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1 Introduction and conclusions

Since the early days of superstring theory, the heterotic string [1–3] has served as a promis-

ing candidate theory for a unified quantum description of particle physics as well as gravity,

see e.g. [4] for a textbook introduction to string phenomenology. One of the main obsta-

cles lies in the fact that the heterotic string is conventionally defined in a ten-dimensional

space-time. Hence, six spatial dimensions have to be compactified in order to make contact

to the observable four-dimensional world.

One possibility is to compactify on a six-dimensional (symmetric) toroidal orbifold [5, 6]

which is the quotient of a six-torus T 6 by some of its discrete isometries, see [7] for a full

classification with N ≥ 1 supersymmetry in four dimensions. For example, one can use

an Abelian rotational symmetry ZK and define the orbifold geometrically as the quotient

space T 6/ZK . Especially, in the presence of discrete Wilson lines [8] orbifold compactifi-

cations have been used to construct (minimal) supersymmetric extensions of the Standard

Model (MSSM) from the heterotic string [9–26].1 These constructions can be considered

to be promising directions to connect string theory to particle physics: beside reproducing

MSSM-like models, they offer an appealing geometrical interpretation, in which many prop-

erties of the elementary particles depend on their localization in extra dimensions [14, 33–

35]. Unfortunately, these constructions generically leave a number of moduli, like the

compactification radius R, unfixed.

A possibility to stabilize moduli is to generalize the construction of symmetric orb-

ifolds to asymmetric ones: in this case one quotients the compactification space not only

1For related MSSM model-building using compactifications of the heterotic string on Calabi-Yaus see

e.g. [27–32].

– 1 –



J
H
E
P
0
4
(
2
0
1
7
)
0
3
0

geometrically, but also by a genuine stringy symmetry [36]. The most famous example

of such a symmetry of string theory is T -duality: in its simplest form, T -duality is a Z2

transformation that identifies a string compactification on a circle with small radius R with

another compactification on a circle with large radius 1/R. This is a full quantum duality

on the string worldsheet as this can be described as field redefinitions in a path integral

approach [37–39]. Now, in order to be able to perform the quotient by this T -duality

transformation the radius R can no longer be a free parameter, but it has to be fixed at the

so-called self-dual value R = 1 (in string units). This promotes the T -duality transforma-

tion R 7→ 1/R to a symmetry of the theory. On the left- and right-moving coordinate fields

Xl and Xr this T -duality transformation is realized by Xl 7→ +Xl and Xr 7→ −Xr. Hence,

in general, such T -dualities act differently on the left- and right-moving degrees of freedom

of the string and the resulting quotient spaces are often called asymmetric orbifolds [40].

Asymmetric orbifolds provide specific examples of non-geometric string backgrounds [41–

43] or so-called T -folds [44, 45]. More recently double field theory [46–48] was introduced as

an attempt to obtain a setting with doubled geometry to describe such T -folds using geo-

metrical tools inspired by a string field-theoretical description of the left- and right-moving

string coordinates. Hence, asymmetric string constructions are of increasing interest in

the connection to non-geometric flux backgrounds [49, 50]. Various aspects of asymmetric

orbifolds have been studied in the past [51–59] and with recent renewed interest [60, 61]

and in particular also in the context on non-supersymmetric constructions [62–64].

In contrast to symmetric orbifolds the phenomenological prospects of heterotic asym-

metric orbifolds are far less studied. The main asymmetric activities in this direction

concentrated up to now on the free fermionic construction of the heterotic string [65, 66].

These free fermionic models naturally incorporate both, asymmetric as well as symmetric

Z2 twists [67] and successful MSSM model-building has been carried out [68–71]. Fur-

thermore, there has been some recent activities on model-building using asymmetric Z3

orbifolds [72–74]. Finally, asymmetric string constructions can be further generalized in

the covariant lattice approach [75] which generalizes the Narain lattice [76], in phenomeno-

logically promising Gepner models [77–81] and further with asymmetric CFTs [82–84].

Main results. In this work we develop a generalized space group description of Narain

orbifolds and utilize this formalism throughout this work to study various aspects of sym-

metric and asymmetric orbifolds in a unified fashion. To define the generalized space group,

we first perform a concise investigation of the heterotic T -duality group: we decompose its

generators into geometrical and non-geometric ones and use them to parametrize the maxi-

mal compact subgroup of the T -duality group. This is important, as the maximal compact

subgroup contains the finite subgroups that can be used to build (a)symmetric orbifolds.

Hence, the generalized space group provides a unified framework to study symmetric and

asymmetric orbifolds in a systematic manner.

We apply our understanding of the T -duality group to derive conditions for the sta-

bilization of Narain moduli by orbifolding. This leads us to a closed character formula to

count the number of unstabilized Narain moduli. In particular, this formula shows that all

Narain moduli are fixed, if the left- and right-moving twists do not have any irreducible
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representations of the point group in common. We use our findings on moduli stabiliza-

tion to formulate sufficient conditions for a Narain orbifold to exist crystallographically by

reducing this question to the question whether certain Riccati equations admit solutions.

Hence, using our generalized space group description one can check that a Narain orbifold

exists at least crystallographically and one can identify the associated Narain torus that is

compatible with the orbifold action.

Moreover, in this paper we lay the foundation for a classification of Narain orbifolds.

Even though asymmetric orbifolds have been studied essentially since the birth of super-

string theory, they have been analyzed so far essentially on a case-by-case basis. Based on

our definition of the generalized space group we identify equivalence relations for Narain

orbifolds. These equivalences extend the notations of Q-, Z- and affine-equivalences from

theory of crystallography to the Narain case leading to the notions of Narain Q-, Z- and

Poincaré-classes. This can be seen as a first step towards a classification of symmetric

as well as asymmetric Narain orbifolds, which includes — besides the information on the

six-dimensional compactification space — also the anti-symmetric Kalb-Ramond B-field,

the (discrete) Wilson lines and the orbifold shift-vectors in a unified fashion.

Finally, we construct a non-trivial set of (two-dimensional and more general) Narain

orbifolds by specifying their generalized space groups. We use these examples to illustrate

many aspects of our study, like the stabilization of Narain moduli and the equivalence

classes for Narain orbifolds.

Outlook. In this work we investigated necessary conditions for a Narain orbifold to exist.

However, we ignored possible extra conditions coming from modular invariance, as they

have been studied in the past, see e.g. [53]. However, it would be advantageous to check

for full modular invariance on the level of the generalized space group and, ultimately,

to incorporate modular invariance in the definition of generalized space groups such that

generalized space groups yield modular invariant Narain orbifolds by construction.

Moreover, we can imagine various applications of our work: the space group formula-

tion of Narain orbifolds allows for a systematic construction of large sets of examples in

various dimensions and in both, the (D,D) case as well as the heterotic (D,D + 16) case.

In addition, using our definitions of Narain Q-, Z- and Poincaré classes one can unam-

biguously decide whether two Narain orbifold models are physically identical or not. This

might proof to be very useful for systematic investigations and classifications for various

reasons: first of all, in the traditional approach two (symmetric) orbifold models are often

said to be equivalent if their massless matter spectra agree. However, this is neither neces-

sary nor sufficient: for example, two different string constructions might possess identical

massless spectra but different couplings, or the massless spectrum of a given toroidal orb-

ifold compactification can be enhanced at specific points in its moduli space. Precisely here

the Narain Poincaré classes would come to the rescue and decide for (in)equivalence. How-

ever, our new definition of equivalence might be computationally very intensive and, hence,

further studies might be necessary in order to apply it practically for large computer scans.

Second, having an unambiguous criterion for two Narain orbifolds to be inequivalent,

our work can be used to classify Narain orbifolds, both symmetric and asymmetric ones.
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Such a classification would automatically include the orbifold twists and shifts as well as

the background fields, i.e. the torus metric, the B-field and (discrete) Wilson lines.

Finally, one can use our definitions of Narain Q-, Z- and Poincaré classes to decide

whether a Narain orbifold is genuine asymmetric or only seemingly. Hence, our approach

might be also very helpful in the study of non-geometrical backgrounds for string theory in

general, since it has been proven to be quite difficult to obtain concrete, yet true, examples

of such backgrounds.

Paper outline. In section 2 we recall the basics of the Narain description of heterotic

torus compactifications with continuous Wilson lines A, the anti-symmetric Kalb-Ramond

B-field and the metric G. In this section we exploit the fact that the moduli space of Narain

compactifications is concisely described as the coset of the continuous T -duality group over

its maximal compact subgroup and the discrete T -duality group Oη̂(D,D + 16;Z).

Given this prominent roles of continuous and discrete T -duality groups, we reserve

section 3 to study their properties. In particular, we list a complete set of generators of

Oη̂(D,D+16;R), which are chosen such that they parametrize the discrete T -duality group

if their parameters are restricted to specific, quantized values. In addition, we give the non-

linear transformations of the moduli G,B,A under arbitrary T -duality group elements.

After these preparations, section 4 sets up a generalized space group description of

Narain orbifolds involving combined shift- and twist-elements. In this section various

properties of Narain orbifolds are uncovered. In particular, we show that the shifts of

the generalized space group are quantized in the directions in which the twists act trivially.

Moreover, we emphasize that the amount of preserved target-space supersymmetry is solely

decided by the twists θα r that acts on the right-moving sector.

Section 5 investigates two related questions: i) under what conditions does a Narain

orbifold exist and ii) how many Narain moduli, G,B,A, are fixed. To facilitate this discus-

sion the lattice basis is introduced in which the twists are represented by integral matrices

ρ̂α ∈ Oη̂(D,D + 16;Z). Some properties of these twists in the lattice basis can concisely

be characterized using the generalized metric H and the associated Z2-grading Z. By

exploiting the coset structure of the Narain moduli space, we show that a Narain orbifold

exists provided that certain Ricatti equations, i.e. coupled matrix equations, have a solu-

tion. Deformations of such a solution correspond to the unconstrained moduli of a Narain

orbifold. Using some results collected in appendix A we derive a character formula to count

their number.

All these results are used in section 6 to lay the foundations for a classification of

Narain orbifolds. Given that the concepts of Q-, Z- and affine-classes proved to be very

useful for the classification of symmetric orbifolds, we extend these concepts to Narain

orbifolds.

To illustrate the power of the generalized space group description of Narain orbifolds

we study symmetric orbifolds in section 7 in this language. Even though the main interest

of Narain orbifolds lies in the construction of asymmetric orbifolds (or T -folds), we show

in this section that the language of Narain orbifolds gives a convenient, unified description

of the geometry and the (discrete) Wilson lines.
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Finally, in section 8 we employ the Narain Q- and Z-classes to study two-dimensional

Abelian ZK Narain orbifolds. We provide a large table with many examples of previously

unknown two-dimensional Narain orbifolds. By an explicit construction we show that it

is possible to have a Z12 two-dimensional Narain orbifold, while it is well-known that the

largest order of Euclidean ZK twists is K = 6 in two dimensions. Moreover, Q- and Z-

classes are particularly useful to distinguish seemingly asymmetric from truly asymmetric

orbifolds as we illustrate by various examples.

2 Heterotic Narain torus compactifications

This section reviews the Narain formulation of heterotic torus compactifications [76] and

sets the notation used throughout this work. The moduli space can be described using

the generalized vielbein E, which is parametrized by continuous Wilson lines A, the anti-

symmetric Kalb-Ramond B-field and the metric G. This vielbein characterizes coordinate

field boundary conditions as well as the momenta that appear in the representation of the

Narain torus partition function as a lattice sum.

2.1 Worldsheet field content of the heterotic string

We parametrize the two-dimensional string worldsheet by (real) coordinates σ and σ̄, de-

fined by

σ = σ1 + σ0 , σ̄ = σ1 − σ0 , (2.1)

where σ0 and σ1 denote the worldsheet time and space coordinate, respectively. Worldsheet

fields that solely depend on σ or σ̄ are called left-moving or right-moving fields, respectively.

They are correspondingly labelled by a subscript l or r (or in capital letters L/R). The

heterotic string is closed because of the identification (σ0, σ1) ∼ (σ0, σ1 + 1). Hence,

(σ0, σ1) are coordinates on a worldsheet cylinder for the freely propagating string.

The heterotic string [1–3] is described by a conformal field theory on the worldsheet

with 26 left-moving real bosonic fields and ten right-moving real bosonic and fermionic

fields.

The easiest approach to connect this theory to particle physics in d dimensions (for

example d = 4) is to perform a stepwise compactification: in the first step one compactifies

the 16 surplus left-moving bosonic fields on a 16-dimensional torus in order to match the

number of left- and right-moving bosonic fields to ten. The resulting theory corresponds to

a ten-dimensional theory with a gauge group dictated by modular invariance of the string

partition function. For example, in the case of ten-dimensional N = 1 supersymmetry the

gauge group is fixed to either E8 × E8 or SO(32). Then, in a second step one compactifies

on a D-dimensional space, for example on a Calabi-Yau or an orbifold. As a result one

obtains a d-dimensional theory, where d + D = 10, e.g. 4 + 6 = 10. An alternative

approach, which we use in this paper, is the so-called Narain construction, where the two-

step compactification described above is performed in a single step compactification of the

heterotic string directly to d dimensions, see section 2.2.

– 5 –



J
H
E
P
0
4
(
2
0
1
7
)
0
3
0

In light-cone gauge two left- and right-moving uncompactified dimensions are gauge-

fixed and, hence, eliminated. Thus, the heterotic string in light-cone gauge can be described

by the following worldsheet fields:

• As left-moving fields, there are 8+16=24 real bosonic fields. They are denoted by

xµl (σ) with µ = 2, . . . , d − 1 (µ = 0, 1 are chosen to be fixed in light-cone gauge) for

the uncompactified and YL(σ) for the compactified dimensions, respectively. Further-

more, we set

YL(σ) =

(
yl(σ)

yL(σ)

)
, (2.2)

where yl(σ) =
(
yil (σ)

)
for i = 1, . . . , D live on the D-dimensional compactification

space. In addition, yL(σ) =
(
yIL(σ)

)
for I = 1, . . . , 16 are often referred to as the

gauge degrees of freedom.

• As right-moving fields, there are eight real bosonic fields plus their real fermionic

superpartners. They are denoted by (xµr (σ̄), yir(σ̄)) and ψR(σ̄) = (ψµR(σ̄), ψiR(σ̄)),

respectively, with µ = 2, . . . , d− 1 and i = 1, . . . , D.

Left- and right-moving bosonic fields can be combined to coordinate fields xµ(σ, σ̄)

and Xi(σ, σ̄) which parametrize the d uncompactified and D compactified dimensions,

respectively, i.e.

xµ(σ, σ̄) =
1√
2

(
xµr (σ̄) + xµl (σ)

)
and Xi(σ, σ̄) =

1√
2

(
yir(σ̄) + yil (σ)

)
. (2.3)

Their classical equations of motion read

∂σ∂σ̄x
µ(σ, σ̄) = 0 and ∂σ∂σ̄X

i(σ, σ̄) = 0 , (2.4)

which is solved by the general ansatz (2.3).

Hence, collectively, we have 2D + 16 compactified bosonic worldsheet fields Y nested

in the following fashions:

Y (σ, σ̄) =

yr(σ̄)

yl(σ)

yL(σ)

 , y(σ, σ̄) =

(
yr(σ̄)

yl(σ)

)
, YL(σ) =

(
yl(σ)

yL(σ)

)
. (2.5)

We define the following dimensions: Dr = Dl = D and DL = Dl + 16 = D + 16. We will

use the same notation as in eq. (2.5) for other types of vectors.

The separation (2.3) of the coordinate fields Xi(σ, σ̄) into left- and right-moving coor-

dinates yil (σ) and yir(σ̄) is unique up to a constant shift of the zero modes ξi, i.e.

Y (σ, σ̄) ∼ Y (σ, σ̄) + Ξ , Ξ = (ξ,−ξ, 0) : yir(σ̄) ∼ yir(σ̄) + ξi , yil (σ) ∼ yil (σ)− ξi ,
(2.6)

with ξ ∈ RD. This has important consequences for the number of worldsheet degrees of

freedom: if one counts left- and right-movers y(σ, σ̄) ∈ R2D independently there seems to

be a doubling of degrees of freedom on the worldsheet compared to the coordinate fields

X(σ, σ̄) ∈ RD, see eq. (2.3). However, due to eq. (2.6) there are only D independent

zero-modes of y(σ, σ̄) that specify the position of the string and the numbers of worldsheet

degrees of freedom are equal for X(σ, σ̄) and y(σ, σ̄).
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2.2 Torus partition functions as Narain lattice sums

We consider torus compactifications T 2D+16
IΓ = R2D+16/IΓ of the 2D+16 bosonic worldsheet

fields Y . IΓ is a so-called 2D+ 16-dimensional Narain lattice, which we will analyze in this

section in detail. This will be of use when we discuss the more general case of Narain

orbifolds later in section 4.

In the case of a Narain torus, the closed string boundary conditions of the worldsheet

fields are given by

x(σ+1, σ̄+1) = x(σ, σ̄) , ψR(σ̄+1) = (−)s ψR(σ̄) , Y (σ+1, σ̄+1) = Y (σ, σ̄)+L , (2.7)

where s = 0, 1 parametrizes the different spin structures of the right-moving fermions

ψR, i.e. s = 0 yields the so-called Ramond sector and s = 1 the Neveu-Schwarz sector.

Furthermore, L ∈ IΓ denotes a lattice vector of IΓ.

At one-loop the partition function Zfull(τ, τ̄) is given by the string vacuum-to-vacuum

amplitude which corresponds to a worldsheet torus. This torus is defined by two period-

icities of worldsheet fields: (σ0, σ1) ∼ (σ0, σ1 + 1) and (σ0, σ1) ∼ (σ0 + τ2, σ1 + τ1) for the

string to close in the worldsheet-spatial and worldsheet-time directions, respectively. Here,

τ = τ1 + i τ2 is the so-called modular parameter of the torus. Then, the full partition

function Zfull(τ, τ̄) of the one-loop worldsheet torus can be factorized as follows

Zfull(τ, τ̄) = Zx(τ, τ̄)Zψ(τ̄)ZY (τ, τ̄) . (2.8)

The individual partition functions are given by

Zx(τ, τ̄) =
1

τ
d/2−1
2

∣∣∣∣ 1

η(d−2)(τ)

∣∣∣∣2 , (2.9a)

Zψ(τ̄) =
1

2

1

η̄4(τ̄)

1∑
s,s′=0

eπi(s+s
′+s′s)θ̄

[ s
2
e4
s′
2
e4

]
, (2.9b)

ZY (τ, τ̄) =
1

η̄Dr(τ̄)ηDL(τ)

∑
P∈IΓ∗

q
1
2
P 2

L q̄
1
2
p2

r , (2.9c)

where q = e2πi τ , q̄ = e−2πi τ̄ and ed = (1, . . . , 1) denotes the d-dimensional vector with

all entries equal to one. Here and in the following we often omit the dependencies on

τ and τ̄ for notational ease. In addition, η(τ) denotes the Dedekind function and θ the

theta-function. The vectors P are from the dual lattice IΓ∗ which is defined as P ∈ IΓ∗ if

P T η L ∈ Z , (2.10)

for any L ∈ IΓ. Here, we have introduced the Lorentzian inner product of lattice vectors as

P T η P ′ = −pTr p′r + P TL P ′L , using P =

(
pr

PL

)
and η =

(
−1D 0

0 116+D

)
. (2.11)

The metric η should not be confused with the Dedekind function η(τ) that appears in

partition functions; we assume that the reader understands from the context which is

meant.
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The partition function Zψ for the right-moving fermions can also be presented as a

lattice sum, i.e. from (2.9b) we get

Zψ(τ̄) =
1

η̄4(τ̄)

∑
pR∈Γψ

q̄
1
2
p2

R(−1)F , (2.12)

where the lattice Γψ = Γvec ⊕ Γspin consists of the vectorial and spinorial weight lattices,

given by Γvec = {pR ∈ Z4 | pTRe4 = odd} and Γspin = {pR+ 1
2 e4 | pR ∈ Z4 and pTRe4 = even}.

Furthermore, F is the target-space fermion number, i.e. F = 0 for pR ∈ Γvec and F = 1 for

pR ∈ Γspin.

Eq. (2.12) can also be obtained as follows: the eight real worldsheet fermions

ψR = (ψµR, ψ
i
R) can be grouped in four complex fermions ψR = (ψmR , ψ

a
R), where m =

1, . . . , d/2 − 1 and a = 1, . . . , D/2 correspond to the uncompactified and compactified di-

mensions, respectively. Then, one can bosonize the complex fermions. Consequently, the

bosonized fermions carry momentum pR = (pmR , p
a
R) and the associated partition function

coincides with eq. (2.12). The momentum pmR has an important target-space interpretation:

a string state with pmR being integer or half-integer signals a target-space boson or fermion

in d dimensions, respectively.

Modular invariance. The full partition function is required to be modular invariant:

at one-loop the worldsheet has the topology of a torus with modular parameter τ . Not

all τ ∈ C with Im(τ) > 0 parametrize inequivalent worldsheet tori. Because of conformal

symmetry tori related by the modular transformations

T : τ → τ + 1 , S : τ → − 1/τ , (2.13)

give the same physics. T and S generate the modular group PSL(2,Z). Invariance of the

partition function (2.8) under T and S transformations requires that

∀ P ∈ IΓ :
1

2
P T η P ≡ 0 and IΓ∗ = IΓ , (2.14)

where a ≡ b means that a and b are equal up to some integer. These conditions tell us

that IΓ is an even self-dual lattice with signature (D,D+ 16); the so-called Narain lattice.

Note that vectors P ∈ IΓ can be redefined as

P → U P (2.15)

for U ∈ O(D;R)×O(D + 16;R) without changing the partition function (2.8).

2.3 Narain lattices

We analyse the conditions (2.14) in more detail. To do so, we may parametrize a general

lattice vector P ∈ IΓ as

P = EN , N =

m

n

q

 ∈ Z2D+16 , (2.16)
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in terms of an invertible matrix E. This matrix E is called the generalized vielbein of the

Narain lattice IΓ as its columns correspond to 2D + 16 basis vectors of the lattice IΓ. The

components of the vector N can be interpreted as winding numbers m ∈ ZD, Kaluza-Klein

numbers n ∈ ZD and gauge lattice numbers q ∈ Z16. From the vielbein E we can define

the Narain metric η̂ as

η̂ = ET η E . (2.17)

Then, the scalar product of two vectors Pi = ENi ∈ IΓ for i = 1, 2 is given by

P T1 η P2 = NT
1

(
ET η E

)
N2 = NT

1 η̂ N2 . (2.18)

Hence, the lattice IΓ is even if

P T η P = NT η̂ N ∈ 2Z . (2.19)

Note that an even lattice is automatically integral, i.e. P T η P ′ = NT η̂N ′ ∈ Z. Therefore,

the Narain metric η̂ is a symmetric, integer matrix with even entries on the diagonal and

signature (D,D + 16). The dual lattice IΓ∗ is spanned by the dual vielbein E∗ which is

defined as

(E∗)T η E = 12D+16 , (2.20)

so that for a given P = E∗N ∈ IΓ∗ we have P T ηP ′ ≡ 0 for all P ′ = EN ′ ∈ IΓ. By

comparing this equation with (2.17) one infers that the dual basis is given by

E∗ = E η̂−1 . (2.21)

Two lattices are identical if their vielbeins are related by a GL(2D+16;Z) transformation.

Hence, IΓ is self-dual, IΓ∗ = IΓ, if the Narain metric in eq. (2.21) satisfies

η̂ ∈ GL(2D + 16;Z) . (2.22)

Consequently, det η̂ = ±1 and we see from eq. (2.17) that the volume of the unit cell

spanned by the vielbein E is given by vol(IΓ) = ± detE = 1.

It is often convenient to choose a special representation of the Narain metric. If not

stated otherwise we will use

η̂ =

 0 1D 0

1D 0 0

0 0 g

 , (2.23)

where g is the metric of an even, self-dual 16-dimensional lattice. (Throughout this paper

we use a hatted notation to refer to objects that are naturally defined in the lattice basis.)

We choose it to be the Cartan matrix of E8 × E8 and write g = αTg αg where the columns

of αg are the 16 simple root vectors of E8 × E8. The explicit expression for αg is given by

αg =

(
α(E8) 0

0 α(E8)

)
. (2.24)
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The columns of α(E8) represent the eight simple roots αI(E8), I = 1, . . . , 8, of the excep-

tional Lie algebra E8. They can be chosen as follows

α(E8) =



1 0 0 0 0 0 0 -1
2

-1 1 0 0 0 0 0 -1
2

0 -1 1 0 0 0 0 -1
2

0 0 -1 1 0 0 0 -1
2

0 0 0 -1 1 0 0 -1
2

0 0 0 0 -1 1 1 -1
2

0 0 0 0 0 -1 1 -1
2

0 0 0 0 0 0 0 -1
2


. (2.25)

2.4 The Narain moduli space

Given the choice of a Narain metric η̂ in eq. (2.23) it is natural to look for a corresponding

generalized vielbein E, which yields this Narain metric ET η E = η̂. We see that a particular

solution R to equation (2.17) is given by

R =


1√
2
1D

−1√
2
1D 0

1√
2
1D

1√
2
1D 0

0 0 αg

 with RT η R = η̂ . (2.26)

The general solution to (2.17) can be written in terms of this particular solution as

E = U R Ê , (2.27)

so that consequently,

ET η E = ÊT η̂ Ê = η̂ , (2.28)

if U ∈ Oη(D,D + 16;R) and Ê ∈ Oη̂(D,D + 16;R), i.e. if UT η U = η and ÊT η̂ Ê = η̂.

In the following we want to identify which transformations U and Ê in eq. (2.27) map

between physically inequivalent theories and which do not. Therefore, we will identify the

moduli space of heterotic Narain constructions. To do so, we define2

Û = R−1 U R (2.29)

and note that Û ∈ Oη̂(D,D+ 16;R) if U ∈ Oη(D,D+ 16;R). Now, take a general vielbein

E = U R Ê. Then, one can absorb U into a redefinition of Ê by defining Ê′ as

Ê′ = Û Ê =
(
R−1 U R

)
Ê ∈ Oη̂(D,D + 16;R) hence E = R Ê′ . (2.30)

However, it is not useful to absorb all U transformations in eq. (2.27) into a redefinition of

Ê: consider U ∈ O(D;R)×O(D+ 16;R) ⊂ Oη(D,D+ 16). As the partition function (2.8)

depends only on P 2
L and p2

r such transformations leave the partition function invariant.

Thus, U ∈ O(D;R) × O(D + 16;R) in eq. (2.27) maps physically equivalent theories to

2In the remainder of this paper we will use this conjugation with R to switch between Oη and Oη̂ group

elements.
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each other. On the other hand, Ê transformations in eq. (2.27) change the partition

function (2.8) in general. Therefore, Ê contains the parameters (i.e. the moduli) that

continuously deform the Narain lattice with vielbein R to Narain lattices with vielbeins

R Ê, which are in general physically inequivalent but share the same Narain metric η̂.

However, not all vielbeins Ê are physically inequivalent: consider two vielbeins E,E′ for

two Narain lattices IΓ, IΓ′ satisfying (2.17). Under what condition(s) do these backgrounds

describe the same Narain lattice IΓ′ = IΓ? This happens when for each point P ∈ IΓ there is

a unique point P ′ ∈ IΓ′ which is identical to it: in the parametrization (2.16) this amounts to

U EN = U P = P ′ = E′N ′ , (2.31)

such that the integer vectors N and N ′ are mapped to each other one-to-one, i.e.

N = M̂ N ′ with M̂ =
(
E−1 UTE′

)
. Note that we added in eq. (2.31) a rotation

matrix U ∈ O(D;R)×O(D + 16;R), which is unphysical as discussed above. Hence,

the Narain lattices IΓ and IΓ′ are the same if there exists a rotation matrix U such that

M̂ ∈ GL(2D + 16;Z). Moreover, we assumed that both E and E′ give the same Narain

metric η̂, see (2.17). This implies that the matrix M̂ is actually an element of the so-called

T -duality group Oη̂(D,D + 16;Z), i.e.

M̂T η̂ M̂ = η̂ . (2.32)

(More details on the T -duality group Oη̂(D,D + 16;Z) are given in section 3.) Therefore,

Narain compactifications based on the vielbeins E = R Ê and E′ = U E M̂ are physically

equivalent, i.e.

E = R Ê ∼ E′ = U R Ê M̂ , (2.33)

if U ∈ O(D;R)×O(D+ 16;R) and M̂ ∈ Oη̂(D,D+ 16;Z). In terms of Ê this equivalence

relation reads

Ê ∼ Û Ê M̂ , (2.34)

where Û = R−1U R. This equivalence relation can be used to define a quotient space.

Consequently, the moduli space of Narain compactifications is uniquely parametrized by

an element Ê in the coset

M = O(D;R)×O(D + 16;R)\Oη̂(D,D + 16;R)/Oη̂(D,D + 16;Z) . (2.35)

Here, it is understood that the first two factors in the denominator act from the left

(via Û) while the last factor acts from the right (via M̂), see eq. (2.34). The T -duality

transformations M̂ are said to change the duality frame.

An explicit parametrization of the matrix U ∈ O(D;R)×O(D + 16;R), satisfying

UT U = 1 , UT η U = η , (2.36)

is given by

U =

ur 0 0

0 ul ulL

0 uLl uL

 , (2.37)
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provided that the constraints uTr ur = uTl ul + uTLluLl = 1D, uTlLulL + uTLuL = 116 and

uTl ulL + uTLluL = 0 are fulfilled. As we have already seen above, often the closely related

matrix

Û = R−1U R =

 u+ u−
1√
2
ulLαg

u− u+
1√
2
ulLαg

1√
2
α−1

g uLl
1√
2
α−1

g uLl α
−1
g uLαg

 , where u± =
1

2
(ul ± ur) ,

(2.38)

is more convenient.

Modulo the transformations Û and M̂ , the general solution to eq. (2.28) can be repre-

sented as

Ê =

 e 0 0

−e−TCT e−T −e−TATαg

α−1
g A 0 116

 , C = B +
1

2
ATA . (2.39)

Hence, Ê = Ê(e,B,A) is parametrized by the Narain moduli e, B and A, where e is the

D-dimensional vielbein of the D-torus with metric G = eT e. A is a 16×D matrix, whose

i-th column contains the Wilson line which is associated to the i-th basis vector in e and,

finally, B denotes the anti-symmetric Kalb-Ramond B-field.

In summary, we can specify the most general form of the generalized vielbein E with

Narain metric η̂ = ET η E as given in eq. (2.23). It reads

E = U R Ê M̂ , (2.40)

with U ∈ O(D;R) × O(D + 16;R) and M̂ ∈ Oη̂(D,D + 16;Z). The matrix R is given in

eq. (2.26) and the moduli dependent part Ê = Ê(e,B,A) is specified in eq. (2.39). In fact,

we may take M̂ = 1 without loss of generality as we show in section 3.2.

Equivalent Narain metrics. One may encounter different Narain metrics, say η̂ and

η̂′ from GL(2D + 16;Z), such that

ET η E = η̂ , E′T η E′ = η̂ ′ . (2.41)

In this case one cannot immediately compare the moduli in E and E′, because their hatted

versions Ê and Ê′ lie in two different moduli spaces. Since we are talking about two

representations of the same Narain lattice we have

EN = E′N ′ , with N = M̂ N ′ , (2.42)

where M̂ ∈ GL(2D + 16;Z). Consequently, E′ = E M̂ so that

M̂T η̂ M̂ = η̂ ′ . (2.43)

Obviously, only those M̂ 6∈ Oη̂(D,D + 16;Z) can change the form of the Narain metric.

Importantly, all Narain metrics can be reached from η̂ given in eq. (2.23) by transformations

M̂ 6∈ Oη̂(D,D + 16;Z). Hence, we assume in the following that the Narain metric η̂ is

given by eq. (2.23).
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2.5 Coordinate fields and momenta

Consider the generalized vielbein in its most general form, i.e. E = U R Ê M̂ , and choose

U = 1 and M̂ = 1, see eq. (2.40). Then, a Narain lattice vector P is represented as

P =

(
pr

PL

)
= EN =


1√
2
e−T

(
(G+ CT )m− n+ATαg q

)
1√
2
e−T

(
(G− CT )m+ n−ATαg q

)
αg q +Am

 . (2.44)

It can be thought of to describe both: on the one hand, L ∈ IΓ defines the periodicity for

the compactification on a Narain lattice, see eq. (2.7). On the other hand, P ∈ IΓ gives

the conjugate momentum, see eq. (2.10).

The matrix R induces the change of right- and left-moving coordinate fields, yr, yl and

yL, to D mixed fields X, X̃ and the remaining 16 left-moving gauge coordinates Xg

Ŷ = R−1 Y =


1√
2
1D

1√
2
1D 0

−1√
2
1D

1√
2
1D 0

0 0 α−1
g


yr

yl

yL

 =

X

X̃

Xg

 , (2.45)

see eq. (2.3). This relation thus defines which combination of right- and left-moving degrees

of freedom are interpreted as the physical coordinates X and which as the dual coordinates

X̃. The torus periodicities,

Y ∼ Y + EN , (2.46)

read in terms of the coordinates X, their duals X̃ and gauge coordinates XgX

X̃

Xg

 ∼

X

X̃

Xg

+ Ê N ∼

X

X̃

Xg

+

 em

e−T
(
n− CTm−ATαg q

)
q + α−1

g Am

 . (2.47)

On-shell the right- and left-moving coordinate fields, yr, yl, have anti-holomorphic and

holomorphic mode expansions for a string with boundary condition (2.46) given by

yr(σ̄) = yr0 + pr σ̄ +
∑
n 6=0

ᾱn e
2πi nσ̄ , YL(σ) = YL0 + PL σ +

∑
n 6=0

αn e
2πi nσ , (2.48)

respectively. Using the change of coordinate field basis (2.45), we see that the conventional

coordinate field X and its dual X̃ have the expansions

X(σ, σ̄) =
1√
2

(yl0 + yr0) +
1√
2

(pl + pr)σ1 +
1√
2

(pl − pr)σ0 + oscillators , (2.49a)

X̃(σ, σ̄) =
1√
2

(yl0 − yr0) +
1√
2

(pl − pr)σ1 +
1√
2

(pl + pr)σ0 + oscillators . (2.49b)

The term linear in the worldsheet space variable σ1 of X gives the D-dimensional winding

modes, i.e.
1√
2

(pl + pr) = em . (2.50)

– 13 –



J
H
E
P
0
4
(
2
0
1
7
)
0
3
0

The term linear in the worldsheet time variable σ0 of X corresponds to the D-dimensional

momentum which is given by

1√
2

(pl − pr) = e−T
(
n− CTm−ATαg q

)
. (2.51)

As expected, for the dual coordinate X̃ the roles of momentum and winding are inter-

changed.

3 The T -duality group

This section is devoted to exhibit a number of properties of the T -duality group. In par-

ticular, we develop a convenient basis for this group and parametrize its maximal compact

subgroup. In addition, we show that the non-linear transformations of the Narain moduli

is a consequence of the coset structure in which the generalized vielbein Ê lives.

3.1 Decomposition of the generalized vielbein

A general T -duality transformation is described by an element M̂ ∈ Oη̂(D,D + 16;Z).

In addition, in eq. (2.39) we parametrized the Narain moduli by the generalized vielbein

Ê ∈ Oη̂(D,D+16;R). Therefore, it is very convenient to describe the properties of matrices

M̂ ∈ Oη̂(D,D + 16;R) first in general, based on the field of real numbers R. To do so we

define a number of specific matrix elements of this group in table 1. These matrices are

chosen such that if we restrict the parameters to be from Z rather than R, these matrices

have only integral entries.

As a first application of the matrices of table 1, we decompose the generalized viel-

bein (2.39) as a product

Ê = Ê(e,B,A) = M̂e(e) M̂B(B) M̂A(A) , (3.1)

of basis matrices M̂i ∈ Oη̂(D,D+ 16;R) as given in table 1. Here, the index i = e,B,A la-

bels the matrix M̂i and each matrix M̂i depends on the corresponding kind of Narain moduli

e, B and A. This parametrization will turn out to be very useful throughout this paper.

3.2 Coset decomposition of the T -duality group

In section 2.4 we recalled that the moduli space of Narain compactifications can be de-

scribed geometrically as a coset space (2.35). This already shows the central role that the

coset space plays in our discussion and therefore we expand on this property in some detail

here.

The generalized vielbein Ê is an element of the coset

O(D;R)×O(D + 16;R)\Oη̂(D,D + 16;R) . (3.2)

This means that any element Ĥ ∈ Oη̂(D,D + 16;R) can be decomposed as

Ĥ = Û Ê , (3.3)
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Parametrizations of subgroups of Oη̂(D,D + 16;R)
g
e
o
m

e
tr

ic M̂e(∆K) =

∆K 0 0

0 ∆K−T 0

0 0 116

 M̂W (∆W ) =

 1D 0 0

0 1D 0

0 0 α−1
g ∆W αg


where ∆K ∈ GL(D;R) where ∆W ∈ O(16;R)

M̂B(∆B) =

 1D 0 0

∆B 1D 0

0 0 116

 M̂A(∆A) =

 1D 0 0

− 1
2∆AT∆A 1D −∆ATαg

α−1
g ∆A 0 116


where ∆BT = −∆B ∈ MD×D(R) ∆A ∈M16×D(R)

n
o
n

-g
e
o
m

e
tr

ic

Î(±i) =

 1D − εiεTi ∓εiεTi 0

∓εiεTi 1D − εiεTi 0

0 0 116

 Î = R−1η R =

 0 1D 0

1D 0 0

0 0 116


M̂β(∆β) =

 1D ∆β 0

0 1D 0

0 0 116

 M̂α(∆α) =

1D − 1
2∆αT∆α −∆αTαg

0 1D 0

0 α−1
g ∆α 116


where ∆βT = −∆β ∈ MD×D(R) ∆α ∈M16×D(R)

Table 1. This table lists various subgroup elements of the duality group Oη̂(D,D + 16;R).

They are normalized such that if the parameters are taken out of Z they represent subgroups

of Oη̂(D,D + 16;Z) (with the additional requirement that 1
2∆AT∆A and 1

2∆αT∆α are integer

matrices). The elements listed in the first two rows generate the geometric subgroup Ggeom of the

duality group. The elements on the third row correspond to true T -duality elements that invert

one or all radii. Note the difference between αg and ∆α: αg contains the simple roots of E8 × E8

and is used in the definitions of M̂W (∆W ), M̂A(∆A) and M̂α(∆α), while ∆α is the parameter of

M̂α(∆α).

Multiplication table of duality subgroup elements

M̂e(∆K
′) M̂e(∆K) = M̂e(∆K

′∆K) M̂e(∆K
−T ) = Î M̂e(∆K) Î

M̂W (∆W ′) M̂W (∆W ) = M̂W (∆W ′∆W ) M̂W (∆W ) = Î M̂W (∆W ) Î

M̂B(∆B′) M̂B(∆B) = M̂B(∆B′ + ∆B) M̂β(∆β) = Î M̂B(∆β) Î = M̂B(−∆β)T

M̂A(∆A′)M̂A(∆A)=M̂B(∆BA)M̂A(∆A′+∆A) M̂α(∆α)= ÎM̂A(∆α)Î=(RTR)−1M̂A(−∆α)TRTR

with ∆BA = 1
2

(
∆AT∆A′ − ∆A′T∆A

)
M̂W (∆W ) M̂e(∆K) = M̂e(∆K) M̂W (∆W ) M̂W (∆W ) M̂B(∆B) = M̂B(∆B) M̂W (∆W )

M̂B(∆B)M̂e(∆K)=M̂e(∆K)M̂B(∆KT∆B∆K) M̂W (∆W ) M̂A(∆A) = M̂A(∆W∆A) M̂W (∆W )

M̂A(∆A) M̂e(∆K) = M̂e(∆K) M̂A(∆A∆K) M̂A(∆A) M̂B(∆B) = M̂B(∆B) M̂A(∆A)

Table 2. Multiplication table for the generators of the duality group Oη̂(D,D + 16;R).

where the specific standard form (2.39) of the generalized vielbein Ê lies inside the

coset (3.2) and Û = R−1 U R with U ∈ O(D;R)×O(D + 16;R) is given in eqs. (2.37)

and (2.38).

As this applies to any element of the T -duality group, it applies in particular to ÊM̂

with M̂ ∈ Oη̂(D,D + 16;R), i.e.

Û
M̂
Ê(e′, B′, A′) = Ê(e,B,A) M̂ . (3.4)

The subscript M̂ of Û
M̂

emphasizes that the O(D;R)×O(D + 16;R) group element on

the left hand side depends on the T -duality group element M̂ under consideration. Both
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Ê(e,B,A) and Ê(e′, B′, A′) are given here in the standard form (2.39). This equation (3.4)

will be used frequently throughout this paper, for example, when we discuss T -duality

transformations of Narain moduli in section 3.3 and when we analyze the stabilization of

Narain moduli in generalized orbifolds in section 5.

Simplified standard form of the generalized vielbein. Eq. (3.4) can be used

to further simplify the generalized vielbein (2.40): for any discrete T -duality element

M̂ ∈ Oη̂(D,D + 16;Z) ⊂ Oη̂(D,D + 16;R) there is a matrix U
M̂
∈ O(D;R)×O(D+16;R)

such that eq. (3.4) holds. Consequently, we find

E = U R Ê(e,B,A) M̂ =
(
U U

M̂

)
R Ê(e′, B′, A′) = U ′R Ê(e′, B′, A′) , (3.5)

where U ′ = U U
M̂
∈ O(D;R)×O(D + 16;R) is arbitrary since U is arbitrary. Relabelling

our expression by removing the primes we obtain the most general from of the generalized

vielbein as

E = U R Ê(e,B,A) , (3.6)

where Ê(e,B,A) is given in eqs. (2.39) and (3.1) and U ∈ O(D;R)×O(D+ 16;R) may be

chosen freely.

Compact subgroup in the coset decomposition. In what follows, we consider

eq. (3.4) and first compute the explicit matrix expression of U
M̂
∈ O(D;R)×O(D+16;R),

and determine the transformed moduli, e′, B′, A′, in terms of M̂ and the initial moduli e,

B and A.

To do so, we decompose M̂ into its 3× 3-block structure, i.e.

M̂ =

 M̂11 M̂12 M̂13

M̂21 M̂22 M̂23

M̂31 M̂32 M̂33

 , (3.7)

where M̂11, M̂12, M̂21 and M̂22 are D×D-matrices, M̂13 as well as M̂23 are D×16-matrices,

M̂31 as well as M̂32 are 16 × D-matrices, while M̂33 is a 16 × 16-matrix, respectively.

Furthermore, in order to avoid lengthy formulae, we introduce short-hand notations

M̂1 = −M̂21 + (G+ CT )M̂11 +ATαg M̂31 , (3.8a)

M̂2 = −M̂22 + (G+ CT )M̂12 +ATαg M̂32 , (3.8b)

M̂3 = −M̂23 + (G+ CT )M̂13 +ATαg M̂33 , (3.8c)

which will recur frequently throughout the rest of this work. Next, we compute the products

of matrices contained in eq. (3.4), i.e.

Ê(e,B,A) M̂ and Û
M̂
Ê(e′, B′, A′) , (3.9)

where each matrix is given in its 3× 3-block structure, e.g. Û
M̂

is given in eq. (2.38). The

result is set equal which yields 3 × 3 = 9 equations from eq. (3.4). By doing so, we can
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solve for the blocks of U
M̂

= R Û
M̂
R−1 as defined in eq. (2.38) and obtain

ul =
(
1D − 2 e M̂12 M̂

−1
2 eT

)
ur , (3.10a)

ulL =
√

2 e
(
M̂13 − M̂12 M̂

−1
2 M̂3

)
α−1

g , (3.10b)

uLl = −
√

2
(
αg M̂32 +AM̂12

)
M̂−1

2 eT ur , (3.10c)

uL = AM̂13 α
−1
g + αg M̂33 α

−1
g −

(
AM̂12 + αg M̂32

)
M̂−1

2 M̂3 α
−1
g , (3.10d)

for arbitrary ur ∈ O(D;R). We have checked explicitly that these equations give a matrix

U such that the conditions (2.36) are satisfied. Let us remark one observations from

eq. (3.10a): M̂12 6= 0 is a necessary condition for ur 6= ul. In other words, if M̂12 = 0 then

ur = ul. In addition, let us stress that these equations (3.10) will become very important

later in the context of Narain orbifolds where U becomes the orbifold twist Θ, for example

in section 5.2. Furthermore, we identify the following three expressions

M̂T
2 = −

(
e′−1u−1

r e
)
, G′ + C ′

T
=
(
e′−1u−1

r e
)−T

M̂1 ,

A′
(
e′−1u−1

r e
)

= α−Tg M̂T
3 , (3.11)

from eq. (3.4), which we use in the following discussion.

3.3 Transformation of Narain moduli

Using the coset decomposition discussed above, we can derive the transformation prop-

erties of the Narain moduli G, B and A under general T -duality transformations

M̂ ∈ Oη̂(D,D + 16;R). Using the results of section 2.4 we see that the generalized viel-

bein (3.1) transforms under M̂ as

Ê(e,B,A) 7→ Ê(e′, B′, A′) = Û−1

M̂
Ê(e,B,A) M̂ , (3.12)

where Û
M̂

= R−1 U
M̂
R and U

M̂
∈ O(D;R) × O(D + 16;R). In other words, assume we

have given a T -duality transformation M̂ ∈ Oη̂(D,D+ 16;R). Then, there exists a matrix

U
M̂

as given in eq. (3.10) such that Ê(e′, B′, A′) is in the standard form (3.1).

Hence, we are able to identify the transformation properties of e, G+CT and A under

general T -duality transformations from eq. (3.11). We find

e′ = − u−1
r e M̂−T2 , G′ +C ′

T
= − M̂−1

2 M̂1 and A′ = − α−Tg M̂T
3 M̂

−T
2 , (3.13)

where uTr ur = 1D. These transformations can be expanded out (by taking the anti-

symmetric part of G′ + C ′T to solve for B′) and we obtain the transformations of the

moduli G,B,A, i.e.

G 7→G′ = M̂−1
2 GM̂−T2 , B 7→B′ =

1

2

(
M̂−1

2 M̂1−M̂T
1 M̂

−T
2

)
,

A 7→A′ = −α−Tg M̂T
3 M̂

−T
2 , (3.14)

using the short-hands defined in eq. (3.8). This generalizes the results for O(D,D) (see

e.g. [85]) to the heterotic case [86]. As a cross-check, using M̂ η̂−1M̂T = η̂−1 one can show

that eq. (3.14) yields G′ + C ′T = −M̂−1
2 M̂1 as given in eq. (3.13).
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3.4 Specific elements of the T -duality group

Next, we discuss various elements and subgroups of the group Oη̂(D,D + 16;R) in detail

and analyze their actions on the Narain moduli G,B,A. The parametrizations of these

subgroups can be found in table 1 and their most important products are given in table 2.

3.4.1 The geometric subgroup

The elements M̂e, M̂W , M̂A and M̂B as listed in table 1 generate a subgroup of

Oη̂(D,D + 16;R) which we denote by Ggeom(R). This is the largest T -duality subgroup,

that still admits a standard geometrical interpretation, hence the name: geometric sub-

group. In more detail, all elements M̂geom ∈ Ggeom(R) can be cast to the form

M̂geom = M̂W (∆W ) M̂e(∆K) M̂B(∆B) M̂A(∆A) . (3.15)

Then, using the results of section 2.4 we see that the generalized vielbein (3.1) transforms

under M̂geom as

Ê(e,B,A) 7→ Ê(e′, B′, A′) = Û−1
geom Ê(e,B,A) M̂geom , (3.16a)

where

e′ = (ugeom
r )−1 e∆K , (3.16b)

B′ = ∆KTB∆K + ∆B +
1

2

(
∆AT ∆W TA∆K −∆KTAT∆W ∆A

)
, (3.16c)

A′ = ∆W TA∆K + ∆A . (3.16d)

Here Ûgeom = R−1 UgeomR and Ugeom ∈ O(D;R) × O(D + 16;R) must be chosen

such that Ê(e′, B′, A′) is given in the standard form (3.1). Furthermore, in eq. (3.16)

we have used various group multiplication properties as given in table 2 to compute

the product Ê(e,B,A) M̂geom (analogously, one could have used the general transfor-

mations (3.13) and (3.14) for M̂ = M̂geom to derive eq. (3.16)). Notice that under a

M̂W (∆W )-transformation the form of the generalized vielbein is not strictly preserved.

Nevertheless, it is of the correct form such that it can be absorbed by the choice of

Ûgeom = M̂W (∆W )M̂e(u
geom
r ), i.e.

Ugeom = RM̂W (∆W ) M̂e(u
geom
r )R−1 =

u
geom
r

ugeom
r

∆W

 , (3.17)

since Ugeom is an element of O(D;R) × O(D + 16;R) because ∆W ∈ O(16;R) and

ugeom
r ∈ O(D;R).

In the following, we give details for various elements of the T -duality group. We start

with the four generators M̂e, M̂W , M̂A and M̂B of the geometric subgroup Ggeom(R) and

use eqs. (3.16) in order to compute the transformation of moduli.
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Change of geometrical basis M̂e(∆K). Changes of the geometrical basis e are given

by M̂e(∆K) with ∆K ∈ GL(D;R). The unit element M̂e(∆K) = 1 has ∆K = 1D. From

eqs. (3.16) we identify the transform of the background fields G, B and A: M̂e(∆K) leads

to a change of basis of the D-dimensional torus, e 7→ e′ = (ugeom
r )−1e∆K, and

G 7→ G′ = ∆KT G∆K , B 7→ B′ = ∆KT B∆K , A 7→ A′ = A∆K . (3.18)

Change of basis in the gauge degrees of freedom M̂W (∆W ). In addition, we may

change the basis in the gauge degrees of freedom by M̂W (∆W ) with ∆W ∈ O(16;R). The

unit element M̂W (∆W ) = 1 has ∆W = 116. M̂W (∆W ) induces a transformation

A 7→ A′ = ∆W TA (3.19)

of the Wilson lines, while G and B remain invariant.

In the case of the discrete T -duality group we define ρW = α−1
g ∆W αg. Then,

M̂W (∆W ) ∈ Oη̂(D,D + 16;Z) if ρW ∈ Og(16;Z), i.e. ρTW g ρW = g using g = αTg αg.

Hence, ρW is an automorphism of the E8 × E8 root lattice spanned by αg.

B-field shifts M̂B(∆B). Matrices of the form M̂B(∆B) with

∆BT = −∆B ∈ MD×D(R) leave G and A invariant and only induce B-field shifts,

i.e.

B 7→ B′ = B + ∆B . (3.20)

B-field shifts generate a subgroup GB(R) ⊂ Oη̂(D,D + 16;R). The unit element

M̂B(∆B) = 1 is given by ∆B = 0.

Wilson line shifts M̂A(∆A). Wilson line shifts are generated by M̂A(∆A) with

α−1
g ∆A ∈M16×D(R). Indeed, we obtain

A 7→ A′ = A+ ∆A , B 7→ B′ = B +
1

2

(
∆ATA−AT∆A

)
. (3.21)

Hence, transformations of the Wilson lines A are accompanied by a B-field transformation,

while the metric G is kept invariant. Furthermore, we find

M̂A(∆A′) M̂A(∆A) = M̂B(∆BA) M̂A(∆A′ + ∆A) , (3.22)

with ∆BA = 1
2

(
∆AT∆A′ −∆A′T∆A

)
, where we remark that Wilson line shifts and B-field

shifts commute, see table 2.

Due to eq. (3.22), Wilson line shifts do not generate a subgroup of Oη̂(D,D + 16;R)

on their own, but only when combined with B-field shifts M̂B(∆B). We denote this

subgroup by GWL(R). The subgroup GB(R) of B-field shifts and the subgroup GWL(R)

of combined Wilson line and B-field shifts are both normal subgroups of the geometric

subgroup Ggeom(R). In particular, it follows that

Ggeom/GWL = GL(D;R)×O(16;R) . (3.23)

Note that M̂B(∆B)M̂A(∆A) with ∆B 6∈ MD×D(Z) can be an element of the discrete

T -duality group, i.e. M̂B(∆B)M̂A(∆A) ∈ Oη̂(D,D + 16;Z), if α−1
g ∆A ∈M16×D(Z) and

− 1

2
∆AT∆A+ ∆B ∈ MD×D(Z) . (3.24)
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3.4.2 Non-geometric elements

In the following, we give details for non-geometric elements of the T -duality group. We

use eqs. (3.14) in order to compute the transformation of moduli.

T -duality inversions. We can define Z2 involutions

Î(±i) =

1D − εiεTi ∓εiεTi 0

∓εiεTi 1D − εiεTi 0

0 0 116

 for i = 1, . . . , D , (3.25)

where εi denotes the standard basis vector in the i-th torus direction. The element Î(±i)
can be written as conjugation of a reflection in the i-th left- or right-moving direction as

Î(±i) = R−1I(±i)R using

I(+i) =

1D 0 0

0 1D − 2 εiε
T
i 0

0 0 116

 , I(−i) =

1D − 2 εiε
T
i 0 0

0 1D 0

0 0 116

 . (3.26)

Therefore, all the elements Î(±i) can be obtained from Î(±1) by conjugation with an appro-

priate change of basis element M̂e(∆K).

The element Î(−i) induces a T -duality inversion along the i-th torus direction. We can

preform the T -duality inversion in all torus directions simultaneously by

Î = Î(−1) · · · · · Î(−D) , (3.27)

as given in table 1. Using the general results (3.14) we find for this element

G 7→ G′ = M̂−1
2 GM̂−T2 ,

B 7→ B′ = −M̂−1
2 B M̂−T2 , (3.28)

A 7→ A′ = −AM̂−T2 ,

where M̂2 = G+ CT . For A = 0 we get M̂2 = G−B. Hence, eq. (3.28) yields the famous

transformation (G+B) 7→ (G+B)−1.

Maximal subgroup of Oη̂(D,D + 16;R) connected to the identity. As an appli-

cation of the special duality elements Î(±i) we discuss the maximal non-compact subgroup

SO+
η̂ (D,D+16;R) of the T -duality group Oη̂(D,D+16;R) that is connected to the identity.

The quotient group

Oη̂(D,D + 16;R)/SO+
η̂ (D,D + 16;R) ∼= Z2 ×Z2 (3.29)

is of order four and, hence, corresponds to four disconnected components of

Oη̂(D,D + 16;R): one can choose the two Z2-generators as the elements Î(−1) and Î(+1).

The matrix representations of the four disconnected components are obtained by multiply-

ing 1, Î(−1), Î(+1) or Î(−1)Î(+1) by arbitrary matrices of SO+
η̂ (D,D + 16;R).
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Inverted B-field shifts M̂β(∆β). Even though the following two elements M̂β(∆β)

and M̂α(∆α) can be obtained by combining the B- and A-shifts with the inversion element

Î, we list them explicitly as they are important in the context of non-geometry.

Inverted B-field shifts, often referred to as β-transformations, are generated by

M̂β(∆β) = Î M̂B(∆β) Î , (3.30)

with ∆βT = −∆β ∈ MD×D(R). The β-transformations of the metric, B-field and gauge

backgrounds take the form

G 7→ G′ = M̂−1
2 GM̂−T2 , A 7→ A′ = −AM̂−T2 , (3.31a)

B 7→ B′ = M̂−1
2

(
B − (G+ CT )∆β(G+ C)

)
M̂−T2 , (3.31b)

using M̂2 = −1D + (G+ CT )∆β in eq. (3.14).

Inverted Wilson line shifts M̂α(∆α). Finally, by inverting the Wilson line shifts M̂A

we obtain

M̂α(∆α) = Î M̂A(∆α) Î , (3.32)

with α−1
g ∆α ∈M16×D(R).

The inversion of changes of bases, i.e. Î M̂e(∆K)Î and Î M̂W (∆W )Î, just become

changes of bases again. Hence, they do not give us novel transformations. For completeness

we nevertheless list them in table 2. Indeed, counting the number of generators shows that

this list contains all possible Oη̂(D,D + 16,R) transformations.

3.5 The maximal compact subgroup of Oη̂(D,D + 16;R)

Next, we discuss the maximal compact subgroup of Oη̂(D,D + 16;R). To do so, we note

that the maximal compact subgroup of Oη(D,D + 16;R) is O(D;R) × O(D + 16;R).

By conjugation with R one maps elements U ∈ Oη(D,D + 16;R) one-to-one to ele-

ments Û ∈ Oη̂(D,D + 16;R), i.e. Û = R−1UR. Thus, the maximal compact subgroup

of Oη̂(D,D + 16;R) is also O(D;R) × O(D + 16;R). An explicit parametrization of

this subgroup is given by Û in eq. (2.38). Note that, as discussed in section 2.4, ele-

ments U ∈ O(D;R)×O(D + 16;R) ⊂ Oη(D,D + 16;R) map physically identical Narain

configurations to each other.

Using the generators of the Oη̂(D,D + 16;R) listed in table 1 an element U from the

identity component of O(D;R) × O(D + 16;R) defined by eq. (2.36) can be expressed as

follows U = R ÛR−1 ;

Û = M̂e(∆θ)M̂W (∆W ) M̂α(∆A)M̂β(∆B)M̂e(∆K)M̂A(∆A)M̂B(∆B) , (3.33)

if u+ is invertible, see eq. (2.38), and we defined

∆K = 1D + ∆C , ∆C = ∆B +
1

2
∆AT∆A , ∆BT = −∆B , (3.34a)

∆θT∆θ = 1D and ∆W T∆W = 116 . (3.34b)
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The first two factors M̂e(∆θ)M̂W (∆W ) in eq. (3.33) define the subgroup O(D;R) ×
O(16;R), where the O(D;R)-factor lies diagonally in both the left- and right-moving di-

rections. This can be seen from eq. (3.33) by using the expressions for the duality group

elements given in table 1 and the matrix R defined in eq. (2.26). Then, we obtain

U =

∆θ 0 0

0 ∆θ 0

0 0 ∆W


1D 0 0

0 (1D −∆C)T
(
1D + ∆C

)−T −
√

2
(
1D + ∆C

)−T
∆AT

0
√

2∆A
(
1D + ∆C

)−T
116 −∆A

(
1D + ∆C

)−T
∆AT

.
By comparing this with eq. (2.37) one can read off the expressions for the submatrices

ul = ∆θ
(
1D −∆C

)T (
1D + ∆C

)−T
, ulL = −

√
2∆θ

(
1D + ∆C

)−T
∆AT , (3.35)

uLl =
√

2∆W∆A
(
1D + ∆C

)−T
, uL = ∆W

(
116 −∆A

(
1D + ∆C

)−T
∆AT

)
and ur = ∆θ. One can verify that these expressions satisfy the constraints (2.36).

In addition, for a given element U ∈ O(D;R) × O(D + 16;R) one can use eq. (3.35)

to decompose Û = R−1U R according to eq. (3.33), i.e.

∆θ = ur , ∆C = −uT− u−T+ ,

∆A = − 1√
2
uTlL u

−T
+ , ∆W = uL

(
116 −

1

2
uTlL u

−T
+ u−1

r ulL

)−1
,

(3.36)

where we assumed that u+ is invertible.

4 Generalized space groups of Narain orbifolds

In this section we introduce the generalized space group for heterotic Narain orbifolds and

discuss some of its properties. In particular, we define orbifold projections to characterize

quantization conditions of the generalized shift vectors and state the conditions to preserve

N = 1 supersymmetry.

4.1 Heterotic Narain orbifolds

Next, we consider orbifolds of the heterotic Narain lattice construction denoted by

T 2D+16
IΓ /P . (4.1)

Here, the 2D+16-dimensional torus T 2D+16
IΓ is specified by a Narain lattice IΓ. In addition,

the Narain point group P is defined as a (sub-)group of the rotational symmetries of IΓ, as

we will see later in eq. (4.13). Hence, the Narain point group P is finite. The generators

of P are (2D + 16)× (2D + 16) matrices and they are denoted by Θα, for α = 1, . . . , NP.

Kα is the order of Θα. In more detail, for each generator Θα, the order Kα is the smallest

non-negative integer such that ΘKα
α = 1. Elements of P are often called twists. In the

following, a generic twist will be denoted by Θ and K gives its order.
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To define the compactification of the heterotic string on a Narain orbifold [40, 53], the

main idea is to generalize the boundary conditions (2.7) of the 2D+ 16-dimensional right-

and left-moving coordinate-vector Y to

Y (σ + 1, σ̄ + 1) = ΘY (σ, σ̄) + VΘ + L , (4.2)

for all elements Θ ∈ P and L ∈ IΓ. In general, for each twist Θ there is a so-called

generalized shift VΘ associated to it, which will be discussed in detail later. Importantly,

the twists Θ are not allowed to mix right- and left-moving fields in eq. (4.2). Hence, for all

Θ ∈ P we demand

Θ =

(
θr 0

0 ΘL

)
∈ O(D;R)×O(D + 16;R) . (4.3)

Consequently, we find the conditions

ΘT
αΘα = 1 , ΘT

αηΘα = η and ΘKα
α = 0 , (4.4)

for all generators Θα of the Narain point group.

Furthermore, we call a Narain orbifold symmetric [5, 6], if there is a basis such that

all generators Θα ∈ P are simultaneously of the form

Θα =

θα 0 0

0 θα 0

0 0 116

 ∈ O(D;R) ⊂ O(D;R)×O(D + 16;R) . (4.5)

If such a basis does not exist, then the corresponding Narain orbifold is asymmetric.

Even though this definition of symmetric orbifolds involves a choice of basis, this property

is in fact basis independent. Nevertheless, in a given basis it might be difficult to see

whether a Narain orbifold is symmetric or asymmetric: one can bring a symmetric

twist Θsym into a seemingly asymmetric twist Θasym = U−1 Θsym U by the choice of

U ∈ O(D;R) × O(D + 16;R), see also the example in section 8.3. However, the conjuga-

tion with U can neither change the orders of θr and ΘL, nor the two finite groups which

are generated by either θα r or ΘαL.

4.2 Generalized space group

It has been proven to be very convenient to employ a space group formulation of the

heterotic string on symmetric orbifolds, especially in the context of classifications [7]. This

language can be extended to Narain orbifolds naturally. The generalized space group S

associated to a Narain orbifold is defined as being generated by the elements(
1, L

)
and

(
Θα, Vα

)
for all L ∈ IΓ and Θα ∈ P , (4.6)

where Vα, a vector with 2D + 16 components, is the so-called generalized shift which is

associated to the twist Θα. Conversely, we demand that for all space group elements of the

form (1, L′) ∈ S it follows that L′ ∈ IΓ. So, the Narain lattice IΓ is the subgroup of S that
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contains all pure translations of S. Note that a generator (Θα, Vα) is a generalized roto-

translation if Vα 6= 0, see [7]. These generators build the so-called Narain orbifold group O,

which is defined modulo lattice translations. Hence, just as P, the Narain orbifold group

O is a finite group.

A general space group element g = (Θ, λ) ∈ S is defined to act on Y as

Y 7→ g[Y ] =
(
Θ, λ

)
[Y ] = ΘY + λ . (4.7)

Consequently, the unit element of S is given by(
1, 0
)
∈ S . (4.8)

The inverse element g−1 of g = (Θ, λ) ∈ S reads

g−1 =
(
Θ−1,−Θ−1λ

)
∈ S . (4.9)

Furthermore, two elements g = (Θ, λ) and g′ = (Θ′, λ′) are multiplied as

g g′ =
(
Θ, λ

) (
Θ′, λ′

)
=
(
Θ Θ′,Θλ′ + λ

)
∈ S . (4.10)

Hence, the generalized space group S is in general non-Abelian even if the Narain point

group P is Abelian.

For orbifolds, each sector of string states is characterized by a boundary condition (4.2)

and, thus, by the so-called constructing element g = (Θ, λ) ∈ S, where λ = VΘ + L

and L ∈ IΓ. Only those elements g′ ∈ S that commute with the constructing element g

yield projections and, hence, give rise to non-vanishing contributions to the twisted sector

partition function. This only happens when

ΘΘ′ = Θ′Θ and (1−Θ)λ′ = (1−Θ′)λ . (4.11)

4.3 Conditions on the twists Θα

Furthermore, we choose L ∈ IΓ and consider(
Θα, Vα

) (
1, L

) (
Θα, Vα

)−1
=
(
1,ΘαL

) !
∈ S ⇒ ΘαL

!
∈ IΓ . (4.12)

Thus, the lattice IΓ is a normal subgroup of S and the Narain point group P has to consist

of automorphisms of the Narain lattice, i.e.

Θα IΓ = IΓ . (4.13)

In addition, we have to impose eq. (4.4) on the twist generators Θα.

It is is interesting to pause here and reflect on the possible orders of twists for a

given number of dimensions DΓ for general orbifolds associated to a lattice Γ. As is well-

known [87], if the order K satisfies

φ(K) ≤ DΓ , (4.14)

then there exists at least one lattice Γ with rotational symmetry of order K. Here, φ(K)

is the Euler φ-function and this bound does not take into account that one can build point

groups as direct sums of lower dimensional cases. However, in the current paper we are

not working with a general lattice Γ in DΓ dimensions, but with Narain lattices Γ = IΓ

with DIΓ = 2D+ 16. Hence, contrary to the Euclidean case, it is not guaranteed that there

exists a Narain lattice for each order K satisfying the bound (4.14).
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4.4 Orbifold projections of IΓ

In general, a twist Θ ∈ P of order K acts as the identity in some directions of Y while it

acts as a ZK twist on others. To identify these directions, we define projection operators for

each twist Θ ∈ P: the projection operators PΘ
‖ and PΘ

⊥ project a vector onto the directions

in which Θ acts trivially and non-trivially, respectively. In detail, we define the projectors

PΘ
‖ =

1

K

K−1∑
j=0

Θj and PΘ
⊥ = 1− PΘ

‖ , (4.15)

with the properties(
PΘ
‖

)2
= PΘ

‖ ,
(
PΘ
⊥

)2
= PΘ

⊥ , ΘPΘ
‖ = PΘ

‖ , PΘ
⊥ PΘ

‖ = PΘ
‖ PΘ

⊥ = 0 . (4.16)

Then, any vector λ ∈ R2D+16 can be decomposed into two vectors λΘ
‖ and λΘ

⊥ according to

λΘ
‖ = PΘ

‖ λ , λΘ
⊥ = PΘ

⊥ λ so that λ = λΘ
‖ + λΘ

⊥ , (4.17)

and ΘλΘ
‖ = λΘ

‖ . The final relation clarifies the use of the subscript ‖: it defines the

directions which are left invariant by Θ.

Moreover, it is important to realize that the projected Narain lattice IΓΘ
‖ = PΘ

‖ IΓ is in

general not Narain. In detail, even if IΓ and Θ IΓ are Narain lattices, see eq. (4.13), the

normalisation 1/K in the projection operator PΘ
‖ in eq. (4.15) can make IΓΘ

‖ non-Narain.

A Narain lattice is said to be factorized w.r.t. the orbifold twists when

IΓΘ
‖ ⊂ IΓ (4.18)

for all twists Θ ∈ P. In this case, obviously, all projected Narain lattices are themselves

Narain again.

4.5 Quantization of the generalized shifts Vα

For each Narain point group generator Θα of order Kα we consider the generator (Θα, Vα)

of the generalized space group S. Then, its Kα-th power reads

(
Θα, Vα

)Kα =

(
ΘKα ,

Kα−1∑
j=0

Θj
α Vα

)
=
(
1,KαPα‖ Vα

) !
∈ S , (4.19)

(where Pα‖ = PΘα

‖ ) without summation over α. Consequently, we have to demand the

condition

KαVα‖ = KαPα‖ Vα =

Kα−1∑
j=0

Θj
α Vα = Lα

!
∈ IΓ . (4.20)

That is, the shift Vα needs to be quantized in units of Kα in the directions where Θα acts

trivially, i.e. Vα is given by

Vα =
Lα
Kα

+ λα with Θα Lα = Lα , Pα‖ λα = 0 and Lα ∈ IΓ . (4.21)
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The same procedure can be applied to some arbitrary element Θ ∈ P of order K with

associated element (Θ, VΘ) ∈ S. This yields

VΘ =
LΘ

K
+ λΘ with ΘLΘ = LΘ , PΘ

‖ λΘ = 0 and LΘ ∈ IΓ . (4.22)

As a remark, for example in the case when Θk
α has a fixed torus for 0 < k < Kα (i.e. when

Θk
α has more invariant directions than Θα) eq. (4.22) gives stronger quantization conditions

on the shift Vα than eq. (4.21).

Various choices for Vα correspond to the same Narain orbifold. Indeed, one can shift

the origin, i.e.

Y (σ, σ̄) 7→ Y (σ, σ̄) + Y0 , (4.23)

and hence transform the generalized shifts VΘ 7→ VΘ − (1 − Θ)Y0 for Y0 ∈ R2D+16. (In

light of the equivalence (2.6), only the (lower) D+16 components of Y0 actually modify the

description.) By doing so, one can set the components of λΘ either to zero or to some quan-

tized value for each element (Θ, VΘ‖+λΘ) of the Narain orbifold group O. Especially, if the

Narain point group is isomorphic to ZK (with one generator Θ of order K) the generalized

shift can be chosen as VΘ = LΘ/K with ΘLΘ = LΘ ∈ IΓ without loss of generality.

4.6 Preserving at least N = 1 target-space supersymmetry

To enable the discussion on target-space supersymmetry we first need to recall a few facts

about supersymmetry on the worldsheet. By construction the heterotic string has (1, 0)

worldsheet supersymmetry. Hence, we can identify the worldsheet supercurrent

TF = ψµR ∂̄xµ + ψTR uRr ∂̄yr , (4.24)

where ψR = (ψiR) are the real worldsheet fermions of the D compactified dimensions and

uRr is a D × D matrix. For each twist Θα, the space group action (4.7) is defined to be

accompanied by a transformation of ψR as

ψR 7→ g[ψR] = θαR ψR , (4.25)

where θαR ∈ O(D;R). Since the first term ψµR ∂̄xµ in eq. (4.24) is orbifold invariant the

worldsheet supercurrent TF has to be orbifold invariant as well. Consequently, we need to

require that the twists on the right-moving coordinates yr and on the right-moving fermions

ψR are identified: θαR = uRr θα r u
−1
Rr .

Given that the properties of target-space fermions are determined by the right-moving

momentum pR associated to these right-moving fermions, as given eq. (2.12), the question

of target-space supersymmetry is only affected by the transformations generated by θαR in

the right-moving sector. In particular, target-space supersymmetry is independent of the

choice one makes for ΘαL. Only if one restricts oneself to symmetric orbifolds, for which

θαL = θα l⊕116 and θα l = θα r = θαR with uRr = 1D, see eq. (4.5), this connection is made.

Consequently, in order to preserve at least N = 1 supersymmetry in the d-dimensional

target-space, the generators θαR ∈ SO(D;R) have to lie inside the appropriate special

holonomy subgroup of SO(D;R). For D = 4, 6, 7, 8 these subgroups are SU(2), SU(3), G2
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and Spin(7), respectively, see e.g. [88]. For example, assume D = 6 and an Abelian Narain

point group, i.e.

P ∼= ZK1 × . . .ZKNP
. (4.26)

Then, the four-dimensional effective low energy theory possesses at least N = 1 supersym-

metry if

φmαR = 0 , Kα φ
a
αR ≡ 0 ,

1

2

∑
a

φaαR = 0 . (4.27)

Here, we introduced the so-called twist vector φαR = (φmαR, φ
a
αR) as the vector of phases

corresponding to θαR, such that θαR acts as

ψmR 7→ e2πi φmαR ψmR , ψaR 7→ e2πi φaαR ψaR , (4.28)

using the complex indices defined below eq. (2.12). In fact, the last condition of eq. (4.27)

only needs to be imposed mod integers (i.e. ≡) and this specific choice fixes the unbroken

supercharges for d = 4 and φaαR 6= 0 to be represented as ±(1
2 ,

1
2 ,

1
2 ,

1
2).

5 Moduli stabilization in Narain orbifolds

As we have seen in the previous section, the space group description of Narain orbifolds

is naturally formulated using the twist Θ and the generalized vielbein E. On the other

hand, the question about moduli stabilization and classification, in particular, are more

conveniently discussed in the so-called lattice basis in which the twist is encoded by an

integral matrix ρ̂. Therefore, we begin this section with a discussion of Narain orbifolds in

the lattice basis. Beside the integral twist matrices ρ̂, we introduce the generalized metric

H and a closely related Z2-grading Z. After that we investigate under which conditions

Narain orbifolds exist and derive restrictions on the Narain moduli that have to be imposed

in order to be compatible with the orbifold action. In particular, we derive a character

formula that counts the dimension of the orbifold Narain moduli space.

5.1 Narain orbifolds in the lattice basis

Twists and shifts in the lattice basis. We have seen in eq. (4.13) that each point group

generator Θα has to map a Narain vector EN to another Narain vector EN ′ = ΘαEN ,

see eq. (2.16). It follows that N ′ = ρ̂αN , where we define ρ̂α as

ρ̂α = E−1ΘαE = Ê−1Θ̂α Ê ∈ GL(2D + 16;Z) . (5.1)

Here, we used E = U R Ê and we absorbed U in the definition of Θ̂α = R−1 U−1 Θα U R.

The matrices ρ̂α represent the generating twists Θα in the so-called lattice basis. They

have to be invertible over the integers (i.e. ρ̂α ∈ GL(2D + 16;Z)) because each ρ̂α has

to map an integer vector N one-to-one to another integer vector N ′. Furthermore, they

inherit the following conditions

ρ̂Tα η̂ ρ̂α = η̂ and ρ̂Kαα = 1 , (5.2)
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since the generating twists Θα are elements of Oη(D,D + 16;R) of finite order Kα.

The integral matrices ρ̂α generate the so-called Narain point group in the lattice basis

P̂ ⊂ Oη̂(D,D + 16;Z), while twists Θα ∈ P are given in the so-called coordinate basis.

The lattice basis will be of special importance for the classification of Narain orbifolds

later in section 6.1. Moreover, the space group generators (Θα, Vα) and (1, L) ∈ S can be

represented in the lattice basis as(
ρ̂α,

1

Kα
Nα

)
∈ Ŝ and (1, N) ∈ Ŝ , (5.3)

where Vα = 1
Kα

ENα and L = EN for N,Nα ∈ Z2D+16.

Generalized metric. Eq. (5.2) represents two out of the three properties (4.4) of the

generators Θα in the lattice basis. The remaining one, ΘT
αΘα = 1, can be cast in the form

ρ̂TαH ρ̂α = H , (5.4)

where we have introduced the so-called generalized metric H defined as

H = ETE = ÊT (e,B,A)RTR Ê(e,B,A) . (5.5)

In other words, condition (5.4) states that the generators ρ̂α and the generalized metric H
have to be compatible.

The generalized metric is given explicitly by

H(G,B,A) =

G+ATA+ CG−1CT −CG−1 (1D + CG−1)ATαg

−G−1CT G−1 −G−1ATαg

αTg A(1D +G−1CT ) −αTg AG−1 αTg
(
116 +AG−1AT

)
αg

 , (5.6)

using eqs. (2.26) and (2.39). It is an interesting object in its own right: assume one is given

a generic Narain lattice (with moduli-independent Narain metric η̂ = ET η E as given in

eq. (2.23)) by specifying the generalized vielbein E, then it might be rather awkward to

determine the matrix U from E = URÊ such that we can read off the moduli contained in

the matrix Ê. As the generalized metric H is independent of U , it can be used to read off

the metric G of the D-dimensional torus, the B-field and the Wilson line matrix A. As the

explicit expression of the generalized metric (5.6) shows, not all its components are indepen-

dent, i.e. H is not a generic (2D+16)×(2D+16) matrix. Indeed, H satisfies the constraints

H η̂−1H = η̂ and HT = H , (5.7)

as follows from its definition (5.5) .

A Z2 grading. The compatibility condition (5.4) of the orbifold twists in the lattice

basis can also be represented as

Z ρ̂α = ρ̂αZ , (5.8)

where we have defined

Z = η̂−1H = E−1ηE = Ê(e,B,A)−1 Î Ê(e,B,A) ∈ Oη̂(D,D + 16,R) . (5.9)
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The second expression in this equation is obtained using Î = R−1η R, as given in table 1,

and the relation RTR = η̂ Î. Explicitly, Z is given by

Z(G,B,A) =

 −G−1CT G−1 −G−1ATαg

G+ATA+ CG−1CT −CG−1 (1D + CG−1)ATαg

α−1
g A(1D +G−1CT ) −α−1

g AG−1 α−1
g

(
116 +AG−1AT

)
αg

 . (5.10)

The constraints (5.7), which the generalized metric satisfies, translate to the following

conditions on Z:

ZT η̂Z = η̂ and Z2 = 1 . (5.11)

This can be confirmed by using eq. (5.7) and the fact that Î 2 = 1. Given its definition (5.9),

the matrix Z has signature (D,D + 16), just as η (and Î). This leads to a grading of the

Narain lattice: it characterizes the distinction between D right- and D + 16 left-moving

directions of the Narain lattice.

5.2 On the existence of Narain orbifolds for a given point group

Assume a given finite point group P̂ ⊂ Oη̂(D,D + 16;Z) with generators ρ̂α in the lattice

basis. We want to understand these generators ρ̂α as the crucial ingredient in the definition

of a Narain orbifold. Therefore, we have to address the following question: under which

condition does a corresponding Narain orbifold exist? In terms of the terminology intro-

duced in section 4 this can be phrased as follows: when does a Narain lattice exist, such

that all generators Θα of the corresponding group P in the coordinate basis satisfy (4.4)

and are symmetries of this lattice (4.13)?

In the following, we will answer this question in the lattice basis. Then, the conditions

on Θα translate to conditions (5.2) and (5.4) on ρ̂α ∈ P̂. In fact, eq. (5.2) is fulfilled by

assumption (i.e P̂ ⊂ Oη̂(D,D + 16;Z) and finite). Thus, it remains to show that eq. (5.4)

is fulfilled, i.e. we have to find a generalized metric that is compatible with all generators

ρ̂α. Consequently, a Narain orbifold with given point group P̂ exists if one finds Narain

moduli G, B and A that are invariant under ρ̂α ∈ P̂.

If such a generalized vielbein exists, then generically, not all the moduli of the Narain

torus compactification are still free; some Narain moduli are stabilized. Thus, we can use

our discussion on the transformation properties of Narain moduli under general T -duality

transformations in section 3.3 in order to derive conditions for moduli stabilization.

To address these questions, we study the existence of both a twist

Θα ∈ O(D;R)×O(D + 16;R) for each ρ̂α and a compatible generalized vielbein

Ê(e,B,A), i.e.

ΘαR Ê(e,B,A) = R Ê(e,B,A) ρ̂α , (5.12)

which is equivalent to eq. (5.1) by absorbing U in the definition of Θα. Eq. (5.12) constitutes

nine coupled matrix equations for the D(D+16) Narain moduli G,B,A and the D(D−1)/2

and (D + 16)(D + 15)/2 parameters inside each of the generators Θα.

Instead of trying to solve all nine coupled matrix equations, we first focus on a subset

of only three matrix equations

W ρ̂α = θα rW with W =
√

2 (R Ê)r = e−T
(
G+ CT , −1D, ATαg

)
, (5.13)
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(where θα r is the ur part of the matrix Θα as defined in eq. (2.38)) that determine the

Narain moduli uniquely already. Expanding out eq. (5.13), we obtain

−(ρ̂α)21 + (G+ CT )(ρ̂α)11 +ATαg (ρ̂α)31 = ρ−Tα r (G+ CT ) , (5.14a)

−(ρ̂α)22 + (G+ CT )(ρ̂α)12 +ATαg (ρ̂α)32 = −ρ−Tα r , (5.14b)

−(ρ̂α)23 + (G+ CT )(ρ̂α)13 +ATαg (ρ̂α)33 = ρ−Tα r A
Tαg , (5.14c)

where ρα r := e−1θα r e. (Note that there is a redundancy between e and θα r, which reflects

the fact that the vielbein e is not uniquely determined by the metric G.)

It is sufficient to solve only these three matrix equations (5.14) in order to find a

solution of all nine equations (5.12) because of the coset decomposition (3.4): indeed, we can

alternatively obtain the set of coupled equations (5.14) by comparing eq. (5.12) to eq. (3.4).

They are identical if we determine each twist Θα from eq. (3.10) using U
M̂

= Θα (hence, in

particular ur = θα r) and M̂ = ρ̂α. Furthermore, we have to set G′ = G, B′ = B and A′ = A,

where the primed objects are determined by the transformation of the generalized metric

H(G′, B′, A′) = ρ̂Tα H(G,B,A) ρ̂α
!

= H(G,B,A) , (5.15)

using eq. (5.5). Therefore, using eq. (3.11) the moduli of the Narain lattice are constrained

according to

M̂T
α 1ρα r = G+ C , M̂T

α 2ρα r = − 1 and M̂T
α 3ρα r = αTg A , (5.16)

for each generator of the point group ρ̂α. Inserting the moduli-dependent short-hands

M̂α i from eq. (3.8) the resulting equations are again eqs. (5.14). In summary, for a given

finite group P̂ ⊂ Oη̂(D,D + 16;Z) there exists a Narain lattice such that P̂ is a point

group of this lattice if the Narain moduli can be chosen such that they are invariant under

the orbifold action, i.e. G′ = G, B′ = B and A′ = A, see section 5.

Eq. (5.14b) can be used to constrain ρα r. Inserting this in the other two equations of

eqs. (5.14) leads to two coupled quadratic matrix equations

(G+ CT )ρ̂12(G+ CT ) +ATαg(ρ̂32(G+ CT ) + ρ̂31)

−ρ̂22(G+ CT ) + (G+ CT )ρ̂11 = ρ̂21 , (5.17a)

ATαgρ̂32A
Tαg + (G+ CT )(ρ̂13 + ρ̂12A

Tαg)− ρ̂22A
Tαg +ATαgρ̂33 = ρ̂23 . (5.17b)

for each generator ρ̂ = ρ̂α of the point group P̂. These conditions can be thought of as

algebraic Riccati equations (see e.g. [89]) which constrain some and sometimes even all the

moduli G, B and A. Hence we have reduced the existence question of Narain orbifolds to

the question whether these Riccati equations admit real solutions.

5.3 Mapping from the lattice basis to the coordinate basis

Assume we are given a finite point group P̂ ⊂ Oη̂(D,D + 16;Z) with generators ρ̂α in the

lattice basis and we want to know a compatible Narain lattice as well as the twists Θα

in the coordinate basis. To obtain this data we can perform the following steps: first, we
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find a solution to eqs. (5.17), i.e. find orbifold invariant moduli G, B and A. After that

we make a choice for a geometrical vielbein e such that eT e = G. By doing so, we have

obtained a generalized vielbein E = R Ê(e,B,A), which is compatible with P̂ in the sense

of eq. (5.12). Finally, we compute the twists in the lattice basis: using the geometrical

vielbein e we can determine the right-moving twists θα r = e ρα r e
−1, where ρα r is given by

eq. (5.14b). Consequently, we can compute the blocks of Θα from eq. (3.10), i.e.

θα l =
(
1D − 2 e (ρ̂α)12 M̂

−1
α 2 e

T
)
θα r , (5.18a)

θα lL =
√

2 e
(

(ρ̂α)13 − (ρ̂α)12 M̂
−1
α 2 M̂α 3

)
α−1

g , (5.18b)

θαLl = −
√

2
(
αg (ρ̂α)32 +A (ρ̂α)12

)
M̂−1
α 2 e

T θα r , (5.18c)

θαL = A (ρ̂α)13 α
−1
g +αg (ρ̂α)33 α

−1
g −

(
A (ρ̂α)12+αg (ρ̂α)32

)
M̂−1
α 2 M̂α 3 α

−1
g , (5.18d)

where M̂α i for i = 1, 2, 3 are defined in eq. (3.8) setting M̂ = ρ̂α. This method we will be

exemplified in section 8 where we discuss a number of two-dimensional Narain orbifolds.

An important characterization of heterotic Narain orbifolds is whether they are sym-

metric or asymmetric. In section 4.1 we defined a Narain orbifold to be symmetric if there

is a coordinate basis such that eq. (4.5) holds. In the lattice basis, a sufficient but not

necessary condition for a Narain orbifold to be symmetric is (ρ̂α)12 = 0: first of all notice

that (ρ̂α)12 = 0 implies (ρ̂α)13 = 0 and (ρ̂α)32 = 0 since ρ̂Tα η̂ ρ̂α = η̂. Consequently, the

conditions (5.17) become linear in the moduli and, hence, not all Narain moduli are frozen.

Furthermore, using eqs. (5.18) we obtain

θα l = θα r , θα lL = θαLl = 0 , θαL = αg (ρ̂α)33 α
−1
g . (5.19)

Hence, any generator ρ̂α ∈ P̂ with (ρ̂α)12 = 0 and (ρ̂α)33 = 116 corresponds to a symmetric

twist. However, the converse is in general not true. In section 8 we provide examples for

both cases: in section 8.2 we list several Narain orbifolds that are necessarily symmetric

because (ρ̂α)12 = 0 and in section 8.4 we give one Narain orbifold that is symmetric even

though (ρ̂α)12 6= 0.

5.4 Dimensionality of the Narain orbifold moduli space

Assuming that a Narain orbifold exists, i.e. assuming that we have found a generalized

vielbein Ê0 that satisfies eq. (5.12), we want to determine the number of unconstrained

Narain moduli. In other words, we want to count the number of moduli perturbations δH
that can deform the associated generalized metric H0 such that H0 + δH remains invariant

under the Narain orbifold action.

To address this question, we make use of the results from appendix A and set Ĥ = P̂.

Then, the tangent space to the orbifold-invariant moduli space is given by

M
P̂

=
{
δm

P̂
= P

P̂
δm
}
, (5.20)
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where the projection operator P
P̂

is defined in eq. (A.11). The moduli deformations δH,

can be parametrized as follows

δH = ET0 δhE0 , δh =

(
0 δm

δmT 0

)
δm =

(
e−T0 (δG− δB′) e−1

0 ,
√

2 e−T0 δAT
)
, (5.21)

where δB′ = δB + 1
2 δA

T A0 − 1
2 A

T
0 δA, δG = δeT e0 + eT0 δe.

According to eq. (A.13) the dimension of the orbifold-invariant Narain moduli space,

i.e. the number of moduli, is determined by

dim(M
P̂

) = 〈χr, χL〉 =
1

|P|
∑
Θ∈P

χr(Θ)χL(Θ)∗ , (5.22)

where we have introduce the right- and left-characters

χr(Θ) = tr[θr] = tr

[
1− η

2
Θ

]
, χL(Θ) = tr[ΘL] = tr

[
1 + η

2
Θ

]
, (5.23)

respectively. Because of this character formula (5.22), the number of moduli dim(M
P̂

) for

Narain orbifolds only depends on the representations of θr and ΘL of the point group P,

but not on conjugation of Θ with U ∈ O(D;R)×O(D + 16;R).

The number of fixed moduli is given by D(D + 16) − dim(M
P̂

). In particular, all

Narain moduli are frozen if dim(M
P̂

) = 0. In this case, the Narain orbifold moduli

space M
P̂

is a point (or a set of disjoint points). This happens when the right- and left-

characters (5.23) are orthogonal. In light of this, we can use the property that characters

of irreducible representations form an orthonormal basis to analyze eq. (5.22). In detail,

for two (complex) irreducible representations µ and ν of the finite point group P we have

〈χµ, χν〉 =

{
1 if µ = ν

0 else
. (5.24)

This can be used to construct some situations with all moduli fixed, i.e. dim(M
Ĥ

) = 0:

• If the matrix representations of θr and ΘL are both irreducible, they have to be

different, since the former is D-dimensional while the latter is (D+ 16)-dimensional,

and hence, their characters are orthogonal.

• If the representations of θr and ΘL are reducible, one can decompose them into

irreducible ones as

θr =
⊕
µ

θrµ , ΘL =
⊕
ν

ΘLν , ⇒ χr =
∑
µ

χrµ , χL =
∑
ν

χrν , (5.25)

where the irreducible representations θrµ and ΘLν are in general complex. Hence, if

and only if θr and ΘL do not contain any irreducible representation in common, again

the characters χr and χL are orthogonal. An particular example of this is obtained,

when ΘL =1 and θr does not contain any trivial one-dimensional representations of P.
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5.5 A T -fold constructed as an asymmetric Z2 Narain orbifold

To illustrate the various results, we conclude this section by considering a simple but in-

structive construction of a T -fold: we define an asymmetric Z2 Narain orbifold by choosing

ρ̂ = Î =

 0 1D 0

1D 0 0

0 0 116

 , (5.26)

see table 1. First, we identify a specific example of a compatible Narain lattice using the

Z2 grading Z. Then, we will use the discussion from section 5.2 to see that this is actually

the most general solution. Finally, we confirm this by counting the number of unstabilized

Narain moduli using section 5.4.

To find a compatible Narain lattice, we notice that Z = Î is a valid Z2 grading

satisfying eq. (5.8). Hence, we can easily read off

e = G = 1D , B = 0 and A = 0 . (5.27)

from eq. (5.10) as a possible choice for the Narain moduli. Alternatively, we can study the

solutions of eqs. (5.17). In this case these equations read:

(G+ CT )(G+ C) = 1D , ATαg = 0 . (5.28)

Again, it is not difficult to confirm that eqs. (5.27) constitute a solution.

Consequently, we find Ê(e,B,A) = 1 and we obtain the twist Θ in the coordinate

basis from eq. (5.12) as

Θ = R Ê(e,B,A) ρ̂ Ê(e,B,A)−1R−1 = R Î R−1 = η =

−1D 0 0

0 1D 0

0 0 116

 , (5.29)

i.e. θr = −1D, θl = 1D and θL = 116.

In fact, all Narain moduli are stabilized in this case as we are going to show next. We

use eq. (3.8) with M̂ = Î, which yields

M̂1 = − 1D , M̂2 = G+ CT and M̂3 = ATαg . (5.30)

Then, the Narain moduli are subject to the constraints (5.16). In this example, they read

1D = G+ C and A = −A . (5.31)

using ρr = e−1θr e = −1D. Consequently, all Narain moduli are stabilized and their values

are given by eqs. (5.27).

The fact that all Narain moduli are stabilized in this example is also easy to understand

using the number of unstabilized Narain moduli dim(M
P̂

), see eq. (5.22): θr consists of D

non-trivial irreducible representations of the Z2 point group, while ΘL consists of D + 16

trivial irreducible representations. As the characters of different irreducible representations

are orthogonal, we easily find dim(M
P̂

) = 0.
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6 Towards a classification of Narain orbifolds

In this section we would like to lay the foundations for a classification of inequivalent

Narain orbifolds. In general, the key to a classification of any structure is to identify those

transformations that relate (or even define) equivalent structures. These transformations

can be used to define equivalence relations that consequently give rise to equivalence classes.

For the classification of D-dimensional — geometrical — orbifolds the structure turns out

to be the space group and the equivalence relations are based on the notions of Q-, Z- and

affine-classes [7]. In this section we show that extending these notions to generalized space

groups is the key for a classification of Narain orbifolds.

In more detail, for the classification of Narain orbifolds we identify three main

structures: (i) the integral Narain point group P̂ of finite lattice automorphisms,

(ii) an associated Narain lattice IΓ (given by a geometrical torus with metric G, a B-field

and Wilson lines A) that is compatible with the point group and, finally, (iii) the full

generalized space group S, which fully specifies a Narain orbifold as we have seen in

section 4. The main purposes of this section are to define equivalences for these three

structures, namely Narain Q-, Z- and Poincaré-equivalences, together with their associated

equivalence-classes and to analyze their interpretations.

6.1 Narain Q- and Z-classes

For the definition of Narain Q- and Z-classes we need to describe the Narain point group

in the lattice basis, where P̂ ⊂ Oη̂(D,D + 16;Z), see section 5.1. Then, one only has

to consider integral finite order elements ρ̂α ∈ P̂. Since Narain Q- and Z-classes are

analogously defined, we take the field F to be either Q- and Z and begin with the definition

of F-equivalence: two matrices ρ̂ ∈ Oη̂(D,D+16;Z) and ρ̂′ ∈ Oη̂′(D,D+16;Z) are defined

to be F-equivalent if there exists a matrix M̂ ∈ GL(2D + 16;F) such that

ρ̂′ = M̂−1 ρ̂ M̂ and η̂′ = M̂T η̂ M̂ . (6.1)

Two Narain points groups P̂ ⊂ Oη̂(D,D+ 16;Z) and P̂′ ⊂ Oη̂′(D,D+ 16;Z) are said

to be F-equivalent if there exists a single matrix M̂ ∈ GL(2D + 16;F) such that

P̂′ = M̂−1 P̂ M̂ and η̂′ = M̂T η̂ M̂ . (6.2)

Note that if two point groups are from the same Z-class they are also from the same Q-

class, because if M̂ ∈ GL(2D + 16;Z) then M̂ ∈ GL(2D + 16;Q). But the converse is not

true, i.e. two point groups from the same Q-class can be in inequivalent Z-classes.

6.2 Interpretation of Narain Q- and Z-classes

To prepare the interpretation of the Narain Q- and Z-classes, let us assume that two Narain

point groups P̂ and P̂′ are from the same F-class, where the field F is either Q or Z. Then,

there exists a matrix M̂ ∈ GL(2D + 16;F) such that for each generator ρ̂α ∈ P̂ there is a

generator ρ̂ ′α ∈ P̂′ with

ρ̂ ′α = M̂−1 ρ̂α M̂ . (6.3)
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Now, consider a Narain lattice spanned by a generalized vielbein E, such that E is com-

patible with all generators ρ̂α and insert eq. (6.3), i.e.

ΘαE = E ρ̂α = E M̂ ρ̂ ′α M̂
−1 . (6.4)

Consequently, we find

ΘαE
′ = E′ ρ̂ ′α where E′ = E M̂ . (6.5)

Hence, we can interpret eq. (6.5) as follows: if P̂ is a symmetry of a Narain lattice with

generalized vielbein E and Narain metric η̂ then P̂′ is a symmetry of a Narain lattice

with generalized vielbein E′ = EM̂ and Narain metric η̂′ = M̂T η̂ M̂ . Furthermore, we

notice that both point groups have the same geometrical action Θα which corresponds

to both ρ̂α and ρ̂ ′α. In other words, the corresponding point groups P and P′ in the

coordinate basis are identical (up to a trivial basis change) for point groups from the same

F-class. Consequently, the question of symmetric or asymmetric orbifolds, the number of

unbroken supersymmetries in d uncompactified dimensions and the number of invariant

Narain moduli eq. (5.22) are also equal. This is independent of the choice for the field F

to be Q or Z.

Next, we have to distinguish between these two Narain classes: let us first consider the

case F = Q. The Narain lattices spanned by E and E′ = EM̂ , are in general physically

inequivalent, because if M̂ ∈ GL(2D + 16;Q) then in general M̂ 6∈ GL(2D + 16;Z). A

representation of a Q-class only gives one example of a compatible Narain lattice. To

characterize all inequivalent lattices for a given Q-class one needs to consider Z-classes.

That is, if F = Z the generalized vielbeins E and E′ = EM̂ span identical Narain lattices.

Finally, if M̂ additionally preserves the Narain metric η̂, i.e. if

M̂ ∈ Oη̂(D,D + 16;F) ⊂ GL(2D + 16;F) , (6.6)

which means that M̂ is a T -duality transformation, we can analyze the consequences of

eq. (6.5) for the Narain moduli G, B and A. In this case, we take the most general vielbein

E = U R Ê(e,B,A) from eq. (3.6) and use eq. (3.4) in order to transfer M̂ into U
M̂

for the

generalized vielbein E′ = E M̂ . Consequently, one can show that E′ is given by

E′ =
(
U R Ê(e,B,A)

)
M̂ = UB U R Ê(e′, B′, A′) where UB = U U

M̂
U−1 , (6.7)

and the M̂ -transformed Narain moduli are given in eq. (3.14). Hence, if two Narain point

groups P̂ and P̂′ are F-equivalent and defined with respect to the same Narain metric η̂

then the lattice E = U R Ê(e,B,A) of P̂ corresponds to the lattice E′ of P̂′ as given in

eq. (6.7). This change of lattices from E to E′ involves a transformation of moduli from

G, B and A to G′, B′ and A′ using the T -duality transformation M̂ and, in addition,

a rotation in the coordinate basis with UB ∈ O(D;R) × O(D + 16;R). Moreover, from

eqs. (6.4) and (6.5) we obtain

Θα

(
U R Ê(e,B,A)

)
=
(
U R Ê(e,B,A)

)
ρ̂α , (6.8a)(

U−1
B Θα UB

) (
U R Ê(e′, B′, A′)

)
=
(
U R Ê(e′, B′, A′)

)
ρ̂′α . (6.8b)
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That is, even though we have seen in eqs. (6.4) and (6.5) that the Narain point groups

P and P′ are identical in the same F-class, their generators Θα and Θ′α = U−1
B Θα UB

can look different, for example, one is symmetric and the other looks asymmetric. This is

the case if one chooses the corresponding Narain lattices as different points, specified by

(e,B,A) and (e′, B′, A′), in the same representation of the Narain moduli space, i.e. with

the same U in eq. (6.8). As an example for eq. (6.8), we will discus two F-equivalent Z3

point groups P̂(1) and P̂(2) in section 8.4, where the point group P̂(1) is symmetric while

P̂(2) looks asymmetric due to a non-trivial transformation UB.

6.3 Narain Poincaré-classes

As final type of equivalence transformations, we want to generalize affine transformations

(F, λ) of Euclidean D-dimensional orbifolds (with linear mapping F ∈ GL(D;R) and trans-

lation λ ∈ RD) to the Narain case. Importantly, the (2D + 16)-dimensional Narain lattice

is equipped with a metric η with signature (D,D + 16), which has to be preserved by any

transformation. Hence, it is essential for the Narain case to restrict affine transformations

in 2D + 16 dimensions to Poincaré transformations (F, λ) of the Narain lattice, where

F ∈ Oη(D,D + 16;R) and λ ∈ R2D+16. Therefore, we need to introduce Poincaré-classes

instead of affine classes in order to describe Narain orbifolds.

This might give the impression that Poincaré transformations of Narain orbifolds are

more restrictive than affine transformations of ordinary Euclidean orbifolds. This is not

the case since Oη(D,D + 16;R) transformations contain GL(D;R) transformations. This

can be made explicit by the parametrization EM̂e(∆K)E−1 ∈ Oη(D,D + 16;R), where

M̂e(∆K) is is given in table 1 with ∆K ∈ GL(D;R). Consequently, Poincaré-classes

generalize the notion of affine classes to Narain orbifolds.

In light of this, we define the following equivalence relation: consider two Narain orb-

ifolds, i.e. two space groups S(1) and S(2) with point groups in the same Z-class. Two such

Narain space groups are defined to be equivalent if there exists a Poincaré transformation

(F, λ) with F ∈ Oη(D,D + 16;R) and λ ∈ R2D+16 such that

S(2) = (F, λ)−1 S(1) (F, λ) . (6.9)

More explicitly, in terms of the generators (Θ(κ)α, V(κ)α) and (1, L(κ)) of the space groups

S(κ) for κ = 1, 2 this reads

L(2) = F−1 L(1) , Θ(2)α = F−1 Θ(1)α F , V(2)α = F−1
(
V(1)α−(1−Θ(1)α)λ

)
, (6.10)

see eq. (4.6). Notice that Narain Q- and Z-classes involve transformations in the lattice

basis, while Narain Poincaré classes involve transformations in the coordinate basis. Since

Narain Poincaré transformations act on all defining quantities of the space group, see

eq. (6.10), their interpretation is more involved.

6.4 Interpretation of Narain Poincaré-classes

First of all, we show that two generalized space groups from the same affine class correspond

to the same Narain orbifold but possibly at different points in the moduli space. To
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see this, let us denote the generalized vielbeins that specify the Narain lattices from the

respective generalized space groups S(κ) by E(κ) = U(κ)R Ê(e(κ), B(κ), A(κ)) for κ = 1, 2,

where U(κ) ∈ O(D;R) × O(D + 16;R) and Ê(e(κ), B(κ), A(κ)) is given in eq. (3.1). Since

L(κ) = E(κ)N(κ) are related by the transformation (6.10), a Poincaré transformation (F, λ)

of the corresponding generalized vielbeins E(1) and E(2) is given by

U(2)R Ê(e(2), B(2), A(2)) = E(2) = F−1E(1) = F−1 U(1)R Ê(e(1), B(1), A(1)) , (6.11)

where we assume without loss of generality that we do not perform a discrete T -duality

transformation (i.e. N(2) = N(1)). This can be rewritten as

Û(2) Ê(e(2), B(2), A(2)) = Ê(e(1), B(1), A(1)) M̂F , (6.12)

where

Û(2) = R−1 U(2)R and M̂F = E−1
(1) U(1) F

−1E(1) ∈ Oη̂(D,D + 16,R) . (6.13)

Since M̂F parametrizes a general T -duality transformation, we can make use of eq. (3.4)

to determine the transformation of the moduli by setting M̂ = M̂F , i.e.

Û
M̂F

Ê(e′(1), B
′
(1), A

′
(1)) = Ê(e(1), B(1), A(1)) M̂F . (6.14)

Since the generalized vielbein is uniquely defined up to O(D;R)×O(D + 16;R) transfor-

mations, we conclude that

e(2) = e′(1) , B(2) = B′(1) , A(2) = A′(1) , (6.15)

where the prime denotes the resulting moduli under the T -duality transformation M̂F . This

tells us that two generalized space groups from the same Poincaré-class can correspond to

the same Narain orbifold but at different points in the moduli space. In fact only if

F ∈ O(D;R) × O(D + 16;R)\Oη(D,D + 16;R) we get a proper moduli transformation.

Indeed, if F ∈ O(D;R)×O(D + 16;R) we find that U(2) = F−1 U(1) as well as e(2) = e(1),

B(2) = B(1) and A(2) = A(1). In this case, also the left- and right-moving mass formulae of

the heterotic string stay the same.

So far we only gave an interpretation of the first equivalence relation in eqs. (6.10).

The second relation tells us that the orbifold twists can take various guises by conjugation

with F ∈ Oη(D,D+16;R). The third equivalence relation in eqs. (6.10) can be interpreted

by resorting to the decomposition mentioned in section 4.5.

7 Symmetric orbifolds as Narain orbifolds

The main objective of our study in this paper is to set up a framework to investigate

asymmetric orbifolds. Nevertheless, it is very instructive to apply the Narain formalism

also to symmetric orbifolds [5, 6]: it provides us with a unified view on both, geometric

moduli and Wilson lines [8]. Moreover, this case can be used to illustrate the power of

the T -duality group approach in the investigation of moduli stabilization. For concreteness

and simplicity, we only consider symmetric ZK orbifolds in this section. Extending the

discussion is straightforward, yet beyond the scope of the present paper.
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7.1 Symmetric ZK orbifolds

The Narain point group of a symmetric ZK orbifold is generated by a single twist Θ of

order K and the associated generator of the generalized space group is given by (Θ, V ).

For the orbifold to be symmetric, we choose the twist Θ to be of the form given in eq. (4.5).

Thus, we obtain for Θk, k = 1, . . . ,K,

Θ̂k = R−1Θk R =

 θk 0 0

0 θk 0

0 0 116

 = M̂e(θ
k) , (7.1)

see table 1 and using θT θ = 1D. Using the definition (5.1) of the integral matrix ρ̂ we can

subsequently obtain an expression for ρ̂ k, which can be further evaluated with the help of

the multiplication table 2 for T -duality group elements. This yields

ρ̂k = Ê(e,B,A)−1 Θ̂k Ê(e,B,A) = M̂e(θ̂
k) M̂B(∆Bk) M̂A(∆Ak) , (7.2)

where we defined

θ̂ = e−1θ e (7.3a)

∆Bk = B − θ̂kTB θ̂k +
1

2

(
θ̂kTATA−ATA θ̂k

)
with ∆BT

k = −∆Bk (7.3b)

∆Ak = A
(
1D − θ̂k

)
. (7.3c)

Since ρ̂ is an integral matrix, θ̂, ∆Bk and ∆Ak all have to be constant, i.e. moduli-

independent, matrices. As a cross-check, let us confirm that for k = K we obtain

ρ̂K = 1: indeed, in this case we get θ̂K = 1D, ∆AK = 0 and ∆BK = 0 and consequently,

ρ̂K = M̂e(1D) = 1, as required. Furthermore, we find from eq. (7.2) that ρ̂ is an element

of the discrete geometric subgroup Ggeom(Z) ⊂ Oη̂(D,D + 16;Z), see eq. (3.15) with

∆W = 116.

The twist Θ is in general accompanied by a shift V T = (V T
r , V

T
l , V

T
L ), see eq. (4.6). As

we have seen in section 4.5, the shift is quantized, i.e. KV Θ
‖ = ENV ∈ IΓ. It is instructive

to analyze this in more detail for the case that θ rotates in all D compact dimensions.

Then, the projection operator eq. (4.15) reads

PΘ
‖ =

 0 0 0

0 0 0

0 0 116

 , (7.4)

and we obtain the condition

KV Θ
‖ =

 0

0

K VL

 !
= ENV ∈ IΓ with NV =

mV

nV
qV

 ∈ Z2D+16 . (7.5)

This is solved by

K VL = αg qV ∈ ΛE8×E8 , KATVL = nV ∈ Z6 and mV = 0 , (7.6)
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where ΛE8×E8 denotes the root lattice of E8 × E8 and we used eq. (2.44). Hence, VL is

the gauge shift vector of order K known to the symmetric orbifold literature, e.g. [13, 52].

Furthermore, we can set Vr = Vl = 0 by shifting the origin using the transformation (4.23).

7.2 Moduli stabilization in symmetric ZK orbifolds

The fact that even for symmetric ZK orbifolds a certain number of moduli, G, B and A,

become constrained, can be inferred in two ways: first of all, the conditions (7.3) can be

obtained from eqs. (7.2), as shown above by using the fact that for symmetric orbifolds the

twist ρ̂ is an element of the geometric subgroup Ggeom(Z) ⊂ Oη̂(D,D + 16;Z). A second

derivation of eq. (7.3) follows from the general discussion in section 5.2, which is valid for

both, symmetric and asymmetric orbifolds: to see this, we use

ρ̂ = M̂e(θ̂) M̂B(∆B1) M̂A(∆A1) = Ê(θ̂,∆B1,∆A1) , (7.7)

see eq. (7.2) and eq. (3.1). Then, we set M̂ = ρ̂ in eq. (3.8) and obtain

M̂1 = θ̂−T
(
−∆B1 +

1

2
∆AT1 ∆A1

)
+ (G+ CT )θ̂ +AT∆A1 , (7.8a)

M̂2 = −θ̂−T , M̂3 =
(

∆A1 θ̂
−1 +A

)T
αg , (7.8b)

and in addition we have ρr = e−1θr e = θ̂. Consequently, the Narain moduli are constrained

by eqs. (5.16), which are equivalent to eqs. (7.3). Thus, we found two equivalent ways to de-

rive the conditions (7.3) for Narain moduli stabilization in the case of symmetric orbifolds.

Let us now discuss the consequences of eqs. (7.3) for Narain moduli stabilization. Since

ρ̂ in eq. (7.7) has to be an integer matrix, i.e. ρ̂ ∈ Oη̂(D,D+16;Z), we have to demand that

θ̂ ∈ GL(D;Z) , α−1
g ∆Ak ∈M16×D(Z) , −1

2
∆ATk ∆Ak + ∆Bk ∈MD×D(Z) , (7.9)

as can be inferred from eqs. (2.39) and (3.24).

We start with fixing moduli in the metric G. From eq. (7.3a) and ΘTΘ = 1 we obtain

the condition

θ̂TG θ̂
!

= G ⇔ θ̂ ∈ OG(D;Z) , (7.10)

which fixes some of the moduli, as is well-known. The general solution to eq. (7.10) for a

given θ̂ can be parametrized as

G =
1

K

K−1∑
k=0

θ̂kT G0 θ̂
k , (7.11)

where G0 is some symmetric positive definite matrix, for example G0 = 1D. Now, it is easy

to demonstrate that some metric moduli remain unconstrained for symmetric orbifolds: at

least we can scale G0 with an arbitrary positive factor, while eq. (7.10) stays fulfilled.

Next, we consider the Wilson lines. If θ rotates in all D compact dimensions (1D − θ̂)
is invertible, i.e.

(1D − θ̂)−1 = − 1

K

K−1∑
n=1

nθ̂n , (7.12)
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and the Wilson lines are uniquely determined from ∆Ak in eq. (7.3c), e.g. from k = 1

A
!

= − 1

K

K−1∑
n=1

n∆A1 θ̂
n . (7.13)

Consequently, the Wilson lines A are completely frozen as they have to be discrete, i.e.

quantized in units of 1/K in the directions where θ acts non-trivially. As a further con-

sequence of eq. (7.3c) we see that two Wilson lines (i.e. two columns of A) have to be

identical up to some trivial ∆Ak if the corresponding columns in the geometrical vielbein

e are mapped to each other by θ̂k.

Finally, the B-field is constrained by the condition (7.3b)

B − θ̂ TB θ̂ !
= ∆B = ∆B1 −

1

2

(
θ̂TATA−ATA θ̂

)
, (7.14)

combined with eq. (7.9). In analogy to eq. (7.11) the general solution of this equation can

written as

B =
1

K

K−1∑
k=0

θ̂kTB0 θ̂
k +BP , (7.15)

where B0 is an arbitrary anti-symmetric matrix (for example, B0 = 0) and BP is a par-

ticular solution to eq. (7.14). For example, in D = 2 the anti-symmetric 2 × 2 matrix B

contains a single modulus. It is subject to eq. (7.14), i.e.

B − θ̂TB θ̂ = (1− det(θ̂))B
!

= ∆B , (7.16)

where det(θ̂) = ±1. Thus, for det(θ̂) = 1 we obtain ∆B
!

= 0 and the single B-field modulus

in B is unconstrained and BP = 0. On the other hand, B is stabilized at BP = 1
2∆B if

det(θ̂) = −1.

Number of moduli in symmetric ZK orbifolds. We can compute the number of

(real) unstabilized moduli for symmetric ZK orbifolds for general K using the results of

section 5.4. To do so, we assume for simplicity D = 6 and K 6= 2. Furthermore, we choose

a ZK twist vector φR = (0, φ1
R, φ

2
R,−φ1

R−φ2
R) such that N = 1 supersymmetry survives in

four dimensions, see section 4.6. Hence, K = 3, 4, 6, 7, 8 or 12. Then, eq. (5.22) yields

dim(MZK ) = 6 + 2
(
δφ1

R,
1
2

+ δφ2
R,

1
2

+ δφ1
R+φ2

R,
1
2

)
+ 4
(
δφ1

R,φ
2
R

+ δφ1
R,−φ

2
R

+ δφ1
R,−2φ2

R
+ δ2φ1

R,−φ
2
R

)
, (7.17)

where δa,b = 1 if a ≡ b and δa,b = 0 otherwise. For example, for Z3 we take φ1
R = φ2

R = 1
3

and obtain dim(MZ3) = 6 + 2 × 0 + 4× (1 + 0 + 1 + 1) = 18. As is well-known, these 18

(real) moduli correspond to 9 complex structure moduli, see e.g. [90].

8 Two-dimensional Abelian Narain orbifolds

In this section, we study examples of generalized space groups of Narain orbifolds with

Abelian Narain point groups ZK in two dimensions. Many of them correspond to previously
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unknown two-dimensional Narain orbifolds. We collect them in a comprehensive table.

Furthermore, to illustrate various aspects of the theory developed in previous sections, we

describe some of these two-dimensional ZK Narain orbifolds in more detail. For example,

by an explicit construction we show that it is possible to have Z12 two-dimensional Narain

orbifolds, while it is well-known that for Euclidean orbifolds in D = 2 the largest order

of a twist is K = 6. Moreover, the Q- and Z-classes are used to distinguish seemingly

asymmetric from truly asymmetric orbifolds.

8.1 (D,D)-Narain orbifold formalism

To prepare the discussion of various illustrative examples of two-dimensional Narain orb-

ifolds, we briefly restrict the Narain orbifold formalism to the case where η has signature

(D,D):

η̂ = RT η R =

(
0 1D

1D 0

)
with R =

1√
2

(
1D −1D
1D 1D

)
. (8.1)

The generalized vielbein Ê is an element from Oη̂(D,D;R),

Ê(e,B) =

(
e 0

e−TB e−T

)
. (8.2)

Analogously to the discussion in section 3.3, for each element

M̂ =

(
M̂11 M̂12

M̂21 M̂22

)
∈ Oη̂(D,D;R) , (8.3)

there exist a choice for a matrix U
M̂
∈ O(D;R)×O(D;R) and transformed moduli e′ and

B′, such that

Û
M̂
Ê(e′, B′) = Ê(e,B) M̂ , U

M̂
= R Û

M̂
R−1 =

(
ur 0

0 ul

)
. (8.4)

In detail, defining

M̂1 = − M̂21 + (G−B)M̂11 and M̂2 = − M̂22 + (G−B)M̂12 , (8.5)

in accordance with eq. (3.8), we obtain

ul =
(
1D − 2 e M̂12 M̂

−1
2 eT

)
ur ∈ O(D;R) (8.6)

for arbitrary ur ∈ O(D;R). This shows that M̂12 6= 0 is a necessary condition for ur 6= ul.

Furthermore, the Narain moduli transform as

e′ = −u−1
r e M̂−T2 , G′ = M̂−1

2 GM̂−T2 , B′ =
1

2

(
M̂−1

2 M̂1 − M̂T
1 M̂−T2

)
. (8.7)

By restricting M̂ to lie either inside Oη̂(D,D;Q) or Oη̂(D,D;Z), we obtain the transfor-

mations that map different representations within the same Q- or Z-class to each other.
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Next, we discuss Narain orbifolds with Abelian ZK point groups P̂ ⊂ Oη̂(D,D;Z).

We use eq. (8.5) and set M̂ = ρ̂, where ρ̂ is the generator of P̂. Then, we find invariant

moduli G′ = G and B′ = B from the latter two transformations in eqs. (8.7). Moreover,

we obtain the right-moving twist θr = ur from the first relation in eq. (8.7) by choosing a

vielbein e′ = e, which is in agreement with G′ = G. By identifying the full twist Θ̂ = Ûρ̂
from eq. (8.6) the Narain orbifold condition follows from eq. (8.4), i.e.

Θ̂ Ê(e,B) = Ê(e,B) ρ̂ . (8.8)

Then, in analogy to section 5.2 we know that the ZK Narain orbifold exists.

If the matrix-block ρ̂12 is zero the orbifold is symmetric (i.e. θr = θl) and a necessary

(but not sufficient) condition for the orbifold to be asymmetric is ρ̂12 6= 0, as can be seen

from eq. (8.6).

8.2 Q- and Z-classes of two-dimensional ZK Narain orbifolds

Following the discussion of the last section we focus on two-dimensional Narain orbifolds

with point groups P̂ ⊂ Oη̂(2, 2;Z), generated by a single twist ρ̂ of order K.

To initiate this investigation, we give a brief discussion on the possible orders following

section 4.3: for Narain orbifolds with D = 2 we have to set DΓ = 2D = 4. Then, eq. (4.14)

yields the following list of possible orders

K ∈ { 1, 2, 3, 4, 5, 6, 8, 10, 12 } . (8.9)

In contrast, for two-dimensional symmetric orbifolds we have DΓ = D = 2 which yields

only K ∈ {1, 2, 3, 4, 6}. Indeed, as we discuss in the following, we found examples for

K = 12. They are genuine asymmetric because twists of order 12 are not possible for

DΓ = 2. On the other hand, we did not find any examples for K = 5, 8 and 10 in the scan

of two-dimensional Narain orbifold we performed for this paper.

In table 3 we list a number of Abelian ZK Narain orbifolds of order K, which we

constructed explicitly in our scan. For each Narain point group P̂ ⊂ Oη̂(2, 2;Z) this table

displays the following data in the various columns:

1. column labels the inequivalent orbifolds and characterizes the orbifold as symmetric

or asymmetric;

2. column gives a representation of the generating twist ρ̂ of order K in the lattice basis;

3. column displays the corresponding right-twist θr;

4. column displays the corresponding left-twist θl;

5. column indicates the relation between these twists;

6. column gives a choice of the geometrical vielbein e;

7. column gives to resulting metric as G = eT e;
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8. column gives the anti-symmetric B-field.

A couple of further comments about the conventions of this table are in order: our labelling

conventions for inequivalent Narain orbifolds are as follows. The inequivalent Q-classes of a

given order K are enumerated by a Roman number R=I,II,. . . as ZK-R. Furthermore, when

we give inequivalent Z-classes within a given Q-class, we enumerate them with n = 1, 2, 3

as ZK-R-n. In fact, only the Q-class Z2-II is subdivided into three inequivalent Z-classes.

Furthermore, the given right- and left-twists depend on our choice for the geometrical

vielbein e and on the Narain moduli G and B.

To describe all these two dimensional Narain orbifolds in detail would lead to a lengthy

discussion. Therefore, we focus in the following subsections on a number of striking features

of some of these orbifolds instead. Before, doing so we make a couple of observations: first

of all, we see that the number of asymmetric orbifolds greatly outweighs the number of

symmetric orbifolds. This might imply that there exist many more asymmetric Narain

orbifolds than symmetric ones. Most of the asymmetric orbifolds constructed in the past

have twists that are trivial for either the left- or the right-moving sectors, like the Z3-II and

Z3-III orbifolds. In our scan we also encountered such examples, but again it seems that

the majority of asymmetric orbifolds are not of this type: most of them have non-trivial

left- and right-moving twists simultaneously. In fact, there are even cases where the orders

of the left- and right-moving twists are co-prime: the Z6-IV and Z6-VII Narain orbifolds.

Since their orders are coprime, all their characters are orthogonal. Using the results of

section 5.4 this immediately implies that all moduli are stabilized for these orbifolds.

8.3 Two equivalent asymmetric Z12 Narain orbifolds

With our first two examples we want to illustrate that we are able to construct gen-

uine asymmetric orbifolds using the formalism for Narain orbifolds exposed in this paper.

Concretely, we define two Z12 Narain point groups P̂(1) and P̂(1) in D = 2, each being

generated by an element ρ̂(1), ρ̂(2) ∈ Oη̂(2, 2;Z) of order 12. In each case, we determine

the corresponding Narain lattice and the twist Θ which is given by its action on right-

and left-movers, θr and θl, respectively. As there is no symmetric Z12 orbifold in D = 2

(i.e. there is no two-dimensional lattice with rotational symmetry of order 12), these orb-

ifolds must be genuine asymmetric.3 Moreover, to emphasize that the use of Z-classes is

extremely powerful to investigate whether two orbifolds are distinct, we show that these

two Z12 point groups are in fact equivalent by giving an explicit Oη̂(D,D;Z) matrix that

relates the two twists in the lattice basis.

The first asymmetric Z12 orbifold example has a non-vanish B-field B(1) 6= 0: we

choose

ρ̂(1) =

(
0 12

12 ε

)
∈ Oη̂(2, 2;Z) where ε =

(
0 1

−1 0

)
(8.10)

and obtain

M̂(1)1 = − 12 , M̂(1)2 = G(1) −B(1) − ε , (8.11)

3Such asymmetric Z12 orbifolds were studied in the past [51, 91].
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label twist ρ̂ twist θr twist θl relation vielbein e metric G B-field

Z2-I

sym.


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 −12 −12 θr = θl

(
R1 R2 cosα

0 R2 sinα

) (
R2

1 w

w R2
2

)
w = R1R2 cosα

(
0 b

−b 0

)

Z2-II-1

sym.


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 (
1 0

0 −1

) (
1 0

0 −1

)
θr = θl

(
R1 0

0 R2

) (
R2

1 0

0 R2
2

) (
0 0

0 0

)

Z2-II-2

sym.


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 (
1 0

0 −1

) (
1 0

0 −1

)
θr = θl

(
R1 R1

−R2 R2

) (
R2

1 +R2
2 R2

1 −R2
2

R2
1 −R2

2 R2
1 +R2

2

) (
0 0

0 0

)

Z2-II-3

sym.


0 1 0 0

1 0 0 0

−1 0 0 1

0 1 1 0

 (
1 0

0 −1

) (
1 0

0 −1

)
θr = θl

(
R1 R1

−R2 R2

) (
R2

1 +R2
2 R2

1 −R2
2

R2
1 −R2

2 R2
1 +R2

2

) (
0 1

2
− 1

2
0

)

Z3-I

sym.


0 −1 0 0

1 −1 0 0

0 0 −1 −1

0 0 1 0


(
− 1

2
−
√

3
2√

3
2
− 1

2

) (
− 1

2
−
√

3
2√

3
2
− 1

2

)
θr = θl R

√2 − 1√
2

0
√

3
2

 R2

(
2 −1

−1 2

) (
0 b

−b 0

)

Z3-II

asym.


0 0 1 1

0 0 0 1

1 0 0 −1

−1 1 1 1


(
− 1

2
−
√

3
2√

3
2
− 1

2

)
12

θ3
r = 12

θl = 12

(
1 − 1

2

0
√

3
2

) (
1 − 1

2
− 1

2
1

) (
0 1

2
− 1

2
0

)

Z3-III

asym.


0 0 −1 0

0 0 −1 −1

−1 1 1 1

0 −1 −1 0

 12

(
− 1

2
−
√

3
2√

3
2
− 1

2

)
θr = 12

θ3
l = 12

(
1 − 1

2

0 −
√

3
2

) (
1 − 1

2
− 1

2
1

) (
0 1

2
− 1

2
0

)

Z4-I

sym.


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 (
0 −1

1 0

) (
0 −1

1 0

)
θr = θl

(
R 0

0 R

) (
R2 0

0 R2

) (
0 b

−b 0

)

Z4-II

asym.


−1 −1 −1 1

0 0 −1 1

0 0 0 −1

−1 0 0 1

 (
0 −1

1 0

) (
−1 0

0 1

)
θ4
r = 12

θ2
l = 12

(
1√
2

0

0 1√
2

) ( 1
2

0

0 1
2

) (
0 1

2
− 1

2
0

)

Z4-III

asym.


−1 1 1 1

0 0 −1 −1

0 0 0 1

−1 0 0 1

 (
−1 0

0 1

) (
0 −1

1 0

)
θ2
r = 12

θ4
l = 12

(
1√
2

0

0 − 1√
2

) ( 1
2

0

0 1
2

) (
0 1

2
− 1

2
0

)

Z6-I

sym.


1 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 1


(

1
2
−
√

3
2√

3
2

1
2

) (
1
2
−
√

3
2√

3
2

1
2

)
θr = θl R

√2 − 1√
2

0
√

3
2

 R2

(
2 −1

−1 2

) (
0 b

−b 0

)

Z6-II

asym.


0 0 −1 −1

0 0 0 −1

−1 0 0 1

1 −1 −1 −1


(

1
2
−
√

3
2√

3
2

1
2

)
−12

θ6
r = 12

θ2
l = 12

(
1 − 1

2

0 −
√

3
2

) (
1 − 1

2
− 1

2
1

) (
0 1

2
− 1

2
0

)

Z6-III

asym.


1 −1 0 0

1 −1 −1 −1

0 1 1 0

0 −1 0 0


(

1
2
−
√

3
2√

3
2

1
2

) (
1 0

0 −1

)
θ6
r = 12

θ2
l = 12

(
1 − 1

2

0
√

3
2

) (
1 − 1

2
− 1

2
1

) (
0 1

2
− 1

2
0

)

Z6-IV

asym.


−1 0 0 1

0 0 0 1

0 0 −1 −1

−1 1 1 1


(
− 1

2
−
√

3
2√

3
2
− 1

2

) (
−1 0

0 1

)
θ3
r = 12

θ2
l = 12

(
1 − 1

2

0
√

3
2

) (
1 − 1

2
− 1

2
1

) (
0 1

2
− 1

2
0

)

continued . . .
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label twist ρ̂ twist θr twist θl relation vielbein e metric G B-field

Z6-V

asym.


−1 1 1 1

−1 0 0 1

1 0 0 0

−1 1 0 0

 −12

(
1
2
−
√

3
2√

3
2

1
2

)
θ2
r = 12

θ6
l = 12

(
1 − 1

2

0 −
√

3
2

) (
1 − 1

2
− 1

2
1

) (
0 1

2
− 1

2
0

)

Z6-VI

asym.


0 0 0 1

−1 0 0 1

0 1 1 0

0 0 −1 0

 (
1 0

0 −1

) (
1
2
−
√

3
2√

3
2

1
2

)
θ2
r = 12

θ6
l = 12

(
1 − 1

2

0 −
√

3
2

) (
1 − 1

2
− 1

2
1

) (
0 1

2
− 1

2
0

)

Z6-VII

asym.


−1 1 0 0

0 0 −1 −1

0 0 0 1

−1 0 0 0

 (
−1 0

0 1

) (
− 1

2
−
√

3
2√

3
2
− 1

2

)
θ2
r = 12

θ3
l = 12

(
1 − 1

2

0 −
√

3
2

) (
1 − 1

2
− 1

2
1

) (
0 1

2
− 1

2
0

)

Z12-I

asym.


0 0 1 0

0 0 0 1

1 0 0 1

0 1 −1 0


(
−
√

3
2

1
2

− 1
2
−
√

3
2

) (√
3

2
1
2

− 1
2

√
3

2

)
θl = θ5

r

 3
1
4√
2

0

0 3
1
4√
2

 (√
3

2
0

0
√

3
2

) (
0 − 1

2
1
2

0

)

Table 3: This table presents a large number of examples for ZK Narain orbifolds in two dimensions. For each

inequivalent orbifold it gives important data that characterizes Narain orbifolds, like the twists in both, the lattice

and the coordinate basis and the values of the (frozen) moduli.

from eq. (8.5). Then we follow the procedure outlined in section 5.3 to find that all Narain

moduli are stabilized and take the form

e(1) =
3

1
4

√
2
12 and B(1) = −1

2
ε , (8.12)

while the twist Θ(1) is given by

θ(1)r =

(
−
√

3
2

1
2

−1
2 −

√
3

2

)
and θ(1)l = θ5

(1)r . (8.13)

This precisely corresponds to the data given for the Z12-I orbifold in table 3.

An equivalent description of this asymmetric Z12-I orbifold has no B-field at all

(B(2) = 0). For this case we take

ρ̂(2) =


0 0 1 1

0 0 0 1

1 0 0 0

−1 1 0 0

 ∈ Oη̂(2, 2;Z) . (8.14)

The stabilized Narain moduli are now given by

e(2) =

√2

3
1
4
− 1
√

2 3
1
4

0 − 3
1
4√
2

 and B(2) = 0 , (8.15)

with the twist Θ(2) is given by

θ(2)r =

(
−
√

3
2

1
2

−1
2 −

√
3

2

)
and θ(2)l = θ7

r = − θr . (8.16)
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To show explicitly that these two Z12 orbifolds are Z-equivalent (and consequently

also Q-equivalent), we observe that we can relate the two Z12 generators,

M̂ ρ̂(2) = ρ̂(1) M̂ , (8.17)

using the matrix

M̂ =


−1 0 0 0

0 0 0 −1

0 0 −1 −1

1 −1 0 0

 ∈ Oη̂(2, 2;Z) . (8.18)

Here, we used that both generators ρ̂(1) and ρ̂(2) are defined with respect to the same Narain

metric η̂. Hence, the corresponding Narain point groups P̂(1) and P̂(2) are identical up to

the discrete T -duality transformation with M̂ , i.e. these point groups lie in the same Z-

class. In other words, we have described the same asymmetric Z12 orbifold in two different

duality frames, once with and once without B-field.

8.4 Exposing a seemingly asymmetric Z3 Narain orbifold

It might happen that one uses a description, i.e. choice of duality frame, in which a given

Narain orbifold appears to be asymmetric. Consider for example a two-dimensional Z3

Narain orbifold defined by the twist

ρ̂(a) =

(
0 ε

ε −12

)
∈ Oη̂(2, 2;Z) , (8.19)

in the lattice basis. We use the subscript (a) to refer to this seemingly asymmetric orbifold:

it is not obviously a symmetric orbifold, as it does not meet the sufficient condition (ρ̂)12 = 0

for being a symmetric Narain orbifold formulated in section 5.3. Since in this case, eqs. (8.5)

reduce to

M̂(a)1 = − ε , M̂(a)2 = 12 + (G(a) −B(a))ε , (8.20)

the Narain moduli are given by

e(a) =

(
R(a) w(a)

0 −
√

3
2R(a)

)
and B(a) = − 1

2
ε , (8.21)

where parameters R(a) and w(a) are unconstrained. Furthermore, the twist Θ(a) is specified

by

θ(a)r =

(
−1

2

√
3

2

−
√

3
2 −

1
2

)
and θ(a)l = θ2

(a)r . (8.22)

Since θ(a)r 6= θ(a)l, this seems to indicate that this an asymmetric Narain orbifold. However,

it is equivalent to the symmetric orbifold Z3-I of table 3: to see this, we describe this

symmetric Z3-I orbifold (labelled with a subscript (s)) in some detail: the defining twist

in the lattice basis is given by

ρ̂(s) =


0 −1 0 0

1 −1 0 0

0 0 −1 −1

0 0 1 0

 ∈ Oη̂(2, 2;Z) , (8.23)
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from which we obtain

M̂(s)1 = (G(s) −B(s))ρ(s)r , M̂(s)2 = −
(
ρ(s)r

)−T
, (8.24a)

ρ(s)r = e−1
(s) θ(s)r e(s) =

(
ρ̂(s)

)
11

=

(
0 −1

1 −1

)
. (8.24b)

In this case, ρ(s)r acts cryptographically on e, i.e. the first column e1 of e is mapped to the

second column e2 and e2 is mapped to −e1−e2. Furthermore, the Narain moduli are given

by

e(s) = R(s)

√2 − 1√
2

0
√

3
2

 ⇒ G(s) = R2
(s)

(
2 −1

−1 2

)
and B(s) = b(s)

(
0 1

−1 0

)
, (8.25)

where R(s) and b(s) are unconstrained. Thus, the vielbein e(s) spans the root lattice of

SU(3) multiplied by an arbitrary radius R(s). Furthermore, the twist Θ(s) is specified by

θ(s)r = θ(s)l =

(
−1

2 −
√

3
2√

3
2 −1

2

)
. (8.26)

Clearly, these two descriptions look very different: the parametrization of the moduli

does not seem to be alike, since, for example, in case (a) the B-field is fixed while in

case (s) it is a modulus. Moreover, the twist seems to be asymmetric for case (a) but

symmetric for case (s). However, their Narain point groups P̂(s) and P̂(a) belong to the

same Z-class (and consequently also to the same Q-class); they are equivalent up to a

discrete T -duality transformation.

Explicitly, the discrete T -duality transformation that relates P̂(s) and P̂(a) reads

M̂ =


−1 −1 0 0

0 0 −1 1

0 0 −1 0

0 1 0 0

 ∈ Oη̂(2, 2;Z) with M̂ ρ̂(a) = ρ̂(s) M̂ , (8.27)

where we used that ρ̂(s) and ρ̂(a) are both defined with respect to the same Narain metric

η̂. This implies that also the moduli (R(s), b(s)) and (R(a), w(a)) can be mapped explicitly

by exploiting the transformation formula (8.7): we Use

Û
M̂
Ê(e(a), B(a)) = Ê(e(s), B(s)) M̂ (8.28)

with M̂ given in eq. (8.27) to relate the moduli in both descriptions as

G(a) =
1

2R2
(s)

(
b2(s) + 3R4

(s) b(s) + b2(s) + 3R4
(s)

b(s) + b2(s) + 3R4
(s) (1 + b(s))

2 + 3R4
(s)

)
, (8.29a)

B(a) = −1

2
ε . (8.29b)
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This results in

w(a) =
1√

2R(s)

b(s) + b2(s) + 3R4
(s)√

b2(s) + 3R4
(s)

and R(a) =
1√

2R(s)

√
b2(s) + 3R4

(s) . (8.30)

In addition, we compute ur and ul from eqs. (8.6) and (8.7) to obtain

ul =

(
1
2

√
3

2√
3

2 −
1
2

)
ur ; ur =

1

2
√
b2(s)+3R4

(s)

(
b(s)−3R2

(s) −
√

3(b(s)+R2
(s))

−
√

3(b(s)+R2
(s)) −b(s)+3R2

(s)

)
. (8.31)

Note that det(ul) = +1 but det(ur) = −1. This corresponds to the matrix UB from eq. (6.8)

that maps the symmetric twist from point group P(s) to the seemingly asymmetric twist

from point group P(a).

Let us close this subsection with the comment that for Narain orbifolds of order 3,

we were able to distinguish between three Q-classes, where each Q-class contains only a

single Z-class. In the nomenclature of table 3 the two-dimensional Narain orbifold Z3-I is

a symmetric orbifold, while the other two, Z3-II and Z3-II, are asymmetric. In fact, they

are each others mirrors in the sense that their θl and θr are interchanged.

8.5 Symmetric Z2 Narain orbifolds from inequivalent Z-classes

For the examples considered so far, we found that each Narain Q-class contains just a single

Narain Z-class. This might convey the impression that the notion of Z-classes for Narain

orbifolds is obsolete. To emphasize that this is not the case, we consider two symmetric

Z2 Narain point groups in D = 2 next. Both correspond geometrically to the Möbius

strip, where the B-field is either turned on or off. We will show that even though these

two Narain point groups belong to the same Narain Q-class, they live in different Narain

Z-classes, hence they are physically inequivalent.

Consider the symmetric Z2-II-2 Narain orbifold of table 3 without a B-field: in detail,

we choose

ρ̂(1) =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ∈ Oη̂(2, 2;Z) (8.32)

and obtain

M̂(1)1 = (G(1) −B(1))

(
0 1

1 0

)
and M̂(1)2 = −

(
0 1

1 0

)
. (8.33)

In this case, the Narain moduli are given by

e(1) =

(
R1 R1

−R2 R2

)
⇒ G(1) =

(
R2

1 +R2
2 R

2
1 −R2

2

R2
1 −R2

2 R
2
1 +R2

2

)
and B(1) =

(
0 0

0 0

)
, (8.34)

for R1R2 6= 0. Furthermore, the twist Θ is specified by

θr = θl =

(
1 0

0 −1

)
. (8.35)
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Figure 1. Two-dimensional Möbius strip as Z2 orbifold: the underlying two-torus lattice is spanned

by e1 and e2. The upper and lower yellow regions combined give a convenient choice for the funda-

mental domain of the resulting two-torus. The symmetric twist θr = θl gives a reflection at the hori-

zontal axis. Consequently, we may take the lower yellow region to represent a fundamental domain of

the resulting Z2 orbifold. In this picture the 3+3 dashed arrows illustrate how the left and right side

of the lower yellow region get glued together, hence this orbifold corresponds to the Möbius strip.

This orbifold geometrically corresponds to the Möbius strip, see figure 1.

Another symmetric Z2 orbifold has a non-vanishing B-field: for this Z2-II-3 Narain

orbifold in table 3 we choose

ρ̂(2) =


0 1 0 0

1 0 0 0

−1 0 0 1

0 1 1 0

 = M̂B(∆B)−1 ρ̂(1) M̂B(∆B) ∈ Oη̂(2, 2;Z) , (8.36)

where ρ̂(1) is the twist from the Z2 orbifold discussed just above and M̂B(∆B) is a fractional

B-field shift given by

M̂B(∆B) =

(
12 0

∆B 12

)
for ∆B =

1

2
ε . (8.37)

Now, we obtain

M̂(2)1 =

(
1 0

0 −1

)
+ (G−B)

(
0 1

1 0

)
and M̂(2)2 = −

(
0 1

1 0

)
. (8.38)

In this case, the Narain moduli are given by

e(2) =

(
R1 R1

−R2 R2

)
⇒ G(2) =

(
R2

1 +R2
2 R

2
1 −R2

2

R2
1 −R2

2 R
2
1 +R2

2

)
and B(2) =

(
0 1

2

−1
2 0

)
, (8.39)

for R1R2 6= 0. Furthermore, the twist Θ remains unchanged, i.e.

θr = θl =

(
1 0

0 −1

)
. (8.40)
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Note, that the metric G(2) is identical to G(1) from the case above; the only difference is

that we now have a non-vanishing B-field.

The conjugation of the generator ρ̂(1) with M̂B(∆B) in eq. (8.36) tells us that these

two Narain point groups belong to the same Q-class. However, it turns out that they are

from different Z-classes: there is no M̂ ∈ Oη̂(D,D;Z) that can relate ρ̂(1) to ρ̂(2). Since

the transformation (8.36) is a conjugation with a discrete fractional B-field transformation,

the Z-classes under investigation can be used to parametrize the inequivalent choices for

the B-field for the given geometrical setting. As can be inferred from table 3 we identified

three inequivalent Z-classes for the Q-class Z2-II, where Z2-II-1 and Z2-II-2 both have

vanishing B-field but are based on inequivalent lattices.
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A Moduli deformations and the generalized metric

Choose a specific generalized metric H0. Next, consider the finite group of all discrete T -

duality transformations that leaves this generalized metric invariant and choose a subgroup

Ĥ thereof. Then, the general question, which we are addressing in this section, reads: what

infinitesimal moduli deformations are allowed such that the deformed generalized metric

stays invariant under all transformations from Ĥ? We will answer this question in three

steps. First, we define the group Ĥ in appendix A.1. Second, we parametrize all infinitesi-

mal moduli deformations in appendix A.2. Third, in appendix A.3 we restrict them to the

ones which are compatible with the action of Ĥ. In addition, in appendix A.4 we derive a

closed expression which counts the number of moduli that are compatible with the action of

Ĥ. We use the results form this appendix in section 5.4, where we set Ĥ = P̂, i.e. equal to

the point group in the lattice basis. By doing so, we identify the moduli in Narain orbifolds.

A.1 T -duality transformations that leave a generalized metric invariant

Consider a subgroup Ĥ of the group of all Oη̂(D,D + 16;Z) transformations which leave

a specific generalized metric H0 = ET0 E0 invariant, i.e.

Ĥ ⊆
{
M̂ ∈ Oη̂(D,D + 16;Z)

∣∣∣ M̂TH0 M̂ = H0

}
. (A.1)

The following discussion is independent of whether Ĥ is Abelian or non-Abelian. Since the

elements M̂ ∈ Ĥ preserve both η̂ and H0 we find that the corresponding element Θ(M̂) as

a function of M̂ is given by

Θ(M̂) = E0 M̂ E−1
0 with Θ(M̂)TΘ(M̂) = 1 , Θ(M̂)T ηΘ(M̂) = η . (A.2)
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Hence,

Θ(M̂) =

(
θr(M̂) 0

0 ΘL(M̂)

)
⊂ O(D;R)×O(D + 16;R) , (A.3)

and Θ(M̂) is a group homomorphism from Ĥ to a finite subgroup of O(D;R)×O(D+16;R).

A.2 Infinitesimal moduli deformations of the Narain lattice

We want to determine which parameters δE in the generalized vielbein can be deformed

infinitesimally, i.e. E0 → E0 + δE to first order in the perturbations. Since the generalized

vielbein with (2D + 16)2 components is parametrized in terms of D(D + 16) parameters

(i.e. the vielbein e, the B-field and the Wilson lines A), not all components of δE are

independent. To characterize the infinitesimal moduli perturbations without choosing a

particular parametrization, we expand the constraint ET0 η E0 = η̂ from eq. (2.17) to first

order in δE and obtain

δET η E0 + ET0 η δE = 0 . (A.4)

This can be cast into the form

δeT η + η δe = 0 , (A.5)

where we have defined δe = δE E−1
0 . The general solution reads

δe = δE E−1
0 =

1

2

(
δuD δm

δmT δuD+16

)
, (A.6)

with δm ∈ MD×(D+16)(R). Furthermore, δuTD = −δuD and δuTD+16 = −δuD+16 generate

O(D;R) and O(D + 16;R), respectively. These orthogonal groups correspond to the U

transformation in eq. (2.40). Next, we consider the perturbations of the generalized metric

δH = δETE0 + ET0 δE to first order. Using eq. (A.4) one can see that the constraint

(η̂−1(H0 + δH))2 = 1 from eq. (5.7) is fulfilled. In fact, we may write δh = δeT + δe, where

δe = 1
2 δh + 1

2 δu with

δu = − δuT =

(
δuD 0

0 δuD+16

)
. (A.7)

Hence, the infinitesimal moduli are uniquely identified by δm, i.e. δm encodes the

deformations of the metric δG, the B-field δB and the Wilson lines δA. This can be stated

explicitly as follows. We can determine δe by using eq. (A.6) with E0 = RÊ and the

expression for Ê given in eq. (2.39). Thereby we directly confirm that δuD and δuD+16 are

anti-symmetric and we derive that δm is given at linear order in the moduli perturbations

δG, δB and δA as given in eq. (5.21), using (e0 + δe)−1 ≈ e−1 − e−1
0 δe e−1

0 .

A.3 Ĥ-invariant infinitesimal moduli deformations

In order to determine which of the Narain moduli are compatible with the action of Ĥ we

consider the first order perturbation of eq. (A.1) and obtain

M̂ T δH M̂ = δH ⇔ Θ(M̂)T δhΘ(M̂) = δh . (A.8)
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This reads on the level of the moduli deformations

θTr (M̂) δmΘL(M̂) = δm , (A.9)

for each M̂ ∈ Ĥ. Eq. (A.9) can be written as(
θr(M̂)⊗ΘL(M̂)

)
δm = δm . (A.10)

Here, we interpret δm as a vector with D(D + 16) components using the standard tensor

product notation ⊗. To solve this condition we introduce the projection operator P
Ĥ

that

projects the moduli perturbations on their Ĥ-invariant subspace, i.e.

P
Ĥ

=
1

|Ĥ|

∑
M̂∈Ĥ

θr(M̂)⊗ΘL(M̂) with
(
θr(M̂)⊗ΘL(M̂)

)
P

Ĥ
= P

Ĥ
. (A.11)

Using that Θ(M̂) defines a group homomorphism, it is not difficult to show that this indeed

defines a projection operator, i.e. P2
Ĥ

= P
Ĥ

. Thus, the Ĥ-invariant moduli space is given by

M
Ĥ

=
{
δm

Ĥ
= P

Ĥ
δm
}
. (A.12)

A.4 The number of Ĥ-invariant Narain moduli

The dimension of the Ĥ-invariant Narain moduli space is determined by the trace of the

projection operator P
Ĥ

, i.e.

dim(M
Ĥ

) = tr(P
Ĥ

) =
1

|Ĥ|

∑
M̂∈Ĥ

χ
(
θr(M̂)

)
χ
(

ΘL(M̂)
)∗

=
1

|H|
∑
Θ∈H

χr(Θ)χL(Θ)∗ . (A.13)

Here, we have used the linearity of the trace, tr(A ⊗ B) = tr(A)tr(B) and we have used

the definition (5.7). In addition, we have included a complex conjugate in eq. (A.13) for

later use. Furthermore, we have introduced the group characters

χr(Θ) = χ
(
θr(M̂)

)
= tr(θr(M̂)) = tr

[
1−Z

2
M̂

]
, (A.14a)

χL(Θ) = χ
(

ΘL(M̂)
)

= tr(ΘL(M̂)) = tr

[
1 + Z

2
M̂

]
, (A.14b)

which are real for the real representations θr(M̂) and ΘL(M̂), respectively.
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[83] D. Israël, Nongeometric Calabi-Yau compactifications and fractional mirror symmetry, Phys.

Rev. D 91 (2015) 066005 [Erratum ibid. D 91 (2015) 129902] [arXiv:1503.01552] [INSPIRE].

[84] R. Blumenhagen, M. Fuchs and E. Plauschinn, The asymmetric CFT landscape in D = 4, 6, 8

with extended supersymmetry, Fortsch. Phys. 65 (2017) 1700006 [arXiv:1611.04617]

[INSPIRE].

[85] R. Blumenhagen, A. Deser, E. Plauschinn, F. Rennecke and C. Schmid, The intriguing

structure of non-geometric frames in string theory, Fortsch. Phys. 61 (2013) 893

[arXiv:1304.2784] [INSPIRE].

[86] R. Blumenhagen and R. Sun, T-duality, non-geometry and Lie algebroids in heterotic double

field theory, JHEP 02 (2015) 097 [arXiv:1411.3167] [INSPIRE].

[87] R. Vaidyanathaswamy, Integer-roots of the unit matrix, J. Lond. Math. Soc. 3 (1928) 121.

[88] J. Polchinski, String theory. Vol. 2: superstring theory and beyond, Cambridge University

Press, Cambridge U.K., (2007) [INSPIRE].

[89] S. Bittanti, A.J. Laub and J.C. Willems, The Riccati equation, Springer Science & Business

Media, Germany, (2012).
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