
THEME – INDUSTRIAL NAVIGATION WITH ROS 2

THE PATH FROM RESEARCH
TO INDUSTRY

AUTHOR’S NOTE

Wilco Bonestroo is
a researcher in the
Mechatronics research group
of Saxion University of
Applied Sciences, located in
Enschede (NL). He focuses on
autonomous systems and AI
with a special interest in
navigation and localisation.

w.j.bonestroo@saxion.nl
www.saxion.nl/onderzoek/
smart-industry/
mechatronica

WILCO BONESTROO

The plan to explore ROS 2 for industrial mobile robots
was born during a meeting on open issues in robotics. This
discussion resulted in the Next Generation Navigation, or
NeNa, research project, a collaboration by Saxion with the
companies Demcon, Hencon, Hollander Techniek, Indes,
Opteq Mechatronics, Riwo, Romias, Singa and Wewo. The
project is funded partly by SIA, the Dutch Taskforce for
Applied Research (Nationaal Regieorgaan Praktijkgericht
Onderzoek).

During that first meeting, several companies explained
how they developed their navigation functionality for their
robots or AGVs (automatic guided vehicles) such as those
shown in Figure 1. Most of the attending companies used
commercial, closed-source solutions for navigation and
fleet management, such as Navitec Systems and BlueBotics.
Other companies had built their software from scratch.
Both approaches have their drawbacks: the first creates a
dependency on an external party, while the second requires
considerable software development effort for maintenance
and further development.

Robotics research groups around the world are using Robot Operating System (ROS)
to develop their prototypes quickly. While the first version of ROS was aimed primarily
at the R&D community, its successor, ROS 2, has been redesigned completely to be
industrial grade and applicable in research, prototyping, deployment and production.
This allows ROS 2 prototypes to evolve into products suitable for real-world
applications. To explore the state of the art, Saxion University of Applied Sciences
and nine companies are developing an industrial mobile robot. This article describes
experiences from the development process and presents an outlook on the potential
of ROS 2 for industry.

The Mechatronics research group at Saxion had been
working with smaller robots for both research and
education, such as those shown in Figure 2. Those robots
use the open-source navigation solution provided by ROS.
We wanted to explore whether that solution was also
applicable to the larger industrial robots developed by the
industrial partners, so we started the NeNa research project
in 2019. Our main question was whether we could build
a robust and accurate navigation solution based on ROS
that would provide a similar functionality and quality as
the current approaches.

Requirements
The companies in the project apply their robots in different
fields, ranging from mining and heavy industries to logistics
and farming. As it was impossible to select one use case
that could address all the application fields, we decided
to develop a new use case that could demonstrate the
feasibility of our requirements. We needed a prototype
that could demonstrate:

Examples of mobile robots from project partners.
(a)	 Hencon.
(b)	 Wewo.

1a 1b

nr 5 2020 MIKRONIEK  5

THEME – INDUSTRIAL NAVIGATION WITH ROS 2

• �autonomous navigation, including dynamic obstacle
avoidance, no-go areas, speed zones and virtual line
following;

• �localisation without installed external infrastructure,
such as reflectors or induction wires;

• �integration with existing fleet manager software;
• �precision docking for specific tasks.

Our use case was inspired by straddle carriers, which carry
their load underneath instead of putting it on top. We
wanted to demonstrate solutions on industrial equipment,
but we also wanted to use the prototype in our research labs
and offices. Therefore, a small industrial robot was designed
and developed. The robot is a tunnel vehicle that can drive
over euro crates, pick them up and move them around.
Figure 3 shows impressions of the concept and design.
To make our findings relevant for the bigger robots, we
provided our NeNa robot with the components that are also
used in the larger machines developed by the companies.
It has two 2D Sick lidar sensors to provide a 360° view of
the environment. The lidars are used for safety, but also for
localisation and obstacle avoidance. The robot is also equipped
with a 3D Intel® RealSense™ camera to detect the crates.
The partners in the project were not only interested

in navigation functionality, but also in the ability of a robot
(or fleet of robots) running ROS to be integrated into their
automation ecosystem, as the robots had to be controlled
from a fleet manager. The navigation behaviour also had to
be adjustable by the end user. For example, in some areas
such as hallways, the robot should follow a virtual line,
while in other areas, such as large rooms or production
halls, the robot should navigate freely. In addition, some
areas have speed limits, or the speed of the robot should
be adjusted based on whether there are people around it.

Parallel development
To manage the lead time of our project, we designed and
implemented our hardware and software in parallel. So,
while the first CAD drawings were being created, the
simulation model of the robot was developed in ROS. This
model had all the sensors that we planned to use in our
robot. In Gazebo, the default simulator in ROS, the virtual
robot could be tested in different environments. For
example, we could work on a precision docking manoeuvre
based on simulated sensor data while the actual robot was
still under development. Figure 4 shows the robot in
a simulated office environment as well as a simulation
of robot-crate interaction.

To use both the industrial hardware and the advanced
navigation algorithms from Navigation 2, we orchestrated
computation over two different computers: an industrial
PLC and a general-purpose PC. The PC runs Linux with
ROS and executes the navigation algorithms that perform
complex tasks like localisation and path planning. The PLC
provides strict timing and handles the safety functionality
of the robot. It takes care of low-level communication with
the sensors and motors. Moreover, it checks whether the PC
is operating as expected. For the communication between
the PLC and the PC we have experimented with OPC UA
(Open Platform Communications – Unified Architecture).
We did some initial tests and concluded that this provides

Lightweight research and education robots.

2

The NeNa robot prototype (with crate).
(a)	 Artist impression.
(b)	 CAD design.

3a 3b

6  MIKRONIEK nr 5 2020

ROS, ROS 2 and ROS Industrial

ROS development started around 2007, at Stanford University
and in the company Willow Garage [1]. The first official ROS
release was in 2010. One of the main ROS goals was to
stimulate collaboration between developers by providing
standard communication interfaces. Although developed
originally for one specific humanoid robot, more and more
people started contributing to the project and ROS was
applied to many different robots. Using ROS allowed research
groups to focus on their own specific research topics and
simply use the functionality provided by others.

Up to now, the ROS community has released 13 distributions.
The first letter of the distribution name indicates their order.
The most recent ones are Kinetic, Lunar, Melodic and Noetic.
The distributions alternate between five-year support
(long-term support or LTS) and two-year support. Support
means that they are actively maintained and updated by the
community. Each distribution is supported on exactly one
Ubuntu Linux distribution. Canonical, the company behind
Ubuntu, is one of the 17 companies in the ROS technical
steering committee. Their main focus is on the security of
robotic systems running Ubuntu and ROS.

Within a distribution, software is organised and delivered in
ROS packages. Today, there are hundreds of them. Some
packages provide drivers for common robotics hardware,
such as lidars, inertial sensors and cameras. In addition, there
are advanced packages for navigation, localisation, path
planning and robot manipulation, as well as ROS packages
that provide wrappers for common libraries, such as OpenCV
for image manipulation, the Point Cloud Library (PCL) for
handling 3D point cloud data from cameras and lidars, and
YOLO or TensorFlow for object detection and localisation.
They are installed easily with the Ubuntu package manager.

Over the past decade, ROS has become the standard frame
work in the academic world and in research environments.
However, because ROS was not designed for production
environments, it was quite a challenge to go from prototype
to software that could be deployed industrially. Companies
would have to review all the software used in their product.
Based on requirements from industry combined with insights
gained from working with ROS, there was a discussion on
whether those requirements could be integrated into the
existing framework, or a redesign was needed. Around 2015
it was decided that it would be better to design a new ROS
version from the ground up to provide security, reliability and
real-time capabilities. It should also run on many platforms,
not only on (Ubuntu) Linux, Mac and Windows, but also on
embedded and real-time systems. This was to become ROS 2.

A remarkable difference between ROS and ROS 2 is the
middleware that is used to communicate between
components, or – in ROS terms – between ‘nodes’. The
middleware in ROS was developed from scratch. In parallel,
however, in the past decade a number of middleware
solutions have matured, such as ZeroMQ, Protocol Buffers and
Data Distribution Service for real-time systems (DDS). After
analysing these existing solutions, DDS was selected as the
middleware for ROS 2. DDS is a proven standard used typically
in mission-critical systems, such as in military, aerospace and
industrial automation. In ROS 2 there is no longer a single
master node that controls the whole system. Nodes discover
each other automatically using DDS and the system is truly
distributed.

ROS 2 is also released in distributions. Again, the first letter
indicates the order: Dashing, Eloquent, Foxy. As ROS 2 is still
under heavy development, the support is shorter than for
ROS. Foxy is considered an LTS version and has come with
three-year support. ROS 2 is expected to be as stable as ROS
within a year.

To complicate things a little more, there is also an initiative
called ROS Industrial. Its goal is to bring the advantages of
ROS, such as reuse of existing software, to industrial robots.
However, ROS Industrial is not another version of ROS. It
builds on the existing ROS core and provides packages that
are aimed specifically at industry, such as deterministic path
planners for manipulators and drivers for robot arms.
Manufacturers of robot arms are actively encouraged to
develop and support their own drivers in the ROS Industrial
initiative. As code quality and reliability are essential for
industrial applications, each ROS Industrial package has a
status description that indicates whether the package is
experimental, developmental or production ready. Although
ROS Industrial is open source, it also provides commercial
services, such as training, development and support. As ROS 2
targets industry, ROS Industrial is pushing its community
towards ROS 2.

Navigation has always been a major part of ROS and is used
on many existing service robots. The navigation functionality
of ROS was also redesigned for ROS 2, resulting in the
Navigation 2 package [2]. Navigation 2 is aimed at dynamic
environments and supports a wider range of sensor to be
used in mapping, localisation and navigation. It also supports
contextual navigation behaviour. This means that the
navigation can be adapted based on the area where
the robot is driving or what the sensors are seeing.

nr 5 2020 MIKRONIEK  7

THEME – INDUSTRIAL NAVIGATION WITH ROS 2

a modular approach, because OPC UA is available on both
the PC and PLC. The goal is to be able to replace the PLC or
the PC with any other system that also supports OPC UA.
We are now in the final phase of the project. The hardware
has been delivered, the drivers for the hardware are
currently being developed and tested, and the high-level
software has been partly demonstrated in separate
simulations while new features are still under development.
When all the hardware has been completed (Figure 5), we
will start integration and system tests to determine whether
we can meet all the requirements. In the final phase of the
project, everything has to be integrated into two robots

performing their tasks based on a fleet manager. We aim
to complete the project in April 2021.

Which ROS distribution to choose?
We have spent quite some time developing our software
for different ROS distributions. When we started in 2019,
navigation in ROS 2 was unstable. As the involved companies
were still mainly interested in ROS 2 and because ROS and
ROS 2 can be combined in one system, we decided to develop
our first robot model and simulation of the robot both in
ROS and ROS 2. During the project, the recommended
distributions in ROS progressed. Moreover, newer
distributions of ROS 2 became more stable and provided
functionality we needed in the project. Eventually, we have
developed our robot models and software in five
distributions, and this required a lot of effort.

In hindsight, we should have been more careful in selecting
the distribution(s). For companies, such choices are even
more important. Currently, ROS is more stable than ROS 2
and features more packages; support for ROS, however, will
end in 2025. Meanwhile, robot and application developers are
already moving their focus towards ROS 2 and the ecosystem
is growing. We also experienced that navigation in ROS 2 is
quite advanced compared to other parts. For developing a
functional prototype quickly, ROS is still the logical choice,
because it is stable and there are many packages to build on.
When aiming to actually use the software in a product, ROS 2
would be the logical choice. To summarise: “If you want to
go fast, go ROS. If you want to go far, go ROS 2.”

Integration in the industrial ecosystem
In a research setting it is acceptable to control a robot
manually or even by typing commands from a terminal.
However, mobile robots or AGVs in production
environments have their own place in the automation
ecosystem. One of the specific requirements in our project

Figure 4. Simulation of the NeNa robot and a crate in an office environment.
(a)	� Robot model in the office, with visualisation of sensor data in the right screen.
(b)	 Robot-crate interaction.
(c)	� Visualisation of sensor data: how the robot sensors actually ‘see’ the crate.

Realisation of the NeNa robot, in two views.

4a

4b 4c

5

8  MIKRONIEK nr 5 2020

was that the robots should be controlled from a fleet
manager. The fleet manager translates tasks from ERP or
MES systems into navigation tasks, then it dispatches those
tasks to the appropriate robots and keeps track of the whole
fleet. To demonstrate interoperability between ROS and fleet
managers, we have integrated our robot with OpenTCS, an
open-source fleet manager developed by Fraunhofer IML.
One of the project partners was already using OpenTCS in
their systems. Figure 6 shows a screenshot of a factory model
with several docking bays and two NeNa robots.

To provide an interface between the fleet manager and the
robot, OpenTCS uses ‘vehicle drivers’ to send commands
to specific robots. We have developed a ROS 2-OpenTCS
vehicle driver, which makes all functionality from the
fleet manager available in ROS 2. Developing a driver is
conceptually straightforward, but in Java this turned out to
be a challenge. ROS 2 can be used with any programming
language, with support for different languages being
provided by client libraries that translate between the
specific language and the generic ROS functionality. The
ROS client libraries for C++ (rclcpp) and Python (rclpy) are
well developed and thoroughly tested. However, OpenTCS
is written in Java and the client library for Java was under
development at the start of the project. Eventually,
developing the driver and integrating it with a client library
‘under construction’ took more effort than expected.

An interesting aspect of ROS 2 is that it can be deployed in
different ways. By default, it uses the standard open-source
core, but there are also companies providing commercial
and certified versions. For example, Apex.AI has developed
a version of ROS 2 for safety-critical applications in the
automotive industry. Their software is real-time, reliable
and deterministic. Moreover, it is certified according to
the automotive functional safety standard ISO 26262.
The communication middleware in ROS 2 can also be
exchanged easily. The default implementation Fast RTPS is

suitable to be used within ROS, but it does not implement
the full DDS standard. However, it can be replaced with
Eclipse’s Cyclone DDS, which is open source and does
implement the full standard. Moreover, when support
is required, there are also commercial versions such as
Adlink’s Vortex OpenSplice providing DDS.

Conclusions
We jumped on the ROS 2 train rather early. In only a year
and a half, navigation in ROS 2 has developed from highly
unstable to a complete functional navigation system. On the
Navigation 2 website [3], the ‘Getting Started’ steps can now
be followed to have the navigation in a simulation up and
running within an hour. However, specific features, such
as virtual line following, require additional development.
ROS 2 and Navigation 2 are still under development and
getting the most out of them requires a serious software
development team to work on them.

For companies involved in robotics, developments in ROS
are interesting to follow. Developers of sensors or other
components can reach a large worldwide group of potential
customers by providing a well-maintained package with ROS
drivers. Companies such as Intel, Xsens, Sick, Universal Robots
and ABB robots provide drivers for their products. For system
integrators, ROS 2 is interesting because it allows prototypes
combining existing components to be built quickly, while also
developing these prototypes into production-ready code. In
our opinion, ROS 2 is currently not yet stable enough to ship in
products, but based on discussions within the community, we
expect that this will be realised within a year. ROS 2 is already
used by the robotics teams in companies such as Amazon,
Bosch and Rover Robotics.

As robotics students around the world are using ROS in their
projects, it is interesting for companies to tap into this know
ledge. To keep up to date with the general developments, it is
advised to follow the discussions and announcements on the
ROS forum [4]. There are many ways to learn ROS, with
online tutorials, books and videos available. However, we
have experienced that learning ROS is challenging, because
there are so many different topics (Linux, ROS concepts,
packages, tools, tool chains, algorithms, etc.) that one would
have to grasp at once to get started. To get up to speed, ROS
Industrial training courses can be followed all over Europe.
In the Netherlands, these training courses are organised by
Fontys University of Applied Sciences, Delft University of
Technology and Saxion University of Applied Sciences.

REFERENCES
[1]	� Quigley, M., et al. , “ROS: an open-source Robot Operating System”,

ICRA Workshop on Open Source Software, Vol. 3 (2), p. 5, 2009.
[2]	� Macenski, S., et al., “The Marathon 2: A Navigation System”, IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2020.
[3]	 navigation.ros.org
[4]	 discourse.ros.org

Screenshot of a factory model in OpenTCS.

6

nr 5 2020 MIKRONIEK  9

