
inVISION Ausgabe 1/2014|

Accelerating sequential Computer Vision algorithms

44

Accelerating sequential Computer Vision algorithms
using commodity parallel hardware

More Power

A survey [1] was performed on 22 stan-
dards for parallel computing and pro-
gramming. OpenMP was chosen as the
standard for multi-core CPU program-
ming and OpenCL as the standard for
GPU programming. Portability, vendor
independence and efficiently parallelizing
the code were key decision factors. The

economical parallelization with respect
to development effort and achieved
speedups is researched by comparing it
with an existing library. This VisionLab
(VdLMV) library consists of over 100,000
lines of ANSI C++ sequential source
code, making it platform independent.
Parallelizing the complete library, in

practice, would be too time consuming.
The basic low level image operators can
be classified in: Point operators, Local
neighbour operators, Global operators
and Connectivity based operators.
Under the assumption that similar algo-
rithms show similar speedups, one re-
presentative operator is chosen for each

Bild 1 | Benchmark on intelligent camera with APU (=CPU+GPU): speedup on 2-core CPU=1.6x
and speedup on 80-core GPU=22x . 1

B
ild
: N

H
L
U
ni
ve
rs
ity
 o
f A

pp
lie
d
S
ci
en
ce
s,
 T
he
 N
et
he
rla
nd

s

The last decade has seen an increasing demand from the industrial field of computerized visual inspection. Ap-
plications rapidly become more complex and often with more demanding real time constraints. However, from
2004 onwards the clock frequency of CPUs has not increased significantly. Computer Vision applications have an
increasing demand for more processing power but are limited by the performance capabilities of sequential pro-
cessor architectures. The only way to get more performance using commodity hardware, like multi-core proces-
sors and graphics cards, is to go for parallel programming. This article focuses on the practical question: How can
the processing time for vision algorithms be improved, by parallelization, in an economical way and execute them
on multiple platforms?

Komponenten |

inVISION Ausgabe 1/2014 | 45

Table 1 | Speedups

class: Threshold, Convolution, Histo-
gram and Connected component labe-
ling. These operators are implemented
in OpenMP 3.0 and OpenCL 1.1 and
benchmarked. Programming effort is
assed mainly by qualitative observation
and speedup is measured by quantita-
tive empirical research. The commodity
hardware used for experimentation are
an quad-core Intel I7 running Windows
7 with low-end NVIDIA and AMD gra-
phics cards and a quad-core ARM run-
ning Linux. The Visual Studio and the
GNU tool chains are used for program-
ming the algorithms. The maximum
speedups obtained for each of the four
operators are shown in table. 1. The
best speedups were obtained with large
images. OpenMP extends C++ code
with pragmas and functions in order to
exploit parallelism. Learning OpenMP
was considered easy because there are
only a limited number of concepts which
have a high level of abstraction. The ef-
fort for parallelizing embarrassingly pa-
rallel algorithms, like Threshold and
Convolution, is just adding one line with
the OpenMP pragma. More complicated
algorithms like Histogram and Connecti-
vity component labeling need more ef-
fort to parallelize. The overhead exceeds
the speedup for small images. For this
reason run-time prediction, whether pa-

rallelization is expected to be beneficial,
is necessary. The four basic vision algo-
rithms were used as templates to paral-
lelize 170 operators. It only took about
two man months of work to parallelize
170 operators and to implement the
run-time prediction mechanism. Portabi-
lity is achieved by just recompiling
source code for a different platform. The
OpenCL standard includes a language
(based on C99) for writing kernels,
functions that execute on the graphics
card, plus an API that runs on the CPU
for building, launching and controlling
the kernels on the GPU. Learning and
applying OpenCL was considered diffi-
cult and time-consuming. OpenCL intro-
duces many new and low level abstract
concepts. Although the OpenCL kernel
language is easy to understand, high
speedups can only be achieved if you
understand all hardware related details.
OpenCL can also be used for imple-
menting algorithms on the CPU utilizing
its vector capabilities. In the case of em-
barrassingly parallel algorithms simple
implementations demonstrated conside-
rable speedups. In all cases a conside-
rable amount of effort was necessary to
further improve the speedups by making
more complex algorithms. Tests suggest
that GPU implementations for different
GPUs need different approaches for op-

timal speedup. It is expected that
OpenCL operators are portable but their
performance will not be portable to
other graphics devices.

Conclusion

Using OpenMP it was demonstrated
that many algorithms of a library could
be parallelized in an economical way
and adequate speedups were achieved
on two multi-core CPU platforms. With
a considerable amount of extra effort
OpenCL achieves much higher spee-
dups for specific algorithms on dedica-
ted GPUs. In the end the question is
whether the speedup is worth the effort.
The answer depends largely on the ap-
plication. For the economic accelerating
of a complete sequential computer vi-
sion library OpenCL is deemed unsuit-
able, but OpenCL has the potential to
unleash the enormous processing
power of graphics cards for specific ap-
plication. For contemporary GPUs the
overhead of data transfer between PC
and graphics card is substantial compa-
red to the kernel executing time. When
the new announced heterogeneous
CPU/GPU architectures hit the market,
this data transfer overhead will be redu-
ced significantly. The recent published
OpenMP 4.0 standard will allow pro-
gramming on both multi-core CPUs and
GPUs. Compared with OpenCL, this
new standard will allow multi-core CPU
and GPU programming at a higher abs-
traction level than OpenCL. �

[1]Thesis available at
www.vdlmv.nl/thesis

www.nhl.nl/computervision

| KomponentenAccelerating sequential Computer Vision algorithms

Algorithm OpenMP OpenCL

Threshold 2.9 18.4

Convolution 4.9 60.9

Histogram 5.4 14.1

Connected com-
ponent labeling

3.6 4.0

Autoren | Jaap van de Loosdrecht &
Klaas Dijkstra, Centre of Expertise in
Computer Vision, NHL University of Ap-
plied Sciences, The Netherlands

