exposure time is doubled to 1.16ms, see appendix: B.

• The maximum relative error: 8.2545cm

• The average relative error: 0.0832cm

• The standard deviation of the relative error: 1.2844cm

• The maximum absolute error: 37.0516cm

• The average absolute error: 17.4654cm

• The loop closure distance: 35.4495cm

44

-5

-4

-3

-2

-1

	0

	1

	2

	3

-4 -3 -2 -1 	0 	1 	2 	3 	4 	5

Unit	test	4

relative	error	distributibution

	1

	2

	3

	4

	5

	6

Figure 7.8: Unit test 4 relative measurement error distribution. Scale in centimeters, color scale in
points per 0.0064cm2, and a total of 426 points.

45

-1600

-1400

-1200

-1000

-800

-600

-400

-200

	0

	200

-1000 -800 -600 -400 -200 	0 	200 	400 	600 	800

end
start

Unit	test	4

reference
measurement

Figure 7.9: Unit test 4. Scale in centimeters.

Unit Test 5 - the effect of height error

The height error is doubled to ±5.333%, see appendix: B.

• The maximum relative error: 1.5651cm

• The average relative error: 0.0029cm

• The standard deviation of the relative error: 0.1453cm

• The maximum absolute error: 45.1463cm

• The average absolute error: 19.8176cm

• The loop closure distance: 37.2534cm

46

-1.5

-1

-0.5

	0

	0.5

	1

	1.5

-1.5 -1 -0.5 	0 	0.5 	1 	1.5

Unit	test	5

relative	error	distributibution

	0

	5

	10

	15

	20

	25

	30

	35

	40

Figure 7.10: Unit test 5 relative measurement error distribution. Scale in centimeters, color scale in
points per 0.0001cm2, and a total of 12790 points.

47

-1600

-1400

-1200

-1000

-800

-600

-400

-200

	0

	200

-1000 -800 -600 -400 -200 	0 	200 	400 	600 	800

start
end

Unit	test	5

reference
measurement

Figure 7.11: Unit test 5. Scale in centimeters.

Unit Test 6 - the effect of rotation error

The rotation error is doubled to ±0.076◦, see appendix: B.

• The maximum relative error: 1.6216cm

• The average relative error: 0.0024cm

• The standard deviation of the relative error: 0.2176cm

• The maximum absolute error: 66.4305cm

• The average absolute error: 29.9082cm

• The loop closure distance: 31.4260cm

48

-1.5

-1

-0.5

	0

	0.5

	1

	1.5

-1.5 -1 -0.5 	0 	0.5 	1 	1.5

Unit	test	6

relative	error	distributibution

	0

	2

	4

	6

	8

	10

	12

	14

	16

	18

	20

Figure 7.12: Unit test 6 relative measurement error distribution. Scale in centimeters, color scale in
points per 0.0001cm2, and a total of 12790 points.

49

-1600

-1400

-1200

-1000

-800

-600

-400

-200

	0

	200

-1000 -800 -600 -400 -200 	0 	200 	400 	600 	800

start
end

Unit	test	6

reference
measurement

Figure 7.13: Unit test 6. Scale in centimeters.

Unit Test 7 - double precise specification

All errors halved and resolution doubled, see appendix: B.

• The maximum relative error: 0.7841cm

• The average relative error: 0.0033cm

• The standard deviation of the relative error: 0.1003cm

• The maximum absolute error: 42.6928cm

• The average absolute error: 19.4199cm

• The loop closure distance: 42.6928cm

50

-0.8

-0.6

-0.4

-0.2

	0

	0.2

	0.4

	0.6

	0.8

-0.6 -0.4 -0.2 	0 	0.2 	0.4 	0.6 	0.8

Unit	test	7

relative	error	distributibution

	0

	10

	20

	30

	40

	50

	60

	70

	80

Figure 7.14: Unit test 7 relative measurement error distribution. Scale in centimeters, color scale in
points per 0.0001cm2, and a total of 12790 points.

51

-1600

-1400

-1200

-1000

-800

-600

-400

-200

	0

	200

-1000 -800 -600 -400 -200 	0 	200 	400 	600 	800

end
start

Unit	test	7

reference
measurement

Figure 7.15: Unit test 7. Scale in centimeters.

Integration Test - sensor fusion

Simulation data for the UWB can be seen in appendix: E.

• The maximum relative error: 1.0650cm

• The average relative error: 0.0028cm

• The standard deviation of the relative error: 0.0976cm

• The maximum absolute error: 14.7383cm

• The average absolute error: 5.4987cm

• The loop closure distance: 11.9363cm

52

-1

-0.8

-0.6

-0.4

-0.2

	0

	0.2

	0.4

	0.6

	0.8

	1

-1 -0.8 -0.6 -0.4 -0.2 	0 	0.2 	0.4 	0.6 	0.8 	1

Integration	test

relative	error	distributibution

	0

	10

	20

	30

	40

	50

	60

	70

	80

Figure 7.16: Integration test relative measurement error distribution. Scale in centimeters, color scale
in points per 0.0001cm2, and a total of 12790 points.

53

-1600

-1400

-1200

-1000

-800

-600

-400

-200

	0

	200

-1000 -800 -600 -400 -200 	0 	200 	400 	600 	800

start-end

Integration	test

reference
measurement

Figure 7.17: Integration test. Scale in centimeters.

54

Guidance Module - HiPerGreen project

Chapter 8

Conclusion

From SQ1 and chapter System Precision Factors (4) it can be seen that several parameters factor into
the precision of a system such as the GM. Chapter Theory Verification (7) which answers SQ4, makes
it highly plausible that by taking the factors from SQ1 into account for SQ2, as has been done in
chapter Theoretical System Design (5), and using the sensor fusion techniques from SQ3 and chapter
Sensor Fusion and State Estimation (6), that a precise and stable positioning for the UAS can be
obtained.

SQ.I. Which significant parameters determine the accuracy of the GM?

First the major system components were identified as the following: a camera, a flow estimator, a
height measurement, a rotation sensor and an information processing system.

Per component, literature was studied to find relevant characteristics of the components with regard
to the system measurement precision.

For the camera it was identified that the magnification factor, the smearing amount and nyquist spatial
wavelength play a role in the system precision.

For the height measurement, the measurement itself plays a role. Two examples of measurement
techniques have also been examined to compare benefits and downsides.

For the flow estimator it was determined that the local intensity complexity and the camera parameters
matter in terms of its precision.

Lastly the rotation sensor was looked at to see what kind of impact it has on the measurement
precision.

Control over these parameters results in a very stable and precise relative (local) measurement that
has a tendency to drift when observed over longer periods of time.

SQ.II. How to design the GM such that it meets all the requirements by
incorporating the significant parameters?

The major components and parameters from SQ1 have been used in this research question to form a
definition of theoretical components. These components are aimed at fitting the requirements exactly.

Mark Ramaker,
518404

55 Version 2

This was achieved by first making a semi arbitrary division of the error budget from the requirements,
and then per component applying the theory to determine the specifications.

For the optical sensor a 35% slice of the error budget of 1cm was taken. This resulted in a resolution
of 258 pixels, a viewing angle of 8.578◦, a maximum exposure time of 0.00058s and a frame rate of
40Hz.

The height measurement was budgeted at 20% of the 1cm total budget. This worked out to a com-
ponent which has a maximum of 2.666% of measurement inaccuracy.

A slice of 30% of the total error budget of 1cm was given to the rotation sensor. This worked out to
a measurement error per time step that must be smaller than 0.038◦.

The last 15% of the error budget has been kept for unforseen factors.

The flow estimator has not been given a slice of the error budget, as it essentially is dependent on
the camera for its contribution to the precision. The general algorithm discussed in chapter System
Precision Factors (4) has however been expanded on to improve on quality of block matching and
limiting the algorithm run time. This has been accomplished by making a design description for
image intensity structure quality control, controlling the number of blocks which are needed, limiting
the search grid size and making the frame size and position the most effective. Lastly an UML activity
diagram was used to give a high level overview of the algorithm flow and behavior.

SQ.III. How can the data from the GM and UWB be combined and filtered
such that useful positioning information is obtained?

Kalman filtering was selected to be the focus of this question. This was done as interest in this subject
was expressed from the HiPerGreen project, and as a preliminary literature study concluded that this
technique was a great fit for this question.

As this question was only posed to supplement the original assignment, the emphasis was put on
informing instead of researching.

Chapter Sensor Fusion and State Estimation (6) provides a short introduction to Kalman Filtering.
Sensor fusion as a method of combining sensor data using Kalman Filters has been explored; and it
has been found that the Kalman Filter update function works for this purpose. Then a process model
was designed, and all matrices for a functioning Kalman Filter were given. Thus an example design
for the project has been provided.

The Kalman filter was designed to use cartesian coordinate space and a newtonian process model. A
cartesian coordinate space was used because all sensors for which the filter was designed function in
such a space. The linearity of newtonian physics allowed for the use of a standard (linear) Kalman
filter, which fits a cartesian coordinate space and simplifies design when compared to non linear
filtering techniques.

SQ.IV. Does the GM with the design considerations applied realize the goal
of increasing the accuracy of the UAS?

A test setup which was meant to control all parameters exactly was first specified, and then used to
carry out the generation of a test data set.

A total of eight unit tests were defined to test most of the parameters from chapter System Precision
Factors (4).

56

Through simulation techniques the test data set was adapted to each of the individual unit tests.

Before the tests were done it was noted that the rail system seemed to rotate in the roll direction. When
observing the path graphs of unit test 1 these roll movements can clearly be identified as a sinusoidal
ripple in the path (see appendix: F). However since all measurements have been compared to an ideal
(absolutely straight) path, this ripple caused by the roll of the rail system has an unidentified impact
on several of the results. Furthermore it has been identified that the rail system at times ran over
welding seams on the heating pipe (rail). This caused a jolt to the system and a (relatively) violent
shuddering movement which could have caused measurement errors in places.

As higher speeds were simulated from the same data set, the shudders and rolls were also sped up and
thus amplified in terms of their effect per time step. In the high speed tests this had a detrimental
effect on some of the results.

Unit test 1 was meant as the baseline at maximum height and lowest speed, and was intended to
exactly fit the requirements. The standard deviation of the relative error of 0.1444cm fell easily within
the designed and expected standard deviation of 0.3333cm. In this matter the baseline components
outperformed the expectations. The average relative error also was very small at 0.0028cm, meaning
that the relative error has very little bias. This can also be observed by looking at Fig: 7.3. It can be
seen that the integrated path of measurements does not deviate a great deal. The maximum relative
error was larger then desired, most likely due to the rail system jolts or rolls.

Unit test 2 was meant as the baseline at lowest height and maximum speed, and was intended to
exactly fit the requirements. The standard deviation of the relative measurement error was larger
than in unit test 1, and also larger than the design requirements had predicted. As this is a sped up
unit test, these deviations are likely due to the jolts and rolls being amplified. As can be seen from
the integrated path, Fig: 7.5, the resulting measurement is still performing roughly identical to unit
test 1.

Unit test 3 was meant to test the effect of halving the resolution. It was predicted that this would
have a detrimental effect on the relative measurement error standard deviation, this effect was barely
seen. This is likely due to all unit tests being tainted by the roll and jolt effects. One interesting and
unexplained phenomenon is the integrated path which seems to indicate a scaling error, see Fig: 7.7.

Unit test 4 was meant to test the effect of exposure time. It is a sped up test again, which basically
invalidates most relative results. The integrated path followed exceptionally well see Fig: 7.9. The
effect of exposure can’t be validated nor dismissed through these results.

Unit test 5 was meant to test the effect of a greater variance of the height measurement. Due to
the effects of the roll and jolts and the normally distributed nature of the height error, almost no
additional effect can be observed.

Unit test 6 was meant to test the effect of a greater variance of the rotation error. Due to the effects
of the roll and jolts and the normally distributed nature of the rotation error, only a small effect can
be observed.

Unit test 7 was meant to test the effect of making all components doubly precise. While a small
improvement can be observed, most of the benefit was likely lost due to the roll and jolt problems of
the rail system.

The integration test was meant to test the sensor fusion techniques discussed in chapter Sensor Fusion
and State Estimation (6). The fusion was performed on the results from unit test 1 and a simulation
of a UWB. The UWB simulation was created by taking the ideal path and adding a 30cm standard
deviation to each step. The results from the test improve on all results from unit test 1. The most
notable result can be seen in Fig: 7.17. It is obvious that the sensor fusion eliminated the noise of the
UWB and effectively eliminated the integration error over time from the GM. Although the filter was
designed to be able to fuse the UWB, GM and IMU, in this test only the UWB and GM were used as
IMU data was unavailable.

57

Guidance Module - HiPerGreen project

Chapter 9

Recommendations

Further research and development is required for the GM. The recommendations have been split into
first and second priority. The first priority recommendations are needed to fully implement the GM
and the second priority recommendations are for further refinement and improvement.

First priority:

1. Fully validate the optical flow accuracy in a real UAS environment:
To fully validate the GM system performance it should be integrated onto an actual UAS and
tested further.

2. Implement and tune the Kalman filters:
The Kalman filter used to run the unit tests was not extensively tuned. When integrating and
testing the systems on a functioning and real UAS the tuning of such a filter can perhaps further
improve the location precision.

Second priority:

1. Research into creating height maps on board a UAS:
As the height sensor is one dimensional, it only measures the height of a certain area after which
the whole scene is assumed to conform to this height. This however is not always the case. A
height map, produced by using the disparity technique with two camera’s, structured light or
possibly LIDAR, can be used to give a height to each flow vector, possibly improving on accuracy
and especially in situations where more depth variation is expected. These height maps could
also be used for things such as object detection, collision avoidance and SLAM.

2. Hardware Printed Circuit Board (PCB) design for the GM:
The hardware which was selected for the GM can be connected to each other using wires, but a
better solution would be to have a full PCB design which combines all components. This could
allow for better vibration resistance, better resistance to humidity through the use of conformal
coating and more reliable connections.

3. Research into integrating all UAS flight systems into one module:
Aggregating all flight systems into a single module could save on weight and space which on the
UAS are at a premium.

Mark Ramaker,
518404

58 Version 2

Guidance Module - HiPerGreen project

List of Figures

1.1 A testing platform UAS flying through a demo greenhouse, indicating the scale that is
involved . 3

2.1 The UAS with a GM onboard. 7
2.2 An overview of the UAS subsystems. 9

4.1 The Raspberry PI prototype. Consists of a HC-SR04 sonar height sensor, Raspberry
PI Camera V2.1 and the Raspberry PI 3B. 13

5.1 Activity design for the flow estimator. 26

7.1 The testsetup rail system. In the red squares from top to bottom: a steppermotor for
consistent speed, rail system control box, the Galaxy S8 phone used as a camera. . . . 36

7.2 Unit test 1 relative measurement error distribution. Scale in centimeters, color scale in
points per 0.0001cm2, and a total of 12790 points. 39

7.3 Unit test 1. Scale in centimeters. 40
7.4 Unit test 2 relative measurement error distribution. Scale in centimeters, color scale in

points per 0.0064cm2, and a total of 426 points. 41
7.5 Unit test 2. Scale in centimeters. 42
7.6 Unit test 3 relative measurement error distribution. Scale in centimeters, color scale in

points per 0.0001cm2, and a total of 12790 points. 43
7.7 Unit test 3. Scale in centimeters. 44
7.8 Unit test 4 relative measurement error distribution. Scale in centimeters, color scale in

points per 0.0064cm2, and a total of 426 points. 45
7.9 Unit test 4. Scale in centimeters. 46
7.10 Unit test 5 relative measurement error distribution. Scale in centimeters, color scale in

points per 0.0001cm2, and a total of 12790 points. 47
7.11 Unit test 5. Scale in centimeters. 48
7.12 Unit test 6 relative measurement error distribution. Scale in centimeters, color scale in

points per 0.0001cm2, and a total of 12790 points. 49
7.13 Unit test 6. Scale in centimeters. 50
7.14 Unit test 7 relative measurement error distribution. Scale in centimeters, color scale in

points per 0.0001cm2, and a total of 12790 points. 51
7.15 Unit test 7. Scale in centimeters. 52
7.16 Integration test relative measurement error distribution. Scale in centimeters, color

scale in points per 0.0001cm2, and a total of 12790 points. 53
7.17 Integration test. Scale in centimeters. 54

E.1 Ultra Wide Band Simulation data. Scale in centimeters. Generated by taking the
reference and adding a noise having a standard deviation of 30cm to each measurement
interval. 85

Mark Ramaker,
518404

59 Version 2

F.1 The ripple effect in the integrated measurement of unit test 1 (Fig: 7.3), as produced
by the rail system’s sinusiodal rotations in the roll axis. 86

G.1 An example of optical flow where the right image is translated 140 pixels down and
to the left compared to the left image. The green blocks on the left can be seen as
the reference features, and the purple blocks on the right the corresponding feature
locations in the translated image. 87

H.1 The frames of the straight line trajectory are rotated 90◦ every quarter of the total
trajectory thus forming a square trajectory. 88

60

Guidance Module - HiPerGreen project

List of Tables

4.1 Percentage increase in speed of sound (re 0 ◦C) due to moisture in air only. Temperature
effects not included except as they pertain to humidity (Bohn, 1988) [5]. 17

4.2 Total percentage increase in speed of sound (re 0 ◦C) due to temperature and humidity
combined (Bohn, 1988) [5]. 17

4.3 List of factors . 22

Mark Ramaker,
518404

61 Version 2

Guidance Module - HiPerGreen project

Listings

C.1 flow.c . 73
C.2 flow interface.c . 80
D.1 pixelsmearing.c . 82

Mark Ramaker,
518404

62 Version 2

Guidance Module - HiPerGreen project

Bibliography

[1] (2013). MEMS motion sensor: three-axis digital output gyroscope. STMicroelectronics. Rev. 2.

[2] (2014). HRLV-MaxSonar ® - EZ TM Series. MaxBotix ® Inc.

[3] (2018). VL53L1X. STMicroelectronics.

[4] Beauchemin, S. S. and Barron, J. L. (1995). The computation of optical flow. ACM computing
surveys (CSUR), 27(3):433–466.

[5] Bohn, D. A. (1988). Environmental effects on the speed of sound. Journal of Audio Engineering
Society, 36(4):9.

[6] Caron, F., Duflos, E., Pomorski, D., and Vanheeghe, P. (2006). Gps/imu data fusion using multi-
sensor kalman filtering: introduction of contextual aspects. Information fusion, 7(2):221–230.

[7] de Jong, W. (2018). Climate sensor module for greenhouse drone. HiPerGreen, page 88. unpub-
lished.

[8] Diebel, J. (2006). Representing attitude: Euler angles, unit quaternions, and rotation vectors.
Matrix, 58(15-16):1–35.

[9] Fesselet, L. (2018). Localisation of a uas. unpublished.

[10] Gaylor, D. and Lightsey, E. G. (2003). Gps/ins kalman filter design for spacecraft operating in the
proximity of international space station. In AIAA Guidance, Navigation, and Control Conference
and Exhibit, page 5445.

[11] Honegger, D., Meier, L., Tanskanen, P., and Pollefeys, M. (2013). An open source and open
hardware embedded metric optical flow cmos camera for indoor and outdoor applications. In 2013
IEEE International Conference on Robotics and Automation, pages 1736–1741.

[12] Hortipoint.nl (2016). Drones conquer horticulture. https://www.hortipoint.nl/

floribusiness/drones-conquer-horticulture/. Last checked on Oct 04, 2018.

[13] Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of
basic Engineering, 82(1):35–45.

[14] Lide, D. R., editor (2005). CRC Handbook of Chemistry and Physics. CRC Press LLC, 85 edition.
Internet version.

[15] Nieuws Inholland.nl (2017). Wij inholland-winnaars drones in de
kas maken doorstart met hipergreen. http://nieuws.inholland.nl/

wij-inholland-winnaars-drones-in-de-kas-maken-doorstart-met-hipergreen/. Last
checked on Oct 04, 2018.

[16] Pedrotti, L. S. (2008). Basic geometrical optics. Society of Photo-Optical Instrumentation Engi-
neers, Bellingham, WA, accessed Dec, 5:2017.

[17] Roger, R. L. J. (2015). Kalman and Bayesian Filters in Python. Self, 1 edition.

Mark Ramaker,
518404

63 Version 2

https://www.hortipoint.nl/floribusiness/drones-conquer-horticulture/
https://www.hortipoint.nl/floribusiness/drones-conquer-horticulture/
http://nieuws.inholland.nl/wij-inholland-winnaars-drones-in-de-kas-maken-doorstart-met-hipergreen/
http://nieuws.inholland.nl/wij-inholland-winnaars-drones-in-de-kas-maken-doorstart-met-hipergreen/

[18] unspecified (2015). Ccd fundamentals. Application Note AND9188/D, ON Semiconductor, P.O.
Box 5163, Denver, Colorado 80217 USA. Rev 3.

[19] Wij Inholland.nl (2016). Drones in de kas. http://wijinholland.nl/nl/winnaar-2016/. Last
checked on Oct 04, 2018.

[20] Zarchan, P. and Musoff, H. (2013). Fundamentals of Kalman filtering: a practical approach.
American Institute of Aeronautics and Astronautics, Inc.

64

http://wijinholland.nl/nl/winnaar-2016/

Guidance Module - HiPerGreen project

Appendices

Mark Ramaker,
518404

65 Version 2

Guidance Module - HiPerGreen project

Appendix A

Symmetry in Gaussian
Multiplication

To be proven is the symmetry of multiple Gaussian multiplications. Given the formulas of Gaussian
multiplication in equation. A.1

Equation A.1 The product of two Gaussians is expressed as a new Gaussian. From (Roger, 2015)
[17].

µ1·2 =
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

σ2
1·2 =

σ2
1σ

2
2

σ2
1 + σ2

2

(A.1)

The general structure for n sequentially multiplied Gaussians is assumed to be equation A.2.

Equation A.2 The general structure of n sequential Gaussian multiplications. The bar here is used
to denote the product, as a differentiation to the n’th σ or µ.

Dn,i =

n∏
k=1,k 6=i

σ2
k

µ̄n =

∑n
i=1 µiDn,i∑n
i=1Dn,i

σ̄n =

∏n
i=1 σ

2
i∑n

i=1Dn,i

(A.2)

Equation A.1 applied to the the n+ 1 case yields equation A.3.

Mark Ramaker,
518404

66 Version 2

Equation A.3 The n+ 1’th Gaussian multiplication.

µ̄n+1 =
µ̄nσ

2
n+1 + µn+1σ̄

2
n

σ̄2
n + σ2

n+1

σ̄n+1 =
σ̄2
nσ

2
n+1

σ̄2
n + σ2

n+1

(A.3)

Expanding the definitions of D in equation A.4.

Equation A.4 Expanded definitions for D.

Dn+1,n+1 =

n∏
k=1

σ2
k

Dn+1,i = Dn,iσ
2
n+1 | i < n+ 1

(A.4)

Then in equation A.8 the terms of equation A.2 are substituted into equation A.3 and simplified to
show that the structure is equivalent to equation A.2, and symmetrical.

67

Equation A.8 Equation A.5 substitutes the terms of equation A.2 into equation A.3. Equation A.6
simplifies terms by multiplying with

∑n
i=1Dn,i. Next in equation A.7 the terms are further simplified

using the definition of D from equation A.4. In equation A.8 the terms are congregated and the result
is equivalent to equation A.2 and thus symmetrical.

µ̄n+1 =

∑n
i=1 µiDn,i∑n
i=1Dn,i

σ2
n+1 + µn+1

∏n
i=1 σ

2
i∑n

i=1Dn,i∏n
i=1 σ

2
i∑n

i=1Dn,i
+ σ2

n+1

σ̄n+1 =

∏n
i=1 σ

2
i∑n

i=1Dn,i
σ2
n+1∏n

i=1 σ
2
i∑n

i=1Dn,i
+ σ2

n+1

(A.5)

µ̄n+1 =

∑n
i=1 µiDn,iσ

2
n+1 + µn+1

∏n
i=1 σ

2
i∏n

i=1 σ
2
i +

∑n
i=1Dn,iσ2

n+1

σ̄n+1 =
(
∏n
i=1 σ

2
i)σ2

n+1∏n
i=1 σ

2
i +

∑n
i=1Dn,iσ2

n+1

(A.6)

µ̄n+1 =

∑n
i=1 µiDn+1,i + µn+1Dn+1,n+1

Dn+1,n+1 +
∑n
i=1Dn+1,i

σ̄n+1 =

∏n+1
i=1 σ

2
i

Dn+1,n+1 +
∑n
i=1Dn+1,i

(A.7)

µ̄n+1 =

∑n+1
i=1 µiDn+1,i∑n+1
i=1 Dn+1,i

σ̄n+1 =

∏n+1
i=1 σ

2
i∑n+1

i=1 Dn+1,i

(A.8)

Lastly equation A.1 is expanded to three multiplications and shown to satisfy equation A.2 which
through full induction proves symmetry for all sequential Gaussian multiplications (QED).

68

Equation A.11 Gaussian multiplication applied to three iterations. It is equivalent to equation A.2.

µ1·2·3 =

µ1σ
2
2+µ2σ

2
1

σ2
1+σ2

2
σ2

3 + µ3
σ2
1σ

2
2

σ2
1+σ2

2

σ2
1σ

2
2

σ2
1+σ2

2
+ σ2

3

σ2
1·2·3 =

σ2
1σ

2
2

σ2
1+σ2

2
σ2

3

σ2
1σ

2
2

σ2
1+σ2

2
+ σ2

3

(A.9)

µ1·2·3 =
(µ1σ

2
2 + µ2σ

2
1)σ2

3 + µ3σ
2
1σ

2
2

σ2
1σ

2
2 + σ2

3(σ2
1 + σ2

2)

σ2
1·2·3 =

σ2
1σ

2
2σ

2
3

σ2
1σ

2
2 + σ2

3(σ2
1 + σ2

2)

(A.10)

µ1·2·3 =
µ1σ

2
2σ

2
3 + µ2σ

2
1σ

2
3 + µ3σ

2
1σ

2
2

σ2
1σ

2
2 + σ2

1σ
2
2 + σ2

2σ
2
3

=

∑3
i=1 µiD3,i∑3
i=1D3,i

σ2
1·2·3 =

σ2
1σ

2
2σ

2
3

σ2
1σ

2
2 + σ2

1σ
2
2 + σ2

2σ
2
3

=

∏3
i=1 σ

2
i∑3

i=1D3,i

(A.11)

69

Guidance Module - HiPerGreen project

Appendix B

Unit Test Definitions

1. Theoretical component test, maximum height:

• Resolution: 258 pixels

• Viewing angle: 8.5◦

• Exposure time: 0.58ms

• Frame rate: 40Hz

• Height: 3m± 2.666%

• Rotation: 0◦ ± 0.038◦

• Speed: 0.14m/s

• Trajectory: four 11.25m sides of a square

Component specifications in concordance with the theoretical components. This test specifically
tests the theoretical components as the baseline, at the maximum height required, which should
perform in concordance with the requirements.

2. Theoretical component test, maximum speed:

• Resolution: 258 pixels

• Viewing angle: 8.5◦

• Exposure time: 0.58ms

• Frame rate: 40Hz

• Height: 1m± 2.666%

• Rotation: 0◦ ± 0.038◦

• Speed: ≈ 4.2m/s

• Trajectory: four 11.25m sides of a square

Component specifications in concordance with the theoretical components. This test specifically
tests the theoretical components as the baseline, at the maximum speed required, which should
perform in concordance with the requirements.

3. Half resolution test:

• Resolution: 129 pixels

Mark Ramaker,
518404

70 Version 2

• Viewing angle: 8.5◦

• Exposure time: 0.58ms

• Frame rate: 40Hz

• Height: 3m± 2.666%

• Rotation: 0◦ ± 0.038◦

• Speed: 0.14m/s

• Trajectory: four 11.25m sides of a square

Component specifications in concordance with the theoretical components, except resolution.
This test specifically tests the impact of resolution (nyquist spatial wavelength) on the precision
of the system.

4. Double exposure time:

• Resolution: 258 pixels

• Viewing angle: 8.5◦

• Exposure time: 1.16ms

• Frame rate: 40Hz

• Height: 3m± 2.666%

• Rotation: 0◦ ± 0.038◦

• Speed: ≈ 4.2m/s

• Trajectory: four 11.25m sides of a square

Component specifications in concordance with the theoretical components, except exposure time.
This test specifically tests the impact of exposure time on the precision of the system.

5. Height error doubled:

• Resolution: 258 pixels

• Viewing angle: 8.5◦

• Exposure time: 0.58ms

• Frame rate: 40Hz

• Height: 3m± 5.333%

• Rotation: 0◦ ± 0.038◦

• Speed: 0.14m/s

• Trajectory: four 11.25m sides of a square

Component specifications in concordance with the theoretical components, except the height
precision. This test specifically tests the impact of the height measurement on the precision of
the system.

6. Rotation error doubled:

• Resolution: 258 pixels

• Viewing angle: 8.5◦

• Exposure time: 0.58ms

71

• Frame rate: 40Hz

• Height: 3m± 2.666%

• Rotation: 0◦ ± 0.076◦

• Speed: 0.14m/s

• Trajectory: four 11.25m sides of a square

Component specifications in concordance with the theoretical components, except for the rota-
tion compensation precision. This test specifically tests the impact of the rotation error on the
precision of the system.

7. Double precision:

• Resolution: 516 pixels

• Viewing angle: 8.5◦

• Exposure time: 0.29ms

• Frame rate: 40Hz

• Height: 3m± 1.333%

• Rotation: 0◦ ± 0.019◦

• Speed: 0.14m/s

• Trajectory: four 11.25m sides of a square

This test specifically tests if the system would be doubly as precise when all factors are scaled to
be doubly as precise.

8. Sensor fusion - Integration test:

• Resolution: 258 pixels

• Viewing angle: 8.5◦

• Exposure time: 0.58ms

• Frame rate: 40Hz

• Height: 3m± 2.666%

• Rotation: 0◦ ± 0.038◦

• Speed: 0.14m/ss

• Trajectory: four 11.25m sides of a square

Component specifications in concordance with the theoretical components. This test specifically
tests the fusion of the theoretical components with a simulated UWB.

72

Guidance Module - HiPerGreen project

Appendix C

Guidance Module Sourcecode

Listing C.1: flow.c
1 /∗ ∗∗∗
2 ∗
3 ∗ Copyright (C) 2018 ADI . Al l r i g h t s r e s e rved .
4 ∗ Author : Mark Ramaker <markramaker@outlook . com>
5 ∗
6 ∗ Red i s t r i bu t i on and use in source and binary forms , with or without
7 ∗ modi f i cat ion , i s p roh ib i t ed un l e s s wr i t ten consent from the copyr ight ho lde r s
8 ∗ i s obtained .
9 ∗

10 ∗ This so f tware i s based on and modi f ied from open source so f tware .
11 ∗ Parts the part s o f t h i s so f tware which are based on the open source code
12 ∗ are ava i l a b l e from https :// github . com/PX4/Flow and are marked in t h i s document .
13 ∗ And th e i r copyr ight d i s c l a ime r (see the d i s c l a ime r below) app l i e s s o l e l y to the code
14 ∗ which can be obtained from the provided l i nk . Any mod i f i c a t i on s contained within t h i s
15 ∗ f i l e belong to the copyr ight ho lder ADI .
16 ∗
17 ∗ When wr i t ten permiss ion i s obtained the f o l l ow ing cond i t i on s apply :
18 ∗
19 ∗ 1 . Red i s t r i bu t i on s o f source code must r e t a i n the a l l copyr ight
20 ∗ not i ce s , t h i s l i s t o f cond i t i on s and the a l l d i s c l a ime r s .
21 ∗ 2 . Red i s t r i bu t i on s in binary form must reproduce the a l l copyr ight
22 ∗ not i ce s , t h i s l i s t o f cond i t i on s and a l l d i s c l a ime r s in
23 ∗ the documentation and/or other mate r i a l s provided with the
24 ∗ d i s t r i b u t i o n .
25 ∗ 3 . Neither the name ADI nor the names o f i t s c on t r i bu to r s may be
26 ∗ used to endorse or promote products der ived from th i s so f tware
27 ∗ without s p e c i f i c p r i o r wr i t ten permiss ion .
28 ∗
29 ∗ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 ∗ ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 ∗ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
32 ∗ FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
33 ∗ COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
34 ∗ INCIDENTAL, SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
35 ∗ BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS
36 ∗ OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
37 ∗ AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT
38 ∗ LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
39 ∗ ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 ∗ POSSIBILITY OF SUCH DAMAGE.
41 ∗
42 ∗∗∗ ∗/
43 // In accordance with the PX4 copyr ight d i s c l a imer , t h i s modi f ied code conta ins t h e i r o r r i g i n a l d i s c l a ime r

below .
44 /∗ ∗∗∗
45 ∗
46 ∗ Copyright (C) 2013 PX4 Development Team. Al l r i g h t s r e s e rved .
47 ∗ Author : Pe t r i Tanskanen <t p e t r i@ in f . ethz . ch>
48 ∗ Lorenz Meier <lm@inf . ethz . ch>
49 ∗ Samuel Zihlmann <samuezih@ee . ethz . ch>
50 ∗
51 ∗ Red i s t r i bu t i on and use in source and binary forms , with or without
52 ∗ modi f i cat ion , are permitted provided that the f o l l ow ing cond i t i on s
53 ∗ are met :
54 ∗
55 ∗ 1 . Red i s t r i bu t i on s o f source code must r e t a i n the above copyr ight
56 ∗ not ice , t h i s l i s t o f cond i t i on s and the f o l l ow ing d i s c l a ime r .
57 ∗ 2 . Red i s t r i bu t i on s in binary form must reproduce the above copyr ight
58 ∗ not ice , t h i s l i s t o f cond i t i on s and the f o l l ow ing d i s c l a ime r in
59 ∗ the documentation and/or other mate r i a l s provided with the
60 ∗ d i s t r i b u t i o n .
61 ∗ 3 . Neither the name PX4 nor the names o f i t s c on t r i bu to r s may be
62 ∗ used to endorse or promote products der ived from th i s so f tware
63 ∗ without s p e c i f i c p r i o r wr i t ten permiss ion .
64 ∗
65 ∗ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
66 ∗ ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
67 ∗ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
68 ∗ FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
69 ∗ COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
70 ∗ INCIDENTAL, SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
71 ∗ BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS

Mark Ramaker,
518404

73 Version 2

72 ∗ OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
73 ∗ AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT
74 ∗ LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
75 ∗ ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
76 ∗ POSSIBILITY OF SUCH DAMAGE.
77 ∗
78 ∗∗∗ ∗/
79
80 #inc lude <s t d l i b . h>
81 #inc lude <s tdboo l . h>
82 #inc lude <math . h>
83
84 #i f d e f DEBUG DISPLAY
85 #inc lude <window . h>
86 #de f i n e DEBUG DISPLAY ACCTION(x) x
87 #e l s e
88 #de f i n e DEBUG DISPLAY ACCTION(x) /∗ NOTHIN ∗/
89 #end i f
90
91 #inc lude ” f l ow i n t e r f a c e . h”
92 extern s t ru c t f l ow s t o r e t data ;
93
94 #i f d e f GM ARMSIMD
95 #de f i n e INLINE i n l i n e
96 #de f i n e ASM asm
97 #inc lude ” core cm4 simd . h”
98 #e l s e
99 #de f i n e GET ABS8(x , y) ((x) > (y) ? (x) − (y) : (y) − (x))

100 #end i f
101
102 #i f d e f GM ARMSIMD
103 //##
104 // Code in t h i s s e c t i on i s from the PX4 Development Team.
105 // Copyright (C) 2013 PX4 Development Team. Al l r i g h t s r e s e rved .
106 // compliments o f Adam Will iams
107 #de f i n e ABSDIFF(frame1 , frame2 , r ow s i z e) \
108 ({ \
109 in t r e s u l t = 0 ; \
110 asm v o l a t i l e (\
111 ”mov %[r e s u l t] , #0\n” /∗ accumulator ∗/ \
112 \
113 ” ld r r4 , [%[s r c] , #0]\n” /∗ read data from address + o f f s e t ∗/ \
114 ” ld r r5 , [%[dst] , #0]\n” \
115 ”usada8 %[r e s u l t] , r4 , r5 , %[r e s u l t]\n” /∗ d i f f e r e n c e ∗/ \
116 ” ld r r4 , [%[s r c] , #4]\n” /∗ read data from address + o f f s e t ∗/ \
117 ” ld r r5 , [%[dst] , #4]\n” \
118 ”usada8 %[r e s u l t] , r4 , r5 , %[r e s u l t]\n” /∗ d i f f e r e n c e ∗/ \
119 \
120 ” ld r r4 , [%[s r c] , #(64 ∗ 1)]\n” /∗ read data from address + o f f s e t ∗/ \
121 ” ld r r5 , [%[dst] , #(64 ∗ 1)]\n” \
122 ”usada8 %[r e s u l t] , r4 , r5 , %[r e s u l t]\n” /∗ d i f f e r e n c e ∗/ \
123 ” ld r r4 , [%[s r c] , #(64 ∗ 1 + 4)]\n” /∗ read data from address + o f f s e t ∗/ \
124 ” ld r r5 , [%[dst] , #(64 ∗ 1 + 4)]\n” \
125 ”usada8 %[r e s u l t] , r4 , r5 , %[r e s u l t]\n” /∗ d i f f e r e n c e ∗/ \
126 \
127 ” ld r r4 , [%[s r c] , #(64 ∗ 2)]\n” /∗ read data from address + o f f s e t ∗/ \
128 ” ld r r5 , [%[dst] , #(64 ∗ 2)]\n” \
129 ”usada8 %[r e s u l t] , r4 , r5 , %[r e s u l t]\n” /∗ d i f f e r e n c e ∗/ \
130 ” ld r r4 , [%[s r c] , #(64 ∗ 2 + 4)]\n” /∗ read data from address + o f f s e t ∗/ \
131 ” ld r r5 , [%[dst] , #(64 ∗ 2 + 4)]\n” \
132 ”usada8 %[r e s u l t] , r4 , r5 , %[r e s u l t]\n” /∗ d i f f e r e n c e ∗/ \
133 \
134 ” ld r r4 , [%[s r c] , #(64 ∗ 3)]\n” /∗ read data from address + o f f s e t ∗/ \
135 ” ld r r5 , [%[dst] , #(64 ∗ 3)]\n” \
136 ”usada8 %[r e s u l t] , r4 , r5 , %[r e s u l t]\n” /∗ d i f f e r e n c e ∗/ \
137 ” ld r r4 , [%[s r c] , #(64 ∗ 3 + 4)]\n” /∗ read data from address + o f f s e t ∗/ \
138 ” ld r r5 , [%[dst] , #(64 ∗ 3 + 4)]\n” \
139 ”usada8 %[r e s u l t] , r4 , r5 , %[r e s u l t]\n” /∗ d i f f e r e n c e ∗/ \
140 \
141 ” ld r r4 , [%[s r c] , #(64 ∗ 4)]\n” /∗ read data from address + o f f s e t ∗/ \
142 ” ld r r5 , [%[dst] , #(64 ∗ 4)]\n” \
143 ”usada8 %[r e s u l t] , r4 , r5 , %[r e s u l t]\n” /∗ d i f f e r e n c e ∗/ \
144 ” ld r r4 , [%[s r c] , #(64 ∗ 4 + 4)]\n” /∗ read data from address + o f f s e t ∗/ \
145 ” ld r r5 , [%[dst] , #(64 ∗ 4 + 4)]\n” \
146 ”usada8 %[r e s u l t] , r4 , r5 , %[r e s u l t]\n” /∗ d i f f e r e n c e ∗/ \
147 \
148 ” ld r r4 , [%[s r c] , #(64 ∗ 5)]\n” /∗ read data from address + o f f s e t ∗/ \
149 ” ld r r5 , [%[dst] , #(64 ∗ 5)]\n” \
150 ”usada8 %[r e s u l t] , r4 , r5 , %[r e s u l t]\n” /∗ d i f f e r e n c e ∗/ \
151 ” ld r r4 , [%[s r c] , #(64 ∗ 5 + 4)]\n” /∗ read data from address + o f f s e t ∗/ \
152 ” ld r r5 , [%[dst] , #(64 ∗ 5 + 4)]\n” \
153 ”usada8 %[r e s u l t] , r4 , r5 , %[r e s u l t]\n” /∗ d i f f e r e n c e ∗/ \
154 \
155 ” ld r r4 , [%[s r c] , #(64 ∗ 6)]\n” /∗ read data from address + o f f s e t ∗/ \
156 ” ld r r5 , [%[dst] , #(64 ∗ 6)]\n” \
157 ”usada8 %[r e s u l t] , r4 , r5 , %[r e s u l t]\n” /∗ d i f f e r e n c e ∗/ \
158 ” ld r r4 , [%[s r c] , #(64 ∗ 6 + 4)]\n” /∗ read data from address + o f f s e t ∗/ \
159 ” ld r r5 , [%[dst] , #(64 ∗ 6 + 4)]\n” \
160 ”usada8 %[r e s u l t] , r4 , r5 , %[r e s u l t]\n” /∗ d i f f e r e n c e ∗/ \
161 \
162 ” ld r r4 , [%[s r c] , #(64 ∗ 7)]\n” /∗ read data from address + o f f s e t ∗/ \
163 ” ld r r5 , [%[dst] , #(64 ∗ 7)]\n” \
164 ”usada8 %[r e s u l t] , r4 , r5 , %[r e s u l t]\n” /∗ d i f f e r e n c e ∗/ \
165 ” ld r r4 , [%[s r c] , #(64 ∗ 7 + 4)]\n” /∗ read data from address + o f f s e t ∗/ \
166 ” ld r r5 , [%[dst] , #(64 ∗ 7 + 4)]\n” \
167 ”usada8 %[r e s u l t] , r4 , r5 , %[r e s u l t]\n” /∗ d i f f e r e n c e ∗/ \
168 \
169 : [r e s u l t] ”+r ” (r e s u l t) \
170 : [s r c] ” r ” (frame1) , [dst] ” r ” (frame2) \
171 : ” r4 ” , ” r5 ” \
172) ; \
173 \
174 r e s u l t ; \
175 })
176 // End of the PX4 Development code s e c t i on .
177 //##

74

178
179 #e l i f GM X64SIMD
180 // X64 ve r s i on o f ABSDIFF .
181 a t t r i b u t e ((a lway s i n l i n e)) i n l i n e u in t32 t ABSDIFF(u in t 8 t ∗ frame1 , u i n t 8 t ∗ frame2 , u in t32 t r ow s i z e

) {
182 u in t64 t sad = 0 ;
183 #de f i n e INT64 M64(x) ∗(m64 ∗) (&(x))
184 u in t 8 t (∗ image1 buf f) [8] [r ow s i z e] = (u in t 8 t (∗) [8] [r ow s i z e]) (frame1) ;
185 u in t 8 t (∗ image2 buf f) [8] [r ow s i z e] = (u in t 8 t (∗) [8] [r ow s i z e]) (frame2) ;
186 f o r (u i n t 8 t y i = 0 ; y i < 8 ; y i++) {
187 INT64 M64(sad) += m psadbw (INT64 M64 ((∗ image1 buf f) [y i] [0]) , INT64 M64 ((∗ image2 buf f) [y i] [0])) ;
188 } ;
189 return (u in t32 t) sad ;
190 }
191 #e l s e
192 // Platform independant ve r s i on o f ABSDIFF .
193 a t t r i b u t e ((a lway s i n l i n e)) i n l i n e u in t32 t ABSDIFF(u in t 8 t ∗ frame1 , u i n t 8 t ∗ frame2 , u in t32 t r ow s i z e

) {
194 u in t32 t sad = 0 ;
195 u in t 8 t (∗ image1 buf f) [8] [r ow s i z e] = (u in t 8 t (∗) [8] [r ow s i z e]) (frame1) ;
196 u in t 8 t (∗ image2 buf f) [8] [r ow s i z e] = (u in t 8 t (∗) [8] [r ow s i z e]) (frame2) ;
197 f o r (u i n t 8 t y i = 0 ; y i < 8 ; y i++) f o r (u i n t 8 t x i = 0 ; x i < 8 ; x i++) {
198 sad += GET ABS8((∗ image1 buf f) [y i] [x i] , (∗ image2 buf f) [y i] [x i]) ;
199 } ;
200 return sad ;
201 }
202 #end i f
203
204 /∗∗
205 ∗ @brie f Compute the average p i x e l g rad i ent o f a l l h o r i z on t a l s t eps
206 ∗
207 ∗
208 ∗ @param image (I) image po in te r
209 ∗ @param offX (I) x coord inate o f upper l e f t corner o f 8x8 pattern in image
210 ∗ @param offY (I) y coord inate o f upper l e f t corner o f 8x8 pattern in image
211 ∗/
212 s t a t i c i n l i n e u in t32 t compute hor i zonta l g rad i ent (u i n t 8 t ∗ image , u in t32 t r ow s i z e) {
213 u in t32 t acc = 0 ;
214 u in t 8 t (∗ image buf f) [4] [r ow s i z e] = (u in t 8 t (∗) [4] [r ow s i z e]) (image) ;
215
216 #i f d e f GM ARMSIMD
217 /∗ we need to get columns ∗/
218 u in t32 t co l1 = (∗ image buf f) [0] [0] << 24 | (∗ image buf f) [1] [0] << 16 | (∗ image buf f) [2] [0] << 8 | (∗

image buf f) [3] [0] ;
219 u in t32 t co l2 = (∗ image buf f) [0] [1] << 24 | (∗ image buf f) [1] [1] << 16 | (∗ image buf f) [2] [1] << 8 | (∗

image buf f) [3] [1] ;
220 u in t32 t co l3 = (∗ image buf f) [0] [2] << 24 | (∗ image buf f) [1] [2] << 16 | (∗ image buf f) [2] [2] << 8 | (∗

image buf f) [3] [2] ;
221 u in t32 t co l4 = (∗ image buf f) [0] [3] << 24 | (∗ image buf f) [1] [3] << 16 | (∗ image buf f) [2] [3] << 8 | (∗

image buf f) [3] [3] ;
222
223 /∗ ca l c column d i f f ∗/
224 acc = USADA8(col1 , col2 , acc) ;
225 acc = USADA8(col2 , col3 , acc) ;
226 acc = USADA8(col3 , col4 , acc) ;
227 #e l s e // Platform independant ve r s i on o f the p i x e l g rad i ent computation .
228 // Calcu late s idewards grad i ent .
229 f o r (u i n t 8 t y i = 0 ; y i < 4 ; y i++) acc += GET ABS8((∗ image buf f) [y i] [0] , (∗ image buf f) [y i] [1]) +
230 GET ABS8((∗ image buf f) [y i] [1] , (∗ image buf f) [y i] [2]) +
231 GET ABS8((∗ image buf f) [y i] [2] , (∗ image buf f) [y i] [3]) ;
232 #end i f
233 return acc ;
234 }
235
236 /∗∗
237 ∗ @brie f Compute the average p i x e l g rad i ent o f a l l v e r t i c a l s t eps
238 ∗
239 ∗
240 ∗ @param image (I) image po in te r
241 ∗ @param offX (I) x coord inate o f upper l e f t corner o f 8x8 pattern in image
242 ∗ @param offY (I) y coord inate o f upper l e f t corner o f 8x8 pattern in image
243 ∗/
244 s t a t i c i n l i n e u in t32 t compute ve r t i c a l g r ad i en t (u i n t 8 t ∗ image , u in t32 t r ow s i z e){
245 u in t32 t acc = 0 ;
246 u in t 8 t (∗ image buf f) [4] [r ow s i z e] = (u in t 8 t (∗) [4] [r ow s i z e]) (image) ;
247
248 #i f d e f GM ARMSIMD
249 /∗ ca l c v e r t i c a l g rad i ent ∗/
250 acc = USADA8 (∗ ((u in t32 t ∗) &(∗ image buf f) [0] [0]) , ∗ ((u in t32 t ∗) &(∗ image buf f) [1] [0]) , acc) ;
251 acc = USADA8 (∗ ((u in t32 t ∗) &(∗ image buf f) [1] [0]) , ∗ ((u in t32 t ∗) &(∗ image buf f) [2] [0]) , acc) ;
252 acc = USADA8 (∗ ((u in t32 t ∗) &(∗ image buf f) [2] [0]) , ∗ ((u in t32 t ∗) &(∗ image buf f) [3] [0]) , acc) ;
253
254 #e l s e // Platform independant ve r s i on o f the p i x e l g rad i ent computation .
255 // Calcu late grad i ent downwards .
256 f o r (u i n t 8 t x i = 0 ; x i < 4 ; x i++) acc += GET ABS8((∗ image buf f) [0] [x i] , (∗ image buf f) [1] [x i]) +
257 GET ABS8((∗ image buf f) [1] [x i] , (∗ image buf f) [2] [x i]) +
258 GET ABS8((∗ image buf f) [2] [x i] , (∗ image buf f) [3] [x i]) ;
259 #end i f
260 return acc ;
261 }
262
263 /∗∗
264 ∗ @brie f Compute SAD d i s t anc e s o f subp ixe l s h i f t o f two 8x8 p i x e l pat te rns .
265 ∗
266 ∗ @param image1 (I) . . .
267 ∗ @param image2 (I) . . .
268 ∗ @param d i r (O) return value o f the d i r e c t i o n where the lowest SAD value was found .
269 ∗ @param row s i z e (I) the number o f p i x e l s in one row .
270 ∗
271 ∗ @return the lowest SAD value .
272 ∗/
273 s t a t i c i n l i n e u in t32 t compute subpixel (u i n t 8 t ∗ image1 , u i n t 8 t ∗ image2 , u i n t 8 t ∗dir , u in t32 t row s i z e)
274 {
275 /∗ c a l c u l a t e po s i t i on in image bu f f e r ∗/
276 u in t16 t o f f 1 = 0 ; // image1
277 u in t16 t o f f 2 = 0 ; // image2

75

278 u in t32 t acc [8] ;
279 u in t32 t s0 , s1 , s2 , s3 , s4 , s5 , s6 , s7 , t1 , t3 , t5 , t7 ;
280 f o r (u in t16 t i = 0 ; i < 8 ; i++)
281 {
282 acc [i] = 0 ;
283 }
284 #i f d e f GM ARMSIMD
285 //##
286 // Code in t h i s s e c t i on i s from the PX4 Development Team.
287 // Copyright (C) 2013 PX4 Development Team. Al l r i g h t s r e s e rved .
288 f o r (u in t16 t i = 0 ; i < 8 ; i++)
289 {
290 /∗ compute average o f two p i x e l va lues ∗/
291 s0 = (UHADD8(∗ ((u in t32 t ∗) &image2 [o f f 2 + 0 + (i +0) ∗ r ow s i z e]) , ∗ ((u in t32 t ∗) &image2 [o f f 2 + 1 + (i

+0) ∗ r ow s i z e]))) ;
292 s1 = (UHADD8(∗ ((u in t32 t ∗) &image2 [o f f 2 + 0 + (i +1) ∗ r ow s i z e]) , ∗ ((u in t32 t ∗) &image2 [o f f 2 + 1 + (i

+1) ∗ r ow s i z e]))) ;
293 s2 = (UHADD8(∗ ((u in t32 t ∗) &image2 [o f f 2 + 0 + (i +0) ∗ r ow s i z e]) , ∗ ((u in t32 t ∗) &image2 [o f f 2 + 0 + (i

+1) ∗ r ow s i z e]))) ;
294 s3 = (UHADD8(∗ ((u in t32 t ∗) &image2 [o f f 2 + 0 + (i +1) ∗ r ow s i z e]) , ∗ ((u in t32 t ∗) &image2 [o f f 2 − 1 + (i

+1) ∗ r ow s i z e]))) ;
295 s4 = (UHADD8(∗ ((u in t32 t ∗) &image2 [o f f 2 + 0 + (i +0) ∗ r ow s i z e]) , ∗ ((u in t32 t ∗) &image2 [o f f 2 − 1 + (i

+0) ∗ r ow s i z e]))) ;
296 s5 = (UHADD8(∗ ((u in t32 t ∗) &image2 [o f f 2 + 0 + (i−1) ∗ r ow s i z e]) , ∗ ((u in t32 t ∗) &image2 [o f f 2 − 1 + (i

−1) ∗ r ow s i z e]))) ;
297 s6 = (UHADD8(∗ ((u in t32 t ∗) &image2 [o f f 2 + 0 + (i +0) ∗ r ow s i z e]) , ∗ ((u in t32 t ∗) &image2 [o f f 2 + 0 + (i

−1) ∗ r ow s i z e]))) ;
298 s7 = (UHADD8(∗ ((u in t32 t ∗) &image2 [o f f 2 + 0 + (i−1) ∗ r ow s i z e]) , ∗ ((u in t32 t ∗) &image2 [o f f 2 + 1 + (i

−1) ∗ r ow s i z e]))) ;
299 /∗ these 4 t va lues are from the corne r s around the cente r p i x e l ∗/
300 t1 = (UHADD8(s0 , s1)) ;
301 t3 = (UHADD8(s3 , s4)) ;
302 t5 = (UHADD8(s4 , s5)) ;
303 t7 = (UHADD8(s7 , s0)) ;
304 /∗ f i l l accumulation vector ∗/
305 acc [0] = USADA8 ((∗ ((u in t32 t ∗) &image1 [o f f 1 + 0 + i ∗ r ow s i z e])) , s0 , acc [0]) ;
306 acc [1] = USADA8 ((∗ ((u in t32 t ∗) &image1 [o f f 1 + 0 + i ∗ r ow s i z e])) , t1 , acc [1]) ;
307 acc [2] = USADA8 ((∗ ((u in t32 t ∗) &image1 [o f f 1 + 0 + i ∗ r ow s i z e])) , s2 , acc [2]) ;
308 acc [3] = USADA8 ((∗ ((u in t32 t ∗) &image1 [o f f 1 + 0 + i ∗ r ow s i z e])) , t3 , acc [3]) ;
309 acc [4] = USADA8 ((∗ ((u in t32 t ∗) &image1 [o f f 1 + 0 + i ∗ r ow s i z e])) , s4 , acc [4]) ;
310 acc [5] = USADA8 ((∗ ((u in t32 t ∗) &image1 [o f f 1 + 0 + i ∗ r ow s i z e])) , t5 , acc [5]) ;
311 acc [6] = USADA8 ((∗ ((u in t32 t ∗) &image1 [o f f 1 + 0 + i ∗ r ow s i z e])) , s6 , acc [6]) ;
312 acc [7] = USADA8 ((∗ ((u in t32 t ∗) &image1 [o f f 1 + 0 + i ∗ r ow s i z e])) , t7 , acc [7]) ;
313 s0 = (UHADD8(∗ ((u in t32 t ∗) &image2 [o f f 2 + 4 + (i +0) ∗ r ow s i z e]) , ∗ ((u in t32 t ∗) &image2 [o f f 2 + 5 + (i

+0) ∗ r ow s i z e]))) ;
314 s1 = (UHADD8(∗ ((u in t32 t ∗) &image2 [o f f 2 + 4 + (i +1) ∗ r ow s i z e]) , ∗ ((u in t32 t ∗) &image2 [o f f 2 + 5 + (i

+1) ∗ r ow s i z e]))) ;
315 s2 = (UHADD8(∗ ((u in t32 t ∗) &image2 [o f f 2 + 4 + (i +0) ∗ r ow s i z e]) , ∗ ((u in t32 t ∗) &image2 [o f f 2 + 4 + (i

+1) ∗ r ow s i z e]))) ;
316 s3 = (UHADD8(∗ ((u in t32 t ∗) &image2 [o f f 2 + 4 + (i +1) ∗ r ow s i z e]) , ∗ ((u in t32 t ∗) &image2 [o f f 2 + 3 + (i

+1) ∗ r ow s i z e]))) ;
317 s4 = (UHADD8(∗ ((u in t32 t ∗) &image2 [o f f 2 + 4 + (i +0) ∗ r ow s i z e]) , ∗ ((u in t32 t ∗) &image2 [o f f 2 + 3 + (i

+0) ∗ r ow s i z e]))) ;
318 s5 = (UHADD8(∗ ((u in t32 t ∗) &image2 [o f f 2 + 4 + (i−1) ∗ r ow s i z e]) , ∗ ((u in t32 t ∗) &image2 [o f f 2 + 3 + (i

−1) ∗ r ow s i z e]))) ;
319 s6 = (UHADD8(∗ ((u in t32 t ∗) &image2 [o f f 2 + 4 + (i +0) ∗ r ow s i z e]) , ∗ ((u in t32 t ∗) &image2 [o f f 2 + 4 + (i

−1) ∗ r ow s i z e]))) ;
320 s7 = (UHADD8(∗ ((u in t32 t ∗) &image2 [o f f 2 + 4 + (i−1) ∗ r ow s i z e]) , ∗ ((u in t32 t ∗) &image2 [o f f 2 + 5 + (i

−1) ∗ r ow s i z e]))) ;
321 t1 = (UHADD8(s0 , s1)) ;
322 t3 = (UHADD8(s3 , s4)) ;
323 t5 = (UHADD8(s4 , s5)) ;
324 t7 = (UHADD8(s7 , s0)) ;
325 acc [0] = USADA8 ((∗ ((u in t32 t ∗) &image1 [o f f 1 + 4 + i ∗ r ow s i z e])) , s0 , acc [0]) ;
326 acc [1] = USADA8 ((∗ ((u in t32 t ∗) &image1 [o f f 1 + 4 + i ∗ r ow s i z e])) , t1 , acc [1]) ;
327 acc [2] = USADA8 ((∗ ((u in t32 t ∗) &image1 [o f f 1 + 4 + i ∗ r ow s i z e])) , s2 , acc [2]) ;
328 acc [3] = USADA8 ((∗ ((u in t32 t ∗) &image1 [o f f 1 + 4 + i ∗ r ow s i z e])) , t3 , acc [3]) ;
329 acc [4] = USADA8 ((∗ ((u in t32 t ∗) &image1 [o f f 1 + 4 + i ∗ r ow s i z e])) , s4 , acc [4]) ;
330 acc [5] = USADA8 ((∗ ((u in t32 t ∗) &image1 [o f f 1 + 4 + i ∗ r ow s i z e])) , t5 , acc [5]) ;
331 acc [6] = USADA8 ((∗ ((u in t32 t ∗) &image1 [o f f 1 + 4 + i ∗ r ow s i z e])) , s6 , acc [6]) ;
332 acc [7] = USADA8 ((∗ ((u in t32 t ∗) &image1 [o f f 1 + 4 + i ∗ r ow s i z e])) , t7 , acc [7]) ;
333 }
334 // End of the PX4 Development code s e c t i on .
335 //##
336
337 #e l s e
338 // Platform independant ve r s i on o f the sum of abso lute d i f f e r e n c e computation .
339 u in t 8 t (∗ image1 buf f) [8] [r ow s i z e] = (u in t 8 t (∗) [8] [r ow s i z e]) image1 ;
340 u in t 8 t (∗ image2 buf f) [8] [r ow s i z e] = (u in t 8 t (∗) [8] [r ow s i z e]) image2 ;
341
342 // Loop row wise . Handle one row each time .
343 // Note : negat ive and out o f bounds array indexes are used . This i s f i n e s i n c e the array i s po s i t i oned
344 // in the middle o f an image . Thus we are never r e a l l y look ing out o f bounds .
345 f o r (u i n t 8 t y i = 0 ; y i < 8 ; y i++) f o r (i n t 8 t x i = 0 ; x i < 8 ; x i++) {
346 // acc [0] i s between r e f [0] [0] and r e f [0] [1] e tc .
347 acc [0] += GET ABS8((∗ image1 buf f) [y i] [x i] , (((∗ image2 buf f) [y i] [x i] + (∗ image2 buf f) [y i + 0] [x i + 1]) >>

1)) ;
348
349 // acc [1] i s between r e f [0] [0] and r e f [1] [1] e tc . This i s s l i g h t l y d i f f e r e n t than the o r r i g i n a l

implementation .
350 acc [1] += GET ABS8((∗ image1 buf f) [y i] [x i] , (((∗ image2 buf f) [y i] [x i] + (∗ image2 buf f) [y i + 1] [x i + 1]) >>

1)) ;
351
352 // acc [2] i s between r e f [0] [0] and r e f [1] [0] e tc .
353 acc [2] += GET ABS8((∗ image1 buf f) [y i] [x i] , (((∗ image2 buf f) [y i] [x i] + (∗ image2 buf f) [y i + 1] [x i + 0]) >>

1)) ;
354
355 // acc [3] i s between r e f [0] [0] and r e f [1] [−1] e tc . This i s s l i g h t l y d i f f e r e n t than the o r r i g i n a l

implementation .
356 acc [3] += GET ABS8((∗ image1 buf f) [y i] [x i] , (((∗ image2 buf f) [y i] [x i] + (∗ image2 buf f) [y i + 1] [x i − 1]) >>

1)) ;
357
358 // acc [4] i s between r e f [0] [0] and r e f [0] [−1] e tc .
359 acc [4] += GET ABS8((∗ image1 buf f) [y i] [x i] , (((∗ image2 buf f) [y i] [x i] + (∗ image2 buf f) [y i + 0] [x i − 1]) >>

1)) ;
360

76

361 // acc [5] i s between r e f [0] [0] and r e f [−1][−1] e tc . This i s s l i g h t l y d i f f e r e n t than the o r r i g i n a l
implementation .

362 acc [5] += GET ABS8((∗ image1 buf f) [y i] [x i] , (((∗ image2 buf f) [y i] [x i] + (∗ image2 buf f) [y i − 1] [x i − 1]) >>
1)) ;

363
364 // acc [6] i s between r e f [0] [0] and r e f [−1] [0] e tc .
365 acc [6] += GET ABS8((∗ image1 buf f) [y i] [x i] , (((∗ image2 buf f) [y i] [x i] + (∗ image2 buf f) [y i − 1] [x i + 0]) >>

1)) ;
366
367 // acc [7] i s between r e f [0] [0] and r e f [−1] [1] e tc . This i s s l i g h t l y d i f f e r e n t than the o r r i g i n a l

implementation .
368 acc [7] += GET ABS8((∗ image1 buf f) [y i] [x i] , (((∗ image2 buf f) [y i] [x i] + (∗ image2 buf f) [y i − 1] [x i + 1]) >>

1)) ;
369 }
370
371
372 #end i f
373 // I n i t i a l value f o r d i r i s zero .
374 ∗ d i r = 0 ;
375 /∗ Run through the accumulator array to f i nd the lowest SAD d i r e c t i o n . ∗/
376 f o r (u in t16 t i = 1 ; i < 8 ; i++) {
377 i f (acc [i] < acc [0]) {
378 acc [0] = acc [i] ; // Keep the lowest SAD in acc [0] .
379 ∗ d i r = i ; // Set the d i r e c t i o n .
380 }
381 }
382 return acc [0] ;
383 }
384
385
386 /∗∗
387 ∗ @brie f Computes p i x e l f low from image1 to image2
388 ∗
389 ∗ Searches the corresponding po s i t i on in the new image (image2) o f max . 64 p i x e l s from the old image (

image1)
390 ∗ and c a l c u l a t e s the average o f f s e t o f a l l .
391 ∗
392 ∗ @param image1 (I) prev ious image bu f f e r
393 ∗ @param image2 (I) current image bu f f e r (new)
394 ∗ @param f low x (O) output the x f low value
395 ∗ @param f low y (O) output the y f low value
396 ∗ @param search x (I) search window fo r x
397 ∗ @param search y (I) search window fo r y
398 ∗
399 ∗ @return qua l i t y o f f low c a l c u l a t i o n
400 ∗/
401 s t a t i c i n l i n e u in t32 t c omput e fu l l p i x e l (u i n t 8 t ∗ image1 , u i n t 8 t ∗ image2 ,
402 i n t 3 2 t ∗ f low x , i n t 3 2 t ∗ f low y ,
403 u in t 8 t search x , u i n t 8 t search y , u in t32 t width) {
404 /∗ Var iab l e s ∗/
405 u in t32 t sad accumulator = 0xFFFFFFFF; // s e t i n i t i a l d i s tance to ” i n f i n i t y ”
406 u in t32 t temp sad ;
407 // Convert the image2 po in te r to a de f ined column and row s i z ed pointer , makes f o r code which i s

c l e ane r in implementation .
408 u in t 8 t (∗ image2 buf f) [] [width] = (u in t 8 t (∗) [] [width]) image2 ;
409
410 /∗ I t t e r a t e from −s ea rch x and −s ea rch y to search x and search y to compute the minimum SAD in the

search window . ∗/
411 f o r (i n t 8 t y i = −(i n t 8 t) s earch y ; y i <= search y ; y i++) f o r (i n t 8 t x i = −(i n t 8 t) s earch x ; x i <=

search x ; x i++) {
412 temp sad = ABSDIFF(image1 , &(∗ image2 buf f) [y i] [x i] , width) ; // Calcu late SAD fo r t h i s xi , y i p o s i t i on .
413 i f (temp sad < sad accumulator) { // I s the new po s i t i on a be t t e r match?
414 sad accumulator = temp sad ; // Store the SAD value .
415 ∗ f l ow x = xi ; // Store the x f low po s i t i on .
416 ∗ f l ow y = yi ; // Store the y f low po s i t i on .
417 }
418 }
419 return sad accumulator ;
420 }
421
422 /∗∗
423 ∗ @brie f Computes p i x e l f low from s r c to dst
424 ∗
425 ∗ Searches the corresponding po s i t i on in the new image (image2) o f max . 64 p i x e l s from the old image (

image1)
426 ∗ and c a l c u l a t e s the average o f f s e t o f a l l .
427 ∗
428 ∗ @param dst (I) cur rent image bu f f e r (new)
429 ∗ @param sr c (I) prev ious image bu f f e r
430 ∗ @param x var iance (I /O) the c e r t a i n t y o f p i x e l f l ow x .
431 ∗ @param y var iance (I /O) the c e r t a i n t y o f p i x e l f l ow y .
432 ∗ @param y var iance (O) the c e r t a i n ty o f p i x e l f l ow r .
433 ∗ @param p i x e l f l ow x (I /O) the pred i c t ed f low x , and out the measured f low x .
434 ∗ @param p i x e l f l ow y (I /O) the pred i c t ed f low y , and out the measured f low y .
435 ∗ @param p i x e l f l ow r (O) the measured f low ro ta t i on ” bu i ld with FLOW ROT”.
436
437 ∗
438 ∗ @return count o f accepted block f low measurements .
439 ∗/
440 u in t32 t compute flow (u in t 8 t ∗dst , u i n t 8 t ∗ src ,
441 f l o a t ∗ x var iance , f l o a t ∗ y var iance , f l o a t ∗ r var i ance ,
442 f l o a t ∗ p i x e l f l ow x , f l o a t ∗ p i x e l f l ow y , f l o a t ∗ p i x e l f l ow r) {
443 /∗ constants ∗/
444 const u i n t 8 t BLOCK SIZE = 8 ;
445
446 /∗ va r i ab l e s ∗/
447 u in t 8 t MAX SEARCH = data . max search ;
448 u in t 8 t MIN SEARCH = data . min search ;
449 u in t32 t BIN SIZE = data . max count ∗ 2 ;
450 u in t32 t IMAGE COLUMN COUNT= data . image width ;
451 u in t32 t IMAGE ROW COUNT = data . image he ight ;
452 u in t32 t MIN FLOW = data . g r ad i en t th r e sho l d ;
453 u in t32 t MAX SAD VAL = data . sad thr e sho ld ;
454 u in t32 t MAX COUNT = data . max count ; // Total number o f f low r e s u l t s qu i t when we reach t h i s .
455 i n t 3 2 t xbin [BIN SIZE] ; // Here we w i l l s t o r e a l l computed and accepted x f low r e s u l t s .
456 i n t 3 2 t ybin [BIN SIZE] ; // Here we w i l l s t o r e a l l computed and accepted y f low r e s u l t s .

77

457 i n t 3 2 t x f l ow pred i c t ed = (i n t 3 2 t) ∗ p i x e l f l ow x ; // Store the pred i c t ed x f low as i n t e g e r .
458 i n t 3 2 t y f l ow pred i c t ed = (i n t 3 2 t) ∗ p i x e l f l ow y ; // Store the pred i c t ed y f low as i n t e g e r .
459 f l o a t rad ius [BIN SIZE] ; // Here we w i l l s t o r e a l l o f f s e t s o f the computed and accepted x f low r e s u l t s .
460 u in t32 t b in counte r = 0 ; // Counts how many f low r e s u l t s are s to red .
461 u in t 8 t xsearch window = (u in t 8 t) (data . s e a r c h s c a l a r ∗ (∗ x var i ance)) + MIN SEARCH > MAX SEARCH ?
462 MAX SEARCH : (u i n t 8 t) (data . s e a r c h s c a l a r ∗ (∗ x var i ance)) + MIN SEARCH; //

Def ines the maximum f u l l p i x e l o f s e t f o r the x −> d i s tance .
463 u in t 8 t ysearch window = (u in t 8 t) (data . s e a r c h s c a l a r ∗ (∗ y var i ance)) + MIN SEARCH > MAX SEARCH ?
464 MAX SEARCH : (u i n t 8 t) (data . s e a r c h s c a l a r ∗ (∗ y var i ance)) + MIN SEARCH; //

Def ines the maximum f u l l p i x e l o f s e t f o r the y −> d i s tance .
465 u in t 8 t s ubp i x e l d i r ; // Temp s to r e f o r the subp ixe l d i r e c t i o n .
466 u in t32 t min sad = 0 ; // Store the in t e rm id i a t e SAD r e s u l t s .
467 u in t32 t temp sad = 0 ; // Another temporary SAD s to r e .
468
469 #de f i n e ROUND UP(x , y) ((((x) + (y) − 1) / (y)) ∗ (y)) // Round up to a y mult ip le , works only f o r

p o s i t i v e numbers !
470 #de f i n e ROUNDDOWN(x , y) (((x) / (y)) ∗ (y)) // Round down to a y mult ip le , works only f o r p o s i t i v e

numbers !
471 // Constrain the image to b locks we can s t i l l t rack con s id e r i ng the i n i t i a l o f f s e t and search window .
472 u in t32 t xmin = x f l ow pred i c t ed > 0 ? // When the pred i c t ed f low i s p o s i t i v e the block w i l l move away from

the min index .
473 (x f l ow pred i c t ed > xsearch window ? 0 : // When the pred i c t ed f low i s b igge r than the

search window we can s t a r t at zero .
474 ROUND UP(0 + xsearch window , BLOCK SIZE)) : // A po s i t i v e f low i s pred i c t ed so we ju s t

have to take care o f the search window .
475 ROUND UP(0 − x f l ow pred i c t ed + xsearch window , BLOCK SIZE) ; // A negat ive f low i s

pred i c t ed so a l s o take f low pr ed i c t i on in to account .
476 u in t32 t xmax = x f l ow pred i c t ed > 0 ? // When the pred i c t ed f low i s p o s i t i v e the block w i l l towards the

max index .
477 ROUNDDOWN(IMAGE COLUMN COUNT − x f l ow pred i c t ed − xsearch window , BLOCK SIZE) : // A

po s i t i v e f low i s pred i c t ed so we have to take image width , f low pr ed i c t i on and search window into
account .

478 (x f l ow pred i c t ed < xsearch window ? IMAGE COLUMN COUNT : // When the pred i c t ed f low i s
sma l l e r than the search window we can s t a r t at image edge .

479 ROUNDDOWN(IMAGE COLUMN COUNT − xsearch window , BLOCK SIZE)) ; // A negat ive f low i s
pred i c t ed so we only take image width and search window into account .

480 u in t32 t ymin = y f l ow pred i c t ed > 0 ? // When the pred i c t ed f low i s p o s i t i v e the block w i l l move away from
the min index .

481 (y f l ow pred i c t ed > ysearch window ? 0 : // When the pred i c t ed f low i s b igge r than the
search window we can s t a r t at zero .

482 ROUND UP(0 + ysearch window , BLOCK SIZE)) : // A po s i t i v e f low i s pred i c t ed so we ju s t
have to take care o f the search window .

483 ROUND UP(0 − y f l ow pred i c t ed + ysearch window , BLOCK SIZE) ; // A negat ive f low i s
pred i c t ed so a l s o take f low pr ed i c t i on in to account .

484 u in t32 t ymax = y f l ow pred i c t ed > 0 ? // When the pred i c t ed f low i s p o s i t i v e the block w i l l towards the
max index .

485 ROUNDDOWN(IMAGE ROW COUNT − y f l ow pred i c t ed − ysearch window , BLOCK SIZE) : // A po s i t i v e
f low i s pred i c t ed so we have to take image width , f low pr ed i c t i on and search window into account .

486 (y f l ow pred i c t ed < ysearch window ? IMAGE ROW COUNT : // When the pred i c t ed f low i s
sma l l e r than the search window we can s t a r t at image edge .

487 ROUNDDOWN(IMAGE ROW COUNT − ysearch window , BLOCK SIZE)) ; // A negat ive f low i s pred i c t ed
so we only take image width and search window into account .

488
489 // Convert the dst po in te r to a de f ined column and row s i z ed pointer , makes f o r code which i s c l e ane r in

implementation .
490 u in t 8 t (∗ image1 buf f) [IMAGE ROW COUNT] [IMAGE COLUMN COUNT] = (u in t 8 t (∗) [IMAGE ROW COUNT] [

IMAGE COLUMN COUNT]) dst ;
491 // Convert the s r c po in te r to a de f ined column and row s i z ed pointer , makes f o r code which i s c l e ane r in

implementation .
492 u in t 8 t (∗ image2 buf f) [IMAGE ROW COUNT] [IMAGE COLUMN COUNT] = (u in t 8 t (∗) [IMAGE ROW COUNT] [

IMAGE COLUMN COUNT]) s r c ;
493
494 // Sanity check , we cannot track f low l a r g e r than the image s i z e . Use the underf low c h a r a c t e r i s t i c o f

u in t32 t .
495 // This assumes that we would never use a r e s o l u t i o n which approaches the maximum s i z e o f u in t32 t .
496 i f (xmin > IMAGE COLUMN COUNT | | xmax > IMAGE COLUMN COUNT | | ymin > IMAGE ROW COUNT | | ymax >

IMAGE ROW COUNT) {
497 // We cannot do anything with t h i s f low . . . r e turn f a i l u r e . FIXME i s t h i s how we ind i c a t e f a i l u r e ?
498 ∗ x var i ance = 0 ;
499 ∗ y var i ance = 0 ;
500 ∗ p i x e l f l ow x = 0 ;
501 ∗ p i x e l f l ow y = 0 ;
502 return 0 ;
503 }
504
505 /∗ I t t e r a t e over every block within the cons t ra ined image . ∗/
506 i n t 8 t dxi ; // Collumn i t t e r a t o r .
507 i n t 8 t dyi ; // Row i t t e r a t o r .
508 u in t32 t x i = ((xmax − xmin) / BLOCK SIZE) >> 1 ; // Ca lcu late the halfway point .
509 u in t32 t y i = ((ymax − ymin) / BLOCK SIZE) >> 1 ; // Ca lcu late the halfway point .
510
511 // Star t moving to the r i gh t .
512 dxi = BLOCK SIZE ;
513 dyi = 0 ;
514
515 u in t32 t m = xi > y i ? y i : x i ; // Square up the search area .
516 m = (m << 1) ∗ (m << 1) ; // Total amount o f b locks contained .
517 x i = xmin + xi ∗ BLOCK SIZE ; // Get the actua l po s i t i on .
518 y i = ymin + yi ∗ BLOCK SIZE ; // Get the actua l po s i t i on .
519
520 u in t 8 t swi tches = 0 ; // Switch count , every two d i r e c t i o n swi tches the subcount i s incremented .
521 u in t32 t subcount = 2 ; // Number o f b locks in t h i s l i n e .
522
523 // For a l l contained b locks .
524 f o r (u in t32 t t = 0 ; t < m && bin counte r < MAX COUNT; t += subcount) {
525 // Ending cond i t i on check .
526 i f (t + subcount >= m) {
527 subcount = m − t ;
528 }
529 // For a s i n g l e s i d e .
530 f o r (u in t32 t c = 1 ; c < subcount ; c++, x i += dxi , y i += dyi) {
531 // Test block f o r f low f e a tu r e s and accept i t or r e j e c t i t .
532 i f (c ompute ve r t i c a l g r ad i en t (&(∗ image1 buf f) [y i + 2] [x i + 2] , IMAGE COLUMN COUNT) < MIN FLOW)

cont inue ;
533 i f (compute hor i zonta l g rad i ent (&(∗ image1 buf f) [y i + 2] [x i + 2] , IMAGE COLUMN COUNT) < MIN FLOW)

cont inue ;

78

534 DEBUG DISPLAY ACCTION(draw source (yi , x i)) ;
535
536 // Now compute the best SAD value and r e s p e c t i v e f low va lues f o r t h i s block .
537 min sad = comput e fu l l p i x e l (&(∗ image1 buf f) [y i] [x i] , &(∗ image2 buf f) [y i + y f l ow pred i c t ed] [x i +

x f l ow pred i c t ed] ,
538 &xbin [b in counte r] , &ybin [b in counte r] ,
539 xsearch window , ysearch window , IMAGE COLUMN COUNT) ;
540
541 /∗ Minumum SAD value acceptance . ∗/
542 i f (min sad > MAX SAD VAL) cont inue ;
543
544 /∗ Process r e s u l t s with the pred i c t ed o f f s e t . ∗/
545 xbin [b in counte r] += x f l ow pred i c t ed ;
546 ybin [b in counte r] += y f l ow pred i c t ed ;
547 DEBUG DISPLAY ACCTION(draw dest (ybin [b in counte r] + yi , xbin [b in counte r] + xi)) ;
548 DEBUG DISPLAY ACCTION(draw path (yi , xi , ybin [b in counte r] + yi , xbin [b in counte r] + xi)) ;
549
550 /∗ Now ca l c u l a t e subp ixe l s . ∗/
551 temp sad = compute subpixel (&(∗ image1 buf f) [y i] [x i] ,
552 &(∗ image2 buf f) [y i + ybin [b in counte r]] [x i + xbin [b in counte r]] ,
553 &subp ix e l d i r , IMAGE COLUMN COUNT) ;
554
555 /∗ Make the accumulated f l ows ha l f p i x e l s . ∗/
556 xbin [b in counte r] ∗= 2;
557 ybin [b in counte r] ∗= 2;
558
559 /∗ Test subp ixe l SAD to see i f we improve with subp ixe l d i r e c t i o n s . ∗/
560 i f (temp sad < min sad) {
561 switch (s ubp i x e l d i r) {
562 case 0 :
563 xbin [b in counte r] += 1 ;
564 break ;
565 case 1 :
566 xbin [b in counte r] += 1 ;
567 ybin [b in counte r] += 1 ;
568 break ;
569 case 2 :
570 ybin [b in counte r] += 1 ;
571 break ;
572 case 3 :
573 xbin [b in counte r] += −1;
574 ybin [b in counte r] += 1 ;
575 break ;
576 case 4 :
577 xbin [b in counte r] += −1;
578 break ;
579 case 5 :
580 xbin [b in counte r] += −1;
581 ybin [b in counte r] += −1;
582 break ;
583 case 6 :
584 ybin [b in counte r] += −1;
585 break ;
586 case 7 :
587 xbin [b in counte r] += 1 ;
588 ybin [b in counte r] += −1;
589 break ;
590 de f au l t :
591 break ;
592 }
593 }
594 #i f d e f FLOW ROT
595 {
596 // Get the d i s tance from the cente r o f the image , which we assume we ro ta t e around .
597 i n t 3 2 t xo f f = x i ∗ 2 − IMAGE COLUMN COUNT; // X dinstance f o r t h i s f low vector
598 i n t 3 2 t yo f f = y i ∗ 2 − IMAGE ROW COUNT; // Y d i s tance f o r t h i s f low vector .
599 rad ius [b in counte r] = sq r t (x o f f ∗ xo f f + yo f f ∗ yo f f) ; // Use pythagorean theorem to get the rad ius

.
600 i f (x o f f < 0) rad ius [b in counte r] ∗= −1; // Inver t the rad ius f o r minus x o f f s e t s to d i s t i n gu i s h

negat ive r o t a t i on .
601 }
602 #end i f
603 b in counte r++;
604 }
605 // Switch d i r e c t i o n .
606 i n t 8 t temp = dxi ;
607 dxi = −dyi ;
608 dyi = temp ;
609
610 // Modify the run length o f the sub loop .
611 i f (++switches > 1) {
612 swi tches = 0 ;
613 subcount++;
614 }
615 } // End of block loop .
616
617 /∗ Reset mean and var iance o f f l ows . ∗/
618 ∗ x var i ance = 0 ;
619 ∗ y var i ance = 0 ;
620 ∗ r va r i an c e = 0 ;
621 ∗ p i x e l f l ow x = 0 ;
622 ∗ p i x e l f l ow y = 0 ;
623 ∗ p i x e l f l ow r = 0 ;
624
625 // Only do f low r e s u l t c a l c u l a t i o n i f we have f low r e s u l t s .
626 i f (b in counte r) {
627 /∗ Calcu late mean o f xbin and Calcu late mean o f ybin . ∗/
628 f o r (u in t32 t x i = 0 ; x i < b in counte r ; x i++) {
629 ∗ p i x e l f l ow x += xbin [x i] ;
630 ∗ p i x e l f l ow y += ybin [x i] ;
631 }
632 ∗ p i x e l f l ow x /= bin counte r ;
633 ∗ p i x e l f l ow y /= bin counte r ;
634
635 /∗ Calcu late var iance f o r xbin and Calcu late var iance f o r ybin . ∗/
636 f o r (u in t32 t x i = 0 ; x i < b in counte r ; x i++) {

79

637 f l o a t d i f f = xbin [x i] − ∗ p i x e l f l ow x ; // D i f f e r en c e from the mean .
638 d i f f /= 2 ; // Bring back to f u l l p i x e l value .
639 d i f f ∗= d i f f ; // Square the d i f f e r e n c e .
640 ∗ x var i ance += d i f f ; // Accumulate .
641 d i f f = ybin [x i] − ∗ p i x e l f l ow y ; // D i f f e r en c e from the mean .
642 d i f f /= 2 ; // Bring back to f u l l p i x e l value .
643 d i f f ∗= d i f f ; // Square the d i f f e r e n c e .
644 ∗ y var i ance += d i f f ; // Accumulate .
645 }
646 ∗ x var i ance /= bin counte r ; // Devide to get the var iance .
647 ∗ y var i ance /= bin counte r ; // Devide to get the var iance .
648 #i f d e f FLOW STD
649 ∗ x var i ance = sqr t (∗ x var i ance) ; // Sqrt to get std dev ia t i on . This might need to change . . . ATTENTION
650 ∗ y var i ance = sqr t (∗ y var i ance) ; // Sqrt to get std dev ia t i on . This might need to change . . . ATTENTION
651 #end i f
652
653 #i f d e f FLOW ROT
654 u in t32 t stop = (u in t32 t) (sq r t ((f l o a t) b in counte r) ∗ 4) − 4 ; // Implement a stop cond i t i on which l im i t s

us to only the outer f low r e s u l t s .
655 f o r (u in t32 t x i = bin counte r − 1 ; x i > stop ; xi−−) {
656 /∗ Attempt to c a l c u l a t e r o t a t i on here . ∗/
657 f l o a t rx = (f l o a t) xbin [x i] − ∗ p i x e l f l ow x ; // The movement without i t s l a t e r a l part i s cons idered to

be r o t a t i o n a l .
658 f l o a t ry = (f l o a t) ybin [x i] − ∗ p i x e l f l ow y ; // The movement without i t s l a t e r a l part i s cons idered to

be r o t a t i o n a l .
659 rx = sqr t (rx ∗ rx + ry ∗ ry) ; // Get our r o ta t i on movement length .
660 i f (ry < 0) rx ∗= −1; // Inver t l ength in case o f other d i r e c t i o n .
661 rad ius [x i] = atan (rx / rad ius [x i]) ; // Ca lcu late the angle .
662 rad ius [x i] ∗= 57.2957795131 ; // Radia l s to degrees .
663 ∗ p i x e l f l ow r += rad ius [x i] ; // Accumulate
664 }
665 ∗ p i x e l f l ow r /= bin counte r − stop ; // Mean of r o t a t i on .
666 ∗ p i x e l f l ow r ∗= 9 . / 7 . ; // Magnitude adjustment FIXME
667
668 DEBUG DISPLAY ACCTION(
669 // Draw an in t eg ra t ed l i n e r ep r e s en t i ng the change o f measured angle f o r debug purposes .
670 s t a t i c f l o a t angle = 0 ; // In t eg r a t o r .
671 f l o a t d = (IMAGE ROW COUNT / 2 − 10) ; // Distance o f the l i n e .
672 angle += ∗ p i x e l f l ow r ; // In t eg ra t e .
673 f l o a t ang l e r = angle ∗ 3.141592 / 1 8 0 . ; // To r a d i a l s .
674 u in t32 t sourcex = IMAGE COLUMN COUNT / 2 − 5 ;
675 u in t32 t sourcey = IMAGE ROW COUNT / 2 − 5 ;
676 u in t32 t destx = sourcex + d ∗ c o s f (ang l e r) ;
677 u in t32 t desty = sourcey + d ∗ s i n f (ang l e r) ;
678 draw path (sourcey , sourcex , desty , destx) // Draw l i n e .
679) ;
680
681 /∗ Calcu late var iance f o r r o t a t i on . ∗/
682 f o r (u in t32 t x i = bin counte r − 1 ; x i > stop ; xi−−) {
683 f l o a t d i f f = rad ius [x i] − ∗ p i x e l f l ow r ; // D i f f e r en c e from the mean .
684 d i f f ∗= d i f f ; // Square the d i f f e r e n c e .
685 ∗ r va r i an c e += d i f f ; // Accumulate .
686 }
687 ∗ r va r i an c e /= bin counte r − stop ; // Devide to get the var iance .
688 #i f d e f FLOW STD
689 ∗ r va r i an c e = sqr t (∗ r va r i an c e) ; // Sqrt to get std dev ia t i on . This might need to change . . . ATTENTION
690 #end i f
691 #end i f
692 }
693
694 /∗ Bring the f low va lues back to f u l l p i x e l s . ∗/
695 ∗ p i x e l f l ow x /= 2 ;
696 ∗ p i x e l f l ow y /= 2 ;
697
698 /∗ Return the amount o f r e s u l t s we had . ∗/
699 return b in counte r ;
700 }

Listing C.2: flow interface.c
1 /∗ ∗∗∗
2 ∗
3 ∗ Copyright (C) 2018 ADI . Al l r i g h t s r e s e rved .
4 ∗ Author : Mark Ramaker <markramaker@outlook . com>
5 ∗
6 ∗ Red i s t r i bu t i on and use in source and binary forms , with or without
7 ∗ modi f i cat ion , i s p roh ib i t ed un l e s s wr i t ten consent from the copyr ight ho lde r s
8 ∗ i s obtained .
9 ∗

10 ∗ When wr i t ten permiss ion i s obtained the f o l l ow ing cond i t i on s apply :
11 ∗
12 ∗ 1 . Red i s t r i bu t i on s o f source code must r e t a i n the a l l copyr ight
13 ∗ not i ce s , t h i s l i s t o f cond i t i on s and the a l l d i s c l a ime r s .
14 ∗ 2 . Red i s t r i bu t i on s in binary form must reproduce the a l l copyr ight
15 ∗ not i ce s , t h i s l i s t o f cond i t i on s and a l l d i s c l a ime r s in
16 ∗ the documentation and/or other mate r i a l s provided with the
17 ∗ d i s t r i b u t i o n .
18 ∗ 3 . Neither the name ADI nor the names o f i t s c on t r i bu to r s may be
19 ∗ used to endorse or promote products der ived from th i s so f tware
20 ∗ without s p e c i f i c p r i o r wr i t ten permiss ion .
21 ∗
22 ∗ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 ∗ ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 ∗ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 ∗ FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 ∗ COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 ∗ INCIDENTAL, SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 ∗ BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS
29 ∗ OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 ∗ AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT
31 ∗ LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32 ∗ ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 ∗ POSSIBILITY OF SUCH DAMAGE.
34 ∗

80

35 ∗∗∗ ∗/
36
37 #inc lude ” f l ow i n t e r f a c e . h”
38
39 s t ru c t f l ow s t o r e t data = {
40 . max search = 6 ,
41 . min search = 3 ,
42 . s e a r c h s c a l a r = 3 ,
43 . image width = 260 ,
44 . image he ight = 260 ,
45 . g r ad i en t th r e sho ld = 65 ,
46 . s ad thr e sho ld = 700 ,
47 . max count = 100
48 } ;
49
50 /∗∗
51 ∗ STANDALONE DATA f o r c e s the input to be decoupled from the output po in t e r s .
52 ∗/
53 #i f d e f STANDALONE DATA
54 s t a t i c f l o a t x va r i anc e b in = data . max search ;
55 s t a t i c f l o a t y va r i anc e b in = data . max search ;
56 s t a t i c f l o a t x f l ow b in = 0 ;
57 s t a t i c f l o a t y f l ow b in = 0 ;
58 #end i f
59
60 #i f d e f IPL IMAGE INTERFACE
61 /∗∗
62 ∗ @brie f Computes p i x e l f low from s r c to dst
63 ∗
64 ∗ Searches the corresponding po s i t i on in the new image (image2) o f max . 64 p i x e l s from the old image (

image1)
65 ∗ and c a l c u l a t e s the average o f f s e t o f a l l .
66 ∗
67 ∗ @param dst (I) cur rent image bu f f e r (new)
68 ∗ @param sr c (I) prev ious image bu f f e r
69 ∗ @param x var iance (I /O) the c e r t a i n t y o f p i x e l f l ow x .
70 ∗ @param y var iance (I /O) the c e r t a i n t y o f p i x e l f l ow y .
71 ∗ @param y var iance (O) the c e r t a i n ty o f p i x e l f l ow r .
72 ∗ @param p i x e l f l ow x (I /O) the pred i c t ed f low x , and out the measured f low x .
73 ∗ @param p i x e l f l ow y (I /O) the pred i c t ed f low y , and out the measured f low y .
74 ∗ @param p i x e l f l ow r (O) the measured f low ro ta t i on ” bu i ld with FLOW ROT”.
75
76 ∗
77 ∗ @return count o f accepted block f low measurements .
78 ∗/
79 u in t32 t compute f low handler (IplImage ∗dst , IplImage ∗ src ,
80 f l o a t ∗ x var iance , f l o a t ∗ y var iance , f l o a t ∗ r var i ance ,
81 f l o a t ∗ p i x e l f l ow x , f l o a t ∗ p i x e l f l ow y , f l o a t ∗ p i x e l f l ow r) {
82 #i f d e f STANDALONE DATA
83 data . image width = src−>width ;
84 data . image he ight = src−>he ight ;
85 u in t32 t count = compute flow ((u i n t 8 t ∗) dst−>imageData , (u i n t 8 t ∗) src−>imageData , &x var iance b in , &

y var iance b in , r var i ance , &x f low bin , &y f low bin , p i x e l f l ow r) ;
86 ∗ x var i ance = x va r i anc e b in ;
87 ∗ y var i ance = y va r i anc e b in ;
88 ∗ p i x e l f l ow x = x f l ow b in ;
89 ∗ p i x e l f l ow y = y f l ow b in ;
90 return count ;
91 #e l s e
92 data . image width = src−>width ;
93 data . image he ight = src−>he ight ;
94 return compute flow ((u i n t 8 t ∗) dst−>imageData , (u i n t 8 t ∗) src−>imageData , x var iance , y var iance ,

r va r i ance , p i x e l f l ow x , p i x e l f l ow y , p i x e l f l ow r) ;
95 #end i f
96 }
97 #e l s e
98 /∗∗
99 ∗ @brie f Computes p i x e l f low from s r c to dst

100 ∗
101 ∗ Searches the corresponding po s i t i on in the new image (image2) o f max . 64 p i x e l s from the old image (

image1)
102 ∗ and c a l c u l a t e s the average o f f s e t o f a l l .
103 ∗
104 ∗ @param dst (I) cur rent image bu f f e r (new)
105 ∗ @param sr c (I) prev ious image bu f f e r
106 ∗ @param x var iance (I /O) the c e r t a i n t y o f p i x e l f l ow x .
107 ∗ @param y var iance (I /O) the c e r t a i n t y o f p i x e l f l ow y .
108 ∗ @param y var iance (O) the c e r t a i n ty o f p i x e l f l ow r .
109 ∗ @param p i x e l f l ow x (I /O) the pred i c t ed f low x , and out the measured f low x .
110 ∗ @param p i x e l f l ow y (I /O) the pred i c t ed f low y , and out the measured f low y .
111 ∗ @param p i x e l f l ow r (O) the measured f low ro ta t i on ” bu i ld with FLOW ROT”.
112
113 ∗
114 ∗ @return count o f accepted block f low measurements .
115 ∗/
116 u in t32 t compute f low handler (u i n t 8 t ∗dst , u i n t 8 t ∗ src ,
117 f l o a t ∗ x var iance , f l o a t ∗ y var iance , f l o a t ∗ r var i ance ,
118 f l o a t ∗ p i x e l f l ow x , f l o a t ∗ p i x e l f l ow y , f l o a t ∗ p i x e l f l ow r) {
119 #i f d e f STANDALONE DATA
120 u in t32 t count = compute flow (dst , src , &x var iance b in , &y var iance b in , r var i ance , &x f low bin , &

y f low bin , p i x e l f l ow r) ;
121 ∗ x var i ance = x va r i anc e b in ;
122 ∗ y var i ance = y va r i anc e b in ;
123 ∗ p i x e l f l ow x = x f l ow b in ;
124 ∗ p i x e l f l ow y = y f l ow b in ;
125 return count ;
126 #e l s e
127 return compute flow (dst , src , x var iance , y var iance , r va r i ance , p i x e l f l ow x , p i x e l f l ow y , p i x e l f l ow r

) ;
128 #end i f
129 }
130 #end i f

81

Guidance Module - HiPerGreen project

Appendix D

Smearing Simulation Sourcecode

Listing D.1: pixelsmearing.c
1 /∗ ∗∗∗
2 ∗
3 ∗ Copyright (C) 2018 Mark Ramaker . Al l r i g h t s r e s e rved .
4 ∗ Author : Mark Ramaker <markramaker@outlook . com>
5 ∗
6 ∗ Red i s t r i bu t i on and use in source and binary forms , with or without
7 ∗ modi f i cat ion , i s p roh ib i t ed un l e s s wr i t ten consent from the copyr ight ho lde r s
8 ∗ i s obtained .
9 ∗

10 ∗ When wr i t ten permiss ion i s obtained the f o l l ow ing cond i t i on s apply :
11 ∗
12 ∗ 1 . Red i s t r i bu t i on s o f source code must r e t a i n the a l l copyr ight
13 ∗ not i ce s , t h i s l i s t o f cond i t i on s and the a l l d i s c l a ime r s .
14 ∗ 2 . Red i s t r i bu t i on s in binary form must reproduce the a l l copyr ight
15 ∗ not i ce s , t h i s l i s t o f cond i t i on s and a l l d i s c l a ime r s in
16 ∗ the documentation and/or other mate r i a l s provided with the
17 ∗ d i s t r i b u t i o n .
18 ∗ 3 . Neither the name Mark Ramaker nor the names o f i t s c on t r i bu to r s may be
19 ∗ used to endorse or promote products der ived from th i s so f tware
20 ∗ without s p e c i f i c p r i o r wr i t ten permiss ion .
21 ∗
22 ∗ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 ∗ ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 ∗ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 ∗ FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 ∗ COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 ∗ INCIDENTAL, SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 ∗ BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS
29 ∗ OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 ∗ AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT
31 ∗ LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32 ∗ ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 ∗ POSSIBILITY OF SUCH DAMAGE.
34 ∗
35 ∗∗∗ ∗/
36
37 #inc lude <math . h>
38 #inc lude ” p ixe l smear ing . h”
39
40 /∗∗
41 ∗ @brie f Helper funct i on f o r computing the d i s tance between po int s .
42 ∗
43 ∗
44 ∗ @param sr c (I) po int one
45 ∗ @param dst (I) po int two
46 ∗/
47 f l o a t po i n t po i n t d s t (smea r i n g p i x e l t ∗ src , smea r i n g p i x e l t ∗ dst) {
48 return s q r t f (powf (dst−>xo f f − src−>xof f , 2) + powf (dst−>yo f f − src−>yof f , 2)) ;
49 }
50
51 /∗∗
52 ∗ @brie f Helper funct i on f o r computing the d i s tance between a point and a l i n e .
53 ∗ Math courtesy o f Ton Ramaker .
54 ∗
55 ∗
56 ∗ @param dst (I) the point
57 ∗ @param A (I) part A of the l i n e
58 ∗ @param B (I) part B of the l i n e
59 ∗/
60 f l o a t p o i n t l i n e d i s t (smea r i n g p i x e l t ∗ dst , f l o a t A, f l o a t B) {
61 f l o a t C = dst−>yo f f + dst−>xo f f / A;
62 f l o a t ix = (C − B) / (A + 1 / A) ;
63 f l o a t iy = ix ∗ −1 / A + C;
64 return s q r t f (powf (dst−>xo f f − ix , 2) + powf (dst−>yo f f − iy , 2)) ;
65 }
66
67 /∗∗
68 ∗ @brie f Helper funct i on f o r computing the d i s tance between a point and a l i n e f o r when the l i n e i s

ho r i z on ta l .
69 ∗
70 ∗

Mark Ramaker,
518404

82 Version 2

71 ∗ @param dst (I) the point
72 ∗ @param A (I) part A of the l i n e
73 ∗ @param B (I) part B of the l i n e
74 ∗/
75 f l o a t p o i n t l i n e d i s t h o r z (smea r i n g p i x e l t ∗ dst , f l o a t A, f l o a t B) {
76 return dst−>yo f f > 0 ? dst−>yo f f : −dst−>yo f f ;
77 }
78
79 /∗∗
80 ∗ @brie f Helper funct i on f o r computing the d i s tance between a point and a l i n e f o r when the l i n e i s

v e r t i c a l .
81 ∗
82 ∗
83 ∗ @param dst (I) the point
84 ∗ @param A (I) part A of the l i n e
85 ∗ @param B (I) part B of the l i n e
86 ∗/
87 f l o a t p o i n t l i n e d i s t v e r t (smea r i n g p i x e l t ∗ dst , f l o a t A, f l o a t B) {
88 return dst−>xo f f > 0 ? dst−>xo f f : −dst−>xo f f ;
89 }
90
91 /∗∗
92 ∗ @brie f Helper funct i on c r e a t e s a l i s t o f p i x e l po int s (o f f s e t s) and th e i r i n co rpo ra t i on c o o e f i c i e n t
93 ∗ Math courtesy o f Ton Ramaker .
94 ∗
95 ∗
96 ∗ @param r e t u r n bu f f e r (O) the bu f f e r f o r the c o l l e c t e d po int s
97 ∗ @param xvec (I) the x component o f the smearing vector
98 ∗ @param yvec (I) the y component o f the smearing vector
99 ∗ @param cu t o f f (I) the d i s tance o f p i x e l s along the vector to be incorporated (between 0 .5 and 1 should be

exected)
100 ∗/
101 in t c o l l e c t p o i n t s (smea r i n g p i x e l t ∗ r e tu rn bu f f e r , f l o a t xvec , f l o a t yvec , f l o a t c u t o f f) {
102 in t rc = 0 ;
103 f l o a t (∗ p o i n t l i n e d i s t f u n c) (smea r i n g p i x e l t ∗ dst , f l o a t A, f l o a t B) ;
104 f l o a t vd = s q r t f (powf (xvec / 2 , 2) + powf (yvec / 2 , 2)) ;
105 f l o a t A;
106 f l o a t B;
107 f l o a t wa = 0 ;
108 unsigned in t s i z x = xvec >= 0 ? (unsigned in t) (xvec) + 5 : (unsigned in t)(−xvec) + 5 ;
109 unsigned in t s i z y = yvec >= 0 ? (unsigned in t) (yvec) + 5 : (unsigned in t)(−yvec) + 5 ;
110 i f (s i z x % 2) s i z x++;
111 i f (s i z y % 2) s i z y++;
112 smea r i n g p i x e l t s r c = { . x o f f = 0 , . y o f f = 0 , . d i s t = 0} ;
113 smea r i n g p i x e l t pend = { . x o f f = xvec / 2 , . y o f f = yvec / 2 , . d i s t = 0} ;
114 smea r i n g p i x e l t nend = { . x o f f = −xvec / 2 , . y o f f = −yvec / 2 , . d i s t = 0} ;
115
116 i f (xvec == 0 && yvec == 0) return 0 ;
117 e l s e i f (xvec == 0) p o i n t l i n e d i s t f u n c = &p o i n t l i n e d i s t v e r t ;
118 e l s e i f (yvec == 0) p o i n t l i n e d i s t f u n c = &po i n t l i n e d i s t h o r z ;
119 e l s e {
120 p o i n t l i n e d i s t f u n c = &p o i n t l i n e d i s t ;
121 A = yvec / xvec ;
122 B = yvec − A ∗ xvec ;
123 }
124
125 in t limy = (s i z y / 2) ;
126 in t limx = (s i z x / 2) ;
127 f o r (i n t y i = −(s i z y / 2) ; y i <= limy ; y i++)
128 f o r (i n t x i = −(s i z x / 2) ; x i <= limx ; x i++) {
129 smea r i n g p i x e l t dst = { . x o f f = (f l o a t) xi , . y o f f = (f l o a t) yi , . d i s t = 0} ;
130 f l o a t pd1 = po in t po i n t d s t (&pend , &dst) ;
131 f l o a t pd2 = po in t po i n t d s t (&nend , &dst) ;
132 f l o a t pd = pd1 < pd2 ? pd1 : pd2 ;
133 f l o a t ld = (∗ p o i n t l i n e d i s t f u n c) (&dst , A, B) ;
134 f l o a t ad = po i n t po i n t d s t (&src , &dst) ;
135
136 i f (ad > vd) {
137 dst . d i s t = cu t o f f − pd ;
138 i f (dst . d i s t > 0) {
139 r e t u r n bu f f e r [rc++] = dst ;
140 wa += dst . d i s t ;
141 }
142 } e l s e {
143 dst . d i s t = cu t o f f − (pd < ld ? pd : ld) ;
144 i f (dst . d i s t > 0) {
145 r e t u r n bu f f e r [rc++] = dst ;
146 wa += dst . d i s t ;
147 }
148 }
149 }
150
151 f o r (i n t i = 0 ; i < rc ; i++) r e t u r n bu f f e r [i] . d i s t /= wa ;
152
153 return rc ;
154 }
155
156 /∗∗
157 ∗ @brie f Helper funct i on f o r computing a s a f e index .
158 ∗
159 ∗
160 ∗ @param index (I) the index to be evaluated
161 ∗ @param max (I) the maximum al lowed
162 ∗/
163 in t s i (i n t index , i n t max) {
164 i f (index < 0) return 0 ;
165 return index > max ? max : index ;
166 }
167
168 /∗∗
169 ∗ @brie f Smears a frame along the provided vector
170 ∗
171 ∗
172 ∗ @param in (I) the input image
173 ∗ @param out (O) the smeared output image
174 ∗ @param xvec (I) the x component o f the smearing vector

83

175 ∗ @param yvec (I) the y component o f the smearing vector
176 ∗ @param lim (I) the d i s tance o f p i x e l s along the vector to be incorporated (between 0 .5 and 1 should be

exected)
177 ∗/
178 void smear frame (IplImage ∗ in , IplImage ∗ out , f l o a t xvec , f l o a t yvec , f l o a t l im) {
179 in t c ;
180 smea r i n g p i x e l t bu f f [5 0 0] ;
181
182 c = c o l l e c t p o i n t s (buff , xvec , yvec , l im) ;
183
184 i f (c){
185 f o r (i n t y i = 0 ; y i < in−>he ight ; y i++) f o r (i n t x i = 0 ; x i < in−>width ; x i++) f o r (i n t pi = 0 ; p i < in

−>nChannels ; p i++) {
186 f l o a t t = 0 ;
187 f o r (i n t a i = 0 ; a i < c ; a i++) t += (u in t 8 t) in−>imageData [s i (y i + buf f [a i] . yo f f , in−>he ight) ∗ in

−>widthStep + s i (x i + bu f f [a i] . xo f f , in−>width) ∗ in−>nChannels + pi] ∗ bu f f [a i] . d i s t ;
188 out−>imageData [y i ∗ out−>widthStep + xi ∗ out−>nChannels + pi] = (char) t ;
189 }
190 } e l s e {
191 cvCopy (in , out , NULL) ;
192 }
193 }

84

Guidance Module - HiPerGreen project

Appendix E

Ultra Wide Band Simulation Data

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

	0

	200

-1000 -800 -600 -400 -200 	0 	200 	400 	600 	800 	1000

start-end

UWB	simulation

UWB	simulation	data

Figure E.1: Ultra Wide Band Simulation data. Scale in centimeters. Generated by taking the reference
and adding a noise having a standard deviation of 30cm to each measurement interval.

Mark Ramaker,
518404

85 Version 2

Guidance Module - HiPerGreen project

Appendix F

The Roll Rotation Induced
Measurement Ripple

Figure F.1: The ripple effect in the integrated measurement of unit test 1 (Fig: 7.3), as produced by
the rail system’s sinusiodal rotations in the roll axis.

Mark Ramaker,
518404

86 Version 2

Guidance Module - HiPerGreen project

Appendix G

An Example of Optical Flow

Figure G.1: An example of optical flow where the right image is translated 140 pixels down and to
the left compared to the left image. The green blocks on the left can be seen as the reference features,
and the purple blocks on the right the corresponding feature locations in the translated image.

Mark Ramaker,
518404

87 Version 2

Guidance Module - HiPerGreen project

Appendix H

Trajectory Simulation

Figure H.1: The frames of the straight line trajectory are rotated 90◦ every quarter of the total
trajectory thus forming a square trajectory.

Mark Ramaker,
518404

88 Version 2

	Abstract
	Acronyms
	Glossary
	Introduction
	Subject
	Problem Definition
	Relevance
	Goals
	Methods
	Overview

	Specifications and Requirements
	Specifications
	Requirements

	Methods
	Instrument for SQ.I. Which significant parameters determine the accuracy of the GM?
	Instrument for SQ.II. How to design the GM such that it meets all the requirements by incorporating the significant parameters?
	Instrument for SQ.III. How can the data from the GM and UWB be combined and filtered such that useful positioning information is obtained?
	Instrument for SQ.IV. Does the GM with the design considerations applied realize the goal of increasing the accuracy of the UAS?

	System Precision Factors
	Major System Components
	Camera Theory
	Height Measurement Theory
	Rotational Compensation Theory
	Optical Flow Estimation Theory
	Theory Discussion
	List of Factors

	Theoretical System Design
	Theoretical Optical Sensor
	Theoretical Height Sensor
	Theoretical Rotation Sensor
	Flow Estimator Design
	Theoretical Components

	Sensor Fusion and State Estimation
	The Makings of a KF
	Kalman Filters and Sensor Fusion
	System Definition
	Data Transformation
	Filter Initialization
	Example Implementation

	Theory Verification
	Methodology
	Test Setup
	Results

	Conclusion
	Recommendations
	List of Figures
	List of Tables
	List of Listings
	Bibliography
	Appendices
	Symmetry in Gaussian Multiplication
	Unit Test Definitions
	Guidance Module Sourcecode
	Smearing Simulation Sourcecode
	Ultra Wide Band Simulation Data
	The Roll Rotation Induced Measurement Ripple
	An Example of Optical Flow
	Trajectory Simulation

