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Abstract

In this review we describe the recent progress in understanding of field theory on singular orbifolds and
compare some of these results with corresponding string computations. Using orbifold trace formulae
expressions for anomalies and tadpoles are obtained. For more complicated computations like the
renormalization of gauge multiplets orbifold compatible field theory is developed. The gap between
orbifolds and smooth compactifications is bridged by constructing explicit orbifold blowups and toric
orbifold resolutions.
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Chapter 1

General Introduction

Over the last thirty year a massive theoretical effort has been made to understand nature at its most
fundamental level. The Standard Model of particle physics was formulated at the beginning of this era.
This theory describing three generations of quarks and leptons, that interact via electroweak and color
gauge interactions described by the groups SU(2), U(1) and SU(3), respectively, and has subsequently
been tested in great depth. To date the Standard Model has been confirmed by all experiments to a
very high level of precision, only the Higgs sector of the theory has not been directly observed yet,
but no convincing hints for physics beyond this framework have been found.

Not withstanding these successes, the Standard Model is not consider to be the final –fundamental–
theory of nature. Unless the Higgs mass is finely tuned its validity breaks down long before we reach
the Planck scale at which quantum gravity effects become important. The real problem here is that
this tuning has to be adjusted at each order in perturbation theory by an infinite amount. This in itself
is not theoretically impossible, but it leaves a quadratic sensitivity to any high scale masses, which
makes it difficult to understand why the electroweak breaking scale remains so low. One of the most
prominent candidates to resolve this hierarchy problem is supersymmetry. This is a symmetry of a
different class then ordinary gauge symmetries because it mixes bosons and fermions, i.e. particles with
different spin statistics, with each other. The hierarchy problem is resolved because the contributions
of the bosonic and fermionic states cancel enough to weaken the fine tuning sufficiently. This is
sometimes referred to as the technical solution to the hierarchy problem, because it explain why two
such different scales can exist side by side within one theory, but it does not explain why they are so
different. More surprisingly if one follows the evolution of the gauge couplings with the energy scale,
one finds that at a scale not to far off from the Planck scale the couplings meet. This is a strong hint
for unification of the gauge interactions of the Standard Model, which means that at high energies the
structure of the theory becomes easier; describe by one instead of three gauge couplings.

Supersymmetry has more remarkable consequences. Because spin of particles are properties of
the Lorentz group, supersymmetry is a spacetime symmetry, rather than an internal symmetry. This
becomes particularly apparent when one assumes that supersymmetry is a gauge symmetry itself:
The resulting theory necessarily contains gravity, and therefore goes under the name supergravity.
Normal gravity is a very difficult theory to quantize, because it is highly non–renormalizable, i.e. at
each order in perturbation theory many new counter terms are need to make sense of it. Much like
supersymmetry introduces a partial cancellation that stabilized the gauge hierarchy, supergravity leads
to many restrictions greatly reducing the number of counter terms. There is a maximum on the number
of supersymmetries a supergravity theory can have in order that the graviton remains a massless spin–
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two particle that can be consistently coupled to other fields. Such maximal supergravities have the
property that their renormalization is much more under control: It has been proven to be three loop
finite [1–4]. Maximal supergravities can exist in at most 11 spacetime dimensions [5]. This is quite
remarkable because ordinary field theories can in principle be formulated in any number of dimensions.
Another striking feature in this story is that the scale of unification and the scale of (super)gravity,
are quite close together. This might hint at an even bigger possible unification, in which both gauge
interactions and gravity are combined into one single theory.

A theory, which does just that, has been invent: String theory. However, it requires the departure
of the concept of point particles. Before it is was generally assumed that the basic building blocks of
nature themselves do not have any internal structure. In this new theory one dimensional extended ob-
jects, strings, are the fundamental dynamical degrees of freedom. Their quantization requires studying
conformal field theories that live on the world sheet, that the string sweeps out when it moves in time
through space. To obtain a well–defined quantization one runs into various consistency requirements:
The world sheet theories have to be (partly) supersymmetric, and the number of spacetime dimensions
to be ten. This is close the bound on the number of dimensions found for supergravity, which was
11. Moreover the limit of small string tension, string theory can be described as a ten dimensional
supergravity theory coupled to a super Yang–Mills gauge theory. The appearance of this gauge theory
makes it possible that string theory can both unify gravity and the gauge interactions of the Standard
Model.

When we say that all forces including gravity unify we ignore one major issue: In string theory
this unification happens in ten dimensions, while the Standard Model, describing our world, only lives
in four dimensions. A couple of ways have been invented to hide these six of the dimensions from
our sight. The first idea is to make these extra dimensions so small, that they are invisible. Their
presence could only be inferred by observing very massive particles maybe far beyond experimental
reach. But this simple version of compactification is not good enough: Even if we cannot see these
additional dimensions directly, some of their properties still remain. In particular, the four dimensional
theory would be N = 4 supersymmetric (having four supercharges in four dimension) so that a chiral
spectrum of quarks and leptons cannot arise. Such chiral spectra can only arise in theories with N = 1
supersymmetry or less. To still solve the hierarchy problem, one needs to require precisely N = 1
supersymmetry. A certain amount of supersymmetry can be broken by the compactification manifold
we use in the internal dimensions. To achieve the breaking from N = 4 to N = 1 supersymmetry in
four dimensions the compactification space has to be a six dimensional Calabi–Yau manifold.

Such Calabi–Yau manifolds are unfortunately rather complicated spaces. Their structure is so
difficult that it is unknown how to construct explicit metrics on them. To nevertheless study resulting
four dimensional theory that arise from compactifications on Calabi–Yau manifolds, a few approaches
have been developed. The first one relies on the observation that many properties of the four dimen-
sional theory do not depend very sensitive on the precise form of the metric, but are determined by
the topological data of the Calabi–Yau only. This idea has been quite successful leading to models
quite close to the supersymmetric extension of the Standard Model and is studied until this date. But
since it requires a lot of abstract mathematics, it is not very clear what is exactly physically going
on. A second approach to study Calabi–Yau manifolds is to construct spaces which are on the one
hand almost like flat space, while on the other hand still have the crucial property that they break
1/4 of the original ten dimensional supersymmetry. These spaces, called orbifolds, are obtained by
taking a flat space, say a torus, and divide out some finite order discrete symmetry. This leads to
orbifold projections which throw out all states of the ten dimensional theory, that are not invariant
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under the discrete symmetry. The main advantage of orbifolds is that, besides their construction is
rather easy, strings can be quantize exactly on them. This means that one can compute the full (not
only massless) spectrum of the string. For field theories on orbifolds this is very different: Discrete
symmetries have some fixed points. At these singular points things like the curvature of the space
diverges, which in principle invalidates a field theoretical description. One reflection of this is that
in field theory one cannot tell which additional states live at the orbifold fixed points. Here string
theory does much better: An additional consistency requirement of strings at the one loop level, called
modular invariance, implies that this low energy description is complete. As apposed to field theory
models one cannot add by hand new fields to the low energy description of string theory, they are all
predicted. As a consequence string theory predicts precisely which twisted string states live at the
orbifold fixed points. All this shows that one can learn a lot about string theory compactifications
using orbifolds.

Another way to hide some of the dimensions of string theory is to assume that string theory, in
addition to strings, contains other dynamical objects of arbitrary dimensions. Such branes are the end
points of open strings. On such branes gauge theories arise. Moreover, strings that stretch between
different sets of branes that intersect can give rise to chiral matter. The simplest description of such
branes is also singular because they are taken to be infinitely thin. Hence from a field theoretical
point of view they suffer from similar problems as orbifold singularities. In fact many properties and
branes and orbifold singularities are related via string dualities, maps between different regimes of
a string theory or even different string theories. The full implications of the web of dualities is still
being uncovered.

1.1 Overview of Topics

After this general overview of physics between the Standard Model and string theory, we explain
in more depth what we review in this work. As discussed in the general introduction orbifolds are
very useful objects to get insight into the properties of complicated Calabi–Yau manifolds. Besides
considering orbifolds as simple toy settings for string theory, they can be studied in field theory. But
as was mentioned above one has to be rather careful in doing so, because orbifolds have singularities
that might take one beyond the validity of field theory. It is of course very interesting to study precise
whether, when, and how the field theory description breaks down. In the cases where field theory does
run into problems, it is worthwhile to see how string theory is able to cure these difficulties.

There are many issues that one can study to get insight into the regime which might just be
beyond field theory reach and where string theory needs to kick in. In this review I only cover a few
selected topics on which I have performed detailed analysis in previous and on going research projects.
These studies can be divided into basically four different categories defined by the following keywords:
consistency, stability, perturbativity, and deformations. To each of these topics a section is devoted
in this work. Before going into details, let us introduce each of them:

The first question, addressed in section 3, is whether field theories on orbifold can make sense even
in principle, i.e. whether they give rise to consistent field theories. The basic obstruction to consistency
is the presence of anomalies. An anomaly arises when a symmetry, that the classical theory possesses, is
lost in the process of quantization. For global symmetries this is not a severe problem, it simply means
that the quantum theory is more complicated than its classical approximation. For gauge theories this
is deadly because the numbers of degrees of theory that describes at classical and quantum levels are
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different. The global constraints of anomaly cancellation, i.e. that anomalies cancel at the effective
zero mode level, have been often studied in the past, but the question whether anomalies really need to
cancel locally (at the fixed points) is quite recent. In particular, one may wonder whether a model can
have local anomalies as long as the zero mode theory is anomaly free. In addition, one may speculate
that once one has local anomaly cancellation, the bulk anomalies are irrelevant. To investigate such
questions we first describe how we can compute the local structure of anomalies on orbifolds. These
computations show that bulk and local fixed points anomalies arise simultaneously. To argue that all
bulk and fixed point localized anomalies need to cancel separately, we demonstrate that this always
happens in modular invariant heterotic string models on orbifolds.

After having established the anomaly consistency requirements that theories on orbifolds need
to fulfill, we ask in section 4 whether such configurations are stable. One direction one take this
question is: What the consequences are of the curvature singularities at the fixed points? To shed
some light on this issue in a simpler setting, we instead investigate what kind of gauge field tadpoles
can arise at orbifold fixed points. We explain that tadpoles for the internal parts of gauge fields in
higher dimensional theories are closely related to Fayet–Ilopolous D–term tadpoles in four dimensional
supersymmetric field theories. We describe how these tadpoles can be calculated directly, and show
that they arise generically both in simple field theory models with a few extra dimensions as well as in
full low energy string effective field theory. We discuss that these divergent gauge field tadpoles could
lead to strong localization of bulk states. We explain that this singular behavior might be an artifact
of the field theory regularization. To this end we recompute the local gauge field tadpoles directly
within the heterotic string context, showing that the singular behavior is smoothed out in a Gaussian
fashion around the singularity.

The next question, whether we can do perturbative calculations on orbifolds, is address in section 5.
As a concrete test case we investigate the behavior of gauge couplings on orbifolds. Even a simple
Abelian gauge theory on a five dimensional orbifold has various gauge couplings, namely bulk and local
fixed point gauge couplings. All of them can be renormalized by quantum corrections. In additions
in the bulk extra higher derivative operators can be generated when the number of extra dimensions
is larger than two. We consider these effects in detail and describe how they can be computed using
a technique we call orbifold compatible field theory. We explain how these results can be extend
to application to heterotic orbifold models and how they are related to previously considered string
threshold corrections to gauge couplings.

The final issue we discuss in section 6 is how to resolve or blow up of orbifold singularities, i.e.
deform them to become non–singular spaces. Orbifolds are special points in the full moduli space
of the heterotic string on Calabi–Yau manifolds. In order to have control on the theory away from
these special points, it is crucial to have a better understanding of model building on the corresponding
smooth compactification spaces. A concrete way to probe the moduli space surrounding orbifold points
is to consider blowups of orbifold singularities. The construction of explicit blowups is unfortunately
not easy. The best known example is the Eguchi–Hanson resolution of the C

2/Z2 orbifold singularity.
We construct explicit blowups of C

n/Zn orbifolds with U(1) gauge bundles. The singularities of more
complicated orbifolds might not allow for simple explicit blowup constructions. On the other hand,
the topological properties of such resolutions can be conveniently described by toric geometry. We
show that with these techniques we are able to reconstruct large classes of orbifold models in blowup.

Before we are able to discuss all these topics in detail, we first introduce the necessary concepts
to describe to various theories in section 2. It gives on overview of preliminary material needed in
this review. Since all the discussions will take place in the context of supersymmetric field theories,
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we first describe them in various dimensions first. Moreover, as we will be constantly comparing field
theory results with those obtained using string theory, we need to collect their basic properties that
relevant for the subsequent discussions. This means in particular that we will focus on the heterotic
string which is mainly used in this work. Finally, we need a detailed overview orbifolds, both from a
purely geometrical point of view as well as using field and string theory descriptions of them. This
section and all others are concluded by a short summary of the main findings.

1.2 Used material

As this work is part of my cumulative habilitation, I list the various publications on which the sections
of this work have been based:

Section 2 Preliminary Material

S. Groot Nibbelink and M. Hillenbach “Renormalization of supersymmetric gauge theories on orbifolds: Brane

gauge couplings and higher derivative operators” Phys. Lett. B616 (2005) 125–134 [hep-th/0503153].

S. Groot Nibbelink and M. Hillenbach “Quantum corrections to non-abelian susy theories on orbifolds” Nucl.

Phys. B748 (2006) 60–97 [hep-th/0602155].

S. Groot Nibbelink and M. Laidlaw “Stringy profiles of gauge field tadpoles near orbifold singularities. I: Het-

erotic string calculations” JHEP 01 (2004) 004 [hep-th/0311013].

S. Groot Nibbelink, M. Hillenbach, T. Kobayashi, and M. G. A. Walter “Localization of heterotic anomalies on

various hyper surfaces of T(6)/Z(4)” Phys. Rev. D69 (2004) 046001 [hep-th/0308076].

S. Groot Nibbelink “Traces on orbifolds: Anomalies and one-loop amplitudes” JHEP 07 (2003) 011 [hep-th/0305139].

F. Gmeiner, S. Groot Nibbelink, H. P. Nilles, M. Olechowski, and M. G. A. Walter “Localized anomalies in

heterotic orbifolds” Nucl. Phys. B648 (2003) 35–68 [hep-th/0208146].

K.-S. Choi, S. Groot Nibbelink, and M. Trapletti “Heterotic SO(32) model building in four dimensions” JHEP

12 (2004) 063 [hep-th/0410232].

Section 3 Consistency: Anomalies

S. Groot Nibbelink, H. P. Nilles, and M. Olechowski “Instabilities of bulk fields and anomalies on orbifolds”

Nucl. Phys. B640 (2002) 171–201 [hep-th/0205012].

F. Gmeiner, S. Groot Nibbelink, H. P. Nilles, M. Olechowski, and M. G. A. Walter “Localized anomalies in

heterotic orbifolds” Nucl. Phys. B648 (2003) 35–68 [hep-th/0208146].

S. Groot Nibbelink, H. P. Nilles, M. Olechowski and M. G. A. Walter, “Localized tadpoles of anomalous het-

erotic U(1)’s,” Nucl. Phys. B 665 (2003) 236 [arXiv:hep-th/0303101].
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S. Groot Nibbelink, H. P. Nilles, M. Olechowski and M. G. A. Walter, “Localized tadpoles of anomalous het-

erotic U(1)’s,” Nucl. Phys. B 665 (2003) 236 [arXiv:hep-th/0303101].

S. Groot Nibbelink, M. Hillenbach, T. Kobayashi, and M. G. A. Walter “Localization of heterotic anomalies on

various hyper surfaces of T(6)/Z(4)” Phys. Rev. D69 (2004) 046001 [hep-th/0308076].
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E. Dudas, T. Gherghetta, and S. Groot Nibbelink “Vector / tensor duality in the five dimensional supersym-
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Section 4 Stability: Tadpoles
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Chapter 2

Preliminary Material

This section gives an introduction to the necessary material to understand the subsequent discussions
in this work. We begin by introducing supersymmetric field theories in four and more dimensions.
Next we briefly describe the heterotic string, and conclude this technical introduction with a review
of orbifolds.

2.1 Supersymmetric Field Theories

Supersymmetry is a fast research field, so that a complete review would require a lengthy set of
lectures. As there are many detailed textbooks and lecture notes on supersymmetry available (see
e.g. [6–10]), we do not wish to give a concise overview here. Instead the aim of this subsection is merely
to remind the reader of those aspects of supersymmetry that will be relevant for a basic understanding
of the rest of this review. We have divided the presentation of the material into three parts. First we
describe four dimensional supersymmetry using the familiar superfields. Next we consider both five
and six dimensional supersymmetric theory together, by grouping the components in four dimensional
superfields. Finally we consider the ten dimensional super Yang–Mills theory.

Supersymmetry in Four Dimensions

Of all supersymmetric theories in various dimensions the four dimensional case is best understood and
developed in most detail. To describe most supersymmetric theories in four dimensions only three
different multiplets are required: the chiral, vector, and supergravity multiplets. In this work we
mainly work with the first two, hence we recall them in some detail.

The chiral multiplet contains a complex scalar z and a chiral fermion ψα on–shell. To make use of
the convenient superfield notation also an auxiliary complex field F has to be introduced. The chiral
superfield is defined by the superspace constraint Dα̇Φ = 0 , and its components are obtained by the
following restrictions

Φ| = z ,
1√
2
DαΦ| = ψα , −1

4
D2Φ2| = F , (2.1)

where | denotes that all θ and θ̄ are put to zero after all supercovariant differentiations are performed.
In a similar fashion the vector multiplet can be introduced: On–shell it describes a massless gauge
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field Am and a Majorana fermion λα . These components are contained in the real superfield V † = V
as

1

2
[Dα,Dα̇]V | = σm

αα̇Am , −1

4
D2DαV | = i λα ,

1

8
DαD2DαV | = D , (2.2)

where the auxiliary real field D is required by off–shell supersymmetry. The components listed here
are the only ones present in Wess–Zumino gauge. In other gauges, like the supersymmetric Feynman
gauge employed below, additional components may appear. The non–Abelian vector superfields are
algebra valued functions, i.e. they can be decomposed as V = V iTi , where Ti are the Hermitian
generators of some Lie group G . The corresponding Lie algebra [Ti, Tj ] = fij

k Tk is defined in terms
of the purely imaginary structure coefficients fij

k. The coupling of a chiral multiplet to a vector
multiplet is determined by the action

SC+V =

∫
d4xd4θΦe2V Φ +

∫
d4xd2θ

1

4g2
trWαWα +

∫
d4xd2θ̄

1

4g2
trW α̇W

α̇
, (2.3)

where we have introduced the superfield strength of the vector superfield

Wα = − 1

8
D2
(
e−2VDαe

2V
)
, Wα| = i λα , DβWα| = − i(σmnǫ)βαFmn − ǫβαD ,

(2.4)

with Fmn is the (non–)Abelian field strength. This action is invariant under the super gauge trans-
formations

Φ → e2ΛΦ , e2V → e2Λe2V e2Λ , Wα → e−2ΛWαe
2Λ , (2.5)

where Λ denotes an arbitrary chiral superfield.

Supersymmetry in Five and Six Dimensions

The structure of five and six dimensional supersymmetric theories are very similar, because these
theories form representations of essentially the same supersymmetry algebra. This means that we can
discuss hyper and vector multiplets in five and six dimensions in parallel. Here we only focus on five
or six dimensional N = 1 supersymmetry, which are N = 2 theories from the four dimensional point
of view. To make maximally use of the convenient superspace language, we describe both multiplets
in terms of four dimensional chiral and vector superfields introduced above. This method has been
suggested by [11–13].

The hyper multiplet H describes four real scalars called hyperons, and a Dirac fermion in five
dimensions. This hyperino turns into a chiral fermion in six. This field content shows that it can be
described by two chiral superfields Φ+ and Φ− . In terms of the superfield language the action for this
multiplet reads in six dimensions

SH =

∫
d6x
{∫

d4θ
(
Φ+Φ+ + Φ−Φ−

)
+

∫
d2θΦ− ∂ Φ+ +

∫
d2θ̄Φ+ ∂̄ Φ−

}
, (2.6)

where ∂ = ∂5 + i ∂6 . In five dimensions only ∂5 should be kept in the derivative ∂ and ∂̄ .
The vector multiplet V contains a six dimensional gauge field AM , and a gaugino which is has

a chirality opposite to that of the hyperino, because the six dimensional supersymmetry generator is
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Figure 2.1: The propagators for a hyper multiplet H = (Φ+,Φ−) and a vector multiplet V = (V, S, C,C′)
(including ghosts) are displayed.�Φ± Φ± �Φ+ Φ− �V V �S S�C′ C �C′ C

Figure 2.2: These interactions encode the coupling of the gauge multiplet to the hyper multiplet.

�V Φ±

Φ± �VΦ±

V

Φ± 	S Φ−

Φ+

chiral itself. The field content in five dimensions can be understood via a straightforward Kaluza–Klein
reduction and consists of a five dimensional gauge field, a real scalar and a Dirac fermion. The action
in the Abelian case is given by

SV =
1

g2

∫
d6x
{∫

d2θ
1

4
WαWα +

∫
d2θ̄

1

4
W α̇W

α̇
+

∫
d4θ

(
SS + ∂̄V ∂V

)}
. (2.7)

Supersymmetry in Ten Dimensions

Ten dimensional supersymmetry is very restrictive, hence only very few multiplets do exist: the vector
and supergravity multiplets. As we will not be interested in supergravity effects, we only focus on the
vector multiplet. It consists of a ten dimensional vector field AM and a Majorana–Weyl gaugino. In
terms of four dimensional superfields this multiplet can be decomposed into a vector superfield V and
three chiral superfields Si . The action is given by

S10D =
1

g2

∫
d10x

{∫
d2θ

(
1

4
WαWα +

1

2
ǫIJKSI∂JSK

)
+ h.c.+

+

∫
d4θ

[ (√
2 ∂̄IV − SI

)(√
2 ∂IV − SI

)
− ∂̄IV ∂

IV
]}

. (2.8)

The non–Abelian extension of this action can be found in the literature [11, 12]. As that action by
itself is not supergauge invariant, one needs to add an additional Wess–Zumino–Witten–like term [11].
However, for the applications discussed in the present work, this complication is irrelevant and therefore
we do not give it explicitly here.

Supergraphs in extra dimensions

One of the central properties of supersymmetric theories are the many cancellations between bosonic
and fermionic loops. In component computations such cancellations seem to be rather accidental. By
using supergraphs [6–8], i.e. Feynman rules for superfields, these cancellations are built in from the very
beginning. Supersymmetric theories in higher dimensions do not possess such simple and complete
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Figure 2.3: These vertices describe the self interactions of the gauge multiplet.
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S

off–shell formulations. Harmonic superspace [14,15] can be used in five/six dimensions [16]. However,
this huge formalism hardly weighs up to the simplifications it brings to compute graphs in the end.
Therefore, we take another approach: Obtain supergraphs for the four dimensional superfields that
describe higher dimensional supersymmetric theories. The main advantage is that one can still use
the familiar and simple four dimensional super Feynman rules without having to deal with harmonic
superspace.

The supergraph methods in extra dimensions have been developed in [17–21]. Here we only sketch
these methods in five dimensions. (Extensions to higher dimensions are straightforward except for
some issues in ten dimensions which we comment on briefly below.) We determine the propagators of
the superfields Φ+,Φ−, V and S by coupling them to the sources J+, J−, JV and JS , respectively. By
considering the hyper multiplet action (2.6) and using some superspace identities, we obtain

SH2 =

∫
d5xd4θ

(
J+J−

) −1

2 + ∂2
5

(
1 ∂5

D2

−42

−∂5
D

2

−42
1

)(
J+

J−

)
. (2.9)

As for standard massive chiral multiplets in four dimensions we have both non-chiral propagators
between J± and J±, as well as chiral ones between J+ and J− and their conjugates. They are
depicted in figure 2.1.

The vector multiplet requires more work because of gauge invariance. The problem of resulting
zero modes can be made manifest by representing the quadratic action (2.7) in the following matrix
form

SV2 =
1

2

∫
d5x d4θ tr

(
V S S

)
A



V

S

S


 , A =




−2PV − ∂2
5

1
2

√
2P+∂5

1
2

√
2P−∂5

−1
2

√
2P−∂5 0 1

2P−

−1
2

√
2P+∂5

1
2P+ 0


 , (2.10)

using the transversal projector PV = DαD2Dα

−82
and its chiral counterparts P+ = D̄2D2

162
and P− = D2D̄2

162
.

The zero modes of operator A correspond to the super gauge directions. The procedure to determine
the gauge fixed action follows the conventional superfield methods for gauge multiplets. As usual we
choose a gauge fixing functional

Θ =
D̄2

−4

(√
2V +

1

2
∂5S̄

)
. (2.11)

This gauge fixing functional has been previously considered in refs. [17,18]. The imaginary part of the

restriction D2

−4Θ| = 1√
2

(
2C +D + ∂5ϕ− i∂MA

M
)

reveals that the five dimensional Lorentz invariant

gauge fixing, ∂MA
M = 0, is incorporated. The gauge fixing action

Sgf = −
∫
d5x d4θ tr

[
ΘΘ
]
, (2.12)
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Figure 2.4: The ghosts C and C′ only interact with the vector multiplet superfields V and S.

�V C′

C �V C
′

C �S C

C
′ �VC V

C′ �VC V

C
′

combined with (2.10) gives rise to invertible quadratic operators, and the mixing between the V and
the S and S fields is removed. Consequently, the propagators, depicted in figure 2.1, for V and S
decouple

SV2′ =

∫
d5x d4θ tr

[
1

4
JV

1

2 + ∂2
5

JV + JS
−1

2 + ∂2
5

JS

]
. (2.13)

This decoupling amounts to a major simplification of the supergraph computations performed in later
sections. The superfield S can be thought of as Goldstone boson superfield, therefore, the gauge fixing
is an application of the supersymmetric ’t Hooft Rξ gauge [22].

To finish the description of the gauge fixing procedure, we need to introduce the ghost action

Sgh =
1√
2

∫
d5x d4θ tr

[√
2
(
C ′ + C̄ ′) (LV

(
C − C̄

)
+ coth (LV )LV

(
C + C̄

))

+ C ′∂5

2

(√
2∂5C̄ − 2

[
S̄, C̄

])
+ C̄ ′∂5

2

(√
2∂5C + 2 [S,C]

)]
,

(2.14)

where C and C ′ are anti–commuting chiral multiplets. From this action the ghost propagators can be
read off

Sgh2 =

∫
d5x d4θ tr

[
−J ′

C

1

2 + ∂2
5

JC − J ′
C

1

2 + ∂2
5

JC

]
, (2.15)

and are given in figure 2.1.
As usual the interactions can be obtained by functional differentiation with respect to these sources,

after the original superfields are integrated out using their corresponding quadratic actions. This
gives rise to the super vertices displayed in figures 2.2, 2.3, 2.4. The extension to six dimensions is
straightforward: One only needs to carefully replace the derivative ∂5 by ∂ or ∂̄, see e.g. [20]. In
ten dimensions a few new features appear [11]: First of all in the quadratic action (2.8) there are
superpotential terms proportional to the three dimensional complex epsilon tensor. This results in
additional chiral propagators for the adjoint chiral superfields Si. The second effect consequence is
that there are now triple chiral interaction vertices involving these chiral adjoints.

2.2 Geometrical Description of Orbifolds

As the main topic of this work is to study the behavior of supersymmetric field theory and strings on
orbifolds, we give a detailed introduction to orbifolds. We begin by giving a general overview orbifolds
from a geometrical point of view. To define an orbifold we start with a covering space which possesses
some finite number of discrete isometries, and define the orbifold as the covering space with these
discrete isometries modded out.

To see how this works in practice we consider the simplest case S1/Z2 : Take the circle S1 defined
by the identification y → y + R , with R its radius. Then the orbifold S1/Z2 is obtained by modding
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out the reflection symmetry

y → − y . (2.16)

The resulting space is a line section including both end points, which are the fixed points 0 and R/2
of this discrete symmetry. The orbifold is not differentiable at these fixed points which means that
curvature and other singularities could arise there.

Higher dimensional examples can be obtained by starting with flat torus T 2n , defined as a quotient
of C

n divided by a lattice ΛW ∼ Z
2n . Let θ be a 2n × 2n matrix such that θp = 11 and θΛW = ΛW .

Then we can defined the T 2n/Zp orbifold by the action

z → Θ z , Θ = e2πi φ , φ = (φ1, . . . , φn) , (2.17)

with p φi ≡ 0 , i.e. zero modulo integers. The orbifold action has to be crystallographicaly compatible
with the lattice defining the torus. In this work we will be particular interested in the following six
dimensional orbifolds:

T 6/Z3 Orbifold

The orbifold T 6/Z3 is defined on the torus

zi ∼ zi + Ri ∼ zi + Ri θ , (2.18)

where we have introduced the third root of unity θ = e2πi/3 . On this torus we can define the following
Z3 action

zi → θ zi . (2.19)

The 27 fixed points of this orbifold can be parameterized by Zs = (R1ζs1, R2ζs2, R3ζs3) , for s1, s2, s3 =
0, 1, 2 with ζ0 = 0 , ζ1 = (1 + 2θ)/3 , and ζ1 = (2 + θ)/3 .

T 6/Z4 Orbifold

In the previous two examples of all fixed points of the orbifold were equivalent in the sense, that
they are all fixed points of the full orbifold group. The reason that all the fixed points are equivalent
in these cases is that the orbifold group does not have proper subgroups, because they were primed
orbifolds. An example of an orbifold in which not all fixed points are equivalent is given by T 6/Z4,
see e.g. [23–26]. Consider the square torus

zj ∼ zj + Rj ∼ zj + iRj , (2.20)

on which we can define the Z4 orbifold action

(z1, z2, z3) → (−z1, i z2, i z3) . (2.21)

To describe the fixed points we introduce the following notation: ζs t = (s + i t)/2 for s, t ∈ {0, 1} .
The fixed points of the twists Θ and Θ3 are the 16 different Z4 fixed points:

Z4
s t = (R1ζs1t1 , R2ζs2s2, R3ζs3s3) . (2.22)
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Figure 2.5: An impression of the two dimensional fixed hyper surfaces within the orbifold T 6/Z4 is
given. The bottom square represents a part of a two dimensional cross section (the z2 plane) of the
orbifold T 4/Z4. Fixed orbifolds T 2/Z2 are located above its fixed points 0 and 1

2(1 + i). Because the
points 1

2 and 1
2 i are mapped to each other the two–tori T 2 above them are identified.

T 2
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2
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In addition to these fixed points of the Z4 action, there are two dimensional surfaces within T 6/Z4 :
The Θ2 fixed hyper surfaces take the form of 16 disjoint two tori

(T 2,Z2
s t) = (T 2, R2ζs2t2 , R3ζs3t3) , (2.23)

in the covering torus of the orbifold. Since on the fixed space of Θ2 the Z4 twist Θ acts non–trivially

Θ (z1,Z
2
s t) = (−z1,Z2

t s) − (0, t2R2, t3R3), (2.24)

the embedding of this fixed space in the orbifold T 6/Z4 is more involved. Because this action inter-
changes the order of p and q, it is important to distinguish between the Z2 fixed points with p and q
equal or not: The twist Θ leaves Z2

s=t invariant, and therefore creates four T 2/Z2 orbifolds

(T 2/Z2,Z
2
s=t) , Z2

s=t = (R2ζs2s2, R3ζs3s3) . (2.25)

As each orbifold T 2/Z2 has four fixed points R1ζs1t1 , the number of fixed points of all four disjunct
orbifolds together is precisely the same as all fixed points Z4

s t of the original orbifold T 6/Z4 . On the
other 12 two–tori the twist Θ acts freely; this leads to an identification of the pairs of two–tori (T 2,Z2

s 6=t)

and (−T 2,Z2
s 6=t) in the covering space of the orbifold T 6/Z4 : The orbifold T 6/Z4 only contains six

fixed two–tori. A schematic picture of the embedding of the fixed two–tori T 2 and orbifolds T 2/Z2

within T 6/Z4 is given in figure 2.5.

2.3 Fields on Orbifolds

After having discussed various supersymmetric theories in extra dimensions and introduced orbifolds,
we are ready to describe field theories on orbifolds. In this work we are mostly interested in super-
symmetric theories, therefore we employ the superfield language. For simple orbifolds, like S1/Z2 ,
the Kaluza–Klein expansion approach has been widely used to describe orbifold field theories (see
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e.g. [27–32]). This method deals whole Kaluza–Klein towers of infinitely many four dimensional states.
For Z2 orbifolds dealing with such towers is manageable (even though a lot of confusion arose in the
literature about their precise properties), they become extremely inconvenient for more complicated
orbifolds We present an approach that does not require any Kaluza–Klein expansions, by introducing
orbifold compatible fields and delta functions [19,21,33].

We consider the generic case of a chiral multiplet on T 2n/Zp . This chiral multiplet Φ is periodic
function in the various directions of T 2n

Φ(z + 2π Ri) = Ti Φ(z) , (2.26)

possibly upto transformations Ti , which constitute symmetries of its action. In addition it transforms
under the orbifold symmetry

Φ(Θz) = U Φ(z) , (2.27)

where U should also be a symmetry of the action and have the same order as the orbifold group Zp ,
i.e. Up = 11 . These two actions have to be compatible, which requires that (TU)p = 11 . This means
that both U and T are quantized. Sometimes such a T is called a discrete Wilson line, because by a
field redefinition T can be reformulated as a constant gauge background, and the superfield Φ becomes
strictly periodic on T 2n . In this work we assume throughout that the orbifold twist and the Wilson
lines commute, this means that we can choose a Cartan subgroup in which they both lie. This Cartan
subgroup is generated by HI . The remaining part of the gauge group is then generated by algebra
elements Ew , where w are the weights of the adjoint representation of the gauge group. We can then
represent U and Ti as

U = e2πi vI HI , Ti = e2πi aI
i HI . (2.28)

In particular in order that this defines Zp actions on the adjoint of E8 and the adjoint and spinorial
representation of SO(32) we require that pv and pai are either vectors with either all integer or all
half–integer entries.

Assuming that we work in the basis where Φ is strictly periodic, we can construct an orbifold
compatible superfield [19,21,33], satisfying (2.27), from a generic function Φ on the torus T 2n

Φ̃(y) =
1

p

p−1∑

n=0

Un Φ(Θ−nz) . (2.29)

To derive Feynman rules for (super)graphs one needs to define functional differentiation, therefore, it
is convenient to define orbifold compatible delta functions. Because the source J̃ for the superfield Φ̃
has precisely the opposite orbifold boundary conditions, the orbifold compatible delta function reads

δ̃21 =
1

p

p−1∑

n=0

Unδ(z2 − Θ−nz1) , (2.30)

where the flat four dimensional δ4(x2 − x1) and the chiral superspace delta function (θ2 − θ1)
2 are

kept implicit. Using these orbifold compatible fields it is not difficult to derive a general formula [34]
for the field theoretical Hilbert space trace, denoted by Tr, of a generic operator O . We will not give
the general formula here, but only give its representations for the orbifolds considered above.
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On S1/Z2 with Wilson line T and orbifold action U on the bundle, the one–loop trace of some
operator O(xm, y; ∂m, ∂y) that acts on this bundle reads

TrS1/Z2,T,U

[
O
]

=
1

2
TrS1/Z2,T

[
O
]

+
1

2
· 1

2

∑

s=0,1

TrZs

[
UsO′

]
. (2.31)

The first turn in the expression corresponds to the bulk contribution; the fixed points are merely
treated as open end points of the interval. When computing this bulk trace one should nevertheless
keep track of the effect of the Wilson line, i.e. the periodicity upto T in the bundle. The second
term gives the sum of the contributions from both fixed point Z0 = 0 and Z1 = R/2 . Because of the
appearance of Us = UT s the trace at these two fixed points is in general not the same when a Wilson
line T is present. The multiplicity factors in (2.31) can be understood as follows: As this orbifold
trace is derived using orbifold compatible fields (2.29), we get two different types of contributions
normalized with a factor 1/2 . Moreover, at the fixed points we encounter δ(2y) on S! , see (2.30),
which can be expanded as a sum over the fixed points

δ(2y) =
1

2
δ(y) +

1

2
δ(y −R/2) . (2.32)

Hence the second factor 1/2 in the second term of (2.31) should be understood as one over the number
of fixed points. Because this requires a rescaling of the y coordinate, the operator O on the fixed points
has to be modified to O′ = O(xm, y; ∂m,

1
2 ∂y) .

On more complicated orbifolds similar trace formulae can be derived. Here we content ourselves
with giving the generalizations for the orbifolds T 6/Z3 and T 6/Z4 . The trace formula on the orbifold
T 6/Z3 takes the form

TrT 6/Z3,T,U

[
O
]

=
1

3
TrT 6/Z3,T

[
O
]

+
1

3
· 1

27

∑

s

TrZs

[
Us O1 + U2

s O2

]
, (2.33)

where now On = O
(
xm, zi; ∂m, (1− θn)−1∂i

)
and Us is defined in terms of the local gauge shift vector

Us = e2πi vs HI , vs = v + si ai . (2.34)

The T 6/Z4 orbifold trace is more complicated, because we have to take into account that the orbifold
does not only have fixed points, but also fixed tori T 2 and orbifolds T 2/Z2 , see figure 2.5. The orbifold
trace can be written as

TrT 6/Z4,T,U

[
O
]

=
1

4
TrT 6/Z4

[
O
]

+
1

4
· 1

16

∑

s,t

Tr(R4,Z4
s,t)

[
U4

s,tO1 + (U4
s,t)

−1O−1

]
+

+
1

4
· 1

16

∑

s 6=t

Tr(T 2,Z2
s6=t

)

[
U2

s,tO2

]
+

1

4
· 1

16

∑

s=t

Tr(T 2/Z2,Z2
s=t)

[
U2

p,qO2

]
, (2.35)

where O±1 = O
(
x, z; 1

2∂1,
1±i
2 ∂2,

1±i
2 ∂3

)
and O2 = O

(
x, z; ∂1,

1
2∂2,

1
2∂3

)
,and the matrices

U4
s,t = e2πi v4

s,t HI , v4
s t = s1 a1 + t1 a

′
1 + s2 a2 + s3 a3 + v ,

U2
s,t = e2πi v2

s,t HI , v2
s t = (s2 + t2) a2 + (s3 + t3)a3 + 2 v .

(2.36)
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Figure 2.6: The first picture gives a torus defined by the complex variable τ . To only label inequivalent
tori this parameter is restricted to the fundamental domain F , depicted in the second picture.
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√
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1
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τ ∈ C | - 1
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1
2 , τ2 >

√
1 − τ2

1

}
,

are given in terms of the local shift vectors of the different Z4 and Z2 fixed points and surfaces. The
first term of (2.35) is the bulk contribution. The second term gives the contributions at the four
dimensional fixed points of T 6/Z4 . The terms on the second line encode the effects at the fixed T 2’s
andT 2/Z2 .

2.4 Heterotic Strings on Orbifolds

Green and Schwarz showed that it is possible to construct anomaly free ten dimensional supergravity
coupled to super Yang–Mills theory [35,36] provided that the gauge group is either SO(32) or E8×E8.
The heterotic string has been introduced by [37, 38] to provide explicit string constructions, that
have these supergravity theories as their low energy limit. The name heterotic refers to fact that the
construction treats the left and right movers of the string very differently.

We give a more technical description of the heterotic string from the world sheet point of view,
which we need to present our results section 4.2. The world sheet is parameterized by the complex
coordinate σ . On this world sheet conformal field theories live: XM (σ) are the target space coordinate
fields and ψM (σ) their right–moving fermionic partners. The part of the theory encoding the gauge
structure is described by the left–moving fermions λ2I

a (σ), λ2I+1
a (σ). For the E8 × E8

′ theory there
are two sets of fermions, labeled by a = 1, 2, of I = 1, . . . 8. The SO(32) string contains I = 1, . . . 16
fermions and a = 1. The full partition function of the heterotic string on an orbifold is constructed
by summing over all partition functions corresponding to different world sheet boundary conditions
compatible with the orbifold. The terms in this sum can be multiplied by non–trivial phases. These
phases are restricted by the requirement of modular invariance of the one loop string amplitude [39–45]:
The Teichmüller parameter τ defines the world sheet torus periodicities: σ ∼ σ + 1 and σ ∼ σ + τ .
However not all choices of τ lead to inequivalent tori. In particular the modular transformations
τ → τ + 1 and τ → −1/τ relate equivalent tori. In figure 2.6 we have depicted the fundamental
domain F which is defined by |τ | ≥ 1 and −1

2 ≤ τ1 ≤ 1
2 . The requirement of modular invariance gives

a rather strong restriction on the possible phases, implements various GSO and orbifold projections,
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Table 2.1: This table gives the complete spectrum of the SO(32) heterotic Z3 orbifold models with the gauge
shift vector v = 1

3

(
016−3n, 12n, -2n

)
.

n gauge group untwisted (x 3) twisted (x 27)

0 SO(32) 9(1)

1 SO(26) × SU(3) × U(1) (26,3)1 + (1,3)-2 3(1, 3̄)0 + (1,1)-2 + (26,1)1

2 SO(20) × SU(6) × U(1) (20,6)1 + (1,15)-2 3(1,1)2 + (1,15)0

3 SO(14) × SU(9) × U(1) (14,9)1 + (1,36)-2 (1,9)2

4 SO(8) × SU(12) × U(1) (8,12)1 + (1,66)-2 (1,1)4 + (8+,1)-2

5 SU(15) × U(1) × U(1)′ (15)1,-1 + (15)1,1 + (105)-2,0 3(1)- 5

2
,-1

2

+ (15)- 3
2
, 1
2

and determines the twisted sectors. After the string partition function has been determined, one can
extract the massless spectrum. This gives ten dimensional SO(32) or E8 × E8

′ theory coupled to
supergravity, and the twisted spectrum at the orbifold fixed points.

String on orbifolds have been first considered in [46–50]. The heterotic strings on orbifolds needs
to fulfill all conditions their low energy effective field theories satisfy, but there are some additional
conditions. First of all, the geometrical shift vector φ, the gauge shift vector v and Wilson lines ai

need to have proper Zp actions on spinors, this requires that

∑

i

φi = 0 mod 2 ,
∑

I

vI = 0 mod 2 ,
∑

I

aI
i = 0 mod 2 . (2.37)

In addition, these shifts and Wilson lines have to satisfy all possible local modular invariance conditions

v2
s − φ2 = 0 mod 2 , (2.38)

where the local gauge shifts vs are defined in (2.34). Together these conditions are very restrictive
and imply that only a limited number of heterotic Z3 and Z4 models exists without Wilson lines. (In
models with Wilson lines the local spectra at the various fixed points are determined by the local
gauge shift vectors vs.) Moreover as was emphasized in [51] the twisted spectra of such heterotic
orbifolds fall into regular patterns of representations. Tables 2.1 and 2.3 give the massless spectra of
T 6/Z3 orbifold models of the heterotic SO(32) and E8 × E8

′ strings, respectively. Table 2.2 gives the
chiral part of the spectra of Z4 SO(32) orbifolds which clear exhibits such regular patterns.
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Table 2.2: The six and four dimensional gauge groups are tabulated of the SO(32) heterotic Z4 orbifold models defined by the gauge shift
vector v = 1

4

(
0n0 , 1n1 , 2n2

)
, n0 = 16 − n1 − n2. The six dimensional (half) hyper multiplets included the multiplicity factors that count

the number of independent T 4/Z2 fixed points within T 6/Z4. The four dimensional twisted states and zero modes of the twisted states
on T 2/Z2 complete the table. This table does not give the complete four dimensional spectrum, only the chiral part, relevant for anomaly
considerations.

n1 6D gauge group 6D untwisted R 6D twisted D,S

n2 4D gauge group 4D untwisted Ri=1,2 6D twisted on T 2/Z2 4D twisted T

2 SO(28) × SO(4) (28,4) + 4(1,1) 20(1,2−) + 5(28,2+)

5(1,1) 1
2
, 1
2

+ 2(1,2)- 1
2
,- 1

21 SO(26) × U(2) × U(1)′ (26,2)1,0 + (1,2)-1,±1 2(1,2)0,0 + (26,1)1,0 + (1,1)−1,±1
+(1,1)- 3

2
, 1
2

+ (26,1) 1
2
,- 1

2

3 SO(22) × U(2) × SO(6)′ (22,2,1)1 + (1,2,6)-1 2(1,2,1)0 + (22,1,1)-1 + (1,1,6)1 2(1,1,4+) 1
2

+ (1,2,4−)- 1
2

5 SO(18) × U(2) × SO(10)′ (18,2,1)1 + (1,2,10)-1 2(1,2,1)0 + (18,1,1)1 + (1,1,10)-1 (1,1,16+) 1
2

7 SO(14) × U(2) × SO(14)′ (14,2,1)1 + (1,2,14)-1 2(1,2,1)0 + (14,1,1)-1 + (1,1,14)1

6 SO(20) × SO(12) (20,12) + 4(1,1) 5(1,32+)

0 SO(20) × U(6) (20,6)1 (1,1)-3 + (1,15)1 5(1,1) 3
2

+ (1,15)- 1
2

2 SO(16) × U(6) × SO(4)′ (16,6,1)1 + (1,6,4)-1 (1,1,1)3 + (1,15,1)-1 2(1,1,2+) 3
2

+ (1,6,2−) 1
2

4 SO(12) × U(6) × SO(8)′ (12,6,1)1 + (1,6,8v)-1 (1,1,1)-3 + (1,15,1)1 (1,1,8+) 3
2

10 SO(12) × SO(20) (12,20) + 4(1,1) 5(32−,1)

1 SO(10) × U(10) × U(1)′ (10,10)1,0 + (1,10)-1,±1 (16−,1)0,- 1
2

2(1,1) 5
2
, 1
2

+ (1,10) 3
2
,- 1

2

3 SO(6) × U(10) × SO(6)′ (6,10,1)1 + (1,10,6)-1 (4−,1,4+)0 (1,1,4+) 5
2

+ (4−,1,1)- 5
2

14 SO(4) × SO(28) (4,28) 20(2+,1) + 5(2−,28)

0 SO(4) × U(14) (4,14)1 2(2+,1)0 + (2−,14)−1 2(1,1) 7
2

+ (2+,1)- 7
2
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Table 2.3: The fixed point spectra of five of the eight E8 × E8
′ heterotic Z3 orbifold models are

displayed.

model gauge shift v and untwisted (x 3) Twisted (x 27)

gauge group G = Gs R = Rs Ss 3 × Ts

E8
1
3

(
08 | 08

)
(1)(1)′

E8 × E8
′

E6
1
3

(
-2, 12, 05 | 08

)
(27,3)(1)′ (27,1)(1)′ (1,3)(1)′

E6×SU(3) × E8
′

E6
2 1

3

(
-2, 12, 05 | -2, 12, 05

)
(27,3)(1,1)+(1,1)(27,3)′ (1,3)(1,3)′

E6×SU(3) × E6
′×SU(3)′

E7
1
3

(
0, 12, 05 | -2, 07

)
(1)0(64)′1

2

+ (56)1(1)′0 (1) 2
3
(14)′- 1

3

(1) 2
3
(1)′2

3

E7×U(1) × SO(14)′×U(1)′ + (1)0(14)′-1 + (1)-2(1)′0 + (1)- 4
3
(1)′2

3

SU(9) 1
3

(
-2, 14 , 03 | -2, 07

)
(84)(1)′0 + (1)(64)′1

2

(9)(1)′2
3

SU(9) × SO(14)′×U(1)′ + (1)(14)′-1

2.5 Conclusions

In summary we have developed the necessary materials for the discussion of anomalies, tadpoles,
gauge corrections on and resolutions of orbifold singularities. Even though this section therefore gave
an introduction to the subject, various novel techniques were described to perform explicit calculations
on orbifolds using orbifold compatible field theory and orbifold traces. We will make extensive use of
these techniques in later sections. In addition it gave an overview of heterotic SO(32) and E8 × E8

strings on the orbifolds T 6/Z3 and T 6/Z4, which will be revisited in various places in this work.
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Chapter 3

Consistency: Anomalies

As described in the introduction anomalies signal breakdown of symmetries at the quantum level.
This is disastrous for gauge symmetries because unitarity is lost. There has been a lot of activity
to understand and determine anomalies; we quote these well–known results for anomalies in the first
subsection. After that we determine the structure of anomalies on orbifolds. With this technology we
are then able to investigate local anomaly cancellation in heterotic orbifold compactifications.

3.1 Anomalies in Field Theories

We consider a left–handed chiral fermion χ in D = 2n dimensions. We take into account the effects
of a non–trivial background given by a gauge field AM and a spin connection ω(e) as a function of
the vielbein e in the Dirac operator. The Dirac operator of the fermion maps the Hilbert space of
positive chirality to that of negative chirality. By introducing a non–interacting right–handed fermion
ξ, a Dirac operator D/ can be obtained for the Dirac spinor Ψ = χ + ξ, that maps the total Hilbert
space to itself. The action is classically gauge invariant

S[Ψ, A, e] = −
∫

d2nx e−1 1

2
ΨD/Ψ with D/ = ∂/+ (iA/ + ω/)

1 + Γ̃

2
, S[ gΨ,gA, e] = S[Ψ, A, e], (3.1)

where Γ̃ is the chirality operator. We have an anomaly if the effective path integral Z[A] , obtained
by integrating out the fermions

Z[A] =

∫
DΨDΨeiS[Ψ,A,e] 6= Z[ gA] = Z[A]eiA[g], A[Λ] = Tr[ΛΓ̃], (3.2)

is not gauge invariant: A[g] 6= 0. In the last equation we have restricted ourselves to infinitesimal
gauge transformations, denoted by Λ.

The trace Tr in (3.2) is formal, as it is taken over both spinor and gauge representations, as well as
(over)countable number of states, and therefore requires regularization. To evaluate the formal trace,
one can employ Fujikawa’s method [52,53] to regularize this trace by using the heat–kernel

A[Λ] = Tr
[
ΛΓ̃e−(D//M)2

]
=

∫
d2nx tr

[
ΛΓ̃e−(D//M)2δ(x − x′)

]
, (3.3)

where the limits x′ → x, and M → ∞ are to be taken once the anomaly expression is well–defined.

25
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The structure of anomalies is not free; it has to satisfy the Wess-Zumino consistency condition [54]

δΛ1A[Λ2] − δΛ2A[Λ1] = A[Λ3], Λ3 = [Λ1,Λ2]. (3.4)

This fixes the anomaly upto an overall factor: The form of anomaly is given as the integral over Ω1
2n,

which is determined from invariant anomaly polynomial Ω2n+2 by the descent equations [55]:

Ω2n+2 = dΩ2n+1 = ch(iF )Â(R), δΛΩ2n+2 = 0, δΛΩ2n+1 = dΩ1
2n(Λ). (3.5)

Here ch is the Chern character and Â is the roof genus of the curvature tensor R. Their expressions
can be found in [55–58], for example.

We close this subsection by quoting the expressions for the anomaly polynomials in six and four
dimensions. Let r be some representation of a (non–)Abelian gauge group. The six dimensional
anomaly polynomial is given by

Ω8|r =
−i

(2π)3

[
1

24
trrF

4 − 1

96
trrF

2trR2 +
dim r

128

(
1

45
trR4 +

1

36
(trR2)2

)]
. (3.6)

For the four dimensional anomaly polynomial we have instead

Ω6|r =
−i

(2π)2

[ 1

3!
trr(iF )3 − 1

48
trR2trr(iF )

]
. (3.7)

In this work we never need the expressions for the ten dimensional anomalies, therefore, we refrain
from giving them here.

3.2 Anomalies on Orbifolds

To evaluate anomalies on orbifolds the simplest approach is to expand in eigenfunctions in the internal
directions. For simple orbifolds, like S1/Z2, this can be done easily [59–63], because the relevant mode
functions are either sin(2πn y) or cos(2πn y). However, this approach becomes very cumbersome
for orbifolds, like T 6/Z3 or T 6/Z4. For this reason we developed a procedure in [64] in which all
calculations are preformed in the covering space of the orbifold. This method was after that formalized
in [34] using orbifold projection operators, leading to orbifold trace formulae, which we reviewed in
section 2.2. We can apply these results to evaluate the functional trace in the Fujikawa regularized
anomaly (3.2). The result is the direct application of the trace formulae given in section 2.2. For
example from (2.31) for S1/Z2 we obtain:

A[Λ] = π

∫

S1/Z2

{
Ω1

4(Λ;A,F ) δ(y) + (−)p Ω1
4(Λ;A,F ) δ(y −R/2)

}
. (3.8)

For the case of anti–periodic fermions, p = 1, we see that the anomalies at both fixed points are
opposite.

On the S1/Z2 orbifold the anomalies either immediately cancel locally at the fixed points or after
the use a bulk Chern–Simons term. Indeed, a five dimensional Chern–Simons term can be used to
shift the anomaly from one fixed point to another. But the four dimensional zero mode anomaly
cannot be removed by it. This is also true in seven dimensional models compactified on a warped
S1/Z2 orbifold [65,66]. In fact models with anomalous U(1)s at the fixed points can still be consistent
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provided, that there are some field in the bulk that can play a role in a five dimensional variant of the
Green–Schwarz mechanism [35]. Interestingly in five dimensions this mechanism has two equivalent
formulations: One can either use a vector multiplet or a tensor multiplet [67]. The variation of the
Green–Schwarz action in either formulation is the same:

δΛSSGS = −
∫

d4x

∫
d2θ ξIΛW

αWαδ(y) −
∫

d4x

∫
d2θ ξIΛW

αWαδ(y −R/2) + h.c. , (3.9)

whereWα the Abelian version of the super gauge field strength introduced in (2.4). Its form is precisely
such that Abelian and mixed U(1) non–Abelian and gravitational anomalies can be canceled. The
coefficients ξI are proportional to the Fayet–Iliopoulos D–term tadpoles, which we encounter in the
next section.

3.3 Anomaly Cancellation on Heterotic Orbifolds

For field theory models on orbifolds the matter at the fixed hyper surfaces can be placed more or
less randomly, except that the theory needs to be locally anomaly free. However, modular invariant
heterotic string models should lead to consistent field theory models. So if local anomaly cancellation
is really a necessary constraint, heterotic orbifolds should fulfill this requirement. We investigate the
local anomaly cancellation in heterotic strings on the orbifolds T 6/Z3 and T 6/Z4, using the spectra
listed in tables 2.1, 2.3 and 2.2.

T 6/Z3 orbifold anomalies

The anomalies of heterotic models on T 6/Z3 are relatively simple, because this orbifold only has four
dimensional fixed points. Using the trace formula for T 6/Z3 given in (2.33) we find the gaugino
anomaly

AT 6/Z3
[Λ] =

∫

T 6/Z3

d4xd6z
1

3
Ω1

10(Λ;A,F,R),+
1

3

∑

s

Ω1
4Rs

(Λ;A,F,R)
1

9
δ(z − Zs), (3.10)

where Ω1
10 defines the bulk anomaly by (3.5). At each of the 27 fixed points Zs we obtain the anomaly

Ω1
4|Rs

due to four dimension matter representation Rs. The factor 1/9 can be understood as follows:

It arises from delocalized untwisted states which come with a multiplicity of 3, but only give 1/27 of a
contribution at a given fixed point. In these models we only need to investigate the four dimensional
anomalies, because the ten dimensional bulk anomalies are automatically canceled due to the ten
dimensional Green–Schwarz mechanism. As the fixed point anomalies only involve mixed and pure
U(1) anomalies, the anomaly polynomials I6|s have to factorize like [68]

Ω6|s = αsX4|sF2|s, X4|s = trR2
2|s − 2

∑

a

trF 2
(a)|s . (3.11)

Here X4 GS |s denote the restrictions of X4 GS to the groups Gs present at the fixed point Zs, the sum
is over the gauge group factors in Gs, and traces trF 2

(a) are normalized with respect to the quadratic
indices of the respective gauge group factors. This means that the four dimensional version of the
Green–Schwarz mechanism can be active at each of the fixed points.
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Table 3.1: The T 6/Z4 has a six dimensional subsector on T 4/Z2. There are two modular invariant
combinations of Z2 gauge shifts. The resulting gauge group and the twisted matter at a single fixed
point is given.

shift gauge group untwisted matter local twisted matter
V2 G[V2] R[V2] S[V2] D[V2]

(1; 0) E7 × SU(2) × E8
′ (56,2)(1)′ (56,1)(1)′ 4(1,2)(1)′

(1; 2) E7 × SU(2) × SO(16)′ (56,2)(1)′ + (1)(128s)
′ (1,2)(16v)

′

Table 3.2: This table gives the factorization coefficients ci and di, defined by (3.13), for the two E8×E8
′

heterotic T 6/Z4 models (1, 0) and (1, 2), given in table 3.1.

model Gi E7 SU(2) E8
′ SO(16)′

ci 1/6 2 1/30 1

(1, 0) di 1 12 -1/5 –

(1, 2) di -1/3 28 – 2

T 6/Z4 orbifold anomalies

Next we investigate the more complicated case of T 6/Z4. For this orbifold we have to check that
anomaly cancellation is possible both in four and in six dimensions. The total anomaly is given by

AT 6/Z4
(Λ) =

∫ {1

4
· 1

2
Ω1

10|Ad[0]
+
∑

p,q

1

16
· 1

2

(
I1
6|Ad

[v2
p q ]

− Ω1
6|R

[v2
p q ]

)
δ4(z − Z2

p q)d
4z

+
∑

p,q

1

16
· 2Ω1

6|r
[v4

p q ]
δ6(z − Z4

p q)d
6z
}
. (3.12)

This formula combines ten dimensional bulk anomalies, together with six and four dimensional anoma-
lies on the various hyper surfaces, depicted in figure 2.5. As before the ten dimensional anomalies are
canceled by the original ten dimensional Green–Schwarz mechanism.

For the six dimensional anomalies we find a factorized expression

Ω8|Z2
pq

= −
[
trR2 −

∑

i

citr(iFi)
2
] −i
(2π)3

1

162

[
trR2 −

∑

i

ditr(iFi)
2
]
, (3.13)

where i, j runs over the (semi–simple) gauge group factors and the traces are taken in the corresponding
fundamental representations. The factors ci give universal normalization of the quadratic traces, while
the coefficients di are model dependent. Table 3.2 lists both ci and di for both models given in table
3.1.

At the four dimensional fixed points we find, that only the models that contain U(1) factors may
be anomalous. But like in ten and six dimensions the anomaly polynomial factorizes [69]:

Ω6|Z4
p,q

=
[
trR2 −

∑

i

citr(iFi)
2
] −i
(2π)2

1

48

[
FU(1) tr(qv4

p q
) + FU(1)′ tr(q

′
v4

p q
)
]
, (3.14)
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Table 3.3: The resulting gauge groups and six dimensional untwisted matter representations are
given for representatives of the possible Z4 gauge shifts on T 6/Z4. General gauge shifts, which have
been brought to their standard form, are classified by computing 8V 2

4 . For 8V 2
4 = 4 there are two

inequivalent gauge shifts that can be distinguished by
∑

I V
I
4 mod 2 = 0, 1.

No. shift gauge group untwisted matter

8V 2
4 4V4 Ad[V4] r[V4] R[V4]

0 (00000000) E8 nothing nothing

1 (11000000) E7 × U(1) (56)1 (1)2 + (1)-2

2 (20000000) SO(14) × U(1) (64s)1 (14v)2 + (14v)-2
3 (21100000) E6 × SU(2) × U(1) (27,2)1 + (1,2)-3 (27,1)-2 + (27,1)2

40 (22000000) E7 × SU(2) nothing (56,2)

41 (1111111-1) SU(8) × U(1) (56)1 + (8)-3 (28)2 + (28)-2
5 (31000000) SO(12) × SU(2) × U(1) (32s,1)-1 + (12v,2)1 (32c,1)0 + (1,1)2 + (1,1)-2

6 (22200000) SO(10) × SU(4) (16c,4) (10v,6)

7 (31111100) SU(8) × SU(2) (28,2) (70,1)

8 (40000000) SO(16) nothing 128c

where the coefficients ci are again related to the indices of the various groups that exist at this four
dimensional fixed point. Because factorization only allows a single field strength to appear on the
right hand side of (3.14), only U(1) factors may have pure and mixed anomalies. The local sum of
U(1) charges decide whether a given U(1) factor is anomalous or not. In table 4.2 we have computed
the sum of charges for all models with U(1) factors, listed in table 3.4. The models (3; 0) and (3; 40)
do not have anomalous U(1) even though they contain U(1) factors. All other models considered in
table 4.2 have only one anomalous U(1), except for model (2; 5). However, as observed in ref. [68],
one can always find two other linear combinations of the charges qv4

p q
and q′v4

p q
, such that only one of

them is anomalous.

3.4 Conclusions

The study of anomalies is crucial to determine whether a theory can make sense at the quantum level
or not. Anomalies are generated both at the orbifold singularities and in the bulk of the orbifold.
To prove this we used Fujikawa’s method to compute anomalies together with the orbifold trace
formula developed in the previous section. The analyses of various heterotic orbifolds confirmed the
expectation that irreducible non–Abelian anomalies cancel locally, and therefore, in particular, at the
orbifold fixed points. Anomalies in U(1) gauge symmetries are canceled at the various orbifold fixed
points using four and six dimensional Green–Schwarz mechanisms.
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Table 3.4: There are 12 modular invariant combinations of Z4 E8 × E8
′ gauge shifts, which are listed

in table 3.3. (The numbers (n;n′) correspond to the first column of that table.) The resulting gauge
group and the single and double twisted matter at a single fixed point is given.

shift gauge group single twisted double twisted

V4 G[V4] T1[V4] T2[V4]

(3; 0) E6 × SU(2) × U(1)× (27,1)-1/2(1)′ + 2(1,2)-3/2(1)′ (27,1)1(1)′ + (1,1)-3(1)′

E8
′ +5(1,1)3/2(1)′ +2(1,2)0(1)′

(3; 40) E6 × SU(2) × U(1)× (1,2)-3/2(1,2)′ + 2(1,1)3/2(1,2)′ (27,1)-1(1,1)′ + (1,1)3(1,1)′

E7
′ × SU(2)′ +2(1,2)0(1,1)′

(3; 41) E6 × SU(2) × U(1)× (1,1)3/2(8)′-1 + (1,2)-3/2(1)′2 (1,2)0(8)′-1
SU(8)′ × U(1)′ +2(1,1)3/2(1)′2

(3; 8) E6 × SU(2) × U(1)× (1,1)3/2(16v)
′ (27,1)1(1)′ + (1,1)-3(1)′

SO(16)′ +2(1,2)0(1)′

(7; 0) SU(8) × SU(2)× (8,2)(1)′ + 2(8,1)(1)′ (28,1)(1)′ + 2(1,2)(1)′

×E8
′

(7; 40) SU(8) × SU(2)× (8,1)(1,2)′ (28,1)(1,1)′ + 2(1,2)(1,1)′

E7
′ × SU(2)′

(7; 41) SU(8) × SU(2)× (8,1)(1)′2 (1,2)(8)′1
SU(8)′ × U(1)′

(7; 8) SU(8) × SU(2)× nothing (28,1)(1)′ + 2(1,2)(1)′

SO(16)′

(2; 1) SO(14) × U(1)× (14v)-1(1)′1/2 + (1)1(1)′-3/2 (14v)0(1)′1 + (1)2(1)′-1
E7

′ × U(1)′ +5(1)1(1)′1/2 +(1)-2(1)′-1
(2; 5) SO(14) × U(1)× (1)1(12v,1)1/2 + 2(1)1(1,2)-1/2 (14v)0(1,1)1 + (1)2(1,1)-1

SO(12)′×SU(2)′×U(1)′ +(1)-2(1,1)-1

(6; 1) SO(10) × SU(4)× (16c,1)(1)′1/2 + 2(1,4)(1)′1/2 (10v,1)(1)′-1 + (1,6)(1)′1
E7

′ × U(1)′

(6; 5) SO(10) × SU(4)× (1,4)(1,2)′-1/2 (10v,1)(1,1)′-1 + (1,6)(1,1)′1
SO(12)′×SU(2)′×U(1)′



Chapter 4

Stability: Tadpoles

In the previous section we have investigate which orbifold theories lead to consistent models. In this
section we assume that our theories are free of dangerous non–Abelian anomalies, and continue the
investigation of fields and strings on orbifolds. Now we would like to see whether such theories are
stable. Instabilities for us means that some fields develop large VEVs by quantum corrections. The
root cause for such instabilities are quadratically divergent D–terms.

One of the main motivations for introducing supersymmetry is that all quadratic divergences are
absent. However, there is one exception: The auxiliary field D of the U(1) vector multiplet can be
quadratically divergent. This happens when the sum of charges of all chiral superfields does not van-
ish [70], i.e. only when the theory possesses a mixed gravitational–U(1) anomaly. As discussed in the
previous section this type of anomaly can be canceled by a Green–Schwarz mechanism. Nevertheless
the mass of a scalar becomes quadratically divergent after the auxiliary D field has been removed.

In the next subsection we see that these instabilities appear on orbifolds as delta–like singularities.
As string theory is often considered to be a finite non–singular theory, we investigate how these field
theory singularities are smoothed out by stringy effects.

Figure 4.1: The indicated contour allows one to replace a sum over Kaluza–Klein masses by a complex
integral. The symbols “X” denote the positions of poles f , and the dots • indicate the poles of P.
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5

5
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X X
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31
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Table 4.1: The two basic shapes (eqs. (4.2) and (4.3)) of the zero mode with charge qb are displayed
for a finite value of the cut-off Λ. Delta function localizations, denoted by the arrows, happens if
the signs of the FI–parameter ξ′′0 and charge qb are the same. When the signs are opposite, the wave
function falls off exponentially and vanishes at both branes.

ξ′′0qb > 0 ξ′′0qb < 0

πR0 0 πR

4.1 Gauge Field Tadpoles on Orbifolds

The importance of Fayet–Iliopolous tadpoles for orbifold model building was first realized in [71].
This paper was a reaction to the claim, that it possible to construct an orbifold model which is a
five dimensional version of the standard model but with one parameter less [30, 72]. We showed
that it contains at least one additional counter term more than was assumed: the localized Fayet–
Iliopolous terms at the orbifold fixed points. The method employed to compute the existence of a
Fayet–Iliopolous tadpole was to replace the sum over a Kaluza–Klein tower of states, by a contour
integral [73]:

∑

n∈N

f(mn) =
1

2πi

∫

⊖
dp5 P(p5)f(p4, p5).

The figure 4.1 gives a schematic picture of this integral in the complex p5-plane. The function P
is chosen such that it has unit residue at it single poles located at the Kaluza–Klein masses. This
procedure was used to compute the effective potential within universal extra dimensions [74], and has
been extend to five dimensional warped geometries in [75].

In a series of papers [60,61,76] we subsequently showed that the localized tadpoles for the D terms
are accompanied by tadpoles for the physical scalar φ in the five dimensional vector multiplet:

< ∂yφ > = g5
∑

I=0,1

(
ξI + ξ′′I ∂

2
y

)[
δ(y) + δ(y − I R/2)

]
(4.1)

where ξI = Λ2

16π2

( tr q
2 + tr qI

)
and ξ′′I = 1

4
lnΛ2

16π2
tr q
2 . The tadpole gives rise to a non–trivial profile for this

physical scalar, which in turn leads to strong localization effects of bulk states towards the orbifold
fixed points: When the charge qb of a bulk field and the FI–parameter ξ′′0 have the same sign, we
obtain the zero mode profile

φ2
0+(y) =

2eg5qbξ0 y

1 + eg5qbξ0 πR
[δ(y) + δ(y − πR)] , ξ′′0qb > 0. (4.2)
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Table 4.2: The sum of charges of heterotic E8 ×E8 T
6/Z4 models with U(1) factor(s) is computed for

each matter sector (r[V4], T2[V4] and T1[V4]) separately. (If a model contains two U(1), the bracket in-
dicate the sum of charges of the U(1)’s in the E8 and E8

′ sectors.) The sum of these three contributions
determines whether that U(1) is anomalous or not.

models with U(1) factors

(3; 0) (3; 40) (3; 41) (3; 8) (7; 41) (2; 1) (2; 5) (6; 1) (6; 5)

2
16trr[V4]

(q) 6 6 (6, 4) 6 4 (8, 7) (8, -1) 7 -1
1
4trT2[V4]

(q) 6 -6 (0, -4) 6 4 (0, 3) (0, 3) -1 -1

trT1[V4]
(q) -12 0 (12, 0) 24 16 (-8, 8) (16, 4) 12 -4

sum 0 0 (18, 0) 36 24 (0, 18) (24, 6) 18 -6

Hence the zero mode has the delta function support on the two fixed points, but the height at these
two fixed points is not the same. In the second case, we find that the zero mode does not live on the
boundaries of the interval

φ2
0+(y) =

g5qbξ0 e
g5qbξ0 y

eg5qbξ0 πR − 1





1 0 < y < πR,

0 y = 0, πR,
ξ′′0qb < 0. (4.3)

Figure 4.1 schematically pictures these (non–)localization effects. Such physical effects were also
studied in [77, 78], and also appear in six dimensions [79]. Extension to warped spaces have been
investigated in [80,81].

In six and higher dimensions these tadpoles become tadpoles for the internal part of U(1) gauge
field strengths [82]. On the orbifold T 6/Z3 we find the expression

LFI = −ξI F I
AA, ξI =

∑

s

(
Λ2

16π2
trLs(HI) +

1

27

ln Λ2

16π2
trRs(HI)∆

)
δ(z − Zs − Γ). (4.4)

On the orbifold T 6/Z4 the expression for the tadpole becomes

LFI = F I
AA

∫
d4p

(2π)4





2
16trr

[v4
s t

]
(HI)

p2 + 1
4∆1 + 1

2∆23
+

1
4trT2[v4

s t
]
(HI)

p2 + 1
4∆1

+
trT1[v4

s t
]
(HI)

p2



 δ6(z − Z4

s t). (4.5)

The factors 1/4 and 1/2 in front of the internal Laplacian ∆1 = ∂̄1∂1 and ∆23 = ∂̄2∂2 + ∂̄3∂3 are
consequences of the trace formula (2.35) and similar results on fixed T 2/Z2. We have written this
expression as traces of HI , such that the relative contributions of the different terms at each of the
fixed points of T 6/Z4 can directly be read off from table 4.2.

All these results rely on the implicit assumption that field theory can be trusted near the orbifold
fixed point even though the tadpoles have delta–like support and are highly divergent. This very
strongly peaked behavior might be physically somewhat suspicious, because in nature we do not
expect to encounter truly singular properties. To shed more light on their true status we preform a
string analysis of these tadpoles in the next subsection.
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Figure 4.2: The five plots show the differences of the correlators ∆s(τ1, τ2) for the values τ1 =
−0.48,−0.24, 0, 0.24 and 0.48 in the different sectors s = u, t, d+ and d−.

∆t

∆u

∆d+

∆d−

4.2 String Resolution of Tadpole Singularities

As we showed in the previous subsection the tadpoles for the internal parts of the gauge field strengths
computed in field theory are singular functions at the orbifold fixed points. For anomalies we found
similar delta–like localization. But since anomalies are directly related to topological data, such
behavior neither surprising nor problematic. For physical observables one expect that such singular
behavior would be smoothed out in a UV complete theory. As string theory is supposed to be UV
complete, it is interesting to see how these localized tadpoles appear in string theory. We perform this
investigation in E8 × E8 heterotic string on C

3/Z3. This computation extends the D–term tadpoles
in heterotic strings considered in [83–85]. (For similar computations on the type–I side see [86].)

To be able to make an easy comparison, we first represent the field theoretical result of the tadpole
as

〈F b
jj(k)〉 =

δ4(k4)

(2π)4
π

4
Λ2

1
2∫

- 1
2

dτ1

∞∫

1

dτ2
τ2
2

∑

s=un,tw

Qb
s e

−∆s kiki/Λ2
. (4.6)

Here the quantities Qb
un, Q

b
tw,∆un and ∆tw are given by

Qb
un =

3

27
trR(qb), Qb

tw = trS(qb) + 3 trT(qb), ∆un = 4π τ2
1

3
, ∆tw = 0, (4.7)

in field theory. The subscripts un and tw refer to the bulk and localized contributions, which in
a stringy language are called untwisted and twisted sectors, respectively. For the untwisted sector,
∆un 6= 0, and the tadpole takes the form of Gaussian distributions with widths depending on τ2. This
variable is integrated up to the cut–off of the effective field theory, which has been scaled to unity by
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Figure 4.3: The spatial extension of the tadpole contributions in the sectors u, t and d± are displayed
on a logarithmic scale. The curve for the u–sector fall off much slower than the others for large values
of |z|, as only it corresponds to bulk contributions.

Gt

Gd±

Gu

pulling out Λ. For large internal momenta k6 the untwisted tadpole is strongly damped. For the fixed
point states there is no such suppression because ∆tw = 0. This reflects that in field theory we treat
the twisted states as localized finitely strongly at the fixed points.

We now turn to the heterotic sting results. The gauge field tadpole becomes a sum over the
different sectors s = u, t, d±

〈F b
jj(k6)〉 =

δ4(k4)

(2π)4

∑

s=u,t,d±

Gb
s(k6), Gb

s(k6) =

∫

F

d2τ

τ2
2

Qb
s(τ) e

−∆s(τ,τ̄) kiki . (4.8)

In this expression Qb
s(τ) can be thought of as the trace of the qb charges of sector s. In string

theory the orbifold space coordinates Xi and Xi are fields on the torus world sheet. Their correlator
∆s(τ, τ̄) = 〈XiXi〉s(τ, τ̄ ) sets the width of the orbifold singularity in sector s, because it appears as the
(inverse) standard deviation of the Gaussian distribution for the internal momentum k6. The exact
one loop string expression for the functions Qb

s(τ) and ∆s(τ, τ̄ ) have been obtained in ref. [87–89]. We
plotted the functions ∆s(τ1, τ2) for the different sectors s = u, t, d+ and d− in figure 4.2 for five values
τ1. The behavior of the untwisted states (u) is very different from that of the twisted states (t, and
d±) for large τ2: The former grow linearly with τ2, while the latter all approach the constant c0.

In figure 4.3 we plotted the profiles as a function of the radial variable |z| in the six internal
dimensions. Close to the orbifold singularity the twisted states in the t and d±–sectors dominate the
tadpole. At a distance of about z = 2.5 string lengths all three sectors contribute with comparable
magnitude. The profiles shows pronounced differences between the drop off in the sectors: The curves
corresponding to the t and d±–sectors fall of much faster than the one for the u–sector. These
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differences are consistent with our understanding that the u–sector corresponds to bulk states, while
the t and d±–sectors constitute the fixed point states.

4.3 Conclusions

The Fayet–Iliopolous D–term has been the achille’s heal of supersymmetry being the only quantity
which is quadratically divergent. In orbifold theories in extra dimensions their generalizations again
spell trouble, and lead to delta–like quadratically divergent singularities at the orbifold fixed points.
In five (and higher) dimensions they can lead to strong localization effect of bulk states towards the
fixed points. These effects are real though smoothed out by stringy corrections.



Chapter 5

Perturbativity: Gauge Couplings

The strength of gauge interactions is measured by the gauge couplings. In four dimensional theories
the properties of gauge couplings are well–known. One of their main properties is that they depend on
the renormalization scale. This dependence is encoded in renormalization group equations, which can
be computed perturbatively. In four dimensional supersymmetry theories only self energy diagrams
give corrections to the gauge coupling running.

The story becomes more complicated in extra dimensions and in particular on orbifolds. The
reason is that such gauge theories are characterized by more than one coupling: There is the bulk
gauge coupling and gauge couplings at the orbifold fixed points. In addition higher derivative operators
arise because the higher dimensional theory is non–renormalizable. It is these effects that we would
like to investigate. Therefore we compute the operators that are needed as one loop counter terms
rather than just the couplings. In this way we do not unintentionally ignore additional effects.

5.1 Local Gauge Coupling Running on Orbifolds

We compute the renormalization of gauge couplings on orbifolds using the orbifold compatible fields
developed in section 2.2. As reviewed in section 2.1 a hyper multiplet in five or six dimensions can
be described by two oppositely charged chiral multiplets Φ+ and Φ−. The vector multiplet consists
of a four dimensional vector V and a chiral adjoint S superfields. Hence, we can use the supergraph
techniques reviewed in 2.1 to compute of gauge coupling running in higher dimensional supersymmetric
theories on orbifolds. As the details were reported in [19,20] we only give some relevant diagrams and
results.

As the quantum corrections on T 2/ZN are to a large extend the same as the S1/Z2 (because the
diagrams, see figure 5.1, for a hyper multiplet are identical in five and six dimensions), we refrain from
giving the five dimensional results here. However, there are two additional effects in six dimensions:
First of all the orbifold action can be larger than just Z2. For even ordered orbifolds there exist Z2

and non–Z2 fixed points. The Z2 fixed points have similar properties as the fixed points of S1/Z2,
while the contributions at non–Z2 fixed points are fundamentally different. At the Z2 fixed points we
obtain

Shyper
Z2

=
−1

(4π)2N

(1

ǭ
+ ln

µ2

m2

)∫
d6x d4θ trZ

N/2
+

([
S −

√
2∂̄V, S −

√
2∂V

]
−
[
∂̄V, ∂V

])
δ2
(
2z
)
, (5.1)

37
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Figure 5.1: The gauge multiplet receives V V self energy corrections from the hyper multiplet. The
proper self energy graphs are the first two diagrams. The tadpole graph is the last diagram.
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here the matrix Z+ = eiA+ defines the hyper multiplet boundary condition: Φ+(θz) = Z+ Φ(z). At
the non–Z2 fixed points the result reads

Shyper
non-Z2

=
−2

(4π)2N

(1

ǭ
+ ln

µ2

m2

) [N/2]∗∑

b=1

∫
d6x d4θ tr

[
−
(
cos b(A+ + ϕ) + cos bA+

)
V2PoV+

+ cos b(A+ + ϕ)
(
∂V ∂̄V −

√
2 ∂V S −

√
2 S∂̄V + SS

)

+ cos (bA+)
(
∂̄V ∂V −

√
2 S∂V −

√
2 ∂̄V S + SS

)]
δ2
(
(1 − eibϕ)z

)
. (5.2)

Similar results can be obtained for contributions due to vector multiplets in the loop, see [20]. In the
next subsection we perform this analysis for the vector multiplet ten dimensions.

The second effect has to do with the fact that the six dimensional theory in non–renormalizable
and hence higher dimensional operators can be generated:

Shyper
bulk =

−2m2

(4π)3N

(1

ǭ
+ ln

µ2

m2
+ 1
) ∫

d6xd4θ tr
[
− V 2P0 V + ∂V ∂̄V −

√
2(∂V S + ∂̄V S ) + SS

]
+

+
1

3 (4π)3N

(1

ǭ
+ ln

µ2

m2

) ∫
d6xd4θ tr

[
− V 2P0(2 + ∂∂̄) V + ∂V (2 + ∂∂̄)∂̄V+

−
√

2 ∂V (2 + ∂∂̄)S −
√

2 ∂̄V (2 + ∂∂̄)S + S(2 + ∂∂̄)S
]
. (5.3)

Possible consequences of such higher derivative operators have been studied in the literature [90–95].

5.2 Local Running Couplings on Heterotic Orbifolds

The computation of local gauge couplings presented above for six dimensional orbifolds can be extended
to heterotic orbifold models. The above discussion as preformed in the field theory context, but there
may be additional stringy effects. We have investigated this issue for the effective four dimensional
gauge couplings in ref. [96] and found, that the purely field theoretical computation is able to reproduce
the full string result [97–99] upto contributions due to string winding modes, which clearly have no
interpretation in field theory. The other difference is that the full string result is finite, while the field
theory computation requires regularization. However, the comparison of the theoretical computation
of gauge couplings and experimental measurements is perform using the field theory language. This
amounts to divide the full finite string result into contributions of the four dimensional zero modes and
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the other states. The scale at which this splitting is performed is to a large extend arbitrary, which
reintroduces a renormalization scale dependence in the string theory predictions. In light of this we
assume that the most important gauge corrections in heterotic orbifold models can be captured using
ten dimensional super Yang–Mills theory alone.

In this subsection we compute the local gauge couplings on the heterotic T 6/Z4 orbifold. For
geometrical details of this orbifold we refer to section 2.2 and ref. [26]. In the T 6/Z4 orbifold we have
to distinguish six dimensional contributions which are localized at the fixed torus (the contributions
on the second line of (2.35)), and contributions which are localized at the four dimensional fixed
points (the second term on the first line of (2.35)). The six dimensional fixed torus supports a
six dimensional amplitude whose divergence is the same as that of the bulk contribution in the six
dimensional calcuation discussed in previous subsection. The amplitude at the fixed points gives rise
to the usual four dimensional divergences.

Bulk renormalization

The bulk result is obtained from the first term of (2.35) and vanishes identically. This result was to be
expected, since it is known that there is no gauge coupling renormalization in ten dimensional super
Yang–Mills theories. The presence of the new graph, the first graph on the second line of figure 5.2
(that is constructed from the new propagators specific to ten dimensions), is indespensable for this
result to hold. Moreover, also no higher dimensional operators are generated in the bulk.

Fixed torus renormalization in six dimensions

The counter term localized at the six dimensional fixed torus in the first complex plane is a sum of
a gauge kinetic term of a six dimensional gauge multiplet and a higher derivative operator. The first
reads

∆Sgauge =
m2µ−2ǫ

(4π)3ǫ

∫
d10x

{∫
d2θ trAd

[
1

4
Q−2WαWα

]
+ h.c.+

+

∫
d4θ trAd

[
Q−2

((
− 1√

2
∂1+S1

)
e2V
(

1√
2
∂̄1+S1

)
e−2V +

1

4
∂1e

−2V ∂̄1e
2V

)]}

×δ2
(
(1 − ei2ϕ2)z2

)
δ2
(
(1 − ei2ϕ3)z3

)
, (5.4)

where Q defines the orbifold conditions for the vector multiplet V I(θz) = QI
J V

J(z). We have
displayed the full expression proportional to the action of a six dimensional gauge multiplet, even
though, we have only calculated explicitly those terms that involve only the four dimensional gauge
multiplet V and its derivatives. In order for the theory to reproduce the complete action for the six
dimensional gauge multiplet, also the other terms have to be present. In addition, a higher derivative
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operator is localized at the fixed torus

∆Sgauge
HDO = − µ−2ǫ

6(4π)3ǫ

∫
d10x

{∫
d2θ trAd
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1

4
Q−2Wα
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2
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∂̄1 e
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)]}
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(1 − ei2ϕ2)z2
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(1 − ei2ϕ3)z3

)
. (5.5)

Fixed points renormalization in four dimensions

Since the delta functions
∏3

J=1 δ
2
(
(1 − eiϕJ )zJ

)
and

∏3
J=1 δ

2
(
(1 − e−iϕJ )zJ

)
describe the same fixed

point set, we find at the four dimensional fixed points

∆Sgauge
fp =

µ−2ǫ

(4π)2ǫ

∫
d10x

{∫
d2θ trAd

[
1

4
Q−1WαWα

]
+ h.c.

} 3∏

J=1

δ2
(
(1 − eiϕJ )zJ

)
. (5.6)

Obtaining complete gauge coupling corrections

In the discussion above we have determined the contributions to the V V selfenergy from the ten
dimensional super Yang–Mills theory and from six dimensional hyper multiplets. To compute the
complete contribution to the gauge couplings one has to combine these results: The ten dimensional
bulk is completely treated. At the six dimensional fixed points we have to add the localized contribution
of the ten dimensional gauge theory with the effects of the twisted hyper multiplets localized there.
The four dimensional fixed points get contributions from three sources: the ten dimensional gauge
fields, the six dimensional hyper multiplets, and the four dimensional chiral multiplets. When doing
so, one has to take care of the relative multiplicity factors that arise from the orbifold trace formulae.
The required analysis is therefore similar to the way one obtains the local anomalies in the bulk, fixed
surfaces and points of orbifolds, see section 3.3.

The computations reported here only focused on the V V self energy of the ten dimensional vector
multiplet. But as mentioned before, this multiplet also contains three chiral superfields S1, S2 and S3.
They have self energies and mixed self energies that also all renormalize. This means that one has to
compute the corresponding diagrams for those superfields as well. It should be realized that at the six
and four dimensional fixed points these chiral multiplets partly have a different interpretation: They
do not all constitute gauge degrees of freedom there, but should rather be viewed as untwisted matter.
At the six dimensional fixed points, S1 and V form a six dimensional vector multiplet, while S2 and
S3 untwisted hyper multiplets. At the four dimensional fixed points all three of the chiral adjoints are
reinterpreted as untwisted chiral matter. The computation of their wavefunction renormalization has
only been partly performed on orbifolds locally in the literature.

5.3 Conclusions

The gauge coupling is a central quantity in a supersymmetric gauge theory that determines its prop-
erties. On orbifolds gauge theories are necessarily described by a multitude of gauge couplings: Aside



5.3. CONCLUSIONS 41

Figure 5.2: Most vector multiplet self energy graphs in ten dimensions are straightforward extensions of those
in lower dimensions. Only the first graph on the second line appears in the ten dimensions.
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from the ordinary bulk gauge coupling, a new coupling arises that parameterizes the relevance of
higher derivative corrections to the bulk action. In addition, gauge coupling renormalizations occur
at the orbifold fixed points. We demonstrate that by using orbifold compatible (supersymmetric) field
theories all these corrections can be systematically computed even for heterotic orbifold models.
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Chapter 6

Deformations: Blowup of Singularities

As noted in the introduction field theories on orbifolds cannot be trusted because of curvature and
other singularities at the orbifold fixed points. Even though we have shown that for some computations
we are still able to make sense of the results, a more physical approach would be to smooth out the
orbifold fixed points, so that quantities like the curvature do not diverge in the first place. Preserving
a certain amount of supersymmetry in this process implies that the resulting smooth space needs
to be rather complicated, i.e. is a compact Calabi–Yau space. (Analysis of the spectra on smooth
compact Calabi–Yaus have been performed in [100–104].) To simplify the analysis we focus on a
single fixed point and consider its non–compact Calabi–Yau blowup. In the first subsection we show
how to construct explicit C

n/Zn blowups, and explain how one can obtain four dimensional models
from them. Using these blowup models essentially the complete untwisted and twisted spectra of
heterotic orbifold models can reproduced. For more complicated orbifold singularities unfortunately
no explicit blowups are known, however, one can describe topological properties using toric geometry
as explained in the final subsection.

6.1 Explicit Cn/Zn Blowups

We review the explicitly construction of a blowup of the C
n/Zn orbifold with possible U(1) bundles

following [105, 106]. The blowup is defined as the cone that is the nth power of the fundamental
complex line over CP

n−1 . For a detailed discussion of the Kähler geometry of CP
n−1 and its complex

line bundles, see [107–109]. By requiring Ricci–flatness we obtain the resolution manifold Mn , that
we are looking for [110]. Similar constructions for more general coset spaces than CP

n−1 can be found
in [111–113].

The C
n/Zn orbifold is defined by the Zn action Z̃ → θ Z̃ , where θ = e2πi φ , with φ = (1, . . . , 1)/n .

The geometry of the non–singular blowup is described by the Kähler potential

K(X) =

X∫

1

dX ′

X ′
1

n

(
r +X ′) 1

n , (6.1)

where X = (1 + z̄z)n|x|2 is an SU(n) invariant, and the z and x are the coordinates of the space. The
resolution parameter r is defined, such that in the limit r → 0 one retrieves the orbifold geometry.
This space is a generalization of the Eguchi–Hanson space [114, 115]. From the Kähler potential all

43
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Figure 6.1: The curvature (6.2) mimics a regularized delta–function.

geometrical quantities can be derived in the standard way, in particular, the curvature 2–form reads

R =
r

r +X




e ē− ē e+
1

n

ǭ ǫ

r +X

ǭ e√
r +X

ē ǫ√
r +X

n ē e− n−1

n

ǭ ǫ

r +X


 . (6.2)

Here e and ǫ are the holomorphic vielbein 1–forms of CP
n−1 and its complex line bundle. As this

curvature is traceless, i.e. Ricci–flat, the blowup defines a non–compact Calabi–Yau space.
This geometry admits a U(1) gauge background satisfying the Hermitian Yang–Mills equations

iFV =
( r

r +X

)1− 1
n
(
ēe− n− 1

n2

1

r +X
ǭǫ
)
HV , (6.3)

where HV = V IHI with HI Cartan generators. The entries V I are either all integers or half integers,
and parameterize the embedding of the line bundles in the SO(32) (or E8 × E8) gauge groups. Both
the curvature (6.2) and the gauge field strength (6.3) become strongly peaked in the orbifold limit
r → 0 at X = 0; they mimic regularized delta functions, see figure 6.1.

Using the explicit geometry of the blowup of C
3/Z3 with U(1) gauge bundle, we can construct string

compactifications. Because both the geometry and its U(1) gauge background are given explicitly, the
relevant integrals can be computed:

∫

CP
2

trR2

(2πi)2
= −n

∫

CP
1
⋉C

trR2

(2πi)2
= n(n+ 1) ,

∫

CP
p

( iF
2πi

)p
= − n

∫

CP
p−1

⋉C

( iF
2πi

)p
= 1 . (6.4)

The integrals over CP
p are taken at X = 0 integrating over p of the n− 1 inhomogeneous coordinates

of CP
n−1. The integral over CP

p−1
⋉ C corresponds to the integral over all values of x ∈ C and over

p − 1 inhomogeneous coordinates. The Bianchi identity integrated over CP
2 has to vanish, using the

above results this gives:

V 2 = 12 . (6.5)

The same condition is found when integrating over CP
1

⋉ C and selects 7 allowed SO(32) blowup
models listed in table 6.1. The spectra of these models can be compute using an index theorem. The
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Table 6.1: The first column displays the heterotic Z3 SO(32) orbifold shifts. The U(1) bundles on the
blowup are defined by the second column. The gauge groups of the heterotic orbifold models are listed
in the next column. The one but last column contains the matter representations on the resolution.
The last column gives the additional twisted matter on the orbifold.

Orbifold Blowup Gorbifold = Matter spectrum on the Additional
shift shift Gblow down orbifold resolution twisted matter

(013, 12, 2) (012, 13, 3) SO(26) × U(3) 1
9(26,3) + 26

9 (1,3) + (26,1) (1,1)

(013, 23) 1
9 (26,3) + 26

9 (1,3) (1,1) + (26,1)

(010, 14, 22) (010, 14, 22) SO(20) × U(6) 10
9 (1,15) + 1

9(20,6) + 3(1,1)

(07, 16, 23) (07, 18, 2) SO(14) × U(9) 1
9 (14,9) + 1

9(1,36) + (1,9)

(04, 18, 24) (04, 112) SO(8) × U(12) 1
9(8,12) + 1

9(1,66) (1,1) + (8+,1)

(1
2

12
, 3

2

4
) 1

9(8,12) + 1
9(1,66) + (8+,1) (1,1)

(01, 110, 25) (1
2

14
, 3

2 , -
5
2) SO(2) × U(15) 11

9 (15) + 1
9(105) + 3(1)

multiplicities of the representations obtained from the branching of the adjoint of SO(32) (or E8 ×E8)
via the multiplicity operator NV . It takes the values: NV = 1

9 , 1, 26
9 = 3− 1

9 . The multiplicity factor
1
9 = 3

27 refers to untwisted (delocalized) states, while integral multiplicity factors correspond to states
localized at the orbifold fixed point [64]. The table 6.1 compares the matter on the blowup with the
heterotic orbifold spectrum in the blow down limit, and shows that only sometimes some vector–like
matter is not recovered on the blowup. A similar analysis can also be performed for the blowup of
C

2/Z2, the results are consistent with the findings in [116].

One interesting application of the explicit construction of C
3/Z3 orbifold blowup is to use it to

explicitly verify the claim, that in blowup multiple anomalous U(1) are possible [100], even though it
is known, that heterotic orbifold models always have at most a single anomalous U(1) , see e.g. [68].
The way out of this apparent paradox is, that a twisted state, with a non–vanishing VEV that
induces the blowup, has to be reinterpreted as a model dependent axion. This model dependent axion
cancel non–universal anomalies [117]. This result shed new light on the type–I/heteroric duality in
four dimensions: The heterotic C

3/Z3 orbifold model with gauge shift V = (04, 18, -24) has gotten
quite some attention in the past, because for this model there was a type–I dual Z3 orbifold model
suggested [118–121]. However, because the Green–Schwarz anomaly cancellation is not the same in
both models, and in particular, mediated by different fields, it had been questioned whether these
models can really be dual [122]. Investigating this situation on the C

3/Z3 blowup we developed here,
we confirmed that the duality can realized in all fine print [117].
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Figure 6.2: The left graph displays the toric diagram of Res(C2/Z2) . The right picture displays a projected
view of the toric diagram of Res(C3/Z3) .
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0 D1

D3

E
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6.2 Toric resolutions

Next we turn the toric geometry approach to obtain resolutions of orbifold singularities. Here we
do not have time to explain the toric geometry [123–125] in much detail. The rough idea of toric
resolutions of orbifold singularities is to replace the orbifold action by invariances under C

∗ scalings
of the coordinates zi. To keep the dimensionality of the resolution equal to that of the orbifold, one
needs to introduce as many extra coordinates xp as complex scalings. Setting one of the homogeneous
coordinates of the resolution to zero defines a codimension one hypersurface called a divisor. Ordinary
divisors are defined by setting the original coordinates to zero Di = {zi = 0}, and exceptional divisors
by setting the extra ones to zero Ep = {xp = 0}. To each divisor we can associate a line bundle.
As the first Chern class of a line bundle is a (1, 1)–form, we reinterpret the divisors as (1, 1)–forms
themselves. Not all divisors are independent, because of so–called linear equivalence relations

∑

i

(vi)j Di +
∑

p

(wp)j Ep ∼ 0 . (6.6)

As there are as many such linear equivalence relations as ordinary divisors, we may take the exceptional
divisors as a basis for the gauge background FV .

As hypersurfaces the divisors can intersect multiple times. These intersection numbers can be rein-
terpreted as integrals of the corresponding (1, 1)–forms over the whole resolution. The intersections
define the complete topology of the resolution. This topological information is conveniently summa-
rized in the toric diagram: In a toric diagram the divisors are denoted as nodes, curves (intersection of
two divisors) as lines between two nodes, and intersections of three different divisors as cones spanned
by three nodes. Basic cones, the smallest possible cones, define intersections of three divisors with
unit intersection number, while lines of three nodes correspond to intersection number zero. Together
with the linear equivalence relations the toric diagram determines all (self–)intersections.

We have used these toric techniques to determine blowups of the orbifolds C
2/Z2, C

2/Z3, C
3/Z3,

C
3/Z4 and C

3/Z2×Z
′
2 in [126]. Below, describe how to use toric geometry to heterotic blowup models

for the orbifold C
3/Z3 and C

3/Z4 as interesting examples.

Toric resolution of C3/Z3

We illustrate the power of toric geometry by reproducing the results obtained using the explicit blowup
of C

3/Z3. The toric resolution of this orbifold has three ordinary divisors Di, and a single exception
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one E. They satisfy the linear equivalence relations:

Di ∼ Dj , 3Di + E ∼ 0 , (6.7)

From the toric diagram, right picture in figure 6.2, we infer the basic integrals and intersections:
D1D2E = D2D3E = D3D1E = 1. The gauge field strength can be expanded as FV = −1

3 EHV . We
obtained all the results of the explicit blowup. In particular, the Bianchi identity on the compact cycle
E gives condition (6.5):

V 2 =

∫

E
tr(iFV )2 =

∫

E
trR2 = 12 . (6.8)

The non–compact Bianchi identity follows immediately upon using the linear equivalence relation (6.7)
and leads to the same condition. We have checked in [126] that we can also obtain all other results of
the explicit resolution, including the full chiral spectrum.

Heterotic models on resolution of C3/Z4

The main advantage of toric geometry over explicit blowups lies in the fact that one can still use
toric techniques in cases where no explicit blowup is known. To exemplify this we investigate the
resolution of C

3/Z4. In this case there are two exceptional divisors E1 and E2, which satisfy the linear
equivalence relations

4D1 + E1 + 2E2 ∼ 0 , 4D2 + E1 + 2E2 ∼ 0 , 2D3 + E1 ∼ 0 . (6.9)

To define the integrals on the resolution of C
3/Z4 we use the toric diagram, on the right hand side of

figure 6.2, and obtain

D1E1E2 = D2E1E2 = D1D3E1 = D2D3E1 = 1 , D1D2E2 = D3E1E2 = 0 . (6.10)

Via the linear equivalences this implies:

E2
1 E2 = 0 , E2

2 E1 = −2 , E3
1 = 8 , E3

2 = 2 . (6.11)

The bottom edge of the toric diagram defines the toric diagram of the resolution of C
2/Z2. The

gauge background is expanded in terms of the exceptional divisors

FV = −1

2
E1H1 − 1

4
(E1 + 2E2)H2 , (6.12)

where H1 = V I
1 HI , etc. In order to ensure that we can directly compute the spectrum on the non–

compact resolution, we require that the Bianchi identities vanish on E1, E2 and the resolution of
C

2/Z2:

E1 : V 2
1 + V1 · V2 = 4 , E2 : V1 · V2 = − 2 , Res(C2/Z2) : V 2

2 = 6 . (6.13)

The matching between the heterotic orbifold models and the resolution models characterized by the
shifts V1 and V2 is performed in table 6.2. All orbifold models, except number 4, are recovered in
blowup. Model number 4 is not reproduce, because it does not have any first twisted sector, and
therefore it can simply not be blown up. We have computed the complete spectrum and confirmed
that all blowup models have anomaly free spectra mathiching with the orbifold models [126].
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Table 6.2: This table compares the C
3/Z4 orbifold gauge shift vector v , with the blowup vectors V1

and V2 , that characterize the line bundle gauge background on the resolution.

orbifold blowup blowup
shift 4 v vector V2 vector V1 Nr.

(013, 12, 2) (013, 12, 2) (013, 12,-2) 1a

(013, 12, 2) (012, 2,-12, 0) 1b

(013, 12, 2) (011, 2, 1, 02,-1) 1c

(011, 12, 23) (013, 12, 2) (010, 14,-12) 2a

(013, 12, 2) (011, 12,-2, 02) 2b

(09, 12, 25) (013, 12, 2) (08, 15, 02,-1) 3a

(013, 12, 2) (09, 14,-12, 0) 3b

(07, 12, 27) − − 4

(010, 16) (010, 16) (010, 12,-14) 5a

(010, 16) (013, 1,-1,-2) 5b

(010, 15, 3) (010, 16) (09, 2,-12, 04) 6

(08, 16, 22) (010, 16) (08, 13,-13, 02) 7a

(010, 16) (08, 12,-2, 05) 7b

(06, 16, 24) (010, 16) (06, 14,-12, 04) 8

orbifold blowup blowup
shift 4 v vector V2 vector V1 Nr.

(05, 110, 2) (010, 16) 1
2(-3, 110,-15) 9

(03, 110, 23) (010, 16) 1
2(112,-13,-3) 10

(114, 22) (013,-2, 12) 1
2(115,-3) 11

(113,-1, 22) (013, 12, 2) 1
2(115,-3) 12a

(013, 12, 2) -1
2 (-3, 115) 12b

1
2 (13, 312,-3) 1

2(-3, 115) -(013, 12, 2) 13a
1
2 (115,-3) (013, 12, 2) 13b
1
2 (115,-3) 1

2(13,-111, 3, 1) 13c

1
2(17, 38,-3) 1

2 (115,-3) (-15, 1, 010) 14a
1
2 (115,-3) 1

2 (16,-18,-3, 1) 14b
1
2 (115,-3) 1

2(18,-17, 3) 14c

1
2 (111, 34,-3) 1

2 (115,-3) (010, 13,-13) 15

1
2(115,-3) 1

2 (115,-3) (013,-2, 12) 16a
1
2 (115,-3) 1

2(-114, 3,-1) 16b



6.3. CONCLUSIONS 49

6.3 Conclusions

Even though in this work we have reviewed various methods to perform detailed computations on
orbifolds, whether they in the end can truly be trusted remains somewhat questionable because orbifold
curvature singularities make field theory analysis on them dangerous. Blowing up orbifold singularities
provides a promising way to get around these problems. An important additional bonus for field theory
is that on the such resolved singularities it is possible to compute the full localized spectrum. Field
theory on orbifolds only catches the orbifold bulk states; one has to resort to string theory to predict
the twisted states localized at the orbifold fixed points. Only for a very special class of orbifold
singularities, C

n/Zn, we have obtained blowups fully explicity. For more complicated singularities for
which no explicit blowups are known, we showed that by resorting to toric geometry we are still able
to recover the blowup models and determine their full chiral spectrum.
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