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1 Introduction and conclusions

Since the early days of superstring theory, the heterotic string [1-3] has served as a promis-
ing candidate theory for a unified quantum description of particle physics as well as gravity,
see e.g. [4] for a textbook introduction to string phenomenology. One of the main obsta-
cles lies in the fact that the heterotic string is conventionally defined in a ten-dimensional
space-time. Hence, six spatial dimensions have to be compactified in order to make contact
to the observable four-dimensional world.

One possibility is to compactify on a six-dimensional (symmetric) toroidal orbifold [5, 6]
which is the quotient of a six-torus T° by some of its discrete isometries, see [7] for a full
classification with A/ > 1 supersymmetry in four dimensions. For example, one can use
an Abelian rotational symmetry Zyg and define the orbifold geometrically as the quotient
space T9/Zy. Especially, in the presence of discrete Wilson lines [8] orbifold compactifi-
cations have been used to construct (minimal) supersymmetric extensions of the Standard
Model (MSSM) from the heterotic string [9-26].! These constructions can be considered
to be promising directions to connect string theory to particle physics: beside reproducing
MSSM-like models, they offer an appealing geometrical interpretation, in which many prop-
erties of the elementary particles depend on their localization in extra dimensions [14, 33—
35]. Unfortunately, these constructions generically leave a number of moduli, like the
compactification radius R, unfixed.

A possibility to stabilize moduli is to generalize the construction of symmetric orb-
ifolds to asymmetric ones: in this case one quotients the compactification space not only

'For related MSSM model-building using compactifications of the heterotic string on Calabi-Yaus see
e.g. [27-32].



geometrically, but also by a genuine stringy symmetry [36]. The most famous example
of such a symmetry of string theory is T-duality: in its simplest form, T-duality is a Zo
transformation that identifies a string compactification on a circle with small radius R with
another compactification on a circle with large radius 1/R. This is a full quantum duality
on the string worldsheet as this can be described as field redefinitions in a path integral
approach [37-39]. Now, in order to be able to perform the quotient by this T-duality
transformation the radius R can no longer be a free parameter, but it has to be fixed at the
so-called self-dual value R = 1 (in string units). This promotes the T-duality transforma-
tion R +— 1/R to a symmetry of the theory. On the left- and right-moving coordinate fields
Xj and X; this T-duality transformation is realized by X; — +X; and X; — —X,;. Hence,
in general, such T-dualities act differently on the left- and right-moving degrees of freedom
of the string and the resulting quotient spaces are often called asymmetric orbifolds [40].
Asymmetric orbifolds provide specific examples of non-geometric string backgrounds [41—
43] or so-called T-folds [44, 45]. More recently double field theory [46-48] was introduced as
an attempt to obtain a setting with doubled geometry to describe such T-folds using geo-
metrical tools inspired by a string field-theoretical description of the left- and right-moving
string coordinates. Hence, asymmetric string constructions are of increasing interest in
the connection to non-geometric flux backgrounds [49, 50]. Various aspects of asymmetric
orbifolds have been studied in the past [51-59] and with recent renewed interest [60, 61]
and in particular also in the context on non-supersymmetric constructions [62-64].

In contrast to symmetric orbifolds the phenomenological prospects of heterotic asym-
metric orbifolds are far less studied. The main asymmetric activities in this direction
concentrated up to now on the free fermionic construction of the heterotic string [65, 66].
These free fermionic models naturally incorporate both, asymmetric as well as symmetric
Zs twists [67] and successful MSSM model-building has been carried out [68-71]. Fur-
thermore, there has been some recent activities on model-building using asymmetric Zs
orbifolds [72-74]. Finally, asymmetric string constructions can be further generalized in
the covariant lattice approach [75] which generalizes the Narain lattice [76], in phenomeno-
logically promising Gepner models [77-81] and further with asymmetric CFTs [82-84].

Main results. In this work we develop a generalized space group description of Narain
orbifolds and utilize this formalism throughout this work to study various aspects of sym-
metric and asymmetric orbifolds in a unified fashion. To define the generalized space group,
we first perform a concise investigation of the heterotic T-duality group: we decompose its
generators into geometrical and non-geometric ones and use them to parametrize the maxi-
mal compact subgroup of the T-duality group. This is important, as the maximal compact
subgroup contains the finite subgroups that can be used to build (a)symmetric orbifolds.
Hence, the generalized space group provides a unified framework to study symmetric and
asymmetric orbifolds in a systematic manner.

We apply our understanding of the T-duality group to derive conditions for the sta-
bilization of Narain moduli by orbifolding. This leads us to a closed character formula to
count the number of unstabilized Narain moduli. In particular, this formula shows that all
Narain moduli are fixed, if the left- and right-moving twists do not have any irreducible



representations of the point group in common. We use our findings on moduli stabiliza-
tion to formulate sufficient conditions for a Narain orbifold to exist crystallographically by
reducing this question to the question whether certain Riccati equations admit solutions.
Hence, using our generalized space group description one can check that a Narain orbifold
exists at least crystallographically and one can identify the associated Narain torus that is
compatible with the orbifold action.

Moreover, in this paper we lay the foundation for a classification of Narain orbifolds.
Even though asymmetric orbifolds have been studied essentially since the birth of super-
string theory, they have been analyzed so far essentially on a case-by-case basis. Based on
our definition of the generalized space group we identify equivalence relations for Narain
orbifolds. These equivalences extend the notations of Q-, Z- and affine-equivalences from
theory of crystallography to the Narain case leading to the notions of Narain Q-, Z- and
Poincaré-classes. This can be seen as a first step towards a classification of symmetric
as well as asymmetric Narain orbifolds, which includes — besides the information on the
six-dimensional compactification space — also the anti-symmetric Kalb-Ramond B-field,
the (discrete) Wilson lines and the orbifold shift-vectors in a unified fashion.

Finally, we construct a non-trivial set of (two-dimensional and more general) Narain
orbifolds by specifying their generalized space groups. We use these examples to illustrate
many aspects of our study, like the stabilization of Narain moduli and the equivalence
classes for Narain orbifolds.

Outlook. In this work we investigated necessary conditions for a Narain orbifold to exist.
However, we ignored possible extra conditions coming from modular invariance, as they
have been studied in the past, see e.g. [53]. However, it would be advantageous to check
for full modular invariance on the level of the generalized space group and, ultimately,
to incorporate modular invariance in the definition of generalized space groups such that
generalized space groups yield modular invariant Narain orbifolds by construction.
Moreover, we can imagine various applications of our work: the space group formula-
tion of Narain orbifolds allows for a systematic construction of large sets of examples in
various dimensions and in both, the (D, D) case as well as the heterotic (D, D + 16) case.
In addition, using our definitions of Narain Q-, Z- and Poincaré classes one can unam-
biguously decide whether two Narain orbifold models are physically identical or not. This
might proof to be very useful for systematic investigations and classifications for various
reasons: first of all, in the traditional approach two (symmetric) orbifold models are often
said to be equivalent if their massless matter spectra agree. However, this is neither neces-
sary nor sufficient: for example, two different string constructions might possess identical
massless spectra but different couplings, or the massless spectrum of a given toroidal orb-
ifold compactification can be enhanced at specific points in its moduli space. Precisely here
the Narain Poincaré classes would come to the rescue and decide for (in)equivalence. How-
ever, our new definition of equivalence might be computationally very intensive and, hence,
further studies might be necessary in order to apply it practically for large computer scans.
Second, having an unambiguous criterion for two Narain orbifolds to be inequivalent,
our work can be used to classify Narain orbifolds, both symmetric and asymmetric ones.



Such a classification would automatically include the orbifold twists and shifts as well as
the background fields, i.e. the torus metric, the B-field and (discrete) Wilson lines.

Finally, one can use our definitions of Narain Q-, Z- and Poincaré classes to decide
whether a Narain orbifold is genuine asymmetric or only seemingly. Hence, our approach
might be also very helpful in the study of non-geometrical backgrounds for string theory in
general, since it has been proven to be quite difficult to obtain concrete, yet true, examples
of such backgrounds.

Paper outline. In section 2 we recall the basics of the Narain description of heterotic
torus compactifications with continuous Wilson lines A, the anti-symmetric Kalb-Ramond
B-field and the metric G. In this section we exploit the fact that the moduli space of Narain
compactifications is concisely described as the coset of the continuous T-duality group over
its maximal compact subgroup and the discrete T-duality group On(D, D + 16;Z).

Given this prominent roles of continuous and discrete T-duality groups, we reserve
section 3 to study their properties. In particular, we list a complete set of generators of
O7(D, D+16; R), which are chosen such that they parametrize the discrete T-duality group
if their parameters are restricted to specific, quantized values. In addition, we give the non-
linear transformations of the moduli G, B, A under arbitrary T-duality group elements.

After these preparations, section 4 sets up a generalized space group description of
Narain orbifolds involving combined shift- and twist-elements. In this section various
properties of Narain orbifolds are uncovered. In particular, we show that the shifts of
the generalized space group are quantized in the directions in which the twists act trivially.
Moreover, we emphasize that the amount of preserved target-space supersymmetry is solely
decided by the twists 0, that acts on the right-moving sector.

Section 5 investigates two related questions: i) under what conditions does a Narain
orbifold exist and ii) how many Narain moduli, G, B, A, are fixed. To facilitate this discus-
sion the lattice basis is introduced in which the twists are represented by integral matrices
Pa € Of(D, D + 16;Z). Some properties of these twists in the lattice basis can concisely
be characterized using the generalized metric ‘H and the associated Zs-grading Z. By
exploiting the coset structure of the Narain moduli space, we show that a Narain orbifold
exists provided that certain Ricatti equations, i.e. coupled matrix equations, have a solu-
tion. Deformations of such a solution correspond to the unconstrained moduli of a Narain
orbifold. Using some results collected in appendix A we derive a character formula to count
their number.

All these results are used in section 6 to lay the foundations for a classification of
Narain orbifolds. Given that the concepts of Q-, Z- and affine-classes proved to be very
useful for the classification of symmetric orbifolds, we extend these concepts to Narain
orbifolds.

To illustrate the power of the generalized space group description of Narain orbifolds
we study symmetric orbifolds in section 7 in this language. Even though the main interest
of Narain orbifolds lies in the construction of asymmetric orbifolds (or T-folds), we show
in this section that the language of Narain orbifolds gives a convenient, unified description
of the geometry and the (discrete) Wilson lines.



Finally, in section 8 we employ the Narain Q- and Z-classes to study two-dimensional
Abelian Z g Narain orbifolds. We provide a large table with many examples of previously
unknown two-dimensional Narain orbifolds. By an explicit construction we show that it
is possible to have a Z1o two-dimensional Narain orbifold, while it is well-known that the
largest order of FEuclidean Zg twists is K = 6 in two dimensions. Moreover, Q- and Z-
classes are particularly useful to distinguish seemingly asymmetric from truly asymmetric
orbifolds as we illustrate by various examples.

2 Heterotic Narain torus compactifications

This section reviews the Narain formulation of heterotic torus compactifications [76] and
sets the notation used throughout this work. The moduli space can be described using
the generalized vielbein E, which is parametrized by continuous Wilson lines A, the anti-
symmetric Kalb-Ramond B-field and the metric G. This vielbein characterizes coordinate
field boundary conditions as well as the momenta that appear in the representation of the
Narain torus partition function as a lattice sum.

2.1 Worldsheet field content of the heterotic string

We parametrize the two-dimensional string worldsheet by (real) coordinates o and &, de-
fined by

o = 01+ 00, g = 01— 0y, (2.1)

where g and o1 denote the worldsheet time and space coordinate, respectively. Worldsheet
fields that solely depend on o or & are called left-moving or right-moving fields, respectively.
They are correspondingly labelled by a subscript 1 or r (or in capital letters L/R). The
heterotic string is closed because of the identification (o¢,01) ~ (09,01 + 1). Hence,
(00, 01) are coordinates on a worldsheet cylinder for the freely propagating string.

The heterotic string [1-3] is described by a conformal field theory on the worldsheet
with 26 left-moving real bosonic fields and ten right-moving real bosonic and fermionic
fields.

The easiest approach to connect this theory to particle physics in d dimensions (for
example d = 4) is to perform a stepwise compactification: in the first step one compactifies
the 16 surplus left-moving bosonic fields on a 16-dimensional torus in order to match the
number of left- and right-moving bosonic fields to ten. The resulting theory corresponds to
a ten-dimensional theory with a gauge group dictated by modular invariance of the string
partition function. For example, in the case of ten-dimensional N' = 1 supersymmetry the
gauge group is fixed to either Eg x Eg or SO(32). Then, in a second step one compactifies
on a D-dimensional space, for example on a Calabi-Yau or an orbifold. As a result one
obtains a d-dimensional theory, where d + D = 10, e.g. 4 + 6 = 10. An alternative
approach, which we use in this paper, is the so-called Narain construction, where the two-
step compactification described above is performed in a single step compactification of the
heterotic string directly to d dimensions, see section 2.2.



In light-cone gauge two left- and right-moving uncompactified dimensions are gauge-
fixed and, hence, eliminated. Thus, the heterotic string in light-cone gauge can be described
by the following worldsheet fields:

e As left-moving fields, there are 84+16=24 real bosonic fields. They are denoted by
zl'(o) with p=2,...,d =1 (= 0,1 are chosen to be fixed in light-cone gauge) for
the uncompactified and Y1, (o) for the compactified dimensions, respectively. Further-

nw>—<m®>, (2.2)

more, we set

yL(o)
where y1(0) = (y{(0)) for i = 1,...,D live on the D-dimensional compactification
space. In addition, y,(c) = (y{(¢)) for I = 1,...,16 are often referred to as the
gauge degrees of freedom.

e As right-moving fields, there are eight real bosonic fields plus their real fermionic
superpartners. They are denoted by (z¥(5),vy%(5)) and Yr(6) = (V&(5),v5(3)),
respectively, with y =2,....,d—1landi=1,...,D.

Left- and right-moving bosonic fields can be combined to coordinate fields x*(o, )
and X'(0,5) which parametrize the d uncompactified and D compactified dimensions,
respectively, i.e.

1 4
2(o,0) = — (z¥(5) + z!'(0 and X'o,7) =
(0,0) 7 (zF(2) + 2{'(0)) (0,0)

Their classical equations of motion read

05052 (0,6) = 0 and 0,0,X"(0,5) = 0, (2.4)

(@) +wi(0) - (23)

Sl

which is solved by the general ansatz (2.3).
Hence, collectively, we have 2D + 16 compactified bosonic worldsheet fields Y nested
in the following fashions:

yr(a) _
Y(0,0) = |m) |, wo0) = (yr(”)>, Yi(o) = (yl(‘”). (2.5)

(o) y(o) yL(o)

We define the following dimensions: D, = Dy = D and Dy, = D1+ 16 = D 4+ 16. We will
use the same notation as in eq. (2.5) for other types of vectors.

The separation (2.3) of the coordinate fields X*(o, &) into left- and right-moving coor-
dinates y!(c) and yi(7) is unique up to a constant shift of the zero modes &, i.e.
Y(0.0) ~ Y(0.0) 42, 5= (660 ) ~ o) +EL i) ~ pile) ¢

(2.6)

with ¢ € RP. This has important consequences for the number of worldsheet degrees of
freedom: if one counts left- and right-movers y(o, &) € R?P independently there seems to
be a doubling of degrees of freedom on the worldsheet compared to the coordinate fields
X(0,5) € RP, see eq. (2.3). However, due to eq. (2.6) there are only D independent
zero-modes of y(o, &) that specify the position of the string and the numbers of worldsheet
degrees of freedom are equal for X (o,5) and y(o, 7).



2.2 Torus partition functions as Narain lattice sums

We consider torus compactifications TH%D 16 — R2D+16 /0 of the 2D +16 bosonic worldsheet
fields Y. I is a so-called 2D + 16-dimensional Narain lattice, which we will analyze in this
section in detail. This will be of use when we discuss the more general case of Narain
orbifolds later in section 4.

In the case of a Narain torus, the closed string boundary conditions of the worldsheet
fields are given by

z(o+1l,0+1) =x(0,0), Yr(c+1)=(-)°vyr(a), Y(o+1l,6+1)=Y(0,6)+L, (2.7)

where s = 0,1 parametrizes the different spin structures of the right-moving fermions
YR, i.e. s = 0 yields the so-called Ramond sector and s = 1 the Neveu-Schwarz sector.
Furthermore, L € II" denotes a lattice vector of 1.

At one-loop the partition function Zg, (7, 7) is given by the string vacuum-to-vacuum
amplitude which corresponds to a worldsheet torus. This torus is defined by two period-
icities of worldsheet fields: (og,01) ~ (00,01 + 1) and (0g,01) ~ (09 + 72,01 + 1) for the
string to close in the worldsheet-spatial and worldsheet-time directions, respectively. Here,
T = 7| + i 7o is the so-called modular parameter of the torus. Then, the full partition
function Zgg (7, 7) of the one-loop worldsheet torus can be factorized as follows

qull(T,f') = Zx(T,?)Zw(f)Zy(T,f). (28)

The individual partition functions are given by

Zrr) = o [ | (2.99)
T, 7T) = — — , 9a
' AT @)
1 1 < :
Zy(7) = = erilstsi g ] 2.9b
1 1p2 1.2
Zy(1,7) = —p=p Z R E (2.9¢)
AT e
where ¢ = €?™7 ¢ = ¢ 27 and eg = (1,...,1) denotes the d-dimensional vector with

all entries equal to one. Here and in the following we often omit the dependencies on
7 and T for notational ease. In addition, 7n(7) denotes the Dedekind function and 6 the
theta-function. The vectors P are from the dual lattice I'* which is defined as P € T if

PIyL € 7, (2.10)

for any L € II'. Here, we have introduced the Lorentzian inner product of lattice vectors as

-1 0
PTynP = —pl'pl+ PL P, using P= Pr and 7= b . (2.11)
F, 0 Tistp
The metric n should not be confused with the Dedekind function n(7) that appears in
partition functions; we assume that the reader understands from the context which is
meant.



The partition function Z, for the right-moving fermions can also be presented as a
lattice sum, i.e. from (2.9b) we get

Zy(T) = 41?) S @k (-F, (2.12)
prELY

Bl

where the lattice Iy, = I'vec @ Igpin consists of the vectorial and spinorial weight lattices,
given by I'vee = {pr € Z* | p£e4 = odd} and gpin = {pR+% e4 | pr € Z* and p£e4 = even}.
Furthermore, F' is the target-space fermion number, i.e. F' = 0 for pr € ['yec and F' =1 for
PR € I‘spin'

Eq. (2.12) can also be obtained as follows: the eight real worldsheet fermions
Yr = (Y, ¥%) can be grouped in four complex fermions ¢Yr = (Y, ¢g), where m =
1,...,d/2—1and a =1,...,D/2 correspond to the uncompactified and compactified di-
mensions, respectively. Then, one can bosonize the complex fermions. Consequently, the
bosonized fermions carry momentum pr = (py,pg) and the associated partition function
coincides with eq. (2.12). The momentum p’; has an important target-space interpretation:
a string state with pf’ being integer or half-integer signals a target-space boson or fermion

in d dimensions, respectively.

Modular invariance. The full partition function is required to be modular invariant:
at one-loop the worldsheet has the topology of a torus with modular parameter 7. Not
all 7 € C with Im(7) > 0 parametrize inequivalent worldsheet tori. Because of conformal
symmetry tori related by the modular transformations

T:7 = 7+1, S:1 = —1/7, (2.13)

give the same physics. T and S generate the modular group PSL(2,Z). Invariance of the
partition function (2.8) under 7' and S transformations requires that

1
VP el : 5PTnP =0 and I =T, (2.14)

where a = b means that a and b are equal up to some integer. These conditions tell us
that II' is an even self-dual lattice with signature (D, D 4 16); the so-called Narain lattice.
Note that vectors P € II' can be redefined as

P> UP (2.15)
for U € O(D;R) x O(D + 16; R) without changing the partition function (2.8).

2.3 Narain lattices

We analyse the conditions (2.14) in more detail. To do so, we may parametrize a general
lattice vector P € II' as

P=EN, N = |n]| e z**¢ (2.16)



in terms of an invertible matrix E. This matrix F is called the generalized vielbein of the
Narain lattice II' as its columns correspond to 2D + 16 basis vectors of the lattice I'. The
components of the vector N can be interpreted as winding numbers m € ZP, Kaluza-Klein
numbers n € ZP and gauge lattice numbers ¢ € Z'®. From the vielbein E we can define
the Narain metric 7 as

n=EnE. (2.17)

Then, the scalar product of two vectors P, = EN; € II" for i = 1,2 is given by
pPlnp, = N (E"nE) N, = N{{N, . (2.18)
Hence, the lattice II' is even if
PTnpP = NTHN € 27 . (2.19)

Note that an even lattice is automatically integral, i.e. PTn P’ = NTHN’ € Z. Therefore,
the Narain metric 7 is a symmetric, integer matrix with even entries on the diagonal and
signature (D, D + 16). The dual lattice I'* is spanned by the dual vielbein E* which is
defined as

(E*)'nE =12p116, (2.20)
so that for a given P = E*N € I'* we have PTnP’ = 0 for all P = EN’ € . By
comparing this equation with (2.17) one infers that the dual basis is given by

E*=En1'. (2.21)

Two lattices are identical if their vielbeins are related by a GL(2D +16; Z) transformation.
Hence, I is self-dual, '™ = II", if the Narain metric in eq. (2.21) satisfies

7 € GL(2D + 16;Z) . (2.22)

Consequently, det7 = +1 and we see from eq. (2.17) that the volume of the unit cell
spanned by the vielbein E is given by vol(II') = £ det £ = 1.

It is often convenient to choose a special representation of the Narain metric. If not
stated otherwise we will use

0 1p0
n=|1p 0 0], (2.23)
0 0 g

where g is the metric of an even, self-dual 16-dimensional lattice. (Throughout this paper

we use a hatted notation to refer to objects that are naturally defined in the lattice basis.)

T
g

of a, are the 16 simple root vectors of Eg x Eg. The explicit expression for oy is given by

_ [a(Eg) 0
ag_< . a(E8)>. (2.24)

We choose it to be the Cartan matrix of Eg x Eg and write g = o, a where the columns



Q
/:

=
oo

The columns of a(Eg) represent the eight simple roots ), I =1,...,8, of the excep-

tional Lie algebra Eg. They can be chosen as follows

1000000O0-3
11000 00-3
0-110000-%
(oo -11000-3
=10 001100-L (2:25)
0000O0-111-3
00000-11-3
00000O0O-3

2.4 The Narain moduli space

Given the choice of a Narain metric 7 in eq. (2.23) it is natural to look for a corresponding
generalized vielbein E, which yields this Narain metric ETn E = 7). We see that a particular
solution R to equation (2.17) is given by

L1y =L1p 0

V2P e
R = %111; %1[, 0 with  RTnR = 7. (2.26)
0 0 o

The general solution to (2.17) can be written in terms of this particular solution as
E = URE, (2.27)
so that consequently,
ETnE = ETHE = 7, (2.28)

if U € 0,(D, D +16;R) and E € O5(D, D + 16; R), i.e. if UTnU =1 and ETHE = 7.

In the following we want to identify which transformations U and E in eq. (2.27) map
between physically inequivalent theories and which do not. Therefore, we will identify the
moduli space of heterotic Narain constructions. To do so, we define?

U=R'UR (2.29)

and note that U € O5(D, D +16;R) if U € O, (D, D +16;R). Now, take a general vielbein
E=URE. Then, one can absorb U into a redefinition of E by defining E' as

E' = UFE = (R'UR) E € O3(D,D+16;R) hence E = RE'.  (2.30)

However, it is not useful to absorb all U transformations in eq. (2.27) into a redefinition of
E: consider U € O(D;R) x O(D+16;R) C O, (D, D +16). As the partition function (2.8)
depends only on PE and p? such transformations leave the partition function invariant.
Thus, U € O(D;R) x O(D + 16; R) in eq. (2.27) maps physically equivalent theories to

2In the remainder of this paper we will use this conjugation with R to switch between O, and Oz group
elements.
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each other. On the other hand, E transformations in eq. (2.27) change the partition
function (2.8) in general. Therefore, E contains the parameters (i.e. the moduli) that
continuously deform the Narain lattice with vielbein R to Narain lattices with vielbeins
RE, which are in general physically inequivalent but share the same Narain metric 7).
However, not all vielbeins E are physically inequivalent: consider two vielbeins E, E’ for
two Narain lattices I, I satisfying (2.17). Under what condition(s) do these backgrounds
describe the same Narain lattice I” = II'? This happens when for each point P € I there is
a unique point P’ € I which is identical to it: in the parametrization (2.16) this amounts to

UEN = UP = P = E'N', (2.31)

such that the integer vectors N and N’ are mapped to each other one-to-one, i.e.
N = MN with M = (E7'UTE'). Note that we added in eq. (2.31) a rotation
matrix U € O(D;R) x O(D + 16;R), which is unphysical as discussed above. Hence,
the Narain lattices " and I are the same if there exists a rotation matrix U such that
M e GL(2D + 16;Z). Moreover, we assumed that both E and E’ give the same Narain
metric 7, see (2.17). This implies that the matrix M is actually an element of the so-called
T-duality group Oz(D, D + 16;7Z), i.e.

MTHM = 7. (2.32)

(More details on the T-duality group Oz(D, D + 16;Z) are given in section 3.) Therefore,
Narain compactifications based on the vielbeins E = RE and E' = U E M are physically

equivalent, i.e.

E =RE ~E = UREM, (2.33)

if U € O(D;R) x O(D +16;R) and Me O5(D, D +16;7Z). In terms of E this equivalence
relation reads

E ~UEM, (2.34)
where U = R™IU R. This equivalence relation can be used to define a quotient space.
Consequently, the moduli space of Narain compactifications is uniquely parametrized by
an element E in the coset

M = O(D;R)xO(D + 16; R)\Oz(D, D + 16; R)/O5(D, D + 16; Z) . (2.35)

Here, it is understood that the first two factors in the denominator act from the left
(via U) while the last factor acts from the right (via M), see eq. (2.34). The T-duality
transformations M are said to change the duality frame.

An explicit parametrization of the matrix U € O(D;R) x O(D + 16; R), satisfying

vlrv=1, Urnu=n, (2.36)
is given by
u 0 0
U=10 u uy |, (2.37)
0 ury ug,
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provided that the constraints urTur = ulTul + uauu = 1p, u%:ulL + uEuL = 16 and
ulTulL + uﬂuL = 0 are fulfilled. As we have already seen above, often the closely related

matrix
1
U4 u_— ﬁU]LCYg 1
U=R'WR = (. U %umag ,  where wuq = i(uliur),

%aglum %aglum agluLag
(2.38)
is more convenient.
Modulo the transformations U and M. , the general solution to eq. (2.28) can be repre-

sented as
e 0 0 1
E = [—eTC0T e —eTATq |, C = B+ iATA . (2.39)
aglA 0 T

Hence, E= E(e, B, A) is parametrized by the Narain moduli e, B and A, where e is the
D-dimensional vielbein of the D-torus with metric G = e’e. A is a 16 x D matrix, whose
i-th column contains the Wilson line which is associated to the i-th basis vector in e and,
finally, B denotes the anti-symmetric Kalb-Ramond B-field.

In summary, we can specify the most general form of the generalized vielbein E with
Narain metric 7 = ETn E as given in eq. (2.23). It reads

E = UREM, (2.40)

with U € O(D;R) x O(D + 16;R) and M e O5(D, D 4 16;Z). The matrix R is given in
eq. (2.26) and the moduli dependent part E = E(e, B, A) is specified in eq. (2.39). In fact,
we may take M = 1 without loss of generality as we show in section 3.2.

Equivalent Narain metrics. One may encounter different Narain metrics, say 77 and
7 from GL(2D + 16;Z), such that

E'nE = 7, ETnpE = 7'. (2.41)

In this case one cannot immediately compare the moduli in F and E’, because their hatted
versions F and E’ lie in two different moduli spaces. Since we are talking about two

representations of the same Narain lattice we have
EN = E'N', with N = MN', (2.42)
where M € GL(2D + 16;Z). Consequently, E' = E M so that
MTHM = 7’ . (2.43)

Obviously, only those M ¢ On(D, D + 16;Z) can change the form of the Narain metric.
Importantly, all Narain metrics can be reached from 7 given in eq. (2.23) by transformations
M ¢ Ox(D, D + 16;7Z). Hence, we assume in the following that the Narain metric 7 is
given by eq. (2.23).
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2.5 Coordinate fields and momenta

Consider the generalized vielbein in its most general form, i.e. £ =U REM , and choose
U=1and M =1, see eq. (2.40). Then, a Narain lattice vector P is represented as

p = <pr> — EN —
P

It can be thought of to describe both: on the one hand, L € II' defines the periodicity for
the compactification on a Narain lattice, see eq. (2.7). On the other hand, P € T gives

Le T((G+CT)ym —n+ ATayq)
e T((G-=CT)m+n—ATagq) | . (2.44)
agq+Am

S-S

the conjugate momentum, see eq. (2.10).
The matrix R induces the change of right- and left-moving coordinate fields, y., y1 and
y1, to D mixed fields X, X and the remaining 16 left-moving gauge coordinates Xg

1 1
Y = R'Y = %11[) %1117 0 nl|l =X, (2.45)
0 0 ap'/ \bL Xg

see eq. (2.3). This relation thus defines which combination of right- and left-moving degrees
of freedom are interpreted as the physical coordinates X and which as the dual coordinates
X. The torus periodicities,

Y ~Y+EN, (2.46)

read in terms of the coordinates X, their duals X and gauge coordinates X

X X X em
X[~ |X|+EN ~ | X |+ |eT(n-C"m—ATazq) | . (2.47)
X X Xg q+ aglAm

On-shell the right- and left-moving coordinate fields, y;, y1, have anti-holomorphic and
holomorphic mode expansions for a string with boundary condition (2.46) given by

() = o PO+ Y €™ V(o) = Vi, +PLo+ Y one®™7, (248)
n#0 n#0

respectively. Using the change of coordinate field basis (2.45), we see that the conventional
coordinate field X and its dual X have the expansions

1 1 1 .
X(o,0) = ﬁ (Yo + Yro) + ﬁ (m+pr)o1 + \ﬁ (p — pr) 0p + oscillators , (2.49a)
~ 1 1 1 )
X(o,0) = E (Yo — Yro) + E (;m—pr)o1 + ﬁ (p1 + pr) 00 + oscillators . (2.49Db)

The term linear in the worldsheet space variable o1 of X gives the D-dimensional winding
modes, i.e.

\2 (m+p) = em. (2.50)
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The term linear in the worldsheet time variable oy of X corresponds to the D-dimensional
momentum which is given by

1 _

o) = T(n—CTm—ATagq) . (2.51)
As expected, for the dual coordinate X the roles of momentum and winding are inter-
changed.

3 The T-duality group

This section is devoted to exhibit a number of properties of the T-duality group. In par-
ticular, we develop a convenient basis for this group and parametrize its maximal compact
subgroup. In addition, we show that the non-linear transformations of the Narain moduli
is a consequence of the coset structure in which the generalized vielbein E lives.

3.1 Decomposition of the generalized vielbein

A general T-duality transformation is described by an element M e O5(D, D + 16;Z).
In addition, in eq. (2.39) we parametrized the Narain moduli by the generalized vielbein
Ee€ O5(D, D+16;R). Therefore, it is very convenient to describe the properties of matrices
M e O5(D, D 4 16; R) first in general, based on the field of real numbers R. To do so we
define a number of specific matrix elements of this group in table 1. These matrices are
chosen such that if we restrict the parameters to be from 7 rather than R, these matrices
have only integral entries.

As a first application of the matrices of table 1, we decompose the generalized viel-
bein (2.39) as a product

E =FE(e,B,A) = M,(e) Mg(B) Ma(A), (3.1)

of basis matrices ]\Z € O5(D, D +16;R) as given in table 1. Here, the index i = e, B, A la-
bels the matrix M; and each matrix M, depends on the corresponding kind of Narain moduli
e, B and A. This parametrization will turn out to be very useful throughout this paper.

3.2 Coset decomposition of the T-duality group

In section 2.4 we recalled that the moduli space of Narain compactifications can be de-
scribed geometrically as a coset space (2.35). This already shows the central role that the
coset space plays in our discussion and therefore we expand on this property in some detail
here.

The generalized vielbein E is an element of the coset

O(D;R) xO(D + 16; R)\O5(D, D + 16; R) . (3.2)
This means that any element He O5(D, D + 16;R) can be decomposed as

H=UE, (3.3)
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Parametrizations of subgroups of Ogz(D, D 4 16;R)
AK 0 0 1p O 0
£ | M.(AK) = 0 AK-T 0 Mw(AW) = | 0 1p 0
® 0 0 16 0 0 agl AW Qg
g where AK € GL(D;R) where AW € O(16; R)
& Ip 0 0 1p 0 0
Mg(AB) = [ AB1p 0 Ma(AA) = [—1AATAA 1, —AATq,
0 0 14 71AA 0 16
where ABT = —AB ¢ MDXD(R) AA € M16><D
.g N ]lD—GiQT Fe; 0 N ( 0 1p 0
T | Lz = Feiel  1p—eel 0 I = R'WR=|[1p 0
g 0 0y 0 0 1116
% 1p AB 0 1p —lAaTAa —AaT T
S| My(AB) = | 0 1p 0 My(Aa) = | 0 1p 0
= 0 0 145 0 Oég_lAOé 16
where AﬂT = —Aﬂ S MDXD(]R) Aa € M16><D( )

Table 1. This table lists various subgroup elements of the duality group O#(D,D + 16;R).
They are normalized such that if the parameters are taken out of Z they represent subgroups
of O7(D, D +16;7Z) (with the additional requirement that $AATAA and 1AaTAa are integer
matrices). The elements listed in the first two rows generate the geometric subgroup Ggeom of the
duality group. The elements on the third row correspond to true T-duality elements that invert
one or all radii. Note the difference between oy and Aa: «, contains the simple roots of Eg x Eg
and is used in the definitions of M\W(AW), My (AA) and M, (Aa), while A« is the parameter of
M, (Aa).

Multiplication table of duality subgroup elements

M.(AK') M.(AK) = M.(AK'AK) M (AK™ Ty =TM.(AK)I
Mw (AW') My (AW) = Myw (AW'AW) Mw (AW) = T Mw (AW)T _
Mp(AB') Mp(AB) = My(AB' + AB) Ms(AB) =T Mp(AB) T = Mp(-AB)"

Ma(AA)MA(AA)=Mp(ABA)Ma(AA' +AA) | Mo(Aa)=TMs(Aa)I=(RTR) " Ma(—Aa)"RTR
with ABa = 3 (AATAA — AA'TAA)

MW(AW) -(AK) = M.(AK) My (AW) Mw (AW) Mp(AB) = Mg(AB) Mw (AW)
Mp(AB)M.(AK)= (AK)J/M\B(AKTAB AK) | Mw (AW)Ma(AA) = Ma(AWAA) My (AW)
Ma(AA) M.(AK) = M.(AK) Ma(AAAK) Ma(AA) Mp(AB) = Mp(AB) Ma(AA)

Table 2. Multiplication table for the generators of the duality group Oz(D, D + 16;R).

where the specific standard form (2.39) of the generalized vielbein E lies inside the
coset (3.2) and U = R UR with U € O(D;R) x O(D + 16;R) is given in eqs. (2.37)
and (2.38).

As this applies to any element of the T-duality group, it applies in particular to EM
with M € O5(D, D + 16;R), i.e

U E(e,B,A") = E(e,B,A)M . (3.4)

The subscript M of ﬁﬁ emphasizes that the O(D;R)x O(D + 16;R) group element on
the left hand side depends on the T-duality group element M under consideration. Both
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E(e, B, A) and E(¢/, B, A') are given here in the standard form (2.39). This equation (3.4)
will be used frequently throughout this paper, for example, when we discuss T-duality
transformations of Narain moduli in section 3.3 and when we analyze the stabilization of
Narain moduli in generalized orbifolds in section 5.

Simplified standard form of the generalized vielbein. Eq. (3.4) can be used
to further simplify the generalized vielbein (2.40): for any discrete T-duality element
M € O4(D, D +16; Z) C O5(D, D + 16; R) there is a matrix Ug; € O(D; R)x O(D+16; R)
such that eq. (3.4) holds. Consequently, we find

E = URE(e,B,A)M = (UUg) RE(¢,B,A') = U RE(,B, A, (3.5)

where U’ = U Ug; € O(D;R) x O(D + 16; R) is arbitrary since U is arbitrary. Relabelling
our expression by removing the primes we obtain the most general from of the generalized
vielbein as

E = URE(e,B,A), (3.6)

where E(e, B, A) is given in egs. (2.39) and (3.1) and U € O(D;R) x O(D + 16; R) may be
chosen freely.

Compact subgroup in the coset decomposition. In what follows, we consider
eq. (3.4) and first compute the explicit matrix expression of Uz € O(D;R) x O(D +16; R),
and determine the transformed moduli, ¢/, B’, A’, in terms of M and the initial moduli e,
B and A.

To do so, we decompose M into its 3 x 3-block structure, i.e.

My My My
M = | My M Mo |, (3.7)
Mz M3z Mss

where ]/\4\11, ]/\4\12, ]/\/[\21 and ]/\4\22 are D x D-matrices, ]/\/[\13 as well as ]/\4\23 are D x 16-matrices,
M3, as well as M3 are 16 x D-matrices, while M33 is a 16 X 16-matrix, respectively.
Furthermore, in order to avoid lengthy formulae, we introduce short-hand notations

]\71 = —J\/f\m + (G + CT)]/W\H + ATOég ]\//731 ) (3.8a)
My = —Moy + (G + CT)Myy + AT g Mas (3.8b)
Ms = — My + (G + CT)]/\ZL'S + ATy Mg, (3.8¢)

which will recur frequently throughout the rest of this work. Next, we compute the products
of matrices contained in eq. (3.4), i.e.

E(e,B,A)M and UgE(¢/,B', A", (3.9)

where each matrix is given in its 3 x 3-block structure, e.g. (71‘7 is given in eq. (2.38). The
result is set equal which yields 3 x 3 = 9 equations from eq. (3.4). By doing so, we can
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solve for the blocks of Uz = Rﬁﬁ R~! as defined in eq. (2.38) and obtain

uy = (]1D—2€]\/4\12 M\Q_l €T> Uy (310&)
w, = \/56 (]\713 - ]\712 M{l Mg) agl , (310b)
u = —V2 (ag ]\732 + AJ/\4\12> M\gl el uy, (3.10¢)

Uy, = A]/W\13 agl + ag ]/\233 agl — (A]/\Zlg + ag 7\232) ]\72_1 Z/\Zg agl , (3.10(1)

for arbitrary u, € O(D;R). We have checked explicitly that these equations give a matrix
U such that the conditions (2.36) are satisfied. Let us remark one observations from
eq. (3.10a): Mis # 0 is a necessary condition for u, # w;. In other words, if Mjs = 0 then
ur = wp. In addition, let us stress that these equations (3.10) will become very important
later in the context of Narain orbifolds where U becomes the orbifold twist ©, for example
in section 5.2. Furthermore, we identify the following three expressions

MI =— (¢ ute), G +co’ = (¢ tu ! e)_T M,

Al (e'_lur_1 e) = agT]\/ig, (3.11)
from eq. (3.4), which we use in the following discussion.

3.3 Transformation of Narain moduli

Using the coset decomposition discussed above, we can derive the transformation prop-
erties of the Narain moduli G, B and A under general T-duality transformations
Me O#(D, D +16;R). Using the results of section 2.4 we see that the generalized viel-
bein (3.1) transforms under M as

E(e,B,A) + E(¢',B A = UA;E(e,B,A)z\?, (3.12)

where [7]/\/[\ = R7'U;; R and Uy; € O(D;R) x O(D + 16;R). In other words, assume we
have given a T-duality transformation Me O7(D, D +16;R). Then, there exists a matrix
Us; as given in eq. (3.10) such that E(e’, B, A’) is in the standard form (3.1).

Hence, we are able to identify the transformation properties of e, G +C” and A under
general T-duality transformations from eq. (3.11). We find

¢ = —uteMyT | @ +0" = —My'M; and A = —ao;TMIM;T, (3.13)

where ulu, = 1p. These transformations can be expanded out (by taking the anti-
symmetric part of G' + C’ T to solve for B’ ) and we obtain the transformations of the
moduli G, B, A, i.e.

. 1/~ _—
GG = My 'GM; 7, BB = 5(M;Ml—1\71TJ\42—T) ,
A A = —aTMEMG T (3.14)

using the short-hands defined in eq. (3.8). This generalizes the results for O(D, D) (see
e.g. [85]) to the heterotic case [86]. As a cross-check, using M7 MT =75~ one can show
that eq. (3.14) yields G/ + C"" = —M; ' M, as given in eq. (3.13).
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3.4 Specific elements of the T-duality group

Next, we discuss various elements and subgroups of the group Oz(D, D + 16;R) in detail
and analyze their actions on the Narain moduli G, B, A. The parametrizations of these
subgroups can be found in table 1 and their most important products are given in table 2.

3.4.1 The geometric subgroup

The elements ]\76, ]\/ZW, M 4 and M, p as listed in table 1 generate a subgroup of
O5(D, D + 16;R) which we denote by Ggeom(R). This is the largest T-duality subgroup,
that still admits a standard geometrical interpretation, hence the name: geometric sub-
group. In more detail, all elements Mgeom € Ggeom(R) can be cast to the form

Myeom = My (AW) M (AK) Mp(AB) MA(AA) . (3.15)

Then, using the results of section 2.4 we see that the generalized vielbein (3.1) transforms
under Mgeom as

E(e,B,A) — E(¢,B,A) = Ugl, E(e, B, A) Myeom , (3.16a)
where
e = (ut°M) e AK, (3.16b)
B'= AK"TBAK + AB + - (AAT AWTAAK — AKTATAW A4),  (3.16¢)
A= AWTAAK + AA. (3.16d)

Here ﬁgeom = R! Ugeom R and Ugeom € O(D;R) x O(D + 16;R) must be chosen
such that E(¢/, B, A') is given in the standard form (3.1). Furthermore, in eq. (3.16)
we have used various group multiplication properties as given in table 2 to compute
the product E(e B, A) Mgeom (analogously, one could have used the general transfor-
mations (3.13) and (3.14) for M = Mgeom to derive eq. (3.16)). Notice that under a
MW(AW) transformation the form of the generalized vielbein is not strictly preserved.

Nevertheless, it is of the correct form such that it can be absorbed by the choice of
Ugeom = MW(AW) ( geom) Le.

com
uf

Ugeom = R My (AW) M (ut*™) R~} = ugeom , (3.17)
AW

since Ugeom is an element of O(D;R) x O(D + 16;R) because AW € O(16;R) and
ug®™ € O(D; R).

In the following, we give details for various elements of the T-duality group. We start
with the four generators ]\/Ze, ]\/ZW, M 4 and M, p of the geometric subgroup Ggeom(R) and
use egs. (3.16) in order to compute the transformation of moduli.
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Change of geometrical basis ]/\/.\Te(AK ). Changes of the geometrical basis e are given
by ]\/ZG(AK) with AK € GL(D;R). The unit element ]\/Ze(AK) =1 has AK = 1p. From
egs. (3.16) we identify the transform of the background fields G, B and A: ]\//.TG(AK ) leads
to a change of basis of the D-dimensional torus, e — ¢/ = (uf*™)"le AK, and

G— G =AK"GAK, B~ B =AK'BAK, Aw— A = AAK. (3.18)

Change of basis in the gauge degrees of freedom ﬁW(AW) In addition, we may
change the basis in the gauge degrees of freedom by MW(AW) with AW € O(16; R). The
unit element MW(AW) =1 has AW = 14. My (AW) induces a transformation

A= A = AwTA (3.19)

of the Wilson lines, while G and B remain invariant.

In the case of the discrete T-duality group we define pw = g VAW ag.  Then,
]\/ZW(AW) € 04(D,D + 16;Z) if pw € O4(16;Z), ie. pjygpw = g using g = of ag.
Hence, pw is an automorphism of the Eg x Eg root lattice spanned by .

B-field shifts ﬁB(AB). Matrices  of  the  form ]\/ZB(AB) with
ABT = ~AB € Mpxp(R) leave G and A invariant and only induce B-field shifts,
ie.

B — B = B+AB. (3.20)
]?\-ﬁeld shifts generate a subgroup Gp(R) C Oz(D,D + 16;R). The unit element
Mp(AB) =1 is given by AB = 0.

Wilson line shifts M A(AA). Wilson line shifts are generated by M, A(AA) with
ozg_lAA € Migxp(R). Indeed, we obtain

Aws A= A+AA, B+ B = B+- (AATA ATAA) (3.21)

Hence, transformations of the Wilson lines A are accompanied by a B-field transformation,
while the metric G is kept invariant. Furthermore, we find

MA(AA") MA(AA) = Mp(ABA) Ms(AA + AA), (3.22)

with ABy = 5 (AATAA’ AA TAA), where we remark that Wilson line shifts and B-field
shifts commute, see table 2

Due to eq. (3.22), Wilson line shifts do not generate a subgroup of Oz(D, D + 16;R)
on their own, but only when combined with B-field shifts MM, B(AB). We denote this
subgroup by Gwr,(R). The subgroup Gg(R) of B-field shifts and the subgroup Gwr(R)
of combined Wilson line and B-field shifts are both normal subgroups of the geometric
subgroup Ggeom(R). In particular, it follows that

Ggeom/GWL = GL(D; R) X O<16; R) . (3.23)

Note that ]\/ZB(AB)MA(AA) with AB € Mpxp(Z) can be an element of the discrete
T-duality group, i.e. Mp(AB)M4(AA) € Ox(D, D + 16;Z), if ag_lAA € Miexp(Z) and

— %AATAA +AB € Mpxp(Z) . (3.24)
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3.4.2 Non-geometric elements

In the following, we give details for non-geometric elements of the T-duality group. We
use egs. (3.14) in order to compute the transformation of moduli.

T-duality inversions. We can define Zs involutions

1p — eielT :FGZ‘GZT 0
Iy = Feiel  1p—eel 0 for i=1,...,D, (3.25)
0 0 116

where ¢; denotes the standard basis vector in the i-th torus direction. The element _/[\(j:i)
can be written as conjugation of a reflection in the i-th left- or right-moving direction as
Iy = R (1R using

1p 0 0 1p—2eel 0 0
Iy = 0 Ip—2e€ 0 |, Iy = 0 1p 0 . (3.26)
0 0 ]116 0 0 116

Therefore, all the elements f(ii) can be obtained from f(il) by conjugation with an appro-
priate change of basis element ME(AK ).

The element f(_i) induces a T-duality inversion along the i-th torus direction. We can
preform the T-duality inversion in all torus directions simultaneously by

I = I(—l) ~~~~ I(—D) , (3.27)
as given in table 1. Using the general results (3.14) we find for this element
GG =M, 'GM;",
B— B =—-M;'BM, ", (3.28)
A A= —AM; T,

where My = G + CT. For A =0 we get M, = G — B. Hence, eq. (3.28) yields the famous
transformation (G + B) — (G + B)~L.

Maximal subgroup of O5(D, D + 16;R) connected to the identity. As an appli-
cation of the special duality elements jiii) we discuss the maximal non-compact subgroup
SO%“(D, D+16; R) of the T-duality group Og(D, D+16; R) that is connected to the identity.
The quotient group

O5(D, D +16;R) /SO (D, D + 16;R) = Zy x Zo (3.29)

is of order four and, hence, corresponds to four disconnected components of
O#(D, D +16;R): one can choose the two Za-generators as the elements f(,l) and f(+1)-
The matrix representations of the four disconnected components are obtained by multiply-
ing 1, f(,l), ./T\(H) or f(,l)./f(ﬂ) by arbitrary matrices of SO%“(D, D +16;R).
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Inverted B-field shifts ]/\Zg(Aﬂ). Even though the following two elements J\/ZB(A[B)
and ]\/Za(Aa) can be obtained by combining the B- and A-shifts with the inversion element
f, we list them explicitly as they are important in the context of non-geometry.

Inverted B-field shifts, often referred to as S-transformations, are generated by

Ms(AB) =T Mp(AB) T, (3.30)

with AT = —AB € Mpxp(R). The B-transformations of the metric, B-field and gauge
backgrounds take the form

G G =M'GM;T, Aw A = —AM;T, (3.31a)
M (B — (G +CTYAB(G + C)) M T (3.31b)

B — B

using My = —1p + (G + CT)AB in eq. (3.14).

Inverted Wilson line shifts ]/\/IQ(Aa). Finally, by inverting the Wilson line shifts M A
we obtain
My(Ac) = T My(Aa) T, (3.32)
with ag_lAa € M16><D(IR).
The inversion of changes of bases, i.e. TJ\/ZB(AK)T and TJ/W\W(AW)T, just become
changes of bases again. Hence, they do not give us novel transformations. For completeness

we nevertheless list them in table 2. Indeed, counting the number of generators shows that
this list contains all possible Oz(D, D + 16, R) transformations.

3.5 The maximal compact subgroup of Oz(D, D 4 16;R)

Next, we discuss the maximal compact subgroup of Oz(D, D + 16;R). To do so, we note
that the maximal compact subgroup of O,(D,D + 16;R) is O(D;R) x O(D + 16;R).
By conjugation with R one maps elements U € O,(D,D + 16;R) one-to-one to ele-
ments U € O5(D,D + 16;R), i.e. U = R™WUR. Thus, the maximal compact subgroup
of O5(D,D +16;R) is also O(D;R) x O(D + 16;R). An explicit parametrization of
this subgroup is given by U in eq. (2.38). Note that, as discussed in section 2.4, ele-
ments U € O(D;R) x O(D + 16;R) C O, (D, D + 16;R) map physically identical Narain
configurations to each other.

Using the generators of the Oz(D, D + 16;R) listed in table 1 an element U from the
identity component of O(D;R) x O(D + 16;R) defined by eq. (2.36) can be expressed as
follows U = RUR™! ;

U = M.(AG) My (AW) Mo (AA)Ma(AB)My(AK)MA(AA)Mp(AB), (3.33)
if uy is invertible, see eq. (2.38), and we defined

AK =1p + AC, AC = AB + %AATAA, ABT = —AB, (3.34a)
AITAG=1p and AWTAW =14 . (3.34b)
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The first two factors ME(AQ)]\/JW(AW) in eq. (3.33) define the subgroup O(D;R) x
O(16;R), where the O(D; R)-factor lies diagonally in both the left- and right-moving di-
rections. This can be seen from eq. (3.33) by using the expressions for the duality group
elements given in table 1 and the matrix R defined in eq. (2.26). Then, we obtain

A0 0 0\ (Ip 0 0
U=|0 a0 o 0 (Ip—AC)T(1p+AC)"  —V2(1p+AC) TAAT
00 AW/ \ 0 V20A(lp+AC)" 15— AA(lp +AC) T AAT

By comparing this with eq. (2.37) one can read off the expressions for the submatrices

u=A0(1p — AC) (1p +AC) ™", up, = —v2A0(1p +AC)TAAT,  (3.35)
up = VZAWAA(Lp + AC) ", u, = AW (11— AA(1p + AC) TAAT)

and u; = Af. One can verify that these expressions satisfy the constraints (2.36).
In addition, for a given element U € O(D;R) x O(D + 16;R) one can use eq. (3.35)
to decompose U = R™'U R according to eq. (3.33), i.e.

Ab = u,, AC = —ului’,
1 ~ 1 _ _ —1 (336)
AA=——uf uiT, AW =1, <]116 - iule: uilu; 1“1L> v

V2

where we assumed that u, is invertible.

4 Generalized space groups of Narain orbifolds

In this section we introduce the generalized space group for heterotic Narain orbifolds and
discuss some of its properties. In particular, we define orbifold projections to characterize
quantization conditions of the generalized shift vectors and state the conditions to preserve
N =1 supersymmetry.

4.1 Heterotic Narain orbifolds

Next, we consider orbifolds of the heterotic Narain lattice construction denoted by
2D+16
Tt /P . (4.1)

Here, the 2D + 16-dimensional torus TH%D +16 i specified by a Narain lattice I'. In addition,
the Narain point group P is defined as a (sub-)group of the rotational symmetries of ', as
we will see later in eq. (4.13). Hence, the Narain point group P is finite. The generators
of P are (2D + 16) x (2D + 16) matrices and they are denoted by ©,, for a« = 1,..., Np.
K, is the order of ©,. In more detail, for each generator ©, the order K, is the smallest
non-negative integer such that ©%e = 1. Elements of P are often called twists. In the
following, a generic twist will be denoted by © and K gives its order.
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To define the compactification of the heterotic string on a Narain orbifold [40, 53], the
main idea is to generalize the boundary conditions (2.7) of the 2D + 16-dimensional right-
and left-moving coordinate-vector Y to

Y(c+1,64+1)=0Y(0,0)+ Vo + L, (4.2)

for all elements © € P and L € I'. In general, for each twist © there is a so-called
generalized shift Vg associated to it, which will be discussed in detail later. Importantly,
the twists © are not allowed to mix right- and left-moving fields in eq. (4.2). Hence, for all
O € P we demand

o — (% (;’L) € O(D:R) x O(D + 16:R) . (4.3)

Consequently, we find the conditions

efe, =1, ©lpe, =n and 6% = 0, (4.4)

«

for all generators O, of the Narain point group.
Furthermore, we call a Narain orbifold symmetric [5, 6], if there is a basis such that
all generators ©, € P are simultaneously of the form

6, 0 0
©a = |06, 0| € OD;R) C O(D;R) x O(D + 16;R) . (4.5)
0 0 T

If such a basis does not exist, then the corresponding Narain orbifold is asymmetric.
Even though this definition of symmetric orbifolds involves a choice of basis, this property
is in fact basis independent. Nevertheless, in a given basis it might be difficult to see
whether a Narain orbifold is symmetric or asymmetric: one can bring a symmetric
twist Ogym into a seemingly asymmetric twist Ougym = Ut Ogym U by the choice of
U € O(D;R) x O(D + 16;R), see also the example in section 8.3. However, the conjuga-
tion with U can neither change the orders of 6, and Or,, nor the two finite groups which
are generated by either 0., or O41..

4.2 Generalized space group

It has been proven to be very convenient to employ a space group formulation of the
heterotic string on symmetric orbifolds, especially in the context of classifications [7]. This
language can be extended to Narain orbifolds naturally. The generalized space group S
associated to a Narain orbifold is defined as being generated by the elements

(1,L) and (O,,V,) forall Lell' and ©,€P, (4.6)

where V,, a vector with 2D + 16 components, is the so-called generalized shift which is
associated to the twist ©,. Conversely, we demand that for all space group elements of the
form (1, L") € S it follows that L' € I'. So, the Narain lattice I is the subgroup of S that
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contains all pure translations of S. Note that a generator (0,,V,) is a generalized roto-
translation if V,, # 0, see [7]. These generators build the so-called Narain orbifold group O,
which is defined modulo lattice translations. Hence, just as P, the Narain orbifold group
O is a finite group.

A general space group element g = (©,\) € S is defined to act on Y as

Y = g[Y] = (0,N)[Y] = Y + ). (4.7)
Consequently, the unit element of S is given by
(1,0) € S. (4.8)
The inverse element g~! of g = (0, ) € S reads
g ' = (0-671)) 5. (4.9)
Furthermore, two elements g = (0, \) and ¢’ = (©’, \') are multiplied as
g9 = (©,0) (0, XN) = (66,0XN+)) € S. (4.10)

Hence, the generalized space group S is in general non-Abelian even if the Narain point
group P is Abelian.

For orbifolds, each sector of string states is characterized by a boundary condition (4.2)
and, thus, by the so-called constructing element g = (©,\) € S, where A = Vg + L
and L € . Only those elements ¢’ € S that commute with the constructing element g
yield projections and, hence, give rise to non-vanishing contributions to the twisted sector
partition function. This only happens when

00 = 00 and (1-0)N = (1-60")\. (4.11)
4.3 Conditions on the twists O,

Furthermore, we choose L € ' and consider

(©uVa) (1,L) (e, Vo) ' = (1,6uL) € S = ©,L € T. (412

Thus, the lattice II' is a normal subgroup of S and the Narain point group P has to consist
of automorphisms of the Narain lattice, i.e.

O, = T. (4.13)

In addition, we have to impose eq. (4.4) on the twist generators O,.

It is is interesting to pause here and reflect on the possible orders of twists for a
given number of dimensions Dr for general orbifolds associated to a lattice I'. As is well-
known [87], if the order K satisfies

¢(K) < Dr, (4.14)

then there exists at least one lattice I" with rotational symmetry of order K. Here, ¢(K)
is the Euler ¢-function and this bound does not take into account that one can build point
groups as direct sums of lower dimensional cases. However, in the current paper we are
not working with a general lattice I' in Dr dimensions, but with Narain lattices I' = I
with Dp = 2D +16. Hence, contrary to the Euclidean case, it is not guaranteed that there
exists a Narain lattice for each order K satisfying the bound (4.14).
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4.4 Orbifold projections of II'

In general, a twist © € P of order K acts as the identity in some directions of Y while it
acts as a Zg twist on others. To identify these directions, we define projection operators for
each twist © € P: the projection operators 73”9 and P¢ project a vector onto the directions
in which © acts trivially and non-trivially, respectively. In detail, we define the projectors

K-1
1 .
PP = e E e’ and  P? = 1-P7, (4.15)
=0

with the properties
2 2
(Pe)* =P, (PO)’=P°, @PP=PP, POPC=PCP°=0. (4.16)

Then, any vector A € R?P+16 can be decomposed into two vectors AJ and \? according to

Ao = PO, A? = PPX sothat A = A®+AS, (4.17)

and © A7 = A}. The final relation clarifies the use of the subscript [|: it defines the
directions which are left invariant by ©.

Moreover, it is important to realize that the projected Narain lattice ]FI? = PPl is in
general not Narain. In detail, even if I' and © I' are Narain lattices, see eq. (4.13), the
normalisation 1/K in the projection operator PP in eq. (4.15) can make II'j non-Narain.
A Narain lattice is said to be factorized w.r.t. the orbifold twists when

re cr (4.18)

for all twists © € P. In this case, obviously, all projected Narain lattices are themselves
Narain again.

4.5 Quantization of the generalized shifts V,

For each Narain point group generator O, of order K, we consider the generator (0, Vy)
of the generalized space group S. Then, its K,-th power reads

Kqo—1
(Oa, Vo) = <@KQ, > @g;va) = (1, K.PVa) € s, (4.19)
7=0

(where P = 73”@") without summation over «. Consequently, we have to demand the

condition
Ko—1

. !
KaVozH = KaPﬁVa = Z @Ja Va = La c II'. (420)
=0
That is, the shift V,, needs to be quantized in units of K, in the directions where 6, acts
trivially, i.e. V,, is given by

L, .
Vo = Ki—i_)\a with ©qy Lo = La, ,Pﬁl/\a =0 and L, € I'. (4.21)
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The same procedure can be applied to some arbitrary element ® € P of order K with
associated element (0, Vg) € S. This yields
Le :
Vo = e +Xo with OLg = Lg, 'P”@)\@ =0 and Legel. (4.22)
As a remark, for example in the case when ©F has a fixed torus for 0 < k < K,, (i.e. when
©F has more invariant directions than ©,,) eq. (4.22) gives stronger quantization conditions
on the shift V,, than eq. (4.21).
Various choices for V, correspond to the same Narain orbifold. Indeed, one can shift
the origin, i.e.
Y(o,6) — Y(o0,0)+ Yo, (4.23)

and hence transform the generalized shifts Vo + Vo — (1 — ©)Y, for Yy € R?2P+16, (In
light of the equivalence (2.6), only the (lower) D+ 16 components of Yy actually modify the
description.) By doing so, one can set the components of \g either to zero or to some quan-
tized value for each element (O, Vg +Ag) of the Narain orbifold group O. Especially, if the
Narain point group is isomorphic to Z g (with one generator © of order K') the generalized
shift can be chosen as Vg = Lg/K with ©Lg = Lg € II' without loss of generality.

4.6 Preserving at least N/ = 1 target-space supersymmetry

To enable the discussion on target-space supersymmetry we first need to recall a few facts
about supersymmetry on the worldsheet. By construction the heterotic string has (1,0)
worldsheet supersymmetry. Hence, we can identify the worldsheet supercurrent

Ty = wﬁ aru + wg URr 5yr ) (4‘24)

where Yr = Wﬁ) are the real worldsheet fermions of the D compactified dimensions and
ugr 18 & D x D matrix. For each twist ©,, the space group action (4.7) is defined to be
accompanied by a transformation of ¢ as

Yr — g[Yr] = bar YR, (4.25)

where 6or € O(D;R). Since the first term ¢k dz,, in eq. (4.24) is orbifold invariant the
worldsheet supercurrent 7g has to be orbifold invariant as well. Consequently, we need to
require that the twists on the right-moving coordinates g, and on the right-moving fermions
YR are identified: 0o g = URy Oar g, -

Given that the properties of target-space fermions are determined by the right-moving
momentum pg associated to these right-moving fermions, as given eq. (2.12), the question
of target-space supersymmetry is only affected by the transformations generated by 0, R in
the right-moving sector. In particular, target-space supersymmetry is independent of the
choice one makes for ©,1,. Only if one restricts oneself to symmetric orbifolds, for which
Oat, = 001D 116 and 0,1 = bor = 0o r With ur, = 1p, see eq. (4.5), this connection is made.

Consequently, in order to preserve at least N’ = 1 supersymmetry in the d-dimensional
target-space, the generators 6,1 € SO(D;R) have to lie inside the appropriate special
holonomy subgroup of SO(D;R). For D = 4,6, 7,8 these subgroups are SU(2), SU(3), G2
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and Spin(7), respectively, see e.g. [88]. For example, assume D = 6 and an Abelian Narain
point group, i.e.
P = Zg, x...ZKNP . (4.26)

Then, the four-dimensional effective low energy theory possesses at least N' = 1 supersym-
metry if

m a 1 a
me=0, K,¢'g=0, §Z¢QR=0. (4.27)

Here, we introduced the so-called twist vector ¢or = (¢0'g, #% ) as the vector of phases
corresponding to 6, R, such that ,r acts as

YR e TR, gf o TR YR (4.28)

using the complex indices defined below eq. (2.12). In fact, the last condition of eq. (4.27)

only needs to be imposed mod integers (i.e. =) and this specific choice fixes the unbroken

1 11 1)

supercharges for d = 4 and ¢% # 0 to be represented as £(3, 5, 5, 5

5 Moduli stabilization in Narain orbifolds

As we have seen in the previous section, the space group description of Narain orbifolds
is naturally formulated using the twist © and the generalized vielbein E. On the other
hand, the question about moduli stabilization and classification, in particular, are more
conveniently discussed in the so-called lattice basis in which the twist is encoded by an
integral matrix p. Therefore, we begin this section with a discussion of Narain orbifolds in
the lattice basis. Beside the integral twist matrices p, we introduce the generalized metric
H and a closely related Zs-grading Z. After that we investigate under which conditions
Narain orbifolds exist and derive restrictions on the Narain moduli that have to be imposed
in order to be compatible with the orbifold action. In particular, we derive a character
formula that counts the dimension of the orbifold Narain moduli space.

5.1 Narain orbifolds in the lattice basis

Twists and shifts in the lattice basis. We have seen in eq. (4.13) that each point group
generator O, has to map a Narain vector £ N to another Narain vector EN' = ©, E N,
see eq. (2.16). It follows that N’ = p, N, where we define p, as

Po = ET'OLE = E7'O,E € GL(2D +16;7) . (5.1)

Here, we used E = U RE and we absorbed U in the definition of (:)a =R 'U'0,UR.

The matrices p,, represent the generating twists © in the so-called lattice basis. They
have to be invertible over the integers (i.e. p, € GL(2D + 16;Z)) because each p, has
to map an integer vector N one-to-one to another integer vector N’. Furthermore, they
inherit the following conditions

AT~

Palpa =7 and  py* =1, (5:2)
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since the generating twists ©, are elements of O,(D,D + 16;R) of finite order K,.
The integral matrices p, generate the so-called Narain point group in the lattice basis
PcC O5(D, D + 16;Z), while twists ©, € P are given in the so-called coordinate basis.
The lattice basis will be of special importance for the classification of Narain orbifolds
later in section 6.1. Moreover, the space group generators (04, V,) and (1,L) € S can be
represented in the lattice basis as

1 ~ ~
<ﬁa, Na> €S and (I,N) € S, (5.3)
Ko
where Vo = = ENy and L = EN for N, N, € 7Z*P+16,

Generalized metric. Eq. (5.2) represents two out of the three properties (4.4) of the
generators O, in the lattice basis. The remaining one, ©10, = 1, can be cast in the form

MM o = M, (5.4)
where we have introduced the so-called generalized metric H defined as
# = ETE = E"(e,B,A)RTRE(e, B, A) . (5.5)

In other words, condition (5.4) states that the generators p, and the generalized metric H
have to be compatible.
The generalized metric is given explicitly by

G+ ATA+ oG T —cG™1 (Ip+CG1HATq,
H(G,B,A) = -G-c? G! —G ATy . (5.6)
ol A(lp + G7ICT) —alAG™! ol (11 + AG™1AT ) oy

using egs. (2.26) and (2.39). It is an interesting object in its own right: assume one is given
a generic Narain lattice (with moduli-independent Narain metric 7 = E7n E as given in
eq. (2.23)) by specifying the generalized vielbein F, then it might be rather awkward to
determine the matrix U from E = URE such that we can read off the moduli contained in
the matrix E. As the generalized metric H is independent of U, it can be used to read off
the metric G of the D-dimensional torus, the B-field and the Wilson line matrix A. As the
explicit expression of the generalized metric (5.6) shows, not all its components are indepen-
dent, i.e. H is not a generic (2D+16) x (2D+16) matrix. Indeed, H satisfies the constraints

Hi " =7 and HI =H, (5.7)
as follows from its definition (5.5) .

A Zs grading. The compatibility condition (5.4) of the orbifold twists in the lattice
basis can also be represented as
ZPa = PaZ, (5.8)

where we have defined

Z =75 'H = ET'"WE = E(e,B,A)"'TE(¢,B,A) € O05(D,D+16,R) .  (5.9)
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The second expression in this equation is obtained using T= R™'n R, as given in table 1,
and the relation RT R = 7 I. Explicitly, Z is given by

—G-lcT G —G71ATq,
Z(G,B,A) = |G+ ATA+cG'cT —CcG™! (1p +CGHATa, . (5.10)
aglA(ﬂp +G7toT) —aglAG*1 agl(ﬂlﬁ + AGflAT)ozg

The constraints (5.7), which the generalized metric satisfies, translate to the following
conditions on Z:
Z'hz =5 and 2?2 =1. (5.11)

This can be confirmed by using eq. (5.7) and the fact that T2 = 1. Given its definition (5.9),
the matrix Z has signature (D, D + 16), just as 7 (and I). This leads to a grading of the
Narain lattice: it characterizes the distinction between D right- and D + 16 left-moving

directions of the Narain lattice.

5.2 On the existence of Narain orbifolds for a given point group

Assume a given finite point group PcC O7(D, D + 16;Z) with generators p, in the lattice
basis. We want to understand these generators p,, as the crucial ingredient in the definition
of a Narain orbifold. Therefore, we have to address the following question: under which
condition does a corresponding Narain orbifold exist? In terms of the terminology intro-
duced in section 4 this can be phrased as follows: when does a Narain lattice exist, such
that all generators ©, of the corresponding group P in the coordinate basis satisfy (4.4)
and are symmetries of this lattice (4.13)7

In the following, we will answer this question in the lattice basis. Then, the conditions
on O, translate to conditions (5.2) and (5.4) on pa € P. In fact, eq. (5.2) is fulfilled by
assumption (i.e P C O5(D, D + 16;Z) and finite). Thus, it remains to show that eq. (5.4)
is fulfilled, i.e. we have to find a generalized metric that is compatible with all generators
po. Consequently, a Narain orbifold with given point group P exists if one finds Narain
moduli G, B and A that are invariant under p, € P.

If such a generalized vielbein exists, then generically, not all the moduli of the Narain
torus compactification are still free; some Narain moduli are stabilized. Thus, we can use
our discussion on the transformation properties of Narain moduli under general T-duality
transformations in section 3.3 in order to derive conditions for moduli stabilization.

To address these questions, we study the existence of both a twist
O, € O(D;R) x O(D 4+ 16;R) for each p, and a compatible generalized vielbein
E(e,B,A), ie.

©aRE(e,B,A) = RE(e,B,A)pa, (5.12)
which is equivalent to eq. (5.1) by absorbing U in the definition of ©,. Eq. (5.12) constitutes
nine coupled matrix equations for the D(D+16) Narain moduli G, B, A and the D(D—1)/2
and (D + 16)(D + 15)/2 parameters inside each of the generators 0.

Instead of trying to solve all nine coupled matrix equations, we first focus on a subset
of only three matrix equations

Wi = 0uxW with W = V2(RE), = e—T<G+cT, 1p, ATag), (5.13)
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(where 64, is the u, part of the matrix 0, as defined in eq. (2.38)) that determine the
Narain moduli uniquely already. Expanding out eq. (5.13), we obtain

—(Pa)21 + (G + CT)(Pa)11 + ATOég (Pa)31 = p;rT(G +c7)y, (5.14a)
—(Pa)22 + (G + CT)(Pa)i2 + AT ag (Pa)s2 = —par (5.14b)
—(Pa)2s + (G + CT)(Pa)1s + AT (Pa)33 = par AT oy, (5.14c)

where pgor = e 10, e. (Note that there is a redundancy between e and 6,,,, which reflects
the fact that the vielbein e is not uniquely determined by the metric G.)

It is sufficient to solve only these three matrix equations (5.14) in order to find a
solution of all nine equations (5.12) because of the coset decomposition (3.4): indeed, we can
alternatively obtain the set of coupled equations (5.14) by comparing eq. (5.12) to eq. (3.4).
They are identical if we determine each twist O, from eq. (3.10) using Uz = O, (hence, in
particular u, = ,,) and M= P Furthermore, we have toset G' = G, B' = Band A’ = A,
where the primed objects are determined by the transformation of the generalized metric

NG, B, A) = pLH(G,B,A) pa = H(G,B,A), (5.15)

using eq. (5.5). Therefore, using eq. (3.11) the moduli of the Narain lattice are constrained
according to

]/\ZTLOC” = G+C, ]/W\TQpar = —1 and ]/\4\3;3par = agA, (5.16)

« «

for each generator of the point group p,. Inserting the moduli-dependent short-hands
]\//.TM from eq. (3.8) the resulting equations are again eqs. (5.14). In summary, for a given
finite group P C O#(D, D + 16;Z) there exists a Narain lattice such that Pisa point
group of this lattice if the Narain moduli can be chosen such that they are invariant under
the orbifold action, i.e. G’ = G, B’ = B and A’ = A, see section 5.

Eq. (5.14b) can be used to constrain p,,. Inserting this in the other two equations of
egs. (5.14) leads to two coupled quadratic matrix equations

(G +CTYp12(G + CT) + AT g (P32(G + CT) + p31)
—pa2(G 4+ CT) + (G + CTp11 = pmr (5.17a)
ATOégﬁgQATag + (G + CT)(Z)\13 + ﬁleTOég) — ﬁQQATag + ATOégi)\gg = ﬁgg . (517b)

for each generator p = p, of the point group P. These conditions can be thought of as
algebraic Riccati equations (see e.g. [89]) which constrain some and sometimes even all the
moduli G, B and A. Hence we have reduced the existence question of Narain orbifolds to
the question whether these Riccati equations admit real solutions.

5.3 Mapping from the lattice basis to the coordinate basis

Assume we are given a finite point group PcC O5(D, D + 16; Z) with generators p, in the
lattice basis and we want to know a compatible Narain lattice as well as the twists O,
in the coordinate basis. To obtain this data we can perform the following steps: first, we
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find a solution to egs. (5.17), i.e. find orbifold invariant moduli G, B and A. After that
we make a choice for a geometrical vielbein e such that e’ e = G. By doing so, we have
obtained a generalized vielbein F = RE (e, B, A), which is compatible with P in the sense
of eq. (5.12). Finally, we compute the twists in the lattice basis: using the geometrical
vielbein e we can determine the right-moving twists 6, = € par e~ 1, where Par 1S given by
eq. (5.14b). Consequently, we can compute the blocks of O, from eq. (3.10), i.e.

Ot = (nD —2¢(Pa)12 M2 eT) Oas (5.18a)
O, = V2e ((ﬁa)ls — (Pa)12 M4 J/W\a3> a; !, (5.18D)
Oors = —V2 (ag (Pa)32 + A (ﬁa)lQ)M(;gl e’ far, (5.18¢)
oL = A(DPa)1s oy '+ (Pa)ss o — (A (Pa)12+0g (ﬁa)32>1\7;21 My a; ', (5.18d)

where M,; for i = 1,2,3 are defined in eq. (3.8) setting M = p,,. This method we will be
exemplified in section 8 where we discuss a number of two-dimensional Narain orbifolds.

An important characterization of heterotic Narain orbifolds is whether they are sym-
metric or asymmetric. In section 4.1 we defined a Narain orbifold to be symmetric if there
is a coordinate basis such that eq. (4.5) holds. In the lattice basis, a sufficient but not
necessary condition for a Narain orbifold to be symmetric is (pn)12 = 0: first of all notice
that (pu)12 = 0 implies (pg)13 = 0 and (pa)32 = 0 since pL p, = 1. Consequently, the
conditions (5.17) become linear in the moduli and, hence, not all Narain moduli are frozen.
Furthermore, using egs. (5.18) we obtain

Oa1 = Oar, Oar, = 011 =0, 9aL=ag(ﬁa)33ag1 . (5.19)

Hence, any generator p, € P with (Pa)12 = 0 and (py )33 = 116 corresponds to a symmetric
twist. However, the converse is in general not true. In section 8 we provide examples for
both cases: in section 8.2 we list several Narain orbifolds that are necessarily symmetric
because (pg)12 = 0 and in section 8.4 we give one Narain orbifold that is symmetric even

though (5a)12 # 0.

5.4 Dimensionality of the Narain orbifold moduli space

Assuming that a Narain orbifold exists, i.e. assuming that we have found a generalized
vielbein Ey that satisfies eq. (5.12), we want to determine the number of unconstrained
Narain moduli. In other words, we want to count the number of moduli perturbations éH
that can deform the associated generalized metric Hg such that Hg+ 0 remains invariant
under the Narain orbifold action.

To address this question, we make use of the results from appendix A and set H=P.
Then, the tangent space to the orbifold-invariant moduli space is given by

Mp = {6mf, = Pf,5m}, (5.20)
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where the projection operator Pgp is defined in eq. (A.11). The moduli deformations 6#,
can be parametrized as follows

0 o
oH = ETSh By, oh = <5mT g‘) Sm = (egT(aa— 5B egt, V2egT 6AT>, (5.21)
where B’ = 6B + %5AT Ag — %Ag; §A, 6G = deley + el de.

According to eq. (A.13) the dimension of the orbifold-invariant Narain moduli space,
i.e. the number of moduli, is determined by

. 1 «
dim(Mp) = (%X} = 5y > x(©)xu(O), (5.22)
0P
where we have introduce the right- and left-characters
I—n
2

x:(©) = tr[fy] = tr[ 5

@] L () = trfer] = tr[]l 1 @] (523
respectively. Because of this character formula (5.22), the number of moduli dim(Mg) for
Narain orbifolds only depends on the representations of 8, and Or, of the point group P,
but not on conjugation of © with U € O(D;R) x O(D + 16; R).

The number of fixed moduli is given by D(D + 16) — dim(Msgp). In particular, all
Narain moduli are frozen if dim(Mgp) = 0. In this case, the Narain orbifold moduli
space Mg is a point (or a set of disjoint points). This happens when the right- and left-
characters (5.23) are orthogonal. In light of this, we can use the property that characters
of irreducible representations form an orthonormal basis to analyze eq. (5.22). In detail,
for two (complex) irreducible representations p and v of the finite point group P we have
1 ifpu=vr

(Xpxw) = { (5.24)

0 else

This can be used to construct some situations with all moduli fixed, i.e. dim(Mg) = 0:

e [f the matrix representations of 6, and ©1, are both irreducible, they have to be
different, since the former is D-dimensional while the latter is (D + 16)-dimensional,
and hence, their characters are orthogonal.

o [f the representations of #, and O, are reducible, one can decompose them into
irreducible ones as

b = Pbu, OL = PO, = e = D Xewr XL = D Xew, (5:25)
I v I v

where the irreducible representations 6., and ©y,, are in general complex. Hence, if
and only if 8, and Or, do not contain any irreducible representation in common, again
the characters x; and xi, are orthogonal. An particular example of this is obtained,
when O, =1 and 6, does not contain any trivial one-dimensional representations of P.
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5.5 A T-fold constructed as an asymmetric Zs Narain orbifold

To illustrate the various results, we conclude this section by considering a simple but in-
structive construction of a T-fold: we define an asymmetric Zs Narain orbifold by choosing

0 1p 0
p=I1=1|1p0 0 |, (5.26)
0 0 L

see table 1. First, we identify a specific example of a compatible Narain lattice using the
7 grading Z. Then, we will use the discussion from section 5.2 to see that this is actually
the most general solution. Finally, we confirm this by counting the number of unstabilized
Narain moduli using section 5.4.

To find a compatible Narain lattice, we notice that Z = T is a valid Zo grading
satisfying eq. (5.8). Hence, we can easily read off

e =G = 1p, B =0 and A =0. (5.27)

from eq. (5.10) as a possible choice for the Narain moduli. Alternatively, we can study the
solutions of egs. (5.17). In this case these equations read:

(G+CNHG+C)=1p, ATagz=0. (5.28)

Again, it is not difficult to confirm that eqs. (5.27) constitute a solution.
Consequently, we find E(e, B,A) = 1 and we obtain the twist © in the coordinate
basis from eq. (5.12) as

—1p 0 0
© = RE(e,B,A)pE(e,B,A'R™" = RIR' = 5 = 0 1p 0 |, (5.29)
0 0 T

i.e. Hr = —]lD, 91 = ]lD and 9L = ]116-
In fact, all Narain moduli are stabilized in this case as we are going to show next. We
use eq. (3.8) with M = I, which yields

My = —1p , My = G+C" and M = ATa, . (5.30)
Then, the Narain moduli are subject to the constraints (5.16). In this example, they read
1p = G+C and A = —A. (5.31)

using p, = e 16, e = —1p. Consequently, all Narain moduli are stabilized and their values
are given by egs. (5.27).

The fact that all Narain moduli are stabilized in this example is also easy to understand
using the number of unstabilized Narain moduli dim(Msg), see eq. (5.22): 6, consists of D
non-trivial irreducible representations of the Zs point group, while Or, consists of D + 16
trivial irreducible representations. As the characters of different irreducible representations

are orthogonal, we easily find dim(Mgp) = 0.
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6 Towards a classification of Narain orbifolds

In this section we would like to lay the foundations for a classification of inequivalent
Narain orbifolds. In general, the key to a classification of any structure is to identify those
transformations that relate (or even define) equivalent structures. These transformations
can be used to define equivalence relations that consequently give rise to equivalence classes.
For the classification of D-dimensional — geometrical — orbifolds the structure turns out
to be the space group and the equivalence relations are based on the notions of Q-, Z- and
affine-classes [7]. In this section we show that extending these notions to generalized space
groups is the key for a classification of Narain orbifolds.

In more detail, for the classification of Narain orbifolds we identify three main
structures: (i) the integral Narain point group P of finite lattice automorphisms,
(ii) an associated Narain lattice I' (given by a geometrical torus with metric G, a B-field
and Wilson lines A) that is compatible with the point group and, finally, (iii) the full
generalized space group S, which fully specifies a Narain orbifold as we have seen in
section 4. The main purposes of this section are to define equivalences for these three
structures, namely Narain Q-, Z- and Poincaré-equivalences, together with their associated
equivalence-classes and to analyze their interpretations.

6.1 Narain Q- and Z-classes

For the definition of Narain Q- and Z-classes we need to describe the Narain point group
in the lattice basis, where P cC O5(D, D + 16;Z), see section 5.1. Then, one only has
to consider integral finite order elements p, € P. Since Narain Q- and Z-classes are
analogously defined, we take the field IF to be either Q- and Z and begin with the definition
of F-equivalence: two matrices p € Oz(D,D+16;Z) and p’ € Og/(D, D+16; Z) are defined
to be F-equivalent if there exists a matrix M e GL(2D + 16; ) such that

§ = M'pM and 7 = MTHM . (6.1)

Two Narain points groups PcC O7(D, D +16;Z) and P C O# (D, D +16; Z) are said
to be F-equivalent if there exists a single matrix M € GL(2D + 16;F) such that

P = M 'PM and 7 = MTHM. (6.2)

Note that if two point groups are from the same Z-class they are also from the same Q-
class, because if M € GL(2D + 16;7Z) then M € GL(2D + 16; Q). But the converse is not
true, i.e. two point groups from the same Q-class can be in inequivalent Z-classes.

6.2 Interpretation of Narain Q- and Z-classes

To prepare the mterpretatlon of the Narain Q- and Z-classes, let us assume that two Narain
point groups P and P’ are from the same IF-class, where the field IF is either Q or Z. Then,
there exists a matrix M € GL(2D + 16;F) such that for cach generator p, € P there is a
generator p, € P’ with

—

pLo= M 'p,M . (6.3)

«
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Now, consider a Narain lattice spanned by a generalized vielbein F, such that E is com-
patible with all generators p, and insert eq. (6.3), i.e.

©uE = Ep, = EMp, M™". (6.4)
Consequently, we find
OuE' = E'p!, where E' = EM . (6.5)

Hence, we can interpret eq. (6.5) as follows: if Pisa symmetry of a Narain lattice with
generalized vielbein E and Narain metric 77 then P is a symmetry of a Narain lattice
with generalized vielbein E' = EM and Narain metric n = MT n M. Furthermore, we
notice that both point groups have the same geometrical action ©, which corresponds
to both p, and p). In other words, the corresponding point groups P and P’ in the
coordinate basis are identical (up to a trivial basis change) for point groups from the same
IF-class. Consequently, the question of symmetric or asymmetric orbifolds, the number of
unbroken supersymmetries in d uncompactified dimensions and the number of invariant
Narain moduli eq. (5.22) are also equal. This is independent of the choice for the field IF
to be Q or Z.

Next, we have to distinguish between these two Narain classes: let us first consider the
case F = Q. The Narain lattices spanned by E and E' = EM , are in general physically
inequivalent, because if M € GL(2D + 16; Q) then in general M ¢ GL(2D + 16;Z). A
representation of a Q-class only gives one example of a compatible Narain lattice. To
characterize all inequivalent lattices for a given Q-class one needs to consider Z-classes.
That is, if I = Z the generalized vielbeins F and E' = EM span identical Narain lattices.

Finally, if M additionally preserves the Narain metric 7, i.e. if

M € O4(D,D+16;F) c GL(2D + 16;F), (6.6)

which means that M is a T-duality transformation, we can analyze the consequences of
eq. (6.5) for the Narain moduli G, B and A. In this case, we take the most general vielbein
E=URE(e,B,A) from eq. (3.6) and use eq. (3.4) in order to transfer M into Uy; for the

generalized vielbein E' = E M. Consequently, one can show that E’ is given by

E = (URE(e,B,A)) M = UsURE(d,B,A) where Ug = UUzU™", (6.7)

and the M-transformed Narain moduli are given in eq. (3.14). Hence, if two Narain point
groups P and P’ are [F-equivalent and defined with respect to the same Narain metric 7
then the lattice £ = URE(@,B,A) of P corresponds to the lattice E/ of P’ as given in
eq. (6.7). This change of lattices from F to E’ involves a transformation of moduli from
G, B and A to G, B’ and A’ using the T-duality transformation M and, in addition,
a rotation in the coordinate basis with Ug € O(D;R) x O(D + 16;R). Moreover, from
egs. (6.4) and (6.5) we obtain

O, (URE(e,B,A)) - (URE(e,B,A)) Do (6.8a)

(U 04 Us) (URE(e’,B’,A’)) - (URE(e’,B’,A’)) A (6.8b)
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That is, even though we have seen in egs. (6.4) and (6.5) that the Narain point groups
P and P’ are identical in the same F-class, their generators ©, and O = Ug ! ©0.,Up
can look different, for example, one is symmetric and the other looks asymmetric. This is
the case if one chooses the corresponding Narain lattices as different points, specified by
(e, B,A) and (¢/, B’, A"), in the same representation of the Narain moduli space, i.e. with
the same U in eq. (6.8). As an example for eq. (6.8), we will discus two F-equivalent Z3
Boint groups f’(l) and f)(g) in section 8.4, where the point group f’(l) is symmetric while
P 9) looks asymmetric due to a non-trivial transformation Ug.

6.3 Narain Poincaré-classes

As final type of equivalence transformations, we want to generalize affine transformations
(F, \) of Euclidean D-dimensional orbifolds (with linear mapping F' € GL(D; R) and trans-
lation A € RP) to the Narain case. Importantly, the (2D 4 16)-dimensional Narain lattice
is equipped with a metric 1 with signature (D, D + 16), which has to be preserved by any
transformation. Hence, it is essential for the Narain case to restrict affine transformations
in 2D + 16 dimensions to Poincaré transformations (F,\) of the Narain lattice, where
F € 0,(D,D+16;R) and X € R2P+16_ Therefore, we need to introduce Poincaré-classes
instead of affine classes in order to describe Narain orbifolds.

This might give the impression that Poincaré transformations of Narain orbifolds are
more restrictive than affine transformations of ordinary Euclidean orbifolds. This is not
the case since O, (D, D + 16;R) transformations contain GL(D;R) transformations. This
can be made explicit by the parametrization E]\/EQ(AK)E_1 € O0,(D,D + 16;R), where
]\/IS(AK ) is is given in table 1 with AK € GL(D;R). Consequently, Poincaré-classes
generalize the notion of affine classes to Narain orbifolds.

In light of this, we define the following equivalence relation: consider two Narain orb-
ifolds, i.e. two space groups S(1) and S,y with point groups in the same Z-class. Two such
Narain space groups are defined to be equivalent if there exists a Poincaré transformation
(F,\) with F' € O,(D, D +16;R) and A € R?P+16 such that

S = (F,A) 'Sy (F,A) . (6.9)

More explicitly, in terms of the generators (© (,)a, Vix)a) and (1, L(,)) of the space groups
S(x) for k = 1,2 this reads

—1 —1 —1
L(Q) =r L(l) J @(Z)a =F @(l)a F, V(2)a =F (V(1)a—(]l—@(1)a))\) , (6.10)

see eq. (4.6). Notice that Narain Q- and Z-classes involve transformations in the lattice
basis, while Narain Poincaré classes involve transformations in the coordinate basis. Since
Narain Poincaré transformations act on all defining quantities of the space group, see
eq. (6.10), their interpretation is more involved.

6.4 Interpretation of Narain Poincaré-classes

First of all, we show that two generalized space groups from the same affine class correspond
to the same Narain orbifold but possibly at different points in the moduli space. To
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see this, let us denote the generalized vielbeins that specify the Narain lattices from the
respective generalized space groups S,) by E(”) = U RE(e(,{),B(H),A(H)) for Kk = 1,2,
where U,y € O(D;R) x O(D + 16;R) and E(e(y), B(x), A(x)) is given in eq. (3.1). Since
Ly = E(;)N(x) are related by the transformation (6.10), a Poincaré transformation (F, \)
of the corresponding generalized vielbeins F(;) and Ey) is given by

U RE(e), Bayp Aw) = B = F By = F7 U RE(eq), Bay, Aw) . (6:11)

where we assume without loss of generality that we do not perform a discrete T-duality
transformation (i.e. N(2) = N(1)). This can be rewritten as

U E(e@ay, By, Aw)) = Eleqy. Bay Ay) Mr, (6.12)
where

(7(2) = R_l U(Q)R and MF = E(_S U(l) F_l E(l) S Oﬁ(D,D—i— IG,R) . (6.13)

Since M, F parametrizes a general T-duality transformation, we can make use of eq. (3.4)
to determine the transformation of the moduli by setting M = Mp, i.e.

UJ/V[\F E(el(l), El)’Al(l)) = E(e(l),B(l),A(l))MF . (614)

Since the generalized vielbein is uniquely defined up to O(D;R) x O(D + 16; R) transfor-
mations, we conclude that

€@ = €y, Be = By, Ap = Ay, (6.15)

where the prime denotes the resulting moduli under the T-duality transformation M, . This
tells us that two generalized space groups from the same Poincaré-class can correspond to
the same Narain orbifold but at different points in the moduli space. In fact only if
F € O(D;R) x O(D + 16; R)\O, (D, D + 16; R) we get a proper moduli transformation.
Indeed, if F' € O(D;R) x O(D +16; R) we find that Uy = F-1 Uny as well as e(g) = e(y),
Ba) = B1) and A() = A(1). In this case, also the left- and right-moving mass formulae of
the heterotic string stay the same.

So far we only gave an interpretation of the first equivalence relation in egs. (6.10).
The second relation tells us that the orbifold twists can take various guises by conjugation
with F' € O,(D, D+16;R). The third equivalence relation in egs. (6.10) can be interpreted
by resorting to the decomposition mentioned in section 4.5.

7 Symmetric orbifolds as Narain orbifolds

The main objective of our study in this paper is to set up a framework to investigate
asymmetric orbifolds. Nevertheless, it is very instructive to apply the Narain formalism
also to symmetric orbifolds [5, 6]: it provides us with a unified view on both, geometric
moduli and Wilson lines [8]. Moreover, this case can be used to illustrate the power of
the T-duality group approach in the investigation of moduli stabilization. For concreteness
and simplicity, we only consider symmetric Zg orbifolds in this section. Extending the
discussion is straightforward, yet beyond the scope of the present paper.
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7.1 Symmetric Zg orbifolds

The Narain point group of a symmetric Zg orbifold is generated by a single twist © of
order K and the associated generator of the generalized space group is given by (©,V).
For the orbifold to be symmetric, we choose the twist © to be of the form given in eq. (4.5).
Thus, we obtain for 0%, k=1,..., K,

o 0 0
o = R'e*rR = | 0 6% 0 = M,(6%), (7.1)
0 0 L

see table 1 and using #7 § = 1p. Using the definition (5.1) of the integral matrix p we can
subsequently obtain an expression for p¥, which can be further evaluated with the help of
the multiplication table 2 for T-duality group elements. This yields

p¥ = E(e,B,A)" 0" E(e, B,A) = M.(0") Mp(ABy,) Ma(AAy), (7.2)

where we defined

0=e'0e (7.3a)
AB, = B —0"TB§* + % (ékTATA _ATA ék) with ABT = —AB, (7.3b)
AAy, = A (]1D - ék) . (7.3¢)

Since p is an integral matrix, 0, AB;, and AAj all have to be constant, i.e. moduli-
independent, matrices. As a cross-check, let us confirm that for ¥ = K we obtain
p% =1: indeed, in this case we get oK = 1p, AAg =0 and ABg = 0 and consequently,
prt = ]\/Ze(]l p) = 1, as required. Furthermore, we find from eq. (7.2) that p is an element
of the discrete geometric subgroup Ggeom(Z) C Oz(D, D + 16;7Z), see eq. (3.15) with
AW = ]116-

The twist © is in general accompanied by a shift VT = (VI Vi, VT, see eq. (4.6). As
we have seen in section 4.5, the shift is quantized, i.e. KV|® = E Ny € II'. It is instructive
to analyze this in more detail for the case that 6 rotates in all D compact dimensions.

Then, the projection operator eq. (4.15) reads

00 O
Pf = 00 O ) (7.4)
00 1
and we obtain the condition
0 my
|
KVe = 0 = ENy ¢ T with Ny = [ ny | € z?PH6 . (7.5)
K, qv
This is solved by
KW, = agqv € Apgxrs, KAV, = ny €Z® and my =0, (7.6)
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where A, xpg denotes the root lattice of Eg x Eg and we used eq. (2.44). Hence, V7, is
the gauge shift vector of order K known to the symmetric orbifold literature, e.g. [13, 52].
Furthermore, we can set V; = V] = 0 by shifting the origin using the transformation (4.23).

7.2 Moduli stabilization in symmetric Z g orbifolds

The fact that even for symmetric Zg orbifolds a certain number of moduli, G, B and A,
become constrained, can be inferred in two ways: first of all, the conditions (7.3) can be
obtained from egs. (7.2), as shown above by using the fact that for symmetric orbifolds the
twist p is an element of the geometric subgroup Ggeom(Z) C O(D, D + 16;7Z). A second
derivation of eq. (7.3) follows from the general discussion in section 5.2, which is valid for
both, symmetric and asymmetric orbifolds: to see this, we use

p = M.(0) Mp(AB)) Ms(AAy) = E(6,ABy,AAy), (7.7)

see eq. (7.2) and eq. (3.1). Then, we set M =pin eq. (3.8) and obtain

—~ 1 ~
M, =0T <—A31 + QAA{AA1> +(G+CHh+ ATAA,, (7.8a)

— ~

— ~ T
My =67, 15 = (a4 9—1+A) ag, (7.8b)

and in addition we have p, = e 710, e = 6. Consequently, the Narain moduli are constrained
by egs. (5.16), which are equivalent to eqgs. (7.3). Thus, we found two equivalent ways to de-
rive the conditions (7.3) for Narain moduli stabilization in the case of symmetric orbifolds.

Let us now discuss the consequences of eqgs. (7.3) for Narain moduli stabilization. Since
p in eq. (7.7) has to be an integer matrix, i.e. p € Oz(D, D+16;Z), we have to demand that

R 1
0 € GL(D;Z), o5 'AAy, € Misxp(Z), —iAA;{AAk +AB, € Mpyp(Z), (7.9)

as can be inferred from egs. (2.39) and (3.24).
We start with fixing moduli in the metric G. From eq. (7.3a) and ©7© = 1 we obtain
the condition

TG = ¢ o b e 0g(D:7), (7.10)

which fixes some of the moduli, as is well-known. The general solution to eq. (7.10) for a

given 6 can be parametrized as

1=

= 0kT Gy 6% (7.11)
k=0

[y

G =

where G is some symmetric positive definite matrix, for example Gy = 1p. Now, it is easy
to demonstrate that some metric moduli remain unconstrained for symmetric orbifolds: at
least we can scale Gy with an arbitrary positive factor, while eq. (7.10) stays fulfilled.

Next, we consider the Wilson lines. If 0 rotates in all D compact dimensions (1p — é)
is invertible, i.e.

K-1
A~ 1 N
(1p—6)~ = —?E nf" (7.12)
n=1
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and the Wilson lines are uniquely determined from A Ay in eq. (7.3c), e.g. from k =1

' 1 K=l
R n
A== > nAA 0" (7.13)
n=1
Consequently, the Wilson lines A are completely frozen as they have to be discrete, i.e.
quantized in units of 1/K in the directions where 6 acts non-trivially. As a further con-
sequence of eq. (7.3c) we see that two Wilson lines (i.e. two columns of A) have to be
identical up to some trivial A Ay if the corresponding columns in the geometrical vielbein
e are mapped to each other by 9%,
Finally, the B-field is constrained by the condition (7.3b)

S 1 /. .
B-0TB6 £ AB = AB, — 5 (eTATA —ATA 0) , (7.14)
combined with eq. (7.9). In analogy to eq. (7.11) the general solution of this equation can
written as
| K
_ GRT 1 Hk
B_Kkzoe By 0* + Bp, (7.15)

where By is an arbitrary anti-symmetric matrix (for example, By = 0) and Bp is a par-
ticular solution to eq. (7.14). For example, in D = 2 the anti-symmetric 2 x 2 matrix B
contains a single modulus. It is subject to eq. (7.14), i.e.

B-6TB = (1-det(d))B = AB, (7.16)

where det(§) = £1. Thus, for det(f) = 1 we obtain AB £ 0 and the single B-field modulus
in B is unconstrained and Bp = 0. On the other hand, B is stabilized at Bp = %AB if
det(0) = —1.

Number of moduli in symmetric Zx orbifolds. We can compute the number of
(real) unstabilized moduli for symmetric Zg orbifolds for general K using the results of
section 5.4. To do so, we assume for simplicity D = 6 and K # 2. Furthermore, we choose
a Z twist vector ¢r = (0, ¢11>m ¢2R, _‘bll% — qb%) such that N’ = 1 supersymmetry survives in
four dimensions, see section 4.6. Hence, K = 3,4,6,7,8 or 12. Then, eq. (5.22) yields

dim(Mz,) = 6+2(85 1+ 652 1+ 65 g2 1)

+ 400103, + st —a3, + st 204 T Ot —a3) (7.17)

where 0,5 = 1 if a = b and J,, = 0 otherwise. For example, for Z3 we take d)%{ = qb%{ =
and obtain dim(Mz,) =6+2x0+4x (1 +0+1+1) = 18. As is well-known, these 1
(real) moduli correspond to 9 complex structure moduli, see e.g. [90].

1
3
8

8 Two-dimensional Abelian Narain orbifolds

In this section, we study examples of generalized space groups of Narain orbifolds with
Abelian Narain point groups Z g in two dimensions. Many of them correspond to previously
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unknown two-dimensional Narain orbifolds. We collect them in a comprehensive table.
Furthermore, to illustrate various aspects of the theory developed in previous sections, we
describe some of these two-dimensional Z i Narain orbifolds in more detail. For example,
by an explicit construction we show that it is possible to have Z2 two-dimensional Narain
orbifolds, while it is well-known that for Euclidean orbifolds in D = 2 the largest order
of a twist is K = 6. Moreover, the Q- and Z-classes are used to distinguish seemingly
asymmetric from truly asymmetric orbifolds.

8.1 (D, D)-Narain orbifold formalism

To prepare the discussion of various illustrative examples of two-dimensional Narain orb-
ifolds, we briefly restrict the Narain orbifold formalism to the case where n has signature

(D,D):
N 0 1p . 1 (1p —1p
q 7 <11D 0) wi \/§<11D 1D> (8.1)

The generalized vielbein E is an element from O5(D, D;R),

B(e,B) = (eeTB €OT> . (8.2)

Analogously to the discussion in section 3.3, for each element

i (1\/{11 J\/{u

= € Ox(D,D;R), 8.3
Moy M22> il ) (8:3)

there exist a choice for a matrix Ug; € O(D; R) x O(D;R) and transformed moduli ¢’ and
B’, such that

U E(¢,B) = E(e,B)M, Uy = RUZR™ = (16 31> . (8.4)
In detail, defining
My = — My +(G—B)My and My, = — Mg+ (G— B)M, (8.5)
in accordance with eq. (3.8), we obtain
u = (]lD —2eMis ]\7{1 eT) uy € O(D;R) (8.6)

for arbitrary u, € O(D;R). This shows that ]/\4\12 = 0 is a necessary condition for u, # u.
Furthermore, the Narain moduli transform as

_ _ _ 1/~ o~ _
¢ = —uledy”, @ =M'GM;", B =3 (M5! My~ M MZT) L (87)

By restricting M to lie either inside O5(D, D; Q) or Og(D, D;Z), we obtain the transfor-
mations that map different representations within the same Q- or Z-class to each other.
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Next, we discuss Narain orbifolds with Abelian Zx point groups P c O; 7(D,D;7Z).
We use eq. (8.5) and set M = p, where p is the generator of P. Then, we find invariant
moduli G’ = G and B’ = B from the latter two transformations in egs. (8.7). Moreover,
we obtain the right-moving twist 6, = wu, from the first relation in eq. (8.7) by choosmg a
vielbein €/ = e, which is in agreement with G’ = G. By identifying the full twist © = UA
from eq. (8.6) the Narain orbifold condition follows from eq. (8.4), i.e

©FE(e,B) = E(e,B)p . (8.8)

Then, in analogy to section 5.2 we know that the Z Narain orbifold exists.

If the matrix-block pyo is zero the orbifold is symmetric (i.e. #, = ;) and a necessary
(but not sufficient) condition for the orbifold to be asymmetric is pi2 # 0, as can be seen
from eq. (8.6).

8.2 (- and Z-classes of two-dimensional Z i Narain orbifolds

Following the discussion of the last section we focus on two-dimensional Narain orbifolds
with point groups PcC 05(2,2;Z), generated by a single twist p of order K.

To initiate this investigation, we give a brief discussion on the possible orders following
section 4.3: for Narain orbifolds with D = 2 we have to set Dp = 2D = 4. Then, eq. (4.14)
yields the following list of possible orders

K € {1,2,3,4,5,6,8,10,12} . (8.9)

In contrast, for two-dimensional symmetric orbifolds we have Dpr = D = 2 which yields
only K € {1,2,3,4,6}. Indeed, as we discuss in the following, we found examples for
K = 12. They are genuine asymmetric because twists of order 12 are not possible for
Dr = 2. On the other hand, we did not find any examples for K = 5,8 and 10 in the scan
of two-dimensional Narain orbifold we performed for this paper.

In table 3 we list a number of Abelian Zjg Narain orbifolds of order K, which we
constructed explicitly in our scan. For each Narain point group PcC 05(2,2;7Z) this table
displays the following data in the various columns:

1. column labels the inequivalent orbifolds and characterizes the orbifold as symmetric
or asymmetric;

2. column gives a representation of the generating twist p of order K in the lattice basis;
3. column displays the corresponding right-twist 6,;

4. column displays the corresponding left-twist 6y;

5. column indicates the relation between these twists;

6. column gives a choice of the geometrical vielbein e;

7. column gives to resulting metric as G' = e”'e;
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8. column gives the anti-symmetric B-field.

A couple of further comments about the conventions of this table are in order: our labelling
conventions for inequivalent Narain orbifolds are as follows. The inequivalent Q-classes of a
given order K are enumerated by a Roman number R=L]1I,. .. as Zk-R. Furthermore, when
we give inequivalent Z-classes within a given Q-class, we enumerate them with n = 1,2,3
as Zx-R-n. In fact, only the Q-class Zs-1I is subdivided into three inequivalent Z-classes.
Furthermore, the given right- and left-twists depend on our choice for the geometrical
vielbein e and on the Narain moduli G and B.

To describe all these two dimensional Narain orbifolds in detail would lead to a lengthy
discussion. Therefore, we focus in the following subsections on a number of striking features
of some of these orbifolds instead. Before, doing so we make a couple of observations: first
of all, we see that the number of asymmetric orbifolds greatly outweighs the number of
symmetric orbifolds. This might imply that there exist many more asymmetric Narain
orbifolds than symmetric ones. Most of the asymmetric orbifolds constructed in the past
have twists that are trivial for either the left- or the right-moving sectors, like the Zs-I1I and
Z.3-111 orbifolds. In our scan we also encountered such examples, but again it seems that
the majority of asymmetric orbifolds are not of this type: most of them have non-trivial
left- and right-moving twists simultaneously. In fact, there are even cases where the orders
of the left- and right-moving twists are co-prime: the Zg-IV and Zg-VII Narain orbifolds.
Since their orders are coprime, all their characters are orthogonal. Using the results of
section 5.4 this immediately implies that all moduli are stabilized for these orbifolds.

8.3 Two equivalent asymmetric Z,2 Narain orbifolds

With our first two examples we want to illustrate that we are able to construct gen-
uine asymmetric orbifolds using the formalism for Narain orbifolds exposed in this paper.
Concretely, we define two Z1o Narain point groups 13(1) and 13(1) in D = 2, each being
generated by an element p(1), p2) € O7(2,2;7Z) of order 12. In each case, we determine
the corresponding Narain lattice and the twist © which is given by its action on right-
and left-movers, 6, and 6, respectively. As there is no symmetric Zs orbifold in D = 2
(i.e. there is no two-dimensional lattice with rotational symmetry of order 12), these orb-
ifolds must be genuine asymmetric.?> Moreover, to emphasize that the use of Z-classes is
extremely powerful to investigate whether two orbifolds are distinct, we show that these
two Z2 point groups are in fact equivalent by giving an explicit Og(D, D;Z) matrix that
relates the two twists in the lattice basis.

The first asymmetric Zja orbifold example has a non-vanish B-field By # 0: we

pay = (0 ]12> € 05(2,2;7) where € = (0 1) (8.10)

choose

12 € —-10

and obtain
May = —12, My = Guy— Bu) — ¢, (8.11)

3Such asymmetric Z1» orbifolds were studied in the past [51, 91].
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label twist p twist O, twist 0 |relation| vielbein e metric G B-field
-1 0 0 O (R% w)
Zo-1 -
2 0 -1 0 0 1, 1, 0, — 0, (R1 RQC?SO&) w R2 (0 b)
sym 0O 0 -1 0 0 Rssina _ b0
0 0 0 -1 w = R1 Ry cosa
1000
Z-I-1l [0 —-10 0 10 10 0 — 0 Ri 0 R? 0 00
sym. | |0 0 10 0 -1 0 -1 e 0 Ro 0 R} 00
00 0-1
0100
Z3-11-2 1000 10 10 0 —o Ri R R2+ RZ R? — R2 00
sym. 0001 0 -1 0 -1 PO \“Re Re R2—R2 R24+R2)| \0O
0010
0100
Z-11-3 1000 10 1o 0 —8 R R R?+ R% R? — R3 0 1
sym. -1001 0 -1 0 -1 P \-Re Ro R} —-R: R?+RZJ|\-1 0
0110
0-10 0 s ;. s
- 1 3 1 3 2 ——
Zs-1 | [1-1 0 o0 = =) (2 =) 624 |r /2 g2 -1 0 b
00 —1-1 V3 _1 V3 _1 r 0 3 -1 2 -5 0
sym 2 2 2 2 2
00 1 0
001 1
- 1 _ V3 3 — _1L 1 1
Zs11| [0 00 1 <T/§ —%> . 07 =1, <1 ¢§> (11 —5) (01 5)
asym.| (1 00— T T2 0 =12 0% -z ! -3 0
-111 1
0 0 -10 s
. 1 3 — _1 1 1
Zg1I| [0 0 -1 -1 n <}2 _%> 0 =12 (1 JQE) (11 _§> (o1 5)
asym. -1 11 73 -3 013:]12 0 -5 -3 1 -3 0
0 -1-1 0
0-10 0
Zy4-1 1000 0 -1 0 -1 0 —o R 0 RZ 0 0 b
sym. | |0 0 0 -1 10 10 e 0R 0 R? ~b 0
0010
—1 -1 -1 1 ]
ZeN||l 0 0 -1 1 (0 _1> (_1 0) 0f =1 <¢§ 0) (% 0) (0 %)
1 1 1
asym. || 0 0 0 -1 10 0 1) |g2-1, 0 7 03 -10
-10 0 1
11 1 1 ]
Zs 11 [0 0 —1 —1 (4 0) (0 71) 07 =1 <ﬁ 0 ) (% 0) (0 %)
1 1 1
asym.| | 0001 01 ! oi=1| \ " —3 0 3 -3 0
-10 0 1
1-10 0 f s
- 1 3 1 V3 2 ——
Ze1| [1 0 0 0 <\2F12> <}E> 6o |r v R2(2 —1) (o b)
sym 00 0-1 o1 o1 0 /3 -1 2 b0
0011
0 0 —1 -1
- 1 V3 6 — _1 1 1
Ze-1l|[ 0 0 0 -1 (} —12> L, T <1 ng> (11 —5) (01 5)
asym. -10 01 73 3 9122112 0 -5 -3 1 -2 0
1 -1 -1 -1
1-10 0
Ze-1I| (1 -1 -1 —1 <; Jj) (1 0) 07 =1, <1 —;> (1 —%) (0 ;)
1 1
0-10 0
-10 0 1
Ze- VI [0 0 0 1 <—; —?) (—1 0) 67 =12 <1 —é) (1 —%) (o %)
3 1 1
asym. 01(1)711 711 g —% 01 92 =1, 0 % -5 1 -5 0
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label twist p twist O, twist 0 |relation| vielbein e metric G B-field
—1111
_ 1 V3 2 _1 1 1
ZeV| [-1001 L <\2f —12> 07 =12 <1 35) (11 —§> (01 5)
asym. 1 oo B og J|=1,] \0 % 2 1 -3 0
-1100
000 1
Ze-VI| [-10 0 1 (1 0) <§ —\f) 07 =12 (1 —é) (1 —%) (0 %)
3 1 1
0 0-10
-11 0 0
Zs-VI| | 0 0 -1 -1 (—1 o) <—§ —Vf) 02 =15 (1 —5) ( 1 —%) ( 0 %)
3 1 1
asym. 000 1 01 @ _% 0132112 0_% 2 1 2 0
-10 0 0
00 1 0 s e 2k S
- 3 1 3 1 2= 3 1
Zaz-l 00 0 1 -2 3 S 2 ) e =g v 0 5 0 0 -3
01-10 V2

Table 3: This table presents a large number of examples for Zx Narain orbifolds in two dimensions. For each
inequivalent orbifold it gives important data that characterizes Narain orbifolds, like the twists in both, the lattice
and the coordinate basis and the values of the (frozen) moduli.

from eq. (8.5). Then we follow the procedure outlined in section 5.3 to find that all Narain
moduli are stabilized and take the form

1
1, and B(l) = —5 €, (8.12)

_v3 1
0(1)r = ( i %) and 9(1)1 = 9?1)r . (813)
2 2

This precisely corresponds to the data given for the Z1s-I orbifold in table 3.
An equivalent description of this asymmetric Zjo-1 orbifold has no B-field at all
(B(2) = 0). For this case we take

0 011

—~ 0 001

Pe) = 1 000 € 05(2,2,7Z) . (8.14)
—-1100

The stabilized Narain moduli are now given by

V2 1
1 1
e = (* V2] and By =0, (8.15)
0 -
with the twist ©(g) is given by
_¥3 1
Oy = 2 2. and g = 0] = —06,. (8.16)
T2 T2
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To show explicitly that these two Zis orbifolds are Z-equivalent (and consequently
also Q-equivalent), we observe that we can relate the two Zj2 generators,

Mpwy = payM, (8.17)
using the matrix
-1 0 0 O
— 0 0 0 —1
M = € 05(2,2;,7) . 8.18
1 =10 0

Here, we used that both generators p(;) and p(9) are deﬁne(}\ with resI/)\ect to the same Narain
metric 7). Hence, the corresponding Narain point groups P(;y and Py are identical up to
the discrete T-duality transformation with M , i.e. these point groups lie in the same Z-
class. In other words, we have described the same asymmetric Zis orbifold in two different
duality frames, once with and once without B-field.

8.4 Exposing a seemingly asymmetric Z3 Narain orbifold

It might happen that one uses a description, i.e. choice of duality frame, in which a given
Narain orbifold appears to be asymmetric. Consider for example a two-dimensional Zg
Narain orbifold defined by the twist

~ 0 e
Pa) = (E _]12> € 05(2,2,7), (8.19)

in the lattice basis. We use the subscript (a) to refer to this seemingly asymmetric orbifold:
it is not obviously a symmetric orbifold, as it does not meet the sufficient condition (p)12 =0
for being a symmetric Narain orbifold formulated in section 5.3. Since in this case, eqs. (8.5)

reduce to
M(a)l = —€, M(a)2 = 1o+ (G(a) — B(a))e, (820)
the Narain moduli are given by
Ra) W) 1
€(a) = ( 0 — V3 and B(a) = - 56, (8.21)
2R (a)

where parameters R(,) and w(,) are unconstrained. Furthermore, the twist ©,) is specified
by
V3

1
e(a)r = < é 21> and 9(3)1 = 9(2a)r' (8.22)
2

Since 0(,); # 0(a)1, this seems to indicate that this an asymmetric Narain orbifold. However,
it is equivalent to the symmetric orbifold Zs-I of table 3: to see this, we describe this
symmetric Zs-I orbifold (labelled with a subscript (s)) in some detail: the defining twist
in the lattice basis is given by

0-10 0

~ 1-10 0

Po) = |g o -1 1| € O7(227), (8.23)
00 1 0
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from which we obtain
-T
Mgy = (G(s) = B(s))p(s)e » M2 =~ (py) (8.24a)

-1 ~ 0-1
Por =) Ve = (Po)y = (1 _1> : (8.24b)

In this case, p(), acts cryptographically on e, i.e. the first column e of e is mapped to the
second column es and ey is mapped to —e; — es. Furthermore, the Narain moduli are given

by

o

o =Re | |,

-
ol E‘

2 -1 01
_ p2 _
= G(S) = R(S) (_1 9 ) and B(s) = b(s) (_1 0) R (8.25)

where R and b, are unconstrained. Thus, the vielbein e() spans the root lattice of
SU(3) multiplied by an arbitrary radius Rs. Furthermore, the twist © ) is specified by

_ V3
O = Oy = 2 ). (8.26)
(s)r (s)1

1
T2
Clearly, these two descriptions look very different: the parametrization of the moduli

T
WIno|—

does not seem to be alike, since, for example, in case (a) the B-field is fixed while in
case (s) it is a modulus. Moreover, the twist seems to be asymmetric for case (a) but
symmetric for case (s). However, their Narain point groups f’(s) and f’(a) belong to the
same Z-class (and consequently also to the same Q-class); they are equivalent up to a
discrete T-duality transformation.

Explicitly, the discrete T-duality transformation that relates f’(s) and f’(a) reads

~1-10 0

= |20 00072 with Mhw = po M (8.27)
0 0 —10 72,25 @ = P M,
01 00

where we used that p(s) and p(,) are both defined with respect to the same Narain metric
7. This implies that also the moduli (R, b(s)) and (R(,),w(,)) can be mapped explicitly
by exploiting the transformation formula (8.7): we Use

U/\E(@(a),B(a)) = E(e(s),B(s))M (828)

with M given in eq. (8.27) to relate the moduli in both descriptions as

2 4 2 4
a b(s) Y

2 2 4 2 4
2R?) + % + 3R (14 D) + 3R},
1
B(a) = —56 . (829b)
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This results in
2 4

W) =

1
and Ry = —=—— /b2

+3RL, T VaRy VT

+ 3R§s) : (8.30)

In addition, we compute u, and u; from egs. (8.6) and (8.7) to obtain

1 /3 ap2 B 9
2 T2 2 b(Qb)—f-BR?b) _\/g(b(s)"i'R(s)) —b(s)+3R(S)

2

Note that det(u;) = 41 but det(u,) = —1. This corresponds to the matrix Ug from eq. (6.8)
that maps the symmetric twist from point group P () to the seemingly asymmetric twist
from point group P (,).

Let us close this subsection with the comment that for Narain orbifolds of order 3,
we were able to distinguish between three Q-classes, where each QQ-class contains only a
single Z-class. In the nomenclature of table 3 the two-dimensional Narain orbifold Zs-I is
a symmetric orbifold, while the other two, Zs-II and Zs-1I, are asymmetric. In fact, they
are each others mirrors in the sense that their 6; and 6, are interchanged.

8.5 Symmetric Zs Narain orbifolds from inequivalent Z-classes

For the examples considered so far, we found that each Narain Q-class contains just a single
Narain Z-class. This might convey the impression that the notion of Z-classes for Narain
orbifolds is obsolete. To emphasize that this is not the case, we consider two symmetric
Z» Narain point groups in D = 2 next. Both correspond geometrically to the Mobius
strip, where the B-field is either turned on or off. We will show that even though these
two Narain point groups belong to the same Narain Q-class, they live in different Narain
Z-~classes, hence they are physically inequivalent.

Consider the symmetric Zs9-11-2 Narain orbifold of table 3 without a B-field: in detail,
we choose

0100
—~ 1000
0= o001l € 07(2,2; Z) (8.32)
0010
and obtain
—~ 01 — 01
M(l)l = (G(l) _B(l))(l 0) and M(1)2 = — <1 0) . (833)

In this case, the Narain moduli are given by

R Ry R?+ R} R} — R} 00
_ Gy = d By = 8.34
‘o (—Rg R2> - o (R% “rrr) M Bw={g) G

for R1 Ry # 0. Furthermore, the twist © is specified by

0, — 0 — ((1) _01> . (8.35)
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Figure 1. Two-dimensional Md&bius strip as Zs orbifold: the underlying two-torus lattice is spanned
by e; and e;. The upper and lower yellow regions combined give a convenient choice for the funda-
mental domain of the resulting two-torus. The symmetric twist 8, = 6) gives a reflection at the hori-
zontal axis. Consequently, we may take the lower yellow region to represent a fundamental domain of
the resulting Zs orbifold. In this picture the 343 dashed arrows illustrate how the left and right side
of the lower yellow region get glued together, hence this orbifold corresponds to the Md&bius strip.

This orbifold geometrically corresponds to the Mobius strip, see figure 1.
Another symmetric Zs orbifold has a non-vanishing B-field: for this Z,-11-3 Narain
orbifold in table 3 we choose

0100

~ 1 000 —~ e

P2 = | Lo01| = MB(AB) " hu Ms(AB) € 05(2,2%7), (8.36)
0110

where pyq) is the twist from the Zy orbifold discussed just above and M B(AB) is a fractional
B-field shift given by

_ 1
Mp(AB) = (12 0) for  AB = je. (8.37)
Now, we obtain

—~ 10 01 — 01

In this case, the Narain moduli are given by
) ,  (8.39)

R Ry R?+ R} R? — R3 0
‘@ (—32 RQ) @ <R§—R§ rR4pz) M PO
10
0, = 6 = . 8.40
1 (0 _1> (8.40)

D[
O o=

for R1 Ry # 0. Furthermore, the twist © remains unchanged, i.e.
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Note, that the metric Gy is identical to G(;) from the case above; the only difference is
that we now have a non-vanishing B-field.

The conjugation of the generator p;y with M, B(AB) in eq. (8.36) tells us that these
two Narain point groups belong to the same Q-class. However, it turns out that they are
from different Z-classes: there is no M € O5(D, D;Z) that can relate p() to p(z). Since
the transformation (8.36) is a conjugation with a discrete fractional B-field transformation,
the Z-classes under investigation can be used to parametrize the inequivalent choices for
the B-field for the given geometrical setting. As can be inferred from table 3 we identified
three inequivalent Z-classes for the Q-class Zo-II, where Zo-1I-1 and Zs,-I11-2 both have
vanishing B-field but are based on inequivalent lattices.
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A  Moduli deformations and the generalized metric

Choose a specific generalized metric Hg. Next, consider the finite group of all discrete T-
duality transformations that leaves this generalized metric invariant and choose a subgroup
H thereof. Then, the general question, which we are addressing in this section, reads: what
infinitesimal moduli deformations are allowed such that the deformed generalized metric
stays invariant under all transformations from H? We will answer this question in three
steps. First, we define the group H in appendix A.1l. Second, we parametrize all infinitesi-
mal moduli deformations in appendix A.2. Third, in appendix A.3 we restrict them to the
ones which are compatible with the action of H. In addition, in appendix A.4 we derive a
closed expression which counts the number of moduli that are compatlble with the action of
H. We use the results form this appendix in section 5.4, where we set H= P i.e. equal to
the point group in the lattice basis. By doing so, we identify the moduli in Narain orbifolds.

A.1 T-duality transformations that leave a generalized metric invariant

Consider a subgroup H of the group of all O;(D, D + 16;Z) transformations which leave
a specific generalized metric Hg = Eg Ej invariant, i.e.

~

H C {ﬁ € 04(D,D+16,Z) A?THOJ\?:HO}. (A1)
The following discussion is independent of whether H is Abelian or non-Abelian. Since the

clements M € H preserve both 7 and Hg we find that the corresponding element @(]\/4\ ) as
a function of M is given by

O(M) = E;ME;' with oM)TOo(M)=1, ©M)Tno(M)=r. (A.2)
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Hence,

I er(]\/j) 0 . .
o(M) = ( . ®L(1\7)> c O(D;R) x O(D + 16;R) (A.3)

and G)(]\/4\) is a group homomorphism from H to a finite subgroup of O(D;R)xO(D+16; R).

A.2 Infinitesimal moduli deformations of the Narain lattice

We want to determine which parameters JF in the generalized vielbein can be deformed
infinitesimally, i.e. Fg — Eg+ 0 F to first order in the perturbations. Since the generalized
vielbein with (2D + 16)? components is parametrized in terms of D(D + 16) parameters
(i.e. the vielbein e, the B-field and the Wilson lines A), not all components of 0E are
independent. To characterize the infinitesimal moduli perturbations without choosing a
particular parametrization, we expand the constraint Eg n Eg = 1 from eq. (2.17) to first
order in ' and obtain

SETnEy+EInéE = 0. (A.4)

This can be cast into the form
seln+nde = 0, (A.5)

where we have defined de = 0F Ey 1 The general solution reads

_ 1 511,1) om
de = SEE == ) A6
¢ 0 2 <5mT 5uD+16> ( )
with 0m € Mp,(pyi6)(R). Furthermore, 51% = —dup and 51%“6 = —dupy16 generate

O(D;R) and O(D + 16;R), respectively. These orthogonal groups correspond to the U
transformation in eq. (2.40). Next, we consider the perturbations of the generalized metric
6" = SETEy + EISE to first order. Using eq. (A.4) one can see that the constraint
(71 (Ho +0H))? = 1 from eq. (5.7) is fulfilled. In fact, we may write 6h = de’ + de, where

5e:%5h+%5uwi‘ch
ou = —oul = (5"(;[) (5u0 ) . (A.7)
D+16

Hence, the infinitesimal moduli are uniquely identified by dm, i.e. dm encodes the
deformations of the metric 4G, the B-field B and the Wilson lines d A. This can be stated
explicitly as follows. We can determine de by using eq. (A.6) with Ey = RE and the
expression for E given in eq. (2.39). Thereby we directly confirm that dup and dup, 6 are
anti-symmetric and we derive that dm is given at linear order in the moduli perturbations
8G, 6B and JA as given in eq. (5.21), using (eg + de) P e ! — ealée eal.

A.3 H-invariant infinitesimal moduli deformations

In order to determine which of the Narain moduli are compatible with the action of H we
consider the first order perturbation of eq. (A.1) and obtain

MTsHM = 6H <« O0NTshe(M) = 6. (A.8)
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This reads on the level of the moduli deformations
07 (M) omOr(M) = ém, (A.9)
for each M € H. Eq. (A.9) can be written as
(6:(M) @ O(M)) dm = dm . (A.10)
Here, we interpret dm as a vector with D(D + 16) components using the standard tensor

product notation ®. To solve this condition we introduce the projection operator Pg that
projects the moduli perturbations on their H-invariant subspace, i.e.

= f S 0(M)®6L(M) with (6:(M)®OL(M))Pg = Pg .  (A11)
NMer

Using that @(]\/1\ ) defines a group homomorphism, it is not difficult to show that this indeed
defines a projection operator, i.e. 7312?1 = Pg- Thus, the H-invariant moduli space is given by

Mg = {omg = Pgom} . (A.12)

A.4 The number of H-invariant Narain moduli

The dimension of the H-invariant Narain moduli space is determined by the trace of the
projection operator Pg, i.e.

dim(Mg) = t(Pg) = — > x (6(3D) x (61.(3D)’
X:(©) xL(0)" . (A.13)

Here, we have used the linearity of the trace, tr(A ® B) = tr(A)tr(B) and we have used
the definition (5.7). In addition, we have included a complex conjugate in eq. (A.13) for
later use. Furthermore, we have introduced the group characters

2
1+Z
2

(0) = x (8(1D) = (o) = u|*3Z 7], (A14a)

\w(©) = x (6L(1)) = u(©L(l) = tr[ z\?] (A.14b)

which are real for the real representations Gr(]\/f ) and O, (]\//_7 ), respectively.
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