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Introduction

The Israeli Defense Force (IDF) encountered numerous problems during the invasion 
of southern Lebanon in 2006. Division 162, for instance, experienced serious difficulties 
while approaching the village of Ghandouriyeh.2 Even though multiple axes of approach 
were available the IDF took the route along Wadi Saluki (other possibilities were to 
approach either from the south or north). Hezbollah launched a successful ambush 
resulting in the death of several IDF soldiers.3 This action stands as an example of IDF’s 
failure to obtain accurate tactical ground intelligence during this conflict.4 Ambushes, 
raids and IED attacks have been, and still are, tactics most often employed by irregular 
fighters.5 Counter-measures consist of physical protection of men and materiel, and 
methods to detect, predict and neutralise possible attacks.6 Game theory, the mathemati-
cal analysis of the strategic interaction between actors, offers a coherent analytical frame-
work that can be used to systematically analyse problems related to counter-insurgency.7 
In addition, it offers a framework that helps understand the influence of assumptions 
on outcomes of an analytical process.8 Game theory has been used extensively in mod-
eling military operations as well as in modeling problems of a more strategic nature.9 
We argue that game theory can also be useful in predicting and preventing attacks with 
improvised explosive devices by reducing the predictability of traffic patterns.

 The goal of this chapter is to present an analytical framework that can be used to 
optimise routing schemes, knowing that the enemy employs ambushes and IED attacks. 
This will be done by considering the possible strategies each player in this `ambush 
game’ can employ. Simply put, one player has to choose among the possible routes 
between a source and destination, and the other player has to choose the location of an 
attack. Game theory is perfectly equipped to analyse such strategic interactions.

 Clearly, mathematical modeling always comes at the cost of making simplifying 
assumptions. We recognise that other considerations also play a role in deciding what 
route to take (such as geography, available time, etc.). However, a game-theoretical 
approach can certainly aid in maximizing the unpredictability of routing schemes, con-
sequently minimizing the expected loss to allied forces.
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The layout of this chapter is as follows. A game-theoretical model that captures the 
strategic interaction between the player that conducts the ambush and the player that 
moves from source to destination on risk-homogeneous networks will be introduced 
first. Next, a discussion on approximating the risk of an attack on edges in the network 
will be presented. Finally, optimal routing on heterogeneous networks will be presented 
in the last section.

Optimal routing on risk-homogeneous networks

In the remainder of this chapter the player that conducts the ambush will be called 
`Red’, and the other player will be called `Blue’. The following restrictions can be made 
to simplify the analysis: 

1. Red conducts exactly one ambush each iteration.
2. Red conducts exactly k ambushes each iteration.
3. Red knows the source and destination of the Blue forces.
4. Red knows the probability distribution of Blue’s source and destination.
5. The edges in the network are risk-homogeneous.
6. The edges in the network are risk-heterogeneous.
7. Blue does not have data on possible ambush locations.
8. Blue has several sources and destinations in the network.

Multiple extensions of the above-mentioned restrictions are possible. In this chapter 
we will present an analysis of the case that Red conducts one ambush and is aware of 
Blue’s source and destination in the network. Next, we will extend the analysis by giv-
ing Red the option to conduct several ambushes. This section will be concerned with 
networks in which the edges are considered to be homogenous with respect to risk. The 
heterogeneous case will be dealt with in later sections. More complex situations are 
subject of future research.

A homogeneous network is a network in which the risk of an attack at an edge in the 
network is equal over all edges. We assume that during each iteration Blue will move 
from source to destination and that Red conducts an ambush. Consider the following 
example. 

Example 1
Suppose Blue has to move regularly from source S to destination T, see figure 1.
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To do this Blue has two options at his disposal, route A and route B. How should Blue 
assign his routing scheme?

Case 1
Assume that both edges in the network are homogeneous with respect to the risk of 

an ambush. We will show that the choice of either route A or B according to the flip of 
a coin minimises the maximum number of expected encounters with IED’s. To do this, 
assume without loss of generality that Blue chooses route A with probability p and hence 
route B with probability 1-p. Also note that Blue is not aware of the location of Red’s 
ambush (IED). If Red plans the ambush at route A and Blue chooses to use route A, it 
follows that Red `wins’ 1 convoy. If Red plans to ambush at route B and Blue chooses 
route A, then Red `wins’ nothing. We model this strategic interaction as a two person 
zero-sum game, i.e., whatever Red’s gains equals Blue’s losses. The expected payoff of 
this game in case of an ambush at route A and Blue choosing a mixed strategy (p,1-
p) equals ppp 0)1(1 . In case of Red conducting an ambush at edge B the 
expected payoff to Blue equals ppp 11)1(0 . Clearly, Blue will adopt that 
strategy (a value for p) such that the expected number of encountered ambushes will be 
minimised. Since Blue does not know the location of Red’s ambush it can be argued that 
adopting a strategy that minimises the maximum expected payoff is preferable. Hence, 
Blue will choose a value of p such that }1,max{ pp  is minimal. Therefore, Blue will 
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choose p = 1/2. This strategy corresponds to Blue tossing a fair coin each time he has to 
move from his source S to his destination T. In case of Heads he will move along route 
A and in case of tails he will move along route B. 

Clearly the previous analysis consists of an oversimplified transportation network 
because Blue only had two options available in transporting from A to B. In reality this 
network can be more complex. Therefore, we generalise the previous example. 

Case 2
Consider the following transportation network, see figure 2. 

Figure 2: A transportation network between S and T

Assume Blue has to move from S to T regularly. We determine the payoff for each 
strategy combination of Red and Blue and present the resulting information in table 1.
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SBT SCT SABT SACT SCABT

SA 0 0 1 1 0

SB 1 0 0 0 0

SC 0 1 0 0 1

AB 0 0 1 0 1

AC 0 0 0 1 1

BT 1 0 1 0 1

CT 0 1 0 1 0

Table 1: Strategic payoff (encounter: 1, no encounter: 0) corresponding to each choice of strategy for Blue and Red.

Table 1 should be read as follows. Each row corresponds to the options available to 
Red (the location of a possible ambush) and the columns correspond with the options 
(routes) available to Blue. For instance, in case of Red planning an ambush at the edge 
indicated by ‘CT’, he will encounter Blue if he either chooses route ‘SCT’ or route 
‘SACT’. Clearly, Red wants to maximise the possible number of encounters with Blue. 
On the other hand, Blue wants to minimise his number of encounters with Red. 

We introduce the concept of domination to analyse this situation. A pure strategy ‘A’ is 
dominated by another pure strategy 'B’ if and only if the payoff corresponding to option 
‘B’ is always equal to or better than option ‘A’, irrespective of one’s opponent strategy. 
A pure strategy that is dominated will never be an option to a rational player, simply 
because he has a better strategy available, irrespective of his opponent’s choice. Looking 
at the payoffs in table 1 it can be seen that pure strategy ‘BT’ dominates pure strategy 
‘AB’. In addition, it can be seen that option ‘BT’ also dominates ‘SB’. The game can 
therefore be simplified by removing these pure strategy options from the table, resulting 
in table 2. Note that intuitively this is also clear: if Blue transported over SB or AB he 
would have to choose BT next to end up in T. Locating the ambush at BT always ensures 
Red of encountering Blue in these cases. 

SBT SCT SABT SACT SCABT

SA 0 0 1 1 0

SC 0 1 0 0 1

AC 0 0 0 1 1

BT 1 0 1 0 1

CT 0 1 0 1 0

Table 2
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In a similar fashion we analyse the options available to Blue. It can be seen that his 
pure strategy ‘SBT’ dominates ‘SABT’ and ‘SCABT’. Taking these considerations into 
account yields table 3. 

SBT SCT SACT

SA 0 0 1

SC 0 1 0

AC 0 0 1

BT 1 0 0

CT 0 1 1

Table 3

Due to the elimination of Blue’s dominated strategies it becomes possible to restrict 
the rational options to Red once more. Analysing table 3, it can be seen that option ‘CT’ 
dominates ‘SA’, ‘SC’ and ‘AC’, resulting in:

SBT SCT SACT

BT 1 0 0

CT 0 1 1

Table 4

Table 4 cannot be reduced any further using the concept of dominance. Assume 
that Blue adopts the strategy (p, q, 1-p-q), i.e, Blue chooses route SBT with probability p, 
route SCT with probability q and hence route SACT with probability 1-p-q. This yields an 
expected payoff of p against Red’s first option, and a payoff of q+1-p-q=1-p against Red’s 
second option. Hence, Blue’s optimal strategy consists of choosing either route SBT or 
routes SCT and SACT according to the flip of a coin, where it does not matter how he 
chooses between SCT and SACT (his choice of q does not affect the outcomes against 
either of Red’s strategies). In addition, Red will decide to ambush BT or CT according 
to the flip of a coin. 

The previous situations consisted of Red being able to conduct exactly one ambush 
(IED attack). We will extend this analysis by allowing Red to be able to conduct more 
than one ambush attack. 
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Example 2:
Assume that Blue’s transportation network can be simplified as shown in figure 3.

Figure 3: A simple transportation network between source S and destination T

In addition, assume that Red can conduct two ambushes. We present all possible 
combinations of strategy in table 5:

A B C

A:2 2 0 0

B:2 0 2 0

C:2 0 0 2

A:1, B:1 1 1 0

A:1, C:1 1 0 1

B:1, C:1 0 1 1

A:2 2 0 0

Table 5

Table 5 presents the number of encounters between Blue and Red for each possible 
strategy combination. For instance, if Red conducts two ambushes along edge A (and 
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consequently zero at B and C), and Blue chooses to use route A, it follows that there will 
be two encounters. A similar analysis as done in the previous section (using software 
package MAPLE) yields the following optimal (maximin) strategies: 

1. Red chooses uniformly over options A:2, B:2, C:2.
2. Blue chooses uniformly over his three options.

Thus, it can be seen that the game-theoretical analysis can easily be extended to cases 
of multiple possible ambushes by use of software packages.

Estimating risk-heterogeneity

It can be argued that the assumption of network homogeneity with respect to risk is 
too restrictive. After all, some edges in the network are ‘more dangerous’ than others. 
The probability of attack at some locations may be assumed to be higher than at others. 
A network is called risk-heterogeneous if the likelihood of an attack is not distributed 
uniformly over its edges. The first step in determining an optimal routing strategy 
along such a heterogeneous network is the estimation of the risk of attack at each edge. 
Risk is clearly an abstract concept and the critic will argue that it is difficult to quantify. 
However, when choosing a routing scheme, in practice one already intuitively uses the 
concept of risk: after all, there is a tendency to choose that route that minimises the prob-
ability of attack. Instinctively, one avoids routes along which attacks often take place, or 
are `likely’ to occur. 

An extremely simple method of attributing risk to edges is by setting the likelihood 
of an attack to occur at a certain edge equal to the fraction of successful attacks on that 
edge. Intuitively, this is a good initial approach and the complexity of this method is 
nil.

Of course it is also possible to develop more elaborate analyses. Amongst others, this 
can be done with the help of expert data, statistical analyses and graph-theoretical analy-
ses. When there are no historical data with regard to attacks it is possible to attribute 
risks to edges based on centrality principles commonly used in mathematical network 
analysis. If there is data available on previous attacks, it will be possible to attribute risks 
by use of point pattern analysis.10 Here, we will give an initial illustrative discussion of 
several graph-theoretical methods useful in attributing risk to edges. 
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Centrality
If no data concerning previous attacks is available, other methods must be developed 

in order to attribute risks to edges in the network. Intuitively, edges in the network that 
are near major traffic junctions pose a higher risk, simply because these are assumed to 
be Red’s most likely locations for locating roadside bombs (red assessing the probabili-
ties of a transport passing there the highest).

It suffices to say that there are many ways of determining central nodes in a network.11 
With regard to transport over a network the ‘betweenness-centrality’ is an important 
centrality measure, as it attributes a value to a node which reflects its importance with 
regard to the exchange of information (transport) in the network. Calculating the central-
ity index of each node in the network and attributing a risk value to an edge by taking the 
sum of the values of its end nodes, seems to be a good starting point. Let ),( EVg  
indicate the network, with source Vs  and destination Vt . The amount of ‘s-t 
betweenness’ of node Vi  equals the fraction of shortest paths between s and t that 
node i occupies. We present an educative example:

Figure 4: Example of ‘betweenness centrality’ (Left) and attribution of risks (Right)
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Consider the network given in figure 4, with source S and destination T. Clearly, it 
can be seen that there are two shortest paths between S and T (SBCDET, SBCDFT). The 
nodes B, C and D are elements in both paths and hence score a betweenness centrality 
value of 1, i.e., 1DCB ccc . Node A does not occupy any shortest S-T path, hence 

0Ac . Similarly we obtain CE  CF  1/2 . Since the source of the transport equals ‘S’ 
and the destination ‘T’ we let 1TS cc . Next, we attribute risk to each edge in the 
network by taking the sum of the centrality measures adjacent to the respective edge. 
The resulting network, including risk attributed to the edges is given in figure 4 Right. 
It can be seen that the results correspond to intuition: the highest risk is attributed to 
edges BC and CD and lowest to edge AS. This method can easily be implemented in 
standard software and hence complement standard network analysis in optimizing rout-
ing schemes.

‘Chokepoints’
Another method to assign risk to edges is to determine those edges in the network 

that are critical in the connectivity of the network. For instance, Blue, in transporting 
from a source to a destination, will have certain edges in the network that he cannot 
avoid. Locating an ambush at such an edge seems profitable to Red. To determine such 
chokepoints in transporting between source S and destination T can easily be done 
by the graph theoretical concept of connectivity. This boils down to determining the 
minimum number of edges in the network, when omitted, disconnects source S from 
destination T. Such a cut is also called an S-T cut. We attribute a value to an edge by 
determining the minimum capacity of all S-T cuts that this respective edge occupies. 
The higher this value, the more alternatives are available in the S-T path with respect to 
this edge. Hence, the value of risk attributed to this edge equals 1 over this minimum 
capacity (the more alternatives available the lower the risk). We illustrate such a choke-
point analysis by an example.
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Figure 5: routing network (Left), with cut SB (Middle) and cut SABC (Right)

In Figure 5 two S-T cuts are presented: cut SB and cut SABC. Consider edge BT. 
Clearly this edge is a member of both S-T cut sets SB and SABC. All possible cut sets 
corresponding to S-T cuts containing BT are: SB(4), SAB(2), SABC(2) and SBC(6). The 
minimum number of edges that have to be cut (including BT) to isolate S from T equals 
2. Hence, the corresponding risk attributed to edge BT equals ½. A similar analysis in 
case of edge SA shows that its risk equals 1/3, as expected lower than that of BT.

Optimal routing on risk-heterogeneous networks

The preceding sections have shown that with the help of game theory it is possible to 
optimise routing schemes on risk homogenous networks. In addition, two methods of 
assigning risks to edges have been briefly discussed. Below, an analysis will be presented 
of optimal route allocation in case of such risk heterogeneous networks. This is done by 
using an example in which it is assumed that data on previous attacks is available. 
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Example: 

Consider the simple network as presented in the first section, example 1. Assume that 
blue has the following data:

1. On route A 100 transports have taken place, against which 5 attacks have been com-
mitted.
2. On route B 200 transports have taken place, against which 2 attacks have been com-
mitted.

The risk of a successful attack on route A is therefore estimated at 5% (5/100) and 
the risk of a successful attack on route B at 1% (2/200). A naive routing scheme for blue 
would consist of always taking that route that has the lowest risk of attack, in this case 
route B. However, Red, aware of this reasoning, will always ambush route B. If Blue 
extends his reasoning by taking Red’s deliberations into account, he will always pick 
route A. A game-theoretic analysis can easily break this kind of circular reasoning. Such 
a simple two-person zero-sum game is solved again in terms of minimax and maximin 
strategies.12 It is customary to define a pay-off matrix, in which the rows correspond to 
the pure strategies of player I (Red, who wants to maximise the number of ‘hits’) and 
the columns with the pure strategies of player II (Blue, who wants to minimise), as we 
have already demonstrated using tables in the previous sections. The ensuing pay-off 
matrix is as follows,

 

10
05

H

Consider the payoff in the first row and first column: 5. This equals the number of 
expected ‘hits’ if the ambush is located on route A (first row) and the transport goes 
along route A (first column), i.e., 100*0.05 = 5. Therefore, it can be argued that the 
risk on this edge in the network equals 5, bearing in mind that there are more ways of 
determining such a risk. In a similar way, if the ambush is placed on route A and the 
transport goes along route B, the transport will reach its target safely. Given this matrix, 
the optimal strategy for blue can be determined similarly to that in the previous sections. 
Blue’s optimal strategy consists of transporting over route A with probability 1/6 and 
over B with probability 5/6. The expected number of losses equals 5/6. If blue were to 
take another strategy, for instance, according to the flip of a coin, it can be seen that the 
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expected number of losses could be even lower (a half if Red chooses to ambush B) but 
also higher: 2.5 if red chooses A. Since blue does not know red’s choice of strategy he 
best opts for the 1/6 probability A strategy, this guarantees a maximum number of losses 
of 5/6, irrespective of red’s strategy! It is also easy to show that Red’s optimal strategy 
equals: with probability 1/6 ambush route A and with probability 5/6 ambush route B. 

We assumed that Blue will choose a routing scheme taking historical data on attacks 
into account, and consequently that Red will take this also into account. Red cannot pre-
dict the route Blue will pick, but he can assume that Blue will allocate his routes based 
on historic trends. Therefore, Red’s goal is to attain a payoff as high as possible against 
Blue. The strength of the optimal strategy based on minimax principles is that a devia-
tion of Red from his optimal strategy will only benefit Blue.

In reality optimal route allocation is not as easy as the above example suggests. After 
all, the transport takes place along a network of roads and the number of possible routes 
will increase drastically with the number of routes in the network. As was shown above, 
the method employed can be generalised fairly easily. Determining the optimal strat-
egy in a two-person zero-sum game setting does not depend on the number of (finite) 
strategies. In practice, however, one resorts to computer simulation as computations 
become cumbersome. In addition, it must be remarked that the method can be made 
more user-friendly by implementing it in software. In principle, the analyst only needs 
to make the choice of network to analyse and attribute risks to edges (this could be done 
for instance by attributing a scale of 1 to 10 for risk to each side of by automating some 
of the above-mentioned methods). 

Therefore, in general, consider a route map as given. In other words, blue has a net-
work and he knows what the source and destination of the transport are. Such a network 
can easily be converted into a mathematical graph, see figure 6 for an illustration. A 
mathematical graph is nothing more than a set of dots and lines: a dot corresponds to 
a node in reality and a line to an edge between the respective junctions. Such a graph is 
presented as g = (V,E), where V is the set of nodes and E the set of edges.
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Figure 6: a mathematical graph (left) representing a routing network (right)

In addition, there is information with regard to the risk of attacks corresponding 
to each edge in the network. Such information might be available from a point pat-
tern analysis, a centrality analysis, expert information or a combination of all three. 
This information is modelled using a function that attributes weights to the edges. For 
instance, denote this function by  w : E l,   ). Hence  wij > wkl, ij, kl  E  implies 
that the risk of a successful attack on edge ij is greater than on edge kl. This risk depends 
on geographic circumstances, the condition of the roads, et cetera, as discussed above. 
Given this network with weights assigned to the edges, the question remains how to 
rationally determine unpredictable routing schemes. A first approach to the answer to 
this question has been given in the previous sections.

In principle, there is an infinite number of possible routes from source to target. 
Therefore, the restriction is imposed that each route must be a path in the network (not 
a single edge may occur more than once in a route).

A routing scheme consists of multiple edges risk weights w ij attributed to each edge. 
Blue’s pure strategies consist of paths (from source to target) and red’s pure strategies 
correspond to edges where ambushes will take place.
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Next we extend our example even more, see figure 7. Assume blue has the following 
route network for movement from location S to location T.

Figure 7: Routing network between source (S) and destination (T).

Clearly, there are four possible paths between source S and destination T, i.e., SACT, 
SACBT, SBT and SBCT. Notice, for instance, that SACBSACT is not a path because sev-
eral edges (AC) occur more than once. In addition, assume that Blue has data available 
on previous transportations and attacks see table 6. We assign risk values to each edge 
corresponding to the fraction of attacks that occurred on the respective edge.

Nr. of times passed Nr. of attacks

AS 160 10

SB 48 9

AC 32 10

CB 48 6

CT 32 2

BT 4 1

Table 6

Compare edge AS and edge AC. The risk attributed to edge AS is set equal to 1/16, this 
because of all 160 times this edge was traversed 10 attacks occurred. The risk attributed 
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to edge AC equals 5/16, i.e., of all 32 passages there have been 10 attacks. Assigning risks 
to all edges in a similar way, and normalising, we end up with risks as shown in figure 
8.

Figure 8: Network with risks attributed to the edges.

Red’s mixed strategy consists of choosing a probability distribution over all edges 
where ambushes can be placed. Blue’s mixed strategy consists of a probability distribu-
tion over all possible routes. We present all possible strategy combinations in table 7. 

SACT SACBT SBCT SBT

AS 1 1 0 0

SB 0 0 3 3

AC 5 5 0 0

CB 0 2 2 0

CT 1 0 1 0

BT 0 4 0 4

Table 7.
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We analyse this game using two person zero-sum game theory using the software tool 
MAPLE to solve this linear optimisation problem. It follows that red’s optimal strategy 
equals (pSA, pSB, pAC, pBC, pCT, pBT = (0, 5/8, 3/8, 0, 0, 0). The expected payoff equals  
  = 15/128. Thus red ambushes SB with probability 5/8 and AC with proba-
bility 3/8. Another interpretation can be that red distributes his capaci-
ty optimally with 5/8 over SB and 3/8 over AC. Blue’s optimal strategy equals 
(pSACT, pSACBT, pSBCT, pSBT) =  (5/8, 0, 5/32, 12/32). Again we use the minimax principle: 
blue opts for that strategy that minimises the maximum expected loss. 

Concluding remarks

Inspired by tactical problems that Israel experienced during the incursion into south-
ern Lebanon in 2006, we presented an initial analysis of the optimal allocation of routes 
against ambush attacks. The methodology thus developed provides an analytical contri-
bution to the prevention and prediction phase in dealing with the IED threat.

The strategic interaction between ‘bomb layer’ and ‘transporter’ was modelled as a 
two-person zero-sum game. The pure strategies for the bomb layer consist of choos-
ing the edges in the network corresponding to ambush locations. The pure strategies 
available to the transporter consist of all possible routes between source and target. The 
situation in case of a single ambush was solved for a single source and target. It was also 
shown that the `multiple ambush’ situation can be easily analysed with similar methods. 
Future research will focus on the multiple sources and targets case, although it must 
be remarked that the situation seems to be equivalent to multiple transports with one 
source and target.

In addition risk-heterogeneity of attacks on certain edges in the network was consid-
ered. Several methods to estimate these risks were presented. For instance, the probabil-
ity of an attack on edge was approximated by the fraction of the convoys that encountered 
an attack. Besides, it was shown that it is possible to develop more complex methods 
based on graph theory (centrality and ‘chokepoint’).

Even though the importance of ‘unpredictability’ is stressed in the military opera-
tional literature, the idea of allocating routing schemes according to game-theoretical 
principles has not received widespread attention in the military community. The analysis 
in this chapter must therefore be considered as a first step towards the goal of minimiz-
ing the expected number of encounters with ambushes. The methods presented in this 
chapter are standard ‘tools’ in game theory. Since their implementation in software is 
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straightforward, the operational analyst confronted with allocating routing schemes 
could greatly benefit from such software.
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