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Abstract 

 

Since 2004, the clock frequency of CPUs has not increased significantly. Computer Vision 

applications have an increasing demand for more processing power and are limited by the 

performance capabilities of sequential processor architectures. The only way to get better 

performance using commodity hardware is to adopt parallel programming.  

 

Many other related research projects have considered using one domain specific algorithm to 

compare the best sequential implementation with the best parallel implementation on a 

specific hardware platform. This project is distinctive because it investigated how to speed up 

a whole library by parallelizing the algorithms in an economical way and execute them on 

multiple platforms. 

 

In this work the author has:  

- Examined, compared and evaluated 22 programming languages and environments for 

parallel computing on multi-core CPUs and GPUs.  

- Chosen to use OpenMP as the standard for multi-core CPU programming and OpenCL 

for GPU programming.  

- Re-implemented a number of standard and well-known algorithms in Computer Vision 

using both standards. 

- Tested the performance of the implemented parallel algorithms and compared the 

performance to the sequential implementations of the commercially available software 

package VisionLab.  

- Evaluated the test results with a view to assessing: 

- Appropriateness of multi-core CPU and GPU architectures in Computer Vision. 

- Benefits and costs of parallel approaches to implementation of Computer Vision 

algorithms. 

 

Both the literature review and the results of the benchmarks in this work have confirmed that 

both multi-core CPU and GPU architectures are appropriate for accelerating sequential 

Computer Vision algorithms.  

 

Using OpenMP it was demonstrated that many algorithms of a library could be parallelized in 

an economical way and that adequate speedups were achieved on two multi-core CPU 

platforms. With a considerable amount of extra effort, OpenCL was used to achieve much 

higher speedups for specific algorithms on dedicated GPUs. 
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At the end of the project, the choice of standards was re-evaluated including newly emerged 

ones. Recommendations are given for using standards in the future, and for future research 

and development. 

 

The following algorithmic improvements appear to be novel. The literature search has not 

found any previous use of them: 

- Vectorization of Convolution on grayscale images with variable sized mask utilizing 

padding width of vector with zeros. 

- Few-core Connect Component Labelling. 

- Optimization of a recent many-core Connect Component Labelling approach. 

 

This work resulted directly in innovation in the product VisionLab: 

- 170 operators were parallelized using OpenMP. For these operators Automatic Operator 

Parallelization, a run-time prediction mechanism for whether parallelization is beneficial, 

was implemented. Users of VisionLab can now benefit from parallelization without 

having to rewrite their scripts, C++ or C# code. 

- An OpenCL toolbox was added to the development environment. Users of VisionLab can 

now comfortably write OpenCL host-side code using the script language and develop 

their OpenCL kernels.   

 

Based on this work: 

- Two papers (Van de Loosdrecht, 2013b) and (Dijkstra, Jansen and Van de Loosdrecht, 

2013a) were published. 

- Two poster presentations (Dijkstra, Jansen and Van de Loosdrecht, 2013b) and (Dijkstra, 

Berntsen, Van de Loosdrecht and Jansen, 2013) were presented at conferences. 

- Thirteen lectures have been given by the author at conferences, Universities and trade 

shows. 
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1 Introduction 

1.1 Computer Vision 

Computer Vision is the field of research which comprises methods for acquiring, processing, 

analysing, and understanding images with the objective to result in numerical or symbolic 

information. A typical example is the computerization of visual inspections. With the aid of a 

computer, images caught on camera are interpreted. The information thus obtained may 

subsequently be used to manage other processes. Examples are: 

- Quality checks. 

- Position finding and orientation. 

- Sorting products on conveyor belts. 

 

In many industries that manufacture or handle products, visual inspection or measurement is 

of major importance. In many cases, with the aid of Computer Vision, it is possible to have 

these inspections or measurements carried out by a computer. In general, this will contribute 

to a cheaper, more flexible and/or more labour-friendly production process. 

1.2 NHL Centre of Expertise in Computer Vision  

The author is founder and manager of the Centre of Expertise in Computer Vision (CECV) of 

the NHL University of Applied Sciences (NHL, 2011). In Dutch: Kenniscentrum Computer 

Vision van de NHL Hogeschool. The laboratory staff consists of a manager, a researcher and 

two project-engineers. At present, more than 450 students have completed their placement- or 

graduation assignment in the NHL CECV.  

 

The strength of the NHL CECV lies in the knowledge of, and the equipment necessary for, 

the complete chain of: 

- Lighting. 

- Cameras. 

- Optics. 

- Set-up. 

- Image processing algorithms. 
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Since 1996 more than 170 industrial projects have been initiated and successfully completed. 

Projects with a total revenue of more than €3,000,000 have been successfully completed. 

Customers range from one-man businesses in the surroundings of Leeuwarden to multi-

nationals from all over the Netherlands. Approximately half of the assignments were follow-

up assignments. 

 

From 1997 onwards Computer Vision has been lectured by the author as a subject to NHL 

students. This course (Van de Loosdrecht, et al., 2013) is now in use by 10 Universities of 

Applied Sciences in the Netherlands and has been taught 16 times, in an abridged form, as a 

one week course taught to the industry. 

1.3 Van de Loosdrecht Machine Vision BV 

The author is also owner and director of Van de Loosdrecht Machine Vision BV (VdLMV). 

This company is developing the software package VisionLab (Van de Loosdrecht Machine 

Vision BV, 2013).  

 

The development of VisionLab started in 1993. Visionlab provides a development 

environment for Computer Vision applications. VisionLab is designed to work with 2D 

image data. It incorporates artificial intelligence capabilities such as pattern matching, neural 

networks and genetic algorithms. It is implemented as a portable library running on a variety 

of operating systems and hardware architectures, like PC based systems, embedded real-time 

intelligent cameras, smartphones and tablets. 

 

With the Graphical User Interface (GUI) of VisionLab it is possible to experiment in a 

comfortable way with the VisionLab library operators. The script language of VisionLab can 

be used for comfortable development and testing of applications. 

 

VisionLab is in use by 10 universities and 20 companies for teaching, research and industrial 

applications. VisionLab is the main software product used at the NHL CECV for both 

research projects as well as teaching.  

 

However, VisionLab is limited by the performance capabilities of sequential processor 

architectures.  
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1.4 Motivation for this project 

The last decade has seen an increasing demand from industry for computerized visual 

inspection. With the growing importance of product quality checks and increasing cost of 

manual inspection this trend is expected to continue. 

 

Due to the increased performance/cost ratio of both processor speed and amount of memory 

in the recent decades, low cost Computer Vision applications are now feasible for SMEs 

using commodity hardware and/or low cost intelligent cameras. However, applications 

rapidly become more complex and often with more demanding real time constraints, so there 

is an increasing demand for more processing power. This demand is also accelerated by the 

increasing pixel resolution of cameras. With the exception of the simple algorithms, most 

vision algorithms will require a more than linear increase of processing power when the pixel 

resolution increases. Computer Vision applications are limited by the performance 

capabilities of sequential processor architectures. 

 

There has been extensive research and development in parallel architectures for CPUs and 

Graphics Processor Units (GPUs). There has also been significant R&D in the development 

of programming techniques and systems for exploiting the capabilities of parallel 

architectures. This has resulted in the development of standards for parallel programming.  

 

A number of standards exist for parallel programming. These are at different levels of 

development and take different approaches to the problem. It is not clear which approach is 

the most effective for use in the field of Computer Vision. 

 

This project proposes to apply parallel programming techniques to meet the challenges posed 

in Computer Vision by the limits of sequential architectures.  

1.5 Aim and objectives 

The aim of the project is to investigate the use of parallel algorithms to improve execution 

time in the specific field of Computer Vision using an existing product (VisionLab) and 

research being undertaken at NHL. The research focus on commodity single system 

computers, with multi-core CPUs and/or graphics accelerator cards using shared memory. 

 

The primary objective of this project is to develop knowledge and experience in the field of 

multi-core CPU and GPU programming in order to accelerate in an effective manner a huge 

base of legacy sequential Computer Vision algorithms. That knowledge and experience can 

then be used to develop new algorithms. 
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The specific objectives of the project are to: 

 

1. Examine, compare and evaluate existing programming languages and environments for 

parallel computing on multi-core CPUs and GPUs. The output of this is to choose one 

standard for multi-core CPU programming and one for GPU programming suitable for 

Computer Vision applications (these may be different depending on the outcome of the 

evaluation). This provides the basis for the work to be undertaken in the remaining steps 

below. 

 

2. Re-implement a number of standard and well-known algorithms in Computer Vision 

using a parallel programming approach with the chosen standard(s). 

 

3. Test the performance of the implemented parallel algorithms and compare the 

performance to existing sequential implementations. The testing environment is 

VisionLab. 

 

4. Evaluate the test results with a view to assessing: 

- Appropriateness of multi-core CPU and GPU architectures in Computer Vision. 

- Benefits and costs of parallel approaches to implementation of Computer Vision 

algorithms. 

 

This project will not investigate: 

- Dedicated hardware, like High Performance Computer (HPC) clusters, distributed 

memory systems or Field Programmable Gate Arrays (FPGAs).  

Customers of both VdLMV and NHL CECV are using affordable off-the-shelf 

components. VdLMV and NHL CECV are not planning to access the market requesting 

this kind of specialized hardware. 

- A quest for the best sequential or parallel algorithms.  

The focus of this project is to investigate how to speed up a whole library by parallelizing 

the algorithms in an economical way.  

- Automatic parallelization of code.  

Preliminary research and experiments (section 2.2) have demonstrated that with the 

contemporary state-of-the-art compilers this will only work for the inner loops in 

algorithms. With the exception of the trivial Computer Vision algorithms this is not good 

enough. 
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1.6 Roadmap 

In Chapter 2 the requirements for the standards for parallel programming and the evaluation 

of the parallel algorithms are defined. 

 

In Chapter 3 the following literature is reviewed: 

- Computer Vision. 

- Existing software packages for Computer Vision. 

- Performance of computer systems. 

- Parallel computing and standards. 

- Computer Vision algorithms and parallelization. 

- Benchmarking. 

- New developments after choice of standards. 

 

In Chapter 4 standards for parallel programming are compared and chosen. 

 

In Chapter 5 the design of the following is described: 

- Interfacing VisionLab with OpenMP. 

- Interfacing of VisionLab with OpenCL. 

- Experiment design and analysis methodology. 

- Benchmark protocol and setup. 

 

In Chapter 6 the implementation of the following is described: 

- Timing procedure. 

- Interfacing VisionLab with OpenMP. 

- Interfacing VisionLab with OpenCL. 

- Computer Vision algorithms used for benchmarking. 

- Automatic Operator Parallelization. 

 

In Chapter 7 the following items are tested and evaluated: 

- Calibration of timer overhead. 

- Reproducibility of experiments. 

- Sequential versus OpenMP single core. 

- Data transfer between host and device. 

- Computer Vision algorithms used for benchmarking. 

- Automatic Operator Parallelization. 

- Performance portability. 

- Parallelization in real projects. 

 

Chapter 8 concludes this work with discussion and conclusions. 
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1.7 Methodology 

Requirements for the cost-effective integration of parallel techniques in VisionLab and NHL 

software are identified. 

 

The project has started with desk research to identify parallel programming environments, 

languages and standards, and has examined how they support parallel programming using 

multi-core CPUs and GPUs. 

 

Based on the above, two standards are chosen for the remaining work: 

- A standard to support multi-core CPU programming. 

- A standard to support GPU programming. 

 

For both standards an interface to VisionLab is designed and implemented. 

 

A set of algorithms for benchmarking is selected, chosen from the algorithms already 

implemented in VisionLab using sequential methods to ensure comparability. 

 

A benchmark protocol and setup is defined to ensure reproducibility of the experiments. 

 

A series of benchmark tests are designed and executed to provide a body of empirical data for 

comparison of sequential and parallel approaches to Computer Vision. 

 

Conclusions are drawn, based on the empirical data, about the effectiveness and suitability of 

parallel techniques and existing technologies when applied to Computer Vision. 

 

Recommendations for future research and development are made, both in general and with 

specific reference to VisionLab and NHL. 
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2 Requirements  

2.1 Introduction 

The objective for this work is to research ways in which the large base of legacy sequential 

code of VisionLab could be accelerated using commodity parallel hardware such as multi-

core processors and graphics cards. 

 

The VisionLab library is written in ANSI C++ and consists of more than 100,000 lines of 

source code. The GUI client is written in Delphi. The architecture of VisionLab is 

documented in Van de Loosdrecht (2000). VisionLab is designed and written in an object 

oriented way and uses C++ templates. VisionLab supports the following types of images: 

- Greyscale images: ByteImage, Int8Image, Int16Image, Int32Image, FloatImage and 

DoubleImage. 

- Color images: RGB888Image, RGB161616Image, HSV888Image, HSV161616Image, 

YUV888Image and YUV161616Image. 

- Complex images: ComplexFloatImage and ComplexDoubleImage. 

 

For example, if no templates were used in VisionLab, a greyscale operator that supports all 

greyscale image types would have to be written and maintained in six almost identical 

versions. Many design patterns (Gamma, et al., 1995) are used in VisionLab’s architecture.  

 

For reasons of performance the chosen object granularity is the image class and pixels are not 

objects. Below image level traditional C++ pointers to pixels are used and not iterators over 

classes. A ‘total’ object oriented approach, where pixels would have been classes with 

overloaded virtual functions, would have led to an unacceptable overhead caused by the extra 

indirection in the virtual function table (Ellis and Stroustrup, 1990) (Lippman, 1996) of each 

pixel class. 
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An important selling point of VisionLab has proved to be that, because it is written in ANSI 

C++, it can be easily ported to different platforms like non PC based systems such as 

embedded real-time intelligent cameras and mobile systems. Only a very small part of the 

code is operating system specific. This code is bundled in the module OSSpecific. A C# 

wrapper around the C++ library is available. VisionLab uses its own specific ‘.jl’ file format 

to store images. This file format supports all image types of VisionLab and will work 

transparently on both little and big endian processors. Currently VisionLab runs on operating 

systems Windows, Linux and Android and on x86, x64, ARM and PowerPC processors. Both 

the Microsoft Visual Studio C++ compiler and the GNU C++ compiler are used by customers 

of VdLMV. The largest share of the turnover comes from customers using x86 and x64 

processors with Windows and Visual Studio C++. The remaining part of the turnover comes 

from customers using intelligent cameras with ARM or PowerPC processors running Linux 

and GNU C++. It is to be expected that the mobile market, like smartphones and tablets, will 

become important for Computer Vision. 

2.2 Earlier preliminary research and experiments 

Based on the research and experiments described in this section the requirements for this 

work are defined. From earlier preliminary research and experiments (Van de Loosdrecht 

Machine Vision BV, 2010) with parallelization the author has experienced that:  

- Some operators can be parallelized for multi-core CPUs with little effort (the so called 

embarrassingly parallel problems) and others must be extensively or even completely 

rewritten. Some algorithms are embarrassingly sequential; for a parallel implementation a 

totally new approach must be found. 

- Exploiting the vector capabilities of CPUs is not an easy task and is not possible from 

ANSI C++. Some ANSI C++ compilers, like Intel (Intel Corporation, 2010b) and GNU 

(GNU, 2009) provide the possibility for auto-vectorization. Microsoft (Microsoft, 2011) 

has announced that auto-vectorization will be available in the next version of Visual 

Studio. Auto-vectorization will work for simple loops and only if strict guidelines are 

followed. The auto-vectorization is guided with non-portable compiler specific pragmas. 

Accelerating a large amount of legacy code in this manner is expected to be time 

consuming. 

- Parallelization will come with some overhead, like forking of processes, extra data 

copying and synchronization. In cases where there is little work to do, like on small 

images with a simple algorithm, the parallel version can be (much) slower than the 

sequential version.  

- In many cases not all parts of an algorithm can be parallelized. 

- The transition from sequential ANSI C++ algorithms to multi-core CPUs is much simpler 

than the transition to the GPUs.  
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- Copying data between CPU memory and GPU memory will introduce considerable 

overhead. 

- GPUs can give better speedups than multi-core CPUs but complete new algorithms must 

be developed in another language than ANSI C++. 

- GPUs will only give maximum speedup if the algorithm is fine-tuned to the hardware. 

Different GPUs will need different settings. 

- Recently hardware manufacturers have started to deliver heterogeneous processors as 

commodity products. In a heterogeneous processor CPU(s) and GPUs are merged on one 

chip. 

2.3 Requirements for multi-core CPUs 

The requirements for multi-core CPUs are: 

- The primary target system is a conventional PC, embedded intelligent camera or mobile 

device with multi-core CPU and shared memory running under Windows or Linux and on 

a x86 or x64 processor. Easy porting to other operating systems like Android and other 

processors is an important option.  

It would be a nice but not a compulsory option if the chosen solution could be scaled to 

cache coherent Non-Uniform Memory Access (ccNUMA) distributed memory systems. 

- There is no option for a language other than ANSI C++, because the large existing code 

base is in ANSI C++. 

- It is paramount that the parallelization of VisionLab can be made in an efficient manner 

for the majority of the code. Because of Amdahl’s Law (section 3.4.4) many operators of 

VisionLab will have to be converted to multi-core versions.  

- Exploiting the vector capabilities of multi-core CPUs is a nice but not a compulsory 

option. Portability and efficiently parallelizing the code are more important. 

- If possible, existing VisionLab scripts and applications using the VisionLab ANSI C++ 

library should not have to be modified in order to benefit from the multi-core version. 

- A procedure to predict at runtime whether running multi-core is expected to be beneficial 

will be necessary. It is to be expected that different hardware configurations will behave 

differently so there will be a need for a calibration procedure. 

- Language extension and/or libraries used should be: 

- ANSI C++ based. 

- An industry standard. 

- Vendor independent. 

- Portable to at least Windows and Linux.  

- Supported by at least Microsoft Visual Studio and the GNU C++ compiler. 
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2.4 Requirements for GPUs. 

The requirements GPUs are: 

- The primary target system is a conventional PC, embedded real-time intelligent camera or 

mobile device with a single or multi-core CPU with one or more GPUs running under 

Windows or Linux and on a x86 or x64 processor. Easy porting to other operating 

systems like Android and other processors is an important option.                          

It would be a nice but not a compulsory option if the chosen solution could be scaled to 

systems with multiple graphics cards. 

- For GPUs new code design and a new language and runtime environment are expected to 

be used. The chosen language and runtime environment must be: 

- An industry standard. 

- Hardware vendor independent. 

- Software vendor independent. 

- Able to work on heterogeneous systems. 

- Able to collaborate with the legacy ANSI C++ code and multi-core version.  

- GPU code must be able to be called from both VisionLab script language and from 

the VisionLab ANSI C++ library.  

2.5 Requirements for evaluating the parallel algorithms. 

In the first stage of this project standards for CPU and GPU programming will be reviewed. 

Based on the result of the reviews two standards will be chosen, one for CPU and one for 

GPU programming. Those two standards will be used in all subsequent experiments 

evaluating the parallel algorithms.  

 

In the next stage of this project an interface to VisionLab will be designed and built for both 

standards. This will provide a test environment for the experiments with the parallel 

algorithms and a benchmark environment for comparing the already existing sequential 

algorithms of VisionLab with the new parallel algorithms. 

 

A benchmark protocol and setup must be defined to ensure reproducibility of the 

experiments. 
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2.6 Moment of choice for the standards. 

Currently there is a lot of development around parallel programming. Therefore it is expected 

that new standards will emerge after choosing the two standards. New emerging standards 

will be included in the literature review but will not alter the choice for the standards. The 

reason for this is that the primary objective of this project is to develop knowledge and 

experience in the field of multi-core CPU and GPU programming in order to accelerate 

sequential Computer Vision algorithms. The main focus of this work is on reviewing 

literature and implementing and benchmarking parallel vision algorithms.  

 

A change in standard will result in repeating a lot of work, like: 

- Studying the standard in detail. 

- Interfacing with VisionLab. 

- Converting all algorithms already parallelized. 

- Redoing benchmarks. 

 

At the end of the project the choice for the standards will be evaluated including newly 

emerged standards and new information about the existing standards. A recommendation for 

using standards in the future will be given. Based on the lessons learned from this work it is 

to be expected that, it will be easier to change to a new standard in the future if necessary. 
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3 Literature review  

3.1 Introduction 

In this chapter the following literature topics required for this work are reviewed: 

- Computer Vision. 

- Existing Computer Vision software packages. 

- Performance of computer systems. 

- Parallel computing and programming standards. 

- Computer Vision algorithms and parallelization. 

- Benchmarking. 

- New developments after choice of standards. 

3.2 Computer Vision 

The last decades have seen a rapidly increasing demand from the industries for computerized 

visual inspection. With the growing importance of product quality checks, this trend is 

expected to continue. Several market surveys confirm this conclusion. Because these market 

surveys are only available at a considerable fee, the author can only make an indirect 

reference to them. 

 

In Jansen (2011) Jansen, President of the European Machine Vision Association (EMVA), 

summarizes the market survey 2010 of the EMVA. The turnover of vision products of 

European suppliers decreased in 2009 with 21% and recovered from the recession with an 

increase of 35% in 2010. The estimated turnover in Europe for 2010 was more than 2 billion 

Euros. According to Jansen (2012) the European market grew by 16% in 2011 with an 

estimated turnover of 2.3 billion Euros. It was reported in 2013 (PR Newswire, 2013) that the 

global machine vision market in 2012 was worth 4.5 billion Dollars, and that by 2016 it 

would be worth 6.75 billion Dollars. 

 

From these market surveys it can be concluded that the vision market is huge and rapidly 

expanding. As explained in section 1.4, vision applications become rapidly more complex 

and often with more demanding real time constraints, so there is an increasing demand for 

more processing power. As is explained in section 3.4, this demand for more processing 

power cannot be satisfied using sequential algorithms.  
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There also is a growing interest in using intelligent cameras. A good overview of intelligent 

cameras and their applications can be found in the book Smart Cameras (Belbachir, A.N. ed., 

2010). 

3.3 Existing software packages for Computer Vision  

There are many Computer Vision software packages available, including commercial, 

academic and open source. A list with many commercial software packages is published each 

year in Vision Systems Design (2010). A good starting point with much information about 

commercial, academic and open source software was Carnegie Mellon University (2005a), 

but unfortunately this site is no longer maintained. It was outside the scope of this project to 

make a full exploration of all existing software packages for Computer Vision. 

 

VisionLab is the main software product used at the NHL CECV for both research projects as 

well as teaching. Information about VisionLab can be found in Van de Loosdrecht Machine 

Vision BV (2013). A course about Computer Vision with many examples and exercises using 

VisionLab can be found in Van de Loosdrecht, et al. (2013). One of the reasons for the 

success of both NHL CECV and VdLMV is that VdLMV has access to the source code of a 

Computer Vision library. For many projects it is essential that new dedicated algorithms can 

be developed in a short time, based on the existing source code.  

 

Evaluation of competing software packages was outside the scope of this project. For both 

VdLMV and NHL CECV it is imperative to have the competences to develop source code for 

Computer Vision algorithms themselves. 

 

In addition to using VisionLab the NHL CECV also has experiences with other Computer 

Vision software packages like: 

- Halcon, website (MVTec Software GmbH, 2011) and book (Steger, Ulrich and 

Wiedemann, 2007). 

- OpenCV, website (OpenCV, 2011a) and book (Bradski and Kaehler, 2008). 

- NeuroCheck, website (NeuroCheck GmbH, 2011) and book (Demant, Streicher-Abel and 

Waszkewitz , 1999). 
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3.4 Performance of computer systems  

3.4.1 Introduction 

This section gives a brief description of the development of the performance of computer 

systems. It is intended as a motivation for subsequent material in the literature review. A 

good survey of the evolution and the future of parallel computer systems is given in the report 

“The Landscape of Parallel Computing Research: A View from Berkeley” (Asanovic et al., 

2006). 

3.4.2 Performance of CPUs 

In 1965 it was predicted (Moore, 1965) that because of increasing transistor density the 

number of transistors that could be placed economically on an integrated circuit would 

double every year. In 1975 this prediction (Moore, 1975) was refined to a period of two 

years. This prediction was given the name Moore’s law. This prediction is still accurate (Intel 

Corporation, 2005) and it is expected (Intel Corporation, 2010a) it will be valid until at least 

2020. 

 

Because of this enormous increase of transistor density, manufacturers of CPUs were able to 

increase the clock frequency of their CPUs from 1 KHz to about 4 GHz. Due to the increased 

clock frequency and the increased efficiency in executing the instructions there was an 

enormous increase in processing power of CPUs. 

 

From 2004 onwards (Sutter, 2005) manufacturers of CPUs were not able to significantly 

increase the clock frequency of CPUs any more due to problems with the dissipation of heat. 

In order to facilitate multi-tasking and parallel computing, manufacturers of CPUs started to 

introduce hyper-threading and multi-core CPUs. In an important paper “The Free Lunch Is 

Over: A Fundamental Turn Toward Concurrency in Software” Sutter (2005) predicted that 

the only way to get more processing power in the future, is to adapt parallel programming, 

and that it is not going to be an easy way. This view is confirmed by Asanovic et al. (2006). 

They state that programming models for multi-core systems will not be easy scalable to 

many-core systems and that for embarrassingly sequential algorithms complete new solutions 

must be searched for. 

 

New specialized computer languages and development environments are available for 

parallel programming on multi-core CPUs. These are examined in section 3.5.3.2. 
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3.4.3 Performance of GPUs 

An introduction to the history of the GPU can be found in Kirk and Hwu (2010, Chapter 2) 

and in Demers (2011). Around the 1990s graphics cards were introduced in PCs in order to 

speed up displaying the computer’s graphics. Over time the functionality of graphics cards 

was extended with hardware for functions like rendering, shading, texture mapping, 

geometric calculations and translation of vertices into different coordinate systems.  

 

Around the 2000s GPUs where added to the graphics cards in order to have programmable 

shaders. Due to the explosive growth of the computer game industry, there was an enormous 

demand for faster and more complex graphics with increasing resolutions on display 

monitors. Companies like NVDIA and AMD (formerly ATI) spent huge amounts of effort in 

developing better and faster graphics cards.  

 

After the introduction of programmable shaders it was possible to use graphics cards for 

general programming tasks. This was called General Purpose Graphics Processing Unit 

(GPGPU) computing. Contemporary graphics cards can contain up to several thousand 

processors. New specialized computer languages and software development environments 

have been developed to use the graphics card as a device for general programming tasks. 

They are examined in section 3.5.3.3.  

 

According to Kirk and Hwu (2010), Corporaal (2010), NVIDIA (2010b) and Lee, et al. 

(2010) GPUs have a much better maximum floating point operations performance than 

CPUs. Contemporary high end GPUs have a raw performance of about 4 TFLOPS (AMD, 

2013a) and high end CPUs about 150 GFLOPS (Intel Corporation, 2012).  
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Figure 1. Floating point operations per second comparison between CPU and GPU. 

After NVIDIA (2010b). 

 

See Figure 1 for an historical overview of the floating point performance of GPUs and CPUs. 

It is expected that in the future the performance of GPUs will increase much faster than the 

performance of CPUs. 

 

For a good total performance not only the floating point performance is important but the 

bandwidth for data transfer between processor and memory as well. Also with respect to the 

theoretical bandwidth, contemporary GPUs are superior to CPUs, see Figure 2. Note that the 

bandwidths indicated here are the bandwidth between CPU and CPU memory and the 

bandwidth between GPU and GPU memory on the graphics card. In GPU applications the 

data will also have to be transported between CPU memory and GPU memory. This will 

introduce additional overhead. The bandwidth between CPU memory and GPU memory is of 

the same order as the bandwidth between CPU and CPU memory. 
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Figure 2. Bandwidth comparison between CPU and GPU. 

After NVIDIA (2010b). 

3.4.4 Parallel speedup factor 

If the execution time of an algorithm, given its input data on one processor, is denoted by T1 

and the execution time with N processors is denoted by TN we can define the parallel speedup 

factor = T1 / TN. Speedup is a measure of the success of the parallelization. In the optimum 

case speedup factor is N. 

 

In general all programs will contain both sections that are suitable for parallelization and 

sections that are not suitable. Amdahl’s Law (Amdahl, 1967) explains that with using an 

increasing number of parallel processors, the time spent in the parallelized sections of the 

program will reduce and the time spent in the sequential sections will remain the same. If P 

denotes the time spent in the fraction of the program that can be parallelized and S denotes 

the time spent in the serial fraction then parallel speedup can be formulated as: 
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For example, if 80% of the code can be parallelized, then the speedup cannot be larger than 5, 

even if an infinite number of processors is used. Amdahl’s Law implies that it is paramount 

to parallelize as much of the code as possible, especially if a large number of processors is to 

be exploited. 

 

Other possible obstacles for achieving a perfect linear speedup are overheads introduced by 

operations like process creation, process synchronization, buffer copying and parallel 

memory access. 

 

Amdahl’s Law has been widely cited in parallel program literature and has been misused as 

argument against Massively Parallel Processing (MPP). Gustafson (1988) discovered with 

experiments on a 1024 processor system that an assumption underlying Amdahl’s Law may 

not be valid for larger parallel systems. According to Amdahl’s Law it was expected that the 

speedup for small serial fractions would behave as illustrated in Figure 3.  

 

 
Figure 3. Speedup as to be expected according to Amdahl’s Law. 

After Gustafson, Montry and Benner (1988). 
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In their experiments with embarrassingly parallel problems Gustafson (1988) found speedups 

of more than 1000 using 1024 processors. Amdahl’s Law implicitly assumes that P is 

independent of N and assumes that the problem size is constant. With the availability of more 

processors and more memory many problems are scaled with N, in many cases S decreases 

when the problem is scaled to larger proportions. This is described in more detail by 

Gustafson, Montry and Benner (1988).  

 

Rather than investigate how fast a given serial program would run on a parallel system, 

Gustafson (1988) investigated how long a given parallel program would run on a sequential 

processor. Gustafson formulates the speedup as: 
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According to Gustafson’s Law the speedup for small serial fractions would behave as 

illustrated in Figure 4. 

 

Figure 4. Speedup as to be expected according to Gustafson’s Law. 

After Gustafson, Montry and Benner (1988). 

 

Shi (1996) proves that both Amdahl’s Law and Gustafson’s Law can be unified in one theory. 

Treatment of his work is outside the scope of this project because it is beyond what we need 

for this project. 
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In rare circumstances speedups larger than N are possible. This is called super linear speedup 

(Gustafson, 1990). One possible reason for a super linear speedup is that the accumulated 

cache size of a multi-processor system can be much larger than the cache size of a single 

processor system. With the larger cache size, more or even all of the data can fit into the 

caches and the memory access time reduces dramatically. 

 

There is a lot of discussion about the claims of the speedup of GPUs compared to CPUs, 

suggesting GPUs are up to 1000 times faster than CPUs (Lee, et al., 2010). A similar claim 

was made at the Genetic and Evolutionary Computation Conference (GECCO) 2011 that the 

author attended. In a presentation of an article (Pedemonte, Alba and Luna, 2011) a speedup 

of 100 was claimed by the authors. But after discussion with the audience it became clear that 

the authors were comparing a simple non-optimized sequential algorithm running on one core 

of a CPU without using its vector capabilities with an optimized parallel algorithm running 

on a multi-core GPU.  

 

In their article “Debunking the 100X GPU vs. CPU myth: an evaluation of throughput 

computing on CPU and GPU” Lee et al. (2010) of Intel Corporation put this kind of claims 

in perspective. They agree with others like Kirk and Hwu (2010) and Corporaal (2010) that in 

2010 GPUs had about a 10X better maximum floating point operations performance than 

CPUs. However, on the test set of 14 algorithms that were used by Lee at al. for comparison, 

on average a speedup of 2.5 in favour of the GPUs was found. Their article caused a lot of 

debate and rumour both on the internet and in scientific communities like GECCO. The 

general conclusion of Lee at al. is confirmed by McIntosh-Smith (2011) and Trinitis (2012). 

 

Note that Lee et al. (2010) and McIntosh-Smith (2011) are comparing the performance of a 

system with one multi-core CPU with a system with one GPU card. GPU cards are relatively 

cheap and can be scaled to multi-GPU card systems. An increasing number of contemporary 

HPC computers are constructed using a huge number of GPU cards (Top500.org, 2012).  

3.4.5 Heterogeneous computing 

Because of the very different hardware architectures used in design of CPUs and GPUs (see 

section 3.5.2) both types of system have their advantages and disadvantages when it comes to 

developing software. A nice comparison can be found in Lee, et al. (2010). In order to get the 

best of both worlds, major processor manufacturers like Intel, AMD and ARM have recently 

started producing combinations of CPU(s) and GPUs on one chip. In order to utilize the full 

potential of such heterogeneous systems new programming languages and development 

environments are under development. These new languages are reviewed in section 3.5.3.3. 
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A combination of one larger processor with multiple smaller processors on a chip may help 

accelerate inherently sequential code segments. For example, Asanovic etc al. (2006) show, 

that using the same amount of resources, a heterogeneous design with one complex and 90 

simple processors can achieve almost twice the speed of homogeneous design with 100 

simple processors. 

3.4.6 Performance of Computer Vision systems  

As outlined in section 1.4, there is increasing demand for more processor power in Computer 

Vision applications. There has been extensive research and development in parallelizing 

Computer Vision algorithms for some decades. In the past these algorithms were executed on 

dedicated and expensive hardware. But now that parallel architectures like multi-CPUs and 

GPUs have become a commodity, many manufacturers of Computer Vision libraries are 

engaged in the process of parallelizing their Computer Vision algorithms.  

 

As mentioned in section 3.3, this project has not exhaustively explored all existing software 

packages for Computer Vision. The software packages mentioned in that section have already 

parallelized a part of their library. 

 

For a general library like VisionLab, it is not known in advance which parts of the library will 

be used in an application. It is questionable whether the effort of performing a full 

investigation of how often operators are used and how much time is spent in executing the 

operators in an average application is worthwhile. Usage of operators will strongly vary with 

the different needs of different customers. This, together with the experience described in 

section 2.2 that not all parts of all operators can be parallelized, indicates that parallelization 

of the VisionLab library is only profitable if a large proportion of the source code is 

parallelized. Because of the amount of source code involved (over 100,000 lines) it is 

paramount that the parallelization of VisionLab is made in an efficient manner for the 

majority of the code.  

 

In Lu, et al. (2009) a GPU/CPU speedup of 30 is claimed for correlation of images. The CPU 

reference used is single core using the vector capabilities. In Park, et al. (2011) several types 

of image processing algorithms are benchmarked on multi-core CPUs programmed using 

OpenMP and GPUs programmed using CUDA. Park et al. have found GPU/CPU speedups in 

the range of 0.35 to 220 depending on the type of algorithm and the size of the image. 
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From Lee, et al. (2010), Lu, et al. (2009) and Park, et al. (2011) it can be concluded that in 

many cases GPUs can give a better speedups than CPUs. In section 3.4.3 it was found that in 

future the performance of GPUs is expected to increase much faster than the performance of 

CPUs.  

 

The Khronos Group (2011b) announced a new initiative to create a new open standard for 

hardware accelerated Computer Vision. The Computer Vision Working Group Proposal for 

this initiative can be found in Khronos (2011c). 

 

From the preliminary research and experiments referred in section 2.2 it can be expected that 

the programming effort needed for GPU programming will be much higher than for CPU 

programming. On GPUs higher speedups can be expected that on CPUs. In this work the 

benefits and costs of both parallel approaches to the implementation of Computer Vision 

algorithms are investigated. 

3.5 Parallel computing and programming standards 

3.5.1 Introduction 

In this section the following literature topics needed for this work on parallel are reviewed: 

- Parallel hardware architectures. 

- Parallel programming standards. 

3.5.2 Parallel hardware architectures 

3.5.2.1 Introduction 

A general introduction to this subject can be found in Tanenbaum (2005) and Barney 

(2011a). A good introduction to the differences and similarities between CPU and GPU 

architectures can be found in Gaster, et al. (2012, Chapter 3). Only a few topics necessary to 

understand the main themes in this work are mentioned in this section. 
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Flynn's taxonomy (Flynn, 1966) is a classification of computer architectures based upon the 

number of concurrent instruction and data streams in its design. In Flynn's taxonomy there 

are four classes: 

- Single Instruction, Single Data stream (SISD).  

An example is a one core CPU in a PC. A single processor that executes a single 

instruction stream to operate on single data. There is one operation on one data item at a 

time, so there is no exploitation of parallelism.   

- Single Instruction, Multiple Data stream (SIMD).  

Examples are GPUs and the vector processing units in CPUs. Multiple processors execute 

the same instruction on a different set of data. 

- Multiple Instruction, Single Data stream (MISD).  

This is mainly used for fault tolerant systems. Multiple processors execute the same 

instruction on the same data and must agree on the result. 

- Multiple Instruction, Multiple Data stream (MIMD).  

An example is a multi-core CPU in a contemporary PC where multiple autonomous 

processors simultaneously execute different instructions on different independent data. 

A more recent and more complex taxonomy of computer architectures can be found in 

Duncan (1990). He also describes the wavefront array architectures as specialization of 

SIMD, see section 3.5.2.3.4. 

 

An important aspect of a parallel computer architecture is the way in which the memory is 

organized. In summarizing and partially quoting Barney (2011a) three main types are 

distinguished: 

- Shared memory:  

- All processors have access to all memory as global address space.  

- Can be divided into two main classes based upon memory access times: UMA and 

NUMA.  

- Uniform Memory Access (UMA): Identical processors with equal access and 

access times to memory. This is most commonly represented today by Symmetric 

Multi-Processor (SMP) machines. If cache coherency is accomplished at the 

hardware level, it is called cache coherent UMA (ccUMA). 

- Non-Uniform Memory Access (NUMA): Often made by physically linking two or 

more SMPs. One SMP can directly access memory of another SMP. Not all 

processors have equal access time to all memories; memory access across a link is 

slower. If cache coherency is maintained, it is called cache coherent NUMA 

(ccNUMA).  

- Advantage: due to global address space a user-friendly programming view of memory 

and fast access time to memory. 

- Disadvantage: lack of scalability, adding more processors will increase traffic on the 

shared-memory bus. 
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- Distributed memory: 

- Processors have their own local memory. Memory addresses in one processor do not 

map to another processor, so there is no concept of global address space across all 

processors.  

- Requires a communication network to connect inter-processor memory.  

- Because each processor has its own local memory, it operates independently. Changes 

it makes to its local memory have no effect on the memory of other processors. 

Hence, the concept of cache coherency does not apply.  

- When a processor needs access to data in another processor, it is usually the task of 

the programmer to use “message passing” in order to explicitly define how and when 

data is communicated.  

- Often used in Massively Parallel Processor (MPP) HPC systems. This connects 

numerous nodes, which are made up of processor, memory, and a network port, via a 

specialized fast network. 

- Advantage: memory is scalable with the number of processors. 

- Disadvantage: more complicated to program and it may be difficult to map existing 

data structures based on global memory to this memory organization . 

- Hybrid distributed-shared memory: 

- Processors are clustered in groups. In each group processors have shared memory and 

between the groups the memory is distributed. 

 

Another important notion to understand is the difference between two types of parallel 

programming models: data parallel and task parallel (Tsuchiyama, 2010).  

- Data Parallel:  

All processors run the same code but on different data. For example in a vector addition 

application each process will add the elements at a unique index in the vector. Data 

parallelism is characterized by relatively simple programming because all processors are 

running the same code and that all processors finish their task at around the same time. 

This method can be efficient when the dependency between the data being processed by 

each processor is minimal. 

- Task parallel:  

Every processor will run a different code on different data for a different task. Task 

parallelism will give a programmer more freedom but also more complexity. An 

important challenge will be load balancing: how to avoid processors being idle when 

there is work to do. This means that scheduling strategies will have to be implemented 

which will introduce complexity and overhead. 
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It is possible to combine both types of parallel programming models in one application. In 

Andrade, Fraguela, Brodman, and Padua (2009) a comparison is made between task parallel 

and data parallel programming approaches in multi-core systems. Membarth et al. (2011b) 

compare both the data parallelism and the task parallelism approach for image registration. 

3.5.2.2 Multi-core CPU 

The author assumes that the reader has a general understanding about CPU architectures and 

only summarizes some notions important in the context of this work. General introductions to 

this subject can be found in Tanenbaum (2005) and Barney (2011a). A contemporary 

commodity PC has a multi-core CPU with ccUMA shared memory. The multi-core CPU has 

a MIMD architecture and each core has also a vector processing unit with a SIMD 

architecture. Both a data parallel and a task parallel programming approach are possible. Lee, 

et al. (2010) give a good summary: 

 

“CPUs are designed for a wide variety of applications and to provide fast response 

times to a single task. Architectural advances such as branch prediction, out-of-order 

execution, and super-scalar (in addition to frequency scaling) have been responsible 

for performance improvement. However, these advances come at the price of 

increasing complexity/area and power consumption. As a result, main stream CPUs 

today can pack only a small number of processing cores on the same die to stay within 

the power and thermal envelopes.” 

 

CPUs have a complex hierarchy of cache memory between the cores and the RAM memory. 

According to Kirk and Hwu (2010) and NVIDIA (2010b) a large part of the area of the chip 

is used for the cache memory and its control logic to keep the caches and memory coherent. 

This implies that only a relative small part of the die is used for the cores. In GPU 

architectures a large part of the area of the die is used for the cores, see section 3.5.2.3.3. This 

is the main reason why contemporary GPUs have a much higher raw floating point 

performance than CPUs. 
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3.5.2.3 GPU 

3.5.2.3.1 Introduction 

There are of lot of different GPU architectures. Major manufacturers like NVIDIA and AMD 

frequently introduce updated or completely new architectures. Understanding the 

architectures is complicated by the fact that the manufactures call similar things by different 

names. The details of those architectures go well beyond the scope of this work. Only a few 

topics necessary to understand the main line in this work are treated here. 

 

A program compiled for running on a GPU is usually called a kernel. GPUs are designed for 

data parallel applications. The majority of the contemporary GPUs only allow at one time to 

run one and the same kernel on all cores of the GPU. Only high end GPUs like NVIDIA’s 

Kepler GK110 (NVIDIA, 2012b) allow concurrent kernel execution where multiple different 

kernels can be executed at the same time. On these high end GPUs it is also possible to run 

task parallel applications. See Pai, Thazhuthaveeltil and Govindarajan (2013) for a good 

introduction and benchmarks. 

3.5.2.3.2 GPU architecture 

At the lowest level there are many differences in GPU architectures. But from a high level 

perspective most GPU architectures are similar.  

 

In order to get a general understanding of GPU architectures the conceptual OpenCL device 

architecture is explained, see Figure 5. OpenCL is an open programming standard used for 

GPU programming, see for more information section 3.5.3.3.8 and 5.3.2. Manufacturers like 

NVIDIA and AMD support OpenCL by mapping their GPU architecture to the conceptual 

OpenCL device architecture. 
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Figure 5. Conceptual OpenCL device architecture. 

After Munshi, ed. (2010). 

 

In OpenCL terminology the graphics card in a commodity PC is called the compute device 

and the other parts of the PC, including the CPU, are called the host. Contemporary graphics 

cards will have a large amount, typically 1 GByte or more, of fast DDR RAM off-chip 

memory. This memory is called the compute device memory. The device memory is cached 

on the GPU chip.  

 

Note: this device memory is different from the “normal” RAM memory used by the CPU. 

Before starting a calculation on the GPU, data has to be transported from CPU memory to the 

GPU device memory. When the calculation has finished the results have to be transported 

from GPU device memory to CPU memory before they can be used by the CPU. 

 

A compute device contains one or more compute units with local memory. Each compute 

unit contains one or more Processor Elements (PEs). The PEs are the processor cores where 

the processing is done. Each PE has its own private memory, also called the registers. 
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3.5.2.3.3 GPU memory hierarchy  

On the compute device there is the following hierarchy of memory: 

- Compute device memory: 

- Accessible by all processor elements. 

- Largest memory. 

- Slowest access time. 

- Divided into a global memory part with read/write access and a constant memory part 

with only read access. The constant memory has a much faster access time than the 

global part but is usually very limited in quantity.  

- Local memory: 

- Only accessible by the processor elements in a compute unit. 

- Available in lesser quantities than compute global memory but in larger quantity than 

private memory. 

- Faster access time than global memory but slower than private memory. 

- Private memory: 

- Only accessible by one processor element. 

- Available only in very limited quantity. 

- Fastest access time. 

 

In order to get an idea about price and performance, for example a low end (100 euro, 

September 2011) AMD graphics card with an ATI Radeon 5750 GPU chip (AMD, 2011a):  

- 9 compute units with each 16 processor elements. 

- Each processor element is a five-way Very Long Instruction Word (VLIW) SIMD like 

vector processor. One of the five sub-processors is also able to execute transcendental 

instructions. The total number of sub-processors is 9×16×5 = 720. 

- Running at 700 Mhz, delivering a peak performance of 1008 GFlops. 

- 1 GByte global memory with a peak bandwidth of 74 GBytes/s. 

- 32 KByte local memory for each compute unit with a peak bandwidth of 806 GBytes/s. 

- 1024 registers of private memory for each processor element with a peak bandwidth of 

4838 GBytes/s. 

 

Note: in the literature about GPUs there is no general agreement about the notion “core”. The 

word core is used both for the processor element and for the sub-processor. 
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According to Kirk and Hwu (2010) and NVIDIA (2010b) in GPUs a large part of the area of 

the die is used for the cores. This in contrast to multi-core CPUs. Local and private memory 

in GPUs can be compared with the cache hierarchy in multi-core CPUs but there are 

significant differences. First the amount of local and private memory of the GPUs is much 

smaller than the caches in CPUs. Second in CPUs a significant part of the area of the die is 

used for maintaining caches/memory coherence, so the hardware is responsible for the 

coherence. In GPUs there is no hardware support for maintaining coherence between private, 

local and device memory. Maintaining this coherence is the responsibility of the programmer 

of the GPU. 

3.5.2.3.4 Warps or wavefronts 

A kernel (thread) executed on a core is called a work-item in OpenCL terminology. A host 

program, typically on a PC, is necessary to launch the kernels on the GPU. Work-items will 

be grouped into work-groups in order to run on a compute unit. Within a work-group work-

items can synchronize and share local memory. Note that work-items running on different 

work-groups can only be synchronized using the host program. 

 

The compute units execute the work-items in what is called Single Instruction Multiple 

Thread (SIMT) fashion, which is similar to SIMD. In SIMT fashion, vector components are 

considered as individual threads that can branch independently. See Kirk and Hwu (2010, 

section 6.1) for a more detailed explanation of the differences. All work-items running in one 

work-group are organized in warps (NVIDIA terminology) or wavefronts (AMD 

terminology). A warp is a group of work-items for which the same instruction is executed in 

parallel on all cores of a compute unit. A typical size for a warp is 16, 32 or 64 work-items. 

After a branch instruction it is possible that work-items within a warp will diverge. The next 

instruction for some work-items will be the ‘then branch’ and for others it will be the ‘else 

branch’. This means that the compute unit will have to execute both branches. The compute 

unit will first execute the ‘then branch’ with the ‘then branch cores’ enabled and the ‘else 

branch core’ disabled and thereafter execute the ‘else branch’ with the reverse enabling of the 

cores. If not all work-items choose the same diversion, branch instructions can potentially 

degrade the overall performance of GPU algorithms. 
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When the work-items in a warp issue a global memory operation, that instruction will take a 

very long time, typically hundreds of clock cycles, due to the long memory latency. As 

shown in Figure 5, GPU architectures have a device memory data cache, but GPUs are 

designed for computing performance and compared to CPUs have small and ineffective 

caches. GPUs are designed to tolerate memory latency by using a high degree of multi-

threading. Each compute unit supports typically 16 or more active warps. When one warp 

stalls on a memory operation, the compute unit selects another ready-to-run warp and 

switches to that one. In this way, the cores can be productive as long as there is enough 

parallelism to keep them busy. Contemporary GPUs have a zero-overhead warp scheduling, 

so switching between warps will cost no clock cycles. 

3.5.2.3.5 Coalesced memory access of global memory 

In order to optimize the bandwidth the global off-chip memory is accessed by the compute 

device in chunks with typical sizes of 32, 64 or 128 bytes. These chunks are cached in the 

global memory data cache, see Figure 5. As mentioned before, GPUs have only very small 

caches and in order to achieve good performance it is paramount to use these caches 

effectively. It is important that all work-items in a warp access the global memory as much as 

possible in a coalesced way. In order to facilitate this, special programming techniques are 

developed. See Kirk and Hwu (2010, section 6.2), NVIDIA (2010a, section 3.2.1) and AMD 

(2011a, section 4.6) for more information about this subject.  

3.5.2.3.6 Bank conflicts in accessing local memory 

The on-chip local memory has a memory latency which is typically about 10% of the latency 

of the global off-chip memory. In order to achieve this high bandwidth the local memory is 

divided into equally sized memory banks that can be accessed concurrently. However, if the 

work-items in a warp request access at the same time to multiple memory addresses that map 

to the same memory bank, these accesses are serialized. See NVIDIA (2010a, section 3.2.2) 

AMD (2011a, section 4.7) and Sitaridi and Ross (2012) for more information about this 

subject.  
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3.5.2.3.7 Pinned memory 

Contemporary operation systems use a virtual memory system. Each process has its own 

dedicated address space. The address space is divided in blocks called pages. The total 

amount of memory needed by the address spaces of all processes together can exceed by far 

the amount of available primary (RAM) memory. So for each process only a limited amount 

of pages can be kept in primary memory. The other pages are stored on secondary memory, 

usually a hard disk. If a process needs access to a page that is not in primary memory, a page 

fault will be generated. A page in primary memory will be selected and saved to secondary 

memory and the page that initiated the page fault will be read from secondary memory to 

primary memory. In order to avoid that a page is selected for deletion from primary memory, 

a page can be pinned. If the OpenCL runtime knows that data is in pinned host memory, it 

can be transferred to, and from, device memory in an enhanced way which is faster than 

transferring data from, or to, unpinned memory. See for more details AMD (2011b, section 

4.4). Because the amount of available primary memory is limited, only a limited amount of 

pages can be pinned. 

3.5.2.3.8 Developments in GPU architectures 

From the preliminary experiments described in section 2.2 it was clear that optimizing GPU 

kernels for maximum performance will be a challenging job. Some of the key issues have 

been described in the previous sections: 

- Control flow divergence. 

- Global memory coalescing. 

- Local memory bank conflicts. 

 

New GPU architectures are announced in Mantor and Houston (2011) and Gaster and Howes 

(2011) which will reduce the impact of the above issues on the performance. 

 

Another issue concerning the overall system performance is the overhead of copying data 

between CPU and GPU memory. In Rogers (2011) a new fused architecture of CPU and GPU 

is announced where CPU and GPU will share the same global coherent memory. This will 

reduce or even eliminate the copying overhead. See for more details AMD (2011b, section 

4.4), Boudir and Sellers (2011), Brose (2005) and section 3.5.2.4. 

 

Intel introduced in 2012 the Xeon Phi, the new brand name for all their products based on 

their Many Integrated Core architecture. The Xeon Phi is described in Reinders (2012) and 

Newburn, et al. (2013).  
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3.5.2.4 Heterogeneous Computing 

In the context of this work heterogeneous computing is a combination of CPU(s) and GPUs. 

Recently hardware manufacturers have started shipping chips with a combination of CPU(s) 

and GPUs on one die. More on this development can be found in Rogers (2011), Gaster and 

Howes (2011) and Gaster et al. (2012). Examples: 

- AMD Fusion, see Brookwood (2010). AMD is calling the combination of CPU and GPU 

an Accelerated Processing Unit (APU). 

- Intel Core i7-2600K Processor (8M Cache, 3.40 GHz) four core CPU and one GPU (Intel 

Corporation, 2011h). 

- Mali-T604, an ARM processor with GPU (Davies, 2011). 

 

In 2011 the Heterogeneous System Architecture (HSA) Foundation was founded by several 

companies including AMD and ARM. Rogers (2012) gives a roadmap for the HSA 

Foundation and Kyriaszis (2012) a technical review. Prominent new architectural features 

are: 

- Coherent memory regions; fully coherent shared memory, with unified addressing for 

both CPU and GPU. 

- Shared page table support; this enables shared virtual memory semantics between CPU 

and GPU. 

- Page faulting; GPU share the same large address space as CPU. 

- Hardware scheduling; GPU can switch between task without operating system 

intervention. 

3.5.2.5 Distributed memory systems and HPC clusters  

Although outside of scope of the user requirements it would be a nice option if the chosen 

solutions could easily be scaled up to larger systems. A description of those hardware 

architectures is outside the scope of this project. An overview about contemporary HPC 

systems can be found in Top500.org (2012) and an introduction to technology and 

architecture trends can be found in Kogge and Dysart (2011). 
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3.5.3 Parallel programming standards 

3.5.3.1 Introduction 

In this section standards for parallel programming are reviewed. The literature review on this 

topic is not exhaustive. The review is restricted to systems as described in the requirements in 

section 2 and has not enumerated all research projects found in this area. 

 

Section 3.5.3.2 focuses on multi-core CPU standards and section 3.5.3.3 focuses on GPU 

standards. 

3.5.3.2 Multi-core CPU programming standards 

3.5.3.2.1 Introduction 

This section reviews several important multi-core CPU programming standards. Each 

standard is described, followed by an evaluation with respect to a number of criteria. One of 

the criteria is the expectations of effort needed for conversion. The effort scale used is related 

to the expected number of lines of code, in order to convert an embarrassingly parallel vision 

algorithm, to be added or chanced and its complexity: 

- Low: only one line of code with low complexity. 

- Medium: more than one but less than five lines of code with low complexity. 

- High: more than five lines of code with low complexity or less than five lines of code 

with high complexity. 

- Huge: more than five lines of code with high complexity. 

 

On 1 October 2011 the choice for the standard was made (Chapter 4). At the end of the 

project (section 8.4) the choice for the standard was evaluated including newly emerged 

standards and new information about the existing standards. The new information that 

became available was added to section 3.8. 

 

For evaluating acceptance by the market the Evans Data Corporation survey in 2011 of the 

most popular multi-threaded APIs in North America discussed by Bergman (2011) was used. 

In this survey multi-threaded APIs for both CPUs and GPUs are ranked in one list. According 

to this survey OpenMP and OpenCL are ranked at position one and two. These positions have 

been acknowledged by Shen, Fang, Varbanescu and Sips (2012). 
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A review of five multi-core CPU programming languages and environments for a dedicated 

application including a performance evaluation can be found in (Membarth et al., 2011b). 

Note that they have different start requirements than the requirements for this work, because 

they focus only on image registration. It is interesting, but too narrow for this work. They 

evaluate both fine-grained data parallelism and course-grained task parallelism. Their 

conclusions on performance are indecisive. 

3.5.3.2.2 Array Building Blocks 

According to the home page of Array Building Blocks (Intel Corporation, 2011e):  

 

“Intel® Array Building Blocks (Intel® ArBB) provides a generalized vector parallel 

programming solution that frees application developers from dependencies on 

particular low-level parallelism mechanisms or hardware architectures. It is comprised 

of a combination of standard C++ library interface and powerful runtime. It produces 

scalable, portable, and deterministic parallel implementations from a single high-level 

source description. It is ideal for applications that require data-intensive mathematical 

computations such as those found in medical imaging, digital content creation, 

financial analytics, energy, data mining, science and engineering. Intel® ArBB is a 

component of Intel® Parallel Building Blocks, and complements other Intel developer 

and parallel programming tools. … Programs written with Intel ArBB are scalable and 

efficient across all cores and vector units (SIMD) allowing them to fully harness 

available CPU resources. Intel ArBB can offer many times the performance of straight 

C++ compilation, depending on the algorithm.” 

 

An introduction to Array Building Blocks can be found in Klemm and McCool (2010) (Intel 

Corporation, 2011d).  

 

Requirement Evaluation 

Industry standard No, it is Intel specific. 

Maturity Array Building Blocks is a new product and in beta version. 

Acceptance by 

market 

According to the survey referenced by (Bergman, 2011) Array 

Building Blocks is not ranked in the first eight published positions. 

Future developments Array Building Blocks is a new product and in beta version. 

Vendor 

independence 

Only available at Intel. 

Portability  Portable to Windows and Linux using Intel compatible processors. 
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ccNUMA scalability This is not supported. 

Vector capabilities Yes, Array Building Blocks is designed for this. 

Conversion effort Because Array Building Blocks uses its own specific data primitives 

and containers it is expected that converting VisionLab to Array 

Building Blocks will take a huge amount of effort. 

Table 1. Evaluation of Array Building Blocks 

3.5.3.2.3 C++11 Threads 

C++11 is the official name of the most recent version of the standard for the C++ 

programming language. This new standard for C++ incorporates most of the Boost 

(Boost.org, 2011) and C++ Technical Report 1 (TR1) libraries including a standard for 

threads. The new standard is published by the International Organization for Standardization 

(ISO) as standard ISO/IEC 14882:2011. This standard is available for a fee at ISO. The 

author used a free but recent draft for this standard as reference (Becker, 2011). TR1 is also 

available for a fee at ISO as standard ISO/IEC 19768:2007. 

 

To facilitate multi-core programming C++11 contains: 

- The Thread Support Library (TSL) with classes for threads and synchronization 

primitives like mutexes, locks, call once, condition variables and futures.  

- The Atomic Operations Library (AOL) with functions for atomic memory access. 

 

A tutorial can be found in Solarian Programmer (2011). The C++11 TSL and AOL are low 

level libraries which will give the programmer a lot of flexibility and possibilities to exploit 

parallelism but at the cost of a huge programming effort. 

 

Requirement Evaluation 

Industry standard Yes, ISO/IEC 14882:2011. 

Maturity C++11 is new but is based on TR1 and its successors. 

Acceptance by 

market 

The previous version of the standard for C++ was from 2003. The 

creation of a new standard for C++ was a laborious process in which 

many drafts were published. Most major vendors of C++ compilers 

have already implemented many new features based on the drafts. 

According to the survey referenced by (Bergman, 2011) C++11 

Threads or its predecessors are not ranked in the first 8 published 

positions. 
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Future developments It is to be expected that all vendors of C++ compilers will have to 

comply to this new standard.  

Vendor 

independence 

When all vendors of C++ compilers will have complied to this new 

standard it will be very vendor independent. 

Portability  Because it is an industry standard it will be very portable. But usually 

(cross)compilers for embedded platforms will run behind in 

following the standards, so using the latest features of C++11 will 

reduce the portability. 

ccNUMA scalability There is no support for this. 

Vector capabilities There is no support for this in the standard.  

However some vendors of C++ compilers (Intel Corporation, 2010b) 

(Gnu, 2009) can support this in vendor dependent way. Microsoft 

(2011) has announced that it will be available in the next version of 

Visual Studio. 

Conversion effort Because TSL and AOL are low level libraries it is expected that it 

will take a huge amount of effort for conversion. In every vision 

operator the forking and joining of processes and the synchronization 

will have to be explicitly coded. 

Table 2. Evaluation of C++11 

3.5.3.2.4 Cilk Plus 

According to Davidson (2010):  

 

“Cilk (pronounced "silk") is a linguistic and runtime technology for algorithmic 

multithreaded programming developed at MIT. The philosophy behind Cilk is that a 

programmer should concentrate on structuring her or his program to expose 

parallelism and exploit locality, leaving Cilk's runtime system with the responsibility of 

scheduling the computation to run efficiently on a given platform. The Cilk runtime 

system takes care of details like load balancing, synchronization, and communication 

protocols. Cilk is algorithmic in that the runtime system guarantees efficient and 

predictable performance. 

…   

Cilk Arts developed Cilk++, a quantum improvement over MIT Cilk, which includes 

full support for C++, parallel loops, and superior interoperability with serial code. In 

July 2009 Intel Corporation acquired Cilk Arts. Intel has since released its ICC 

compiler with Intel Cilk Plus, which provides an easy path to multicore-enabling C and 

C++ applications.“ 
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Information about Cilk Plus can be found in Intel Corporation (2011a). A good introduction 

to Cilk Plus can be found in Frigo (2011). Cilk extends C++ with a few keywords and a 

runtime library with synchronization primitives. 

 

Requirement Evaluation 

Industry standard No, Intel specific, but available in open source and for the GNU C++ 

compiler. 

Maturity According to Frigo (2011) development started in 1992. Cilk is now 

integrated in Intel’s Parallel Building Blocks (Intel Corporation, 

2011c). 

Acceptance by 

market 

According to the survey referenced by Bergman (2011) Cilk Plus is 

ranked at position 6. 

Future developments According to Intel Corporation (2011a) Intel has released the source 

code as an open source project and has integrated Cilk Plus in a new 

version of the GNU C++ compiler.  

Vendor 

independence 

Available for the Intel and GNU C++ compiler. Cilk Plus is not 

supported by Microsoft Visual Studio. 

Portability  Available for the Intel and GNU C++ compiler.  

Cilk Plus is not supported by Microsoft Visual Studio. 

ccNUMA scalability There is no support for this. 

Vector capabilities This is supported by Cilk Plus using pragmas. 

Conversion effort Based on the literature reviewed it is expected that Cilk Plus is very 

suitable for the conversion and embarrassingly parallel vision 

algorithms can be converted with little effort. 

Table 3. Evaluation of Cilk Plus  
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3.5.3.2.5 MCAPI 

According to The Multicore Association (2011):  

 

“The Multicore Communications API (MCAPI™) specification defines an API and a 

semantic for communication and synchronization between processing cores in 

embedded systems. … The purpose of MCAPI™, which is a message-passing API, is to 

capture the basic elements of communication and synchronization that are required for 

closely distributed (multiple cores on a chip and/or chips on a board) embedded 

systems. The target systems for MCAPI span multiple dimensions of heterogeneity (e.g., 

core, interconnect, memory, operating system, software toolchain, and programming 

language). … 

While many industry standards exist for distributed systems programming, they have 

primarily been focused on the needs of widely distributed systems, SMP systems, or 

specific application domains (for example scientific computing.) Thus, the Multicore 

Communications API from the Multicore Association has similar, but more highly 

constrained, goals than these existing standards with respect to scalability and fault 

tolerance, yet has more generality with respect to application domains. MCAPI is 

scalable and can support virtually any number of cores, each with a different 

processing architecture and each running the same or a different operating system, or 

no OS at all. As such, MCAPI is intended to provide source-code compatibility that 

allows applications to be ported from one operating environment to another.” 

 

A good introduction to MCAPI can be found in Holt, et al. (2009). 

 

Requirement Evaluation 

Industry standard No. 

Maturity According to The Multicore Association (2011) development started 

in 2005, but the author did not find not many users. 

Acceptance by 

market 

According to The Multicore Association (2011) it is only supported 

by a few companies and universities. MCAPI is not ranked in the 

survey referenced by Bergman (2011) in the first eight published 

positions.  

Future developments No information was available at the time of writing. 

Vendor 

independence 

MCAPI is designed to be vendor independent.  

Portability  MCAPI is designed to be portable and can even be used in 

heterogeneous distributed memory systems. 



3  Literature review - Parallel computing and programming standards 

52 

 

ccNUMA scalability Yes. 

Vector capabilities There is no support for this in the standard.  

However some vendors of C++ compilers (Intel Corporation, 2010b) 

(Gnu, 2009) can support this in vendor dependent way. Microsoft 

(2011) has announced that it will be available in the next version of 

Visual Studio. 

Conversion effort Because MCAPI is a very low level library it is expected that it will 

take a huge amount of effort for conversion. Beside that in every 

vision operator the forking and joining of processes and the 

synchronization will have to be explicitly coded, a lot of coding 

effort will be necessary to set up the communication channels 

between the processes. 

Table 4. Evaluation of MCAPI 

3.5.3.2.6 MPI 

MPI, the Message Passing Interface, was developed in order to facilitate portable 

programming for distributed memory computer architectures. The standard (Message Passing 

Interface Forum, 2009) defines a set of library routines useful to a wide range of users writing 

portable message-passing programs in Fortran 77, C or C++. Several well-tested and efficient 

implementations of MPI already exist, including some that are free and in the public domain.  

 

More information can be found at the home page of MPI (Message Passing Interface Forum, 

2011). A public domain implementation with open source can be found at Open MPI (2011).  

 

Requirement Evaluation 

Industry standard Yes, see Message Passing Interface Forum (2009). 

Maturity According to Message Passing Interface Forum (2009) and Open 

MPI (2011) since 1992 a very large community of users both 

academic and industrial. 

Acceptance by 

market 

According to the survey referenced by Bergman (2011) MPI is 

ranked at position 7. 

Future developments From Open MPI (2011) it is quite clear that there is a lot of on-going 

development on MPI. 

Vendor 

independence 

From several sources binary implementations are available for both 

Windows and Linux. An open source implementation is available 

from Open MPI (2011). MPI can be used with both GNU C++ 

compiler and Microsoft Visual Studio. 
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Portability  MPI is designed to be portable and can even be used in 

heterogeneous distributed memory systems. 

ccNUMA scalability Yes, MPI is designed for it. 

Vector capabilities There is no support for this in the standard.  

However some vendors of C++ compilers (Intel Corporation, 2010b) 

(Gnu,2009) can support this in vendor dependent way. Microsoft 

(2011) has announced that it will be available in the next version of 

Visual Studio. 

Conversion effort MPI is designed for distributed memory systems, but it can also be 

used in shared memory multi-core CPU systems. But it is to be 

expected that the more generic message passing interface used by 

MPI will introduce more overhead than inter process communication 

primitives designed for shared memory systems.  

Because MPI is a low level library it is expected that it will take a 

huge amount of effort for conversion. In every vision operator the 

forking and joining of processes and the synchronization will have to 

be explicitly coded. 

Table 5. Evaluation of MPI 

3.5.3.2.7 OpenMP 

According to the OpenMP Application Program Interface specifications (OpenMP 

Architecture Review Board, 2008): 

 

“This document specifies a collection of compiler directives, library routines, and 

environment variables that can be used to specify shared-memory parallelism in C, 

C++and Fortran programs. This functionality collectively defines the specification of 

the OpenMP Application Program Interface (OpenMP API). This specification 

provides a model for parallel programming that is portable across shared memory 

architectures from different vendors. Compilers from numerous vendors support the 

OpenMP API. More information about OpenMP can be found at the following web site: 

http://www.openmp.org. The directives, library routines, and environment variables 

defined in this document allow users to create and manage parallel programs while 

permitting portability. The directives extend the C, C++ and Fortran base languages 

with single program multiple data (SPMD) constructs, tasking constructs, worksharing 

constructs, and synchronization constructs, and they provide support for sharing and 

privatizing data. The functionality to control the runtime environment is provided by 

library routines and environment variables. Compilers that support the OpenMP API 

often include a command line option to the compiler that activates and allows 

interpretation of all OpenMP directives.” 
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More information can be found at the home site of the OpenMP organization (OpenMP, 

2011a). A good introduction can be found in Chapman, Jost and Van de Pas (2008). 

 

Requirement Evaluation 

Industry standard Yes, see OpenMP Architecture Review Board (2011). 

Maturity According to OpenMP (2011a) since 1997 a very large community 

of users both academic and industrial. 

Acceptance by 

market 

According to the survey referenced by Bergman (2011) OpenMP is 

ranked at position 1. 

Future developments From OpenMP (2011a) it is quite clear that there is a lot of on-going 

development on OpenMP and that there is a clear vision for future 

developments. The last version of the standard is version 3.1 

(OpenMP Architecture Review Board, 2011). According to OpenMP 

(2011b) a topic under consideration is to include support for 

accelerators such as GPUs. 

Vendor 

independence 

On OpenMP (2011a) a list can be found with vendors supporting 

OpenMP. Most major vendors of C++ compilers, including both 

GNU C++ compiler and Microsoft Visual Studio, support OpenMP. 

Portability  OpenMP is designed to be portable. An issue with portability could 

be that not all vendors support the same version of OpenMP. 

Versions of OpenMP are almost, but not fully, upwards compatible. 

Microsoft Visual Studio only supports version 2.0, GNU supports 

version 3.1. Version 2.0 has enough functionality to parallelize 

Computer Vision operators. 

ccNUMA scalability According to Chapman, Jost and Van de Pas (2008, Chapter 6) a 

combined use of OpenMP and MPI will give a good performance on 

distributed memory systems.  

ForestGOMP (Broquedis and Courtès, n.d.) is public domain run-

time implementation of OpenMP for distributed memory systems. 

ForestGOMP is only compatible with the GNU C++ compiler. 

Vector capabilities There is no support for this in the standard.  

However some vendors of C++ compilers (Intel Corporation, 2010b) 

(Gnu,2009) can support this in vendor dependent way. Microsoft 

(2011) has announced that it will be available in the next version of 

Visual Studio. 

Conversion effort Based on the literature reviewed and some preliminary experiments it 

is expected that OpenMP is very suitable for the conversion and 

embarrassingly parallel vision algorithms can be converted with little 

effort. 

Table 6. Evaluation of OpenMP 
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3.5.3.2.8 Parallel Building Blocks 

According to the home page of Parallel Building Blocks (Intel Corporation, 2011b):  

 

“Intel Parallel Building Blocks is a set of comprehensive parallel development models 

that support multiple approaches to parallelism. Since they share the same foundation, 

you can mix and match the models that suit your unique parallel implementation needs. 

These models easily integrate into existing applications and help preserve investments 

in existing code and speeds development of parallel applications.   

… 

Intel® Parallel Building Blocks Components: 

- Intel® Threading Building Blocks is a C++ template library solution that can be 

used to enable general parallelism. It is for C++ developers who write general-

purpose loop and task parallelism applications. It includes scalable memory 

allocation, load-balancing, work-stealing task scheduling, a thread-safe pipeline 

and concurrent containers, high-level parallel algorithms, and numerous 

synchronization primitives. 

- Intel® Cilk™ Plus is an Intel® C/C++ Compiler-specific implementation of 

parallelism: Intel Cilk Plus is for C++ software developers who write simple loop 

and task parallel applications. It offers superior functionality by combining 

vectorization features with high-level loop-type data parallelism and tasking. 

- Intel® Array Building Blocks (Beta available now) provides a generalized vector 

parallel programming solution that frees application developers from 

dependencies on particular low-level parallelism mechanisms or hardware 

architectures. It is for software developers who write compute-intensive, vector 

parallel algorithms. It produces scalable, portable, and deterministic parallel 

implementations from a single high-level, maintainable, and application-oriented 

specification of the desired computation.” 

 

An introduction to Parallel Building Blocks can be found in Intel Corporation (2011c).  

 

The individual components of Parallel Building Blocks are reviewed in separated sections. 

- Thread Building Blocks in section 3.5.3.2.12. 

- Cilk Plus in section 3.5.3.2.4. 

- Array Building Blocks in section 3.5.3.2.2. 
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Note: in the survey referenced by Bergman (2011) Parallel Building Blocks (PBB) is ranked 

at position 4, Thread Building Blocks (TBB) at position 3 and Cilk Plus at position 6. Array 

Building Blocks was still in beta and not ranked. It is strange that TBB is ranked higher than 

PBB because TBB is a part of PBB. PBB is a set of individual tools that can be used on their 

own or in collaboration. The author believes that this is a flaw in the survey. It would have 

been clearer if either PBB alone or the three individual tools were used in the survey. 

3.5.3.2.9 Parallel Patterns Library 

According to the home page of Microsoft’s Parallel Patterns Library (Microsoft, 2011a):  

 

“The Parallel Patterns Library (PPL) provides an imperative programming model that 

promotes scalability and ease-of-use for developing concurrent applications. The PPL 

builds on the scheduling and resource management components of the Concurrency 

Runtime. It raises the level of abstraction between your application code and the 

underlying threading mechanism by providing generic, type-safe algorithms and 

containers that act on data in parallel. The PPL also lets you develop applications that 

scale by providing alternatives to shared state. 

The PPL provides the following features: 

- Task Parallelism: a mechanism to execute several work items (tasks) in parallel 

- Parallel algorithms: generic algorithms that act on collections of data in parallel 

- Parallel containers and objects: generic container types that provide safe concurrent 

access to their elements 

… 

 The PPL provides a programming model that resembles the Standard Template 

Library (STL).” 

 

An introduction to the Parallel Patterns Library can be found in Groff (2011). 

 

Requirement Evaluation 

Industry standard No, it is Microsoft specific. 

Maturity The Parallel Patterns Library is well integrated in Microsoft Visual 

Studio. It was first bundled with Visual Studio 2010. 

Acceptance by 

market 

Parallel Patterns Library is new and not ranked in the survey 

referenced by Bergman (2011) . 
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Future developments From Sutter (2011) it can be derived that the Parallel Patterns Library 

will be either superseded by or integrated with C++ AMP. See 

section 3.5.3.3.4 for more information about C++ AMP. 

Vendor 

independence 

No, it is Microsoft specific. 

Portability  Only to platforms supported by Microsoft Visual Studio. 

ccNUMA scalability This is not supported. 

Vector capabilities There is no support for this in the standard.  

However Microsoft (2011) has announced that it will be available in 

the next version of Visual Studio. 

Conversion effort The Parallel Patterns Library is based on C++ Standard Template 

Library style programming using iterators. For reasons explained in 

section 2.1 VisionLab uses below the level of images traditional C++ 

pointers to pixels and not iterators over pixel classes. Converting 

VisionLab to STL style programming will cost a huge amount of 

effort. 

Table 7. Evaluation of Parallel Patterns Library 

3.5.3.2.10 POSIX Threads 

POSIX Threads, often abbreviated to Pthreads, is an API with a set of ANSI C based 

functions for multi-threading. The POSIX Threads API is specified in IEEE Std 1003.1c-

1995 (1995). This standard is available for a fee at IEEE. The author consulted the tutorials 

(Barney, 2011a) and (Engelschall, 2006a). Open source implementations for POSIX Threads 

exist on many operating systems including Linux (Engelschall, 2006b) and Windows 

(SourceWare.org, 2006). 

 

Requirement Evaluation 

Industry standard Yes, see (IEEE Std 1003.1c-1995). 

Maturity Since 1995 a very large community of ANSI C and C++ users both 

academic and industrial. 

Acceptance by 

market 

According to the survey referenced by Bergman (2011) POSIX 

Threads is not ranked in the first eight published positions.  

This is surprising to the author because in his experience POSIX 

Threads were used extensively in the past. It appears that its usage is 

superseded by other standards. 

Future developments The author could not find reports about development after 2006. 
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For C++, POSIX Threads are superseded by C+11 Threads, see 

section 3.5.3.2.3. 

Vendor 

independence 

Open source implementations (Engelschall, 2006b) and 

(SourceWare.org, 2006) are reported to work with both GNU C++ 

compiler and Microsoft Visual Studio. 

Portability  POSIX Threads is designed to be portable. 

ccNUMA scalability This is not supported. 

Vector capabilities There is no support for this in the standard.  

However some vendors of C++ compilers (Intel Corporation, 2010b) 

(Gnu,2009) can support this in vendor dependent way. Microsoft 

(2011) has announced that it will be available in the next version of 

Visual Studio. 

Conversion effort Because POSIX Threads is very low level library it is expected that it 

will take a huge amount of effort for conversion. In every vision 

operator the forking and joining of processes and the synchronization 

will have to be explicitly coded. 

Table 8. Evaluation of POSIX Threads 

3.5.3.2.11 PVM 

According to the home page of PVM (Parallel Virtual Machine, 2011) :   

 

“PVM (Parallel Virtual Machine) is a software package that permits a heterogeneous 

collection of Unix and/or Windows computers hooked together by a network to be used 

as a single large parallel computer. Thus large computational problems can be solved 

more cost effectively by using the aggregate power and memory of many computers. 

The software is very portable. The source, which is available free thru netlib, has been 

compiled on everything from laptops to CRAYs.” 

 

The latest version of PVM, version 3.4.6, was released in 1997. The author decided not to 

review PVM any further because it is out dated. 
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3.5.3.2.12 Thread Building Blocks 

According to the home page of Thread Building Blocks (Intel Corporation, 2011f):  

 

“Intel® Threading Building Blocks 4.0 (Intel® TBB) is a widely used, award-winning 

C++ template library for creating reliable, portable, and scalable parallel 

applications. Use Intel® TBB for a simple and rapid way of developing robust task-

based parallel applications that scale to available processor cores, are compatible with 

multiple environments, and are easier to maintain. Intel® TBB is the most proficient 

way to implement future-proof parallel applications that tap into the power and 

performance of multicore and manycore hardware platforms.” 

 

Requirement Evaluation 

Industry standard No, it is Intel specific. 

Maturity Development started in 2006, current version is 4.0. 

Acceptance by 

market 

According to the survey referenced by Bergman (2011) Thread 

Building Blocks is ranked at position 3. 

Future developments According to Intel Corporation (2011f) version 4.0 has just been 

released with a lot of new features. 

Vendor 

independence 

Intel has released the source code as an open source project (Intel 

Corporation, 2011g). 

Portability  Because it is available as an open source project Thread Building 

Blocks is very portable and can be compiled with both Microsoft 

Visual Studio and the GNU C++ compiler. 

ccNUMA scalability This is not supported. 

Vector capabilities There is no support for this in the standard, but the Intel C++ 

compiler can support it. 

Conversion effort Threading Building Blocks is based on C++ Standard Template 

Library style programming using iterators. For reasons explained in 

section 2.1 VisionLab uses below the level of images traditional C++ 

pointers to pixels and not iterators over pixel classes. Converting 

VisionLab to STL style programming will cost a huge amount of 

effort. 

Table 9. Evaluation of Thread Building Blocks 
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3.5.3.3 GPU programming standards 

3.5.3.3.1 Introduction 

This section reviews several important GPU programming standards. Each standard is 

described, followed by an evaluation with respect to a number of criteria.  

 

On 1 October 2011 the choice for the standard was made (Chapter 4). At the end of the 

project (section 8.4) the choice for the standard was evaluated including newly emerged 

standards and new information about the existing standards. The new information is added to 

section 3.8. 

 

A review of five GPU programming languages and environments for a dedicated application 

including a performance evaluation can be found in (Membarth et al., 2011b). Note that they 

have different start requirements than the requirements for this work, because they focus only 

on image registration. It is interesting but too narrow for this work. They conclude that 

CUDA and OpenCL give the best performance on their benchmarks. 

3.5.3.3.2 Accelerator 

According to Microsoft Research (2011b):  

 

“Microsoft® Accelerator v2 provides an effective way for applications to implement 

array-processing operations using the parallel processing capabilities of multi-

processor computers. The Accelerator application programming interface (API) 

supports a functional programming model for implementing a wide variety of array-

processing operations. Accelerator handles all the details of parallelizing and running 

the computation on the selected target processor, including GPUs and multicore CPUs. 

The Accelerator API is almost completely processor independent, so the same array-

processing code runs on any supported processor with only minor changes.” 

 

More information can be found at the home page of Accelerator (Microsoft Research, 2011a). 
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Requirement Evaluation 

Industry standard No, Microsoft specific. 

Maturity According to Microsoft Research (2011a) development started in 

2006. Although Accelerator is nicely integrated with Visual Studio. 

The author believes that Accelerator is more of a research tool than a 

production tool. 

Acceptance by 

market 

According to the survey referenced by Bergman (2011) Accelerator 

is not ranked in the first eight published positions. 

Future developments The author expects that Accelerator will be superseded by the 

recently announced Microsoft C++ AMP (see section 3.5.3.3.4). 

Expected 

familiarization time 

Medium, existing C++ code must be parallelized using Accelerator’s 

data types and operators. 

Hardware vendor 

independence 

Only for hardware supporting Windows. 

Software vendor 

independence 

Only Microsoft. 

Portability  Only Windows. 

Heterogeneous Yes. 

Integration C++ Yes. 

Multi card scalable Yes. 

Table 10. Evaluation of Accelerator 

3.5.3.3.3 CUDA 

Compute Unified Device Architecture (CUDA) is a parallel computing architecture 

developed by the NVIDIA corporation. For programming this architecture NVIDIA 

introduced a C-like language also with the name CUDA. In the opinion of the author CUDA 

was the first available Integrated Development Environment (IDE) by which it was possible 

to develop general purpose GPU algorithms in a comfortable way. A good introduction to 

CUDA can be found in (Kirk and Hwu, 2010) and in many tutorials found at the home page 

of CUDA (NVIDIA, 2011a). 
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Thrust (NVIDIA, 2011e) is a C++ template library for CUDA based on the Standard 

Template Library. It is expected that using Thrust will decrease the amount of host code to be 

written at the cost of less performance. Because Thrust uses its own specific data primitives 

and containers it is expected that converting VisionLab to Thrust will take a large amount of 

effort. Interesting developments about using CUDA for Computer Vision can be found on the 

sites of: 

- OpenVIDIA (OpenVIDIA, 2011). 

- OpenCV_GPU (OpenCV, 2011b). 

- GpuCV (GpuCV, 2010). 

- GPU4Vision (Institute for Computer Graphics and Vision, 2011). 

- MinGPU (Babenko and Shah, 2008a). 

 

Requirement Evaluation 

Industry standard No, it is NVIDIA specific. 

Maturity Yes, a large community of users, see (NVIDIA, 2011a). 

Acceptance by 

market 

According to the survey referenced by Bergman (2011) CUDA is 

ranked at position 5. 

Future developments Recently (NVIDIA, 2011b) a new version of the CUDA language 

was introduced including C++ like features such as classes and 

templates. But there is no support for Run Time Type Information 

(RTTI), exception handling and the C++ Standard Library.  

In June 2011 The Portland Group announced a first version of a x86 

compiler for CUDA (The Portland Group, 2011a). According to their 

planning the full version of this compiler will be available in mid-

2012. 

Expected 

familiarization time 

High. Besides device code in CUDA C, host code in C++ for 

launching and synchronizing the device code must be developed. 

Hardware vendor 

independence 

Only NVIDIA hardware, but this will change to include x86/x64 

hardware when Portland compiler becomes more mature. 

Software vendor 

independence 

Only NVIDIA but this will change to two vendors when Portland 

Group compiler becomes more mature. 

Portability  CUDA runs on both Windows and Linux using x86 hardware. 

Heterogeneous No. 

Integration C++ Yes. 

Multi card scalable Yes. 

Table 11. Evaluation of CUDA 
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3.5.3.3.4 C++ AMP 

In June 2011 Sutter (2011) announced Microsoft’s C++ Accelerated Massive Parallelism 

(AMP). AMP is a minimal extension to C++, which enables a software developer to 

implement data parallel algorithms in C++. C++ AMP is expected to be integrated in a next 

version of Visual Studio. C++ AMP uses a STL style of programming like Parallel Patterns 

Library (see section 3.5.3.2.9). More information about C++ AMP can be found in Moth 

(2011). In the author’s view C++ AMP is an interesting development. 

 

At the time, 1 October 2011, when the choice for both standards was made, there was not yet 

a product available for C++ AMP. 

3.5.3.3.5 Direct Compute 

According to Sandy (2011) Direct Compute is Microsoft’s GPGPU programming solution. 

Sandy makes a direct comparison with CUDA and OpenCL. Direct Compute is part of the 

DirectX API and is based on the Shader language HLSL. 

 

An introduction to Direct Compute is given by Boyd (2009). 

 

Requirement Evaluation 

Industry standard No, Microsoft specific. 

Maturity The author could not find much information about the usage of 

Direct Compute. The author believes that Accelerator (see section 

3.5.3.3.2), another Microsoft product, is of more interest. 

Acceptance by 

market 

According to the survey referenced by Bergman (2011) Direct 

Compute is not ranked in the first eight published positions. 

Future developments No information was available at the time of writing. 

Expected 

familiarization time 

High. Complex DirectX API and shader languages are difficult to use 

for GPGPU. 

Hardware vendor 

independence 

Only for hardware supporting Windows. 

Software vendor 

independence 

Only Microsoft. 

Portability  Only Windows. 
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Heterogeneous No information was available at the time of writing. 

Integration C++ Yes. 

Multi card scalable Yes. 

Table 12. Evaluation of Direct Compute 

3.5.3.3.6 HMPP Workbench 

According to the home page of HMPP Workbench (Caps-entreprise, 2011): 

 

“Based on C and FORTRAN directives, HMPP Workbench offers a high level 

abstraction for hybrid manycore programming that fully leverages the computing 

power of stream processors without the complexity associated with GPU programming. 

The HMPP runtime ensures application deployment on multi-GPU systems. Software 

assets are kept independent from both hardware platforms and commercial software. 

While preserving portability and hardware interoperability, HMPP increases 

application performance and development productivity. 

HMPP compiler integrates powerful data-parallel backends for NVIDIA CUDA and 

OpenCL that drastically reduce development time. The HMPP runtime ensures 

application deployment on multi-GPU systems. Software assets are kept independent 

from both hardware platforms and commercial software. While preserving portability 

and hardware interoperability, HMPP increases application performance and 

development productivity.” 

 

With HMPP Workbench parallel hybrid applications can be developed using a mixture of 

multi-vendor GPUs and multi-core CPUs. Note: HMPP Workbench was not reviewed as 

candidate for the multi-core CPU standard because it only supports C and not C++. 

 

An introduction to HMPP Workbench can be found in Dolbeau, Bihan, and Bodin (2007). 

 

Requirement Evaluation 

Industry standard No, Caps Entreprise specific. 

Maturity Poor, the author could not find many users. 

Acceptance by 

market 

According to the survey referenced by Bergman (2011) HMPP 

Workbench is not ranked in the first eight published positions. 
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Future developments Caps Entreprise and PathScale have recently started an initiative for 

creating a new open standard called OpenHMPP (OpenHMPP, 

2011). 

Expected 

familiarization time 

Medium. HMPP Workbench uses compiler directives to exploit the 

parallelism. 

Hardware vendor 

independence 

Supports NVIDIA Tesla and AMD FireStream. 

No detailed information about support for multi-core CPUs was 

available at the time of writing. 

Software vendor 

independence 

Supports several compilers including Microsoft Visual Studio and 

the GNU compiler. 

Portability  Windows and Linux 

Heterogeneous Yes. 

Integration C++ Yes. 

Multi card scalable Yes. 

Table 13. Evaluation of HMPP Workbench 

3.5.3.3.7 Liquid Metal 

Liquid Metal is a research initiative of IBM in order to unify software development for CPUs, 

GPUs and FPGA. According to the home page of Liquid Metal (IBM, n.d.): 

 

“The Liquid Metal project at IBM aims to address the difficulties that programmers 

face today when developing applications for computers that feature programmable 

accelerators (GPUs and FPGAs) alongside conventional multi-core processors. Liquid 

Metal offers a single unified programming language called Lime and a runtime that 

allows (all) portions of an application to move fluidly between hardware and software, 

dynamically and adaptively. … For programming GPUs, a programmer might use 

OpenMP, OpenCL, or CUDA. OpenCL is an increasingly popular approach because it 

is backed by a standard specification, and a number of processor vendors are actively 

supporting OpenCL on their architectures. FPGAs on the other hand lack a single 

programming standard that is considered sufficiently high-level and accessible to 

skilled software programmers. Instead, the predominant practice is to write code in 

hardware description languages such as Verilog, VHDL, or Bluespec. The semantic 

gap between these languages, and high level object-oriented languages such as C++ or 

Java is quite wide, leaving FPGAs largely inaccessible to software developers. 
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Liquid Metal offers a single unified programming language (Lime) and runtime for 

programming hybrid computers comprised of multi-core processors, GPUs, and 

FPGAs. “ 

 

The author could not find any references of Liquid Metal after 2010 and assumes that Liquid 

Metal has not yet come out of the research phase. In the survey referenced by Bergman 

(2011) among developers for the most popular multi-threaded APIs in North America Liquid 

Metal is not mentioned. Liquid Metal was therefore not reviewed any further. 

3.5.3.3.8 OpenCL 

According to OpenCL 1.1. specification (Munshi, 2010): 

 

“OpenCL (Open Computing Language) is an open royalty-free standard for general 

purpose parallel programming across CPUs, GPUs and other processors, giving 

software developers portable and efficient access to the power of these heterogeneous 

processing platforms. 

OpenCL supports a wide range of applications, ranging from embedded and consumer 

software to HPC solutions, through a low-level, high-performance, portable 

abstraction. By creating an efficient, close-to-the-metal programming interface, 

OpenCL will form the foundation layer of a parallel computing ecosystem of platform-

independent tools, middleware and applications. OpenCL is particularly suited to play 

an increasingly significant role in emerging interactive graphics applications that 

combine general parallel compute algorithms with graphics rendering pipelines.  

OpenCL consists of an API for coordinating parallel computation across 

heterogeneous processors; and a cross-platform programming language with a well 

specified computation environment. The OpenCL standard: 

- Supports both data- and task-based parallel programming models 

- Utilizes a subset of ISO C99 with extensions for parallelism 

- Defines consistent numerical requirements based on IEEE 754 

- Defines a configuration profile for handheld and embedded devices 

- Efficiently interoperates with OpenGL, OpenGL ES and other graphics APIs” 

 

The specification and standardization of OpenCL is supervised by the Khronos Group 

(Khronos Group, 2011a). Good introductions to OpenCL can be found in Tsuchiyama (2010), 

NVIDIA (2010a), NVIDIA (2010b), AMD (2011a), Gaster, B.R. et al. (2012) and Munshi et 

al. (2011). An OpenCL C++ wrapper for the API code can be found at Gaster (2010). The 

performance and portability of OpenCL is evaluated by Van der Sanden (2011). 

 



3  Literature review - Parallel computing and programming standards 

67 

 

Requirement Evaluation 

Industry standard Yes, see Munshi (2010). 

Maturity According to Khronos Group (2011a) development of the standard 

started in 2008 and is now accepted by a huge community. 

Acceptance by 

market 

According to the survey referenced by Bergman (2011) OpenCL is 

ranked at position 2. This is very remarkable because OpenCL is a 

relatively new standard. 

Future developments It is expected that OpenCL will become very important in hand held 

devices. In Olsen (2010) Olsen explains why according to him 

OpenCL will be on every smartphone in 2014.  

According to the discussion groups on Khronos Group (2011a) 

several organizations are developing OpenCL implementations for 

FPGAs. 

Expected 

familiarization time 

High. Besides device code in OpenCL, host code in C++ for 

launching and synchronizing the device code must be developed. 

Hardware vendor 

independence 

Among the vendors are AMD, NVIDIA, Intel, Apple and IBM.  

A full and up to date list is available at Khronos Group (2011a). 

According to Steel (2011) ARM will support OpenCL in 2013.  

Software vendor 

independence 

The vendors are: AMD, NVIDIA, Intel, Apple, IBM and Fixstars. 

Portability  AMD, NVIDIA and Fixstars both support Windows and Linux.  

Intel and IBM only support Windows. Apple only supports Mac OS. 

A full and up to date list is available at Khronos Group (2011a). 

There is a special sub-standard for embedded devices (Munshi, 2010) 

(Leskela, Nikula and Salmela, 2009).  

Heterogeneous Yes. 

Integration C++ Yes. 

Multi card scalable Yes. 

Table 14. Evaluation of OpenCL 
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3.5.3.3.9 PGI Accelerator 

According to the home page for PGI Accelerator (The Portland Group, 2011b): 

 

“Using PGI Accelerator compilers, programmers can accelerate Linux, Mac OS X and 

Windows applications on x64+GPU platforms by adding OpenMP-like compiler 

directives to existing high-level standard-compliant Fortran and C programs and then 

recompiling with appropriate compiler options. … Until now, developers targeting 

GPU accelerators have had to rely on language extensions to their programs. 

x64+GPU programmers have been required to program at a detailed level including a 

need to understand and specify data usage information and manually construct 

sequences of calls to manage all movement of data between the x64 host and GPU. The 

PGI Accelerator compilers automatically analyze whole program structure and data, 

split portions of the application between the x64 CPU and GPU as specified by user 

directives, and define and generate an optimized mapping of loops to automatically use 

the parallel cores, hardware threading capabilities and SIMD vector capabilities of 

modern GPUs. In addition to directives and pragmas that specify regions of code or 

functions to be accelerated, the PGI Accelerator compilers support user directives that 

give the programmer fine-grained control over the mapping of loops, allocation of 

memory, and optimization for the GPU memory hierarchy. The PGI Accelerator 

compilers generate unified x64+GPU object files and executables that manage all 

movement of data to and from the GPU device while leveraging all existing host-side 

utilities—linker, librarians, makefiles—and require no changes to the existing standard 

HPC Linux/x64 programming environment.” 

 

Introductions to PGI Accelerator can be found at The Portland Group (2011b). 

 

Requirement Evaluation 

Industry standard No, The Portland Group specific. 

Maturity Reasonable, the author could find a small community of users. 

Acceptance by 

market 

According to the survey referenced by Bergman (2011) PGI 

Accelerator is not ranked in the first eight published positions. 

Future developments No information was available at the time of writing. 

Expected 

familiarization time 

Medium. PGI Accelerator uses compiler directives to exploit the 

parallelism. 

Hardware vendor Supports only NVIDIA hardware. 
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independence 

Software vendor 

independence 

Only special compiler from The Portland Group. 

Portability  Windows, Linux and Mac OS. 64 bit only. 

Heterogeneous No 

Integration C++ Yes. 

Multi card scalable Yes. 

Table 15. Evaluation of PGI Accelerator 

3.5.3.3.10 SaC 

Single Assignment C (SaC) is a research initiative of five universities. According to the home 

site of SaC (SAC-Research Team, 2010): 

 

“SAC (Single Assignment C) is a strict purely functional programming language whose 

design is focussed on the needs of numerical applications. Particular emphasis is laid 

on efficient support for array processing. Efficiency concerns are essentially twofold. 

On the one hand, efficiency in program development is to be improved by the 

opportunity to specify array operations on a high level of abstraction. On the other 

hand, efficiency in program execution, i.e. the runtime performance of programs both 

in time and memory consumption, is still to be achieved by sophisticated compilation 

schemes. Only as far as the latter succeeds, the high-level style of specifications can 

actually be called useful.” 

 

More information can be found in Scholz, Herhut, Penczek and Grelck (2010) and Grelck and 

Scholz (2006) 

 

In the author’s view SaC is still in its research phase. Based on his experience with the 

functional programming language Miranda, the author believes that a functional language is 

not the best way to implement a vision library in an efficient way. Functional languages do 

not have the efficiency of imperative languages. The author has therefore chosen not to 

review SaC any further. 
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3.5.3.3.11 Shader languages 

In section 3.4.3 it was explained that after the introduction of programmable shaders it was 

possible to use graphics cards for general programming tasks. This was called General 

Purpose Graphics Processing Unit (GPGPU) computing. There have been a lot of 

developments in Shader languages and a wide variety of languages have been created. A non-

exhaustive list of the most important Shader languages is:  

- OpenGL.  

- Cg. 

- HLSL. 

- GLSL. 

- Sh. 

- BrookGPU.  

 

Good introductions to Shader languages can be found in Babenko and Shah (2008b) and 

Pharr, ed. (2005). Based on earlier preliminary research and experiments (see section 2.2) 

with Shader languages by the author, and with the arrival of languages specially designed for 

GPGPU computing, the author considers using Shader languages for GPGPU computing 

obsolete and has decided not to review Shader languages any further. 
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3.6 Computer Vision algorithms and parallelization 

3.6.1 Introduction 

There are many good text books available on Computer Vision. For the author his interest in 

Computer Vision started in the nineties with the two volume standard book of Haralick and 

Shapiro (1992). A good introduction to Computer Vision can be found in Gonzalez and 

Woods (2008). An exhaustive literature review on this topic is outside the scope of this 

project.  

 

In this section the classification of low level image operators is reviewed. Low level image 

operators are used very frequently in many vision applications. The idea behind classifying 

these operators is that if a skeleton for parallelizing one representative in a class is found, this 

skeleton can be reused for the other representative in this class. For each class a 

representative operator is chosen and parallelization approaches were reviewed. The 

following classes of basic low level image operators are reviewed: 

- Point operators. 

- Local neighbour operators. 

- Global operators. 

- Connectivity based operators. 

 

There are also high level image operators. These are the more complex operators; often built 

using the low level operators. It is to be expected that many of these operators are a class of 

their own and a dedicated approach to parallelizing must be found. The literature review of 

the high level image operators is outside the scope of this project. 
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3.6.2 Classification of low level image operators 

Nicolescu and Jonker (2001) define a classification of low level image operators. They 

distinguish: 

- Point operators.  

The value of a pixel from the output image only depends on the value of one pixel from 

the input image. Many Computer Vision operators are point operators. Typical examples 

are operators on images like Add, Multiply, And, Or and the Threshold operator.  

Caarls (2008, section 2.3) differentiates between: 

- Pixel to pixel operators, see section 3.6.3. 

- Anisotropic pixel operators, which need access to the pixel coordinates. 

- Pixel lookup operators, which access a lookup table. 

- Local neighbour operators.  

The value of a pixel from the output image depends on the value of the corresponding 

pixel from the input image and the values of the pixels in the “neighbourhood” 

surrounding it. Many Computer Vision filters are local neighbour operators. Typical 

examples are linear filters like Convolution or Sobel edge detection and non-linear filters 

like Dilation or Erosion. 

- Global operators.  

The value of a pixel from the output image depends on the value of all pixels from the 

input image. A typical example is the Discrete Fourier Transform. Nicolesu and Jonker 

also include in this class reduction operators like Histogram transform, which have not an 

image as output, but another data structure. Nugteren, Corporaal, and Mesman (2011) 

differentiate between reduction to scalar and reduction to vector operators. 

 

Kiran, Anoop and Kumar (2011) conclude that there is another class of commonly used low 

level vision operators, which cannot be easily classified as local neighbour operator or global 

operator. Depending on the characteristics of the input image the size of the neighbourhood 

will vary for each input pixel from small to very large. A typical example of such an operator 

is the Connected Component Labelling. Kiran, Anoop and Kumar (2011) add the class 

Connectivity based operators to the classification of Nicolesu and Jonker.   

 

Caarls (2008, section 2.3) differentiates between the following connectivity based operators: 

- Recursive neighbour to pixel operator, e.g. Distance transforms.  

- Bucket processing, e.g. Region growing 

- Oriented-iteration bucket processing, e.g. Skeleton. 
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3.6.3 Point operators 

In order to limit the scope of this project, only pixel to pixel Point operators are considered. 

According to the author, this is the most frequently used type of Point operator. A pixel to 

pixel Point operator is characterized by that the value of a pixel from the output image only 

depends on the value of the corresponding, same position in image, pixel from the input 

image. Let PF be a Point Function which has as input the input pixel value and as function 

result the desired output pixel value and the image has a size of height by width pixels. A 

generalized Point operator algorithm can be described in pseudo code as:  

 

PointOperator (Image image) { 

 for (x = 0; x < image.width; x++) { 

  for (y=0; y < image.height; y++) { 

   image(x,y) = PF(image(x,y)); 

  } // for y 

 } // for x 

} // PointOperator 

 

A typical and frequently often used Point operator is the Threshold operator. Threshold is the 

simplest method of image segmentation. The Threshold operator takes a greyscale image and 

produces a binary image. The Threshold operator has two extra parameters low and high. All 

pixels with values in the range [low..high] are converted to the value Object (=1) and all other 

pixels are converted to the value Background (=0). For more information about this operator 

and its usage see Van de Loosdrecht, et al. (2013, Chapter Segmentation).  

 

Threshold (Image image, Pixel low, Pixel high) { 

 for (x = 0; x < image.width; x++)  

  for (y = 0; y < image.height; y++)  

   if ((image(x,y) >= low) && (image(x,y) <= high))    

    image(x,y) = 1; 

   else 

    image(x,y) = 0; 

} // Threshold 

 

Point operators are embarrassingly parallel problems. A skeleton for parallelizing Point 

operators is presented in Nicolescu and Jonker (2001). Because the execution of a Point 

Function for a pixel is independent of the execution of the Point Function of all other pixels, 

the image can be easily divided in sub-images that can be processed in parallel. Similar 

skeletons can be found in Caarls (2008) and Nugteren, Corporaal, and Mesman (2011). 
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3.6.4  Local neighbour operators 

A local neighbour operator is characterized by that the value of a pixel from the output image 

depends on the value of the corresponding pixel from the input image and the values of the 

pixels in the ‘neighbourhood’ surrounding it. Most local neighbour operators use a 

neighbourhood with a fixed size and shape for all pixels.  

 

A typical example and frequently used local neighbour operator is the Convolution operator. 

For more information about this operator and its usage see Van de Loosdrecht, et al. (2013, 

Chapter Linear Filters).  

 

The Convolution operator uses a mask (also called kernel) to define the neighbourhood. The 

mask is a 2 dimensional array with mask values. For a specific input pixel the value of the 

output pixel is calculated by placing the centre of the mask on top of the input pixel. The 

pixel values under the mask are multiplied by the corresponding value in the mask. All 

products are totalled and the sum is divided by a division factor. The result is the value of the 

output pixel. 

 

 

 

Figure 6. Convolution calculation for first two pixels of destination image 
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The pseudo code for a Convolution with a 3×3 mask: 

 

Convolution (Image src, Image dest, Mask mask, int divFactor) { 

 for (y = 1; y < src.height-1; y++) 

  for (x = 1; x < src.width-1; x++) { 

   dest(x,y) = 0; 

   for (dy = -1; dy <= 1; dy++)  

    for (dx = -1; dx <= 1; dx++)  

     dest(x,y) += src(x+dx,y+dy) * mask(dx+1,dy+1); 

   dest(x,y) /= divFactor; 

  } // for x 

} // Convolution 

 

Note there are no values calculated for the borders of the image in the pseudo code. There are 

several options of how to handle the borders. See Van de Loosdrecht, et al. (2013, Chapter 

Linear Filters) for possible options. 

 

Many local neighbour operators like Convolution are easy problems to parallelize in a shared 

memory system. A skeleton for parallelizing local neighbour operators is presented in 

Nicolesu and Jonker (2001). Because the calculation of the value for a destination pixel is 

independent of the execution of the calculation of all other pixels, the image can be divided in 

sub-images that can be processed in parallel. There are several options for partition of the 

image like row-stripes, column-stripes and blocks. Similar skeletons can be found in Caarls 

(2008) and Nugteren, Corporaal, and Mesman (2011). 

 

Bordoloi (2009), Andrade (2011) and Gaster, et al. (2012, Chapter 7) discuss several 

optimization approaches for OpenCL implementation of Convolution on RGB images with 

floating point pixel values like: 

- Using constant memory for mask values. 

- Using local memory for tiles. 

- Unrolling for loops. 

- Vectorization of image channels. 

In their approaches they use compilation time fixed sizes for the mask. Experiments are 

needed in order to investigate if those techniques are also beneficial for single channel images 

with integer pixel values and for run-time specifiable mask sizes. A generic library like 

VisionLab requires a Convolution with at run-time specifiable mask sizes. 
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Antao and Sousa (2010) discuss four approaches for implementing Convolution in OpenCL 

for single channel images with integer pixel values and at compilation time fixed mask sizes: 

- The reference scalar Convolution; the “straightforward” implementation. 

- The reference vectorized Convolution; the row calculation for one output pixel is 

vectorized. The inner-most loop, that browses the mask width, is unrolled to vectorized 

operations. Because the mask width may not be a multiple of the vector size, an extra pair 

of nested loops is required for handling the remaining pixels in a scalar fashion. 

- N-kernel Convolution; the mask is N times replicated in memory. The calculating of the 

result values for output pixels is vectorized. The same mask value is simultaneously 

multiplied with a vector of pixels producing a vector with different products. 

- Complete image coalesced Convolution; with the use of an intermediary image, pixels are 

packed in a coalesced ‘pixel’. With the coalesced image the convolution is efficiently 

calculated using vectors. Thereafter the coalesced image must be unpacked to the result 

image.   

Antao, Sousa and Chaves (2011) improve the Complete image coalesced Convolution 

approach by packing integer pixels into double precision floating point vectors. Their 

approaches are benchmarked on CPUs. Experiments are needed in order to investigate if 

these approaches are also beneficial on GPUs. 

3.6.5 Global operators 

A global operator is characterized by that the output value or the value of a pixel from the 

output image depends on the value of all pixels from the input image. A typical and often 

used global operator is the Histogram operator. With this operator the distribution of the pixel 

values is calculated. For more information about this operator and its usage see Van de 

Loosdrecht, et al. (2013, Chapter Contrast Manipulation).  

 

The pseudo code for an Histogram operator on grayscale images with pixels values between 0 

and 255: 

 

Histogram (Image image, Histogram his) { 

 for (i = 0; i <= 255; i++) 

  his[i] = 0; 

 for (p = 0; p < image.NrPixels; p++)  

  his[image[p]]++; 

} // Histogram 
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With the exception for very tiny images, the majority of the work is performed in the second 

for loop. However when parallelizing this loop, it performs many scattered read-write 

accesses into the shared histogram data structure. Access to the shared histogram must be 

atomized. The size of histograms is usually small. On a CPU the histogram can be cached 

with a high rate of reuse. On a GPU the scattered read-write accesses is a worst-case 

performance scenario for accessing the global memory. Real-life images have often many 

areas with similar pixel values. The rate at which atomic update clashes occur, will depend on 

the data of the input image and the sequence in which the pixels are accessed. 

 

Nicolesu and Jonker (2001) and the other authors mentioned in this section propose skeletons 

for ‘distribute compute and gather’. The image is split in several parts for which a sub-

histogram is calculated where after the final total-histogram is calculated. 

 

In the early days of GPGPU programming the languages used did not support atomic updates 

of the device’s global and shared memory. Shams and Kennedy (2007) suggest a spin locking 

method to overcome this problem. Goorts, et al. (2010) compare Histogram implementations 

in CUDA based on spin locking with atomic updates on shared memory. The difference in 

performance in their tests is only marginal. Nugteren, Van den Braak, Corporaal and 

Mesman, (2011) report a 18% increase of performance using atomic updates on more recent 

GPUs. 

 

In Gaster et al. (2012, Chapter 9) an optimized Histogram implementation in OpenCL for 

GPUs is described. The optimization includes coalesced vectorized global memory access 

and bank conflicts reduction for GPU implementations. 

 

Nugteren, Van den Braak, Corporaal and Mesman, (2011) give a good overview of existing 

histogram GPU implementations and propose two new methods. Their second method has a 

performance which is input data independent. They qualify the Gaster implementation as a 

Mapping 1 method for the local histograms. Their more complicated Mapping method 3 has 

about 30% better performance than the Mapping 1 method on their test set. They conclude 

with the observation that bottleneck is the lack of shared memory, both in terms of size and 

number of banks, on contemporary GPUs. 

 

Luna (2012, Chapter 4) introduces a much more complicated ‘R-per-block’ approach for 

which he claims that it is more than two times faster than Nugteren’s approach. 

 

Van den Braak, Nugteren, Mesman, and Corporaal (2012) describe a generalized framework 

for voting algorithms on GPUs, which is claimed by the authors to be the fastest 

implementation for Histograms. 
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3.6.6 Connectivity based operators 

3.6.6.1 Introduction 

In an image a pixel not connected to the border has eight neighbour pixels. In image 

processing it is common to distinguish between four and eight connectivity of pixel. The 4-

connected pixels of a pixel are the neighbour pixels that touch the pixel horizontally or 

vertically. The 8-connected pixels of a pixel are the neighbour pixels that touch the pixel 

horizontally, vertically or diagonally.  

 

An important and often used connectivity based operator is Connected Component Labelling 

(CCL). As explained in section 3.6.3 the segmentation of an image will result in a binary 

image in which the object pixels have the value 1 and the background pixels have the value 0. 

The CCL operator transforms a binary image to a labelled image in which the 4 or 8- 

connected object pixels are grouped into Binary Linked Objects (BLOBs). In the labelled 

image all the background pixels have the value 0 and all pixels that are part of a blob have the 

same unique positive value, called its label. In VisionLab the CCL operator is called 

LabelBlobs and the blob numbers are in the range [1 .. number of blobs]. For more 

information on CCL and its usage see Van de Loosdrecht, et al. (2013, Chapter Labelling and 

Blob measurement). 

 

Many CCL algorithms have been proposed in literature. The author has studied more than 40 

articles. 

3.6.6.2 Sequential 

He, Chao, and Suzuki (2008) give a good overview of sequential approaches and evaluate 

them. The most common sequential approach is that an image is scanned in raster direction 

and a new provisional label is assigned to each new pixel that is not connected to other 

previously scanned pixels. Provisional labels assigned to the same blob are called equivalent 

labels. There are different approaches for resolving the label equivalences: 

- Multiple iterations of two passes.  

The image is scanned in alternated forward and backward passes in order to propagate the 

label equivalences until no labels change. The main problem with this method is that the 

number of passes depends on the geometrical complexity of the blobs. An example of this 

approach can be found in Haralick and Shapiro (1992, Volume 1, pp.32-33). 
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- Two passes.  

The image is scanned in forward pass and the equivalent labels found are stored in an 

equivalence table. The equivalences are resolved by use of a search algorithm. After 

resolving the equivalences, the second pass assigns the label to each object pixel. The 

challenges for this method are to limit the required amount of memory for the equivalence 

table and that the search algorithm should be efficient. Many approaches are proposed in 

literature. Examples can be found in Haralick and Shapiro (1992, Volume 1, pp.33-48) 

and He, Chao, and Suzuki (2008).  

- Multiple iterations of four passes.  

This approach is described in Suzuki, Horiba, and Sugie (2003). The maximum number 

of iterations required is four. So the calculation time will only depend on the size of the 

image and the number of object pixels in the blobs. This is a nice real-time property.  

- Contour tracing and label propagation.   

This multi-pass approach is described in Chang, Chen and Lu (2004). The image is 

scanned for an unlabelled border pixels of a blob. This pixel is assigned a new label 

number and the contour of the blob is traced. First all border pixels are found and then all 

pixels of the blob are assigned the same label number.  

 

According to He, Chao, and Suzuki (2008) the two passes approach gives the best 

performance. 

3.6.6.3 Parallel 

Rosenfeld and Pfaltz (1966) proved that CCL cannot be implemented with parallel local 

operations. Many parallel multi-pass CCL algorithms have been proposed in literature. 

Hawick, Leist and Playne (2010) evaluate four approaches using CUDA: 

- Neighbour propagation. 

- Local neighbour propagation. 

- Directional propagation. 

- Label equivalence. 

They conclude that Label equivalence approach provides the best performance.  
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Based on their work Kalentev, Rai, Kemnitz, and Schneider (2011) propose an alternative 

implementation of the Label equivalence approach using OpenCL. This alternative 

implementation is simpler, does not need extra memory for the equivalence table and does 

not use atomic operations. They store the equivalence table in the image and use the offset of 

the pixel in the image as a pointer for the equivalence table. This means that for an 

Int16Image the maximum size of the image is only 2^
15

 pixels. This is too small for almost 

all applications, so Int32Images must be used. They claim that because of the reduction 

algorithm they use, their algorithm is efficient in terms of number of iterations needed 

 

Stava and Benes (2011) claim that their CUDA algorithm is on average 3 times faster than 

Hawick, Leist and Playne (2010) but their algorithm only works on images with height and 

width with a power of 2. 

 

Niknam, Thulasiraman, Camorlinga (2010) propose an OpenMP implementation of a multi 

iterations algorithm. 

3.7 Benchmarking 

In this section the literature topics for benchmarking multi-core CPU and GPU algorithms are 

discussed. As mentioned in section 3.4.4 about the parallel speedup factor there is a lot of 

misapprehension in the science community about benchmarking parallel systems.  

 

It seems to the author that the question of accessing the quality, such as reproducibility and 

variance in execution time, of benchmarking parallel algorithms has not been fully addressed 

in the research literature. Not much literature about this topic could be found, and many 

authors do not describe their experiments in a way that they can be replicated. An in-depth 

treatment of this subject is outside the scope of this project. 

 

Mazouz,Toutati and Barthou (2010a and 2010b) reached two broad conclusions on 

benchmarking parallel systems: 

- The measurement process itself affects the results in complex and unforeseeable ways. 

- Speedups reported from experimental work are often not seen in practice by end users 

because of differences in the execution environment. 

 

Their study has resulted in a protocol called “The Speedup Test” (Touati, Worms and Brains, 

2010). This work is focused on benchmark applications like SPEC 2006 and SPEC 

OMP2001. In these kind of benchmarks a large collection of algorithms are tested on 

different systems and for each system a benchmark value is produced in order to rank the 

systems. 
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In the current work each time the performance of the sequential, multi-core CPU and GPU 

version of one algorithm will be compared. Because of this a simplified kind of 

benchmarking, a subset of “The Speedup Test” protocol can be used. This is discussed in 

section 5.4.3. 

 

As discussed in section 1.5 this work is not a quest for the best sequential or parallel 

algorithms. The focus of this project is to investigate how to speed up a whole library by 

parallelizing the algorithms in an economical way.  

 

Benchmarking with other commercial or research software packages is also be highly 

impractical because: 

- There were found only benchmarks for specialized Computer Vision operators, see 

Computer Vision Online (2011), ImageProcessingPlace.com (2011) and Carnegie Mellon 

University (2005b). 

- There are no benchmarks for generic software packages. 

- The cost involved in buying the commercial software. 

- The time involved in acquiring research software and building this software. 

- The total time involved in benchmarking. 

3.8 New developments after choice of standards 

3.8.1 Introduction 

The following information became available after the choice for the standard had been made 

(Chapter 4). 

3.8.2 CUDA 

NVIDIA (2011d) announced that it will provide the source code for the new NVIDIA CUDA 

LLVM-based compiler to academic researchers and software-tool vendors, enabling them to 

more easily add GPU support for more programming languages and support CUDA 

applications on alternative processor architectures. 

 

The in section 3.5.3.3.3 announced Portland Group CUDA x86 compiler is available now. 

 

The MCUDA translation framework (The Impact research group, 2012) is a Linux-based tool 

designed to effectively compile the CUDA programming model to a CPU architecture. 
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NVIDIA (2012a) announced CUDA 5 with GPU Library Object Linking and Dynamic 

Parallelism. 

3.8.3 C++ AMP 

The language specification can be found in Microsoft (2013) and it is now available as part of 

Visual Studio 2012. 

3.8.4 Bolt  

AMD (2013b) introduced the Bolt C++ template library for heterogenous computing:  

 

“Bolt provides an STL compatible library of high level constructs for creating 

accelerated data parallel applications. Code written using STL or other STL 

compatible libraries (example: TBB) can be converted to Bolt in minutes. In its open-

source debut, Bolt supports C++ AMP in addition to OpenCL™ as underlying 

supported compute technologies. With Bolt, kernel code to be accelerated is written in-

line in the C++ source file. No OpenCL™ or C++ AMP API calls are required since 

all initialization of and communication with the OpenCL™ or C++ AMP device is 

handled by the library.” 

3.8.5 OpenACC 

OpenACC was announced as a new standard on 3 November 2011 (OpenACC, 2011a). 

According to the OpenACC 1.0 specification (OpenACC, 2011b):  

 

“This document describes the compiler directives, library routines and environment 

variables that collectively define the OpenACC™ Application Programming Interface 

(OpenACC API) for offloading code in C, C++ and Fortran programs from a host 

CPU to an attached accelerator device. The method outlined provides a model for 

accelerator programming that is portable across operating systems and various types 

of host CPUs and accelerators. The directives extend the ISO/ANSI standard C, C++ 

and Fortran base languages in a way that allows a programmer to migrate 

applications incrementally to accelerator targets using standards-based C, C++ or 

Fortran. 



3  Literature review - New developments after choice of standards 

83 

 

The directives and programming model defined in this document allow programmers to 

create applications capable of using accelerators, without the need to manage data or 

program transfers between the host and accelerator, or initiate accelerator startup and 

shutdown. Rather, all of these details are implicit in the programming model and are 

managed by the OpenACC API-enabled compilers and runtime environments. The 

programming model allows the programmer to augment information available to the 

compilers, including specification of data local to an accelerator, guidance on mapping 

of loops onto an accelerator, and similar performance-related details.” 

 

OpenACC uses compiler pragmas and runtime functions in a similar way to OpenMP 

(section 3.5.3.2.7). By using OpenACC it will not be necessary to have a separate host-side 

and kernel-side code. Also the transfer of data between host and accelerator device will be 

handled automatically by the compiler. It is expected by the OpenMP Architecture Review 

Board (NVIDIA, 2011c) that OpenACC and OpenMP will merge in the future. OpenACC is 

an initiative of CAPS, CRAY, NVIDIA and The Portland Group. 

3.8.6 OpenCL 

Altera Corporation (2011) announced an OpenCL Program for FPGAs. Sing (2012) discusses 

the usage of a pipe line architecture and a benchmark test. 

 

Rosenberg, Gaster, Zheng, and Lipov (2011) announced a proposal for an OpenCL Static 

C++ Kernel Language Extension. This proposal introduces C++ like features such as classes 

and templates, but there is no support for Run-Time Type Information (RTTI), exception 

handling and the C++ Standard Library. At the moment of writing this new kernel language 

is only supported by AMD (AMD, 2012). 

 

The Portland Group (2012) announced an OpenCL compiler for the ARM on Android. 

OpenCL is now available on ARM based tablets (Garg, 2013). 

 

The Seoul National University (Center for Manycore Programming, 2013) announced an 

Open-source framework for heterogeneous cluster programming and an OpenCL ARM 

compiler. 



3  Literature review - Summary 

84 

 

3.8.7 OpenMP 

OpenMP Architecture Review Board (2012a) published the OpenMP Technical Report 1 on 

Directives for Attached Accelerators. This report describes a model for the offloading of code 

and data onto a target device. Any device may be a target device, including graphics 

accelerators, attached multiprocessors, co-processors and DSPs.  

 

OpenMP Architecture Review Board (2012b) published the OpenMP Application Program 

Interface Version 4.0 – RC1. This proposal includes thread affinity, SIMD constructs to 

vectorize both serial and parallelized loops, user-defined reductions, and sequentially 

consistent atomics. It is expected that the Technical Report on directives for attached 

accelerators will be integrated in the final Release Candidate 2, to appear in 2013 and 

followed by the finalized full 4.0 API specifications thereafter. 

3.9 Summary 

This chapter has reviewed in depth the performance of computer systems in the context of 

computer vision as it relates to the present work. 

 

Technologies for multi-core CPU and GPU approaches to achieving speedups through 

parallelization have been described, and the relevant standards presented and reviewed. 

Important issues in parallelizing computer vision algorithms have been reviewed. 

 

A review of benchmarking methods for parallel algorithms found that this is as yet a difficult 

area, with no satisfactory general methodology available. However, a simplified method was 

identified which meets the needs of the current research. 

 

Finally, a number of new developments were described; however, these took place too late to 

influence this work. 
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4 Comparison of standards and choice 

4.1 Introduction 

In this section the reviewed standards for parallel programming are compared and one 

standard for multi-core CPU programming and one standard for GPU programming are 

chosen based on the requirements in Chapter 2. On 1 October 2011 the choice for both 

standards was made. As explained in section 2.6 this choice was remained fixed for the 

duration of this project. At the end of the project the choice for the standards was evaluated 

(section 8.4) including new emerged standards (section 3.8) and a recommendation for using 

standards in the future is given. 

4.2 Choice of the standard for multi-core CPU programming 

In this section the standards reviewed in section 3.5.3.2 for multi-core CPU programming are 

compared and one standard based on the requirements described in section 2.3 is chosen. The 

findings are summarized in Table 16. 

 

As discussed in section 3.4.6 the parallelization of the VisionLab library is only profitable 

when a large proportion of the source code is parallelized. Because of the amount of source 

code involved it is paramount that the parallelization of VisionLab can be done in an efficient 

manner for the majority of the code. 

 

As can be seen in Table 16, only Cilk Plus and OpenMP are qualified as low effort for 

conversion of embarrassingly parallel vision algorithms. 

 

At the moment of choice OpenMP and Cilk Plus were both not yet available for Android 

operating system. According to the requirements, portability to Android is an option, not a 

necessity. At the moment of choice only POSIX Threads were available in the Native 

Development Kit for Android (Android Developers, 2011). As can be seen in the comparison 

table, POSIX Threads is not a viable option. Because OpenMP is an industry standard, is also 

supported by Microsoft Visual C++, is more portable and is better accepted by the market, 

OpenMP has been chosen as the standard for multi-core CPU programming.  
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Requirement 

---------------- 

Standard 

Industry 

standard 

Maturity Acceptance 

by market 

Future 

developments 

Vendor 

independence 

Portability Scalable to 

ccNUMA 

(optional) 

Vector 

capabilities 

(optional) 

Effort for 

conversion 

Array 

Building 

Blocks 

 

No 

 

Beta 

New, 

not ranked 

 

Good 

 

Poor 

 

Poor 

 

No 

 

Yes 

 

Huge 

 

C++11 

Threads 

 

Yes 

 

Partly new 

 

New, 

not ranked 

 

Good 

 

Good 

 

Good 

 

No 

 

No 

 

Huge 

 

Cilk Plus 

 

No 

 

Good 

 

Rank 6 

 

Good 

 

Reasonable 

No MSVC 

 

Reasonable 

 

No 

 

Yes  

 

Low 

 

MCAPI 

 

No 

 

Poor 

 

Not ranked 

 

Unknown 

 

Good 

 

Good 

 

Yes 

 

No 

 

Huge 

 

MPI 

 

Yes 

 

Excellent 

 

Rank 7 

 

Good 

 

Good 

 

Good 

 

Yes 

 

No 

 

Huge 

 

OpenMP 

 

Yes 

 

Excellent 

 

Rank 1 

 

Good 

 

Good 

 

Good 

 

Yes,  

only GNU 

 

No 

 

Low 

Parallel 

Patterns 

Library 

 

No 

 

Reasonable 

New, 

not ranked 

 

Good 

 

Poor 

Only MSVC 

 

Poor 

 

No 

 

No 

 

Huge 

Posix Threads  

Yes 

 

Excellent 

 

Not ranked 

 

Poor 

 

Good 

 

Good 

 

No 

 

No 

 

Huge 

Thread 

Building 

Blocks 

 

No 

 

Good 

 

Rank 3 

 

Good 

 

Reasonable 

 

Reasonable 

 

No 

 

No 

 

Huge 

Table 16. Comparison table for standards for Multi-core CPU programming.  

MSVC = Microsoft Visual C++, GNU = GNU C++ compiler. 
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Manufacturers of Android smartphones and tablets have started producing multi-core CPU 

versions of their products since 2011. According to Stallman, et al. (2010, p. 32) the GNU 

OpenMP implementation is based on PThreads, which is already available for Android. So 

the author is hopeful that OpenMP will soon be available for Android. The GNU C++ 

compiler is part of the Android Native Development Kit. 

4.3 Choice of the standard for GPU programming  

In this section the standards reviewed in section 3.5.3.3 for GPU programming is compared 

and one standard based on the requirements described in section 2.4 is chosen. The findings 

are summarized in Table 17. 

 

All reviewed standards meet the requirements that the standard must be able to integrate with 

ANSI C++ code and must be scalable to multiple graphics cards. These requirements are not 

selective and are not included in the table. 

 

At the moment of choice, none of the standards were supported by Android. According to the 

requirements portability to Android is an option, not a necessity. The Android Native 

Development Kit supports only the Shader language OpenGL (Android Developers, 2011), 

but as explained in section 3.5.3.3.11 Shader languages are not a viable option. 

 

As can be seen in the table, OpenCL and CUDA are the only viable options. In the author’s 

view, CUDA was the first available IDE with which it was possible to develop general 

purpose GPU algorithms in a comfortable way. CUDA is more mature than OpenCL. The 

kernel languages of CUDA and OpenCL were quite similar until recently CUDA introduced 

attractive C++ like extensions.  

 

In recent years OpenCL has gained a lot of momentum and is now supported by a large 

community. This view is supported by the higher ranking in the survey referenced by 

Bergman (2011). Unlike CUDA, OpenCL is an industry standard, vendor independent, 

portable and applicable to heterogeneous systems. According to Olsen (2010) OpenCL 

support for Android can be expected in the near future. According to Fang, Varbanescu and 

Sips (2011) the performance on GPUs of OpenCL programs is similar to CUDA programs. 

These are the reasons why OpenCL is chosen as standard for GPU programming.  
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Requirement 

--------------- 

Standard 

Industry 

standard 

Maturity Acceptance by 

market 

Future 

developments 
Expected 

familiarization 

time 

Hardware 

vendor 

independence 

Software 

vendor 

independence 

Portability Heterogeneous 

 

Accelerator 

 

No 

 

Good 

 

Not ranked 

 

Bad 

 

Medium 

 

Bad 

 

Bad 

 

Poor 

 

No 

 

CUDA 

 

No 

 

Good 

 

Rank 5 

 

Good 

 

High 

 

Bad 

 

Bad 

 

Bad 

 

No 

Direct 

Compute 

 

No 

 

Poor 

 

Not ranked 

 

Unknown 

 

High 

 

Bad 

 

Bad 

 

Bad 

 

No 

 

HMPP 

 

No 

 

Poor 

 

Not ranked 

 

Plan for open 

standard 

 

Medium 

 

 

 

Reasonable 

 

Bad 

 

Good 

 

Yes 

 

OpenCL 

 

Yes 

 

Reasonable 

 

Rank 2 

 

Good 

 

High 

 

Good 

 

Good 

 

Good 

 

Yes 

PGI 

Accelerator 

 

No 

 

Reasonable 

 

Not ranked 

 

Unknown 

 

Medium 

 

Bad 

 

Bad 

 

Bad 

 

No 

Table 17. Comparison table for standards for GPU programming 
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5 Design 

5.1 Introduction 

In this chapter the following is discussed: 

- Interfacing VisionLab with OpenMP. 

- Interfacing VisionLab with OpenCL. 

- Experiment design and analysis methodology. 

- Test plans. 

5.2 Interfacing VisionLab with OpenMP 

5.2.1 Introduction 

This section describes the design of the interface between VisionLab and OpenMP. In order 

to understand the design decisions, OpenMP is discussed in more detail. After a general 

introduction, the components, the scheduling strategies and the memory model of OpenMP 

are discussed. Subsequently the design of the Automatic Operator Parallelization and the 

integration in the VisionLab framework are discussed. 

5.2.2 General introduction to OpenMP 

OpenMP is an Application Program Interface (API) that supports multi-platform shared 

memory multi-processing programming in C, C++ and Fortran. In this project OpenMP is 

chosen as the standard for multi-core CPU programming. For the motivation of this choice, 

see section 4.2. An in-depth treatment of the OpenMP API is outside the scope of this project. 

Only the topics necessary to understand the main line in this work are discussed here. All 

details of OpenMP API can be found in the definition of the standard (OpenMP Architecture 

Review Board, 2011). A good introduction to OpenMP can be found in Chapman, Jost and 

van de Pas (2008). A tutorial can be found in Barney (2011b).  
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OpenMP supports the so-called fork-join programming model, which is illustrated in Figure 

7. An OpenMP program starts, like a sequential program, as a single thread called the master 

thread. The master thread executes sequentially until an OpenMP parallel construct is 

encountered. Then the master thread forks a team of threads that is executed in parallel with 

the master thread. The threads join when all threads have completed their statements in the 

parallel construct. This means that all threads synchronize, all threads in the team terminate 

and the master thread continues execution. The default parallelism granularity can be 

overruled by specifying loop chunk sizes in combination with several scheduling types. 

 

 
Figure 7. Fork-join programming model. 

After Barney (2011b). 

 

The following piece of C++ code shows both the power and the simplicity of the OpenMP 

parallel loop construct. In this example two vectors are added. The for loop is parallelized 

just by adding the line with “#pragma omp for” in front of the for loop. 

 

const int SIZE = 1000; 

double a[SIZE], b[SIZE], c[SIZE]; 

// code for initialising array b and c 

#pragma omp for 

for (int j = 0; j < SIZE; j++) { 

 a[j] = b[j] + c[j]; 

} // for j  

 

Assuming that the default settings for OpenMP are applicable and the CPU has four cores, at 

executing time the next events will happen when the for loop is executed: 

- The master thread forks a team of three threads. 

- All four threads will execute in parallel one quarter of the for loop. The first thread will 

execute the for loop for 0 <= j < 250, the second thread will execute the for loop for  

250 <= j < 500, etc. 

- When all threads have completed their work, the threads will join. 
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If a compiler implementation does not support OpenMP, it will ignore the unknown pragma 

found and generate code for the sequential version. 

 

OpenMP is based on the shared-memory model, by default all data is shared among all the 

threads. With extra key words in the OpenMP parallel constructs it is possible to deviate from 

the all shared-memory model and to use thread-specific private data.  

5.2.3 OpenMP components 

OpenMP consists of three major components: 

- Compiler directives. 

- Runtime functions and variables. 

- Environment variables. 

Only the most important topics are discussed here.  

 

All compiler directives start with “#pragma omp”. There are compiler directives for 

expressing the type of parallelism: 

- For loop directive for data parallelism. 

- Parallel regions directive for task parallelism. 

- Single and master directives for sequential executing of code in parallel constructs. 

There are also compiler directives for synchronisation primitives, like: 

- Atomic variables. 

- Barriers. 

- Critical sections. 

- Flushing (synchronizing) memory and caches between threads. 

 

OpenMP has runtime functions for performing operations like: 

- Locking. 

- Querying and setting the number of threads to be used in parallel regions. 

- Time measurement. 

- Setting the scheduling strategy, see section 5.2.4. 

  

With environment variables it is possible to modify the default behaviour of OpenMP, like: 

- Setting the maximal number of threads to be used in parallel regions. 

- Setting the stack size for the threads. 

- Setting the scheduling strategy, see section 5.2.4. 
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5.2.4 Scheduling strategy OpenMP 

The scheduling strategy determines how the iterations of the parallel loop construct are 

divided among the threads. According to the OpenMP API (OpenMP Architecture Review 

Board, 2011, section 2.5.1): 

 

“A worksharing loop has logical iterations numbered 0,1,...,N-1 where N is the number 

of loop iterations, and the logical numbering denotes the sequence in which the 

iterations would be executed if the associated loop(s) were executed by a single thread. 

The schedule clause specifies how iterations of the associated loops are divided into 

contiguous non-empty subsets, called chunks, and how these chunks are distributed 

among threads of the team. Each thread executes its assigned chunk(s) in the context of 

its implicit task. The chunk_size expression is evaluated using the original list items of 

any variables that are made private in the loop construct. ... 

The schedule kind can be one of: 

- Static. When schedule(static, chunk_size) is specified, iterations are divided 

into chunks of size chunk_size, and the chunks are assigned to the threads in 

the team in a round-robin fashion in the order of the thread number. 

When no chunk_size is specified, the iteration space is divided into chunks that 

are approximately equal in size, and at most one chunk is distributed to each 

thread. Note that the size of the chunks is unspecified in this case. … 

- Dynamic. When schedule(dynamic, chunk_size) is specified, the iterations are 

distributed to threads in the team in chunks as the threads request them. Each 

thread executes a chunk of iterations, then requests another chunk, until no 

chunks remain to be distributed. …  

- Guided. When schedule(guided, chunk_size) is specified, the iterations are assigned to 

threads in the team in chunks as the executing threads request them. Each thread 

executes a chunk of iterations, then requests another chunk, until no chunks remain to 

be assigned. For a chunk_size of 1, the size of each chunk is proportional to the number 

of unassigned iterations divided by the number of threads in the team, decreasing to 1. 

For a chunk_size with value k (greater than 1), the size of each chunk is determined in 

the same way, with the restriction that the chunks do not contain fewer than k 

iterations. …  

- Auto. When schedule(auto) is specified, the decision regarding scheduling is 

delegated to the compiler and/or runtime system.” 
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It is to be expected that there will be a trade-off between scheduling overhead and load 

balancing. Two examples at the extreme side of this diversity: 

 

- Static scheduling not specifying the chunk size will divide the work in N approximately 

equally sized chunks over the N available cores. This will give the least scheduling 

overhead. However if some iterations take more time to calculate than other iterations it is 

quite possible that one of the threads will need significantly more time to finish its work 

than the other threads. The other threads which have finished their work must wait for this 

last thread before the threads can be joined and the parallel construct finishes. This means 

that the work load is not evenly balanced over the threads.  

This indicates that static scheduling will be the favourable strategy if the time needed for 

calculating each chunk is fairly constant. However, this is only true if the computer 

running the OpenMP application is dedicated to the application. Let’s assume that N 

chunks are divided over N threads on a machine with N cores and one of the cores is 

interrupted by a higher priority background task. In this case the thread on the interrupted 

core will take more wall clock time to finish and will delay the total parallel construct. 

- Guided and dynamic scheduling will give a much better load balancing if the time needed 

for calculations of an iteration is expected to fluctuate or if it is likely that one or more 

cores will be interrupted by higher priority background tasks. The difference between 

guided and dynamic scheduling is that in dynamic scheduling the size of the chunk is 

fixed and in guided scheduling the size of the chunk will gradually decrease. Guided 

scheduling will give a more fine-tuned load balancing than dynamic scheduling at the 

cost of more scheduling overhead. 

 

For each algorithm that will be parallelized the appropriate scheduling strategy will be chosen 

based on the expected variance in execution time of one iteration. In case of reasonable doubt 

benchmarking must indicate the best strategy. 
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5.2.5 Memory model OpenMP 

According to OpenMP Architecture Review Board (2011, section 1.4): 

 

“The OpenMP API provides a relaxed-consistency, shared-memory model. All 

OpenMP threads have access to a place to store and to retrieve variables, called the 

memory. In addition, each thread is allowed to have its own temporary view of the 

memory. The temporary view of memory for each thread is not a required part of the 

OpenMP memory model, but can represent any kind of intervening structure, such as 

machine registers, cache, or other local storage, between the thread and the memory. 

The temporary view of memory allows the thread to cache variables and thereby to 

avoid going to memory for every reference to a variable. Each thread also has access 

to another type of memory that must not be accessed by other threads, called thread 

private memory. 

…… 

The memory model has relaxed-consistency because a thread’s temporary view of 

memory is not required to be consistent with memory at all times. A value written to a 

variable can remain in the thread’s temporary view until it is forced to memory at a 

later time. Likewise, a read from a variable may retrieve the value from the thread’s 

temporary view, unless it is forced to read from memory. The OpenMP flush operation 

enforces consistency between the temporary view and memory.” 

 

The flush operation can be specified using the flush directive and is also implied at 

various locations in an OpenMP program like: 

- during a barrier region. 

- at entry to and exit from parallel and critical. 

See for a full list to OpenMP Architecture Review Board (2011, section 2.8.6). 

5.2.6 Automatic Operator Parallelization 

5.2.6.1 Introduction 

This section describes the design of the Automatic Operator Parallelization. First the problem 

is analysed, then the design of the calibration procedure and run-time decision procedure are 

described.  
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5.2.6.2 Analysis 

The preliminary research and experiments described in section 2.2 indicated that on large 

images parallelization can give a significant performance benefit. Due to the overhead 

involved in parallelization, the use of parallelization on small images can lead to a 

performance loss compared to running sequentially.  

 

In section 2.3 about the requirements for multi-core CPUs it is dictated that: 

 

“A procedure to predict at runtime if running multi-core is expected to be beneficial 

will be necessary. It is to be expected that different hardware configurations will 

behave differently so there will be a need for a calibration procedure.” 

 

From the preliminary research and experiments it became clear that “to predict at runtime if 

running multi-core is expected to be beneficial” is not an easy challenge. This is because: 

- Speedup is hardware dependent. Import parameters are:  

- Processor architecture, number of cores, clock speed, and size of caches. 

- Size of memory, number of data channels and access time.  

- Performance depends on operating system settings and BIOS settings like: 

- Task priority. 

- Dynamic voltage scaling. 

- There are operators for which the complexity of calculation can vary for each pixel in the 

image. Obvious examples are the LabelBlobs and BlobAnalysis operators, see Van de 

Loosdrecht, et al. (2013, Chapter Labelling and Blob measurement). The speedup 

depends on the content of the image.  

- There are operators for which the criterion “number of pixels” for prediction mechanism 

is not sufficient to make valid predictions. For example the size of the neighbourhood is 

also an important criterion for local neighbour operators. 

- There are operators like BlobAnalysis that are so complex that for different parts of the 

algorithm different prediction mechanisms can be expected to be applied. 

- Performance depends on the load of the background jobs. 

 

Because of the nature of this challenge it will be difficult to design a prediction algorithm that 

will work perfectly in all conditions. The prediction must give reasonable results for most 

situations. The user of VisionLab will be given the possibility to turn off the prediction 

algorithm and to decide for himself if he wants to run in multi-core mode. This option is 

given the name “auto multi-core mode”. The user must be able to turn this mode on or off in 

both the VisionLab GUI, the script language and in C++. 
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5.2.6.3 Calibration procedure 

As stated in the previous section, calibration is not an easy challenge and it is expected that it 

will take a long time if all parallelized operators must be calibrated for all image types. A 

perfect calibration will not be possible for all operators because the calibration can be 

dependent on the content of the image. 

 

It was decided to first design and test a simplified calibration procedure. This procedure: 

- Is based on the most frequent image type for a specific operator. 

- Uses one representative calibration image for a specific operator. 

- Has a simple and fast procedure for global optimization.  

- Has a complex and slow procedure for more optimal optimization. 

- Uses a user-defined gain-factor that defines how much profit parallelization must have 

compared to running sequential. An example: if the gain-factor is 1.1 then the operator is 

executed in parallel if it is to be expected that the parallelization is 10% faster than 

executing the operator sequential.  

Using this parameter a user can decide whether he wants to use cores for a (small) profit 

or keep the cores ready for use in nested parallel regions. See OpenMP Architecture 

Review Board (2011, section 1.3).  

 

Based on experiences with the Computer Vision projects mentioned in section 1.2 it is quite 

clear that the image type that is most often used for greyscale operators is the Int16Image and 

for colour operators the HSV888Image. Furthermore it is expected that the calibration result 

for a specific operator will be similar for all images types. This assumption must be validated 

by benchmarking. If this assumption is invalid, a calibration for all image types will be 

necessary. 

 

The full calibration procedure must determine the break-even point in number of pixels for 

each parallelized operator where the parallel execution of the operator is gain-factor times 

faster than the sequential version. For one basic operator the result of the calibration is stored 

as the number of pixels for the break-even point. All other operators will store their results 

relative to the result of the basic operator. The quick calibration procedure only benchmarks 

the basic operator and uses default values for relative factors for the other operators.  
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The idea behind the simple procedure is that this procedure will give a quick and fairly good 

idea of the general performance of the system based on the most dominant factors like clock 

speed and number of cores available. The idea behind the complex procedure is that this will 

give a more fine-tuned and machine-specific calibration. The preliminary research and 

experiments described in section 2.2 indicated that different CPU architectures will give 

variations in the relative factors for the operators. It is plausible that these differences can be 

explained by factors like differences in efficiency of the executing of the instruction set and 

differences in memory latency and bandwidth.  

 

In the author’s experience, parallel programming is more vulnerable for making errors than 

sequential programming. During the calibration process both the parallel result and the 

sequential result of the operator are calculated. The calibration procedure must have a built-in 

regression test, which always compares the sequential result with the parallel result. The 

overhead involved for this test is negligible.  

 

After calibration the results can be saved to disk. The next time at start-up the calibration file 

is read from disk, so that the Automatic Operator Parallelization mechanism can be used 

without executing the calibration procedure. 

5.2.6.4 Runtime decision 

At execution time a parallelized operator has to decide whether parallelization is beneficial. 

This decision is based on the size of the image, operator specific parameters and the 

calibration result. The OpenMP if clause in the parallel construct facilitates the 

implementation this decision in a convenient way. An example: 

 

  #pragma omp for if (condition) 

 

If the condition evaluates to true, the for statement following the OpenMP pragma will be 

executed in parallel. If the condition evaluates to false the for statement will be executed 

sequentially. 

5.2.7 Integrating OpenMP in VisionLab 

In section 2.3 about the requirements for multi-core CPUs it is stated that: 

 

“If possible existing VisionLab scripts and applications using the VisionLab ANSI C++ 

library should not have to be modified in order to benefit from the multi-core version.” 
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The following steps are specified in order to integrate OpenMP in VisionLab: 

- Choose one representative example for all four classes of basic low level image operators 

(section 3.6.2) and implement a parallel version using OpenMP. From these examples a 

framework for the other instances of the same class can be derived. 

- Parallelize the operators of VisionLab and handle the Automatic Operator Parallelization 

without changing the interface of the operator. This means that the legacy VisionLab 

scripts and applications using the VisionLab C++ library can benefit from the 

parallelizing without any modification.  

- Extend the library and script language of VisionLab with commands to modify the default 

behaviour of OpenMP and query the runtime support of OpenMP. Examples: 

- Setting the number of threads to be used. 

- Querying the number of cores in the system. 

- Implement the calibration for Automatic Operator Parallelization as a C++ module. 

Extend the script language of VisionLab with commands to perform the calibration and 

extend the GUI of the development environment of VisionLab with a form to perform the 

calibration in an interactive way. 

5.3 Interfacing VisionLab with OpenCL 

5.3.1 Introduction 

This section describes the design of the interface between VisionLab and OpenCL. In order 

to understand the design decisions, the following OpenCL topics are discussed in more detail: 

- OpenCL architecture. 

- Example of OpenCL application, both host-side code and kernel code. 

- Integration of OpenCL in VisionLab. 

5.3.2 OpenCL architecture 

5.3.2.1 Introduction 

According to the OpenCL specification (Munshi, 2010) the OpenCL architecture has the 

following hierarchy of models: 

- Platform model. 

- Execution model. 

- Memory model. 

- Programming model. 
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Each model is described in the next subsections by summarizing and quoting the work of 

Munshi (2010, section 3).   

5.3.2.2 Platform model 

The Platform model for OpenCL is shown in Figure 8. The model consists of a host 

connected to one or more OpenCL devices. An OpenCL device is divided into one or more 

compute units which are further divided into one or more processing elements. Computations 

on a device occur within the processing elements. 

 

 
Figure 8. OpenCL Platform model. 

After Munshi (2010). 

5.3.2.3 Execution model 

Execution of an OpenCL program occurs in two parts: kernels that execute on one or more 

OpenCL devices and a host program that executes on the host. The host program defines the 

context for the kernels and manages their execution. 
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When the kernel is submitted to the compute device for computation an index space is 

defined. An instance of the kernel called the work-item is created for each index. Work-items 

can be identified by this index, which provides a global ID for a work-item. Work-items are 

organized into work-groups. The work-groups provide a more coarse-grained decomposition 

of the index space. Work-groups are assigned a unique work-group. Work-items are assigned 

a unique local ID within a work-group so that a single work-item can be uniquely identified 

by its global ID or by a combination of its local ID and work-group ID. The work-items in a 

given work-group execute concurrently on the processing elements of a single compute unit. 

 

The indexing space used to partition work-items in OpenCL is called an N-Dimensional 

Range (NDRange). The NDRange, as the name suggests, supports multidimensional 

indexing. OpenCL supports up to and including three-dimensional indexing. 

 

The host defines a context for the execution of the kernels. The context includes the 

following resources: 

- Devices: The collection of OpenCL devices to be used by the host. 

- Kernels: The OpenCL functions that run on OpenCL devices. 

- Program Objects: The program source and executable that implement the kernels. 

- Memory Objects: A set of memory objects visible to the host and the OpenCL devices.  

 

A context is created and manipulated by the host using functions from the OpenCL API. The 

host creates one or more data structures called command-queues to coordinate execution of 

the kernels on the devices. The host places commands into the command-queue(s), which are 

then scheduled onto the devices within the context. These include: 

- Kernel execution commands: Execute a kernel on the processing elements of a device. 

- Memory commands: Transfer data to, from, or between memory objects. 

- Synchronization commands: Constrain the order of execution of commands. 

 

A command-queue schedules commands for execution on a device. These commands execute 

asynchronously between the host and the device. Commands execute relative to each other in 

one of two modes: 

- In-order Execution: Commands are launched in the order they appear in the command 

queue and complete in order.  

- Out-of-order Execution: Commands are issued in order, but do not wait to complete 

before following commands execute. Any order constraints are enforced by the 

programmer through explicit synchronization commands. 
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Kernel execution and memory commands submitted to a queue generate event objects. These 

are used to control execution between commands and to coordinate execution between the 

host and devices. 

5.3.2.4 Memory model 

Work-item(s) executing a kernel have access to four distinct memory regions,  

see also Figure 9:  

- Global Memory. This memory region permits read/write access to all work-items in all 

work-groups. The host allocates and initializes memory objects placed into global 

memory. 

- Constant Memory: A region of global memory that remains constant during the execution 

of a kernel. The host allocates and initializes memory objects placed into constant 

memory. 

- Local Memory: A memory region local to a work-group. This memory region can be used 

to allocate variables that are shared by all work-items in that work-group.  

- Private Memory: A region of memory private to a work-item. Variables defined in one 

work-item’s private memory are not visible to another work-item. 

 

 

Figure 9. OpenCL memory model. 

After Munshi (2010), identical to Figure 5, included for convenience of reader. 
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The application running on the host uses the OpenCL API to create memory objects in global 

or constant memory and to enqueue memory commands that operate on these memory 

objects. To copy data explicitly, the host enqueues commands to transfer data between the 

memory objects and host memory.  

 

OpenCL uses a relaxed consistency memory model; i.e. the state of memory visible to a 

work-item is not guaranteed to be consistent across the collection of work-items at all times. 

Within a work-item memory has load/store consistency. Local memory is consistent across 

work-items in a single work-group at a work-group barrier. Global memory is consistent 

across work-items in a single work-group at a work-group barrier, but there are no guarantees 

of memory consistency between different work-groups executing a kernel. 

 

Memory objects are categorized into two types: buffer objects and image objects. A buffer 

object stores a one-dimensional collection of elements whereas an image object is used to 

store a two- or three-dimensional texture, frame-buffer or image. Elements of a buffer object 

can be a scalar data type (such as an int, float), vector data type, or a user-defined structure. 

Elements in a buffer are stored in sequential fashion and can be accessed using a pointer. 

Elements of an image are stored in a format that is opaque to the user and cannot be directly 

accessed using a pointer. Built-in functions are provided by the OpenCL kernel language to 

allow a kernel to read from or write to images. 

5.3.2.5 Programming model 

The OpenCL execution model supports data parallel and task parallel programming models, 

as well as supporting hybrids of these two models. The primary model driving the design of 

OpenCL is data parallel. 

 

For the data parallel model there are two methods to specify how the work-items are 

distributed over the processing elements. In the explicit method a programmer defines the 

total number of work-items to execute in parallel and also how the work-items are divided 

among work-groups. In the implicit method, a programmer specifies only the total number of 

work-items to execute in parallel, and the division into work-groups is managed by the 

OpenCL implementation. 

 

There are two domains of synchronization in OpenCL: 

- Work-items in a single work-group 

- Commands enqueued to command-queue(s) in a single context 
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Synchronization between work-items in a single work-group is done using a work-group 

barrier. All the work-items of a work-group must execute the barrier before any are allowed 

to continue execution beyond the barrier. Note that the work-group barrier must be 

encountered by all work-items of a work-group executing the kernel or by none at all. There 

is no mechanism in the Compute Device for synchronization between work-groups. 

 

The synchronization points between commands in command-queues are: 

- Command-queue barrier. The command-queue barrier ensures that all previously queued 

commands have finished execution and any resulting updates to memory objects are 

visible to subsequently enqueued commands before they begin execution. This barrier can 

only be used to synchronize between commands in a single command-queue. 

- Waiting on an event. All OpenCL API functions that enqueue commands return an event 

that identifies the command and memory objects it updates. A subsequent command 

waiting on that event will guarantee that updates to those memory objects are visible 

before the command begins execution. 

5.3.3 Example of OpenCL application, both host-side code and kernel code 

In section 5.2.2 an example is given of how to parallelize with OpenMP the adding of two 

vectors. In this section the OpenCL version of this algorithm is discussed. 

 

In a simple OpenCL approach a work-item is created for each element of the vector. The 

NDRange is a one-dimensional indexing space. The source code for the kernel (after Gaster, 

et al., 2012, p.32) is simple: 

 

kernel void VecAdd (global int* c, global int* a, global int* b) {  

   unsigned int n = get_global_id(0);  

   c[n] = a[n] + b[n];  

} 

 

With get_global_id(0) the global ID for the work-item is retrieved. This global ID is used as 

index for the vectors. 
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The C source code for the host-side calling the OpenCL API functions is given in Gaster, et 

al. (2012, pp.32-38). This source code contains 67 (!) C statements, not counting the 

comment lines and has no code for error checking after calling OpenCL API functions. The 

host code consists of the following steps: 

- Allocate space for vectors and initialize. 

- Discover and initialize OpenCL platform. 

- Discover and initialize compute device. 

- Create a context. 

- Create a command queue. 

- Create device buffers. 

- Write host data to device buffers. 

- Create and compile the program. 

- Create the kernel. 

- Set the kernel arguments. 

- Configure the NDRange. 

- Enqueue the kernel for execution. 

- Read the output buffer back to the host. 

- Verify result. 

- Release OpenCL and host resources. 

 

After writing several OpenCL applications (both host-side and kernel) the author concluded 

that: 

- The host-side code is labour-intensive and sensitive for errors because the OpenCL API 

functions are complex and have many parameters.  

- Using the C++ wrapper for the OpenCL host API code (Gaster, 2010) makes error 

checking easier because in case of an error an exception is raised. 

- Many OpenCL applications have a very similar host code. 

5.3.4 Integrating OpenCL in VisionLab 

In section 2.4 about the requirements for GPUs it is stated that: 

 

“GPU code must be able to be called from both VisionLab script language and from 

the VisionLab ANSI C++ library.” 
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The following steps are specified in order to integrate OpenCL in VisionLab: 

- Design a C++ module with an abstraction layer on top of the C++ wrapper for the 

OpenCL host API. By using this C++ module, the access to the OpenCL host API will be 

much easier and much of the replication of code (section 5.3.3) can be avoided. 

- Extend the script language of VisionLab with commands to call the OpenCL host API. 

By using the script language it will be much easier to write the host-side code. Examples 

of new commands: 

- Querying platform and device properties. 

- Creating context, program, queue, buffer, image and event. 

- Read/Write buffer and image. 

- Building, saving and reading programs. 

- Setting parameters for kernel and executing kernel. 

- Synchronization. 

- Extend the GUI of VisionLab with an editor to create, save and read source code for 

OpenCL kernels. 

- Choose one representative example for all four classes of basic low level image operators 

(section 3.6.2) and implement a parallel version in OpenCL. From these examples a 

framework for the other instances of the same class can be derived. 

 

As mentioned in section 2.1 VisionLab uses C++ templates to support a wide variety of 

image types. OpenCL does not support something similar to C++ templates. In order to make 

the kernels suitable for different image types, macro substitution can be used as a ‘poor man’s 

substitute for templates’. If a kernel is defined as: 

 

kernel void Operator (global ImageT* image, const PixelT pixel) {  

    … 

}  

 

it is possible to supply the macro definitions at compile time using the build option string 

(Munshi, 2010, section 5.6.3). Some examples: 

- With “-DImageT=short -DPixelT=short” the kernel will work as an Int16Image with 

image as pointer to shorts. 

- With “-DImageT=short4 -DPixelT=short” the kernel will work as an Int16Image with 

image as pointer to vectors of shorts. 

- With “-DImageT=int -DPixelT=int” the kernel will work as an Int32Image. 
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5.4 Experiment design and analysis methodology  

5.4.1 Introduction 

In this section the following is discussed: 

- Timing. 

- Benchmarking protocol. 

- Data analysis. 

- Benchmark setup. 

5.4.2 Timing 

With regard to the timing it is important that: 

- All execution time measurement, sequential, multi-core and GPU implementation, must 

be performed by one timing tool.  

- A calibration of overhead for the time measurement must be performed and all 

measurements must be corrected for this overhead. 

5.4.3 Benchmark protocol 

In section 3.7 “The Speedup Test” protocol for benchmarking is reviewed. In this work the 

performance of the sequential, multi-core CPU and GPU version of one algorithm must be 

compared. For this simplified kind of benchmarking a subset of “The Speedup Test” protocol 

can be used supplemented with some specific items for this project. 

 

For this study, the following benchmarking protocol is used: 

- Description of hardware used. 

- Description of compiler and compiler settings used. 

- Calibration of overhead of timer used. 

- The test computer must be dedicated during the experiments to the test process.  

- Data analysis as described in section 5.4.4  is performed. 
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The test computer must be dedicated during the experiments to the test process in the 

following way: 

- The test process must have a high task priority. 

- As far as possible non-essential background tasks must be suspended. 

- Windows 7 desktop must be set to Aero Basic Theme in order to minimalize the overhead 

of displaying the desktop.  

- Dynamic voltage scaling must be disabled or limited in range if thermal overheating can 

be expected. Using the BIOS setup it is possible to disable dynamic voltage scaling. An 

alternative way to limit the dynamic voltage scaling is to set the Power Management 

feature of Windows minimum and maximum performance on 100%.  

- For benchmarking GPUs the power management mode for the graphics card must be set 

in maximum performance mode.   

- The screen saver must be disabled. 

 

Benchmarking on GPU must only measure the time needed for execution of the kernels. The 

time for transferring data between the CPU memory and GPU memory must NOT be 

included in the benchmarking. From the preliminary research and experiments described in 

section 2.2 it becomes clear that using contemporary GPUs can give a considerable amount 

of overhead. The reasons for not including this overhead are: 

- It is expected that in many practical cases data will be transferred from CPU to GPU 

memory and then more than one kernel will be executed on this data. Thereafter the data 

is transferred back from the GPU. 

- New fused architecture of CPU and GPU are announced (see section 3.5.2.4), in which 

CPU and GPU will share the same global memory. This will reduce or eliminate the 

copying overhead.   

- The transfer of data between the CPU memory and GPU memory are benchmarked 

separately.   
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5.4.4 Data analysis 

The data analysis compares execution times and variance in execution times for sequential, 

multi-core CPU and GPU implementations. References are the existing sequential algorithms 

of VisionLab. 

 

The parallelized operators must be benchmarked according to the protocol based on “The 

Speedup Test” described in section 5.4.3. For each experiment: 

- All experiments must be repeated at least 30 times. 

- No removal of outliers in observed execution times.   

- The median of the execution times is calculated.   

- The speedup of the parallel versions is calculated based on the median of the execution 

times.  

- Violin plots are used to visualize the variance in execution times. Violin plots are similar 

to box plots, except that they also show the probability density of the data. Violin plots 

were introduced into the statistical community by Hintze and Nelson (1998). See Figure 

10 for an example of a violin plot and its relation with the box plot. 

 

 
Figure 10. Example of violin plot. 

After Hintze and Nelson (1998). 
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For statistical analysis and plotting of the graphs the statistical package R (R-project.org, 

2011) is used. The script language of VisionLab must be extended with a command to 

execute R scripts. 

5.5 Benchmark setup 

The following benchmark setup must be used to compare the performance of the sequential, 

multi-core CPU and GPU versions of an operator:  

- The benchmark protocol described in section 5.4.3 is used. 

- For each operator one or more typical images are chosen as input images. 

- For each operator a suitable range of image sizes is chosen. 

- The operators are executed for all chosen input images and in all chosen sizes.  

- The data analysis described in section 5.4.4 is used. 
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6 Implementation 

6.1 Introduction 

In this chapter the issues about the implementation of the following topics are discussed: 

- Timing procedure. 

- Interfacing VisionLab with OpenMP. 

- Interfacing VisionLab with OpenCL. 

- Threshold as representative of Point operators. 

- Convolution as representative of Local neighbour operators. 

- Histogram as representative of Global operators. 

- LabelBlobs as representative of Connectivity based operators. 

 

This work is about how to parallelize a large generic Computer Vision library in an efficient 

and effective way. In section 3.6, a classification of basic low level image operators is 

described. This chapter describes the implementations of one representative for each class. 

These implementations can be used as a skeleton to implement the other instances for each 

class. Many of the high level operators are built using the basic low level operators. These 

operators will directly benefit of the parallelization of the basic low level operators. 

 

In order to gain experience with OpenMP and OpenCL two simple vision operators, 

Threshold and Histogram, were selected for the first experiments. The results of these 

experiments were used to limit the scope of experiments with the more complex operators. 

6.2 Timing procedure 

The timing tool already implemented in VisionLab was used for all time measurement. 

This is implemented in a portable way. On x86/x64 based platforms it uses the high 

resolution multimedia timer (Work and Nguyen, 2009), which has an adequate resolution of 

3.31287 MHz on the computer (see Appendix A) used for benchmarking. VisionLab reports 

all time measurements in micro seconds. 
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It is possible to use the BIOS setup to disable dynamic voltage scaling, however during the 

first benchmarks with disabled dynamic voltage scaling the test computer ‘started to smell’, 

indicating possible overheating. It was decided not to disable dynamic voltage scaling using 

the BIOS but to limit it with the Power Management feature of Windows. The reason for this 

decision was that the author is not an expert in the field of computer hardware and did not 

want to overheat his computer. 

 

The alternative way to limit the dynamic voltage scaling was to set the minimum and 

maximum performance to 100% in the Windows Power Management. Measurements with 

the tool CPU-Z monitor (CPUID, 2011) revealed small variations in processor frequency 

running on: 

- One core, between 3.5 and 3.8 GHz.  

- Two or three cores, between 3.5 and 3.6 GHz.  

- Four cores, a stable frequency of 3.5 GHz.  

Because there is a decay in frequency when more cores are used, this choice has affected the 

accuracy of the calculation of the speedup factors for multi-core CPUs. However in real life 

applications the same decay in frequency will be present.  

6.3 Interfacing VisionLab with OpenMP 

In this section the implementation of the interface of VisionLab with OpenMP is described. 

The design of this interface is described in section 5.2. 

 

Twenty-seven commands were added to the command interpreter of VisionLab. With these 

commands the user can control the behaviour of OpenMP and Automatic Operator 

Parallelization. It is also possible to manually overrule the Automatic Operator Parallelization 

mechanism. See documentation of VisionLab (Van de Loosdrecht Machine Vision BV, 2013) 

and course material (Van de Loosdrecht, et al., 2013) for the details of these operators. 

 

All 170 operators listed in Appendix G were parallelized using OpenMP and the runtime 

decision procedure that determines whether parallelization is beneficial was implemented. 

The calibration procedure described in section 5.2.6.3 was implemented. See Figure 11 and 

Figure 12 for screenshots. 
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Figure 11. Screenshot quick multi-core calibration 

 

 
Figure 12. Screenshot full multi-core calibration 
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6.4 Interfacing VisionLab with OpenCL 

In this section the implementation of the interface of VisionLab with OpenCL is described. 

The design of this interface is described in section 5.3. 

 

The header file for the C++ module with an abstraction layer on top of the C++ wrapper for 

the OpenCL host API, as described in section 5.3.4, can be found in Appendix C. The author 

wishes to thank Herman Schubert for his contribution to this module. 

 

Thirty commands were added to the command interpreter of VisionLab. With these 

commands the user of VisionLab can now comfortably write OpenCL host-side code using 

the script language. See documentation of VisionLab (Van de Loosdrecht Machine Vision 

BV, 2013) and course material (Van de Loosdrecht, et al., 2013) for the details of these 

operators.  

At the moment not all OpenCL host API functions are available in the script language. It is 

future work to extend the C++ module and to add new commands to the command 

interpreter. 

 

See Appendix C for a script with the same functionality as the example mentioned in section 

5.3.3. Only 30 lines of host code are needed with the script instead of 67 lines of C. Other 

advantages are that: 

- Host-side code and kernels can be developed and tested in one development environment. 

- Host-side code is interpreted and not compiled. This speeds up the development. 

- There is no need for extended error checking. The host API script commands check for 

errors. These error checks are not performed in the 67 lines C code. In case of an error an 

exception is raised that will abort the script, highlight the offending script line and display 

an appropriate error message. 

 

See Figure 13 and Figure 14 for an impression of developing OpenCL host code and kernel 

code in VisionLab. 
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Figure 13. Screenshot developing host-side script code and OpenCL kernel 

 

 

 
Figure 14. Screenshot with menu of OpenCL host-side script commands 
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6.5 Point operators 

6.5.1 Introduction 

As representative of the Point operators Threshold was implemented.  

6.5.2 Threshold 

6.5.2.1 Introduction 

The functionality of the Threshold operator is described in section 3.6.3. In this section the 

implementation of the Threshold operator is described for the following versions: 

- Sequential. 

- OpenMP. 

- OpenCL. 

In order to gain experience with OpenMP and OpenCL many experiments were executed on 

this simple vision operator. The results of these experiments were used to limit the scope 

experiments with the more complex operators. Because there is only a small amount of code 

involved, the source code is presented. Note that for the sake of clarity all code needed for 

error checking is omitted. 

6.5.2.2 Sequential 

As mentioned in section 2.1 VisionLab supports a wide variety of image types. The 

Threshold operator must work with all greyscale image types. In order to avoid a lot of code 

duplication, C++ templates are used. Implementation of the Threshold operator is 

straightforward: 

 

template <class OrdImageT, class PixelT> 

void Threshold (OrdImageT &image, const PixelT low, const PixelT high) { 

   PixelT *pixelTab = image.GetFirstPixelPtr(); 

   int nrPixels = image.GetNrPixels(); 

   for (int i = 0; i < nrPixels; i++) { 

 pixelTab[i] = ((pixelTab[i] >= low) && (pixelTab[i] <= high)) ?  

      OrdImageT::Object() : OrdImageT::BackGround(); 

   } // for all pixels 

} // Threshold 
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Note: VisionLab also supports a faster implementation of the Threshold operator called 

ThresholdFast. This operator can be used if a priori the minimum and maximum pixel value 

in the image are known. ThresholdFast uses a lookup table in which for each pixel value the 

corresponding object or background value is stored and replaces the if statement by a table 

lookup. 

6.5.2.3 OpenMP 

In order to modify the sequential version for use with OpenMP only one line with the 

OpenMP pragma was added. In order to facilitate the Automatic Operator Parallelization 

(section 5.2.6.4) “if (calibMCP.TestMultiCore(OC_Threshold,nrPixels))” was added. 

Because the time needed for calculating each chunk is constant, the static scheduling strategy 

(see section 5.2.4) was chosen. 

 

template <class OrdImageT, class PixelT> 

void Threshold (OrdImageT &image, const PixelT low, const PixelT high) { 

   PixelT *pixelTab = image.GetFirstPixelPtr(); 

   int nrPixels = image.GetNrPixels(); 

#pragma omp parallel for if (calibMCP.TestMultiCore(OC_Threshold,nrPixels)) 

   for (int i = 0; i < nrPixels; i++) { 

  pixelTab[i] = ((pixelTab[i] >= low) && (pixelTab[i] <= high)) ?  

              OrdImageT::Object() : OrdImageT::BackGround(); 

   } // for all pixels 

} // Threshold 

6.5.2.4 OpenCL 

6.5.2.4.1 Introduction 

Based on earlier experiences described in section 2.2 the following versions of OpenCL 

kernels were developed: 

- One pixel or vector of pixels per kernel using one read/write buffer. 

- One pixel per kernel using images. 

- One pixel or vector of pixels per kernel using a read and a write buffer. 

- Chunk of pixels or vectors of pixels per kernel. 

- Chunk of pixels or vectors of pixels per kernel with coalesced memory access. 

 

In the next sections the kernels are described and motivated. The client side code is relatively 

straightforward and is not discussed here. Where possible, the “poor man’s substitute for 

templates” was used (section 5.3.4). 
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6.5.2.4.2 One pixel or vector of pixels per kernel using one read/write buffer 

This is the simplest implementation: 

 

kernel void Threshold (global ImageT* image, const PixelT low,  

                       const PixelT high) {  

   const PixelT object = 1; 

   const PixelT background = 0; 

   const unsigned int i = get_global_id(0);  

   image[i] = ((image[i] >= low) && (image[i] <= high)) ?  

              object : background; 

} // Threshold 

6.5.2.4.3 One pixel per kernel using images 

This is  a simple implementation using an OpenCL image instead of an OpenCL buffer. 

 

constant sampler_t imgSampler = CLK_NORMALIZED_COORDS_FALSE |  

                                CLK_ADDRESS_NONE;  

 

kernel void ThresholdImage (read_only image2d_t imageIn,  

                            write_only image2d_t imageOut, 

                            const short low, const short high) { 

  int2 coord = (int2)(get_global_id(0), get_global_id(1)); 

  int4 pixel; 

  pixel = read_imagei(imageIn,imgSampler,coord); 

  pixel.x = ((pixel.x >= low) && (pixel.x <= high)) ? 1 : 0; 

  write_imagei(imageOut,coord,pixel); 

} // ThresholdImage 

6.5.2.4.4 One pixel or vector of pixels per kernel using a read and a write buffer 

A lesson learned from the earlier experiments described in section 2.2 was that using separate 

buffers for reading and writing would give better performance. However recent innovations 

in GPU design have improved caching, so it is questionable whether using separate buffers 

will give more performance. 

 

kernel void ThresholdSrcDest (const global ImageT* src,  

                              global ImageT* dest,  

                              const PixelT low, const PixelT high) {  

   const PixelT object = 1; 

   const PixelT background = 0; 

   const unsigned int i = get_global_id(0);  

   dest[i] = ((src[i] >= low) && (src[i] <= high)) ? object : background; 

} // Threshold 
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6.5.2.4.5 Chunk of pixels or vectors of pixels per kernel 

The idea behind chunking (also called tiling or strip mining) is that granularity of work is 

increased (Gaster, et al., 2012, p.17). A kernel will process more than one pixel at a time, so 

the overhead of starting up the kernel is distributed over more than one pixel.  

 

kernel void ThresholdChunk (global ImageT* image, const PixelT low,  

                            const PixelT high, const unsigned int size) {  

   const PixelT object = 1; 

   const PixelT background = 0; 

   unsigned int i = get_global_id(0) * size;  

   const unsigned int last = i + size; 

#pragma unroll UnrollFactor 

   for (; i < last; i++) { 

     image[i] = ((image[i] >= low) && (image[i] <= high)) ?  

                 object : background; 

   } 

} // Threshold 

 

Extra overhead is introduced by the for loop. This overhead can be reduced by unrolling the 

for loop. The compiler used can unroll for loops only if the trip count is known at compilation 

time. In order to test unrolling, a manually unrolled version was implemented also. 

6.5.2.4.6 Chunk of pixels or vectors of pixels per kernel with coalesced access 

As mentioned in section 3.5.2.3.5 GPUs have only very small caches and in order to achieve 

good performance it is paramount to use these caches effectively. It is important that all 

work-items in a warp access the global memory as much as possible in a coalesced way. 

 

kernel void ThresholdCoalChunk (global ImageT* image,  

                                const PixelT low, const PixelT high,  

                                const unsigned int size) {  

   const PixelT object = 1; 

   const PixelT background = 0; 

   const unsigned int gid = get_group_id(0);  

   const unsigned int lid = get_local_id(0);  

   const unsigned int ws = get_local_size(0);  

   unsigned int i = (gid * ws * size) + lid; 

   const unsigned int last = i + size * ws; 

#pragma unroll UnrollFactor 

   for (; i < last; i += ws) { 

     image[i] = ((image[i] >= low) && (image[i] <= high)) ?  

                 object : background; 

   } 

} // Threshold 
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6.5.3 Future work 

The Threshold operator is a highly memory bandwidth bound operator, so it is not possible to 

draw conclusions for computation bound point operators. This will have to be investigated in 

future work. 

6.6 Local neighbour operators 

6.6.1 Introduction 

As representative of the Local neighbour operators Convolution was implemented.  

6.6.2 Convolution 

6.6.2.1 Introduction 

The functionality of the Convolution operator is described in section 3.6.4. It was decided to 

implement first the Convolution for single channel (grayscale) images. This decision is based 

on the experiences with the 170 Computer Vision projects mentioned in section 1.2. In those 

projects grayscale Convolution was more frequently used than color Convolution. The 

implementation discussed in this work is a generalized implementation, which means: 

- The height and width of the kernel mask are specified by the user. 

- The origin of the kernel mask is specified by the user. 

- It is assumed that the kernel mask is a non-separable. 

The implementation is intended to be used with a small kernel mask, so using the Fast 

Fourier Transform is not feasible. 

 

In this section the implementation of the Convolution operator is described for the following 

versions: 

- Sequential. 

- OpenMP. 

- OpenCL. 

The size of the source code is substantial and only some relevant parts are included in this 

work. The full source code is documented in Van de Loosdrecht (2013a). 
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6.6.2.2 Sequential 

The sequential implementation is a generalized version of the algorithm described in section 

3.6.4 and is templatized for use with all greyscale image types of Visionlab in a similar way 

as described in section 6.5.2.2.  

6.6.2.3 OpenMP 

In order to modify the sequential version for use with OpenMP, only one line with the 

OpenMP pragma omp parallel was added in a similar way as described in section 6.5.2.3. 

Because the time needed for calculation each chunk is constant, the static scheduling strategy 

(see section 5.2.4) was chosen. 

6.6.2.4 OpenCL 

6.6.2.4.1 Introduction 

All literature reviewed in section 3.6.4 describe implementations with fixed size masks and 

the origin in the middle of the mask. The basic optimization approaches found in the 

literature and in the preliminary research (section 2.2) were tested on the generalized 

Convolution implementation as described in section 6.6.2.1.  

 

In the next section the Reference implementation of the Convolution as described by Antao 

and Sousa (2010) was used as a basis and was adapted to a generalized Convolution 

implementation. An extra parameter, border, was added. If border is set to the value 1, all 

border pixels of the destination image will get the corresponding border values of the input 

image. If border is set to the value 0, all border pixels in the destination image will get the 

value 0. The subsequent sections describe the following optimization approaches: 

- Loop unrolling. 

- Vectorization. 

- Local memory. 

- Chunking. 

- One-dimensional NDRange. 

 

The Reference implementation was used to measure the effectiveness of the optimization 

approaches. The optimization approaches were used in combinations. On the GPU of the 

benchmark machine an adequate amount of constant memory was available for the mask 

values. All implementations use constant memory for the mask values. Where possible, the 

“poor man’s substitute for templates” was used (section 5.3.4). 
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6.6.2.4.2 Reference implementation 

The Reference implementation is a “straightforward” implementation using a two-

dimensional NDRange indexing space: 

 

kernel void Ref (const global PixelT *src, global PixelT *dest, 

                 const uint imageHeight, const uint imageWidth, 

                 constant PixelT *mask, 

                 const uint maskHeight, const uint maskWidth, 

                 const uint xOrg, const uint yOrg, 

                 const int divisor, const PixelT border) { 

   const uint x = get_global_id(0);  

   const uint y = get_global_id(1);  

   const uint firstRow = yOrg; 

   const uint lastRow = imageHeight-1  - (maskHeight-1-yOrg); 

   const uint firstCol = xOrg; 

   const uint lastCol = imageWidth-1 - (maskWidth-1-xOrg); 

   const int xy = y * imageWidth + x; 

   if ((y >= firstRow) && (y <= lastRow) &&  

       (x >= firstCol) && (x <= lastCol)) { 

      int sum = 0; 

      uint maskIndex = 0; 

      for (uint r = y - yOrg; r <= y + (maskHeight-1-yOrg); r++) { 

         const uint rowStart = r * imageWidth; 

         for (uint c = x - xOrg; c <= x + (maskWidth-1-xOrg); c++) { 

            sum += src[rowStart + c] * mask[maskIndex++]; 

         } // for c 

      } // for r 

      dest[xy] = sum / divisor; 

   } else { 

      dest[xy] = border * src[xy]; 

   } // if xy 

} // Ref 

6.6.2.4.3 Loop unrolling 

Several studies found in the literature review concluded that loop unrolling is beneficial. 

However, in all the researches fixed masks are used. Because both the size of the mask and 

the position of the origin of the mask are known at compilation time, both for loops can be 

completely unrolled. This will eliminate the complete overhead of both for loops. This 

approach is not possible in this work because the sizes of the mask and/or the origin of the 

mask are not known at compilation time. 
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Antao and Sousa (2010)  suggest to unroll the inner for loop, that browses the mask width, 

for a specific number of iterations (the unroll factor) in the following way: 

 

      int sum = 0; 

      uint maskIndex = 0; 

      const uint nrUnrolls = maskWidth / 4; 

      for (uint r = y - yOrg; r <= y + (maskHeight-1-yOrg); r++) { 

         const uint rowStart = r * imageWidth; 

         uint c = x - xOrg; 

         for (uint ur = 1; ur <= nrUnrolls; ur++) { 

            sum += src[rowStart + c++] * mask[maskIndex++]; 

            sum += src[rowStart + c++] * mask[maskIndex++]; 

            sum += src[rowStart + c++] * mask[maskIndex++]; 

            sum += src[rowStart + c++] * mask[maskIndex++]; 

         } // for ur 

         for (; c <= x + (maskWidth-1-xOrg); c++) { 

            sum += src[rowStart + c] * mask[maskIndex++]; 

         } // for c 

      } // for r 

 

The implementation used in this work: 

- Does not unroll if the width of the mask is smaller than 4. 

- Unrolls with a factor 4 if the width of mask is in range [4..7]. 

- Unrolls with a factor 8 if the width of mask is greater or equal than 8. 

 

This approach is referenced in this work as the “Unroll” optimization. 

6.6.2.4.4 Vectorization 

Bordoloi (2009), Andrade (2011) and Gaster, et al.(2012, Chapter 7) vectorize the channels 

of normalized floats RGB images. Andrade (2011) reports speedups upto 60. These 

approaches are not usable with the single channel images, which are under investigation in 

this work. 

 

Antao and Sousa (2010) discuss an approach where the inner-most loop is unrolled to 

vectorized operations. Because the mask width may not be a multiple of the vector size, an 

extra loop is required for handling the remaining pixels in a scalar fashion.  
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This idea was used and implemented in the following way: 

 

      const uint vectorSize = vec_step(short4); 

      const uint nrVectors = maskWidth / vectorSize; 

      uint maskIndex = 0; 

      int sum = 0; 

      short4 sumv = 0; 

      for (uint r = y - yOrg; r <= y + (maskHeight-1-yOrg); r++) { 

         const uint rowStart = r * imageWidth; 

         uint c = x - xOrg; 

         for (uint v = 1; v <= nrVectors; v++) { 

            short4 iv = vload4(0, src + (rowStart + c)); 

            short4 mv = vload4(0, mask + maskIndex); 

            sumv += iv * mv; 

            c += vectorSize; 

            maskIndex += vectorSize; 

         } // for v 

         for (; c <= x + (maskWidth-1-xOrg); c++) { 

            sum += src[rowStart + c] * mask[maskIndex++]; 

         } // for c 

      } // for r 

      sum += sumv.s0 + sumv.s1 + sumv.s2 + sumv.s3; 

 

This approach is implemented for short4, short8 and short16 vectors and is referenced in this 

work as the “UnrollV” optimization.  

 

The last For loop in the “UnrollV” (Antao and Sousa, 2010) approach can be eliminated if the 

width of the mask is enlarged to the next multiple of 4, 8 or 16 and the origin of the mask 

remains in the same position. The result of the convolution will remain unchanged if the 

“extra” mask values are set to zero. Typically the image will be much larger than the mask, 

so if the origin of the mask is not at the bottom row, it will be impossible to use pixels outside 

the image in the calculation. This approach was implemented for short4, short8 and short16 

vectors and is referenced in this work as the “UnrollV2” optimization. This proposed 

approach appears to be novel. The literature search has not found any previous use of this 

approach. 

 

The UnrollV2 optimization is not using the vector capabilities in an optimal way, because the 

extra zeros in the last vector for each row calculation are dummies. Antao and Sousa (2010) 

and Antao, Sousa and Chaves (2011) introduce approaches that do not have this 

disadvantage. According to their tests these approaches are beneficial on CPUs. These 

approaches require to use a auxiliary image, in which the order of the pixels is extensively 

rearranged. Future work will have to investigate whether these approaches are beneficial on 

GPUs. 
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6.6.2.4.5 Local memory 

Bordoloi (2009), Andrade (2011) and Gaster, et al. (2012, Chapter 7) suggest using local 

memory for tiles with pixels. The idea is that at start-up, all work-items in a work-group copy 

all image pixels, necessary to calculate the convolution output pixels for the work-group, 

from global memory to local memory. After this copy operation the convolution is calculated 

with the relatively faster local memory. Because there is overlap between image pixels used 

for the calculation of adjacent output pixels, it is expected that the calculation of convolutions 

can be accelerated. 

 

The Convolution kernel is now implemented in two steps: 

- Copy work-item’s part of tile from global to local memory. 

- Calculate Convolution result for output pixel using image pixels stored in local memory 

tile. 

The two steps must be separated by a barrier function to ensure that the tile has been copied 

completely before work-items start with the calculation of the Convolution result. 

 

This tile copying from global to local memory was implemented in two fashions: 

- Copying pixel by pixel; This approach is referenced in this work as the “Local” 

optimization.  

- Copying with vector of pixels; This approach is referenced in this work as the “Local 

Vector Read” optimization, abbreviated to “LVR”.  

 

The size the source code is substantial and the source code is not included in this work. The 

source code is documented in Van de Loosdrecht (2013a). 

6.6.2.4.6 Chunking 

With Chunking a kernel will process more than one pixel at a time, so the overhead of 

starting up the kernel is distributed over more than one pixel. Chunking can be done in a non-

coalesced and in a coalesced way. These techniques are described in sections 6.5.2.4.5 and 

6.5.2.4.6. The non-coalesced approach is referenced in this work as the “Chunk” optimization 

and the coalesced approach as the “ChunkStride” optimization. The source code is 

documented in Van de Loosdrecht (2013a). 
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6.6.2.4.7 One dimensional NDRange 

CPUs do not have hardware to support for N-dimensional NDRange indexing space. One-

dimensional NDRange approaches were implemented in order to investigate the impact on 

performance of using higher dimensional NDRange implementations.  

 

The 1D Reference implementation is very similar to the Reference implementation of section 

6.6.2.4.2. The first two lines of code have been replaced by: 

 

   const uint i = get_global_id(0);  

   const uint y = i / imageWidth; 

   const uint x = i - (y*imageWidth); 

 

This implementation is referenced in this work as the “Ref_1D” implementation. Similar as 

discussed in the previous sections, one-dimensional NDRange approaches were implemented 

for: 

- UnrollV_1D. 

- UnrollV2_1D. 

- Chunk_1D. 

- ChunkUV2_1D. 

- Stride_1D. 

- StrideUV2_1D. 

Where XXX in XXX_1D specifies the optimization approach.  

 

Because CPUs do not have local memory, no optimizations using local memory were 

implemented. 

6.6.2.5 Future work 

In the literature review the following promising approaches were found: 

- Antao and Sousa (2010) N-kernel Convolution and Complete image coalesced 

Convolution. 

- Antao, Sousa and Chaves (2011) approach packing integer pixels into double precision 

floating point vectors.  

Their approaches were benchmarked on CPUs. Experiments are needed in order to 

investigate if these approaches are also beneficial on GPUs. 
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6.7 Global operators 

6.7.1 Introduction 

As representative of the Global operators Histogram, was implemented.  

6.7.2 Histogram 

6.7.2.1 Introduction 

The functionality of the Histogram operator is described in section 3.6.5. 

In this section the implementation of the Histogram operator is described for the following 

versions: 

- Sequential. 

- OpenMP. 

- OpenCL. 

 

Because there is only a small amount of code involved, the source code of the kernels is 

presented. Note that for clarity all code needed for error checking is omitted. 

6.7.2.2 Sequential 

As mentioned in section 2.1, VisionLab supports a wide variety of image types. The 

Histogram operator must work with all greyscale image types. The generic implementation of 

the Histogram operator in VisionLab will work without a predefined range for the pixels and 

also supports negative pixel values; before calculating the histogram, the minimum and 

maximum pixel value in the image will be calculated. In many cases this is an overkill 

because the minimum pixel value is zero and the maximum pixel value is known. For these 

cases VisionLab has the faster Histogram0 operator. Implementation of the Histogram0 

operator is straightforward.  
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template <class IntImageT> 

void Histogram0 (const IntImageT &image, const int hisSize, int *his) { 

   typedef typename IntImageT::PixelType PixelT; 

   memset(his, 0, hisSize  * sizeof(int)); 

   PixelT *pixelTab = image.GetFirstPixelPtr();  

   const int nrPixels = image.GetNrPixels(); 

   for (int i = 0; i < nrPixels; i++) { 

      his[pixelTab[i]]++; 

   } // for i 

} // Histogram0 

6.7.2.3 OpenMP 

The OpenMP implementation is not complicated. The image is split up into N sub-images. 

For each sub-image the local sub-histogram is calculated in parallel. Thereafter the local sub-

histograms are totalled in a critical section.  Because the time required for calculating each 

chunk is constant, the static scheduling strategy (see section 5.2.4) was chosen.   

In order to facilitate the Automatic Operator Parallelization (section 5.2.6.4)  

“if (calibMCP.TestMultiCore(OC_CalcHistogram0,nrPixels))” was added. 

 

template <class IntImageT> 

void Histogram0 (const IntImageT &image, const int hisSize, int *his) { 

   typedef typename IntImageT::PixelType PixelT; 

   memset(his, 0, hisSize * sizeof(int)); 

   PixelT *pixelTab = image.GetFirstPixelPtr();  

   const int nrPixels = image.GetNrPixels(); 

#pragma omp parallel if (calibMCP.TestMultiCore(OC_CalcHistogram,nrPixels)) 

    { 

      int *localHis = new int[hisSize]; 

      memset(localHis, 0, hisSize * sizeof(int)); 

#pragma omp for nowait 

      for (int i = 0; i < nrPixels; i++) { 

         localHis[pixelTab[i]]++; 

      } // for i 

#pragma omp critical (CalcHistogram0) 

      { 

         for (int h = 0; h < hisSize; h++) { 

            his[h] += localHis[h]; 

         } // for h 

      } // omp critical 

      delete [] localHis; 

   } // omp parallel 

} // Histogram0 
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6.7.2.4 OpenCL 

6.7.2.4.1 Introduction 

First a straightforward OpenCL implementation is described and then an optimized 

implementation. In the next sections the kernels are described and discussed. The idea of the 

implementation is derived from Gaster et al. (2012, Chapter 9). Their implementation only 

works for fixed size histograms. The implementation presented here will work with variable 

size histograms, so it is compatible with VisionLab’s Histogram0 operator. The idea of 

Gaster et al. is to parallelize the histogram calculation over a number of work-groups. In a 

work-group all work-items summarize their sub-images into a sub-histogram in local memory 

using an atomic increment operation. Subsequently each work-group copies its sub-histogram 

to local memory. Thereafter a reduction kernel performs a global reduction operator to 

produce the final histogram. 

 

 
Figure 15. Histogram calculation.  

After Gaster et al. (2012, Chapter 9). 

 

The client side code is relatively straightforward and is not discussed here. 

6.7.2.4.2 Simple implementation 

In order to gain experience in writing OpenCL kernels, first a simple implementation was 

written. This also made it possible to compare the simple and optimized implementations in 

terms of performance and effort needed to program. The simple implementation uses one 

local histogram for each work-group. The two kernels used are named HistogramKernel and 

ReduceKernel. 
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#define MIN(a,b) ((a) < (b)) ? (a) : (b) 

 

// PRE: (hisSize < localSize) || (hisSize % localSize == 0) 

// PRE: (image[i] >= 0) && (image[i] < hisSize) 

// PRE: ((nrPixels % numGroups) % localSize) == 0) 

kernel void HistogramKernel (const global short *image,  

                             const uint nrPixels, const uint hisSize,  

                             local int *localHis, global int *histogram) { 

    const uint globalId = get_global_id(0); 

    const uint localId = get_local_id(0); 

    const uint localSize = get_local_size(0); 

    const uint groupId = get_group_id(0); 

    const uint numGroups = get_num_groups(0); 

    // clear localHis 

    const uint maxThreads = MIN(hisSize, localSize);    

    const uint binsPerThread = hisSize / maxThreads; 

    uint i, idx; 

    if (localId < maxThreads) { 

       for (i = 0, idx = localId; i < binsPerThread;  

            i++, idx += maxThreads) { 

          localHis[idx] = 0; 

       } 

    } 

    barrier(CLK_LOCAL_MEM_FENCE); 

    // calculate local histogram 

    const uint pixelsPerGroup = nrPixels / numGroups; 

    const uint pixelsPerThread = pixelsPerGroup / localSize; 

    const uint stride = localSize; 

    for (i = 0, idx = (groupId * pixelsPerGroup) + localId;  

         i < pixelsPerThread; i++, idx += stride) { 

       (void) atom_inc (&localHis[image[idx]]); 

    } 

    barrier(CLK_LOCAL_MEM_FENCE); 

    // copy local histogram to global 

    if (localId < maxThreads) { 

       for (i = 0, idx = localId; i < binsPerThread;  

            i++, idx += maxThreads) { 

          histogram[(groupId * hisSize) + idx] = localHis[idx]; 

       } 

    } 

} // HistogramKernel 

 

// Reduce work-group histograms into single histogram,  

// PRE: one thread for each bin 

kernel void ReduceKernel (const uint nrSubHis, const uint hisSize,  

                          global int *histogram) { 

    const uint gid = get_global_id(0); 

    int bin = 0; 

    for (uint i=0; i < nrSubHis; i++) 

       bin += histogram[(i * hisSize) + gid]; 

    histogram[gid] = bin; 

} // ReduceKernel  
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The HistogramKernel was also implemented for short4, short8 and short16 vectors. For the 

short4 implementation the ”calculate local histogram” part was changed into: 

     

    // calculate local histogram 

    const uint vectorSize = 4; 

    const uint vectorsPerGroup = nrPixels / (numGroups * vectorSize); 

    const uint vectorsPerThread = vectorsPerGroup / localSize; 

    const uint stride = localSize; 

    for (i = 0, idx = (groupId * vectorsPerGroup) + localId;  

         i < vectorsPerThread; i++, idx += stride) { 

       short4 v = image[idx]; 

       (void) atom_inc (&localHis[v.s0]); 

       (void) atom_inc (&localHis[v.s1]); 

       (void) atom_inc (&localHis[v.s2]); 

       (void) atom_inc (&localHis[v.s3]); 

    } 

6.7.2.4.3 Optimized implementation for GPUs 

The idea behind the optimization is to use multiple local histograms for each work-group. 

This not only reduces the chances of conflicting atomic increments but also reduces the 

chances for channel conflicts accessing the same local memory bank. The cost is an extra 

reduction stage for the multiple local histograms. In order to implement this, the kernel 

HistogramKernel of section 6.7.2.4.2  is rewritten to kernel HistogramNLKernel. 
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// PRE: (nrLocalHis * hisSize < localSize) ||  

//      (nrLocalHis * hisSize % localSize == 0) 

// PRE: (image[i] >= 0) && (image[i] < hisSize) 

// PRE: ((nrPixels % numGroups) % localSize) == 0) 

kernel void HistogramNLKernel (const global short *image,  

                               const uint nrPixels, const uint hisSize,  

                               const uint nrLocalHis, local int *localHis, 

                               global int *histogram) { 

    const uint globalId = get_global_id(0); 

    const uint localId = get_local_id(0); 

    const uint localSize = get_local_size(0); 

    const uint groupId = get_group_id(0); 

    const uint numGroups = get_num_groups(0); 

    const uint localHisId = localId % nrLocalHis; 

    const uint nrLocalBins = nrLocalHis * hisSize; 

    // clear localHistograms 

    const uint maxLocalThreads = MIN(nrLocalBins, localSize);    

    const uint localBinsPerThread = nrLocalBins / maxLocalThreads; 

    uint i, idx; 

    if (localId < maxLocalThreads) { 

       for (i = 0, idx = localId; i < localBinsPerThread;  

            i++, idx += maxLocalThreads) { 

          localHis[idx] = 0; 

       } 

    } 

    barrier(CLK_LOCAL_MEM_FENCE); 

    // calculate local histograms 

    const uint pixelsPerGroup = nrPixels / numGroups; 

    const uint pixelsPerThread = pixelsPerGroup / localSize; 

    const uint stride = localSize; 

    for (i = 0, idx = (groupId * pixelsPerGroup) + localId;  

         i < pixelsPerThread; i++, idx += stride) { 

       (void) atom_inc (&localHis[image[idx] * nrLocalHis + localHisId]); 

    } 

    barrier(CLK_LOCAL_MEM_FENCE); 

    // copy local histograms to global 

    const uint maxThreads = MIN(hisSize, localSize);    

    const uint binsPerThread = hisSize / maxThreads; 

    if (localId < maxThreads) { 

       for (i = 0, idx = localId; i < binsPerThread;  

            i++, idx += maxThreads) { 

          int bin = 0; 

          for (int h = 0; h < nrLocalHis; h++) { 

             bin += localHis[localId * nrLocalHis +  

                    (h + localId) % nrLocalHis]; 

          } // for h 

          histogram[(groupId * hisSize) + idx] = bin; 

       } // for i 

    } 

} // HistogramNLKernel 

 

The HistogramNLKernel was vectorized in the same way as described in section 6.7.2.4.2. 
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6.7.2.4.4 Optimized implementation for CPUs 

The idea behind the CPU implementation is that each work-group has only one work-item 

and the number of work-groups is equal to the number of cores. This implicates that there are 

no race conditions for the local histogram and there is no need for expensive atomic 

increment operations. The implementation is quite similar to the OpenMP implementation 

described in section 6.7.2.3. 

 

__attribute__((reqd_work_group_size(1,1,1)))  

kernel void HistogramKernel (const global short *image,  

                             const uint nrPixels,  

                             const uint hisSize, global int *histogram) { 

    const uint globalId = get_global_id(0); 

    const uint groupId = get_group_id(0); 

    const uint numGroups = get_num_groups(0); 

    const uint pixelsPerThread = nrPixels / numGroups; 

    // clear localHis 

    const uint beginHisOffset = groupId * hisSize; 

    const uint endHisOffset = beginHisOffset + hisSize; 

    for (uint i = beginHisOffset; i < endHisOffset; i++)  

       histogram[i] = 0; 

    // calculate local histogram 

    const uint beginPixelOffset = groupId * pixelsPerThread; 

    const uint endPixelOffset = beginPixelOffset + pixelsPerThread; 

    for (uint i = beginPixelOffset; i < endPixelOffset; i++)  

       histogram[beginHisOffset + image[i]]++; 

} // HistogramKernel 

 

// Reduce work-group histograms into single histogram 

// PRE: one thread only!! 

__attribute__((reqd_work_group_size(1,1,1)))  

kernel void ReduceKernel (const uint nrSubHis, const uint hisSize,  

                          global int *histogram) { 

    for (uint h=1; h < nrSubHis; h++) { 

       const uint hisOffset = h * hisSize; 

       for (uint i=0; i < hisSize; i++) 

          histogram[i] += histogram[hisOffset+i]; 

    } // for h 

} // ReduceKernel  

 

The HistogramKernel were vectorized in the same way as described in section 6.7.2.4.2. 

  

6.7.2.5 Future work 

Implementing approaches, found in the literature review, suggested by Nugteren, Van den 

Braak, Corporaal and Mesman, (2011), Luna (2012) and Van den Braak, Nugteren, Mesman, 

and Corporaal (2012).  
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6.8 Connectivity based operators 

6.8.1 Introduction 

As representative of the Connectivity based operators Connected Component Labelling was 

implemented.  

6.8.2 LabelBlobs 

6.8.2.1 Introduction 

The functionality of the Connected Component Labelling operator is described in section 

3.6.6. This operator is called in VisionLab ‘LabelBlobs’. 

 

In this section the implementation of the LabelBlobs operator is described for the following 

versions: 

- Sequential. 

- OpenMP. 

- OpenCL. 

 

The size of the source code is substantial and the source code is not included in this work. 

The source code is documented in Van de Loosdrecht (2012c and 2013d). 

6.8.2.2 Sequential 

The sequential implementation is based on a Two passes approach as described in section 

3.6.6.2. In many applications the LabelBlob operator is followed by the BlobAnalyse 

operator or a derivative of this operator. BlobAnalyse performs all kinds of measurements for 

each blob. The result of the BlobAnalyse is a table, with for each blob a record containing all 

measurements for that blob. The index in the table is the label number. In order to keep the 

memory usage of the table as small as possible it is imperative that the LabelBlobs operator 

label the blobs with successive label numbers. This means that after resolving equivalence 

provisional labels, the table with the resolved provisional labels must be renumbered with 

successive label numbers starting at label number 1. After this renumbering the second pass 

can assign the successive label numbers to the pixels of the blobs. 
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6.8.2.3 OpenMP 

All parallel implementations found in the literature review (section 3.6.6.3) are multiple 

iteration approaches. Kalentev, Rai, Kemnitz, and Schneider (2011), abbreviated to Kalentev 

et al., report that their test set their algorithm needs on average 5 iterations. Each iteration of 

their algorithm consists of 2 passes; a Link and LabelEqualize pass, see section 6.8.2.4. 

Including the initial and final pass their algorithm needs on average 12 passes. Kalentev et al. 

claim that, because of the reduction algorithm they use, their algorithm is efficient in terms of 

the number of iterations needed.  

 

Measurements with the sequential implementation were performed in order to get an 

impression of the order of magnitudes for the execution times of the three parts of the 

sequential algorithm: Pass1, Resolving equivalences and Pass2. The processing time of the 

LabelBlob operator will depend on the contents of the image; the number of object pixels and 

the morphology of the blobs. In section 7.9.2.1 the Int16Image cells.jl (see Appendix B) is 

considered to be a ‘typical’ image. The sequential LabelBlobs operator with eight-

connectivity was executed on image cells.jl after Thresholding with different sizes of the 

image. These tests were performed on an Intel Core i7-2640M processor at 2.8 GHz. The 

median of the execution time in micro seconds over 30 measurements for each part was: 

 

Size image Pass1 Resolving 

equivalences 

Pass2 Total Pass1/Total 

256x256 134 1 43 178 0.75 

512x512 405 2 159 566 0.71 

1024x1024 1358 3 629 1990 0.68 

 

Table 18. Analysis of execution time sequential LabelBlobs operator 

 

Pass1 is performing a neighbourhood search for each object pixel and pass2 performs for 

each object pixel a table lookup. Pass1 takes about 70% of the execution time and Pass2 

about 30%. Because both passes of an iteration of Kalentev et al. approach perform a 

neighbourhood search for each object pixel, it is expected that both passes have similar 

complexity as Pass1 of the sequential algorithm. Note this assumption is an estimation; the 

Link pass will perform a larger neighbourhood search than Pass1, and the LabelEqualize pass 

will perform variable sized neighbourhood search. 
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On average Kalentev et al. approach needs 5 iterations. In total: one simple initial pass, 10 

neighbourhood search passes and one simple final pass. It is expected that the initial and final 

pass will have similar complexity as Pass2. As will be explained in section 6.8.2.4 Kalentev 

et al. approach needs a post processing step with two passes, which are expected to have a 

similar complexity as Pass2. The execution time will be dominated by the 10 neighbourhood 

search passes. 

 

If the sequential version takes 1 unit of execution time for an image, it is estimated that, 

Kalentev et al. will take more than 7.9 units of (sequential) execution time. In order to get a 

speedup bigger than 1, it is to be expected that more than 8 cores will be required. 

 

According to the author the proposed parallel algorithms in literature only work for “many-

core” systems and not for “few-core” systems like contemporary CPUs who have typical 2 to 

8 cores. The substantial speedup claimed by Niknam, Thulasiraman, Camorlinga (2010) with 

their OpenMP implementation was obtained by comparing a sequential multi-pass algorithm 

with a parallel multi-pass algorithm. In this work the much faster 2 pass sequential algorithm 

is compared with parallel multi-pass algorithms. 

 

So, another approach is necessary for “few-core” systems. The proposed approach is to split 

the image into sub-images. This approach is inspired by the work of Park, Looney and Chen 

(2000) to limit the amount of memory used for the equivalences table in sequential 

implementations. For each sub-image a label equivalences table is calculated in the same 

manner as in Pass1 of the sequential algorithm. All used label equivalence numbers must be 

unique for the whole image. Thereafter the label equivalences tables are repaired for the 

blobs that cross the boundaries of the sub-images. Note that one blob can be in more than two 

sub-images. Next, the label equivalences tables are merged into one label equivalences table 

and renumbered with successive label numbers. Finally, a last pass is required to assign the 

successive label numbers to the pixels of the blobs. This proposed approach appears to be 

novel. The literature search has not found any previous use of this approach. 

 

The computational expensive part is the calculation of the label equivalences tables, this 

involves a neighbourhood search of the sub-images. Because there are no data dependencies 

this part is embarrassingly easy to parallelize. Each sub-image can be processed by a separate 

core. The repairing and merging of the label equivalences tables followed by the renumbering 

is not computationally expensive because only a small amount of data is to be processed. In 

the current implementation this is done sequentially, but an iterative parallel approach is 

possible too. The last pass, similar to Pass2 of the sequential algorithm, for assigning the 

label numbers to the pixels is implemented with a shared read-only lookup table and is 

embarrassingly easy to parallelize. 
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The number of pixels on the boundaries of the sub-images will increase with the number of 

sub-images. This approach will probably not work efficiently on “many-core” systems 

because the time needed for repairing label equivalences tables will increase with the number 

of sub-images. 

6.8.2.4 OpenCL 

For the OpenCL implementation a “many-core” system approach on GPUs was chosen. A 

“few-core” approach for CPUs is of course also possible, this will be future work. The 

implementation of the OpenCL “many-core” implementation is based on the Label 

Equivalence approach of Kalentev et al. as described in section 3.6.6.3. Their approach has 

the following implications: 

- The algorithm cannot handle object pixels at the borders of the image. 

- Provisional labels are stored in the image. Because of possible overflow in pixel values, 

the Int32Image type must be used. 

- The labelling of the blobs is not successive. This is the case for all parallel algorithms 

found in the literature research. As explained in section 6.8.2.2 this is mandatory for other 

VisionLab operators. 

 

Kalentev et al. suggest the following framework for the host code: 

 

 int notDone = 1; 

 WriteBuffer(image); 

 RunKernel("InitLabels",image); 

 while (notDone == 1) { 

  notDone = 0; 

  WriteBuffer(notDone);   

  RunKernel(“Link”,image,notDone) 

  RunKernel(“LabelEqualize”,image) 

  ReadBuffer(notDone); 

 } // while notDone 

 ReadBuffer(image); 

 

In Kalentev et al. the kernels Link and LabelEqualize are originally named Scanning and 

Analysis. The Kalentev et al. approach was extended in the following ways (Van de 

Loosdrecht, 2013d): 

- The InitLabel kernel is extended to set the border pixels of the image to the background 

value. 

- Link kernels are implemented for both four and eight connectivity. 

- A post processing step with two passes is added in order to make the labelling of the 

blobs successive.  
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Kalentev et al. approach was optimized in the following ways (Van de Loosdrecht, 2013d): 

- Each iteration has a Link pass and a LabelEqualize pass. For the last iteration the 

LabelEqualize pass is redundant. 

- Many of the kernel execute, read buffer and write buffer commands can be 

asynchronously started and synchronized using events. This eliminates a lot of host-side 

overhead of unnecessary waiting for operations to finish. 

- The write to the “IsNotDone” buffer can be done in parallel to the LabelEqualize pass. 

- With the exception of the second pass of the post processing step, all kernels are 

vectorized. Vectorization of the InitLabel kernel is straightforward, independent of the 

contents of the image and is expected to be beneficial. Vectorization of the other kernels 

is not straightforward. The only way found to vectorize was to add a quick test if all 

pixels in the vector are background pixels. The advantage of vectorization of the other 

kernels is that a whole cache line with pixels can be read with one global memory access. 

This indicates that processing background pixels could benefit from vectorization and 

processing object pixels could suffer from a little extra overhead because of extra 

instructions needed to access a pixel in the vector. 

6.8.2.5 Future work 

Implementing the few-core approach for CPUs in OpenCL and the approach found in the 

literature review suggested by Stava and Benes (2011). 

6.9 Automatic Operator Parallelization 

In section 5.2.6 the design of the Automatic Operator Parallelization is described. In order to 

predict at run-time whether parallelization is beneficial a calibration procedure is needed. 

OpenMP was considered (see section 8.4) to be the best candidate to parallelize VisionLab in 

an efficient and effective way. The Automatic Operator Parallelization was implemented for 

the OpenMP parallelized operators. 

 

In order to calibrate a simple OpenMP parallelized operator like Threshold a “standard” 

image is resized to a range of different sizes and the median of execution time for each size is 

calculated for sequential and parallel execution. This timing information is used to determine 

the break-even point in number of pixels where the parallel execution of the operator is gain- 

factor times faster than the sequential version. For more complex operators the decision for 

the break-even point is based on a combination of image size and other parameters of the 

operator. As an example: for Convolution operator the size of the mask is taken into account. 
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A framework based on the Command Pattern (Gamma et al., 1995) was implemented in order 

to limit the amount of programming work needed to add a new OpenMP parallelized operator 

to the Automatic Operator Parallelization calibration. The calibration procedure also tests for 

equality of the sequential and parallel result. Below an example of the implementation of the 

class for calibration framework for the Threshold operator is shown. 

 

class ThresholdCmd : public MCPCommand { 
public: 
   ThresholdCmd (const string &name) : MCPCommand(name) {} 
   bool Init (const int size) { org.Resize(HeightWidth(size,size)); 
         RampPattern(org,32,32,120); return true; } 
   void ZoomXY (const double xy) { Zoom (org,zoom,xy,xy,NearestPixelInterpolation); } 
   void Copy () { dest = zoom; } 
   void Oper () { Threshold(dest,Int16Pixel(0),Int16Pixel(128)); } 
   void Store () { store = dest; } 
   void Test () { if (store != dest) throw (Error (name,  
          "MCP result != single core")); } 
   int NrPixels () { return zoom.GetNrPixels(); } 
   void Finit () { org.Clear(); store.Clear(); zoom.Clear(); dest.Clear(); } 
private: 
   Int16Image org, store, zoom, dest; 
}; 

 

Besides this class, two lines of code are necessary to add the class to the calibration 

procedure. 
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7 Testing and Evaluation 

7.1 Introduction 

In this chapter the testing and evaluation of the following topics are described: 

- Calibration of timer overhead. 

- Reproducibility of experiments. 

- Sequential versus OpenMP single core. 

- Data transfer between host and device. 

- Computer Vision algorithms used for benchmarking. 

- Automatic Operator Parallelization. 

- Performance portability. 

- Parallelization in real projects. 

 

As mentioned in section 5.2.6.3 the image type that is most often used for greyscale operators 

is the Int16Image. Int16Image was used as the default image type of the benchmark images. 

The benchmark set was restricted to square images. The following values for the width and 

the height of the benchmark images are chosen: 32, 64, 128, 256, 512, 1024, 2048, 4096 and 

8192. In the graphs and tables a value of 64 for the parameter HeightWidth means that the 

benchmark image has a height and a width of 64; 64×64 = 4096 pixels. 

 

The results are summarized in speedup graphs where the size of the image is plotted against 

the speedup obtained. The reference is the execution of the sequential version; a speedup of 

1. Note that the lines between the dots in the speedup graphs are only to improve the 

visibility, they do not represent measurements. The first OpenMP benchmarks with a repeat 

count of 30 showed a lot of variance in execution time and the speedup graphs were not well 

reproducible. The standard benchmark procedure described in section 5.4.3 required a 

repetition count of at least 30 times. In order to get a better reproducibility, a repetition count 

of 90 times was used for the OpenMP benchmarks. See also section 7.3. 

 

The results of the speedup graphs are discussed for each parallel implementation. The 

execution time tables with the median in micro seconds for each experiment performed can 

be found in Appendix E. Other details of the results, like Violin plots and speedup tables, are 

available in electronic form. See Appendix F for some samples. 
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OpenCL uses wavefronts in order to hide memory latency (section 3.5.2.3.4). The number of 

the wavefronts is determined by the work-group size (section 5.3.2.3). The work-group size 

for a kernel is an important parameter in achieving a good performance. For each kernel 

described in the next sections, the work-group size that resulted in the highest speedup was 

experimentally found. The speedup graphs show the speedup for the optimal work-group size 

for each kernel. Tables with optimal work-group size for each benchmark are available in 

electronic form. 

 

Many of the OpenCL kernels used will only work with images with restrictions on the size of 

those images, like height and/or width, which must be a multiple of 4, 8 or 16. It is possible 

to avoid this restriction at the expense of performance. 

 

In many cases the scalar and vector variations of a OpenCL kernel were benchmarked. In the 

scalar variation the processing is performed pixel by pixel. In the vector variation N pixels 

are grouped to a vector and processed as one vector. In the case of an Int16Pixel the scalar 

variation is denominated ‘Short’ and the vector variations ‘Short4’, ‘Short8’ and ‘Short16’. 

The digit in ‘ShortX’ specifies the size of the vector. When appropriate for a benchmark these 

names are used to distinguish between the scalar and vector variations of a kernel. 

7.2 Calibration of timer overhead 

VisionLab has been extended with a mechanism to calibrate the overhead of the timer. On the 

computer (see Appendix A) used for benchmarking, the overhead for starting and stopping a 

timer is less than the timer resolution of 0.30185 micro seconds. 

7.3 Reproducibility of experiments 

As can be seen in the violin plots in Appendix F, the experiments showed a lot of variance in 

execution time. Most probably, the main reason for this is that Windows is a multi-tasking 

operating system. The benchmark setup as described in section 5.5 tries to eliminate the 

impact of the multi-tasking operating system on the benchmark results.  

 

In order to get an impression of the reproducibility, one of the benchmarks described in 

section 7.7.2 was repeated 10 times. The operator used for this experiment is the sequential 

implementation of Convolution operator with a 3×3 mask. For each of the 10 runs the 

benchmark was repeated 90 times. For this experiment the same benchmark environment was 

used as for all other benchmarks. For each run the speedup was calculated in respect to run 1. 

See Figure 16 for the results. 
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The benchmark was performed on the test machine described in Appendix A on 14 March 

2013 using the following VisionLab V3.42 (6-12-2012). 

 

 
Figure 16. Variance in speedup graph 

 

Conclusions: 

- For the smallest 32×32 images the variance was about 10%. Note that the timer resolution 

was too low for this experiment, see Appendix E.2. 

- For the other images the variance was 3% or less. 

 

The violin plots of the other experiments described in this chapter showed that in many cases 

the variance in execution time can increase significantly when operators are executed in 

parallel. This indicates that it can be expected that the reproducibility of the experiments will 

be lower than the reproducibility found in this section. Another factor that will influence the 

reproducibility is the dynamic voltage scaling that protects the processor from overheating as 

described in section 6.2. It is future work to investigate this matter. It seems to the author that 

the question of accessing the quality, such as reproducibility and variance in execution time, 

of benchmarking parallel algorithms has not been fully addressed in the research literature. 
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7.4 Sequential versus OpenMP single core 

In this experiment the overhead of running on one core and compiling with OpenMP enabled 

versus compiling with OpenMP disabled (normal sequential) was benchmarked. The operator 

used for this benchmark is the Convolution operator with a 3×3 mask. See section 7.7.2.2 for 

a full description of this benchmark. 

The benchmark was performed on the test machine described in Appendix A on 14 March 

2013 using the following VisionLab V3.42 (6-12-2012). 

 
Figure 17. Sequential versus OpenMP one core speedup graph 

 

Taking into account the variance found in section 7.3, the conclusion is that there was no or 

very little difference between OpenMP single core and sequential execution. This means that 

all OpenMP experiments in the next sections could be done with one executable, which was 

compiled for OpenMP. 
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7.5 Data transfer between host and device 

7.5.1 Introduction 

An issue concerning the overall performance of a system using OpenCL is the overhead of 

transferring data between host and device memory. According to section 3.5.2.3.7 using 

pinned CPU memory instead of normal paged CPU memory is expected to reduce the data 

transfer overhead.  

 

According to Schubert (2012) the pinning of memory is about 3 times as expensive as 

copying pinned memory. Schubert concludes that pinning of memory is only beneficial if the 

memory is reused more than four times. This means that most real life applications have to 

pin their buffers at start-up. In this case the overhead of pinning is only one time at start-up. 

The overhead of pinning was not measured in this work. 

 

This section describes the results of the time measure experiments for the: 

- Data transfer from CPU to GPU. 

- Data transfer from GPU to CPU. 

- Data transfer on CPU from host to device. 

- Data transfer on CPU from device to host. 

 

All benchmarks were performed using the ‘standard’ OpenCL copy transfer method. Because 

the wrapper around the host API interface does not yet support ‘zero copy transfer’, no 

benchmarks could be performed using this option. All benchmarks were performed using 

OpenCL buffers. The results in section 7.6 suggest that, in general, it is not benificial for 

Computer Vision operators to use OpenCL images instead of OpenCL buffers. It is future 

work to benchmark data transfer with ‘zero copy transfer’ and OpenCL images.  

 

In the last sub-section the time for data transfers is compared with the time needed to execute 

the Threshold operator, one of the most simple vision operators, on the GPU.  

 

This benchmark was performed on the test machine described in Appendix A on 25 

September 2012 using the following versions of the software: 

- VisionLab V3.42 (19-8-2012). 

- OpenCL 1.1 CUDA 4.2.1. 

- OpenCL 1.1 AMD-APP-SDK-v2.5 (684.213) . 
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7.5.2 Data transfer from CPU to GPU  

The following data transfers were benchmarked: 

- Read from normal CPU memory to GPU device memory. 

- Read from read-only pinned CPU memory to GPU device memory. 

- Read from read-write pinned CPU memory to GPU device memory. 

 
Figure 18. Data transfer from CPU to GPU speedup graph 

 

Conclusions: 

- There was no difference in performance between read-only and read-write pinned CPU 

memory. 

- The speedup increased with image size. 

- For small images there was a penalty. 

- For large images pinning was beneficial.  
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7.5.3 Data transfer from GPU to CPU  

The following data transfers were benchmarked: 

- Write from GPU device memory to normal CPU memory. 

- Write from GPU device memory to write-only pinned CPU memory. 

- Write from GPU device memory to read-write pinned CPU memory. 

 
Figure 19. Data transfer from GPU to CPU speedup graph 

 

Conclusions: 

- The performance between write-only and read-write pinned CPU memory is similar. 

- Pinning memory was always beneficial.  
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7.5.4 Data transfer on CPU from host to device 

The following data transfers were benchmarked: 

- Read from normal CPU memory to CPU device memory. 

- Read from read-only pinned CPU memory to CPU device memory. 

- Read from read-write pinned CPU memory to CPU device memory. 

 

 
Figure 20. Data transfer on CPU from host to device speedup graph 

 

The reproducibility of this benchmark was low. Even with a repetition count of 100 times it 

was not possible to achieve a satisfactory reproducibility on this benchmark. So only the 

following preliminary conclusions can be drawn: 

- There was probably not much difference in performance between read-only and read-

write pinned CPU memory. 

- Pinning was probably not beneficial. 
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7.5.5 Data transfer on CPU from device to host 

The following data transfers were benchmarked: 

- Write from CPU device memory to normal CPU memory. 

- Write from CPU device memory to write-only pinned CPU. 

- Write from CPU device memory to read-write pinned CPU. 

 

 
Figure 21. Data transfer on CPU from device to host speedup graph 

 

The reproducibility of this benchmark was low. Even with a repetition count of 100 times it 

was not possible to achieve a satisfactory reproducibility on this benchmark. So only the 

following preliminary conclusions can be drawn: 

- There was probably not much difference in performance between write-only and read-

write pinned CPU memory. 

- Pinning was probably not beneficial.  
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7.5.6 Data transfer time and kernel execution time 

In this section the time needed to transfer data from the CPU host to the GPU device was 

compared with the kernel execution time of Threshold operator on the GPU. Threshold is one 

of the simplest vision operators. The testing and evaluation of several implementations of this 

operator is discussed in section 7.6.2.3. The most efficient implementation is the Short4 

implementation. 

The data transfer times from device to host were very similar to the from device to host data 

transfer. The execution time for the various sizes of images of the data transfers are replicated 

from Appendix E.4, and for the Threshold operator from Appendix E.5. 

 

 
Figure 22. Host to Device data transfer times in ms 

 

 

 
Figure 23. Kernel execution time in ms for several implementations of Threshold 
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Conclusions: 

- The overhead data transfer for the larger images was massive compared to the kernel 

execution time of a simple vision operator. 

- Copying an image from the CPU host to the GPU device, executing a simple vision 

operator on the GPU and copying the image back to the CPU host is not a feasible option. 

7.5.7 Conclusions about data transfer 

This section evaluates data transfer between host and device memory using OpenCL. 

 

From the experiments the following conclusions can be drawn: 

- The overhead of data transfer was substantial, even for host-device transfer on CPUs. The 

reason for this is that the ReadBuffer and WriteBuffer operations on the CPU were 

making copies of the data. 

- For CPU-GPU transfer it was beneficial to use pinning for the larger images. 

- For GPU-CPU transfer it was always beneficial to use pinning. 

- For CPU-CPU transfer pinning had no advantages. 

- For small images the CPU-CPU transfer was much faster than the CPU-GPU transfer, for 

large images the transfer is the same order of magnitude. See Appendix E.4. 

- The overhead data transfer for the larger images was massive compared with the kernel 

execution time on the GPU of a simple vision operator. 

7.5.8 Future work 

- Implement in the wrapper around the OpenCL host API interface support for ‘zero copy 

transfer’. 

- Benchmark data transfer using ‘zero copy transfer’ on CPUs and APUs. According to 

Shen, Fang, Sips and Varbanescu (2012) data copying overhead on CPUs is reduced by 

more than 80%. 

- Benchmarking data transfer using OpenCL images. 
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7.6 Point operators 

7.6.1 Introduction 

As representative of the Point operators the Threshold operator was benchmarked.  

7.6.2 Threshold 

7.6.2.1 Introduction 

Because of the nature of the Threshold operator the processing time does not depend on the 

contents of the image. As a consequence all testing was done with one Int16Image (cells.jl, 

see Appendix B).  

 

The implementations as described in section 6.5.2 were benchmarked with benchmark 

images in the different sizes. Note: the Threshold operator is a computational simple 

algorithm; for each pixel at most two comparisons and one assignment are required. This 

means that it is to be expected that the operator will be more limited by memory bandwidth 

than by computational power. 

 

This benchmark was performed on the test machine described in Appendix A on 25 May 

2012 using the following versions of the software: 

- VisionLab V3.41b (8-5-2011). 

- OpenCL 1.1 CUDA 4.2.1. 

- OpenCL 1.1 AMD-APP-SDK-v2.5 (684.213). 
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7.6.2.2 OpenMP 

The results on the four core benchmark machine, with hyper-threading: 

 

 
Figure 24. Threshold OpenMP speedup graph 

 

Conclusions: 

- The results showed a lot of variation that cannot be explained very easily. Some of the 

peaks could possibly be explained by the fact that the cache size fitted the problem. 

- Hyper-threading was beneficial. 

- A speedup of around 2.5 was possible for the larger images. 

- For small images there was a large penalty. 

- The violin plots (Appendix F) showed that in many cases parallelizing significantly 

increased the variance in execution time.  
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7.6.2.3 OpenCL 

7.6.2.3.1 OpenCL on GPU 

7.6.2.3.2 OpenCL on GPU one pixel or vector of pixels per kernel 

In this experiment the sequential algorithm was compared with: 

- One pixel per kernel using images. 

- One pixel or vector of pixels per kernel using one read/write buffer. 

 

 
Figure 25. Threshold OpenCL GPU one pixel or vector per kernel speedup graph 

 

Conclusions: 

- Using OpenCL buffers instead of OpenCL images was beneficial. 

- Short4 or Short8 vectors gave a better speedup for large images than scalar Short or 

Short16 vectors. 

- The speedup increased with image size. 

- For small images there was a large penalty. 

- The violin plots (Appendix F) showed that in many cases parallelizing significantly 

increased the variance in execution time. 
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7.6.2.3.3 OpenCL on GPU one pixel or vector of pixels per kernel using a read and a 

write buffer 

In this experiment the sequential algorithm was compared with one pixel or vector of pixels 

per kernel using a read and a write buffer. Due to memory restrictions this experiment was 

not executed for an image of 8192×8192. 

 
Figure 26. Threshold OpenCL GPU source and destination image speedup graph 

 

Conclusion:  

- Using separate read and write buffers was not beneficial. 
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7.6.2.3.4 OpenCL on GPU chunk of pixels or vectors of pixels per kernel 

This experiment was executed on a 2048×2048 image, the UnrollFactor was 1. In this 

experiment the sequential algorithm was compared with: 

- Chunk of pixels or vectors of pixels per kernel. 

- Chunk of pixels or vectors of pixels per kernel with coalesced access. 

 
Figure 27. Threshold OpenCL GPU chunk speedup graph 

 

Conclusions: 

- Chunking was slightly beneficial, maximum speedup increases from 13.2 to 14.2. The 

maximum speedup was achieved with the Short4Coaleased kernel. 

- Coalesced access gave much better speedup than non-coalesced access. 
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7.6.2.3.5 OpenCL on GPU chunk of pixels or vectors of pixels per kernel with 

UnrollFactor 

In this experiment the sequential algorithm was compared with the Short4Coalesed kernel 

with a chunk of short4 vectors, the best performing kernel of the chunk experiment in section 

7.6.2.3.4. The speedup is plotted against the chunk size and the unroll factor. The experiment 

was executed on a 2048×2048 image. 

 

 
Figure 28. Threshold OpenCL GPU unroll speedup graph 

 

An additional experiment was performed with a variation of the kernel, in which the chunk 

size was fixed at compilation type on 16. In this case the trip count of the for loop is known at 

compilation time. It was expected that this would help the compiler in unrolling. But a test 

with a 2048×2048 pixel image did not show improvement in performance. 

 

Conclusion:  

- Unrolling was not significantly beneficial. This is probably due to the fact that this 

operator is a highly memory bandwidth bound operator.  
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7.6.2.3.6 OpenCL on CPU one pixel or vector of pixels per kernel 

In this experiment the sequential algorithm was compared with: 

- One pixel per kernel using images. 

- One pixel or vector of pixels per kernel using one read/write buffer. 

 
Figure 29. Threshold OpenCL CPU one pixel or vector per kernel speedup graph 

 

Conclusion: 

- The performance of all kernels was very poor. 
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7.6.2.3.7 OpenCL on CPU chunk of pixels or vectors of pixels per kernel 

This experiment was executed on a 2048×2048 image and the sequential algorithm was 

compared with: 

- Chunk of pixels or vectors of pixels per kernel. 

- Chunk of pixels or vectors of pixels per kernel with coalesced access. 

 
Figure 30. Threshold OpenCL CPU chunk speedup graph 

 

Note: if the chosen chunk size was too big it was not possible to start enough threads. These 

situations are marked in the speedup graph with a speedup of zero. 

 

Conclusions: 

- Non-coalesced access had slightly better speedup than coalesced access. 

- Scalar Short did not give much speedup 

- Short16 vector had the best speedup. 

- OpenCL outperformed OpenMP on CPU by a factor 2. The probable reason for this is 

that OpenCL uses the vector processing capabilities of the CPU and OpenMP only the 

scalar processing capabilities. 

- The violin plots (Appendix F) showed that in many cases parallelizing significantly 

increased the variance in execution time. 
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7.6.2.3.8 OpenCL on CPU chunk of pixels or vectors of pixels per kernel with 

UnrollFactor 

In this experiment the sequential algorithm was compared with the Short16 kernel with a 

chunk of vectors of size 16, the best performing kernel of the chunk experiment in section 

7.6.2.3.7. The experiment was executed on a 2048×2048 image. 

 

 
Figure 31. Threshold OpenCL CPU unroll speedup graph 

 

An additional experiment was performed with a variation of the kernel, in which the chunk 

size was fixed at compilation type on 8192. In this case the trip count of the for loop is known 

at compilation time. It was expected that this would help the compiler in unrolling. But a test 

with a 2048×2048 pixel image did not show improvement in performance. 

 

Conclusion: 

- Unrolling was not significantly beneficial. This is probably due to the fact that this 

operator is a highly memory bandwidth bound operator. 
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7.6.2.4 Conclusions Threshold benchmarks 

From the experiments the following conclusions were drawn: 

- By adding one line of code to the original C++ code, OpenMP gave a speedup on the 

benchmark of around 2.5 for images with more than 256×256 pixels. 

- At the cost of some serious programming effort, both kernel code and client side code, 

and tuning parameters OpenCL gave a speedup up to: 

- 18.4 on the GPU. 

- 4.62 on the CPU. 

- For small images there was a large penalty using OpenMP or OpenCL. 

- Vectorization of OpenCL kernels improved performance for both GPU and CPU. 

- The violin plots (Appendix F) showed that in many cases parallelizing significantly 

increased the variance in execution time. This increase was more prominent for the 

smaller images and more substantial for CPU than GPU. 

7.6.2.5 Future work 

The Threshold operator is a highly memory bandwidth bound operator. So it is not possible to 

draw conclusion for computation bound point operators. This will have to be investigated 

with future work. 
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7.7 Local neighbour operators 

7.7.1 Introduction 

As a representative of the Local neighbour operators the Convolution operator was 

benchmarked.  

7.7.2 Convolution 

7.7.2.1 Introduction 

Because of the nature of the Convolution operator the processing time does not depend on the 

contents of the image. So all testing was done with one Int16Image (cells.jl, see Appendix B).  

 

The implementations as described in section 6.6.2 were benchmarked with benchmark 

images in the different sizes and with masks in different sizes. As mask the smoothing mask 

was chosen. All values in the mask have the value one and the dividing factor is the sum of 

the mask values. The chosen mask sizes were 3×3, 5×5, 7×7 and 15×15. 

 

The benchmarks were performed on the test machine described in Appendix A on 18 January 

2013 using the following versions of the software: 

- VisionLab V3.42 (6-12-2012) 

- OpenCL 1.1 CUDA 4.2.1 

- OpenCL 1.1 AMD-APP-SDK-v2.5 (684.213)  

Note: the one dimensional NDRange benchmarks were performed on 28, 31 January and 4 

February 2013. 
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7.7.2.2 OpenMP  

The results on the four core benchmark machine, with hyper-threading are shown in Figure 

32 to Figure 35.  

 

Conclusions: 

- The results showed a lot of variation that cannot be explained very easily. Some of the 

peaks could possibly be explained by the fact that cache size fits the problem. 

- Hyper-threading was beneficial for the larger images. 

- A speedup of around 4 was possible for the larger images. 

- For the smallest images there was no penalty. 

- In general larger masks benefited a little less than smaller masks. 

- The violin plots (Appendix F) showed that in many cases parallelizing significantly 

increased the variance in execution time. 

 

 

 
Figure 32. Convolution 3×3 OpenMP speedup graph 

 

 



7  Testing and Evaluation - Local neighbour operators 

162 

 

 
Figure 33. Convolution 5×5 OpenMP speedup graph 

 
Figure 34. Convolution 7×7 OpenMP speedup graph 
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Figure 35. Convolution 15×15 OpenMP speedup graph 

7.7.2.3 OpenCL 

7.7.2.3.1 Introduction 

Because not all OpenCL implementations could work with a 32×32 pixel image, the “32 

WidthHeight” was removed from all test results.  

7.7.2.3.2 OpenCL on GPU reference implementation 

In this experiment the sequential algorithm was compared with the following 

implementations: 

- Ref: Reference implementation. 

- RefUnroll: Reference with Unroll optimization.  

- RefUnrollV: Reference with Unroll Vectorization optimization. 

- RefUnrollV2: Reference with Unroll Vectorization V2 optimization. 

 

The 3×3 mask was vectorized with a Short4 vector, the other mask sizes with a Short8 vector. 

Note: it was not beneficial to use a Short16 vector for the RefUnrollV2 optimization of the 

15×15 mask. 
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Figure 36. Convolution 3×3 OpenCL GPU reference speedup graph 

 
Figure 37. Convolution 5×5 OpenCL GPU reference speedup graph 
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Figure 38. Convolution 7×7 OpenCL GPU reference speedup graph 

 
Figure 39. Convolution 15×15 OpenCL GPU reference speedup graph 
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Conclusions: 

- The simple Ref implementation performed well. 

- The RefUnroll and RefUnrollV optimization for 3×3, 5×5 and 7×7 masks nearly always 

performed worse than Ref. 

- The RefUnrollV2 performed nearly always better than the Ref. 

- The RefUnrollV2 was less effective with a 5×5 mask than with other mask sizes.   

For a 5×5 mask the Short8 is filled with three padding zeros. For a 7×7 mask only one 

padding zero is needed. A 15×15 mask uses two Short8 vectors and only one padding 

zero. 

- With the exception of the 3×3 mask, there was no penalty the smallest images. 

- Larger masks had better speedups than smaller masks. 

- The violin plots (Appendix F) showed that parallelizing can sometimes significantly 

increase the variance in execution time. However, in most tests the variance decreased for 

the bigger image sizes. 

7.7.2.3.3 OpenCL on GPU using local memory 

In this experiment the sequential algorithm was compared with the following optimizations: 

- Local: Local memory optimization. 

- LocalUnroll: Local memory with Unroll optimization. 

- LocalUnrollV: Local memory with Unroll Vectorization optimization. 

- LocalUnrollV2: Local memory with Unroll Vectorization V2 optimization. 

 

The 3×3 mask was vectorized with a Short4 vector, the other mask sizes with a Short8 vector. 

Note: it was not beneficial to use a Short16 vector for the RefUnrollV2 optimization of the 

15×15 mask. 

 

In section 6.6.2.4.5 two approaches for tile copying are described. The “Local Vector Read” 

implementation was always faster than “Local” implementation. The difference, only a few 

percentage, was not as big as found in the literature review for Convolution implementations 

with fixed mask sizes. The probable reason for this is that, because variable sized masks are 

implemented, more complicated for loops are necessary, which cannot be unrolled. Only the 

results of the “Local Vector Read” implementation are discussed here. 
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Figure 40. Convolution 3×3 OpenCL GPU local speedup graph 

 

 
Figure 41. Convolution 5×5 OpenCL GPU local speedup graph 
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Figure 42. Convolution 7×7 OpenCL GPU local speedup graph 

 
Figure 43. Convolution 15×15 OpenCL GPU local speedup graph 
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Conclusions: 

- The LocalUnroll and LocalUnrollV optimizations performed similar to Local. 

- The LocalUnrollV2 performed nearly always better than the others. 

- The RefUnrollV2 was less effective with a 5×5 mask than with other mask sizes.   

- With the exception of the 3×3 mask, there was no penalty the smallest images. 

- Larger masks had better speedups than smaller masks. 

- The violin plots (Appendix F) showed that parallelizing sometimes significantly increased 

the variance in execution time. However, in most tests the variance decreased for the 

bigger image sizes. 

7.7.2.3.4 OpenCL on GPU chunking local memory 

In this experiment the sequential algorithm was compared with the Chunk and Chunk with 

Stride optimizations. Both in the Unroll, UnrollV and UnrollV2 variations. Experiments with 

the chunking size found that a size of 8 was optimal. 

 

The 3×3 mask was vectorized with a Short4 vector, the other mask sizes with a Short8 vector. 

Note: it was not beneficial to use a Short16 vector for the RefUnrollV2 optimization of the 

15×15 mask. 

 

 
Figure 44. Convolution 3×3 OpenCL GPU chunking speedup graph 
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Figure 45. Convolution 5×5 OpenCL GPU chunking speedup graph 

 
Figure 46. Convolution 7×7 OpenCL GPU chunking speedup graph 
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Figure 47. Convolution 15×15 OpenCL GPU chunking speedup graph 

 

Conclusions: 

- For 3×3 mask performance of Chunk and ChunkStride was very similar. ChunkStride 

performed better with the bigger mask sizes. 

- The UnrollV2 versions performed nearly always better than the others. 

- The UnrollV2 versions were less effective with a 5×5 mask than with other mask sizes.  

- With the exception of the 3×3 mask, there was no penalty the smallest images. 

- Larger masks had better speedups than smaller masks. 

- The violin plots (Appendix F) showed that parallelizing sometimes significantly increased 

the variance in execution time. However, in most tests the variance decreased for the 

bigger image sizes. 

7.7.2.3.5 OpenCL on GPU 1D reference implementation 

In this experiment the sequential algorithm was compared with the 1D Unroll, Chunk and 

Stride implementations. The chunking size was set to 8. 

 

The 3×3 mask was vectorized with a Short4 vector, the other mask sizes with a Short8 vector. 

Note: it was not beneficial to use a Short16 vector for the RefUnrollV2 optimization of the 

15×15 mask. 
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Figure 48. Convolution 3×3 OpenCL GPU 1D reference speedup graph 

 
Figure 49. Convolution 5×5 OpenCL GPU 1D reference speedup graph 
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Figure 50. Convolution 7×7 OpenCL GPU 1D reference speedup graph 

 

 
Figure 51. Convolution 15×15 OpenCL GPU 1D reference speedup graph 
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Conclusions: 

- In most cases Stride performed better or similar to the Chunk version. 

- The UnrollV2 variations performed nearly always better than the others. 

- The UnrollV2 versions were less effective with a 5×5 mask than with other mask sizes.  

- For the smallest images there was no penalty. 

- Larger masks had better speedups than smaller masks. 

- The violin plots (Appendix F) showed that parallelizing sometimes significantly increased 

the variance in execution time. However, in most tests the variance decreased for the 

bigger image sizes. 

7.7.2.3.6 OpenCL on CPU 1D reference implementation 

Only the 1D reference implementations were benchmarked on the CPU. The other 

implementations were considered not feasible. CPUs don't benefit from using local memory 

and don't support multidimensional indexing. In this experiment the sequential algorithm was 

compared with the 1D, Unroll, Chunk and Stride implementations. The chunking size was 

chosen in such a way that the global number of work items was equal to the number of 

available threads. The number of local work items was set to one. The 3×3 mask was 

vectorized with a Short4 vector, the other mask sizes with a Short8 vector. 

 
Figure 52. Convolution 3×3 OpenCL CPU 1D reference speedup graph 
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Figure 53. Convolution 5×5 OpenCL CPU 1D reference speedup graph 

 

Figure 54. Convolution 7×7 OpenCL CPU 1D reference speedup graph 



7  Testing and Evaluation - Local neighbour operators 

176 

 

 
Figure 55. Convolution 15×15 OpenCL CPU 1D reference speedup graph 

 

Conclusions: 

- The results showed a lot of variation that cannot be explained very easily. Some of the 

peaks could possibly be explained by the fact that cache size fits the problem. 

- In most cases the performance of Chunk was slightly better than Stride. 

- For masks of 5×5 and bigger UnrollV2 variations always performed better than the 

others. 

- For the smallest images there was no penalty. 

- Larger masks had better speedups than smaller masks. 

- The violin plots (Appendix F) showed that in many cases parallelizing significantly 

increased the variance in execution time.  
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7.7.2.4 Conclusions Convolution 

From the experiments the following conclusions can be drawn: 

- OpenMP implementation 

- Only adding one line of code to the original C++ code was necessary. 

- Maximum speedup on the benchmark was around 4 for the bigger images. For small 

images there was no penalty.  

- The speedup slightly decreased with the size of the mask.  

- Hyper-threading was beneficial for the larger images.  

- The violin plots showed that in many cases parallelizing significantly increased the 

variance in execution time. 

- OpenCL on GPU 

- The simple Reference OpenCL implementation gave a maximum speedup of 35.3 for 

large images and large masks.  

- At the cost of extra programming effort the LocalUnrollV2 implementation gave the 

best performance with a maximum speedup of 60.9.  

- Chunking or Striding the local memory approach did not improve the performance. 

- Vectorization was much more effective for performance than using local memory. 

- Chunking, Striding and Unrolling without vectorization degraded the performance.  

- The speedup increased with the size of the mask.  

- For small images and small masks the speedup was around 1. 

- The 1D Reference gave a maximum speedup of 37.6 for large images and large 

masks. This suggests that using one-dimensional NDRange is more beneficial than 

two-dimensional NDRange for this kind of algorithms.  

- The violin plots showed that parallelizing can sometimes significantly increase the 

variance in execution time. However, in most tests the variance decreased for the 

bigger image sizes. 

- OpenCL on CPU 

- The simple 1D Reference OpenCL implementation gave a maximum speedup of 2.16 

for large images and large masks.  

- At the cost of extra programming effort the StrideUV2_1D implementation gave a 

maximum speedup of 8.70 for large images and large masks.  

- The speedup increased with the size of the mask.  

- For small images and small masks the speedup was around 1. 

- The violin plots showed that in many cases parallelizing significantly increased the 

variance in execution time.  
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Contrary to the results found in literature on work of implementing Convolution using 

OpenCL with fixed sized mask, it was found that simple unrolling without vectorization was 

not beneficial.  

7.7.2.5 Future work 

In the literature review the following promising approaches were found: 

- Antao and Sousa (2010) N-kernel Convolution and Complete image coalesced 

Convolution. 

- Antao, Sousa and Chaves (2011) approach packing integer pixels into double precision 

floating point vectors.  

Their approaches were benchmarked on CPUs. Experiments are needed in order to 

investigate if these approaches are also beneficial with regards to GPUs. 
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7.8 Global operators 

7.8.1 Introduction 

As representative of the Global operators the Histogram operator was benchmarked.  

7.8.2 Histogram 

7.8.2.1 Introduction 

As described in section 3.6.5 the processing time of the Histogram operator can depend on 

the contents of the image. The chosen implementations using OpenMP and OpenCL for CPU 

have a private local histogram for each thread, so the processing time is data independent. 

The optimized OpenCL for GPU implementation has, according to Nugteren, Van de Braak, 

Corporaal and Mesman, (2011, figure 14) a variance of about 5% on their sub-test set of non-

synthetic images. So one test image is sufficient for getting an impression of the speedups. 

The Int16Image used for testing is cells.jl, see Appendix B.  

 

The implementations as described in section 6.7.2 were benchmarked with benchmark 

images in the different sizes. Note: the Histogram operator is a computational simple 

algorithm; for each pixel a table entry update is needed. This means that it is to be expected 

that the operator will be more limited by memory bandwidth than by processing power. 

 

This benchmark was performed on the test machine described in Appendix A on 25 May 

2012 using the following versions of the software: 

- VisionLab V3.41b (8-5-2011). 

- OpenCL 1.1 CUDA 4.2.1. 

- OpenCL 1.1 AMD-APP-SDK-v2.5 (684.213). 
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7.8.2.2 OpenMP 

The results on the four core benchmark machine, with hyper-threading: 

 

 
Figure 56. Histogram OpenMP speedup graph 

 

Conclusions: 

- The results showed a lot of variation that cannot be explained very easily. Hyper-

threading caused a remarkable increase in speedup between 2048 and 4096 pixels 

WidthHeight. 

- Hyper-threading was beneficial for the larger images. 

- For small images there was a large penalty. 

- The violin plots (Appendix F) showed that in many cases parallelizing significantly 

increased the variance in execution time. 
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7.8.2.3 OpenCL 

7.8.2.3.1 OpenCL on GPU simple implementation 

In this experiment the simple implementation of the Histogram was benchmarked for 

different image sizes. 

 
Figure 57. Histogram simple implementation GPU speedup graph 

 

Conclusions: 

- The speedup increased with image size. 

- Short16 vectors gave the best speedup. 

- For small images there was a large penalty. 

- The violin plots (Appendix F) showed that in many cases parallelizing significantly 

increased the variance in execution time.  
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7.8.2.3.2 OpenCL on GPU optimal number of local histograms for a work-group 

In this experiment the GPU optimized implementation of the Histogram was benchmarked 

for a 2048×2048 image. In each experiment the number of local histograms for a work-group 

was changed. Due to local memory restrictions the maximum number of local histograms was 

32. 

 
Figure 58. Histogram number of local histograms GPU speedup graph 

 

Conclusions: 

- The best speedup was achieved with 16 local histograms. 

- Using 16 local histograms gave a speedup of around 3.5 compared with using one local 

histogram. 
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7.8.2.3.3 OpenCL on GPU optimized implementation 

In this experiment the GPU optimized implementation of the Histogram was benchmarked 

for different image sizes using 16 local histogram for each work-group. 

 
Figure 59. Histogram optimized implementation GPU speedup graph 

 

Conclusions: 

- The speedup increased with image size. 

- Short gave the best speedup. 

- Vectorization reduced the performance. 

- For small images there was a large penalty. 

- The violin plots (Appendix F) showed that in many cases parallelizing significantly 

increased the variance in execution time.  
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7.8.2.3.4 OpenCL on CPU Simple implementation 

In this experiment the simple implementation of the Histogram was benchmarked for 

different image sizes. 

 
Figure 60. Histogram simple implementation CPU speedup graph 

 

Conclusions: 

- The speedup increased with image size. 

- The performance of all kernels was very poor. 
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7.8.2.3.5 OpenCL on CPU optimized implementation 

In this experiment the CPU optimized implementation of the Histogram was benchmarked for 

different image sizes. 

 
Figure 61. Histogram optimized implementation CPU speedup graph 

 

Conclusions: 

- The speedup increased with image size until HeightWidth 2048. A probable explanation 

of the degradation in speedup after WeightWidth 2048 is that the benchmark image did 

not fit in the cache memory anymore. 

- Short gave the best speedup until HeightWidth 2048. Short16 gave the best speedup for 

the largest images.  

- For small images there was a large penalty. 

- The violin plots (Appendix F) showed that in many cases parallelizing significantly 

increased the variance in execution time.  
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7.8.2.4 Conclusions Histogram 

From the experiments the following conclusions can be drawn: 

- By adding nine lines of code to the original C++ code, OpenMP gave a speedup on the 

benchmark of maximal 5.39 for large images. 

- At the cost of some serious programming effort, both kernel code and client side code, 

and tuning parameters OpenCL gave a speedup up to: 

- 14.1 on the GPU. 

- 3.21 on the CPU. 

- For small images there was a large penalty using OpenMP or OpenCL. 

- Vectorization of OpenCL kernels reduced the performance of the GPU. This is probably 

due to the use of atomics. 

- The violin plots (Appendix F) showed that parallelizing can significantly increase the 

variance in execution time. This increase was more prominent for the smaller images and 

more substantial for CPU than GPU. 

7.8.2.5 Future work 

Testing approaches found in the literature review, suggested by Nugteren, Van den Braak, 

Corporaal and Mesman, (2011) and Luna (2012). 
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7.9 Connectivity based operators 

7.9.1 Introduction 

As representative of the Connectivity based operators the LabelBlobs (Connected Component 

Labelling) operator was benchmarked.  

7.9.2 LabelBlobs 

7.9.2.1 Introduction 

As described in section 3.6.6.2 the processing time of the LabelBlob operator will depend on 

the contents of the image. In order to limit the time for benchmarking, only three benchmark 

images were chosen. As explained in section 6.8.2.4 the performance of the vectorized 

OpenCL kernels was expected to depend on the number of object pixels in the image. In 

order to test this hypothesis two special images were added to the benchmark. All testing was 

done with three images, which are scaled to different sizes. The three benchmark images are: 

- Cells: By making an educated guess, Int16Image cells.jl (see Appendix B) is considered 

to be a “typical” image. After segmentation with the Threshold operator, with parameters 

low = 150 and high = 255, there are about 100 objects in the larger images.  

- SmallBlob: Is based on image cells.jl, after segmentation all but one blobs are removed 

from the result. This image tests the performance of LabelBlobs if there are only a limited 

number of object pixels. This image is expected to give the best performance for 

vectorization of the OpenCL kernels. 

- BigBlob: The image is filled with one square blob that fits the whole image. This image 

tests the performance of LabelBlobs when there are only a limited number of background 

pixels. This image is expected to give the worst performance for vectorization of the 

OpenCL kernels. 

The limitation of only three benchmark images implies that the results can only be used as a 

global indication of performance. 

 

The implementations as described in section 6.8.2 are benchmarked with benchmark images 

in the different sizes and for both connectivities. For reasons described in section 3.6.6.3 all 

benchmark images are converted to type Int32Image. 
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This benchmark was performed on the test machine described in Appendix A on 4 October 

2012 using the following versions of the software: 

- VisionLab V3.42 (19-8-2012). 

- OpenCL 1.1 CUDA 4.2.1. 

7.9.2.2 OpenMP 

The results for eight connected labelling on the four core benchmark machine, with hyper-

threading are shown in Figure 62 to Figure 64. 

 
Figure 62. LabelBlobs eight connected on image cells OpenMP speedup graph 
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Figure 63. LabelBlobs eight connected on image smallBlob OpenMP speedup graph 

 
Figure 64. LabelBlobs eight connected on image bigBlob OpenMP speedup graph 
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The results for four connected labelling on the four core benchmark machine, with hyper-

threading are shown in Figure 65 to Figure 67. 

 
Figure 65. LabelBlobs four connected on image cells OpenMP speedup graph 

 

Figure 66. LabelBlobs four connected on image smallBlob OpenMP speedup graph 
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Figure 67. LabelBlobs four connected on image bigBlob OpenMP speedup graph 

 

Conclusions: 

- Speedup was much better than could be expected from a “many-core” implementation, 

see section 6.8.2.3. 

- Hyper-threading was not beneficial in most cases. 

- The speedup was similar for the three types of benchmark images. 

- For small images there was a penalty. 

- There was not much difference in speedup between eight and four connected labelling. 

- The violin plots (Appendix F) showed that in many cases parallelizing significantly 

increased the variance in execution time.  

7.9.2.3 OpenCL 

7.9.2.3.1 Introduction 

As motivated in section 6.8.2.4 only a OpenCL implementation for a “many-core” system 

was implemented. First the results of the attempts to vectorize the individual kernels are 

discussed. Thereafter the results of the total LabelBlobs implementation for both four and 

eight connectivity are discussed. 
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7.9.2.3.2 Vectorization of InitLabels 

Note, because the execution time of this kernel is independent of the contents of the image 

(section 6.8.2.4), only one type of benchmark image was necessary. 

 

The results for the vectorization of the InitLabels kernel on the benchmark machine GPU are 

shown in Figure 68. 

 

 
Figure 68. Vectorization of InitLabels kernel speedup graph 

 

The conclusion is that the Int4 version always gave an equal or best speedup and was always 

equal or better than the non-vectorized Int version. 

7.9.2.3.3 Vectorization of LinkFour 

As explained in section 6.8.2.4 it is to be expected that the performance of this kernel will 

depend on the contents of the image. In order to get an impression of benefits from 

vectorization, measurements were performed, in which the LinkFour kernel was tested in 

isolation.  
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The results for vectorization of the LinkFour kernel, a four connected implementation of the 

Link kernel, on the benchmark machine GPU are shown in Figure 69 to Figure 71. 

 
Figure 69. Vectorization of LinkFour kernel on image cells speedup graph 

 
Figure 70. Vectorization of LinkFour kernel on image smallBlob speedup graph 
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Figure 71. Vectorization of LinkFour kernel on image bigBlob speedup graph 

 

Experiments with the LinkEight kernel gave similar results. Because the other kernels 

LabelEqualize and ReLabelPass1 use the same method for vectorization, it is expected that 

they will give similar results. 

 

Note that conclusions for the performance of the complete LabelBlobs OpenCL 

implementation cannot be drawn from these experiments. This is because: 

- The number of iterations will dominate the execution time and will depend on the image- 

content. 

- The kernels were tested in isolation. 

 

Conclusions: 

- Speedup depended on image-content. 

- Int4 was always better than Int8 or Int16. 

- Int4 was beneficial on image smallBlobs, had a small penalty on images cells and a large 

penalty on image bigBlob. 
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7.9.2.3.4 LabelBlobs 

In this section speedup of the complete LabelBlobs OpenCL implementation is discussed. 

The following versions are compared: 

- The sequential implementation. 

- Implementation as suggested by Kalentev et al. 

- Optimized implementation as described in section 6.8.2.4 with a vectorized Int4 

implementation of the InitLabel kernel and non vectorized implementation of the other 

kernels. This version is referenced as “Optimized”. 

- Optimized4 implementation as described in section 6.8.2.4 with a vectorized Int4 

implementation of all kernels kernel except ReLabelPass2. This version is referenced as 

“Optimized4”. 

 

The results for the eight connected labelling on the benchmark machine GPU are shown in 

Figure 72 to Figure 74: 

 
Figure 72. LabelBlobs eight connected on image cells OpenCL speedup graph 
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Figure 73. LabelBlobs eight connected on image smallBlob OpenCL speedup graph 

 

 
Figure 74. LabelBlobs eight connected on image bigBlob OpenCL speedup graph 
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The results for four connected labelling on the benchmark machine GPU are shown in Figure 

75 to Figure 77: 

 
Figure 75. LabelBlobs four connected on image cells OpenCL speedup graph 

 

Figure 76. LabelBlobs four connected on image smallBlob OpenCL speedup graph 
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Figure 77. LabelBlobs four connected on image bigBlob OpenCL speedup graph 

 

Conclusions: 

- The optimized version always performed better than the Kalentev et al. version. 

- The optimized4 version performed equally well or better than the optimized version on 

image cells and smallBlob. 

- The optimized4 version performed worse than the optimized version on image bigBlob.  

- The speedup achieved on image bigBlob was significantly higher than on image cells and 

smallBlob. This is due to a lower number of iterations. 

- For small images there was a large penalty. 

- It was image-content dependent whether four connected or eight connected performs 

better. On a “normal” image like cells, four connected performed on average slightly 

better than eight connected. 

- The violin plots (Appendix F) showed that in many cases parallelizing significantly 

increased the variance in execution time.  
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7.9.2.4 Conclusions LabelBlobs 

From the experiments the following conclusions can be drawn: 

- Different parallelization approaches are needed for few-cores and many-cores systems. 

- Requiring a significant programming effort, the OpenMP few-cores implementation has 

given a speedup on the benchmarks of around 3 for images with more than 512×512 

pixels. Hyper-threading was not beneficial. The speedup was similar for all three types of 

benchmark images. 

- A completely different approach was necessary for the many-cores OpenCL 

implementation. This required some serious programming effort, both kernel code and 

client side code. The approach suggested by Kalentev et al. was improved significantly. 

The speedup achieved depends on the type of benchmark image. For the larger images the 

Optimized4 version performed better than the Optimized version on the standard 

“typical” benchmark image and the smallBlob image, but performed worse on the 

BigBlob image. The advice is to use the Optimized4 version in the general case because 

the Optimized4 version does not perform badly on BigBlob image and BigBlob type 

images were not found frequently in the vision projects executed by the author.  

- For small images there can be a large penalty for using OpenMP or OpenCL. 

- The violin plots (Appendix F) showed that in many cases parallelizing significantly 

increased the variance in execution time. This increase was more prominent for the 

smaller images and more substantial for CPU than GPU. 

7.9.2.5 Future work 

- Benchmarking OpenCL implementation few-core approach. 

- Research in finding the break-even point few-core versus many-core approach. 

- Benchmarking approach found in the literature review suggested by Stava and Benes 

(2011). 
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7.10 Automatic Operator Parallelization 

OpenMP was considered (see section 8.4) to be the best candidate to parallelize VisionLab in 

an efficient and effective way. 170 operators of VisionLab were parallelized using OpenMP. 

The Automatic Operator Parallelization mechanism (section 5.2.6) was also implemented for 

these operators. VisionLab with the OpenMP parallelization and Automatic Operator 

Parallelization is now available as a commercial product.  

 

VisionLab scripts written by users will have, without modification, immediate benefits in 

speedup when using the new parallelized version of VisionLab. Users of VisionLab who 

write their code in C++ or C# will benefit from the parallelization after linking to the new 

library without changing their code. For optimal results users will have to calibrate the 

Automatic Operator Parallelization. See section 7.12 for examples of using Automatic 

Operator Parallelization in real projects. 

 

The calibration of the Automatic Operator Parallelization is performed using one specific 

image for each operator. It is future work to evaluate this calibration process and improve it if 

necessary. 
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7.11 Performance portability 

7.11.1 Introduction 

One of the requirements in Chapter 2 is that the chosen solution must be portable. All 

benchmarking in the previous sections of this chapter were performed on a computer with an 

Intel Core i7 and NVIDIA graphics card running under Windows 7.  

 

In this section an OpenMP benchmark was performed on quad-core ARM running Linux and 

an OpenCL benchmark was performed on a Windows 7 system with an AMD graphics card. 

7.11.2 OpenMP on Quad core ARM 

The portability of the OpenMP approach was tested on quad core ARM running Linux. 

Porting was just recompiling. It passed the VisionLab regression test suite without any 

problems. For benchmarking the Convolution algorithm was chosen because it is a frequently 

used algorithm and a computationally expensive algorithm.  

 

The Convolution benchmark (section 7.7.2.2) was performed on an ODROID U2 

(Hardkernel, 2013). This is a low cost ($89) 4×5 cm mini board with a quad-core ARM 

(Cortex-A9) on 1.7 GHz, 2 GByte RAM running Ubuntu 12.10. The benchmark (Boer and 

Dijkstra, 2013) was performed on 1 March 2013 using VisionLab V3.42 (12-2-2013). The 

process was executed with real-time scheduling policy SCHED_FIFO. Without using this 

real-time scheduling policy the benchmark results were erratic. It is future work to investigate 

this matter. Due to the limited time available for accessing the hardware, the benchmark was 

repeated 30 times and for images in the range 32×32 to 4096×4096 pixels. Hyper-threading 

could not be tested because this was not supported on the hardware used. The results are 

shown in Figure 78 to Figure 81. 

 

Conclusions: 

- Porting was just recompiling. It passed the VisionLab regression test suite without any 

problems. 

- The results showed far less variation than the results on the standard benchmark machine 

under Windows (section 7.7.2.2). The most probable reason for this is the choice for the 

real-time scheduling policy SCHED_FIFO.  

- Speedups up to 3.97 were reported. 

 



7  Testing and Evaluation - Performance portability 

202 

 

 
Figure 78. Convolution 3×3 OpenMP on ODROID speedup graph  

 

 
Figure 79. Convolution 5×5 OpenMP on ODROID speedup graph 
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Figure 80. Convolution 7×7 OpenMP on ODROID speedup graph 

 

 
Figure 81. Convolution 15×15 OpenMP on ODROID speedup graph 
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7.11.3 OpenCL on AMD GPU 

For benchmarking the Histogram algorithm was chosen. In regard to all basic operators 

benchmarked in this chapter the performance of this algorithm was the most sensitive to the 

usage of local memory. The OpenCL Histogram benchmarks (section 7.8.2.3) were 

performed on a Dell Inspiron 15R SE laptop with Intel Core i7 3632QM, 8 GByte memory 

and an AMD HD7730M graphics card running Windows 8 64 bit. Note that the absolute 

values of the speedups cannot be compared with the results of the benchmarks in section 

7.8.2.3 because the sequential versions were executed on different CPUs. 

 

This benchmark was performed on the test computer described above on 10 February 2013 

using the following versions of the software: 

- VisionLab V3.42 (6-12-2012). 

- OpenCL 1.2 AMD-APP (1016.4). 

 

The first benchmark was the simple Histogram implementation.  

 
Figure 82. Histogram simple implementation AMD GPU speedup graph 

 

The results shown above are similar to the trend depicted in Figure 57. Nevertheless, 

vectorization was more effective for the AMD GPU than for the NVIDIA GPU. 
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The second benchmark was to find the optimal number of local histograms for a work-group.  

 

 
Figure 83. Histogram number of local histograms AMD GPU speedup graph 

 

The results shown above are significantly different from the results from Figure 58: 

- The optimal number of local histograms for the AMD GPU was 2 and for the NVIDIA 

GPU it was 16. It is future work to investigate why this number is so unexpectedly low 

for AMD.  

- The speedup multiplier by using the optimal number of local histograms was 1.36 for the 

AMD GPU (Short16) and 3.70 for the NVIDIA GPU (Short4).  

 

  



7  Testing and Evaluation - Performance portability 

206 

 

In the third benchmark the GPU optimized implementation of the Histogram was 

benchmarked for different image sizes using two local histograms for each work-group. 

 
Figure 84. Histogram optimized implementation AMD GPU speedup graph 

 

The results shown above are similar with the trend depicted in Figure 59. However 

vectorization was more effective for the AMD GPU than for the NVIDIA GPU. 

 

Conclusions: 

- The OpenCL Histogram implementations were portable across the used Intel CPU, 

NVIDIA GPU and AMD GPU and produced the same correct histograms. 

- The optimal Histogram implementation for CPU was different from the optimal 

implementation for GPUs and did not use local memory, see section 7.8.2. 

- The optimal Histogram implementation for NVIDIA and AMD GPUs used local memory 

and was similar. However, different numbers of local histograms were optimal. 

Vectorization was beneficial for the AMD GPU but not for the NVIDIA GPU. 
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7.11.4 Conclusions 

The following is concluded: 

- The experiments suggest that OpenMP implementations could be portable without 

modification across operating systems and CPU architectures and maintain a similar level 

of speedups. 

- These experiments and the research and experiments described in section 2.2 suggest that 

OpenCL implementations could be portable across CPUs and GPUs but the performance 

is not easily portable. This view is confirmed by Van der Sanden (2011, section 5.3), Ali, 

Dastgeer and Keesler (2012), Zimmer and Moore (2012) and by the audience of the 

conference GPGPU-day (Platform Parallel Netherlands, 2012) where the author presented 

the preliminary results of his work (Van de Loosdrecht, 2012d).  

7.11.5 Future work 

- The optimal number of local histograms for the AMD GPU was 2 and for the NVIDIA 

GPU was 16. It is future work to investigate why this number is so unexpectedly low for 

AMD.  

- The performance of OpenCL was not portable. Research is needed to investigate the 

possibilities to write generic OpenCL kernels, kernels that run with adequate performance 

on multiple platforms. Some preliminary work on this subject can be found in Van der 

Sanden (2011, section 5.4). Fang, Varbanescu and Sips (2011) suggest developing an 

auto-tuner to adapt general-purpose OpenCL programs to all available specific platforms 

to fully exploit the hardware. 
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7.12 Parallelization in real projects 

7.12.1 Introduction 

In section 3.6.2 four classes of basic low level image operators are distinguished. For each 

class OpenMP and OpenCL versions were implemented and benchmarked. OpenMP was 

considered (see section 8.4) to be the best candidate to parallelize VisionLab in an efficient 

and effective way. The OpenMP implementations were used as templates to parallelize 170 

operators of VisionLab, including many high level operators like the BlobMatcher (section 

7.12.2.2). See Appendix G for a full list. The Automatic Operator Parallelization mechanism 

was also implemented for these operators. VisionLab with the OpenMP parallelization is now 

available as a commercial product.  

 

In this section two examples of real projects of customers of VdLMV are given in order to 

demonstrate the benefits of parallelization using OpenMP. The Antibiotics discs case is an 

example where almost 100% of the used C++ code for the operators could be parallelized. 

This example will give an impression of the best speedup possible for real cases. The 3D 

monitor case is an example where a VisionLab script was automatically parallelized.  

7.12.2 Antibiotic discs  

7.12.2.1 Introduction 

The Antibiotic discs project is from BD Kiestra (Drachten, the Netherlands), who are one of 

the market leaders in Europe in Total Lab Automation. The following is based on the 

description in Dijkstra (2013). One of BD Kiestra’s products automates antibiotic 

susceptibility testing by disk diffusion. This analysis is performed on a regular basis in 

microbiological laboratories. This method is used to determine the susceptibility to a certain 

antibiotic of bacteria found in a patient. This information is used by the physician to 

determine which antibiotic to prescribe.  

 

A Petri dish containing agar, a bacterial growth medium, is inoculated with sample material 

from a patient. After this, discs are placed on the inoculated Petri dish, where each disc 

contains a printed abbreviation of the antibiotic contained in the disc. The antibiotic 

contained in the disc flows into the agar. The dish is incubated for a predetermined number of 

hours to stimulate bacterial growth. During the incubation process the bacteria start to grow 

on the agar at locations where they can still resist the antibiotic concentration.  
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After incubation the agar contains bacterial growth all over the Petri dish except for circular 

areas around the discs. In these circular areas or zones the concentration of the antibiotic is 

too high for the bacteria to be able to grow. The diameter of the zone indicates the 

susceptibility of the bacteria to the antibiotic contained in the disc. Conceptually the problem 

in automating this analysis is two-fold. At the first level, the reading of the antibiotic disc 

prints has to be automated, and at the second level the zone measurement has to be 

automated. See Figure 85 for an example image. 

 

 
Figure 85. Antibiotic susceptibility testing by disk diffusion 

 

 

Dijkstra, Jansen and Van de Loosdrecht (2013a, 2013b) and Dijkstra, Berntsen, Van de 

Loosdrecht and Jansen (2013) describe how to automate the reading of the antibiotic disc 

prints with an end-user trainable machine vision framework. This project was developed in 

collaboration with the NHL Centre of Expertise in Computer Vision. 
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7.12.2.2 Test results 

For validating the end-user trainable machine vision framework mentioned above, several test 

sets with images of antibiotic discs were used. Three test sets (AMC, Oxiod and Rosco, see 

Table 19) were used in this benchmark for reading the disc prints. One of the classifiers used 

by the end-user trainable machine vision framework is a geometric pattern matcher called the 

BlobMatcher in VisionLab. The BlobMatcher is parallelized using OpenMP and is described 

in Van de Loosdrecht et al. (2012).  

 

Test set Number classes Number images Image size (H x W) 

AMC 36 390 180x180 

Oxoid 37 5620 100x100 

Rosco 39 1148 180x180 

 

Table 19. Antibiotic discs test set 

 

This benchmark was performed on the quad-core test machine described in Appendix A on 

30 January 2013 using VisionLab V3.42 (6-12-2012). The benchmark was repeated 10 times. 

Figure 86 shows the speedup graph and Table 20 the median of execution time for classifying 

all images in one test set.  

 

 
Figure 86. Antibiotic discs OpenMP speedup graph 
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Table 20. Antibiotic discs OpenMP median of execution times in seconds 

7.12.2.3 Conclusions 

The following is concluded: 

- Speedups between 4.26 (Oxoid) and 5.02 (Rosco) were accomplished. The least speedup 

was obtained with the test set with the smallest images. 

- Hyper-threading was beneficial. 

- The violin plots (Appendix F) showed little variance in execution time over one test set. 

7.12.3 3D monitor  

7.12.3.1 Introduction 

The 3D monitor project is from Image+ (Stadskanaal, The Netherlands), who are one of the 

market leaders in Europe in Ride Photography in theme parks. According to Fun World 

(2011): 

 

“Image+ introduced a product that has never been seen before in the attractions 

industry: 3-D ride photography. The company rolled the system out at Theme Park and 

Resort Slagharen in the Netherlands. Guests are photographed with a custom-made 3-

D camera, and within a few seconds those images are converted into 3-D and shown on 

3-D monitors. The real perk comes when the 3-D effect can be viewed without the need 

for 3-D glasses. Then, if the guest wants the photo, it is printed in 3-D by a specialized 

printer.” 
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Auto-stereoscopic lenticular lenses are used to achieve the 3-D effect without 3-D glasses. 

This technique is described in Dimenco (2010). The 3-D monitor is used to display still 

images. This project was developed in collaboration with the NHL Centre of Expertise in 

Computer Vision.  

 

As a spin-off from this project a demonstrator was developed that could display in real-time 

live 3-D images on the 3-D monitor with more than 30 frames per second. For this 

demonstrator a script in VisionLab was developed. The script contains: 

- Image capture commands for both cameras. 

- Calls to VisionLab operators. 

- Calls to two operators custom-built for this project. 

 

Note: interpretation of the script and the image captures are not parallelized in VisionLab; the 

other operators were implemented with Automatic Operator Parallelization using C++ with 

OpenMP.  

 

 
Figure 87. Ride Photography 



7  Testing and Evaluation - Parallelization in real projects 

213 

 

  

 
Figure 88. Real-time live 3-D images on the auto-stereoscopic 3-D monitor with 34 fps 

 

7.12.3.2 Test results 

Keuning (2013) provided the test data (Table 21). The benchmark was run on an Intel Core i7 

860, 2,8 GHz (4 cores), 8 GByte RAM memory, Windows 7 x64 SP, VisionLab V3.42 (Sept. 

2012). Image size was 1024×1280 pixels. 

 

# threads FPS speedup FPS speedup

1 5 1.0 20 1.0

2 9 1.8 28 1.4

3 11 2.2 31 1.6

4 13 2.6 34 1.7

5 13 2.6 34 1.7

6 13 2.6 34 1.7

7 13 2.6 34 1.7

8 13 2.6 34 1.7

scale = 2 scale = 4

 
Table 21. Speedup table auto-stereoscopic 3-D monitor 
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Keuning provided a table with the average Frames Per Second (FPS) for two different scale 

factors. The scale factor is the factor by which the image is reduced after being captured. The 

resulting smaller image is used for calculating the depth in the auto-stereoscopic 3-D result 

image. Scale factor 2 results in a 512×640 pixel image and factor 4 in a 256×320 pixel image. 

The scale factor affects the quality of the resulting image. Lower scale values produce better 

quality images but require more computational effort. 

7.12.3.3 Conclusions 

The following is concluded: 

- The script could be executed in parallel without any modification by the user.  

- The maximum speedup for scale factor 2 was 2.6. 

- The maximum speedup for scale factor 4 was 1.7. 

- Analyses of the execution times of the used operators in the script revealed that some of 

the simple operators used did not benefit much from parallelization because the images 

were too small. 

- Hyper-threading was not beneficial. 

- It is probable that for small images the sequential part (image capture and script 

interpretation) became the bottleneck for obtaining good speedups. 

7.12.4 Conclusions 

This section demonstrated the benefits of parallelization using OpenMP in two examples of 

real projects of customers of VdLMV.  

 

The antibiotics discs case demonstrated, in an example where almost 100% of the code was 

parallelized in C++ code and a complex pattern matcher was used, that even on small images 

with 100×100 pixels, speedups of above 4 were achieved on the quad-core benchmark 

computer.  

 

The live 3-D image monitor case demonstrated that a user script could be parallelized without 

modification by the user. Speedups between 1.7 and 2.6 were achieved on the quad-core 

benchmark computer. The image capturing of the two cameras was in a sequential fashion 

and some of the simple operators used in the scripts did not benefit from parallelization 

because the images were too small. 
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8  Discussion and Conclusions 

8.1 Introduction 

The Computer Vision algorithms of VisionLab were limited by the performance capabilities 

of sequential processor architectures. From the developments of both CPU and GPU 

hardware in the last decade it was evident that the only way to get more processing power 

using commodity hardware was to adopt parallel programming. This project investigated how 

to speed up a whole library by parallelizing the algorithms in an economical way and 

executing them on multiple platforms. 

 

In this chapter the following topics are discussed: 

- Evaluation of parallel architectures. 

- Benchmark protocol and environment. 

- Evaluation of parallel programming standards. 

- Contributions of the research. 

- Future work. 

- Final conclusions. 

8.2 Evaluation of parallel architectures 

The primary target system for this work was a conventional PC, embedded real-time 

intelligent camera or mobile device with a single or multi-core CPU with one or more GPUs 

running under Windows or Linux on a x86 or x64 processor. Benchmarks were run on 

conventional PCs with graphics cards of NVIDIA and AMD. Because portability to other 

processors was an important issue, a benchmark was run on an embedded real-time board 

with a multi-core ARM processor. Both the literature review and the results of the 

benchmarks in this work confirmed that both multi-core CPU and GPU architectures are 

appropriate for accelerating sequential Computer Vision algorithms.  

 

There is a lot of new development in hardware and programming environments for parallel 

architectures. It is to be expected that new developments in hardware will have a strong 

impact on software design. 

 

Embarrassingly parallel algorithms are fairly easy to parallelize. Embarrassingly sequential 

algorithms will need a completely different programming approach. The parallelization of the 

Connected Component Labelling algorithm demonstrated that different parallel approaches 

will be needed for few-cores and many-cores systems. 
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8.3 Benchmark protocol and environment 

Based on existing literature, a suitable benchmark protocol was defined and used in this 

work. A benchmark environment for assessing the benefits of parallelizing algorithms was 

designed and implemented. This benchmark environment was integrated in the script 

language of VisionLab. By using this benchmark environment it was possible to setup, run 

and analyse the benchmarks in a comfortable and repeatable way. 

8.4 Evaluation of parallel programming standards 

8.4.1 Introduction 

In this section the following topics are discussed: 

- Survey of standards for parallel programming. 

- Evaluation of choice for OpenMP. 

- Evaluation of choice for OpenCL. 

- Evaluation of newly emerged standards and new developments of standards. 

- Recommendations for standards. 

8.4.2 Survey of standards for parallel programming 

Twenty-two standards for parallel programming were reviewed using the requirements as 

specified for this work. OpenMP was chosen as the standard for multi-core CPU 

programming and OpenCL as the standard for GPU programming. These two standards were 

used throughout this work for all experiments. 

8.4.3 Evaluation of choice for OpenMP 

Learning OpenMP was easy because there are only a limited number of concepts, which have 

a high level of abstraction with only a few parameters. The development environments used, 

Visual Studio and the GNU tool chain, have a mature and stable implementation of OpenMP. 

OpenMP supports multi-core CPU programming but offers no support for exploiting vector 

capabilities. 
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The effort for parallelizing embarrassingly parallel algorithms, like Threshold and 

Convolution, is just adding one line with the OpenMP pragma. The parallelized operator also 

has to be incorporated in the Automatic Operator Parallelization. This is a run-time prediction 

mechanism that will test whether parallelization will be beneficial. To add the parallelized 

operator to the Automatic Operator Parallelization calibration procedure will need about 16 

lines of code. Those 16 lines of code are very similar for all operators and are of low 

complexity. More complicated algorithms like Histogram and LabelBlobs need more effort to 

parallelize. The effort for adding to the Automatic Operator Parallelization calibration 

procedure remains the same. Speedups between 2.5 and 5 were reported for large images in 

the benchmarks on a quad-core Intel i7 running Windows 7. Big penalties for speedup were 

reported in almost all benchmarks for small images. So run-time prediction whether 

parallelization is expected to be beneficial is a necessity.  

 

Four classes of basic low level image operators were distinguished in this work. For each 

class an OpenMP version was implemented and benchmarked. These OpenMP 

implementations were used as templates to parallelize 170 operators of VisionLab, including 

many high level operators. See Appendix G for a full list. It only took about one man month 

of work to parallelize all the 170 operators, including the Automatic Operator Parallelization. 

VisionLab with the OpenMP parallelization is now available as a commercial product.  

 

The violin plots showed that parallelizing can significantly increase the variance in execution 

time. This increase is more prominent for the smaller images. 

 

VisionLab scripts written by users will, without modification, immediately benefit in speedup 

when using the new parallelized version of VisionLab. Users of VisionLab who write their 

code in C++ or C# will benefit, without changing their code, from the parallelization after 

linking to the new library. For optimal results users will have to calibrate the Automatic 

Operator Parallelization. Two cases of test data of real projects were presented in this work, 

reporting speedups between 1.7 and 5 on a quad-core Intel i7 running Windows 7. 

 

The portability of the OpenMP approach was tested on a quad-core ARM running Linux. 

Porting was just recompiling. It passed the VisionLab regression test suite without any 

problems and the Convolution benchmark reported speedups up to 3.97. 

 

It is concluded that OpenMP is very well suited for parallelizing many algorithms of a library 

in an economical way and executing them with an adequate speedup on multi-core CPU 

platforms. 
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8.4.4 Evaluation of choice for OpenCL 

Although the author has a background in parallel programming, learning OpenCL was found 

to be difficult and time-consuming because: 

- There are many concepts, often with a low level of abstraction and many parameters. 

Good understanding of GPU architectures is essential. 

- The host-side code is labour-intensive and sensitive to errors because most OpenCL API 

functions have many parameters.  

- The kernel language itself is not difficult but there are many details to master. 

- The logic of an algorithm is divided over the kernel language and host language with 

often subtle dependencies. 

- OpenCL platforms are ‘in development and have issues’. NVIDIA, AMD and Intel 

platforms were used. Platform tools from NVIDIA and Intel were found to interfere with 

each other, and for one specific GPU the AMD compiler crashed on some of the kernels. 

- The correct tuning of many parameters is laborious but paramount for decent 

performance. 

 

Instead of writing the host API code in C or C++, VisionLab scripts were used. The script 

language of VisionLab was extended with OpenCL host API commands. Using these 

commands greatly reduced the time to develop and test the host-side code. 

 

OpenCL supports both multi-core CPU and GPU programming. OpenCL also has support for 

exploiting vector capabilities and heterogeneous computing. 

 

The effort to parallelize embarrassingly parallel algorithms was considerable; both kernel 

code and host-side code had to be developed. Four classes of basic low level image operators 

were distinguished in this work. OpenCL versions for CPU and GPU were implemented and 

benchmarked. In many cases simple implementations demonstrated considerable speedups. In 

all cases a considerable amount of effort was necessary to obtain better speedups by using 

more complex algorithms and tuning parameters. For the Connected Component Labelling 

algorithm a complete new approach was necessary. For contemporary GPUs the overhead of 

data transfer between host and device is substantial compared to the kernel execution time of 

embarrassingly parallel algorithms like Threshold. When the new heterogeneous architectures 

reach the market, such as predicted by the HSA Foundation, this data transfer overhead is 

expected to reduce significantly. 
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Speedups up to 60 were reported on benchmarks for large images. Big penalties for speedup 

were reported in some of the benchmarks for small images or if wrong tuning parameters 

were chosen. Completely different approaches were necessary for CPU and GPU 

implementations. The test with the OpenCL Histogram implementations on NVIDIA and 

AMD GPUs suggests that GPU implementations for different GPUs need different 

approaches and/or parameterization for optimal speedup. It is expected that OpenCL kernels 

are portable but the performance will not be portable. In other words, when an OpenCL 

kernel is parameterized well with the host code it will run on many OpenCL devices, but the 

maximal performance on a device will be obtained only with a device-specific version of the 

kernel and with tuned parameters. 

 

The violin plots showed that parallelizing can significantly increase the variance in execution 

time. This increase is more prominent for the smaller images and more substantial for CPU 

than GPU. The increase of variance using OpenCL on CPU is mostly smaller than when 

using OpenMP. 

 

It is concluded that OpenCL is not very well suited for parallelizing all algorithms of a whole 

library in an economical way and executing them effectively on multiple platforms. 

Nonetheless, OpenCL has the potential to exploit the enormous processor power of GPUs, 

the vector capabilities of CPUs and heterogeneous computing.  

 

It is recommended that OpenCL be used for accelerating dedicated algorithms on specific 

platforms when the following conditions are met: 

- The algorithms are computationally expensive. 

- The overhead of data transfer is relatively small compared to the execution time of the 

kernels involved. 

- It is accepted that a considerable amount of effort is needed for writing and optimizing 

the code. 

- It is accepted that the OpenCL code is optimized for one device, or that sub-optimal 

speedup is acceptable if the code should run on similar but distinct devices. 
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8.4.5 Evaluation of newly emerged standards and new developments of standards 

Section 3.8 described which new information became available about standards for parallel 

programming after the choices for OpenMP and OpenCL had been made. This new 

information is discussed in this section. 

 

- CUDA has become less vendor specific, but is still far from being an industry standard. 

- Microsoft released C++ AMP with Visual Studio 2012. This is a great tool, but very 

vendor specific. 

- An enhancement of the OpenCL kernel languages is proposed with C++ like features 

such as classes and templates. At the moment of writing this new kernel language is only 

supported by AMD. 

- Altera Corporation introduced an OpenCL program for FPGAs. This opens up the 

possibility of compiling OpenCL directly to silicon.  

- OpenACC was announced and products became available. It is expected that OpenACC 

will merge with OpenMP 4.0. 

- In 2013 a new standard, OpenMP 4.0 with “directives for attached accelerators”, is 

expected that will allow portable OpenMP pragma-style programming on multi-core 

CPUs and GPUs. With the new OpenMP standard it will be possible to utilize vector 

capabilities of CPUs and GPUs.   

Compared with OpenCL this new standard will allow multi-core CPU and GPU 

programming at a higher abstraction level than OpenCL. The author expects that with the 

new OpenMP standard it will be much easier to program portable code, but the code will 

not be as efficient as programmed with OpenCL.  
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8.4.6 Recommendations for standards 

Based on the previous sections the following recommendations are made. 

 

- OpenMP is very well suited for parallelizing many algorithms of a library in an 

economical way and executing them with an adequate speedup on multiple parallel CPU 

platforms. It is recommended that all VisionLab operators are parallelized using 

OpenMP. 

- OpenCL is not suitable for parallelizing all algorithms of a whole library in an 

economical way and executing them effectively on multiple GPU platforms. At the 

moment there is no suitable standard for the requirements as formulated in section 2.4. In 

the author’s view, OpenCL is still the best choice in this domain. OpenCL has the 

potential to exploit the enormous processor power of GPUs, the vector capabilities of 

CPUs and heterogeneous computing. When the speedup achieved with OpenMP is not 

adequate, it is recommended that OpenCL be used for accelerating dedicated algorithms 

on specific platforms.   

- In the future OpenMP 4.0 with “directives for attached accelerators” might be a very 

good candidate for parallelizing a library in an economical way on both CPUs and GPUs. 

The announced proposal looks very promising, however at the time of writing the 

standard is not definitive and there are no compilers supporting it. 

 

The first two recommendations are in line with the conclusions in the survey performed by 

Diaz, Munoz-Cara and Nino (2012). 
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8.5 Contributions of the research 

8.5.1 Introduction 

In this section the following contributions of this work are discussed: 

- Algorithmic improvements. 

- Publications. 

- Product innovation. 

8.5.2 Algorithmic improvements 

The following algorithmic improvements appear to be novel. The literature search has not 

found any previous use of them: 

- Vectorization of Convolution on grayscale images with variable sized mask utilizing 

padding width of vector with zeros, section 6.6.2.4.4. 

- Few-core Connect Component Labelling, section 6.8.2.3. 

- Optimization of many-core Connect Component Labelling using the approach of 

Kalentev et al., section 6.8.2.4. 

8.5.3 Publications 

In this section the publications related to this work are listed. 

 

Peer review: 

- Draft manuscript VLSI1274 On the Image Convolution Supported on OpenCL Compliant 

Multicore Processors (Antao, Sousa and Chaves, 2011) in The Journal of Signal 

Processing. 

 

Papers: 

- Accelerating sequential Computer Vision algorithms using commodity parallel hardware 

(Van de Loosdrecht, 2013b) in the proceedings of NIOC2013 in Arnhem (The 

Netherlands), 4-5 April 2013. 

- Prior knowledge in an end-user trainable machine vision framework (Dijkstra, Jansen 

and Van de Loosdrecht, 2013a) in the proceedings of 21
st
 European Symposium on 

Artificial Neural Networks, Computational Intelligence and Machine Learning in Bruges 

(Belgium), 24 - 26 April 2013. See section 7.12.2 for link with this work. 
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Poster presentations: 

- Prior knowledge in an end-user trainable machine vision framework (Dijkstra, Jansen 

and Van de Loosdrecht, 2013b), presented by co-author at 21
th

 European Symposium on 

Artificial Neural Networks, Computational Intelligence and Machine Learning in Bruges 

(Belgium), 24 - 26 April 2013. See section 7.12.2 for link with this work. 

- End-user trainable automatic antibiotic-susceptibility testing by disc diffusion using 

machine vision (Dijkstra, Berntsen, Van de Loosdrecht and Jansen, 2013), presented by 

co-author at 23
rd

 European Congress of Clinical Microbiology and Infectious Diseases, 

Berlin 27-30 April 2013. See section 7.12.2 for link with this work. 

 

Lectures: 

- Accelerating sequential Computer Vision algorithms using commodity parallel hardware 

at University Groningen, research group Scientific Visualization and Computer Graphics, 

12 March 2012. 

- Accelerating sequential Computer Vision algorithms using commodity parallel hardware 

at Cluster Computer Vision Noord Nederland, Miedema, Winsum, 13 March 2012. 

- Accelerating sequential Computer Vision algorithms using commodity parallel hardware 

at Parallel Architecture Research group Eindhoven University of Technology, 13 April 

2012. 

- Accelerating sequential Computer Vision algorithms using commodity parallel hardware 

(Van de Loosdrecht, 2012d) at the GPGPU-day in Amsterdam on 28 June 2012 (Platform 

Parallel Netherlands, 2012). 

- Accelerating sequential Computer Vision algorithms using OpenMP and OpenCL on 

commodity parallel hardware at NHL University on 13 September 2012.  

- Accelerating sequential Computer Vision algorithms using commodity parallel hardware 

at INCAS
3
 research group University Groningen on 6 March 2013. 

- Parallelliseren van algoritmen mbv OpenMP en OpenCL voor multi-core CPU en GPU 

at department of Computer Science, NHL University on 7 March 2013.  

- Accelerating sequential Computer Vision algorithms using commodity parallel hardware 

at RAAK Vision in Mechatronics and Robotics, Leeuwarden on 8 March 2013. 

- Accelerating sequential Computer Vision algorithms using commodity parallel hardware 

at NIOC2013 (NIOC, 2013), Arnhem on 4 April 2013.   

- Accelerating sequential Computer Vision algorithms using commodity parallel hardware 

at Photonics Event 2013 (Photonics, 2013) in Velthoven on 25 April 2013. 

- Accelerating sequential Computer Vision algorithms using commodity parallel hardware 

at Vision, Robotics & Mechtronics 2013 (Mikrocentrum, 2013) in Velthoven on 23 May 

2013. 
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- Connected Component Labelling, an embarrassingly sequential algorithm (Van de 

Loosdrecht, 2013c) at the Applied GPGPU-day 2013 in Amsterdam on 20 June 2013 

(Platform Parallel Netherlands, 2013). 

- Connected Component Labelling, an embarrassingly sequential algorithm (Van de 

Loosdrecht, 2013d) at University Groningen, research group Scientific Visualization and 

Computer Graphics on 3 September 2013. 

 

Course material: 

- Accelerating sequential Computer Vision algorithms using OpenMP and OpenCL on 

commodity parallel hardware (Van de Loosdrecht, 2012a). This is a general introduction 

to OpenMP en OpenCL and is publicly available on the internet. 

- Multi-core processing in VisionLab (Van de Loosdrecht, 2012b). This describes how to 

calibrate and to use Automatic Operator Parallelization calibration for multi-core CPUs in 

VisionLab and is publicly available on the internet. 

8.5.4 Product innovation 

This work resulted directly in innovations in the commercially available product VisionLab. 

- 170 operators were parallelized using OpenMP and Automatic Operator Parallelization 

was implemented. Users of VisionLab can now benefit from parallelization without 

having to rewrite their scripts, C++ or C# code. 

- OpenCL toolbox was added to the development environment. Users of VisionLab can 

now comfortably write OpenCL host-side code using the script language and edit their 

kernels. The OpenCL host interface was implemented and tested for NVIDIA, AMD and 

Intel OpenCL platforms. 
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8.6 Future work 

Many of the previous chapters contained sections on future work on the subjects discussed in 

that chapter. In this section the main direction for future work is discussed. 

8.6.1 Future work in relation to multi-core CPU programming 

- At the moment the 170 frequently used operators are parallelized using OpenMP. The 

other operators must still be parallelized. 

- The Automatic Operator Parallelization mechanism is calibrated with the most frequent 

used image type and with one typical image selected for each individual operator.  

It is expected that the calibration result for a specific operator will be similar for all image 

types. This assumption must be validated by benchmarking. Otherwise a separate 

calibration for all image types will be necessary.  

Research is needed to investigate whether calibration can be improved with a set of 

images for each operator. 

- The Automatic Operator Parallelization mechanism uses either the number of threads 

specified by the user or one thread. Future research is needed to investigate if a finer 

granularity would be beneficial. 

- Experiments should be undertaken with portable vectorization when products become 

available with the announced OpenMP 4.0 with support for “directives for attached 

accelerators”. 

- Experiments should be undertaken with OpenMP scheduling strategies to reduce variance 

in execution times. 

- Experiments should be undertaken with OpenMP on Android when available. 

- Research and experiments are needed to investigate the possibilities and limitations of the 

scalability to ccNUMA distributed memory systems. 

8.6.2 Future work in relation to GPU programming 

- More time must be invested in understanding GPU architectures, OpenCL and OpenCL 

profiling tools in order to come to a better understanding of the bottlenecks in 

performance. 

- Time-consuming (combinations of) operators should be selected for pilot projects.  

- At the moment not all OpenCL host API functions are available in the script language. 

The C++ wrapper around the host API must be extended and new commands added to the 

command interpreter of VisionLab. 
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- Intelligent buffer management should be implemented in the C++ module with an 

abstraction layer on top of OpenCL host API. With intelligent buffer management, 

unnecessary transfer of data between host and device can be detected and avoided. 

- The performance of OpenCL is not portable. Research is needed to investigate the 

possibilities for writing generic OpenCL kernels, i.e. kernels that run with adequate 

performance on multiple platforms. 

- OpenCL programs have many parameters that need tuning for optimal performance. 

Manual tuning of these parameters is laborious. If OpenCL is to be run on multiple 

platforms, a mechanism for the automatic tuning of these parameters is required. The 

author suggests that a possible line of research is to develop a framework for the 

automatic optimization of those parameters using Genetic Algorithms. 

- Experiments should be undertaken with GPU programming using the announced 

OpenMP 4.0 with “directives for attached accelerators” when products become available. 

- Research and experiments are needed to investigate the possibilities and limitations of the 

scalability to multiple graphics cards. 

8.6.3 Future work in relation to heterogeneous computing 

- It is expected that it will be beneficial to combine multi-core CPU and GPU computing. 

Research is needed to investigate the possibilities and limitations. 

- Research is needed for creating a decision framework for deciding which parts of 

algorithms should run on which platforms. Preliminary research on this topic has been 

done by Brown (2011). 

8.6.4 Future work in relation to automatic parallelization or vectorization of code 

- Although world-wide a lot of research has been done in this field, it is still not applicable 

to parallelizing a whole library in an economical way and executing it on multiple 

platforms.  

Experiments with the automatic parallelization and vectorization capabilities of Visual 

Studio 2012 were disappointing. The automatic parallelization is a vendor specific 

mechanism very similar to OpenMP. Without modification of code, automatic 

vectorization (Hogg, 2012) was only profitable for three for loops, all with only a one line 

body, in the 100,000 lines of source code of VisionLab. 

- Research is needed to investigate the state of the art of other tools. 
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8.6.5 Future work in relation to benchmarking parallel algorithms 

- The reproducibility of the experiments is low. It seems to the author that the question of 

accessing the quality, such as reproducibility and variance in execution time, of 

benchmarking parallel algorithms has not been fully addressed in the research literature.  

8.6.6 Future work in relation to parallelizing Computer Vision algorithms 

- More literature research is needed for parallelizing non-embarrassingly parallel image 

operators and for the pattern matchers, neural networks and genetic algorithms used in 

VisionLab. 

- The Khronos Group has proposed an initiative to create a new open standard for hardware 

accelerated Computer Vision. The draft of this standard is expected to be published in 

2013. It could be very interesting to join this initiative, and analysis of the proposal is 

recommended 

8.7 Final conclusions 

The complexity of Computer Vision applications continues to increase, often with more 

demanding real time constraints, so there is an increasing demand for more processing power. 

This demand is also driven by the increasing pixel resolution of cameras.  

 

The author fully agrees with “The Free Lunch Is Over: A Fundamental Turn Toward 

Concurrency in Software” (Sutter, 2005) in which it was predicted that the only way to get 

more processing power in the future is to adopt parallel programming, and that it is not going 

to be an easy way.  

 

At both NHL and LIT there is no tradition of parallel programming. In order to get ideas and 

feedback, research groups of other universities were visited, conferences were attended and 

lectures presented. In the opinion of the author, Computer Vision is not the only domain with 

an increasing need for more processor power and limited by the performance capabilities of 

sequential processor architectures. Therefore it is recommended that NHL and LIT start 

lecturing parallel programming. Introductory course material has been developed by the 

author. 
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Many other related research projects have considered one domain specific algorithm to 

compare the best sequential with best parallel implementation on a specific hardware 

platform. This project is distinctive because it investigated how to speed up a whole library 

by parallelizing the algorithms in an economical way and executing them on multiple 

platforms. 

 

The aim of this project was to investigate the use of parallel algorithms to improve execution 

time in the specific field of Computer Vision using an existing product (VisionLab) and 

research being undertaken at NHL. This work demonstrated clearly that execuation times  of 

algorithms can be improved significantly using a parallel approach. 

 

Twenty-two programming languages and environments for parallel computing on multi-core 

CPUs and GPUs were examined, compared and evaluated. One standard, OpenMP, was 

chosen for multi-core CPU programming and another standard, OpenCL, was chosen for 

GPU programming. 

 

Based on the classification of low level image operators, an often used representative of each 

class was chosen and re-implemented using both standards. The performance of the parallel 

implementations was tested and compared to the existing sequential implementations in 

VisionLab. 

 

The results were evaluated with a view to assessing the appropriateness of multi-core CPU 

and GPU architectures in Computer Vision as well to assessing the benefits and costs of 

parallel approaches to implementation of Computer Vision algorithms. 

 

Using OpenMP it was demonstrated that many algorithms of a library could be parallelized in 

an economical way and that adequate speedups were achieved on two multi-core CPU 

platforms. A run-time prediction mechanism that will test whether parallelization will be 

beneficial was successfully implemented for this OpenMP approach. With a considerable 

amount of extra effort, OpenCL was used to achieve much higher speedups for specific 

algorithms on dedicated GPUs. 
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AMP  Accelerated Massive Parallelism 

API Application Programmers Interface 
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BLOB Binary Linked OBject 

CAGR  Compound Annual Growth Rate 
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ccNUMA cache coherent Non-Uniform Memory Access 

ccUMA cache coherent Uniform Memory Access 
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EMVA  European Machine Vision Association 

FPGA Field Programmable Gate Array 
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FSA Fusion System Architecture 

GFLOPS Giga FLoating point OPerations per Second 

GPGPU General Purpose Graphical Processing Unit 

GPU Graphical Processor Unit 

GUI Graphical User Interface 

HPC  High Performance Computer 

HSA Heterogeneous System Architecture 

IDE  Integrated Development Environment 
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A Specification benchmark PC 

 

Dell XPS 8300 

- Intel Core i7-2600 CPU @ 3.4 GHz 8 GB RAM 

- Windows 7 Ultimate 64 bit 

- NVIDIA GeForce GTX 560 Ti (OEM) 1280 MB GDDR5 
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B Benchmark image 

 

The image cells.jl (256x256 pixels Int16Image) was used as basis for benchmarking: 
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C Example of OpenCL host code in VisionLab 

script language 

 

This example shows the same functionality as the C code example mentioned in section 

5.3.3. Only 30 lines of host code are needed instead of 67 lines of C code and the script code 

performs error checking and handling. 

 

File VectorAdd.cl: 

kernel void VecAdd (global int *c, global int *a, global int *b) { 

   unsigned int n = get_global_id(0); 

   c[n] = a[n] + b[n];   

} 

 

VisionLab script: 

 
$vectorSize = 100 

FOR $i = 0 to ($vectorSize - 1) DO 

  $A[$i] = 1 

  $B[$i] = 2 

  $C[$i] = 0 

  $exp[$i] = 3 

ENDFOR 

CL_Init NVIDIA GPU  

$nrP = CL_GetPlatforms &$tabP  

$platformId = 0  

$nrD = CL_GetDevices $platformId &$tabD  

$deviceId = 0  

$contextId = CL_CreateContext $platformId ($deviceId)  

$qId = CL_CreateQueue $contextId $deviceId OutOfOrderEnabled  

   ProfilingEnabled  

$options = ""  

$src = VarFromFile VectorAdd.cl   

$programId = CL_CreateProgram $contextId &$src  

CL_Build $programId &$options  

CL_AddKernel $programId VecAdd  

$bufA = CL_CreateBuffer $contextId ReadOnly IntArray $vectorSize 

$bufB = CL_CreateBuffer $contextId ReadOnly IntArray $vectorSize 

$bufC = CL_CreateBuffer $contextId WriteOnly IntArray $vectorSize 

CL_SetArg VecAdd 0 Buffer $bufC 

CL_SetArg VecAdd 1 Buffer $bufA 

CL_SetArg VecAdd 2 Buffer $bufB 

CL_WriteBuffer $qId $bufA &$A () () Wait 

CL_WriteBuffer $qId $bufB &$B () () Wait 

CL_Run $qId VecAdd () ($vectorSize) () () () Wait  

CL_ReadBuffer $qId $bufC &$C () () Wait 

TestEqualVar &$C &$exp   
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D OpenCL abstraction layer 

/* File     : OpenCL_JL.h 
 * Project  : visionlib V3.0 
 * Author   : Jaap van de Loosdrecht, Herman Schubert 
 *            Van de Loosdrecht Machine Vision BV 
 *            www.vdlmv.nl 
 * Date     : 1-6-2012 
 * 
 * Copyright (c) 1993-2013, Van de Loosdrecht Machine Vision BV, 
 * all rights reserved. 
 */ 
 
#ifndef JL_OPENCL 
#define JL_OPENCL 
 
#include "compiler.h" 
#pragma warning( disable : 4100 4245 4510 4512 4610 4290) 
#define __CL_ENABLE_EXCEPTIONS 
#include <CL/cl.hpp> 
#include <vector> 
#include <string> 
#include <map> 
#include "image.h" 
#include "word.h" 
 
namespace JL_OpenCL { 
 
class Error: public std::exception { 
public: 
   Error (const std::string& msg); 
   Error (const std::string& opName, const std::string& msg); 
   virtual const char *what() const throw(); 
   virtual ~Error() throw() {} 
protected: 
   std::string msg;    
}; 
 
enum PlatformVendor {AMD, NVIDIA, INTEL, AllPlatforms, NrOfPlatformVendors};  
enum DeviceType {DefaultDevice, CPU, GPU, Accelerator, AllDevices, NrOfDeviceTypes}; 
enum QOutOfOrder {OutOfOrderEnabled, OutOfOrderDisabled}; 
enum QProfiling {ProfilingEnabled, ProfilingDisabled}; 
enum WaitType {NoWait, Wait}; 
enum BufferRWType {ReadOnly, WriteOnly, ReadWrite, NrOfBufferRWTypes}; 
enum ImageType {CL_ByteImage, CL_FloatImage, CL_Int16Image, CL_Int32Image,  
    CL_RGB888Image, NrOfImageTypes}; 
enum PlatformInfo {PLATFORM_PROFILE, PLATFORM_VERSION, PLATFORM_NAME, PLATFORM_VENDOR,  
                   PLATFORM_EXTENSIONS, NrOfPlatformInfos}; 
enum DeviceInfo {   // note: problem with macro DEVICE_TYPE, so DEVICE_Type is used 
     DEVICE_Type, DEVICE_VENDOR_ID, DEVICE_MAX_COMPUTE_UNITS, 
     DEVICE_MAX_WORK_ITEM_DIMENSIONS, DEVICE_MAX_WORK_GROUP_SIZE, 
     DEVICE_MAX_WORK_ITEM_SIZES, DEVICE_PREFERRED_VECTOR_WIDTH_CHAR,  
     DEVICE_PREFERRED_VECTOR_WIDTH_SHORT, DEVICE_PREFERRED_VECTOR_WIDTH_INT,  
     DEVICE_PREFERRED_VECTOR_WIDTH_LONG, DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT,  
     DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE, DEVICE_MAX_CLOCK_FREQUENCY, 
     DEVICE_ADDRESS_BITS, DEVICE_MAX_READ_IMAGE_ARGS, DEVICE_MAX_WRITE_IMAGE_ARGS,  
     DEVICE_MAX_MEM_ALLOC_SIZE, DEVICE_IMAGE2D_MAX_WIDTH, DEVICE_IMAGE2D_MAX_HEIGHT,  
     DEVICE_IMAGE3D_MAX_WIDTH, DEVICE_IMAGE3D_MAX_HEIGHT,  
     DEVICE_IMAGE3D_MAX_DEPTH, DEVICE_IMAGE_SUPPORT, DEVICE_MAX_PARAMETER_SIZE,  
     DEVICE_MAX_SAMPLERS, DEVICE_MEM_BASE_ADDR_ALIGN, DEVICE_MIN_DATA_TYPE_ALIGN_SIZE,  
     DEVICE_SINGLE_FP_CONFIG, DEVICE_GLOBAL_MEM_CACHE_TYPE,  
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     DEVICE_GLOBAL_MEM_CACHELINE_SIZE, DEVICE_GLOBAL_MEM_CACHE_SIZE,  
     DEVICE_GLOBAL_MEM_SIZE, DEVICE_MAX_CONSTANT_BUFFER_SIZE,  
     DEVICE_MAX_CONSTANT_ARGS, DEVICE_LOCAL_MEM_TYPE, DEVICE_LOCAL_MEM_SIZE,  
     DEVICE_ERROR_CORRECTION_SUPPORT, DEVICE_PROFILING_TIMER_RESOLUTION,  
     DEVICE_ENDIAN_LITTLE, DEVICE_AVAILABLE,  
     DEVICE_COMPILER_AVAILABLE, DEVICE_EXECUTION_CAPABILITIES,  
     DEVICE_QUEUE_PROPERTIES, DEVICE_NAME, DEVICE_VENDOR,  
     DRIVER_VERSION, DEVICE_PROFILE, DEVICE_VERSION, DEVICE_EXTENSIONS,  
     DEVICE_PLATFORM, DEVICE_DOUBLE_FP_CONFIG,  
     DEVICE_HALF_FP_CONFIG, DEVICE_PREFERRED_VECTOR_WIDTH_HALF,  
     DEVICE_HOST_UNIFIED_MEMORY, DEVICE_NATIVE_VECTOR_WIDTH_CHAR,  
     DEVICE_NATIVE_VECTOR_WIDTH_SHORT, DEVICE_NATIVE_VECTOR_WIDTH_INT,  
     DEVICE_NATIVE_VECTOR_WIDTH_LONG, DEVICE_NATIVE_VECTOR_WIDTH_FLOAT,  
     DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE, DEVICE_NATIVE_VECTOR_WIDTH_HALF, 
     DEVICE_OPENCL_C_VERSION, 
     NrOfDeviceInfos};  
enum KernelWorkGroupInfo { 
     KERNEL_WORK_GROUP_SIZE, KERNEL_COMPILE_WORK_GROUP_SIZE, KERNEL_LOCAL_MEM_SIZE, 
     KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE, KERNEL_PRIVATE_MEM_SIZE, 
     NrOfKernelWorkGroupInfos}; 
enum AmdBufferType {AMD_LOCAL, AMD_UNCACHED, AMD_CACHABLE}; 
 
struct ContextRec {    
   ContextRec (const cl::Context &c, const int pId) { 
       context = c; platformId = pId; 
   } 
   cl::Context context; 
   int         platformId;  // NOTE: is JL platformId used in deviceTab,  
                            //       not OpenCL platformId!! 
}; // ContextRec 
 
extern cl::NDRange StrToNDRange(const string &str); 
extern std::vector<int> WaitEventList (const int nr, ...); 
 
class OpenCL_JL { 
public:    
   OpenCL_JL (); 
         ~OpenCL_JL (); 
   void  Init (const PlatformVendor pv, const DeviceType dt); 
    
   void  AddKernel (const int programId, const std::string &name); 
   void  Build (const int programId, const std::string &options); 
   std::string BuildInfo (const int programId); 
   int   CreateBuffer (const int contextId, const int size, const BufferRWType rw); 
   int   CreateHostBufferFromPtr (const int contextId, IN void* buffer,  
                                  const int size, const BufferRWType rw);  
   int   CreateHostBuffer (const int contextId, const int queueId, OUT void** buffer, 
                          const int size, const BufferRWType rw);  
   void  UnmapHostBuffer (IN void* buffer, const int queueId, const int bufferId); 
   int   CreateContext (const int platformId, const std::vector<int> &deviceTab); 
   int   CreateEvent (); 
   int   CreateImage2D (const int contextId, const ImageType imageType,  
                        const int height, const int width, const BufferRWType rw); 
   int   CreateProgram (const int contextId, const std::string &src); 
   int   CreateProgramWithBinary (const int contextId, const std::string &fileName); 
   int   CreateQueue (const int contextId, const int deviceId,  
                      const QOutOfOrder qOrder, const QProfiling qProf); 
   void  DeleteAll (); 
   void  DeleteBuffers (); 
   void  DeleteContexts (); 
   void  DeleteDevices ();  
   void  DeleteEvents (); 
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   void  DeleteKernels (); 
   void  DeleteImage2Ds (); 
   void  DeletePlatforms ();  
   void  DeletePrograms (); 
   void  DeleteQueues (); 
    
   void  Finish (const int queueId); 
   void  Flush (const int queueId); 
   std::string GetDeviceInfo (const int platformId, const int deviceId,  
                              const DeviceInfo info); 
   std::string GetKernelWorkGroupInfo (const int platformId, const int deviceId,  
                                       const std::string &kernelName,  
                                       const KernelWorkGroupInfo info); 
   std::string GetPlatformInfo (const int platformId, const PlatformInfo info); 
   int   NrDevices (const int platformId); 
   int   NrPlatforms (); 
   void  ReadBuffer (const int queueId, const int bufId, const int size, void *buf,  
                     const std::vector<int> waitList, const int eventId = -1,  
                     const WaitType wait = Wait); 
   void  ReadImage2D (const int queueId, const int imageId,  
                      JL_VisionLib_V3::Image &image, 
                      const std::vector<int> waitList, const int eventId = -1,  
                      const WaitType wait = Wait); 
   void  Run (const int queueId, const std::string &kernelName,  
              const cl::NDRange& offset, const cl::NDRange& global,  
              const cl::NDRange& local, const std::vector<int> waitList,  
              const int eventId = -1, const WaitType wait = Wait); 
   void  SaveBinary (const int programId, const std::string &fileName); 
   template <class Value> void SetArg (const string &kernelName, const int index, 
                                       const Value value); 
   void  SetArgBuf (const std::string &kernelName, const int index, const int bufId); 
   void  SetArgImage2D (const std::string &kernelName, const int index,  
                        const int imageId); 
   void  SetArgLocalBuf (const std::string &kernelName, const int index,  
                         const int size); 
   bool  SupportDoubles(const int platformId, const int deviceId); 
   void  WaitForEvent (const int eventId); 
   void  WaitForEvents (const std::vector<int> waitList); 
   void  WriteBuffer (const int queueId, const int bufId, const int size, void *buf,  
                      const std::vector<int> waitList, const int eventId = -1,  
                      const WaitType wait = Wait); 
   void  WriteImage2D (const int queueId, const int imageId,  
                       JL_VisionLib_V3::Image &image, 
                       const std::vector<int> waitList, const int eventId = -1,  
                       const WaitType wait = Wait); 
   static std::string ErrorCodeToStr (const int err); 
protected: 
   struct Image2DRec { 
      Image2DRec (ImageType it, int h, int w, BufferRWType rwt, cl::Image2D &buf) { 
          imageType = it; height = h; width = w; rw = rwt; buffer = buf; 
      } 
      ImageType imageType; 
      int height; 
      int width; 
      BufferRWType rw; 
      cl::Image2D buffer; 
   }; // Image2DRec 
   enum InfoType {IT_uint, IT_bool, IT_string, IT_ulong, IT_size_t, IT_size_tArray,  
                  IT_enum, IT_NotSupported}; 
   struct InfoElm { 
      InfoElm (const int c = 0, const InfoType t = IT_NotSupported) {  
               code = c; type = t; } 
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      int code; 
      InfoType type; 
   }; 
   typedef std::vector<cl::Platform> PlatformTab; 
   typedef std::vector<std::vector<cl::Device> >DeviceTab;     
                      // [platformId][deviceId] 
   typedef std::vector<ContextRec>   ContextTab; 
   typedef std::vector<cl::CommandQueue> QueueTab; 
   typedef std::vector<cl::Program > ProgramTab; 
   typedef std::map<std::string, cl::Kernel>  KernelTab;  
   typedef std::vector<cl::Buffer>   BufferTab;  
   typedef std::vector<Image2DRec>   Image2DTab;  
   typedef std::vector<cl::Event>    EventTab;  
    
   typedef vector<std::string>       PlatformVendorTab; 
   typedef vector<int>               DeviceTypeTab; 
   typedef vector<int>               BufferRWTypeTab; 
   typedef vector<cl::ImageFormat>   ImageFormatTab; 
   typedef vector<int>               PlatformInfoTab; 
   typedef vector<InfoElm>           DeviceInfoTab; 
   typedef vector<InfoElm>           KernelWorkGroupInfoTab; 
   typedef vector<std::string>       ErrorCodeTab; 
   bool                   initialized; 
   PlatformVendor         platformVendor; 
   DeviceType             deviceType; 
   PlatformTab            platformTab; 
   DeviceTab              deviceTab; 
   ContextTab             contextTab; 
   QueueTab               queueTab; 
   ProgramTab             programTab; 
   KernelTab              kernelTab; 
   BufferTab              bufferTab; 
   Image2DTab             image2DTab; 
   EventTab               eventTab; 
   PlatformVendorTab      platformVendorTab; 
   DeviceTypeTab          deviceTypeTab; 
   BufferRWTypeTab        bufferRWTypeTab; 
   ImageFormatTab         imageFormatTab; 
   PlatformInfoTab        platformInfoTab; 
   KernelWorkGroupInfoTab kernelWorkGroupInfoTab; 
   DeviceInfoTab          deviceInfoTab; 
   static ErrorCodeTab    errorCodeTab; 
   void InitConvTabs (); 
   void InitErrorCodeTab (); 
   void InitPlatformInfoTab (); 
   void InitKernelWorkGroupInfoTab (); 
   void InitDeviceInfoTab (); 
   void CheckPlatformId (const std::string &opName, const int platformId); 
   void CheckDeviceId (const std::string &opName, const int platformId,  
                       const int deviceId); 
   void CheckContextId (const std::string &opName, const int contextId); 
   void CheckImage2DId (const std::string &opName, const int imageId); 
   void CheckProgramId (const std::string &opName, const int programId); 
   void CheckKernelName (const std::string &opName, const std::string &kernelName); 
   void CheckBufferId (const std::string &opName, const int bufferId); 
   void CheckQueueId (const std::string &opName, const int queueId); 
   std::vector<cl::Event> OpenCL_JL::ConvWaitList (const std::vector<int> &wl); 
   cl::Event* OpenCL_JL::ConvEvent(const int eventId); 
private: 
   void TestInitialized (const std::string opName); 
}; // OpenCL_JL 
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EnumStrIODeclaration(PlatformVendor) 
EnumStrIODeclaration(DeviceType) 
EnumStrIODeclaration(QOutOfOrder) 
EnumStrIODeclaration(QProfiling) 
EnumStrIODeclaration(WaitType) 
EnumStrIODeclaration(BufferRWType) 
EnumStrIODeclaration(ImageType) 
EnumStrIODeclaration(DeviceInfo) 
EnumStrIODeclaration(KernelWorkGroupInfo) 
EnumStrIODeclaration(PlatformInfo) 
EnumStrIODeclaration(AmdBufferType) 
 
} // namespace JL_OpenCL 
 
#endif // JL_OPENCL 
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E Execution time tables 

E.1. Introduction 

In this Appendix the median of the execution time in micro seconds for experiments 

described in Chapter 7 is shown. See for explanation of the columns the corresponding 

sections in Chapter 7 for each experiment. The execution time table are shown for: 

- Reproducibility of experiments. 

- Sequential versus one core OpenMP. 

- Data transfer between host and device. 

- Computer Vision algorithms used for benchmarking. 

- Automatic Operator Parallelization. 

- Performance portability. 

- Parallelization in real projects. 

E.2. Reproducibility of experiments 
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E.3. Sequential versus OpenMP single core 

 

E.4. Data transfer between host and device 
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E.5. Threshold 
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E.6. Convolution 
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E.7. Histogram 
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E.8. LabelBlobs 
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E.9. OpenCL Histogram on AMD GPU 
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F Benchmark details 

 

The benchmark details are available in electronic form. For each benchmark performed there 

is available: 

- Speedup graph: the results are summarized in a graph where the size of the image is 

plotted against the speedup obtained. The reference is the execution of the sequential 

version; a speedup of 1. The speedup graph for each benchmark conducted is shown in 

Chapter 7. 

- Speedup table: the speedup factor for each experiment performed. 

- Median table: the median of the execution times in micro seconds for each experiment 

performed. 

- The violin plots for each experiment performed. 

- For GPU benchmarks, tables with best workgroup sizes. 

 

As example the results for the OpenMP benchmark for the Threshold operator is included in 

this document. 
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G OpenMP parallelized operators 

 

List of operators which are parallelized using OpenMP and for which Automatic Operator 

Parallelization is implemented. 

 

AveragePixel 

ApproxPolygon 

BACalcBasic 

BACalcBasicExtremes 

BAWeightedCoG 

Binning 

BlobAnalysis 

BlobAnd 

BlobMatcher::BestMatch 

BlobMatcher::AllMatches 

BlobMatcher::EvaluateClassImageSet 

BlobMatcher::FindPatterns 

CalcHistogram 

CalcHistogram0 

CalcHistogramROI 

ClipPixelValue 

Closing 

ContrastStretch 

ConvertHSV161616To888Image  

ConvertHSV888To161616Image  

ConvertHSV161616ToRGB161616Image 

ConvertHSV888ToRGB888Image  

ConvertOrdToRGB161616Image  

ConvertOrdToRGB888Image 

ConvertRGB161616To888Image  

ConvertRGB161616ToHSV161616Image  

ConvertRGB161616ToOrdImage 

ConvertRGB161616ToYUV161616Image 

ConvertRGB888To161616Image  

ConvertRGB888ToHSV888Image 

ConvertRGB888ToOrdImage  

ConvertRGB888ToYUV888Image 

ConvertYUV161616To888Image  

ConvertYUV161616ToRGB161616Image 

ConvertYUV888To161616Image  

ConvertYUV888ToRGB888Image 

Convolution 

CosineWindow 

CountPixels 

DGEdgeDirection  

DGEdgeMagAndDir 

DGEdgeMagnitude 

Difference 

Dilation  

DoGFilter 

Erosion 

FastRGBToHSV  

FastYUVToHSV 

FillHoles 

FillSpecificHoles 

FillSpecificGrayScaleHoles 

FindBlob 

FindCornersRectangleSq 

FindHoles 

FishEye 

FreiChen 

Gamma 

GaussianFilter 

HistogramEqualize 

HitAndMiss 

Invert 

IsTheSame 
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LabelAnd 

LabelBlobs 

LoGFilter 

LowestButZeroPixel 

LUT 

LUTVector 

Max 

MaximumFilter 

MaxLabel 

MaxPixel 

MarrHildreth 

Min 

Mean 

MinimumFilter 

MinLabel 

MinMaxLabel 

MinMaxPixel 

MinPixel 

Noise 

NormaliseRGB 

Not 

NrOfNeighbours 

operator image /= image 

operator image /= pixel  

operator image = image / image 

operator image = pixel / image 

operator image = image / pixel 

operator image -= image 

operator image -= pixel  

operator image = image - image 

operator image = pixel - image 

operator image = image - pixel 

operator image *= image 

operator image *= pixel  

operator image = image * image 

operator image = pixel * image 

operator image = image * pixel 

operator image += image 

operator image += pixel  

operator image = image + image 

operator image = pixel + image 

operator image = image + pixel 

operator image &= image 

operator image &= pixel  

operator image = image & image 

operator image = pixel & image 

operator image = image & pixel 

operator image |= image 

operator image |= pixel  

operator image = image | image 

operator image = pixel | image 

operator image = image | pixel 

operator image ^= image 

operator image ^= pixel  

operator image = image ^ image 

operator image = pixel ^ image 

operator image = image ^ pixel 

operator !image 

Opening 

OpticalCorrectionBilinear  

OpticalCorrectionNearest 

OrdImageConversion 

PolarStretch 

Pow 

PowPixel 

Prewitt 

RampPattern 

RATS 

RATSROI 

Remainder 

RemoveBlobs 

RemoveBlobsExp 

RemoveLabelsExp 

RemoveBorderBlobs 

RemoveBorderLabels 

RemoveGrayScaleBlobs 

RemoveGrayscaleBlobsExp 

RemoveGrayScaleLabels 
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RemoveGrayscaleLabelsExp 

RemoveSelectedLabels 

ROI 

ROIR 

RotateBilinear  

RotateFullBilinear  

RotateFullNearest  

RotateNearest 

SetAllPixels 

SetMultiToValue 

SetMultiToValueLUT 

SetSelectedToValue 

Scharr 

Skeleton 

Sobel 

StandardDeviation 

SumColumns 

SumFloatPixels 

SumIntPixels 

SumRows 

Thickening 

Thinning 

Threshold 

ThresholdFast 

ThresholdLocal 

ThresholdIsoData 

ThresholdIsoDataROI 

ThresholdHysteresis 

ThresholdMulti 

ThresholdOnLowestButZero 

ThresholdOnHighest 

ThresholdOnLowest 

ThresholdRATS 

ThresholdRATSROI 

ThresholdSimple 

WarpBilinear  

WarpNearest 

ZoomBilinear 

ZoomNearest 

 

 


