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Abstract—Protecting personal data is a key requirement for
properly sharing and opening data. With growing concerns
regarding privacy, it is important to ensure that the personal data
of individuals is not compromised or made public in Open Data
initiatives. For the most part, the personal data protection fields
for microdata and tabular data have been researched separately.
This separation has caused both fields to have much overlapping
research, particularly concerning the privacy and utility of the
respective data types. This overlapping research, however, has
not been well integrated between the fields. Recently, there have
been developments and improvements for protecting microdata
that are not being applied to the field of tabular data protection.
In this work, the association between microdata and tabular data
is formalized and used to link the personal data disclosure risks
and the personal data protection models that can be applied to
both microdata and tabular data.

Keywords–Data Protection; Disclosure Scenarios; Frequency
Tables; Statistical Disclosure Control.

I. INTRODUCTION

Within the process of opening and sharing data, Statistical
Disclosure Control (SDC) is applied to reduce the risk of
privacy disclosures for individuals while preserving the qual-
ity and utility of the data. Minimizing the risk of privacy
disclosures is an essential step that needs to be performed
in order to adhere to privacy regulations, such as the EU’s
General Data Protection Regulation (GDPR). As essential as
it is for a data controller, i.e., the entity that opens the data,
to provide sufficient guarantees of privacy, it is perhaps just as
essential for a data user to be provided with similar guarantees
of the quality of data. There are different reasons for opening
or disseminating data, including, among others, improving
transparency and enabling (scientific) research. Census tables
are an example of opening data for transparency, where the
information in those tables influences public perception and
therefore should be as informative as possible. Opening data
does not only facilitate research, but has become increasingly
necessary for academic work to be acceptable for publication
in certain journals [1].

SDC solutions are non-trivial in practical settings as the
identification of potential sources of disclosure is a difficult
task. This becomes clear from the recent cases where data
subjects, the individuals present in the data, were first de-
identified (anonymized), but were later re-identified by re-
searchers [2]. Even when SDC methods have been applied on
data, re-identification is still sometimes possible. Numerous
cases have been discovered, including the infamous cases of
disclosure in the microdata of taxi rides from NYC [3] and
tabular data containing sensitive health information [4].

To prevent re-identification, an initial identification of the
sources and causes of personal data disclosures is required.

As such, this work contributes by providing a taxonomy for
data disclosures when opening tabular data. Models such as t-
closeness [5] and differential privacy [6] have been introduced
to provide certain levels of privacy. Such models have mainly
been introduced for protecting microdata. However, tabular
data and microdata are closely related. We fundamentally
formalize the relation between the two data types. This for-
malization makes it possible to evaluate the relation between
SDC models developed for protecting microdata sets and those
developed for protecting tabular data sets. Thus, this work
improves the unification of the SDC methods and models
developed for microdata and tabular data sets. The contribution
on this work is focused on frequency tables, which is the
most general type of tabular data. The disclosure risks and
privacy models for frequency tables mainly hold for other types
of tabular data, such as magnitude tables [7]. However, the
disclosure risks that affect other specific types of tabular data
are not considered in this work.

To the best of our knowledge, this is the first work that
aims at unifying the privacy models for microdata and those
for tabular data, allowing for comparisons between the privacy
models. The rest of this work consists of the formalization of
microdata and tabular data, specifically frequency tables, in
Section II. The concept of disclosure is introduced in Section
III, followed by the attacks that cause personal data disclosures
in Section IV. An overview of privacy models is presented
in Section V. Lastly, Section VI concludes this work and
discusses possible future work.

II. DATA ASSOCIATION

In order to unambiguously describe the scenarios where
personal data disclosures may take place for tabular data sets,
the concept of microdata and tabular data are formalized in
this section.

A. Microdata
A microdata set DSM comprises N rows, or records,

denoted by xn, where n = 1, . . . , N and every record
xn corresponds to one individual. Further, every record xn

comprises D attributes. An attribute is denoted by ai, where
i : 1, . . . , D. An attribute ai has an associated domain of
nominal or ordinal values Ai. Domain A = A1×A2×. . .×AD
denotes the super domain, which contains all attribute values
in DSM . Every record xn is defined over A, consisting of
attribute values xn1 , x

n
2 , . . . ., x

n
D, where xni ∈ Ai, i : 1, . . . , D.

Table I is an example of a microdata table.
In the SDC literature for microdata, the set of attributes

{a1, a2, . . . , aD} are generally divided into four disjoint sets
called: explicit identifiers, quasi identifiers, sensitive attributes,
and non-sensitive attributes. Explicit Identifiers (EIDs) refer
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TABLE I. EXAMPLE OF MICRODATA

EID QIDs SAT Misc.
Record a1: Name a2: Zip a3: Age a4: Illness . . . aD
x1 x1

1=Jane Doe x1
2=2230 x1

3=15 x1
4=Cancer . . . x1

D

...
...

...
...

... . . .
...

xN xN
1 =. . . xN

2 =. . . xN
3 =. . . xN

4 =. . . . . . xN
D

to the set of attributes in the original microdata set DSM
that structurally and on their own could uniquely identify an
individual. Examples of explicit identifiers are an individual’s
name, home address and unique personal numbers like a ‘social
security number’, ‘national health service number’, ‘voter card
identification number’, or ‘permanent account number’.

Quasi Identifiers (QIDs) refer to the set of attributes in the
original microdata set DSM that could ‘potentially’ identify
individuals. Identification through QIDs is achieved by using
a combination of values, which belong to QID attributes, of a
record from the microdata set DSM . For these values of QID
attributes, an intruder, a person or entity that seeks to learn
personal information about data subjects, can identify individ-
uals from other known knowledge bases. Knowledge bases can
be very specific and personal, such as being acquainted with
the data subjects, or general, such as the information from
other public data releases. For example, assume that weight,
length, hair color, and location are QIDs. Knowing the values
of these attributes, an acquaintance may recognize the person
uniquely. The QIDs in microdata set DSM , therefore, capture
the so-called background knowledge that intruders have with
respect to microdata set DSM .

Sensitive Attributes (SATs) refer to those attributes that
capture privacy-sensitive information about individuals. In the
justice domain, for example, this could be the specifics of
a crime committed or the remaining duration of a prison
sentence, and in the health domain this could be the condition
an individual is suffering from. These sensitive attributes are
sometimes important for data users for data analytics purposes.
Unlike QIDs, SATs are assumed to be unknown outside of
the original microdata set DSM and, therefore, they are not
characterized as background knowledge of intruders.

Non-sensitive Attributes (NATs) refer to all the miscel-
laneous attributes that are not directly-identifying, quasi-
identifying or sensitive in a specific context. For example,
someone’s favorite color may be considered as a NAT in a
microdata set for medical research. We shall use the concepts
of EID, QID, SAT and NAT to explain statistical disclosures
and the SDC methods for frequency tabular data sets.

B. Frequency Tables
A frequency table, also known as a contingency table, is

constructed from a subset of attributes generally referred to as
grouping attributes. The set of grouping attributes γ, which
consists of d attributes, is generally only a small subset of the
attributes of the original microdata. As such, the dimension of
a frequency table, denoted by d, tends to be (much) smaller
than that of the microdata, denoted by D.

A table consists of a number of cells. Every cell Cy , in
a tabular data set DST , contains an attribute value pattern y,
which consists of a combination of grouping attribute values,
i.e., y = {yi|yi ⊂ Ai, ai ∈ γ}. The set notation has been
used here because yi can represent a single attribute value, for

instance, a single age yi=15 if ai=Age, or yi can also be used
to represent a set of ages yi={15, 16}. In frequency tables a cell
Cy expresses the number of records xn in the source microdata
set DSM whose relevant attribute values xn1 , x

n
2 , . . . ., x

n
d fit the

attribute value pattern y. Since the records in DSM generally
have a larger dimension, only a subset of attribute values
are counted. For example, in Table I attributes (xn3 , x

n
4 ) are

counted for all n records when they fit the pattern of (y3, y4).
Table II is an example of a frequency table with attributes
(y3, y4) that could have been sourced from the microdata of
Table I.

TABLE II. EXAMPLE OF A 2-DIMENSIONAL TABLE
CONSTRUCTED FROM TWO ATTRIBUTES IN TABLE I

a4(SAT)
m3=Total

y4=Cancer y4=HIV

a3(QID) y3=15 1 2 3
y3=16 4 5 9

m4=Total 5 7 12

In a frequency table, the cell value can be defined as:

Cy = |{xn|xn ∈ DSM ,∀yi ∈ y : xni ∈ yi}|. (1)

In addition to the cells defined in (1), frequency tables also
contain total cells, denoted by mi, that are only comprised of a
single attribute value. We refer such cells are marginals. Table
marginals in tabular data sets are obtained from the projection
of the j-ary cube a1, a2, . . . , aj onto a subset of j attributes,
also called j-way marginals [8], where j < d. For example,
one-way marginal with respect to grouping attribute ai with
value yi is:

mi(yi) =
∑

Cy∈DST , given yiof y

Cy.

The summation above is over all cells with value yi. The two-
way marginal with respect to attributes ai and aj with value
yi and yj is:

mi,j(yi, yj) =
∑

Cy∈DST , given yi,yjof y

Cy. (2)

These summations can be used to define marginals for up to
d-way marginals.

C. Release
Frequency tables are derived from microdata. Similar to a

microdata set, a frequency table provides information about a
number of records. A frequency table provides this information
about d grouping attributes, while the microdata set DSM
provides this information for all attributes. When frequency
tables have the same dimension as their microdata sources,
the data sources contain the same information, albeit being
differently structured, which is due to the difference between
the definitions of yi and xni . Compared to frequency tables,
microdata generally provides more detailed information, which
introduces a higher risk of personal data disclosures.

Tabular data has been used to provide information on a
subset of attributes, i.e., the grouping attributes, with those
attribute values that are assumed to be interesting for data
users. These attributes are selected to be in the y of the table
cells. A common example is census data, where the objective is
to provide information about the population that is as accurate
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as possible and is processed minimally. When the objective
is to release information for the sake of transparency, tabular
data is a common choice.

III. DISCLOSURE CONCEPTS

In this section, we formalize several concepts that are
relevant for characterizing personal data disclosures within
tabular data sets.

A. Disclosure Elements in Tabular Data Sets
The elements of a tabular data set, or a table in short, that

can be used for disclosing someone’s personal information are:
1) Grouping attributes a1, a2, . . . , ad, which represent the

dimensions of the table.
2) The table description attribute(s) tdes, which results from

the table caption or the textual explanations embedded in
the paragraphs preceding or succeeding the table.

For example, in Table III, there are two attributes a1
(gender, being male or female) and a2 (age, being minor or
adult). The table also includes a table description in the table
caption, saying that the table is about those arrested (acting as
tdes,1) in January 2019 (acting as tdes,2). Note that, although
we denote it as tdes for emphasis, a table description attribute
is also an attribute from the microdata source.

TABLE III. NUMBER OF ARRESTS IN JANUARY 2019
(ACTING AS tdes,1 and tdes,2, RESPECTIVELY).

a1 : Gender male female Total
a2 : Age minor 11 1 12

adult 62 37 99
Total 73 38 111

B. Re-identification
In SDC methods for protecting microdata sets, the back-

ground knowledge of intruders (so-called intruder’s prior),
which can be used to re-identify data subjects, is mainly
modelled in QIDs. In this section, we outline how this ap-
proach can be extended to tabular data sets. To explain the
attribute mapping for tabular data sets, we use Table III as an
example of a frequency table. The cell with value 1 in the
table corresponds to one data record in the microdata set from
which the table is constructed. This cell can be specified by
grouping attribute values a1 = female and a2 = minor, and
the table description attribute values tdes,1 = those arrested and
tdes,2 = in January 2019.

The re-identification of the record, corresponding to a cell
with value 1, may take place based on any combination of
attributes a1, a2, tdes,1 and tdes,2, which may potentially act as
QIDs. For example, in our data set we have a single female
minor who has been arrested in January 2019. That means that
any intruder who knows someone that fits those QID values
uniquely, can identify the person that is counted in Table III.
This will be referred to as the re-identification of a cell with
value 1. Once an individual has been identified to be uniquely
part of a cell, any new information or data related to that cell
will thus also be attributed to that individual, as described in
the following subsection.

Note that for exact re-identification of an individual, cor-
responding to a cell with value 1 in a frequency table, it is

important that just one person fits in the group specified by
the values of the grouping, and description attributes, that
act as QIDs. This category is also called the Equivalence
Class (EC) of those QIDs. This uniqueness of the individual
corresponding to the cell with value 1, and within the EC of the
corresponding QIDs, can be described based on the concepts
of sample uniqueness and population uniqueness [9].

Both sample uniqueness and population uniqueness should
be defined based on the values of those attributes that act as
QIDs. The underlying assumption is that every cell with value
1 (and corresponding microdata record) in the frequency table
can potentially be identified based on the QIDs. The QIDs
being the background information available to an intruder to
link a cell to an actual individual.

Let |SEC | denote the cell value in a frequency table,
i.e., the number of data records of the corresponding micro-
data set. The EC being determined over the values of QIDs
of the frequency table. The value of |SEC | determines the
degree of uniqueness of the cell (or of the corresponding
records/individuals in the microdata set). If |SEC | = 1, then
the corresponding cell is unique in the published frequency
table. A larger value of |SEC | makes the corresponding cells
(or records) less unique.

Sample uniqueness is necessary, but it is not enough for re-
identification. With respect to the set of the QIDs, we assume
that the frequency table (or the corresponding microdata set) is
a sample of a larger population microdata set. In other words,
all data records in the sample data set (i.e., the frequency
table of the corresponding microdata set) are also in the
population microdata set denoted by P , where these sample
and population microdata sets have been defined over the same
attribute value domains. Therefore, both have the same ECs
(i.e., the same patterns of the values for the QIDs). Let |PEC |
denote the size of the EC, which is determined over the values
of the QIDs of the frequency table. The uniqueness of an
individual/record in both microdata sets can be defined by
|SEC | = 1 and |PEC | = 1, which are the sizes of the EC
in those microdata sets. We note that:

• Population uniqueness results in sample uniqueness (i.e.,
if |PEC | = 1, then |SEC | = 1); and

• Sample uniqueness does not necessarily result in popula-
tion uniqueness (i.e., if |SEC | = 1, then |PEC | ≥ 1).

In practice, given a sufficient number of QIDs, an intruder can
fairly accurately estimate the probability that |SEC | = 1 results
in |PEC | = 1. A recent work has shown that the estimations
were possible with more than 95% accuracy when there are
15 QIDs [10].

One should also note that while a data controller can
easily validate sample uniqueness by investigating the released
frequency table (or the corresponding microdata set), this is
not always possible for the population uniqueness. The data
controller does not necessarily possess the entire population
data.

Note that population uniqueness is necessary, but it is not
enough for exact re-identification. In addition to population
uniqueness, whereby the size of an EC in the population data
set is 1 (i.e., |PEC | = 1), there should be a unique identifier
(e.g., an EID) associated with the corresponding EC from the
population microdata set, so that the identities can be linked
to the cell with a value 1 in the frequency table.
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C. Attribution
Some grouping attributes can act as QIDs, as mentioned in

the previous subsections, and other attributes can act as SATs.
An attribute is a SAT when it contains information that could
potentially be harmful for the associated individual or groups
when released [11]. The value of a SAT does not contribute to
the identification of an individual the way that a QID does, as
the SAT is specific to (i.e., known within) the data set to be
released. In combination with external data sets, the grouping
and table description attributes acting as QIDs could be used
to identify individuals and, consequently, reveal the values of
the other grouping attributes for those records/individuals.

Table IV provides 4 example cases of the grouping and
table description attributes that could act as QIDs and SATs,
based on the example given in Table III. Note that in Table
IV, attributes tdes,1 and tdes,2 are merged into attribute tdes for
simplifying the presentation. For each case in Table IV, we
assume that the corresponding QIDs result in identification for
the cell with value 1 in Table III. This is because there is only
a single person described by the QIDs, in those cases, in the
sample data sets (i.e., sample uniqueness), it is assumed that
the population uniqueness holds as well. Note that this is an
illustrative example, in practice, often more QIDs are needed
to result in population uniqueness and someone’s identification
with a high certainty. Furthermore, for the sake of simplicity,
we assume that all other attributes per case in Table III are
SATs.

TABLE IV. FOUR CASES ILLUSTRATING ATTRIBUTION TO
SATs, THROUGH IDENTIFICATION BY QIDs IN TABLE III)

QIDs (already known facts about SATs (new facts known about
the cell contributor in the world) the cell contributor via Table III)

Case 1 a1, a2 tdes
Case 2 a1, tdes a2
Case 3 a2, tdes a1
Case 4 a1, a2, tdes . . .?

Disclosure through re-identification on its own may not be
an issue, if one guarantees that no more information about
the identified individual can been learned. If we examine the
SATs column in Table IV, we find that for cases 1-3 we
do learn a new attribute value from the released table that
describes something extra about the person in the data. Thus,
the combination of unique identification and learning a new
attribute value about the identified individual can lead to so-
called individual attribution. Note that the intruder in case 4
may not learn anything new about the data subject, but the
case could still be perceived as privacy intrusive because this
table aggregates, presents and reaffirms the associations of
all grouping attributes and the table description attribute (i.e.,
a1, a2, tdes) to the individual.

TABLE V. AN ILLUSTRATION OF GROUP ATTRIBUTION.

Number of arrests (tdes,1)
of minors (a2)
in 2019 (tdes,2)
a1: Gender Male female total
a3: Crime hacking 5 5 10

DUI 15 0 15
Total 20 5 25

Attribution can also occur without identification, for exam-
ple, intruders can learn something new about a whole group
without identifying the individual groups members. This is
called group attribution. Consider the example in Table V,
which is a representation with a more specific set of attributes
from Table III. In Table V the grouping attribute a2 assumes
only the ‘minor’ value, furthermore, the grouping attribute a3
is included, which only specifies the crime types: hacking
and Driving Under Influence (DUI). In Table V, we cannot
uniquely identify the records corresponding to the cell with
value 5 by knowing the values of just the QIDs a1 and a2
because they correspond to 5 records/individuals in this table.
Nevertheless, the intruder can learn that the crime type is
hacking (i.e., a3 = hacking), for someone whose QIDs match
(a1, a2) = (female, minor), without being able to re-identify
the exact person from the released table.

IV. SOURCES OF DISCLOSURE

Intruders seek to learn private information about the con-
tributors present in a released table. There are many aspects
that matter when trying to assess the risk of disclosure, such
as the motivation, means and consequences of a disclosure
attempt, which are part of what is called a disclosure scenario
[12]. These aspects vary between releases as much as the
information within the releases does. Most intruders that are
interested in medical data might have little reason to actively
seek disclosure risks in tax data, and vice versa. Both groups,
however, will use similar attacks to learn about contributors.

Let us assume that the intruder, as background knowledge,
has data set DB , where every record zn is defined over d′′
attributes, some of which are defined from the same attribute
domains of the original microdata DSM . In other words,
microdata sets DB and DSM have some attributes in common
(only QIDs).

A. Few contributors
When there are few contributors in a cell of a frequency

table, the risk of disclosure is fairly high. When there is a
single contributor to a cell such that Cy = 1, then there is
a risk of re-identification. If the intruder has knowledge of
the identity of an individual n, whose characteristics fit the
pattern y (i.e., the intruders has knowledge of a record z(n)

that fits y), and |PEC | = 1, then re-identification takes place.
Furthermore, if the length of the pattern y is longer than the
number of identifying attributes in zn (i.e., the attributes in zn
acting as QIDs), then we have attribution because the intruder
can now learn some attributes that the intruder had not known
previously.

A single contributor to a cell is not the only issue. It is
possible that the intruder knows some of the individuals that
contribute to a cell with a value of more than one, i.e., Cy > 1.
For example, when the intruder is in the table himself, or when
the intruder colludes with some other contributors from the
cell to gain information. This information is used to recognize
a single individual with certainty, i.e., to subtract the known
individuals from a cell with Cy > 1 to create a new cell that
has Cy = 1.

B. Zero Cells
One major source of attribution is the presence of zero cells

in the table. Take Table VI as an example, where there are
several zero values. When an intruder has in his background
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knowledge a record zn = (Arrest = yes,Gender =
Female, . . .), then the intruder immediately learns that the
age of the arrested individual is not greater than 21. This is
referred to as negative attribution [13], whereby we learn which
values cannot be attributed to an individual.

TABLE VI. EXAMPLE OF SKEWED TABLE OF ARRESTS IN
2019 (a3)

a1:Age marginal
< 18 18− 21 21− 29 29+ mgender

a2:Gender female 1 37 0 0 38
male 3 0 21 10 32

marginal mage 4 37 21 10 70

Negative attribution is a form of disclosure that occurs
commonly, as any zero cell in a table could lead to negative
attribution. The impact of negative attribution is generally
smaller than exact attribution. Learning that someone is not
exactly 15 years old, is less impactful than learning that some-
one is exactly 16 years old. However, as negative attributions
are common, multiple negative attributions can be combined
to have close to exact attribution. An intruder may learn that
everyone in Table VI had been trialed as an adult, which can
only happen for 15-year olds or older, resulting in a negative
attribution that no one is younger than 16. Now, an intruder
can learn from Table VI that any female in the table is between
the ages of 16 and 22.

In some cases, zero cells can cause exact attribution. In
the case of Table VI, if the intruders know of an individual
between the age of 21 and 30 that had been arrested, the in-
truders will immediately learn that the gender of the individual
is male.

C. Differencing
Unfortunately, disclosure risk does not originate only from

having cells with few or no contributors. If it had been so, it
would have been possible to adjust only the specific cells with
low numbers of contributors. The values that cells represent in
a table are dependent on each other. For example, the value in
one cell could be the summed total of several other cell values
(like marginals). When the value of a cell is adjusted for its
protection, it is sometimes possible to use the cells that are
related to that cell to find the original value of the cell.

Suppression is a common method for tabular protection
that hides the number in the cell with a ”*”, ”NULL”, or any
other string or symbol. Such a symbol clearly indicates that
the value of the cell is suppressed [11]. Let us reconsider Table
VI, only this time we suppress the values of the first column by
publishing a new cell C ′female,<18 = ∗, instead of the correct
value Cfemale,<18 = 1. An intruder does not directly know
the number of contributors belonging to the cell with pattern
(female,< 18). Further, assume that the intruder does know
the number of contributors that belong to the gender marginal,
i.e, the right most column in Table VI. We can subtract all other
cell values from the marginal to retrieve the original value:

Cfemale,<18 = mgender(female)− Cfemale,18-21

−Cfemale,21-29 − Cfemale,29+
= 1.

This common linear relation between the cells makes it much
harder to determine which cell to adjust. In the case of

suppression, for example, the problem becomes NP-complete
[14]. Aside from marginals, other cells may also have a
linear relation with each other. When a table describes some
flows, for instance, the number of patients following a certain
treatment, then one common relation is that the number of
outputs of the flow equals the number of inputs of the flow
subtracted by the number of cases still being in the flow (e.g.,
receiving a treatment). These types of relations are inherent to
the domain and the processes that the data tracks. Generally,
some domain knowledge is necessary to identify such relations.

D. Linking
When assessing the disclosure risk of a table, it is not

enough to only examine the table itself, as the cells in a table
can be linked to the background knowledge of the intruder and
other tables that may have been released in the past. Generally,
different table releases use different source (micro)data, which
makes information linking unlikely. However, several specific
types of data releases have been identified that have a high
risk of disclosure through linking [16]. Linking increases
the number of methods, which includes the ones previously
discussed, for personal data disclosure.

One situation where data linkage likely leads to disclosure
is when the same data is released multiple times with slight
alterations, for example, when changing the values of an
attribute. This has been identified for microdata as the repub-
lication problem [15]. The same problem persists in tabular
data releases. When a table is published with, for example, a
cell value Cage=16-19, it is possible to adjust the value of the
grouping attribute age and release a cell value of Cage=15-19.
This adjustment may be done for a variety of reasons, such
as a new legislation making the new age group of interest or
when a new method for generating tables is implemented. Even
when both cells are safe given the disclosure risk mentioned
above, the difference between these releases generates a new
cell Cage=15 which may not be safe. We refer to [16] for more
extensive examples of disclosure through linking.

When searching for disclosures in data, intruders can use
linking and differencing to create more cells with zero or
unique contributors. Subsequently, intruders can try to re-
identify individuals contributing to those cells and carry out
attribution attacks against those individuals. This search pro-
cess is visualized in Figure 1.

Figure 1. Diagram representing the relation between disclosure
sources.

E. Approximate Disclosure
Disclosures do not always happen with complete certainty.

If data is appropriately protected, it is possible that none of
the disclosure scenarios above occur. When an intruder has
some uncertainty in the attribution or re-identification, the
intruder could either direct more resources towards confirming
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the re-identification or attribution (e.g., via linking the newly
discovered information with other data sources). It is possible
to have approximate disclosures in re-identification and attri-
bution cases.

Re-identification with sampled data almost never happens
with complete certainty. An intruder with access to a sampled
table, might potentially discover cells representing only one
individual, i.e., Cy = 1. The intruder might even know a
person that fits pattern y. The risk of disclosure may still be
fairly small if the intruder has no knowledge of how large
the number of similar individuals in the population is. In other
words, the value of the corresponding |PEC | could be one, but
can also be let us say 100 (i.e, the individual could be unique or
100 individuals could fit that pattern in the population). In the
former, the re-identification with certainty can occur. In certain
cases, given uniqueness in the sampled data, it is possible to
be fairly certain how many individuals fit that pattern in the
population. For example, [17] has shown that 86% of the U.S.
population is unique given only a few attributes.

Zero cells commonly cause (negative) group attribution,
since intruders can learn that no individual in surrounding
groups belongs to the pattern represented by the zero cell.
It is also common that, instead of zero, there are only very
few individuals belonging to one cell and an overwhelming
majority belonging to another cell. Consider the distribution
of female arrestees in Table VI, where the majority (i.e., 37)
are adults, compared to the single arrestee that was a minor. If
an intruder seeks to learn information about a female arrestee,
the intruder may conclude with fairly high certainty that she
is an adult. In many nations it is common for minors’ privacy
to be additionally protected by law. Thus, an intruder who
learns that his target is likely an adult, might become more
motivated to spend more resources in tracking his target, as
their information may be more easily accessible (relative to a
minor).

Differencing and linking can be applied to find cells with
few or zero contributors. This can lead to identification and
attribution as depicted in Figure 1. When finding these cells,
an intruder may approximate the likelihood that an individual,
whom the intruder may know, is associated with some sensitive
information. This approximate learning is unavoidable to an
extent. However, it is important that intruders do not learn too
much sensitive information about individuals either exactly or
approximately. For this purpose, various privacy models have
been devised for protecting frequency tables.

V. PRIVACY MODELS

There are various techniques to protect tabular data from
attacks. These techniques adjust the table and the cells by
suppressing or rounding cells, restructuring table attributes [11]
or adding noise [18]. These techniques aim at having a certain
level of privacy. The level of privacy is determined by so-
called privacy models, which identify the cells or records that
could be at risk of disclosure. The privacy models, although
researched independently, are fairly similar for tabular data
and microdata. In this section, we aim at clarifying these sim-
ilarities. Furthermore, note that these privacy models cannot
guarantee full protection against all disclosures. But, if they
are appropriately applied, they can minimize the likelihood
that intruders with reasonable resources are able to disclose
sensitive information.

A. Exact Risks
One early and fairly common privacy model in microdata

is k-anonymity [19]. This model requires that for any pattern
of QIDs, y = (a1 = i, . . . , ad = j), there are at least k
individuals that belong to that pattern. Similarly, if we use
pattern y to define a cell in the table, then when the privacy
model is applied on the microdata it also holds for tabular
data: Cy ≥ k.

One major issue with the k-anonymity privacy model is
that it does not protect SATs, even though these are commonly
released. k-anonymity ensures for every possible QID pattern
to have sufficient individuals. This makes it difficult to identify
a single individual and, generally, any SAT published will have
values distributed across many QID patterns. However, one
common source of disclosure risk arises when a SAT value
is skewed towards one group. Take pattern y and extend it
with a SAT s, let us take gender as s. In this case, it is
possible that Cy,s=female = 0, whereas Cy,s=male = 15
(we used this example in Table V). We may not be able to
identify an individual based on pattern y from the data, but we
learn that any individual that falls under pattern y is a male.
This is known as a homogeneity attack and can be reduced
with the `-diversity model [20]. `-diversity requires that for
all QID patterns there are at least ` SAT values (note that
this requirement holds for every SAT attribute). In the case
of gender, requiring 2-diversity means that Cy,s=male ≥ 1
and Cy,s=female ≥ 1, which would prevent zeroes in the
case of two genders. If another sensitive value j = bigender
would be possible, then with 2-diversity only two cells have
to be nonzero and, in this case, one zero would be allowed
in {Cy,male, Cy,female, Cy,bigender}, thus negative attribution
can still occur, but at least ` possible values prevent exact
attribution without extensive background knowledge.

Both k-anonymity and `-diversity have been developed
for microdata protection. Similarly, the minimum frequency
rule was developed for protecting frequency tables [21]. The
minimum frequency rule restricts all cells to contain at least
n individuals, i.e., Cy ≥ n. This is required for a complete
pattern y, this includes all the QIDs and SATs. The minimum
frequency rule is a more strict model than `-diversity as
it prevents any negative attribution. This provides additional
protection but may remove too much information in certain
cases. `-diversity can already suffer from too much information
loss with multiple SATs due to the curse of dimensionality
[22]. In protecting frequency tables, the minimum frequency
rule requires removing zero cells, which may reduce the
number of grouping attributes in order for a table to uphold
the rule.

Whether zeroes are acceptable varies by case, as the impact
of negative attribution is severely less than of exact attribution.
The minimum frequency rule is the strongest in prevention of
zero cells, `-diversity prevents exact attribution through zero
cells, and k-anonymity leaves the most information for data
users, but also provides the least protection against negative
or exact attribution through those cells.

B. Approximate Risks
A data controller may prevent exact identification and

attribution of individuals, given that intruders have a limited
set of resources for re-identification or attribution. However,
approximate attribution in some cases might be sufficient for
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an intruder with enough background knowledge, or resources,
to learn sensitive information.

A risk of approximate attribution exists when there is a
skew between subgroups, e.g., when almost everyone that
fits a certain pattern y belongs to a specific age group. This
concern has been identified for microdata, which resulted
in Entropy `-diversity being introduced [20]. The entropy
restriction requires that individuals that fit pattern y are well
distributed across the values of their SATs. For example, for
a SAT s in the set of sensitive attributes S, entropy can be
defined as:

Entropy(y) = −
∑
s∈S

p(Cy,s) log p(Cy,s),

where p(Cy,s) is the fraction of contributors that belong to
pattern y and sensitive value s. If Entropy(y) ≥ log ` holds
for all patterns y, then the data is considered safe.

Even with entropy `-diversity, it is still possible to learn
something about pattern y. For example, if we take a SAT with
value s1 representing some rare disease and value s2 some
common disease, we can take p(Cy,s1) ≈ p(Cy,s2) ≈ 0.5,
which will have very high entropy and be considered to have a
low risk of disclosure. Assume the fraction of p(s2) in the data
as a whole is very small ≤ 0.001, then intruders can learn that
individuals that fit pattern y have an abnormally large chance of
having the rare disease. This is known as the skewness attack
and can be prevented with the t-closeness model [5]. The t-
closeness model requires the distribution of the attribute values
s ∈ S, for every pattern y, to be similar to the distribution of
s in the data as a whole.

`-diversity and t-closeness have been developed for mi-
crodata. For tabular data, a work recently introduced privacy
models that includes an entropy constraint for tabular data
[23][24]. The entropy constraint in the model is a generaliza-
tion of `-diversity and t-closeness. Instead of using the entropy
of S over a pattern y, this model restricts the entropy of the
distribution over C (all cells). Computing the entropy over
C, ignoring the grouping of cells by their SATs, and instead,
restricting the entropy for all cells regardless of their SATs or
QIDs, allows for more protection on the table as a whole. As
`-diversity and t-closeness solely restrict the distributions with
respect to SATs, they reduce only the most impactful disclosure
risks (on SATs) while maintaining more useful information.
However, determining which attributes should be considered
as QIDs or SATs is not always a trivial task [25].

C. Differential Privacy
A data controller may not always be able to determine

the QIDs and SATs accurately, as it is difficult to know what
kind of information is out there. A data controller may be
aware of intruders with a lot of resources and background
knowledge, but may be unable to specify the means these
intruders possess exactly. For such cases, differential privacy
models have been developed, originally for microdata [6], and
later also introduced for tabular data [26]. ε-differential privacy
requires that the effect that individuals have on the data is
limited. Take data sets DS and DS∗, where the difference
between the two is a single individual, the result r (the result
of an analysis or a query), for both data sets, has to be similar

enough such that:

P (r|DS)
P (r|DS∗)

≤ eε. (3)

The advantage of applying such a model is that data con-
trollers have a theoretical guarantee for containing personal
data disclosures with a tuneable parameter ε. This guarantees
holds regardless of the information an intruder may possess
[6]. This property makes ε-differential privacy useful for cases
where data controllers do not know much about the intruders’
background knowledge. Note that this guarantee applies to
the definition of ε-differential privacy, according to which the
presence or absence of the (personal) data of an individual in
a data set must not have an observable impact on the output
of an analysis/computation over that data set [6]. Whether this
definition of privacy is comprehensive and adequate has not
been established yet.

Recently, there has been a significant demand for on-line
table generation, which allows the user to query data numerous
times, instead of receiving a pre-processed data set. This has
advantages for both data user and data controller, but it also
comes with the issue that if the data users are also potential
intruders, then, they now possess resources for differencing
and linking [27][28]. In such environments, especially when
data users’ queries are minimally controlled, the differential
privacy model is indispensable. More syntactic privacy models
[29], such as k-anonymity and t-closeness, cannot protect the
data against such intruders, unless the queries are restricted or
tracked to prevent the intruder’s background knowledge from
increasing too much.

One issue with differential privacy is that, in order to
provide the guarantee (3), a stochastic mechanism is required
to transform the data. This transformation is generally achieved
by using some distribution of noise [30]. Applying noise or
some other stochastic mechanism to transform the data has
a probability that the transformed data differs significantly
from the original data. This issue in the so-called the range
of correctness [29], i.e., the possible original values that the
transformed data represents, makes it more difficult to apply
the differential privacy model. In cases where it is expected
that the published statistics about crime, income, etc., are
close to their actual numbers (e.g., when releasing census
tables), large potential variations are unacceptable. This issue
has been identified in US census data, where due to smaller
samples with some outliers, the added variance from the
noise could vary between 1000% and 7000% for moderate
levels of privacy [31]. There are more variations of differential
privacy that vary slightly in the privacy and utility levels but
provide similar theoretical guarantees as (3) and require some
stochastic mechanism to work as well. For a more extensive
view focused on differential privacy, we refer to [30].

VI. CONCLUSION AND FUTURE WORK

This study examined privacy models from microdata and
tabular literature through a unified formalization. It was found
that the personal privacy models in the tabular data literature
are more privacy-preserving, and thus require less information
to be released than their microdata counterparts. The dimen-
sion, i.e., the number of attributes of the data that is published,
is generally much larger for microdata than for tabular data.
When there are more attributes, intruders may learn more from
attribution, additionally, intruders have more attributes at their
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disposal for re-identification. As such, having stricter privacy
models for tabular data may seem counterintuitive.

From the comparison of the privacy models, it becomes
clear that the background knowledge is differently assessed
between the two data types. The privacy models for tabular
data require the same protection for all cells, regardless of
the classes, such as QIDs or SATs. If done correctly, using
microdata privacy models allows for releasing more data with
minimal increase of privacy risks. However, the process of
classifying the attributes into QIDs, SAT, etc., is difficult. Due
to tabular data being more aggregated by nature, it generally
needs to be less transformed/processed (than its microdata
counterpart) to provide similar privacy guarantees. For the
same reason, the information in tabular data is more robust
against stronger privacy models, which means that adhering
to stronger privacy models causes less information loss for
tabular data. However, as the dimension of tables increases, we
suspect that using attribute classes, such as QIDs and SATs,
in data privacy models may become unavoidable. Additional
research is required into the loss of information from privacy
models for various release purposes and dimensions of tables.
A different manner to avoid the process of having to assign
attribute classes is by applying differential privacy. One issue
of differential privacy for tabular data is that the range of
correctness for values can become very large. This can increase
the variance tremendously, as shown in previous works, which
may be unacceptable for common tabular data releases, such
as census tables.

Microdata and tabular data are very similar, however, there
are differences in practical release purposes that cause tabular
data to generally require more accuracy for data users in
their privacy models. A possible future work is to assess how
protection methods, i.e., the transformation done on the data,
differ between microdata and tabular data. Of interest would
be to investigate whether similar differences can be found
in protection methods, for tabular data and microdata, and
whether they depend on the slight differences in the purposes
of release for the respective data types.
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