A Further Optimization of Crossover and Linear Barriers in Search Theory

Rien van de Ven

Introduction

Context

Since the start of World War II (WWII), technological advances have dramatically
changed tactical and strategic operations. The science of Operations Research (OR) grew
out of the need to solve problems related to evaluation and optimal use of these new
technological advantages. Solving problems which occur in countering enemy
technologies and newly implemented tactics was also important. An initial specialisation
in OR was Search Theory. The tactics that were developed to search for the enemy played
a very important role in the Allied efforts against German U-boats during WWII, see
Fig. 1.
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Figure 1. U-744 forced to surface, March the Gth, 1944 by depth charging in North Atlantic.
Source: Naval Museum of Québec (http://www.mng-nmgq.org), with permission.

Interesting discussions regarding the search for submarines in the Bay of Biscay may be
found in [2] and [3]. For example, it was discovered that aircraft maximised sighting
distance by approaching at 45 degrees to U-boat tracks. Most search patterns ran either
NW-SE or NE-SW across some assigned coverage area.

Nowadays, applications of Search Theory can be found practically everywhere. For
example, the Navy and Air Force search for hostile submarines, Special Forces search for
terrorist groups, Unmanned Aerial Vehicles search for nuclear plants or launching
facilities of opposing forces. Of course, there are also many non-military applications,
such as the search and rescue of drowning persons and counter drug operations.
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Using mathematical and probabilistic models, Search Theory has developed several
interesting search patterns that optimise the probability of detecting a target. For an
overview of classical search theory, we refer to [1].

Many papers nowadays focus on multi-agent systems and simulations. For applications,
we refer to [2] and [3]. In this contribution we follow an analytical approach.

The reason for doing so, is that we are able to demonstrate analytically that further
optimization is possible by slightly modifying the well-known crossover barrier (Fig. 2) and
linear barrier (Fig. 3), where the search area is a lane (i.e. a Southwards going channel),

see [4].

We assume that targets intend to traverse this lane Southwards. We also assume that
target speed Uis constant along its path. This assumption is not far from reality because,
after reaching cruise level, the target usually maintains a steady speed. A further
assumption is that we know the intent and capabilities of the target. More precisely, we
assume that we know its speed. Its position, however, is unknown, so arbitrary. Examples
are rescuing a person floating in the water, detecting fast drug boats, etc.

We assume the observer is protecting the lane while moving at speed Vthrough the lane
according to some fixed pattern. Any target that closes the observer to within his sweep
radius R is detected. So the observer’s detecting device is binary: the target is either
detected or not detected. A further assumption is that there is enough time for the
observer to detect targets.

The crossover barrier starts on the left of the lane and crosses to the opposite side (track
OA) in such a way that its Southwards movement equals that of a hypothetical target
which simultaneously moves from B to A. Next the observer moves Northwards (track
AB), crosses the lane to the left (track BC), and finally moves Northwards to the starting-
point (track CO). In this way a butterfly search pattern is created. After completing one
basic movement the pattern is repeated several times. The crossover model is chosen,
when the speed of the observer is greater than that of the target.
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Figure 2. Crossover barrier (changing course at the edge)
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The linear barrier moves in a straight line from West to East, i.e. its course is
perpendicular to that of the targets. If the observer reaches the edge of the lane, it will
reverse course. In this way a linear search pattern is created. After completing one basic
movement the pattern is repeated several times. The linear model is chosen, when the
speed of the observer is less than or equal to that of the target.
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Figure 3. Linear barrier (reversing course at the edge)

Problem definition

It is well-known that instead of changing course exactly at the edge, changing course
when the sweep radius reaches the edge (i.e. changing course at distance R from the
edge) generally yields higher probabilities of detection.

In this contribution we shall investigate whether or not an even higher probability of
detection may be obtained, by turning at distance xR from the edge. The turning-factor xis
some real number between o and 1. So, if x= o, the barrier changes course at the edge. If
x =1, the barrier changes course when the sweep radius reaches the edge.

We will discuss two questions:

1. If the barrier changes course at distance R from the edge, does this situation —
compared with changing course at the edge — always lead to a higher probability of
detection?

2. If the barrier changes course at the edge or at distance R from the edge, does one
of these two situations lead to a maximum probability of detection?

The construction of this contribution will be as follows: first in two different sections, we
present the crossover barrier as well as the linear barrier. In both models we will go into
three scenarios:

e the barrier changes course at the edge;
o the barrier changes course when the sweep radius reaches the edge;
o the barrier changes course at distance xR from the edge.

In the section Results and Discussion, an overview of the results will be presented for both
models. A discussion on the choice between the two models is also carried on. Finally in
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the section Conclusions, the answers to the questions as formulated above will be
summarized.

We will calculate all probabilities of detection choosing a lane width D with magnitude 24
nautical miles (NM), while sweep radius R equals 4 NM. Hence a comparison between the
two models and the three scenarios can be made. We will vary the ratio of observer’s
speed V and target’s speed U between just greater than one and four (crossover model),
respectively half and four (linear model). This quotient V/U'is called the speed ratio and is
denoted by p. Hence 1 < p < 4 (crossover model), respectively 0.5 < p < 4 (linear model).

Crossover barrier patrol

Changing course at the edge

We assume V> U (i.e. p>1). If V< Uor V= U, the crossover model is not practicable,
because the angle — in relation to the horizontal axis — chosen by the crossover barrier is not
defined or close to %z. The latter is not desirable because it will cost the barrier too much
time to reach the opposite side of the lane. The lane is D wide, while the sweep radius of
the observer equals R. We assume D > 2R, because if D < 2R the observer could restrict
himself to a position in the middle of the lane.

Let # be the time it takes for the observer to reach the opposite side of the lane. We can
use Pythagoras’ Theorem (applied in a right-angled triangle with hypotenuse V# and
D

catheti Dand Ut) to determine ¢, = ———.
V:-U*

o
So, observer and target move according to ( Ut j, respectively ( Ut

I I

] from their initial
position.

To determine the probability of detection, we keep the position of the target fixed with
only the observer and its detection circle moving relatively to the target. The relative
movement of the first leg (track OA) is obtained by calculating the difference of the
observer’s absolute movement and that of the target:

o e o)

Let # be the time it takes for the observer to proceed up the channel. The length of this
upsweep is equal to Ut. Hence:

VtzzUtI:Lz.
(5) -1

So, it follows:

v ,02—1.
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Hence the relative movement of the second leg (track AB) satisfies:

o o o ©
— = = D p+1 |,
(th (— Uz‘zj otes) (Ve

The expression:

522 p+I

p\p-1

(1)

is called the spacing and is denoted by .S.
Hence the relative movement of the observer in relation to the target is given by

D)(o)\(-D o ) . .
( } ( Sj’( jand (Sj In this way a meander search pattern is created, see Fig. 4,
o o

where a strip with width 2R around the relative track will be swept.
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Figure 4. The relative area swept for the crossover barrier changing course at the edge (R< %S )

Since the target has a fixed and random position, the probability of detection is
determined by taking the ratio of the shaded area and the total area. We can — in view of
the regularity in the pattern of the movement — restrict ourselves to one distinctive part of
the relative track, i.e. the track OA — AB — BC in the rectangle OABC. The dimensions
of this rectangle are lane width D and spacing S.

If R>7%.S, the total area will be swept. So the probability of detection Py will be equal to 1.

If R<AS, then:

2DR+(S —2R)R
DS

Poer = (2)
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Changing course when the sweep radius reaches the edge

If the observer changes course when the sweep radius reaches the edge, the geometry will
be more complex, but the general idea is the same. In a distinctive part of the relative
movement the ratio of the swept area and the total area will be calculated. As Fig. 5 shows,
the swept area consists of rectangles and sectors of a circle.

D'=D-2R
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Figure 5. The relative area swept for the crossover barrier changing course
when the sweep radius reaches the edge (R< S/2)

The area of the two sectors of a circle equals % 7R There are also two rectangles with
dimensions D— Rand R and a rectangle with dimensions S—2Rand 2R

Because OA equals D— 2R, spacing Sis calculated on the basis of D'= D- 2 R. Hence:

D' +1
If R<%.S, then:

2R(D - R)+2R(S —2R)+ ¥, 7R*

P =
det DS

If R>7.S, the rectangles overlap, as do the sectors, see Fig. 6.

D'=D-2R
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Figure 6. The relative area swept for the crossover barrier changing course
when the sweep radius reaches the edge (R > %S )

The area of the overlap of the sectors of the circle is obtained by first calculating sector
OPT, then by calculating triangle OPQ. The overlap is twice the difference of these two
results, i.e. the difference of twice sector OPT and twice triangle OPQ.
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Using ¢ = arccos(2;) we obtain the following probability of detection:

2R(D—R)+2R(S —2R)+ ¥, nR* £ R<s
DS ’ s
(5)

D—R)S + ¥, nR?> — R? arccos (=) + 5 | R* -5~
( ) / DS (zR) 2 4 ) lfRZ%

Py =

Changing course at distance xR from the edge

If the observer changes course at distance xR (o < x < 1) from the edge, geometry gets
even more complex, but the general idea is the same. The ratio of the swept area and the
total area will be calculated in a distinctive part of the relative movement.

Again we distinguish cases R<2Sand R>74S.

If R<7.Sthe swept part consists of rectangles and truncated sectors of a circle, see Fig. 7.
D'= D-2xR
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Figure 7. The relative area swept for the crossover barrier changing course at distance xR from the edge (R < %S)

If R> 7S, the rectangles overlap, as do the truncated sectors, see Fig. 8. If PQ is longer
than xR, the overlap is so much that the swept area is equal to OABC. Hence the detection

probability equals 1. This occurs when xR < PQ = \[R* —=- ,i.e. x <41~ (=) .

If x>+1—(%) , we refer to Fig. 8.
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Figure 8. The relative area swept for the crossover barrier changing course at distance xR from the edge (R> %S)
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Calculations similar to (5) lead to the following probability of detection:

2(D—-xR)R+(S —2R)(R+xR)+ },nR*> — R* arccos x + R*xV1—x"

ifR<S

P, - DS (6)
“ |(D—xR)S +R*(y,m —arccos x + x\1—x* —arccos(5))+ £, [R* -5 -
D5 ,if x> q1-(Z)

Substituting x = o, respectively x = 1 in (6) it is easy to check that the probability of
detection satisfies (2), respectively (4) and (5).

Linear barrier patrol

Reversing course at the edge

As mentioned before: a linear barrier is preferred if V< U or V =~ U. The linear barrier
moves from West to East, respectively from East to West. Targets always move
Southwards. If #is the time it takes for the observer to reach the opposite side of the lane,
then the relative movement of the track satisfies:

s (P2

In this way a ladder search pattern is created as a relative track. A strip with width 2R
around this track will be swept.

D

right edge

left edge

Figure 9. The relative swept area for the linear barrier changing course at the edge (R/sin a < D)

Since the target has a fixed and random position, the probability of detection is
determined by taking the ratio of the shaded area and the total area. We can — in view of
the regularity in the pattern — restrict ourselves to one distinctive part of the relative track,
i.e. the track OB in rectangle OABC. See Fig. 9.

1 We assume P to be to the left of A, i.e. OA > OP. Hence D> LR =R\1+p*. If D<Ry1+p*, the swept
area coincides with OABC. So, the probability of detection equals 1. If D = 24 and R = 4, this will only
happen if p > 6.0. Hence we can disregard this situation.
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Using sina = = we obtain:
NU? +V? \/1 + p?
2R R’
P =—\1+p" - 1+p°).
det D 'D DZ ( ID ) (7)

Reversing course when the sweep radius reaches the edge

If the observer reverses course when the sweep radius reaches the edge, the geometry will
be more complex, but the general idea is the same. In a distinctive part of the relative
movement the ratio of the swept area and the total area will be calculated. As Fig. 10
shows, the swept area consists of a hexagon and two sectors of a circler.
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Figure 10. The relative area swept for the linear barrier reversing course when the sweep radius reaches the edge

Calculating the swept area (i.e. hexagon OPQBYZ and sectors O*OZ and B*BQ) and the
whole area (i.e. rectangle O*A*B*C¥*) and using « = arccot p gives:

2

Pdet:%v”pz*ﬁ{(w—amwwm—ﬁ}- ®)

Reversing course at distance xR from the edge
If the observer reverses course at distance xR (o0 < x< 1) from the edge, the geometry gets
even more complex, but the general idea is the same.

Two cases arise:

Case A:  Z inside the lane (see Fig. 11)

T We assume Q to be above AA*. If p <4, D= 24 and R= 4 (so AB > 4), this assumption will be satisfied.
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Figure 11. The swept part for the linear barrier reversing course at distance xR from the edge ( X 2 —— )
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This occurs when O*O = xR > LO = R cosg = R cos(/awm—a) = R sin a= %, Le.

1 I+

. : p
x= - . In this case, the swept area consists of hexagon OPQBYZ and truncated sectors

I+

0O0*Z*Z and BB*Q*Q.
Case B:  Z outside the lane (see Fig. 12)

This occurs when x <——
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Figure 12. The swept part for the linear barrier reversing course at distance xR from the edge (x <——— )
+p

In this case, the swept area is obtained by first calculating rectangle ZFQT, then
subtracting triangles FOP, BTY, HZZ* and JQQ¥, and then adding triangles HOO* and
BB].
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We can prove that the probability of detection satisfies:

2R (Y 7T —arccot p —arccos x + xVi— x” )p -p° .
— I+ p® + R*{E Jif x> =
p o r D(D —2xR) Jitp? )
det —
2R 2XR*\1+p* —R*p* —(x* +1)R’ .
— i+ p* + , if x <
p VT~ D(D - 2xR) rp?

Results and discussion

We have chosen D= 24, R= 4 and 1 < p < 4 (crossover), respectively 0.5 < p < 4 (linear).
The probability of detection is calculated for several values of the speed ratio p and the
turning-factor x.

Crossover barrier patrol
In Table 1, we also mention the magnitude of the spacing So (corresponding to x = 0),
respectively S; (corresponding to x= 1).

Table 1. Probability of detection as a function of speed ratio p and turning-factor x for the crossover barrier

p 1.5 2.0 2.5 3.0 3.5 4.0
X S, 358 20.8 14.7 11.3 9.2 7.7
0.00 0.353 0.487  0.621 0.756  0.891 1.000
0.05 0.363  0.498 0.633 0.768  0.905  1.000
0.10 0.372 0.508 0.644 0.781 0.918 1.000
0.1§ 0.382 0.519 0.656  0.793 0.931 1.000
0.20 0.392  0.530 0.667 0.806 0.945 1.000
0.25 0.401  0.541 0.679 0.819 0.959  1.000
0.30 0.411 0.551 0.691 0.832 0.973  1.000
0.35 0.421 0.562 0.703 0.844 0.987 1.000
0.40 0.431 0.573 0.715 0.857 0.998  1.000
0.45 0.440 0.584 0.727 0.870 0.999 1.000
0.50 0.450  0.595 0.739 0.883 0.998 1.000
0.55 0.460 0.606 0.751 0.896 0.998 1.000
0.60 0.470 0.616 0.762 0.909 0.998 1.000
0.65 0.480 0.627 0.774 0.922 0.997  1.000
0.70 0.489 0.638 0.786  0.935 0.997  1.000
0.75 0.499 0.649 0.797 0.947 0.996 1.000
0.80 0.509 0.659 0.809 0.959 0.994 0.999
0.85 0.518 0.669 0.820 o0.971 0.993  0.998
0.90 0.527 0.679  0.831 0.977 0.990 0.996
0.95 0.536 0.689  0.841 0.974 0.987  0.993
1.00 0.545 0.698 0.850 0.970 0.982  0.988
S, 23.9 13.9 9.8 7.5 6.1 5.2

As speed ratio p increases, spacing Sy decreases. The swept area of the rectangle will
assume growing importance in relation to the total area, see Figs. 4 — 8. Hence the
probability of detection will increase as speed ratio p increases. This result is true for all
values of x € [0.00; 1.00].

Comparing changing course at the edge and changing course when the sweep radius

reaches the edge leads to the conclusion that — at a given p — spacing S will be smaller.
Changing course at distance R from the edge thus leads to a higher probability of
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detection. p= 4 is an exception: when changing course at the edge spacing S will be less
than 2R. So the probability of detection equals 1. Hence the probability of detection — in
the case of changing course at distance R from the edge — will turn out to be smaller. If p
< 2.5, the probability of detection is maximal, if the observer changes course at distance R
from the edge. If p=3 or p = 3.5, then changing course at distance R from the edge gives a
higher probability of detection when compared with changing course at the edge, but the
probability of detection is maximal at a turning-distance smaller than R. As p increases,
the optimal turning-distance decreases. If p = 4, the probability of detection is maximal, if
the observer changes course at the edge2.

Linear barrier patrol

As speed ratio p increases, the probability of detection increases too (see Table 2). This is
illustrated in Fig. 9: as p increases, gradient « decreases, as does AB. The swept area will
assume growing importance in relation to the total area. This holds for every
X € [0.00; 1.00].

Table 2. Probability of detection as a function of speed ratio p and turning-factor x for the linear barrier

X ¢ 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.00 | 0.338  0.416  0.511 0.606 0.696 0.776 0.845 0.902
0.05 | 0340 0.419 0.514 0.610 0.700 0.780 0.849 0.906
0.10 | 0343 0.422 0.518 0.614 0.704 0.785 0.853 0.909
0.15 | 0345 0.425 0.521 0.618 0.709 0.789 0.857 0.913
0.20 | 0348 0.428 0.524 0.622 0.713 0.793 0.861 0.916
0.25 | 0350 0.430 0.528 0.626 0.717 0.797 0.865 0.920
0.30 | 0.352  0.433  0.531 0.630 0.721 0.801 0.869 0.923
0.35 | 0354 0.436 0.535 0.633 0.725 0.805 0.873 0.927
0.40 | 0356 0.438 0.538 0.637 0.729 0.810 0.877 0.930
0.45 | 0358 0.441 0.541 0.641 0.733 0.814 0.881 0.933
0.50 | 0.360 0.444 0.544 0.645 0.737 0.818 0.884 0.936
0.55 | 0362 0.446 0.548 0.649 0.741 0.821 0.888 0.939
0.60 | 0363  0.448  0.551 0.652  0.745 0.825 0.891  0.941
0.65 | 0365 0.451 0.554 0.656 0.749 0.829 0.894 0.943
0.70 | 0366 0.453 0.557 0.659 ©0.752 0.832 0.896 0.944
0.75 | 0368 0.455 0.560 0.662 0.755 0.834 0.898 0.945
0.80 | 0369 0.457 0.562 0.665 0.758 0.837 0.899 0.944
0.85 | 0.370 0.459 0.565 0.668 o0.760 0.838 0.899 0.943
0.90 | 0.371 0.461 0.567 o0.670 0.762 0.839 0.899 0.941
0.95 | 0372 0.462 0.568 0.671 0.762 0.838 0.896 0.936
1.00 | 0372 0.462 0569 0.671 0.761 0.835 0.891  0.929

Comparing both situations — reversing course at the edge and reversing course at distance
R from the edge — leads to the conclusion that — at a given p — the latter has a higher
probability of detection. If p < 1.50, the probability of detection is maximal, if the observer

T If p=4, then —if changing course at the edge — S equals 7.7, i.e. less than 2R So, the probability of
detection equals 1. Spacing S is a function of D’ (see Eq. (3)): as D'increases, S increases too. Hence a
probability of detection with magnitude 1 will be obtained at a higher value of p. Therefore the mentioned
exception is only valid when D= 24 and R= 4. If D= 20, the exception is true if pis greater than, or equal
t0 3.5.

2 If p = 4 the maximum probability of detection equals 1. The mentioned value of x is only one possible
solution. Every choice of x € [0.00; 0.65] leads to a maximum detection probability.
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changes course at distance R from the edge. If p > 2.0, then changing course at distance
R from the edge gives a higher probability of detection when compared with changing
course at the edge, but the probability of detection is maximal at a turning-distance
smaller than R. As pincreases, the optimal turning-distance decreases.

Choosing between crossover and linear

As mentioned before: the choice between the crossover model and the linear model
depends on the magnitude of the observer’s speed in relation to that of the target. If
V < U, a linear model has to be chosen. If V~U, a linear model is preferred, since — in
case of a crossover barrier — the observer’s absolute course would be almost Southwards: if
V=10.5 and U = 10, then observer’s (absolute) course equals 162 degrees. The latter is
not desirable, because it will cost the barrier too much time to reach the other side of the
lane. If V' >> U, a crossover model is preferred. Crossing will be almost West/Eastwards: if
V=30 and U= 10, then observer’s (absolute) course equals 110 degrees.

The decision between crossover and linear is not only influenced by speed ratio, but also by
D'= D - 2xR. In this contribution — we have chosen D= 24 and R = 4 — only the turning-
factor xvaries (o < x<1). Hence 16 < D'< 24.

Linking both models in such a way that the model with maximum detection probability is
chosen, we can give a clear idea of the dependence on speed ratio p and turning-factor x (see
Table 3). Detection probabilities using the linear model are represented in green, those
using the crossover model in blue. The maximum detection probability is represented in

red.

Table 3. Probability of detection as a function of speed ratio p and turning-factor x
for the linear barrier, respectively the crossover barrier

P p 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.00 | 0.338 0.416  0.511 0.606 0.696 0.776  0.891 1.000
0.05 | 0340 0.419 0.514 0.610 0.700 0.780 0.905 1.000
0.10 | 0.343 0.422 0.518 0.614 0.704 0.785  0.918  1.000
0.1§ 0.345  0.425  0.521 0.618 0.709 0.793  0.931 1.000
0.20 | 0.348 0.428 0.524 0.622 0.713 0.806 0.945 1.000
0.25 | 0.350 0.430 0.528 0.626 0.717 0.819  0.959  1.000
0.30 | 0.352  0.433  0.531 0.630 0.721 0.832  0.973  1.000
0.35 0.354  0.436 0.535 0.633 0.725 0.844 0.987 1.000
0.40 | 0.356  0.438 0.538 0.637 0.729 0.857 0.998 1.000
0.45 | 0.358  0.441  0.541 0.641 0.733 0.870 0.999 1.000
0.50 | 0.360 0.444 0.544 0.645 0.739 0.883 0.998 1.000
0.55 0362 0.446 0.548 0.649 0.751 0.896 0.998 1.000
0.60 | 0.363  0.448  0.551 0.652  0.762 0.909 0.998 1.000
0.65 | 0.365  0.451 0.554  0.656  0.774 0.922 0.997 1.000
0.70 | 0366 0.453 0.557 0.659 0.786 0.935 0.997 1.000
0.75 0.368 0.455 0.560 0.662 0.797 0.947 0.996 1.000
0.80 | 0369 0.457 0.562 0.665 0.809 0.959 0.994 0.999
0.85 | 0.370 0.459 0.565 0.669 0.820 0.971 0.993 0.998
0.90 | 0.371 0.461  0.567  0.679 0.831 0.977 0.990 0.996
0.95 | 0.372 0462 0568 0.689 0.841 0.974 0.987 0.993
1.00 | 0.372 0.462 0.569 0.698 0.850 0.970 0.982 0.988

If p<r1.5, the linear model is preferred, if p > 3.5 the crossover model is preferred. If
2.0 < p<3.00, the situation is mixed: if the barrier is changing course near the edge
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(x= 0), the linear model is preferred; if the barrier is changing course near distance R
from the edge (x=~ 1), the crossover model is preferred.

Conclusions hold in this particular situation (D = 24, R = 4), but it is possible to
demonstrate that similar conclusions can be drawn for other values of lane width and
sweep radius.

Conclusions
In the Introduction to this contribution two questions were formulated:

1. If the barrier changes course at distance R from the edge, does this situation —
compared with changing course at the edge — always lead to a higher probability of
detection?

2. If the barrier changes course at the edge or at distance R from the edge, does one of
these two situations lead to a maximum probability of detection?

We have investigated two models: the crossover model and the linear model. In both
models we made a distinction between changing course at the edge, changing course
when the sweep radius reaches the edge and changing course at an alternating distance.

If D= 24 and R = 4, the following conclusions can be drawn:

1. If p < 3.5, changing course when sweep radius reaches the edge will — compared
with changing course at the edge — lead to a higher probability of detection. If p >
4.0, changing course at the edge will give a better result.

2. If p < 2.5, changing course when sweep radius reaches the edge will lead to a
maximum probability of detection. If p > 4.0, changing course at the edge will give
the best result. If p = 3.0 or p = 3.5, maximum probability of detection will be
obtained when the barrier changes course at distance from the edge less than R. As
speed ratio increases, turning-distance from the edge will decrease.

Following an analytical approach, we were able to demonstrate that — obtaining the
probability of detection — further optimization is possible. More precisely, the probability
of detection increases by a few percent under certain circumstances, if we choose the
turning-distance of the barrier carefully.
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