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Abstract

DNA-based identification through the use of metabarcoding has been proposed as the next

step in the monitoring of biological communities, such as those assessed under the Water

Framework Directive (WFD). Advances have been made in the field of metabarcoding, but

challenges remain when using complex samples. Uneven biomass distributions, preferential

amplification and reference database deficiencies can all lead to discrepancies between

morphological and DNA-based taxa lists. The effects of different taxonomic groups on these

issues remain understudied. By metabarcoding WFD monitoring samples, we analyzed six

different taxonomic groups of freshwater organisms, both separately and combined. Identifi-

cations based on metabarcoding data were compared directly to morphological assess-

ments performed under the WFD. The diversity of taxa for both morphological and DNA-

based assessments was similar, although large differences were observed in some sam-

ples. The overlap between the two taxon lists was 56.8% on average across all taxa, and

was highest for Crustacea, Heteroptera, and Coleoptera, and lowest for Annelida and Mol-

lusca. Taxonomic sorting in six basic groups before DNA extraction and amplification

improved taxon recovery by 46.5%. The impact on ecological quality ratio (EQR) scoring

was considerable when replacing morphology with DNA-based identifications, but there

was a high correlation when only replacing a single taxonomic group with molecular data.

Different taxonomic groups provide their own challenges and benefits. Some groups might

benefit from a more consistent and robust method of identification. Others present difficul-

ties in molecular processing, due to uneven biomass distributions, large genetic diversity or

shortcomings of the reference database. Sorting samples into basic taxonomic groups that

require little taxonomic knowledge greatly improves the recovery of taxa with metabarcod-

ing. Current standards for EQR monitoring may not be easily replaced completely with

molecular strategies, but the effectiveness of molecular methods opens up the way for a

paradigm shift in biomonitoring.
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Introduction

Now that the use of DNA barcoding for the identification of species [1] has proven its merit,

research is shifting towards the integration of molecular identifications in ecological and biodi-

versity assessments across different biomes [2–5]. Integration of molecular techniques can

provide a significant added value for the monitoring of biological quality elements (BQEs) in

fields such as the quality monitoring of freshwater under the European Framework Directive

(WFD) [6]. To date, many of the BQEs analyzed for WFD monitoring are still assessed using

traditional morphology-based methods [7]. These traditional methods, however, are known to

be hampered by difficulties in identification and substantial differences between assessors [8–

10], and can be expensive due to their time-consuming nature [11–13].

Recent advances have shown the efficacy of DNA metabarcoding to assess macroinverte-

brate samples [5,14] and to obtain metrics for bioassessments [15–17]. Although DNA-

based methods are generally perceived as an improvement over the traditional morphologi-

cal assessments [18], challenges remain to be solved before DNA-based methods can be

fully incorporated into routine bio-monitoring. Studies employing metabarcoding of

aquatic macroinvertebrates are often limited to single samples [19], a select subset of taxa

[20] or rely on mock communities [21–24]. Research that does cover a broader variety of

WFD monitoring samples often deals with differences in taxonomic resolution between

morphological and DNA analyses [16,25]. One of the main confounding effects in the use of

molecular approaches is the effect of primer bias and preferential amplification in complex

samples, leading to taxonomic bias [26,27]. Interactions between taxa from various organ-

ism groups, of varying sizes and in varying biomass ratios remain understudied, and impli-

cations can be severe, limiting the possibility to relate metabarcoding read data to actual

taxon abundances [28], even though these actual abundances might not be as important for

simple ecological quality ratio calculations used by water monitoring agencies [29].

In this paper, we assess the implementation of DNA metabarcoding for species identifica-

tion in bulk samples collected under the WFD. We evaluate the performance of DNA metabar-

coding-based identification of taxa across six different taxonomic groups that collectively

cover most of the traditional macroinvertebrate samples collected for WFD freshwater quality

assessments: Annelida, Crustacea, Heteroptera/Coleoptera, Mollusca, Trichoptera/Odonata/

Ephemeroptera, and Diptera. Our aim is to assess the effects of taxonomic sorting on the

recovery of taxa from bulk metabarcoding, and the impact of replacing these groups with

molecular data on ecological quality ratio (EQR) scoring. While EQRs are a simplified way to

look at community compositions, they provide an insight in water quality, and are widely used

by water monitoring agencies to assess the status of surface waters under the WFD [7,29]. We

also discuss some concerns on DNA reference databases that may hinder successful applica-

tion of molecular methodology in biomonitoring.

Materials and methods

Sample selection and processing

Freshwater macroinvertebrate samples were collected in the Hoogheemraadschap Rijnland

monitoring district in 2010 and 2012 by ecological survey company Aquon (Leiden, the Neth-

erlands). Samples were collected and analyzed according to standardized WFD monitoring

guidelines [30]. Specimens were sorted by Aquon taxonomists into seven different categories

during morphological analysis, and stored separately in ethanol per taxon group: ANNE

(Annelida), ACA (Hydrachnidia, stored in Koenike’s fluid), CRUS (Crustacea), HECO

(Heteroptera and Coleoptera), MOLL (Mollusca), TOE (Trichoptera, Odonata and
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Ephemeroptera), and REST (miscellaneous, predominantly Chironomidae and other Diptera).

Specimens were identified to lowest possible level, preferably species level. For this study, we

selected 25 samples out of 138 from the monitoring cycles of 2010 and 2012. More recent sam-

ples could not be used, as there is a five-year retention period for WFD monitoring samples.

Samples were selected based on the WFD ecological quality ratio (EQR) scores (range 0.158–

0.759), as well as the Shannon-index (range 0.840–4.326), to represent a broad range of sample

diversities and complexities (for all 138 samples, EQR ranged from 0.059 to 0.847 and Shan-

non-index ranged from 0.602 to 4.326). EQR scores in the Dutch WFD monitoring range

from 0.0 to 1.0, and are divided into 5 categories ranging from “bad” (EQR 0.0–0.2) to “high”(-

EQR 0.8–1.0) (for more detail, see [25]). The 25 selected samples represented four out of five

quality classes, in the 138 samples there was only one sample that was scored as “high”. The

full taxon lists with specimen counts have been included in the supplementary data (S1 File).

Not all of the seven groups were present in all samples. The water mites (ACA) were

excluded from the analysis, as they were preserved in Koenike’s fluid (45% water, 45%, glyc-

erin, 10% glacial acid acetic), which had a negative impact on the preservation of DNA and we

were unable to obtain useable DNA extracts from the samples. To account for the missing

taxa, water mites were also removed from the morphological lists during the comparison of

DNA and morphology.

DNA extraction and amplification

Specimens were homogenized in 15 ml sterile tubes containing 10 steel beads (5 mm diame-

ter), using the IKA Ultra Turrax Tube Drive (IKA, Staufen, Germany) in a fixed volume of 5.0

ml 96% ethanol. Each tube was ground three times for one minute on the maximum speed set-

ting (6000 rpm). A tube with only 5.0 ml of 96% ethanol was used as an extraction blank. After

homogenization, 500 μl of the ethanol with ground specimens was transferred to a 2 ml tube,

and the ethanol was evaporated using a Concentrator plus vacuum centrifuge (Eppendorf, Nij-

megen, the Netherlands). DNA was extracted from the remaining dry debris using the Nucleo-

mag 96 Tissue kit (Macherey-Nagel, Düren, Germany) on the Kingfisher Flex Purification

System (Thermo Fisher, Waltham, MA, US), with a final elution in 150 μl. To simulate a total

DNA extraction on all taxa of one sampling location combined, 5.0 μl of DNA extract from

each of the taxonomically sorted samples belonging to one location was combined into a pool,

which was amplified and sequences in the same way as the sorted samples.

A two-step PCR protocol was used to create a dual index amplicon library, using primers

BF1 and BR2 [22] to amplify a 316 base pair fragment of the COI barcoding region. These

primers have been shown to successfully amplify a wide range of freshwater macroinverte-

brates. All 183 samples (158 individually extracted tubes and 25 pools) were amplified and

labeled separately, using two PCR replicates for each sample. First round PCRs were per-

formed in 20 μl reactions containing 1x Phire Green Reaction Buffer, 10 μg BSA (Promega,

Madison, WI, US), 0.5 mM dNTPs, 0.4 μl Phire Hot Start II DNA Polymerase (Thermo Fisher,

Waltham, MA, US), 0.65 μM of each primer and 2.0 μl of template DNA. Initial denaturation

was performed at 98˚C for 30 seconds, followed by 30 cycles at 98˚C for 5 seconds, 50˚C for 5

seconds and 72˚C for 15 seconds, followed by final elongation at 72˚C for 5 minutes. PCR suc-

cess was checked on an E-Gel 96 pre-cast agarose gel (Thermo Fisher, Waltham, MA, USA).

PCR products were then cleaned with a one-sided size selection using NucleoMag NGS-Beads

(Macherey-Nagel, Düren, Germany), at a 1:0.9 ratio.

Second round PCRs to add the individual P5 and P7 Illumina labels (Nextera XT Index Kit;

Illumina, San Diego, CA, USA) were performed using 3.0 μl of cleaned PCR product from the

first round in a 20 μl reaction containing 1x TaqMan Environmental Master Mix 2.0 (Thermo
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Fisher, Waltham, MA, USA) and 0.5 μM of each primer. Initial denaturation was performed at

95˚C for 10 minutes, followed by 14 cycles at 95˚C for 30 seconds, 55˚C for 60 seconds and

72˚C for 30 seconds, followed by final elongation at 72˚C for 7 minutes. All PCRs were per-

formed in 96-well plates, with replicates in separate plates. Each plate contained two wells with

an artificial internal control (AIC) sample that was used to gauge the amount of cross-contam-

ination between samples in the amplification process in the laboratory. The artificial control

was based on the COI barcode region of a Reeve’s muntjac (Muntiacus reevesi) with several

primer sets built into the sequence, and synthesized by IDT (Leuven, Belgium) (S1 Fig). Sec-

ond round PCR products were quantified on the QIAxcel (Qiagen, Venlo, the Netherlands)

and pooled equimolarly per PCR plate using the QIAgility (Qiagen, Venlo, the Netherlands).

Pools were cleaned with a one-sided size selection using NucleoMag NGS-Beads (ratio 1:0.9)

then quantified on the Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA) with

the DNA High Sensitivity Kit. The pools were then combined equimolarly into one sample

and sequenced in one run of Illumina MiSeq (v3 Kit, 2x300 paired-end) at Baseclear (Leiden,

the Netherlands). Sequence data is available from the NCBI Sequence Read Archive (Biopro-

ject accession PRJNA550542).

Bioinformatics

Quality filtering and clustering of the entire dataset was performed in a custom pipeline on the

OpenStack environment of Naturalis Biodiversity Center through a Galaxy instance [31]. Raw

sequences were merged using FLASH v1.2.11 [32] (minimum overlap 50, mismatch ratio 0.2);

non-merged reads were discarded. Primers were trimmed from both ends of the merged reads

using Cutadapt v1.16 [33] (minimum match 10, mismatch ratio 0.2). Any read without both

primers present and anchored was discarded. PRINSEQ v0.20.4 [34] was used to remove reads

with length below 313 bp and above 319 bp, to allow for natural variations in coding sequence

as well as potential primer slippage [35]. Sequences were dereplicated and clustered into

Molecular Operational Taxonomic Units (MOTUs) using VSEARCH v2.10.3 [36] with a clus-

ter identity of 98% and a minimal accepted abundance of 2 before clustering. The presence of

AIC reads in the regular (non-control) samples, as well as the presence of non-AIC DNA in

the control samples was used to determine the MOTU filtering threshold; only MOTUs with

read abundances above 0.025% were retained for each replicate. Samples with fewer than 4,000

reads were discarded and PCR replicates were combined according to the additive strategy,

counting all MOTUs, irrespective of how many replicates they occurred in [37], as the intent

was to recover as many taxa as possible.

MOTU sequences were compared to a custom reference database using an extended

BLAST+ script (https://github.com/naturalis/galaxy-tool-BLAST). The custom reference data-

set included 2,757 COI barcodes obtained from WFD species collected in the Netherlands as

part of the national DNA barcoding campaign [38], supplemented with sequences obtained

from BOLD [39] belonging to the 795 genera listed on the Dutch WFD species list. A total of

350,449 public sequences of 679 genera were retrieved from BOLD using the package ‘bold’

[40] in R [41] (sequences downloaded 28 June 2018). The remaining genera were either not

present in the BOLD database (107 genera) or had no public sequences linked to them (9 gen-

era). The exclusion of sequences not identified to at least genus level allowed for linking taxa to

the Dutch Species Register (https://www.nederlandsesoorten.nl/) based on genus names, mak-

ing all taxonomic data compatible for use in lowest common ancestor analysis. The final data-

base was dereplicated, removing all entries that had 100% identical DNA sequences and

species names. MOTUs were also compared to a second custom reference library containing

COI sequences and bacterial genomes downloaded from NCBI GenBank [42] (sequences
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downloaded 21 August 2018), to help filter out non-macroinvertebrate MOTUs and correct

for misidentifications based on contaminated (e.g. Homo sapiens or Wolbachia) or otherwise

erroneous sequences in the BOLD database.

The top 100 hits were obtained for both BLAST comparisons. Anticipating gaps in the

DNA database, we developed a custom lowest common ancestor (LCA) tool to be able to

assign higher-level taxonomic assignments for MOTUs without direct hits (>98% match and

100% coverage) in the reference database. The LCA tool was based on MEGAN [43], with

adaptations to allow for the use of custom taxonomic databases and integration into the Galaxy

infrastructure (https://github.com/naturalis/galaxy-tool-lca). The LCA script was performed

on the top 5% hits, with bit-score>170, a minimum identity of 80% and a minimum coverage

of 80%. The LCA tool was set to identify MOTUs no further than genus level. All direct hits

(>98% match) were retrieved directly and accumulated based on taxon name associated with

the sequences. To check for non-Dutch taxa and synonyms, a custom taxon matcher tool

(https://github.com/naturalis/galaxy-tool-taxonmatcher) was used to compare all the names

obtained to taxa recorded in the Dutch Species Register. In case of multiple taxa having a direct

hit, the names were manually checked and taxonomy was determined based on the following

set of rules: (1) non-Dutch species were removed, (2) synonyms were resolved, (3) sub-species

level identifications were set to species level, (4) when a MOTU matched both genus level

sequences and species level reference sequences of the same genus, species level identifications

were retained, (5) putative misidentifications or contaminations were removed, based on

expert judgment and the top 100 BLAST hits, (6) if one species matched consistently higher

than another, the species with a better match was retained, (7) in case of equal matches with

multiple species, all species names were retained (e.g. species complexes that could not be

resolved with the available reference sequences).

Comparison morphology versus molecular identification

After applying the LCA script, MOTUs with the same taxonomic assignment were aggregated.

Individual samples were then accumulated into their respective locations, with exception of

the pool sample. Taxa lists obtained from the molecular analysis were compared to the WFD

taxa lists based on conventional morphological identifications provided by Aquon. Morpho-

logical taxa lists were first matched to the Dutch Species Register using the same script that

was used to compare the taxa lists retrieved from metabarcoding, to make the species names in

both lists compatible. Before the comparison, redundancy was removed from both taxa lists, to

exclude uncertainties in identifications or potential duplicates (i.e., a genus level identification

was omitted if the list also contained specimens from that genus that were identified to species

level).

DNA-based taxon lists from the pools and the separately sequenced samples added together

were both compared to the morphological list manually. Each entry on the combined lists was

classed into one of the following categories: (1) “found”, where there was an exact match

between both lists; (2) “identified at a different level”, when there was a match, but either one

of the lists had a higher-level identification; (3), “putative misidentification”, in cases where

two different species from the same genus were listed on the respective lists; (4) “missing in

reference” when the morphologically identified species was not covered by the DNA reference

database; (5) “not found”, when the taxon was covered in the reference database, but only

encountered in the morphological list; (6) “extra”, when the taxon was only encountered in the

DNA list. To calculate the overlap between morphology and DNA, the first three categories

were grouped together as being found in both lists, the taxa missing from the reference were

counted towards the taxa only found in the morphology.
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To analyze if uneven sequencing depth between samples pooled prior to amplification and

the separately sequenced samples added together had any effect on taxonomic recovery, and to

allow for better comparison between samples, all data was rarefied to the lowest read count

available. Pooled samples were all rarefied to 15,000 reads, separately sequence samples repre-

senting the different taxon groups were each rarefied to 2,500 reads to adjust for the fact that

most pools consisted of six taxon groups.

Ecological quality ratio (EQR) scores were calculated according to the Dutch standards for

both morphological and DNA-based taxon lists, using the QBWat software version 5.33 [44]

(with redundancies removed as described previously). Scores were calculated based on pres-

ence/absence data (with all specimen counts set to one) for both morphological and molecular

data. Previous research has shown that abundances had limited impact on the EQR score [29].

Results

Sequence run statistics

Sequencing resulted in a total of 9,998,809 read pairs. After merging and quality filtering,

9,081,986 sequences were retained for MOTU clustering. AIC reads were detected in several

non-control samples. A 0.025% threshold for filtering low-abundance MOTUs from each sam-

ple removed control reads from all samples. After filtering the MOTU table 2,460 MOTUs

were retained in the non-control samples, representing 8,200,488 reads. Out of 366 replicates

(158 sorted samples, 25 pools, all in duplicate), 77 with fewer than 4,000 reads were discarded.

On average, PCR replicates had 28,345 reads (range 4,197–69,919), and 43.0 MOTUs (range

2–132). There was no correlation between number of reads and number of MOTUs in each

sample.

Taxonomic composition

Using the two reference libraries, 1,837 MOTUs were identified as macrofauna taxa listed on

the Dutch WFD taxon list on at least order level. A total of 319 MOTUs had direct matches

above 98% percent, representing 213 distinct species or species complexes. The remaining

MOTUs were identified to genus (1,394 MOTUs, 121 genera), family (93 MOTUs, 12 families)

or order level (31 MOTUs, 11 orders). MOTUs that were not identified to at least order level

were discarded. The final dataset of the sorted and separately amplified groups represented

208 species, 159 genera, 75 families and 34 orders. The data for the pools that were combined

before the PCR amplification contained 172 species, 139 genera, 65 families, and 31 orders.

The morphological lists covered 214 species, 151 genera, 73 families, and 30 orders (excluding

the water mites) (S1 File). DNA-based taxon richness was significantly correlated with mor-

phological taxon richness for both sorted samples (r = 0.662, p = 0.001) and pooled samples

(r = 0.602, p = 0.002), where redundant taxa had been removed (Fig 1A). An additional 13

macroinvertebrates identified at species level were lost by the 0.025% threshold filtering (and

only observed in the data that was discarded by this filter step). Seven of these were also

recorded in the morphological assessment, the other six were only found using DNA. One of

the species found in the discarded DNA-based data was Musculium lacustre, which was present

in four samples where it was also detected morphologically, but only with one or two reads in

each case.

To exclude the influence of sequencing depth (as sorted samples combined represented

more sequencing depth than the pooled samples), we rarefied the samples to such an extent

that sorted samples represented only one sixth of the pooled samples (most pools consisted of

six combined extracts). Without rarefaction, the sorted samples had an average of 272,914

reads (range 170,637–424,726), which was 4.8 times more than the pools had (57,283 on
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average, range 15,061–122,002). They also had 2.67 times as many MOTUs and 1.52 times as

many taxa as the pools. With rarefaction the sorted samples still had 2.22 times as many

MOTUs and 1.40 times as many taxa; neither was significantly lower than without rarefaction.

Comparison morphology versus molecular identification

Retaining the redundant taxa, the average richness of pooled samples (32.5 on average, range

16–56) was significantly lower than that of the sorted samples (47.6 on average, range 22–76)

(Dunn’s test, p = 0.005). When redundant taxa were removed, the richness of the pooled sam-

ples (22.9 on average, range 10–38) was again lower than the sorted samples (30.6 on average,

range 12–54), but not significantly. Compared to the morphological richness with redundant

taxa (46.7 on average, range 16–89), the richness of the pooled samples was significantly lower

(Dunn’s test, p = 0.027). The richness of the pooled samples was also significantly lower than

the morphological richness when redundancy was removed (40.8 on average, range 14–75)

(Dunn’s test, p< 0.001). The richness of the sorted samples was not significantly different

from the morphological richness in either situation.

For 13 out of 24 separately processed mollusc samples (one sample did not include mol-

luscs) we were unable to amplify molluscs using the standard approach for DNA extraction

and PCR. Additionally, four annelid samples, three Heteroptera/Coleoptera (HECO) samples,

one crustacean sample, and one TOE sample failed to amplify, although the latter two only

contained three and two species, respectively. The failed mollusc samples on average contained

13.2 morphologically identified taxa (range 5–20), the failed HECO samples 18.3 taxa (range

7–25) and the missing annelids accounted for 6.3 taxa (range 2–12). If taxa from the failed
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samples are excluded from the analysis (as they can only count towards the fraction of taxa not

found by DNA), the overlap between the taxon list from sorted samples added together and

the morphological taxon list was 56.8% on average (range 32.5–91.7%). On average, 22.9% of

taxa were only found in morphology (range 0–50.0%), and 20.3% were only recovered using

DNA (range 5.6–35.0%) (Fig 2A). If failed samples are included, the overlap between morphol-

ogy and DNA was 47.6% on average (range 22.9–73.3%). For the pooled samples, the com-

bined taxon lists contained an average of 47.3 taxa, with a 40.3% overlap between morphology
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Coleoptera), MOLL (molluscs), REST (rest groups, almost exclusively chironomids and other dipterans) and TOE (Trichoptera, Odonata and, Ephemeroptera). Error

bars indicate the standard error.

https://doi.org/10.1371/journal.pone.0226527.g002
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and DNA (range 13.0–62.8%). 48.1% of taxa were only recorded in the morphological list

(range 27.9–84.1%), and only 11.7% were found exclusively with DNA (range 0.0–27.8%) (Fig

2B). In 14 out of 24 samples (one pooled sample failed to amplify), the fraction of taxa only

found with morphology was higher than the fraction of overlap between the two taxon lists,

the fraction of taxa only found using DNA was never higher than the fraction of taxa found

only in the morphological analysis. In contrast, in 14 out of 25 samples where taxa were sorted

prior to DNA analysis, the fraction of taxa exclusively found with DNA was higher than the

morphology-only fraction.

The three categories that were counted towards the overlap contained 402 entries (72.6%)

where there was a direct match between the species recorded in the morphological analysis,

and the species identification obtained from metabarcoding. In 124 cases (22.4%) there was a

match between morphology and metabarcoding, but the entries on both lists were not identi-

fied to the same taxonomic level. The majority of these were annelids not covered in the refer-

ence database at species level (but were identified from molecular data at higher level using

LCA) and dipterans identified to species level in the metabarcoding analysis but only identified

at genus level or higher in the morphological data. The remainder were 28 cases of putative

misidentifications (5.1%), where both list contained a different species from the same genus.

Looking at the six taxa groups separately (again excluding the failed samples), the overlap

varies. The highest overlap was found in the crustaceans and HECO samples (71.4% and

72.6%, respectively), even though for HECO in one case the morphological and DNA-based

taxon lists did not overlap at all (both, however, only contained one species each). The lowest

overlap was found in the annelid samples (47.8% on average). Overlap for the MOLL, REST

and TOE samples was 53.9%, 56.4% and 64.3% on average, respectively (Fig 2A). For the REST

samples, the fraction of taxa found only in the DNA was larger than the fraction of taxa only

recorded morphologically, for all other groups there were more taxa in the morphology list

than there were on the DNA list. In 18 samples, more taxa were found with DNA than with

morphology, in 26 samples more taxa were obtained with morphology. For 18 samples the

morphology and DNA taxon lists was a complete match, although some taxa were not identi-

fied up to the same taxonomic level for both methods. In addition to the previously mentioned

HECO sample, there was one other sample in the TOE set where DNA and morphology were

mutually exclusive (S2 Fig). In the pooled samples, the overlap between morphology and DNA

was considerably lower for most taxa groups, but most noticeable in the HECO and mollusc

samples, where most taxa were only present on the morphological list. For all groups, more

taxa were found with morphology than were found with DNA metabarcoding (Fig 2B).

Ecological quality ratios

The EQR scores based on the DNA data differed considerably from the morphology-based

EQR scores for both the pooled and the sorted samples (Fig 3A and 3B). There was only a

moderate correlation between the morphology- and DNA-based scores (Pearson correlation,

r = 0.596 and 0.545, respectively). The scores obtained from the pooled samples were usually

lower than the morphological scores (16 out of 24). For the sorted samples, half the samples

(13 of 25) had a lower score using molecular identifications, the other half (12 of 25) scored

higher based on DNA data. The average absolute difference in EQR score was similar for both

datasets: 0.12 for the pooled samples (range 0.007–0.302) and 0.11 for the sorted samples

(range 0.007–0.310). Using the pooled samples, 15 out of 24 locations scored in a different

quality class (five higher, ten lower), and for the sorted samples, 12 of 25 ended up in a differ-

ent quality class (five higher, seven lower). When replacing just one of the groups with molecu-

lar data for the EQR calculations, the correlations between the two scores were much stronger
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(ranging from r = 0.937 for REST to 0.989 for CRUS, p< 0.001 for all groups), even with the

complete removal of some groups due to failed samples (Fig 3C–3H).

Discussion

We found that pre-sorting of samples into six basic taxon groups vastly improved the recovery

of taxa using metabarcoding of bulk samples, with 46.5% more taxa found as compared to the

samples where DNA was pooled prior to amplification and sequencing (47.6 versus 32.5 on

average). The average overlap between the morphological and molecular (for the sorted sam-

ples) taxon lists was 56.8%, with the fractions of taxa found in only the morphology and only

the DNA roughly equal (22.9% and 20.3%, respectively) (Fig 2A). Discrepancies between mor-

phology and DNA-based species lists were expected, based on missing taxa from the reference

database, known difficulties with morphological identification of taxa [9,10], and primer biases

[28] as contributing factors. Even though they were tested mainly on insects, the primers used

in this study showed good in silico potential for all taxonomic groups included in our samples

[22], especially compared to some other oft-used primers. While there may be primers that

perform better for a specific group, a single, broad-range primer set that perform equally well

on all taxa will most likely never exist [27]. Large differences were already observed between

two morphological assessments in freshwater monitoring samples in previous studies, where

there was more than 30% difference in identification of taxa. All taxon groups seemed to be

equally prone to errors in morphological identification, even those deemed difficult to identify

[45]. In our data we see that the overlap between morphology and DNA varies between the dif-

ferent groups, being highest for the Crustacea and the Heteroptera /Coleoptera. The poor per-

formance of the mollusc samples may not be entirely attributable to the primers, as molluscs

are the group that is most affected by differences in biomass between the different species in a

sample.

There have been few studies comparing morphological identifications and DNA-based

identifications on actual samples, instead of relying on mock communities. A study assessing

the taxa detected by morphology and DNA on Finnish WFD samples (using the same primers

as this study) found considerably more taxa with DNA than they did with morphology [16],

but morphological assessments did not include species or genus level identifications for certain

groups, such as the species-rich Chironomidae. The taxonomic resolution in the present study

was comparable between morphology and DNA metabarcoding, and explains why richness

estimations were more comparable on average. Still, we found some differences between taxon

lists caused by disparity in resolution for certain taxa. On the side of the morphology, higher-

level taxonomic identifications have been made due to the difficulty of distinguishing taxa,

especially those in larval stages. For example, none of the Ceratopogonidae had been identified

beyond family level using morphology, but five different genera were detected with DNA. On

the other hand, the DNA reference database did not cover all the taxa that were listed in the

morphological dataset (6.5% of the morphologically identified species had no DNA reference).

For instance, every specimen of Alboglossiphonia was only identified up to genus level using

the LCA tool in the DNA analysis, as all three species recorded in the morphological analysis

Fig 3. EQR scores. Comparison for the EQR score calculated on morphological data versus the score calculated on DNA data for (A) the pooled and (B) the sorted and

separately sequenced samples. Both showed a moderate correlation between the scores (Pearson correlation, p = 0.002 and 0.005, respectively). Better correlations were

found when only replacing one of six taxon groups with molecular data (on the y-axis): (C) Annelida, (D) Crustacea, (E) Heteroptera and Coleoptera, (F) Mollusca, (G)

Chironomidae and other Diptera and (H) Trichoptera, Odonata, and Ephemeroptera (black circles, Pearson correlation values provided in the panels, p< 0.001 for all

groups). To assess the influence of each of the respective groups on the EQR score, the original scores (x-axis) were also compared to EQR scores where one taxon group

was completely removed (y-axis) from the taxon list before the analysis (C-H, red triangles, Pearson correlation values provided in the panels, p< 0.001 for all groups).

https://doi.org/10.1371/journal.pone.0226527.g003
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were unaccounted for in the reference database (sequences could still be identified to genus

level based on matches to congeneric species).

Some groups that were examined in this study consists of considerably more taxa than oth-

ers. This difference in group size inevitably leads to a larger number of “lost taxa” when one

taxon dominates the reads due to the effects of preferential amplification. In the majority of

the pooled samples (15 of 24) more than half of the reads is provided by one of the six groups

(S3 Fig), and in eleven samples more than half the reads even belonged to a single taxon.

While some have argued that for general patterns in biodiversity, the effects of primer bias

may be limited, the taxonomic bias caused by primer mismatches in certain taxonomic groups

can be an issue when trying to reconstruct taxa lists [27]. Taxonomic sorting can improve the

recovery of taxa, as witnessed by the improved performance of the sorted and separately

sequenced samples in comparison to the pooled samples, which represent a broader range

taxa. In the sorted samples, 46.5% more taxa were found than in the pooled samples (47.6 ver-

sus 32.5 on average), also leading to more overlap with the morphological list (56.8% versus

40.3% on average). Similar improvements have been found when using a size-based sorting of

specimens prior to DNA extraction and amplification, where around 30% more taxa were

found compared to non-sorted samples [23], although others report that amplification bias

across size ranges may be limited with deep sequencing [27]. When assessing the separate

groups, the effect of the pooling of samples prior to DNA amplification and sequencing has

the largest effect on the HECO and mollusc samples, where 65.6% and 46.6% fewer taxa were

found in comparison to the sorted and separately sequenced samples (Fig 2B). Rarefaction

showed that the reduced sequencing depth of the pools, when compared to the combined sepa-

rately sequenced samples, was not solely responsible for the reduction in detected taxa. Even

when rarefied to the same sequencing depth, we still obtained 40.0% more taxa in the sorted

samples. A study assessing the taxonomic recovery of tropical forest arthropod communities

showed similar findings, where there was some decline in MOTUs recovered for specific taxon

groups in increasingly complex mixtures. This was mostly caused by the introduction of other

groups, which were apparently amplified preferentially [27], comparable to our observations

with HECO and mollusc taxa. Taxonomic sorting into the groups presented in this study is rel-

atively straightforward and would require only superficial knowledge of taxonomy. Compared

to genus or species level sorting and identification, both the time and costs involved are

between one and two orders of magnitude lower [13,46].

The difficulties in identifying specimens using morphology can also express themselves in

the DNA-based identities, by way of having erroneously identified specimens within the DNA

reference library. We encountered a variety of unresolved taxa and putative identification

errors in the reference data downloaded from BOLD. In the 350,449 public sequences we

found 554 cases where congeneric species had identical sequences. These are not necessarily

identification errors, as some closely-related species are known to be indistinguishable by the

DNA barcode region [47], but do highlight the need to not look at just the “top 1” or “best hit”

matches when comparing sequences to a reference database. When multiple hits with the same

scores are found, matching algorithms do not always consistently place the same match at the

top of the list, introducing random variation between analyses when only looking at the first

hit. Additionally, 47 cases of identical sequences with different species from different genera

were found, some of which could be traced back to actual contaminated sequences (e.g. Homo
sapiens or Wolbachia). Most of such misidentified records have been flagged by BOLD cura-

tors, which was verified by manually checking a random selection of records. Moreover, recent

analysis of the BOLD data revealed a relatively high number of specimens that had been identi-

fied using “reverse BIN taxonomy”, adding further levels of uncertainty to the reference data-

sets retrieved from BOLD [48]. To improve the use of public data such as the sequences
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deposited in BOLD, the ability to filter data based on record flags or identification method is

essential.

An incomplete reference databases is a major issue that limits the use of metabarcoding for

species identification [49,50]. While 93.5% of the morphologically identified species of this

study had reference sequences, database coverage for all Dutch WFD taxa is only 86.1%. There

are large differences for each of the taxa groups as defined by this study, with 63.5% of annelids

covered by reference sequences (54 of 85 species), while 96.5% of the TOE group has been bar-

coded (273 out of 283 species). Additionally, we still observe difficulties in identification for

species known to have high genetic diversity. For example, 14 MOTUs were identified as Asel-
lus aquaticus, another 109 were identified at genus level as Asellus (for which only A. aquaticus
is recorded in the Netherlands). The tendency to overestimate richness based solely on

MOTUs (see also Fig 1) has already been reported in the past, with population and haplotype

differences increasing richness estimates [25,51]. The length threshold used in this study

(allowing for sequences which were three base pairs shorter or longer than the 316 bp target to

pass quality filtering) may have contributed to an overestimation of richness based on

MOTUs. We aimed to mitigate this effect by aggregating all MOTUs with identical taxonomic

identification and discarding any unidentified MOTU from the analysis. While alternate clus-

tering methods may exaggerate or downplay this effect of overestimation, the difference in

intraspecific variation between taxonomic groups will lead to either overestimations for taxa

with high intraspecific variation or underestimations by lumping taxa with low interspecific

variation depending on the cluster settings. The observed variation also suggests that the DNA

reference library could be improved by better geographical coverage, incorporating a wider

range of haplotype variation. Another phenomenon that may have caused an overabundance

of Asellus and other genera in the MOTUs, is the presence of pseudogenes that have been

amplified [52,53], especially with deep sequencing of highly abundant taxa. Many of the

MOTUs identified at genus level have fewer reads (1,768 on average) compared to the MOTUs

with species level identification (75,128 reads on average). Similar patterns were seen for other

genera as well (e.g. Helobdella, Limnomysis), including genera that have more than one species

recorded for the Netherlands, and which were all represented in the reference database (e.g.

Cymatia, Erythromma, Noterus).
Haplotypes and pseudogenes aside, we should be wary of the fact that many taxon groups

still contain undescribed diversity and cryptic species [54], which may be perceived as overesti-

mations of taxa when using DNA-based identification methods. This information can still be

valuable, as it has been shown in mayflies that cryptic species exhibit a wide variety of toler-

ances and responses to ecosystem stressors [55]. Furthermore, MOTU level analysis of Chiro-

nomidae has demonstrated that even without binomial names, different putative taxa could be

identified, showing different response patterns [56]. This opens possibilities to use DNA-based

delimitations for comparative quality assessments and impact studies even for those taxon

groups that are poorly defined in reference databases, which is still hampering the use of

DNA-based identification in various groups [57]. DNA-based identification may not always

exactly reflect the observations made by traditional morphological methods, but at least may

provide a more consistent way of identifying taxa [18]. Morphological assignments are prone

to discrepancies between assessors, as shown by large differences between identification made

in audits of WFD assessments [9,10]. The choice of tools and parameters used in the process-

ing of raw sequence data (such as filtering and clustering) can have a significant impact on tax-

onomic inferences as well [37,58], but in comparison with morphological assessments should

be easier to report and standardize. Molecular data is also more easily re-analyzed when new

insights are developed, and is backwards compatible with updated reference databases.

Taxon sorting improves metabarcoding

PLOS ONE | https://doi.org/10.1371/journal.pone.0226527 December 16, 2019 13 / 19

https://doi.org/10.1371/journal.pone.0226527


The impact of DNA-based identifications on the EQR scoring is considerable, for both the

pooled and the sorted samples, with neither giving a better approximation of the morphology-

based score (Fig 3A and 3B). The correlation between the two scores was only moderate (Pear-

son correlation, r = 0.596 and 0.545, respectively). EQR scores for the pooled samples were

generally lower than the morphology-based EQRs (16 out of 24), whereas the sorted samples

provided scores that were lower in half the samples, higher in the other half. The average abso-

lute difference between the EQRs obtained from morphological data and the DNA-based

scores was similar for both datasets (0.12 and 0.11 for the pooled and sorted samples, respec-

tively). When replacing just one of the six groups from the morphological taxon list with

DNA-based identifications, the impact on the EQR score was considerably lower. This allows

for the use of DNA metabarcoding for a select group of taxa, for example in cases where mor-

phological assessments are difficult or time-consuming (such as Chironomidae), without the

need to recalibrate the entire EQR scoring method. In such cases, it would also be possible to

use primers that are tailored more specifically to the investigated taxa, in order to limit primer

bias. The largest deviation was seen in the mollusc samples, where the absolute difference was

0.033 on average (range 0–0.091), but the scores were still strongly correlated (Pearson correla-

tion, r = 0.966, p< 0.001). Molluscs were also the group for which most samples failed to

amplify (13 out of 24, S2 Fig), but this did not seem to have too much of an impact on the scor-

ing. However, complete removal of groups can have a substantial impact on the EQR score,

especially for the annelids (Fig 3C–3H). Removal of the water mites, which were excluded

from the analysis due to inability to obtain DNA, had a comparable impact on the EQR scoring

to some of the other groups (S4 Fig). To minimize the effect of stacking these impacts, the

water mites were completely discarded from all EQR analyses.

The fact that DNA-based EQR scores are so different from the scores based on traditional

morphological surveys can partly be attributed to the changes in taxonomic resolution and devi-

ations between the two taxon lists, but the differences are likely exaggerated by the changes in

richness as well. For the Dutch EQR calculations, the percentage of characteristic taxa, and posi-

tive and negative indicator species (as a fraction of the total richness) play an important role for

the final score [29,59]. While the average taxon richness was not significantly different between

the morphological assessment and the sorted and separately sequenced samples used for the

DNA-based calculations, the differences for each sample were considerable (Fig 1A), with an

average difference in richness between morphology and DNA of 12.0 (range 1–48). Together,

the changes in the number of negative and positive indicators, and the changes in the ratios of

these indicators can have a significant impact on the final EQR score (Fig 3A and 3B).

Molecular techniques may not directly replace traditional morphology under the current

WFD monitoring standards, and future monitoring requires a paradigm shift to fully incorpo-

rate the potential of DNA-based methodology. Time is needed for new techniques to prove

their worth in the field of biomonitoring and be accepted by monitoring agencies and policy

makers. Being able to replace morphological assessment for only one or a few taxon groups

without needing to redefine the framework for BQE monitoring, opens possibilities for grad-

ual implementation of DNA-based identifications for those groups that are most difficult to

identify, time-consuming or where taxonomic expertise is getting scarce.

Conclusions

There are considerable differences when directly comparing the outcome of traditional mor-

phological assessment and DNA metabarcoding-based identifications of bulk samples, includ-

ing their effects on the EQR score under current standards. Our data shows that DNA

metabarcoding compares better to morphological assessments for some taxonomic groups
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than for others, partly based on the underlying DNA reference database, or lack thereof. Mis-

matches were observed between morphology and metabarcoding, but the latter will be less reli-

ant on individual biases introduced by different assessors, and therefore lead to more

consistent assessments. Taxonomic sorting into basic groups improves the taxon recovery, as

shown in this study, where 46.5% more taxa were found when samples were sorted into six

basic groups prior to DNA amplification and sequencing. Even when corrected for sequencing

depth, sorted samples still produce around 40% more taxa as non-sorted samples. DNA-based

assessments may not directly replace traditional monitoring in the near future, but can cer-

tainly contribute to the current methodology, especially for those groups that are perceived as

difficult to identify, to allow for more consistent and faster identifications. Metabarcoding

would greatly improve with addition of vouchered specimens to reference databases. Further-

more, we show that replacing only one of six taxa groups assessed in this study by molecular

data has limited impact on the EQR scoring, opening possibilities for gradual replacement of

traditional identification, or supplementing the traditional identification with DNA-based

tools, which will help with the acceptance of molecular methodology in WFD monitoring.

Supporting information

S1 Fig. Artificial internal control. The artificial control (AIC) used to measure cross-contam-

ination. The sequence is based on the COI barcode region of a Reeve’s muntjac (Muntiacus
reevesi) with several primer sets built into the sequence (forward strand shown). Binding sites

for COI primers are shown, BF1 and BR2 used in this study are highlighted in red.

(EPS)

S2 Fig. Overlap between morphology and DNA per sample. The overlap between morphol-

ogy and DNA (in yellow), as well as the fractions of taxa only detected with DNA (blue) and

morphology (red), for each of the 25 samples separately, as well as averages (last column), sepa-

rated for each of the six taxa groups.

(EPS)

S3 Fig. Specimen and read abundances. Relative abundances of (A) specimens in the tradi-

tional morphological assessment and reads in the metabarcoding data of (B) separately

sequenced taxa groups combined and (C) samples pooled prior to amplification. In addition

to the six groups assessed in this study, the fractions of water mites (in morphology), as well as

vertebrates and unidentified MOTUs (in DNA data) have been included.

(EPS)

S4 Fig. EQR scores without water mites. Comparison of EQR scores for the morphological

data with and without water mites (ACA). No DNA was obtained from water mites due to the

buffer they were stored in. Pearson correlation value provided in the panel, p< 0.001.

(EPS)

S1 File. Taxon lists. Taxon lists for the three datasets: Morphologically identified taxa (with

specimen counts), DNA-based identifications from the sorted samples, and DNA-based iden-

tifications form the pooled samples (both with read counts).

(XLSX)
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