

Visual Registration
Wim Luyendijk
445662

Date 09 April 2023
Title Visual Registration
Page 2 / 84

 Colophon

Date April 9, 2023
Version 1.0

Status Department Research and Development
Author Wim Luyendijk

© Saxion. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form on by any means,

electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher..

Date 09 April 2023
Title Visual Registration
Page 3 / 84

Table of Contents

List of Figures .. 5

Summary ... 7

1 Introduction ... 7

1.1 Movella .. 8

1.1.1 MTi-1 Sensor .. 9

1.1.2 MTi-1 Barcodes ...10

1.2 The problem ..10

1.3 Company Goals ...11

1.4 Stakeholders ..11

1.5 Project Goals & Requirements..11

1.5.1 Minimum Viable Product: ...12

2 Project Methodology .. 12

3 Quality Assurance ... 14

4 Research .. 15

4.1 Question: How can CV be used to identify and register sensors?16

4.2 Question: Which tools are needed, and what physical setup is required, to create
a CV system that can successfully read DM barcodes? ...18

4.2.1 Image Capture ...18

4.2.2 Camera Platform ..19

4.2.3 Image Detection ..20

4.2.4 Image Processing ...20

4.3 Question: What data is needed to train the detection model to handle non-
conform situations? ..21

4.4 Question: How can sensor detection errors be effectively communicated and/or
visually displayed to end users? ..23

4.5 Question: How can machine operator insights and feedback be used to improve
the operation of the system? ...24

5 CV Component Testing .. 25

5.1 Build Approach ...25

5.1.1 Selecting a suitable camera. ...25

Date 09 April 2023
Title Visual Registration
Page 4 / 84

5.1.2 Camera Platform Construction ...27

5.2 Object Detection ...29

5.2.1 Image Processing ...30

5.2.2 Capturing the Training data...32

5.2.3 Annotating the training data ...33

5.2.4 Training the Object detection with different parameters35

5.2.5 Training the Haar Cascade Algorithm ..35

5.2.6 Annotation Augmentation ..38

5.2.7 Improving the accuracy of the model ..39

6 System Component Integration ... 41

6.1 System Design ...41

6.1.1 Data Storage ...43

6.1.2 Languages & Frameworks ..44

6.1.3 System Work Flow...44

6.1.4 Code implementation ...46

6.1.5 Environmental Setup (lighting, camera position/angle)47

6.2 Integrating CV System into GUI ...48

6.3 CV System Demonstration ...52

6.4 CV System Testing ...53

6.5 CV System Evaluation ..54

7 Conclusion .. 55

Bibliography ... 56

A.1 Two Dimensional Barcode Reader .. 58

A.2 Reading Data Matrix Codes ... 58

B. Confluence ... 61

B.1 Work Log ... 61

B.2 Weekly Meeting Notes .. 72

C. Back end Code .. 78

C.1 Object Detector .. 78

C.2 Matrix Reader... 82

Date 09 April 2023
Title Visual Registration
Page 5 / 84

List of Figures
Figure 1 Barcode from WorldBarcodes.com Figure 2 QR code from
W3Programmings.com 8

Figure 3 MTi product line ... 9

Figure 4 Close up image of the MTi-1 Sensor .. 9

Figure 5 Example Data Matrix Figure 6 Example of Data Matrix Sections 10

Figure 7 Screenshot of kanban board in GitLab ... 12

Figure 8 Screen shot of Burn Up and Burn Down chart of a Sprint .. 14

Figure 9 Haar like features Sourced from OpenCV Haar Cascades ... 16

Figure 10 Neural Network .. 17

Figure 11 RealSense D415 .. 19

Figure 12 Logitech C270 .. 19

Figure 14 Chameleon 3 .. 19

Figure 13 Logitech C920 .. 19

Figure 15 Diagram of the Assembled Prototype Structure .. 20

Figure 16 Example of Bad Negative Training Data Figure 17 Example of Good
Negative Training Data 22

Figure 18 Example of Good Positive Training Data .. 23

Figure 19 Diagram of the Issue Page to Help Identify Known Detection Issues 25

Figure 20 model of the Camera Mount Figure 21 3D model of the Raspberry Pi Mount
 27

Figure 22 Unassembled Prototype Structure Figure 23 Assembled Prototype
Structure 28

Figure 24 3D Printed Camera Mount Figure 25 3D Printed Camera mount with the Pi
HQ Camera 28

Figure 26 Raspberry Pi and Camera Mounted .. 29

Figure 27 Graph of ODM performance after training ... 30

Figure 28 High Resolution Image of Tray with 20 Sensors ... 31

Figure 29 Cropped Image of Top Left Sensor Figure 30 Cropped Image of Bottom
Right sensor .. 31

Figure 31 Graph Comparing Run Time of the Pylibdmtx Library ... 32

Figure 32 Consistent lighting Figure 33 label alignment Figure 34
Chameleon 3 camera 33

Figure 35 Pi HQ training data .. 33

Figure 36 command line interface ... 33

Figure 37 unannotated sensor Figure 38 unconfirmed annotation
Figure 39 Confirmed annotation .. 34

Figure 40 High False Positive Detection ... 36

Figure 41 model 2 .. 36

Figure 42 Model with Low False Alarm Rate (0.15) Figure 43 Model with a
Medium False Alarm Rate (0.3) 37

Figure 44 Detected Labels with Haar Like Features Overlayed ... 38

Figure 45 Blank label training data ... 39

https://movellatech-my.sharepoint.com/personal/wim_luyendijk_movella_com/Documents/Visual%20Registration%20Final%20Documentation.docx#_Toc131976693
https://movellatech-my.sharepoint.com/personal/wim_luyendijk_movella_com/Documents/Visual%20Registration%20Final%20Documentation.docx#_Toc131976694
https://movellatech-my.sharepoint.com/personal/wim_luyendijk_movella_com/Documents/Visual%20Registration%20Final%20Documentation.docx#_Toc131976696

Date 09 April 2023
Title Visual Registration
Page 6 / 84

Figure 46 Image of the Detection Model Successfully Annotating a Tray of 20 Sensors ... 39

Figure 47 Tray in Perfect conditions .. 40

Figure 48 Tray of Perfect Conditions after Detection .. 40

Figure 49 Context Diagram of the Visual Registration System within the Production
Department ... 42

Figure 50 Visual Registration System Architecture .. 43

Figure 51 Cloud Solution Architecture .. 43

Figure 52 Flow Chart of User Interaction ... 45

Figure 53 GUI diagram of bad sensor detection Figure 54 GUI diagram of good
sensor detection 45

Figure 55 GUI diagram of the Detection Issue Page ... 45

Figure 56 GUI diagram of the Settings Page .. 46

Figure 57 Class Diagram of the Visual Registration System .. 47

Figure 58 Full System with GUI .. 48

Figure 59 Full System with Tray of 20 sensors, Mounted camera, GUI and ODM output .. 49

Figure 60 GUI without Annotation Matching List IDs .. 50

Figure 61 GUI with Annotation Matching List IDs... 50

Figure 62 GUI with Sorted Annotation and List IDs ... 51

Figure 63 GUI Handling Detection Errors ... 51

Figure 64 GUI Showing High Res Image of a Detection Issue (Detection 4) 52

Figure 65 Example of a Wireframe diagram used ... 53

Figure 66 Tray with sensors showing object detection and image glare. 54

Figure 67 Laser Gun .. 58

Figure 68 A Matrix data section representing ‘A’ on the Ascii Table. .. 58

Figure 69 A Matrix data section representing 'z' on the Ascii Table .. 59

Figure 70 Data Matrix with colour labelled data sections Sourced From Wikipedia. 59

Figure 71 Annotation over original image of a Data Matrix encoded process. 60

Figure 72 Example of a left side intersection Sourced from Wikipedia 60

Figure 73 Corner intersection case solutions sourced from Wikipedia 61

Title Visual Registration
Page 7 / 84

Summary
Movella, a leading innovator in digitising movement, is a key provider of Micro -Electro -
Mechanical -Systems (MEMS) sensors. Currently, the sensors are registered in a data -
base using handheld scanning devices in a two-step process. First, during testing and
calibration of the sensors and second, prior to shipment and distribution of the product.
Movella is interested in developing and testing a computer vision system to
automatically register the product. The company’s ultimate goal is to register each
sensor prior to testing and calibration. This project describes the design, development,
demonstration, testing and evaluation of a conceptual computer vision system that
Movella can implement for product registration prior to shipment and distribution “as is”
or can adapt to automatically register the product prior to testing and calibration.

1 Introduction

Movella in Enschede calibrates and packages industrial motion trackers (MTi) which
uses small MEMS (Micro-Electro-Mechanical-Systems) inertial sensors to measure
changes in motion. The smallest motion tracker, the MTi-1 series is sold in large
quantities and is sourced from different companies and locations. The devices are
shipped on trays and each device has it’s own barcode label known as a Matrix Code
which contains its serial number and product information. Currently all individual
devices are scanned manually which is a labour-intensive process.

Movella has created an assignment for this internship to create an automated scanning
solution which recognizes and reads the Data Matrix (DM) codes of the devices using
Computer Vision (CV). Besides the development and testing of the algorithm, the
internship also includes the design of a robust and easy-to-operate hardware setup.
Movella has given the student (Wim Luyendijk) the freedom to investigate different
approaches using any technology available on the market.

Like Movella, many manufacturing companies are constantly looking for tools to increase
operational efficiency. One tool which consistently delivers increased efficiency and
productivity across a broad range of industries is the barcode label (Stazzone, 2023).
While there are many types of barcodes, these labels basically fall into two categories:
linear codes (Figure 1), which tie the code to product information in an external
database, and matrix codes, similar to Quick Response Codes, most commonly known as
QR codes (Figure 1). These codes can be used for a wide range of applications from
referencing a store price to linking to a company’s website. In Movella’s case, they are
using the code to store ID & production information to facilitate backtracking to find
sensor information if it is needed in the future.

Title Visual Registration
Page 8 / 84

Figure 1 Barcode from WorldBarcodes.com Figure 2 QR code from W3Programmings.com

To facilitate tracking and processing, barcodes are encoded with a products information
in alphanumeric characters. The codes are then read by either a handheld device or one
built into a checkout station. When paired with the right barcode scanning system,
barcode labels lend themselves to improve data collection processes by maintaining
consistent, efficient workflows that positively impact the organisation and the supply
chain (Stazzone, 2023). The main application of barcodes in organisations are to track
goods throughout their life cycle, from manufacture to distribution to purchase to service
and repair (McCue, 2022). One company that uses barcodes to keep track of their
product during its calibration and packaging process is Movella.

1.1 Movella
With offices in North America, Europe and Asia, Movella is a leading innovator in
digitising movement and a key provider of MEMS sensors (Movella About Page, 2023).
For this, the company designs and develops a series of advanced motion sensors that
over time have found their way to a variety of industrial, sports, healthcare, and mobility
markets, including the entertainment industry. In the latter multiple Movella motion
sensors are placed on the human body to capture human movement in order to digitize
movement for games, such as the popular soccer simulation game FIFA, and movie
animations like Avatar, Mandalorian, The Matrix, Disney’s The King’s Man and others.

Located in Kennispark, Enschede, Movella’s branch office in The Netherlands targets the
development of 3D motion technology, ranging from full-body 3D kinematic solutions to
3D motion trackers to capture the movement of industrial systems and people. The
sensors used to estimate the motion of interest use the high-rate measurements of IMUs
combined with information from other sensors such as magnetometer, GNSS, barometer
in so-called sensor fusion algorithms (Sensor Modules, 2023).

Title Visual Registration
Page 9 / 84

Figure 3 MTi product line

Figure 3 above, depicts the portfolio of industrial motion trackers. Depending on the
sensors and algorithm running on each product platform the output of the sensor ranges
from orientation to a full dynamic state estimate which includes position and velocity
estimates. The sensors shown are the MTi 1 surface-mount device module series (far
left), the MTi 600 easy integration series (2nd from left), the MTi 10 series entry level
model with robust accuracy (3 middle sensors), and the MTi 100 high-end class of MEMS
IMUs, orientation and position sensor modules (far right). All products contain a 3D IMU
composed of a gyroscope and an accelerometer plus a 3D magnetometer, with optionally a
barometer and GNSS receiver (Mti Product Selector, 2023). From Movella’s product line the
focus of the project is the MTi-1 sensor due to it’s high demand.

1.1.1 MTi-1 Sensor
The MTi-1 series sensors (Figure 4). With a footprint of just 12.10 x 12.10 x 2.55 mm, and
weighing < 1 gram, (MTi-1 IMU, 2023) the sensors fit a wide range of (embedded)
applications, including unmanned aircraft and drones, surface and underwater robotics,
autonomous vehicles, and indoor mobile robots.

Figure 4 Close up image of the MTi-1 Sensor

Movella receives these sensors pre-assembled with the bar code already set on it, so they
can begin the calibration process without delay. During the calibration process, the

Title Visual Registration
Page 10 / 84

sensors are registered to Movella’s internal database using the Barcodes on each of the
sensors. Where the sensors can be followed on their progress through calibration and be
counted towards the inventory of the sensors.

1.1.2 MTi-1 Barcodes

The barcode labels chosen by Movella for the MTi-1 modules are Data Matrix codes. The
reason DM codes, instead of one-dimensional bar codes are chosen is related to both the
footprint and the amount of information that can be stored on the label. One Dimensional
labels have only vertical or horizontal lines and typically store only 9-13 characters,
while 2D barcodes can have both creating a matrix of black and white cells, allowing
them to hold as many as 2,335 characters (Data Matrix, 2023).

The high density of characters further reduces the footprint of the code thereby making
them ideal for small items with minimal space for barcodes, like MTi-1 sensors. DM
codes have the added benefit of robust error-checking capabilities. Allowing scanners to
still read the codes even when they have significant damage (Data Matrix, 2023).

Movella uses the DM codes to store the MTi-1 sensor Manufacturer ID and traceability
information. Figure 5 and 6 below show an example of a DM barcode. The DM code has
an "L" shape on the bottom left corner of the code, this is called the "Finder Pattern". On
the top right there is another "L" shape of alternating squares, this is the "Timing
Pattern". The main square is where the data of the Matrix Code is stored in bytes. Where
the black cells represent a 1 and the white cells represent a 0 in binary. (Karrach, 2021).

Figure 5 Example Data Matrix Figure 6 Example of Data Matrix Sections

Using a specific 2D scanning device (Appendix A.1 Two Dimensional Barcode Reader),
the code can be decoded and read to register the product. However, reading the data
from the data section can also be done by hand or decoded by a program. For more
information on how DM codes can be read, see Appendix A.2 Reading Data Matrix Codes.

1.2 The problem
Movella currently uses a handheld laser gun to read the Matrix Code on each of the MTi-1
sensors to register the product. While the operators are fast at scanning, registering the
sensors takes on average about 30 seconds for a tray of 20 sensors. After interviewing
production operators an import problem was brought to light.

Title Visual Registration
Page 11 / 84

During the scanning process, a matrix code may be missed and not registered to the
system. When this occurs the only feedback, the operators receive from the current
system is that they do not have the expected number of sensors. This is an issue because
the operators do not know which sensor was unable to be registered. The current
solution is to rescan the entire tray of individual sensors until the expected number of
registered sensors is met. Should a DM code have any issues that cause it to be
unreadable, the problem will then cause significant delays. Causing an already labour-
intensive and repetitive task to become more time consuming.

To solve the issues of not knowing which sensor is unregistered, the solution shows the
operator where the sensor(s) with problems are so it can be addressed individually,
which will save the operators time and reduce the amount of repetitive tasks.

1.3 Company Goals
Movella is interested in addressing the DM scanning code problems identified and would
like to see a system in place that can automatically scan and register a full tray of sensors
and identify problematic sensors and pinpoint faulty or non-detectable codes in real
time. It is expected that the designed and developed system can register multiple sensors
at one time in several processes, meaning registration of 20 sensors per tray and then
100 sensors per tray. The ultimate goal is to apply the system to all incoming pre-
assembled MTi-1 modules and get rid of manual and individual scanning processes. For
this the system will need to be highly reliable.

1.4 Stakeholders
Project stakeholders include Movella, Saxion University of Applied Sciences, and the
author of this document. Movella, in particular the Production Department and the
Research and Development (R&D) Division, is the primary stakeholder. The reason is
that both directly benefit from the project’s outcome and results. Saxion University of
Applied Sciences (SUAS) is the secondary stakeholder as the institution maintains a close
and professional relationship with Movella. Finally, the author of this document (Wim
Luyendijk) is the tertiary stakeholder as he is a student at SUAS and performed the work
in the form of a graduation internship to fulfil part of the requirements to obtain a degree
in Software Engineering.

1.5 Project Goals & Requirements
Given the problem outlined in section 1.2, Movella is looking for a solution that will
increase the efficiency of registering sensors. This can be done by reducing the amount of
time it takes to scan a tray of sensors and remove the obscurity of which sensor is unable
to be registered. The solution will also need to maintain the same level of correctness as
the current solution when registering the sensors. Meaning for every sensor read, the ID
entered in the system must be correct.

During a meeting with Movella’s stakeholders, we identified together what the
requirements of the project will be to reach a minimum viable product.

Title Visual Registration
Page 12 / 84

1.5.1 Minimum Viable Product:

● The program can detect the positions of multiple Matrix Codes within an image.
● The program can read the data of a Matrix Code with 100% correctness.
● The system can process a tray of sensors without registering the same code twice.
● There is a GUI an operator can use for the process, to see if action is required.
● The system can reliably register the sensors and is robust enough to handle

missing Matrix Codes, crooked sensors (sensors not properly set on trays), and
other outlying situations.

● The system takes the same amount of time or less than a trained operator
scanning a tray (30 seconds for a tray of 20).

2 Project Methodology
The project uses four different tools to ensure completion of all tasks and delivery of the
agreed upon product. Tool 1 is a project management methodology (Kanban) that was
adopted to facilitate the tracking and monitoring of all project tasks. Tool 2 provides
access to Movella’s online Confluence system which ensures project documentation can
be uploaded and company employees can see informed about project progress and final
product delivery. With Tool 3, weekly meetings were organised between all stakeholders
(TEAMS was used as an additional tool for unplanned and quick communication) to
discuss project progress and challenges. Finally, towards the end of the internship, a
change in methodology was made to adapt a SCRUM approach to ensure project tasks
stayed in focus and delivery of the product stayed on track. Following is a detailed
description of these four project tools and their accomplishments.

Tool 1: Kanban approach.
Kanban is an Agile management approach to visualise workloads and workflow so one
can stay up to date on who is doing what work and what stage the work is in (Kanban
Methodology, 2023). To achieve this, a so-called Kanban board is generated which
displays all the work that needs to be done in a project board organised by columns with
each column representing a stage of work. A task then moves from right to left through
the columns until it is completed.

Figure 7 Screenshot of kanban board in GitLab

Title Visual Registration
Page 13 / 84

For this project, a four column Kanban board was generated to track and monitor tasks
from the initial idea-phase into the steady flow of work phase. The columns were labelled
“to do”, “in progress”, “on hold”, and “done” (Fig. xx). By placing cards, representing the
workflow phase of each task in the columns, the board proved useful in visualising where
each task was in real time. This helped in balancing the workload and in identifying
workflow challenges.

It also helped in reprioritizing tasks that were “stuck” to make sure each task was
completed on time. To initialise work, each task was prioritised, and placed on the
Kanban board to track and monitor the tasks through the stages. Each task then moved
through the columns until the task was completed. To use the Kanban approach, Gitlab
(an online DevOps tool), was used to order, create, and move the various tasks through
the Kanban pipeline. The project’s code was stored in Movella’s Gitlab’s online
repository, where it is updated and uploaded between tasks. In the case of unexplainable
errors, the code can be reverted back to the previous stable version stored in the
repository.

Tool 2: Confluence
Confluence is a collaboration wiki tool used to help teams share information and
knowledge. For this project, the software was used to upload project documentation and
to share project information like daily work logs (B.1 Work Log), weekly meeting notes
(B.2 Weekly Meeting Notes), and document updates among company employees. In so
doing, Movella guarantees that those interested in the project not only are kept in the
loop of what progress their co-workers are making but are also given an opportunity to
actively participate on tasks and thus on the development of the product.

Tool 3: Teams
Microsoft (MS) Teams was used as a communication tool to reserve meeting rooms, hold
virtual meetings as needed, and to ask questions which did not need the input of all
stakeholders. Teams thus facilitated quick communication between individual
stakeholders. To facilitate communication and/or discussion of project related items or
events, weekly stakeholder meetings were scheduled. These meetings typically were
between the intern and Movella employees or (biweekly) between the intern and the
Saxion University representative. During these (bi)weekly meetings, work progress
using the Kanban board was discussed along with challenges or problems encountered in
executing the tasks. Other points of discussion were the reprioritization of tasks, the
review of (updated) documentation, and comments received from Confluence user
project participants.

Tool 4: SCRUM
While the Kanban approach proved useful in managing the movement of individual tasks
throughout the project when the time tasks took to do were unknown. As tasks became
more specific, and the timely completion of tasks became more important, the decision

Title Visual Registration
Page 14 / 84

was made to replace the Kanban approach with the SCRUM approach. The latter, like
Kanban, is an Agile project management framework developed to help teams manage
their workload and structure their work.

The SCRUM team consisted of three members, each with a specific role and function: the
product owner (Dieuwe), a SCRUM master (Fabian), and the developer (Wim). The
product owner defined the vision for the project, using information from the product
users, and ensured all players understood the tasks and subsequent time requirement
for task completion. The SCRUM master, then planned the sprints, organized stand-up
meetings, and reviewed sprint outcomes. The developer developed the tasks, performed
the tasks, and moved task status to the SCRUM board, and uploaded the projects code to
Gitlab.

To incorporate the SCRUM approach into the workflow, sprints were decided to last 1
week each, with sprint reviews scheduled during the weekly meetings. Tasks were given
weights to account for the number of hours needed to complete, with a maximum of six
hours. Tasks taking longer to complete were divided into smaller tasks. As illustrated by
the burn up and burn down charts of a sprint (Figure 88), one of the benefits of moving
to a SCRUM approach was the added value of enabling the team to gauge the progress of
work and assessing the on-time completion of sprints.

Figure 8 Screen shot of Burn Up and Burn Down chart of a Sprint

3 Quality Assurance
For this project, all code was written in Python. To ensure uniformity to code standards,
PEP8 and YAPF guidelines were followed. Rules followed include line length, spacing
rules, naming objects, and laying out codes. Collectively they ensured the compatibility
and consistency of the code written and warranted the readability and overall
understanding of the Python code.

Title Visual Registration
Page 15 / 84

A number of tests were run to determine the functionality and quality of the codes
written. They included smoke testing, regression testing, and post-training testing.
Smoke testing was performed early in the development of the codes to check the stability
of the software written and to find major defects in the core of the software. For this
project.

Besides smoke testing, the developed software was subjected to regression testing.
Software regression is when a feature that previously worked ceases to work after a
particular change is deployed within the software like source code changes, system
updates, and so forth (Regression Testing, 2023). In this project, regression testing was
performed after tasks were incorporated and the functionality of the system needed to
be re-established. Tests targeted a deeper level in scope than smoke testing, meaning
that all modules and methods were tested. The purpose of the tests was to identify if the
changes had caused new bugs or had harmed the software’s functionality.

Finally, software training assessment tests were performed. In this project, software
assessment tests were performed after the software received training in identifying MTi
sensor DM codes and their success could be compared to handheld scanning devices.

Post-training assessment tests were administered at the very end of Object Detection
Model training and all training “modules” had been completed. The model was tested
against a test data set, where the number of sensors and the position of sensor DM codes
was known. The Model’s output was then checked against the predetermined data set to
assess not only the success of the Model but more importantly the effectiveness of the
module’s training providing valuable insight about the capabilities of Computer Vision
for automated sensor code registration.

4 Research
Five research questions were generated to address the problems identified with barcode
detection and registration. The first three deal with developing a viable Computer Vision
system to automatically scan and register MTi-1 sensors. The last two then target the
implementation of the developed CV system so machine operators can effectively and
efficiently use the system. Collectively, they assess the practicality of implementing a full-
scale automated system for MTi-1 product registration and tracking.

Since the creation of a Computer Vision System was requested by Movella, the main
research question of the internship will be: Is it feasible to create a Computer Vision
system to register DM sensor codes automatically? To answer this, it is important to
break it down into sections. First Computer Vision will be using a camera to see the
sensors and Matrix Codes, which will then need to be processed and registered. So the
first sub question will be, how can CV be used to identify and register sensors? Once
approach is identified, tools to support it will also need to be selected. The second sub
question therefore will be: Which tools are needed, and what physical setup is
required, to create a CV system that can successfully read DM barcodes?

Title Visual Registration
Page 16 / 84

In order to address the operators’ problems, the system will need to effectively
communicate errors it may encounter when reading the tray of sensors. How can sensor
detection errors be effectively communicated and/or visually displayed to end
users? To ensure the product is created to be easily used by the production operators,
maintaining communication, and receiving their input during the creation of the system
will be import. How can machine operator insights and feedback be used to
improve the operation of the system?

4.1 Question: How can CV be used to identify and register sensors?
To find out if CV can be used to replace the manual scanning of each MTi-1 DM code, a
literature search of Computer Vision was conducted to identify approaches which can be
implemented to create a way to identify DM barcodes within an image.

Template Matching. According to (OpenCV Template Matching, 2023), template
matching is a technique which searches through a given image to identify pixels that
match the template image. By returning an average of the local pixels which do match,
and by displaying them in the form of a pixel map, where the brighter the pixel area, the
closer the match to the template. While the approach appeared to be quick and seemed
useful when scanning object images that follow specific patterns, the main drawback for
using Template Matching is that the technique compares pixel values for very specific
patterns and thus works best when the template and object are very similar. Given the
fact that DM codes have different code patterns, the use of Template Matching in this
project could lead to detection issues as the template will likely differ from the DM codes
being detected.

Machine Learning using a Haar Cascade. Also known as Cascade Classifier, this
approach searches through an image looking for “Haar Like Features” (Figure 99) which

Figure 9 Haar like features Sourced from OpenCV Haar Cascades

create a sum of pixel values on the white side and the black side and then compare the
two. By stacking a lot of features on top of each other, known as a cascade, detection of a
complex object is obtainable. According to Cascade Classifier (OpenCV Cascade Clasifier,
2023), to find the features that will identify an object, the Haar cascade uses example
data known as positive images (images which contain the object) and negative images
(images that do not contain the object). In the positive images, the object to be detected

Title Visual Registration
Page 17 / 84

is outlined so the training algorithm knows if it is correct or not during training. Training
is done by going through multiple rounds, where it uses the Haar-like features to guess
where the object is (OpenCV Cascade Clasifier, 2023).The closer to the expected result,
the more that feature is considered important when considering if it is an object or not.
Features that always guess wrong are therefore given a negative weight, and the cascade
will do the opposite of what the feature outputs, which is used to eliminate potential
matches earlier in the cascade which improves its efficiency.

Neural Network. Similar to Machine Learning, this technique requires training. Training
is needed to generate nodes, which look for small patterns and then assign a weight to
them (Habibi, 2017). The greater its weight, the more important that pattern is to
identify an object. These nodes are created in different layers of the model and combine
the weights of nodes of previous layers to determine if an image contains the object (Fig.
xx). While the technique requires longer training than the Haar Cascade, Neural
Networks can be flexible in identifying objects that aren’t always the same and are less
likely to be overtrained by the training data.

In particular for computer vision tasks convolutional neural networks have been successfully for a wide range of

applications exceeding even human capabilities. The convolutional layers in these networks allow to recognize

patterns from small lines and edges which are than combined in deeper convolutional layers to higher level

features which allow a precise detection.

Figure 10 Neural Network

Comparing the two approaches, it would seem that Neural Networks are very powerful
techniques that can be successfully used to accurately detect objects which they are
trained to detect. However, the technique is very complex, takes a lot of time to train and
their performance strongly depends on the amount of training data available. On the
other hand, the Haar Cascade approach is less complex and takes less time, while still
able to generate an accurate Object Detection Model (ODM). For the latter, a thing to
watch out for is over fitting. This can occur when the training data is limited, and the
ODM begins to filter out objects that do not perfectly match the training data. Resulting

Title Visual Registration
Page 18 / 84

in the same draw backs as Template Matching. To avoid this from happening to the Haar
cascade, the number of training rounds should be limited or, conversely the variance in
the training data should be increased.

Given the time limitation for this project, it was decided to apply the traditional machine
learning approach with the Haar Cascade to generate the Object Detection Model for
reading DM codes on MTi sensors. While the approach is certainly not as adaptive as a
neural network, it is easier and quicker to train, which will be important since it is likely
there will be multiple iterations of the model while trying to figure out the best training
approach for the detection model.

This project will be using the traditional machine learning approach with the Haar
Cascade. While it’s not as adaptive as a neural network, it is easier and quicker to train,
which will be important since it is likely there will be multiple iterations of the model
while trying to figure out the best training approach for the detection model.

4.2 Question: Which tools are needed, and what physical setup is required, to
create a CV system that can successfully read DM barcodes?

Having identified an approach for testing the feasibility of using CV in automatically
registering MTi sensor DM codes, the system’s components needed to be identified and
selected. A cursory review of the literature revealed the need for a reliable camera
(Vandendorpe, 2021), a stable camera mounting platform (Norton, 2023), a flexible
object detection model (Nanos, 2023),and an easy to use Graphic User Interface (GUI)
(Pedamkar, 2023)The following paragraphs describe and discuss the various
components identified for further testing and selection in the final product.

To best identify what kind of camera will be needed to read the DM codes on each of the
sensors, a way to read the codes should be determined. To find answers, a literature
search was conducted to locate a library containing a program tool that can be installed
and used to read DM codes from images. Once a library is found, a number of cameras
Movella already has can be tested. The cameras available for the project are: Logitech
C270, RealSense D415, Chameleon 3 and Logitech C920. Shown below.

4.2.1 Image Capture

A large number of cameras are currently available to capture barcode images. The most
prominent are digital cameras which can be linked to software which pre-processes the
image to prepare it for further analysis where the image is ultimately decoded and read.
In this project, the following digital cameras were used to acquire the MTi sensor DM
codes: Logitech C270, RealSense D415, Chameleon 3 and Logitech 920 . All were part of
the Movella inventory.

Title Visual Registration
Page 19 / 84

Figure 14 Chameleon 3

The testing of these cameras will be carried out during the implementation phase and
covered in more detail in section 6.1 where the cameras will be tested to determine the
specific requirements for generating readable images of DM codes.

4.2.2 Camera Platform

After free-shooting a number of images it became clear that long exposure times were
needed to acquire multiple images. As long exposure times typically lead to camera
shake and subsequent blurred images, a physical structure was needed to stabilize the
camera so high quality images needed to read the sensor’s DM codes could be obtained.

It became also clear that, given the CV system’s requirement to capture 20 or 100 images
simultaneously, the use of a tripod to take overhead shots of a tray filled with sensors
would not do. A frame needed to be constructed which was rigid, yet portable to facilitate
experimentation with camera angles, positions, and light conditions.

It was decided to use aluminium for the construction of the actual framework as it was
light, yet strong, and was easy to build. For this project, a stable H-shape stand was built
by connecting two equal length “T-slot” bars with a single, aluminium crossbar. On top of
the crossbar was a 3D printed camera mount fastened to the crossbar by a bolt
connected through the t-slot of the aluminum bars (Fig. xx). As the crossbar was attached

Figure 12 Logitech C270 Figure 11 RealSense D415

Figure 13 Logitech C920

Title Visual Registration
Page 20 / 84

to the T-slot bars by simple corner joint fasteners, the height of the crossbar and
subsequently the camera platform could be adjusted.

Figure 15 Diagram of the Assembled Prototype Structure

4.2.3 Image Detection
After acquiring an image, the digital camera sends it to the software to prepare the image
for further analysis. This stage usually converts the image to grayscale and applies
various filters to reduce image noise and enhance barcode edges. Binarization is typically
performed next to ensure that black and white pixels remain in the image.

The decoding process consists of two steps: barcode location detection and barcode
decoding. During the first step, software recognizes and extracts the barcode part from
the complex image acquired by the camera. This step enables the system to identify the
location of the barcode without the need for prior knowledge of the location. It also
means that the model can locate multiple barcodes at once.

The tool used to detect the sensor’s barcode location is called Object Detection. Object
Detection allows computer systems to “see” their environments by detecting objects in
visual images or videos (Boesch, 2023). Methods for object detection typically fall in
neural network-based or non-neural approaches. As it was decided (Section 5.1) to use a
classical machine learning technique with the Haar Cascade was chosen for the detection
of MTi sensor DM codes.

4.2.4 Image Processing

As indicated above, an image’s decoding process consists of two steps: barcode location
detection (described in section 5.2.3), and barcode decoding. While several devices exist
to capture DM codes, a few libraries are available to read and interpret a DM code. A
literature search revealed that there is a library called pylibdmtx (Python Library for
Data Matrices) which can scan captured images and not only return an array of data
containing the data read from the sensor, but also the coordinates on the image where
the code was found (Laghton, 2019). Another potential solution to reading DM codes is
within the OpenCV Frame. A class capable of reading two dimensional barcodes called

Title Visual Registration
Page 21 / 84

QRCodeDetector (OpenCV QR Code Detector, 2023) Due to this class being part of a tool
that was already decided to be used, it was worth looking into if it would work with DM
codes. However, after testing, the class only works for reading QR Codes. So it was
decided to go with the pylibdmtx library since it could read DM codes and was
compatible with Python.

A drawback on the use of the Pylibdmtx library is that the higher the resolution of the
image, the longer it takes the library to search for the codes. When a partial DM code and
another DM is in the same image, the position of the rectangle (used to draw bounding
boxes around detected objects) can be placed onto the unreadable code thereby
overriding the rectangle of the readable code. This not only mislabels the two codes but
also causes confusion as to which data matrix code was actually readable.

4.3 Question: What data is needed to train the detection model to handle non-
conform situations?

Machine learning (ML) is a branch of artificial intelligence (AI) that focuses on the use of
statistical methods to develop algorithms which are trained to make classifications or
predictions(reference). For this project, ML using a Haar algorithm capable of detecting
objects in images, regardless of their location and scale in an image is considered. The
reason for selecting the framework is discussed in Section 5.1.

Like all ML algorithms, the ML object detection framework using Haar Cascade features
required a large amount of data to make accurate predictions. To train the algorithm, a
large and representative set of sample data needs to be collected. For this project,
categories of training data included: different lighting conditions, distance from the tray,
sensors not laying flat on the tray, rotated sensors and different camera settings and
camera resolutions. To ensure the model could detect DM codes in non-conform
situations, edge case data (i.e., extreme data) were incorporated. This to added variance
to the training data, with the assumption that the broader and more varied the training
data is, the less likely the model would be overtrained.

To develop such an automated CV system, the use of machine learning (ML) algorithms
to identify DM barcodes will be investigated using OpenCV. The data from a set of ML
training examples with different light settings taken with different cameras, some
without DM codes, will then be used to enable the ML algorithm to identify the location
of the DM code on the sensor and the object detection model to detect the DM codes in
each image.

Using the OpenCV framework, there is a cascade training tool called
opencv_traincascade.exe, this executable file is what runs the training algorithm. The file
is run from the command line and takes a number of different training parameters that
will ultimately affect the outcome of the trained model. These parameters will be
explored further in the implementation phase. For now, the general inputs for the file

Title Visual Registration
Page 22 / 84

consist of folders with positive and negative examples. The negative examples are images
that do not contain the sensors with ID labels. While the positive examples are images
that do contain the objects the model will be learning to detect (OpenCV Cascade
Classifier Training, 2023). Along with the positive examples a text file will be provided to
the system, this file lists the location of the image, along with the number of objects, with
their position, width, and height. This text file tells the defines to the algorithm where the
DM codes are, and what their bounding box is. During training, the model will guess what
is and isn’t a DM code, which the trainer will confirm whether or not the model is correct
and make adjustments to the model from there.

An important part of the training data lies in the quality of the negative examples.
According to the information found online, just any images without the objects to be
detected will not be useful when defining what the object to be detected is not (Ben,
2023). A picture of a mountain for example may tell the model that the sensor is not a
mountain, but when trying to scan an actual tray of sensors, there will never be a
mountain. A better approach is to provide negative examples the model will likely see in
the production environment, the tray for example provides better context. This tells the
model the tray in which the sensors are placed on, is not actually a part of the sensor
label itself.

 Figure 16 Example of Bad Negative Training Data Figure 17 Example of Good Negative Training Data

Now that quality negative examples have been defined, it is time to look into what will be
needed for the positive examples. When it comes to the positive examples, a high volume
of the object to be detected is an important factor. The larger the data set, the more
chances the model will get during training to guess where the object is. For the general
detection, good resolution, lighting, and consistent distance will be important. The idea
behind this category of positive examples is to show the model that even though the
black and white pixels aren't always in the same place, the white label on the sensor with
a square grid is what it should be looking for. If the training data is limited, it could be the
model is trained to only recognize certain codes, which is what should be avoided. The

Title Visual Registration
Page 23 / 84

figure below shows a high-resolution image of a sensor label which will be used as
training data for the model.

In training the Haar algorithm, it is important to use both positive and negative images
where positive images represent situations where the to be detected object is present,
and negative images where the to be detected image is not. The trained algorithm was
then used to detect objects in images from test data. The figure below shows an example
of a positive image that was used as training data for the ML model’s algorithm.

Figure 18 Example of Good Positive Training Data

The previous paragraph mentions high volume of clear labels as a category of the
training data. It is called a category, because the model will not always be shown DM
codes in the most perfect conditions. Time of day and weather could change the lighting
of the images being captured, along with other unexpected variances. To help ensure the
model can still detect DM codes in non-conform situations, edge case data needs to be
taken into consideration. Other categories of training data include: different lighting
conditions, distance from the tray, Sensors not laying flat on the tray or rotated slightly,
even different resolutions from the cameras that will not be used in the final product can
add variance to the training data. Which in the end will broaden what the model is
considering when determining if an object is a DM code. The broader the training data
the less likely the model is to be overtrained on the data set.

4.4 Question: How can sensor detection errors be effectively communicated
and/or visually displayed to end users?

Once the CV system is operational and functions as expected, it is still possible that the
detection of a sensor is wrong. It is therefore important to bring the faulty detection to
the operator’s attention. When a sensor is detected incorrectly or missed entirely, the
system will not be able to read the DM code. In this case the operator will need to
physically adjust something on the tray. Whether it be resituating the sensors or
replacing a sensor with another. In either case, the operator will need to know what the
issue is and which sensor on the tray is affected.

In section 5.2, The option of using ML to identify where sensors are and crop them into
separate sub images to increase the efficiency of the library was mentioned. The sub
images would then only have one Matrix Code, it is then known exactly which code is

Title Visual Registration
Page 24 / 84

unreadable because the return value will be for that specific Matrix Code, and as the
detection model will know it’s position, it is then also possible to annotate which sensor
in the image was not readable using the OpenCV library for python. In this library a
rectangle can be drawn on an image at specified coordinates. Along with having custom
colours for the lines of the rectangles. By indicating to the user what each colour means,
the status of individual sensors can then be visually shown on trays of 20 and even 100
sensors without cluttering the screen with status text. While also showing the user
where on the tray the problem sensors are.

4.5 Question: How can machine operator insights and feedback be used to
improve the operation of the system?

The best way to find out how well a system is operating is to ask the end user. Several
tools are available to solicit end user insight and feedback. They include personal
interviews, surveys and questionnaires. For this project, conversational feedback was
chosen as the preferred tool to solicit end-user feedback and insights as it is casual, fun,
and non-invasive (Haije, 2023). Specific questions target how users experience the
current process and what they wish the system can do to ease their job.

It was found that the operator’s main concern is the accidental processing of sensors if
one or more of the sensors aren’t registered. This is likely due to issues with the current
use of barcode scanners, which could be caused lighting glare and subsequent improper
scanning or missed scanning of a DM code.

To address this concern, the CV system’s GUI has a built-in screen with clear indicators of
when all sensors have been registered and also when issues are encountered with the
processing and registration of sensor DM codes. In case of the latter, the flow of sensors
is stopped immediately and does not proceed until all sensors on the tray have been
processed and registered.

Another feedback received from machine operators is notification on whether an issue
with a sensor’s code reading can be easily fixed (e.g. repositioned) or if the sensor needs
to be replaced by another one. To address this concern, a wireframe diagram was
developed (Figure 1919) which facilitates the detection and mitigation of common
issues.

In its current setup the information portrayed is rather limited. However, the
information can be expanded by adding other detection or registration issues. Such
information might prove helpful in separating minor issues which can be easily fixed by
machine operators in the form of repositioning sensors from major issues which require
the replacement of sensors and the subsequent re-reading of sensor codes.

Title Visual Registration
Page 25 / 84

Figure 19 Diagram of the Issue Page to Help Identify Known Detection Issues

5 CV Component Testing

Using the outcome from the research questions, a plan of approach was developed to
generate a conceptual prototype for computer vision registration of Movella MTi DM
codes. This chapter reports on the various system components making up the conceptual
prototype. The first two sections describe the cameras considered and assessed for
possible system integration and the construction of a physical platform to ensure the
quality of the images taken. The following two sections then discuss the object detection
model tests, and the training of the Haar Cascade to enable barcode detection and
barcode decoding, respectively. The last two sections then discuss the graphic user
interface (GUI) to help machine operators identify and (potentially) fix issues with the CV
system, and the languages and frameworks used in the project.

5.1 Build Approach

5.1.1 Selecting a suitable camera.
As the main focus of this project was to identify and read MTi sensor DM codes, selecting
the right camera to meet the project’s requirements was of utmost importance. To
achieve this goal, a number of cameras were tested (Section 4.2). The following is a list of
the various cameras tested for this project, along with an outcome of the tests.

Camera Comparison Result

Title Visual Registration
Page 26 / 84

Logitech
C270

While the camera was able to read
larger DM codes, it failed to read the
smaller DM codes on MTi-1 sensors. It
is believed that the camera’s low
resolution and fixed-focal length were
responsible for this deficiency.

RealSense
D415

With a resolution of 1280x720 pixel IR
camera and a 1920x1080 pixel RGB
camera, the camera was designed to
measure object depth from as little as
16 cm distance. While the camera was
easy to operate it failed to capture the
small size of the sensor's Data Matrix
code. The camera’s fixed focal length
could be the cause for this.

Chameleon
3 USB3

With an attachable macro lens, the
camera provides easily readable
images which can be put into focus at
close range. As the camera shoots one
image at the time, the sensors will
have to be loaded into a reel for the
camera to work. As the project targets
the registration of multiple sensor
codes simultaneously, the camera was
dropped from further consideration.

Logitech
C920

The camera was an upgraded version
of the first camera tested. With a
higher resolution, and autofocus lens,
the camera was able to clearly read
multiple images at once. However,
with the lighting glare off the DM
labels the environmental conditions
and camera setup required constant
adjustment to get clear images.

Title Visual Registration
Page 27 / 84

Pi Camera
HQ

After assessing the capabilities of the
four cameras and determining their
shortcomings, a Raspberry Pi HQ
camera was purchased. The camera
has a resolution of 4056x3060 pixels
and an adjustable focus of 12.2 to 22.4
mm. Tests revealed the clear images
and subsequent detection,
identification and readability of all 20
DM codes on a full tray of sensors.

After aassessing the camera’s capabilities against the pylibdmtx library, it was
determined that the camera’s resolution played an important role in obtaining clear DM
code images. The best results were obtained with the Raspberry Pi HQ camera, as it not
only had the highest resolution but also was able to obtain 20 readable DM code images
of a tray of 20 sensors of the five cameras tested. For this project, it was the camera of
choice.

5.1.2 Camera Platform Construction
Early on in the process it became clear that taking pictures while experimenting with
light, camera angles, focus, depth of field, etc., was a tedious task. The most challenging of
all turned out to be securing the stability of the camera while taking the shots. As only
tripods were available to achieve the task of stabilizing the camera, and none were fitted
to take overhead shots, the decision was made to build a customized structure.

To facilitate experimentation with camera angles, positions and light conditions, a
portable structure was constructed. The platform consisted of an aluminium stand made
of horizontal bars in the form of two “Ts” connected by a horizontal crossbar which could
be raised to a maximum height of 38 cm and lowered to a height of 3cm to obtain the
ideal image capturing setting.

Attached to the metal housing are 3D printed, “Thing verse” (Thingiverse, 2023) adapted
camera mount to fit the Pi HQ camera selected from testing as well as a Raspberry Pi
mount to interface with the camera. The two figures below (Figure 20) show the 3D
mounts of the camera mount platform developed for this project.

Figure 20 model of the Camera Mount Figure 21 3D model of the Raspberry Pi Mount

Title Visual Registration
Page 28 / 84

The t-slots in the bars allow for the connection of right-angle brackets connected via
bolts. This metal structure with tight fitting connectors made the outcome rigid and
sturdy.

Figure 22 Unassembled Prototype Structure Figure 23 Assembled Prototype Structure

Figure 22 shows the assembled camera platform for taking the shots needed to capture
the image of all 20 sensors and their DM codes. This system provides a very stable base
and the height of the cross bar is adjustable to allow for finding the best distance for the
camera. Figure 24 below show the 3D printed mounts being mounted with the RPi
Camera and microcontroller.

 Figure 24 3D Printed Camera Mount Figure 25 3D Printed Camera mount with the Pi HQ Camera

Title Visual Registration
Page 29 / 84

Figure 26 Raspberry Pi and Camera Mounted

5.2 Object Detection

In this project, Machine Learning (ML) algorithms were used to detect the barcode’s
location. To accomplish this task data was prepared to evaluate the efficiency of the
barcode detection approach. By the end of the project a total of 1000 sensor images were
used to create the DM code dataset.

After each iteration of training the Object Detection Model, the model went through a
collection of testing data, where the position of the Data Matrix codes was already
known. This data set was used to see how the model improved or regressed from the
previous training attempt.

As the position of the Data Matrix codes in the test data was already known, the two
bounding boxes could be compared and the Model’s performance assessed using a
technique called the Intersection of Union (IoU) (Mesquita, 2021). This approach takes
the Area of Union, which is the total area of the two bounding boxes when merged (if
they overlap) and divides it by the Area of Overlap.

By examining the degree of bounding box matchings, the precision of the ODM can be
determined. The higher the percentage the better the match. If no overlap between the
two bounding boxes can be found, the image is classified as False Negative, meaning that
the model should have detected the image but for some reason did not. On the other
hand, if a bounding box from the ODM is provided where there is no true bounding box, it
is classified as a False Positive, meaning that the ODM should not have identified a DM
code image but did.

In the case the two bounding boxes overlap, the ODM is thought to be correct. However,
it still needs to be determined if the model was lucky and accidentally got close in
detecting the DM code, or if it really detected it. In such cases finding the IoU might prove

Title Visual Registration
Page 30 / 84

useful. If the IoU is higher than 60%, the ODM is close enough for the pylibdmtx library to
read the code and classify the image as True Positive.

Figure 27 shows the performance results of 8 ODM’s built in this project. The first three
models were trained using a limited dataset (100 sensors). The next five models were
built using image augmentation to increase the number of training data. This was
achieved by rotating the barcode centre in increments of 90⁰ (more information is
covered in 5.2.6). The number of training samples used in the last five ODMs tested was
therefore 500 vs 100 in the first three models.

Figure 27 Graph of ODM performance after training

As the goal of object detection is to obtain as many True Positives, and as few False
Positives and False Negatives as possible, it was found that Model 8 yielded the best
results of the eight models tested. This model was subsequently selected for integration
in Movella’s conceptual CV system for automated sensor registration.

5.2.1 Image Processing

Detecting the DM code on a sensor is only the beginning in registering the code. Reading
and interpreting the image is the other part. A literature search revealed that there is a
library called pylibdmtx (Python Library for Data Matrices) which not only can scan
captured images but also return an array of data containing the data read from the
sensor as well as the coordinates on the image where the code was found (Pylibdmtx
library, 2022) In this project, pylibdmtx was used for image processing.

In searching the site, it was discovered that the pylibdmtx library not only can read the
data from a Matrix Code, but to a certain extent can also detect data matrix codes. This
generated the question that if the Data Matrix Library can find a data matrix Code on its
own, why use a Cascade Object Detector described before?

Title Visual Registration
Page 31 / 84

To test this, three example images were taken of trays containing 20 sensors each. The
images were captured by the Pi HQ camera and stored locally on the computer. To
ensure the test is reproducible and only takes into account how long the library takes to
read all 20 of the sensors, the test program does not use an object detection model.
Instead, the positions of the sensors were stored in an annotation text file.
The positions were then used by the program to identify where to crop the image.
Cropping was done using an OpenCV method and returned a new image. The time an
object detection model took, was not taken into consideration for this test as the goal
was to find out if giving the library smaller images would reduce image processing time
and justified the time it takes to train an ODM. Figure 28 shows the full sized image of 20
sensor codes, while Figure 29 depict the cropped versions of the left top sensor code and
bottom right sensor code, respectively using the OpenCV method.

Figure 28 High Resolution Image of Tray with 20 Sensors

Figure 29 Cropped Image of Top Left Sensor Figure 30 Cropped Image of Bottom Right sensor

Comparing the processing time of the same three uncropped and cropped images it was
found that the uncropped (full-sized) Images took on average 29.8 seconds to run,
whereas the array of cropped images took on average 5.4 seconds (a decrease of about
82%!). Stated differently, the time the library spends on DM matrix code image
processing in cropped images is roughly 5 times faster than in uncropped images.

Title Visual Registration
Page 32 / 84

The reason for this is that the pylibdmtx library searches the entire image comparing
pixel values from the top left to bottom right. So, when the image is cropped down to
only contain the Data Matrix Code, the library does not need to search the image for a
Data Matrix for very long, thereby reducing the run time. This suggests that the Cascade
Object Detector should be used to locate the Labels, and return the image coordinates, on
the image, and then use OpenCV to crop the image and the pylibdmtx library to read the
image. (Code of reading the cropped images can be found in Appendix C.2 Matrix Reader)

Figure 31 Graph Comparing Run Time of the Pylibdmtx Library

5.2.2 Capturing the Training data

In order to train the Cascade Object Detector collecting a wide range of data is important.
The physical structure will allow for collecting high quality training data. However, one
of the requirements of the project is for the algorithm to be robust and handle outlying
situations. For the main use case of the detector high quality images are expected,
however different lighting conditions or some amount of distortion, sensor
misplacement, or even blurriness can be introduced through everyday use. To ensure the
Detector can always detect sensors even in unexpected conditions it will be useful to
have training data that isn’t in perfect condition.

This means that using the other cameras that were a potential match for the project
outlined in section 5.1.15.1.1, should be used to gather a wide range of resolutions.
Namely the Chameleon 3 and Logitech C920. As well as collecting data from different
lighting conditions and distances, and even different angles.

Title Visual Registration
Page 33 / 84

Figure 32 Consistent lighting Figure 33 label alignment Figure 34 Chameleon 3 camera

The second phase of data collection was of the full trays after the physical structure had
been created and the best training parameters had been found, see section 5.2.4 for more
details. This was also collected in varying lighting conditions, and different distances
since the structure can be adjusted to different heights. This section of data collection
was all taken on the Raspberry Pi HQ mounted camera.

Figure 35 Pi HQ training data

5.2.3 Annotating the training data
The OpenCV annotation tool is a command line tool, which a user provides the name of
an output text file (a text file which holds the data of the objects in the positive images)
and the name of the folder containing the positive images (images containing Data
Matrices). The annotation tool can be called in the command line by typing the following
command:

opencv_annotation.exe –annotations=pos.txt –images=positive/

 Figure 36 command line interface

Title Visual Registration
Page 34 / 84

The positive folder is then iterated through by the tool, where each image is displayed
individually. For each image, the tool allows the user to select points on the image with
the mouse cursor to create bounding boxes around the object and allows for multiple
objects per image. When using the tool to select an object, the user clicks to the top left of
an object, then selects the bottom right, which creates a red bounding box around the
object. To confirm the bounding box is in the correct position, the tool has the user press
‘C’ on the keyboard which will turn the box green. If the box isn’t correct, then clicking on
a new position on the image will create a new red box. Once a box has been confirmed it
will turn green and another box can be drawn. If it is determined after confirming a box,
that it isn’t where the user wanted it, they can press ‘D’ on the keyboard which will delete
the previously confirmed box. When all objects in an image have been annotated,
pressing the ‘N’ key will move to the next image within the positive folder. The following
images show what this process looks like when annotating an image.

Figure 37 unannotated sensor Figure 38 unconfirmed annotation Figure 39 Confirmed annotation

After all images have been processed by the annotation tool, it will create a text file
containing the file path to each image, along with how many objects per image, and the
position & size of the bounding boxes.

Below you can see an example of the output annotation text file:

positive\sensor30.png 1 305 167 82 80
positive\sensor31.png 2 200 264 83 80 385 44 83 82
positive\sensor32.png 3 176 101 84 84 168 308 85 81 360 300 80 82

Each line of the file is associated with an image. The image path is the first part of the
line, next the line indicates how many objects are in that image. The next two numbers
refer to the top left coordinate of the object, and the following two numbers are the
width and height of the bounding box. These four numbers (x, y, w, h) then repeat for as
many objects that are in that image.

This text file is then used to make a vector file, which is the positive image reference to
train the object detection model. OpenCV has another command line tool called create
samples and takes the following inputs. The text file created by the annotation tool, the
width and height of the window for training (usually 24 x 24 pixels (OpenCV Cascade

Title Visual Registration
Page 35 / 84

Classifier Training, 2023)), the number of objects in the annotation file, and lastly the
name of the output vector file. The command is shown below.

Opencv_createsamples.exe -info pos.txt -w 24 -h 24 -num 1000 -vec pos.vec

The size of the window will need to match with the parameters given to the training tool
and must be consistent with the vector file. The window is used as the starting point of
the detection model when scanning an image and will need to be bigger than the smallest
size the object can be detected. It is recommended to use a size of 24 x 24 as the larger
the window is, the longer it will take the model to train. (training a cascade classifier,
2020) The vector file is used by the OpenCV training tool as the positive object input,
which is covered in the next section 5.2.4.

5.2.4 Training the Object detection with different parameters
Training the detection models is done by the OpenCV train cascade tool. Like the two
tools outlined in section 5.2.3, it is also executed from the command line. The parameters
it takes to train the detection model are, the vector file generated from the last section
5.2.3, a txt file containing the file path to all negative images, the number of positive
objects in the vector file, and the number of negative examples (these are generated from
random cut outs of the negative images), the number of stages, and the detection window
size. The window size must be the same size as the vector file, in the case of this project
that is 24 x 24. The parameters listed above are all needed to execute the tool, but there
are more possible parameters that can be used.

5.2.5 Training the Haar Cascade Algorithm
There are several different parameters that can be selected for training the Haar Cascade.
The main parameter that affects the training the most is the number of stages. This is the
amount of times the Trainer will go through all the training data. At the end of a stage,
the program looks at how the Object Detector performed. Images the Detector performed
poorly on are more likely to be shown in the next stage, this is called AdaBoosting
(Adaptive Boosting). The reason this parameter is so important is due to how it affects
the outcome of the Detector. If there aren’t enough stages, then the Detector will not
have enough features to look for and will just be guessing. However, if there are too
many stages, then the Detector can be overtrained on the data and will not accept objects
that do not perfectly match its internal requirements.

One other parameter that is important to consider when training is the max false alarm
rate, which makes the stage train until the detector is below the maximum rate of
incorrect guesses. This parameter is important because without it, the stages do not train
for long and will result in a detector that thinks everything is the object it’s looking for,
the result of this can be seen in Error! Reference source not found.40.

Title Visual Registration
Page 36 / 84

Figure 40 High False Positive Detection

The first attempt in training the Cascade Object Detector resulted in more False Positives
than there were initially expected (See Error! Reference source not found.). This was
due to not knowing about the MaxFalseAlarmRate parameter as mentioned in section
6.1.5. Once this parameter was set, the result was much clearer on where the DM code
was.

Figure 41 model 2

After each iteration of training the Object Detection Model, the model was used to go
through a collection of testing data, where the position of the Matrix Codes was already

Title Visual Registration
Page 37 / 84

known. This data set was used to see how the model improved or regressed from the
previous training attempt.

The goal for the Detection Model is to get as little False Positives and False Negatives,
while getting as many True Positives as possible, using the same training set. This is to
reduce the amount of total training time, by finding the best parameter weights with the
initial data set while it is quick to train a model, the final Detection Model can use these
parameters on a larger set of training data where the resulting training time will take the
longest.

One interesting observation of how the models reacted to the test data, is if the training
was too strict then upside down labels were returned as a False Negative as seen in the
left image below. Then if the training was allowed to be more flexible, the model would
be able to detect sensors that were upside down but would be more prone to returning
False Positives.

 Figure 42 Model with Low False Alarm Rate (0.15) Figure 43 Model with a Medium False Alarm Rate (0.3)

Models that had a looser False Alarm Rate were able to correctly detect more DM codes
overall, but also had a higher rate of False Positives. Adding data to the training set can
help improve the False Negative rate, but lowering the rate of False Positives is done by
lowering the False Alarm Rate which restricts the model. Since the models with a tighter
False Alarm rate struggled on upside down labels. More training data with upside down
labels should be added. This gives the model a better definition of how the labels can
appear in images, while maintaining a low False Alarm Rate.

Another issue that was found with the original training data, is that bright or white
squares caused by glare were identified as DM codes. This is likely caused by the Haar-
like features Identifying a white square to be highly likely to be a DM code, if it has a
white line to the left. In the image below an example of how the Haar-like features could
mis-interpret the patterns and detect a code next to where an actual DM code is.

Title Visual Registration
Page 38 / 84

Figure 44 Detected Labels with Haar Like Features Overlayed

For this specific case, adding more examples of DM codes may not be sufficient. This is
because the detection is finding features that are similar to how a DM code presents. To
remove these types of False Positives, better and more specific negative training data can
be introduced. By adding more images that are confusing to the model, the stronger it
will get at determining what isn’t a DM code. These negative images contain examples of
brightly lit and shiny metal squares on the MTi sensors. Sensors with blank labels are
also an addition to the negative data set, to better define to the model, that it should be
looking for the DM code itself, and not necessarily the white label it is printed on.

5.2.6 Annotation Augmentation
Using the OpenCV annotation tool for the initial sets of training data was useful, however,
once we decided more data was necessary to train the object detection model to be more
accurate, it would become too time consuming to annotate all of the images by hand.
Which presented the problem of how we can create annotated images automatically.

To solve this, predetermined bounding boxes are labelled on a select amount of images
containing MTi sensors with a blank label. Then by generating random Matrix Codes and
pasting them automatically onto the position of where the Matrix Code should be, it is
possible to create a large amount of different codes, all pre-annotated and ready for
training the Object detector.

Title Visual Registration
Page 39 / 84

Figure 45 Blank label training data

5.2.7 Improving the accuracy of the model
In order to fix the issues discovered with the original data set a mix of Annotation
Augmentation (generating pre-annotated Matrix Codes for the training data set) and
adding negative images that addressed the white squares being detected as Matrix
Codes. This is possible because the Adaboosting approach will show the negative images
more if the Detection Model keeps identifying a white square as a code. The image below
shows the results of attaining better training data with specific images to train against
false positives.

Figure 46 Image of the Detection Model Successfully Annotating a Tray of 20 Sensors

After making the adjustments to the Detection Model, the focus shifted to ensuring every
part of the system worked as intended. The first part to address was when the system
can not read a sensor, is it because of the detection model, or is it something to do with
the library that reads the codes. If the library has inherent issues, a new library may be

Title Visual Registration
Page 40 / 84

needed. Another part to consider is the image quality and if it affects the readability of
the sensors. So, the next set was to work on getting a baseline established where the
system can read the sensors 100% of the time if the conditions are perfect. The two
following images show the result of the system on an image in what is considered the
perfect conditions. i.e., proper lighting, image clarity, and distance from the tray.

Figure 47 Tray in Perfect conditions

Figure 48 Tray of Perfect Conditions after Detection

When the conditions are perfect the library has no issues reading the sensors and the
Detection Model can correctly Identify the DM codes almost all the time, with a few
exceptions in false positives.

Title Visual Registration
Page 41 / 84

6 System Component Integration

Having selected and tested the conceptual CV system components to scan (individual)
DM barcodes, the feasibility of a fully functioning CV system needed to be examined. To
achieve this task, a conceptual CV system needed to be designed and the individual
system components making up the conceptual product needed to be integrated, tested
and evaluated. The following paragraphs describe the system design, the experimental
setup for product demonstration, the tests performed to determine product
functionality, and the evaluation of product demonstration and testing outcomes.

6.1 System Design
Before this chapter goes into the application of the decisions from 6.1, there is some
context around the project that should be defined now that it is clear what steps will be
taken to create the Visual Registration Product.

The production department currently uses a system called TestCal (test calibration)
which uses the physical scanning gun to scan each sensor individually. This program is
responsible for registering the sensors to the Movella database so that each order of
sensors can be backtracked should a problem occur.

Each scanned sensor is entered into the TestCal program one at a time. Movella is
currently working on a new system to replace the TestCal system, which will take in an
entire list of sensors at once. To accommodate for this, the system returns a full list of
the scanned sensors and can also export it to a temporary text file. As a temporary
solution, a supporting program can take the text file of sensor IDs and enter each ID into
the TestCal system individually until the new System is released.

The Context Diagram below shows how and where the system will be integrated into the
production department and how it interacts with the TestCal system.

Title Visual Registration
Page 42 / 84

Figure 49 Context Diagram of the Visual Registration System within the Production Department

Now that it is clear how the system will be integrated into the production department,
the system’s architecture can be defined. The architecture will use a computer with a
monitor that is available at each workstation in the Production Lab. The Visual
Registration Program can be loaded directly onto the PC where the operator will use the
GUI to interact with the program. On the workstation the physical structure with the
Camera and Raspberry Pi attached will communicate with the PC over Movella’s private
network. A live feed from the camera will be sent to the PC and displayed in the GUI,
when the operator is ready, they will begin the Detection and register the Codes. This
architecture can be seen in the image below.

Title Visual Registration
Page 43 / 84

Figure 50 Visual Registration System Architecture

The Architecture will be implemented in this project. scalability to the system for the full
implementation, the Object Detector can be hosted in an AWS cloud environment using
Docker Containers. In this case the operator would be able to use any computer at any of
the workstations to use the Visual Registration System so long as it had the physical Pi
and Camera available. This would also make CI and CD easier to implement as only the
cloud environment would need to be updated and not each individual PC in the
Production Lab. The image below is the associated AWS cloud architecture for a scalable
system.

Figure 51 Cloud Solution Architecture

6.1.1 Data Storage
Seen in the architectural layouts in Figure 50and Figure 51 registered codes are pointing
at a Database. This will be handled by the TestCal system, as all sensor IDs will be passed
to that system. However, this is not the only data being saved by the system. To monitor
how the system behaves in the future, any tray that is not fully detected will be saved
locally along with all of the sensor IDs in the form of a text log. The images will be named
the date and time the image was taken, so that the information can be easily seen. The
folders in which the images and ID logs are saved to can be changed by an Admin, this
can be done monthly or quarterly depending on how often Movella wishes to change or
review the logs.

Title Visual Registration
Page 44 / 84

6.1.2 Languages & Frameworks
The main programming language of this project is Python in both the front and back end.
All subsequent libraries and frameworks are either already based in Python or have a
python wrapper to allow them to be used by the system. For example, the Pylibdmtx
library is a Data Matrix Library with a Python wrapper. The Framework used for the
training and implementation of the Cascade Object detector is OpenCV. PyQt is the GUI
framework used by the program to create an easy-to-use GUI.

6.1.3 System Work Flow
Now that the system has been properly defined, the internal Classes and GUI should be
outlined. Knowing how the operator will move through the system will help in creating
the class diagram of the system. Knowing that the operator will need to start by taking a
picture of the tray of sensors before the Detection can begin, so this will be the starting
point. Once the Object Detection algorithm returns its findings the operator will need to
know whether all sensors have been detected. Should an error occur in the detection the
operator will need to resolve the issue before beginning the detection again. The flow of
the system can be seen in Figure 52.

Title Visual Registration
Page 45 / 84

Figure 52 Flow Chart of User Interaction

From this flow chart, a wireframe of the GUI can be built. This is the first iteration of the
design and will change as feedback is received from the production operators. First the
Main page of the system will need to have a space where the sensor tray can be seen, as
well as an area to see the output of the ID’s once the sensors have been read. Lastly, a key
to define what the different annotations on the image after the detection is shown. This
will make it clear to the operator which sensors have been read, and which sensors need
to be taken care of. The following images show the wireframe of the main page in a good
and bad detection example.

Figure 53 GUI diagram of bad sensor detection Figure 54 GUI diagram of good sensor detection

Figure 55 GUI diagram of the Detection Issue Page

Title Visual Registration
Page 46 / 84

Figure 56 GUI diagram of the Settings Page

6.1.4 Code implementation
Now that the system has been designed, the implementation of that design can be
addressed. The front and back end have two main functionalities, this being detecting
where the DM code is, and extracting the data from the codes. Until the Detection
algorithm is properly trained to work 100% of the time, we will need to be able to test if
extracting the data from the code is working correctly. So, the Object Detector Class is an
abstract class that has two implementations. One being the Cascade Detector (using the
Object Detection Model), and the other being a pre-annotated class. The pre-annotated
class is used to read the position of sensors in an image where they have already been
identified, which acts as a work-around to test the system without using an Object
Detection Model. In the Figure 57, you can see how the two classes inherit from the
Object Detector Class. The other classes in the class diagram are the ReadMatrix class
which implements the pylibdmtx library, and the MTiDetection class which stores all of
the data associated with the MTi Sensors. This being the size and location of the detected
sensors relative to the tray image, the data extracted from the sensor's DM code along
with if it was able to be read by the pylibdmtx library, and finally the cropped image of
the sensor. This image is saved with the sensor’s data so that it can be recalled later. For
example, if the sensor cannot be read, the sensor is displayed to show the reason it
wasn’t read i.e. the code was cut off or has a strong glare that renders the code
unreadable.

Title Visual Registration
Page 47 / 84

Figure 57 Class Diagram of the Visual Registration System

Within the code of these classes there are some Design patterns that were followed to
ensure a standard was met. Iterators were used to walk through a list of sensors and
used to help sort the detected sensors as they are not always detected in order from right
to left.

The Factory Pattern was used to reduce the amount of code that was repeated
throughout the system. This design pattern was used most notably in the Object detector
class with the different approaches to the detecting sensors. This method was also used
in the form of helper functions. These functions were used across the different classes
from a single helper file. Helper functions were created if similar code was being used by
different parts of the system. Displaying an image for example was used by multiple
classes but all contained identical code.

The last design pattern used in the system is known as strategy, where an algorithm is
wrapped inside of a class. This is done in both the ReadMatrix Class and the two child
classes of the Object Detector. Each of these classes act as a wrapper for the algorithms
they use.

6.1.5 Environmental Setup (lighting, camera position/angle)

Testing the camera structure was done in the intern office space, a well-lit room with
natural sunlight coming in from one side of the room. The system was positioned on a
desk with overhead lighting which provided enough light to clearly see the sensors but
caused a strong glare on the DM code labels. To defuse the overhead lighting, a
temporary plastic tray lid was used to avoid glare.

The production lab also had bright desk lights that can be turned on or off depending on
what best suits the system. It is recommended to create some sort of light shielded to
disperse strong lighting to avoid glare from the DM code labels.

Title Visual Registration
Page 48 / 84

Due to the intern office as well as the production lab having some amount of outside light
influencing how bright the room is, training and test data were captured on days with
varying weather conditions, to ensure the system can work any day of the year no matter
the external weather conditions.

The camera was positioned directly above the tray on the Camera mount structure.

6.2 Integrating CV System into GUI
With the system design outlined and an Object Detection Model created, the final set is to
apply the Graphical User Interface to the ODM model. Following the Wireframes outlined
in 6.1.3, the GUI was created using PyQt.

The Front end of the system contains a view port which shows the images captured by
the Raspberry Pi. In the current implementation, the RPi is controlled from the computer
Through a program called VNC viewer, which provides remote access. The captured
image can be transferred to the PC through a program called SSHFS (Secure Shell File
Transfer) which connects a mounted file to the PC to share images. While this is not the
most efficient method to transfer the data, it does get the system running. For the final
implementation of the system the RPi will be set up as a stream where the GUI displays
the camera in real time.

Figure 58 Full System with GUI

Upon receiving the captured image, the back end of the system can analyse the image.
This is done by handing the image to the ODM model using the OpenCV Library which
then returns the list of detected sensors and their positions. The back end saves each
sensor as an MTiDetection(Figure 57 Class Diagram) and creates a smaller cropped

Title Visual Registration
Page 49 / 84

image from the original captured image. Every detected sensor is then scanned by the
pylibdmtx library and returned to the list (Appendix of the back end code).

Figure 59 Full System with Tray of 20 sensors, Mounted camera, GUI and ODM output

During the integration of the GUI to the ODM model, was ensuring the output list
matched the annotation from the model. Operators wanted a clear indication of which ID
in the list corresponded to the detected sensor in the image, and requested that it be read
from left to right.

However, the Object Detector does not return the list of sensors from the top left to the
bottom right, but instead returns the list in the order the Sensors were identified (Figure
60). This made it very difficult to figure out which ID corresponded to which Sensor, as
the number on the list is the order of which the codes are in the list, and do not match the
annotated codes. (To improve readability, the navigation bar will be cropped out from
subsequent figures)

Title Visual Registration
Page 50 / 84

Figure 60 GUI without Annotation Matching List IDs

Using the listId variable from the MTiDetection class it is possible to connect the id of the
annotated code to the ID of the sensor in the list. However, this causes the list to appear
to be unorganised and can be confusing; as shown in the following image (Figure 61).

Figure 61 GUI with Annotation Matching List IDs

To solve this the list is sorted based on the position of the identified sensor. This could
then be sorted from top to bottom and left to right. However, the rows should contain 5
sensors when doing a tray of 20 sensors, but it is possible that a double detection, or a
false positive occurs. In which case, it was possible that the last sensor in the row is
sorted into the next row, which caused a discrepancy between the list and the sensors.

To fix this, rows were categorised into clusters based on their y coordinates, with a
maximum threshold, should the coordinate be over this threshold, it is then known for

Title Visual Registration
Page 51 / 84

certain that the sensor is in a different row, and a new cluster should be created. This
adaptive row clustering allowed for the list to be fully sorted and correctly labelled so
that it was clear to the operator which sensor was which. (Code for the sorting algorithm
can be found in Appendix C.1 Object Detector)

Figure 62 GUI with Sorted Annotation and List IDs

The last part to focus on with regards to integrating the Detection model into the GUI is
ensuring the system still worked in not only good weather tests, but also bad weather
examples. The following images are screenshots of GUI when something with the
detection goes wrong.

Figure 63 GUI Handling Detection Errors

Title Visual Registration
Page 52 / 84

Figure 64 GUI Showing High Res Image of a Detection Issue (Detection 4)

6.3 CV System Demonstration

During the product development process, a number of system demonstrations were
given. Most of these demonstrations took place during the research and development
phase of the project and typically focused on the performance of two or more integrated
system components, such as the integration of a camera and a camera mounting platform
to take high quality sensor pictures, or the integration of the ODM and the pylibdmtx
library to obtain readable DM code images.

Other demonstrations occurred during and at the end of the prototype development
phase. Like the R&D demonstrations, the Prototype demonstrations typically focused on
system capabilities. So, where the R&D demonstrations presented the capabilities of the
integrated camera system, and the integrated ODM system, the Prototype demonstration
highlighted the integration of the ODM output with the GUI.

Finally, the operation of the fully integrated CV system was demonstrated at the end of
the project when all system components had been identified and integrated into the final
product. The demonstration presented the product’s features and capabilities, and the
system’s value to the end user. Like the R&D and Prototype demonstrations, the fully
integrated system demonstration was made to project’s stakeholders, specifically the
Movella Production and R&D managers during one of the weekly meetings.

Title Visual Registration
Page 53 / 84

6.4 CV System Testing

Having tested the CV system’s individual components it was time to test the integrated
CV system to see if the system’s performance met the system’s customer requirements. A
number of approaches are available to determine if the product functions as expected
(QA Testing) and if customers / users find value in using the product (Concept Testing).

Quality assurance (QA) testing is typically undertaken in a staged environment, where
tests are run to determine the functionality of the product before moving on to another
state of development till the product is completed. This type of product testing ensures
that the product works as expected and helps researchers identify problems before
making the product available to the user, customer or general product.

In this project, QA testing was used (similar to integrated system demonstration)
throughout the development of the CV product. Typically performance tests were run
prior to one of the weekly stakeholder meetings. The results of the test were then
discussed and a decision was made to either move ahead to the next stage of system
development or to solve the problem(s) causing issues.

Concept testing occurred at the end of the product development phase and is typically
performed to provide clarity on certain features of the product. or functionality
customers want from the product. Concept testing often involves presentations, surveys
/ interviews, and wireframes to obtain feedback from users / customers.

In this project, both wireframes and surveys were performed to obtain feedback from
machine operators on the use of GUI to communicate system errors and system
functionality (Figure 65). Both were used to provide clarity on the use and functionality
of the CV system as a tool to automatically scan and register MTi sensor DM codes.

Figure 65 Example of a Wireframe diagram used

Title Visual Registration
Page 54 / 84

6.5 CV System Evaluation

While it was envisioned that the functionality of the conceptual product would be tested
in the Movella production facility, this did not happen. One of the offices was chosen
instead. While it is believed that the location of the testing site did not impact the overall
functionality of the CV system, it may have impacted the outcome of some of the tests.

The reason for this being that the lighting conditions in the lab (fluorescent light) were
different from the lighting conditions in the office (incandescent light). As DM code
images are covered by a shiny coat, glare was often a problem in the scanning of sensors,
particularly in the production fab (Fig. xx). While this problem was easily fixed in the
office, the installation of a light diffuser shield in the production lab might have proved
more difficult.

As such, it is possible that if sensor detection tests had been conducted in the production
lab rather than the office, the robustness of the ODM might have improved as the number
of unreadable images due to glare would undoubtedly have increased the number of
training samples and subsequently reduced the image detection time. A downside to this
increase in system robustness would also be an increase in sensor code registration time
as for all faulty sensor images detected, the whole tray of sensors would have to be
rescanned, even if there only was one faulty sensor on the tray.

Figure 66 Tray with sensors showing object detection and image glare.

As such, it is possible that if sensor detection tests had been conducted in the production
lab rather than the office, the robustness of the ODM might have improved as the number

Title Visual Registration
Page 55 / 84

of unreadable images due to glare would undoubtedly have increased the number of
training samples and subsequently reduced the image detection time. A downside to this
increase in system robustness would also be an increase in sensor code registration time
as for all faulty sensor images detected, the whole tray of sensors would have to be
rescanned, even if there only was one faulty sensor on the tray.

7 Conclusion

Data Matrix (DM) codes offer high density data in small sizes. They are ideal candidates
for use on products that have a limited surface to print on. Yet, their small size and
limited number of DM decoding devices. During the internship, development of a tool
that can detect and process DM codes in high numbers. Specifically, the development of a
conceptual computer vision system that can automatically register DM codes. Data show
that it is feasible to implement the tool in manufacturing.

Requirements Met:
The program can detect the positions of multiple Matrix Codes within an image.

• Tested by running the system and comparing the IoU intersection.
The program can read the data of a Matrix Code with 100% correctness.

• Tested by comparing the output of the system with a reliable DM code reader.
The system can process a tray of sensors without registering the same code twice.

• Double detections are filtered out by the system before exporting the ID list.
There is a GUI an operator can use for the process, to see if action is required.

• The Detection Issue page displays a high-res image of a detected sensor that
cannot be read.

The system can reliably register the sensors and is robust enough to handle
missing Matrix Codes, crooked sensors (sensors not properly set on trays), and
other outlying situations.

• The Object Detection Model can detect the DM codes on sensors shown to it, and it
can handle outlying situations it’s never seen before. It still has some short
coming in detecting sensors with glare and still has a chance of creating a false
positive. However, The system does makes up for this by handling the error or
presenting it to the operator.

• To fix the false positives and missed sensors in certain lighting conditions,
targeted training data can be added to the model with some extra training stages
the model should be able to rectify this short coming.

The system takes the same amount of time or less than a trained operator
scanning a tray (30 seconds for a tray of 20).

• The system is capable of reading a tray of 20 sensors in 5 seconds on average.
Which is 6 times faster.

Title Visual Registration
Page 56 / 84

Bibliography
Ben. (2023). Training a Cascade Classifier. Retrieved from Learn code by gaming:

https://learncodebygaming.com/blog/training-a-cascade-classifier
Boesch, G. (2023). Object Detection in 2023. Retrieved from Viso.ai: https://viso.ai/deep-

learning/object-detection/
Data Matrix. (2023). Retrieved from Apose: https://docs.aspose.com/barcode/info-

cards/data-matrix/
Habibi, H. A. (2017). Guid to convolutional neual networks. Cham, Switzerland: Elnaz

Jahani Heravi.
Haije, E. G. (2023). Customer Feedback tools. Retrieved from mopinion:

https://mopinion.com/customer-feedback-tools/
Kanban Methodology. (2023). Retrieved from Wrike: https://www.wrike.com/kanban-

guide/what-is-kanban/
Karrach, L. (2021, August 27). Comparative Study of Data Matrix Codes Localization and

Recognition Methods. Retrieved from MDPI: https://www.mdpi.com/2313-
433X/7/9/163

Laghton, M. (2019). libdmtx. Retrieved from sourceforge:
https://libdmtx.sourceforge.net/

McCue, I. (2022, Septamber 5). Barcodes Defined. Retrieved from NetSuite:
https://www.netsuite.com/portal/resource/articles/inventory-
management/barcode.shtml

Mesquita, D. (2021, May 28). Object Detection Evaluation. Retrieved from towards data
science: https://towardsdatascience.com/introduction-to-object-detection-
model-evaluation-3a789220a9bf

Movella About Page. (2023). Retrieved from Movella.com:
https://www.movella.com/company/about-us

Mti Product Selector. (2023). Retrieved from Movella.com:
https://www.movella.com/products/sensor-modules/xsens-mti-product-
selector

MTi-1 IMU. (2023). Retrieved from Movella.com:
https://www.movella.com/products/sensor-modules/xsens-mti-1-
imu#overview

Nanos, G. (2023, January 24). Machine Learning Flexible and Inflexible models. Retrieved
from Baeldung: https://www.baeldung.com/cs/ml-flexible-and-inflexible-models

Norton, N. (2023). How to Reduce Camera Shake. Retrieved from Digital Photography
School: https://digital-photography-school.com/how-to-avoid-camera-shake/

Object Detection Model Evaluation. (2021, May). Retrieved from towardsdatascience.com:
https://towardsdatascience.com/introduction-to-object-detection-model-
evaluation-3a789220a9bf

Oney, L. (2018, Jan). GS1 Data Matrix Guideline. Retrieved from GS1:
https://www.gs1.org/docs/barcodes/GS1_DataMatrix_Guideline.pdf

Title Visual Registration
Page 57 / 84

OpenCV Cascade Clasifier. (2023). Retrieved from OpenCV.com:

https://docs.opencv.org/4.x/db/d28/tutorial_cascade_classifier.html
OpenCV Cascade Classifier Training. (2023). Retrieved from OpenCV:

https://docs.opencv.org/4.x/dc/d88/tutorial_traincascade.html
OpenCV QR Code Detector. (2023). Retrieved from OpenCV:

https://docs.opencv.org/4.x/de/dc3/classcv_1_1QRCodeDetector.html
OpenCV Template Matching. (2023). Retrieved from OpenCV:

https://docs.opencv.org/3.4/d4/dc6/tutorial_py_template_matching.html
Pedamkar, P. (2023). What is GUI. Retrieved from EDUCBA:

https://www.educba.com/what-is-gui/
Pylibdmtx library. (2022). Retrieved from GitLab:

https://github.com/NaturalHistoryMuseum/pylibdmtx/
Regression Testing. (2023). Retrieved from Katlon: https://katalon.com/resources-

center/blog/regression-testing
Sensor Modules. (2023). Retrieved from Movella.com:

https://www.movella.com/products/sensor-modules
Stazzone, S. (2023, January 17). How Barcodes Work to Increase Efficiency. Retrieved

from Metal Photo of Cincinnate: https://www.mpofcinci.com/blog/how-
barcodes-increase-efficiency/

Thingiverse. (2023). Retrieved from ThingiVerse:
https://www.thingiverse.com/thing:4595863/files

training a cascade classifier. (2020, August 22). Retrieved from learncodebygaming.com:
https://learncodebygaming.com/blog/training-a-cascade-classifier

Vandendorpe, A. (2021, April 28). Choosing a Camrea for Machine Learning. Retrieved
from ml6.eu: https://blog.ml6.eu/how-to-choose-a-camera-for-ml-e2a1819f37e0

Title Visual Registration
Page 58 / 84

Appendix

A.1 Two Dimensional Barcode Reader

Figure 67 Laser Gun

A.2 Reading Data Matrix Codes
Inside the data section (the black and white cells surrounded by the finding and timing
patterns) are smaller sub sections of L like squares that take a 3 x 3 space but are missing
the top right cell. In Figure 6868 and Figure 6969 an example of how these data cells look
is shown, These cells demonstrate how a byte of data in binary is related to the layout of
the DM code’s data cells. Once translated to binary they are then converted to Ascii
(More info on Ascii tables in Appendix X).

Figure 68 A Matrix data section representing ‘A’ on the Ascii Table.

Title Visual Registration
Page 59 / 84

Figure 69 A Matrix data section representing 'z' on the Ascii Table

The way these data sections are shaped allow for a compact way to fit them into the data
matrix code, where the bottom left cell is positioned in the empty space of another data
section. Figure 70 shows how these data sections are packed into a DM code. The green
sections are where the data of the code is stored, the red is the error correction (which
makes the code reliable), yellow is the buffer between those sections, and orange tells
the decoding process when to stop reading.

Figure 70 Data Matrix with colour labelled data sections Sourced From Wikipedia.

Figure 71 illustrates the encoding process of a DM code. While encoding, the Least
Significant Bit (the cell labelled “1” in Figure 68 and Figure 69) acts as the anchor point of
each section. As the matrix is encoded it follows a diagonal zig zag pattern through the
space, placing each data section at its anchor point.

Title Visual Registration
Page 60 / 84

Figure 71 Annotation over original image of a Data Matrix encoded process.

Figure 70 and Figure 71 show that some sections near the timing pattern do not match
the standard shape of the data section, this is due to the sections intersecting with the
border pattern. In Figure 71 the first data section intersects with the timing pattern; this
is known as an edge intersection. This occurs when the section intersects with either the
side or top of the data area, the data section is then wrapped to the other side of the data
area (Shown in Figure 72).

Figure 72 Example of a left side intersection Sourced from Wikipedia

When a data section is wrapped to the other side of the data area, the section is
translated either right or down 2 squares depending on if it intersects with the side, or
with the top. The exception of sections only shifting 2 squares and maintaining their
shape; is when it intersects with a corner. When this happens, maintaining the square
shape is no longer possible and must be specially manipulated to fit within the available
space. There are four possible cases depending on the size of the DM code and how the
sections align (Oney, 2018). Due to this being a special case, the corner data placement is
resolved after the rest of the DM code has been encoded. This ensures that all sections
can be encoded correctly. Since the matrix is filled in diagonally, it is only possible to
intersect with the corner once per code.

Title Visual Registration
Page 61 / 84

Figure 73 Corner intersection case solutions sourced from Wikipedia

Now that a basic understanding of encoding DM codes has been stated, reading the codes
can be done by deciphering the data squares in the same manner. While this could be
programmed to be done an algorithm, it would take a lot of time. So, a library or tool that
is capable of reading DM codes will be selected to help start the project. The library
selection will be explored further during the research phase in section Question: Which
tools are needed, and what physical setup is required, to create a CV system that can
successfully read DM barcodes?4.2.

B. Confluence

 B.1 Work Log

Week

Nr.

Date Notes Questions / Points to be

discussed

1
25

Nov

2022

Added a Visual Registration

page to my Student space, and

updated it with the research of

Matrix Codes from this week, as

well as test conducted with the

Logitech C270 WebCam.

 The Proof of Concept is

limited to a small data pool, it

confirms that it is possible to

read Matrix Codes with the

camera but does not cover all

potential cases. (ie. distance,

lighting, rotation of code,

etc.)

Title Visual Registration
Page 62 / 84

2 28

Nov

2022

Updated Visual Registration

page with examples and

updated research for

Algorithmic challenges.

Worked with the Realsense

WebCam on another proof of

concept.

2 29

Nov

2022

Updated Visual Registration

page with the proof of Concept

from yesterday and added

project roadmap.

Worked with the RealSense

Camera and increased the

efficiency of reading the Matrix

Code from an 8 second run

time down to 0.3 seconds.

Noticed an interesting

behavior with the Adaptive

Gaussian Thresholding

outlined in the Visual

Registration page. When

increasing the clarity of the

Matrix code through image

manipulation, the pylibdmtx

library had a harder time

reading it than a murkier

result.

2 30

Nov

2022

Visited Production and was

introduced to how the current

sensor registration process is

handled and what measures

employees take to ensure the

quality of the sensors (ESD

protection).

Presented the first week's

progress to Fabian and Dieuwe

during weekly meeting

2 1 Dec

2022

Visted Production again to

finish watching the registration

process of sensors.

Continued research and testing

in preparation for the matrix

code Dieuwe will give me to

test.

2 2 Dec

2022

Received old MTi 1 sensors

from Dieuwe for testing and

worked on getting a clear

Title Visual Registration
Page 63 / 84

readable image from the Matrix

Codes on each sensor.

2 3 Dec

2022

Continued work on reading the

Matrix Codes and determined

the RealSense Web Cam

couldn't capture a clear enough

image to read the Matrix Code

and suggested the use of a

Macro Camera to counter the

small size of the Matrix Codes.

3 5 Dec

2022

Experimented with the Xsens

macro camera & lens as well as

the C920 Pro lens and was able

to get a readable Matrix Code

Image of the sensor from both

cameras. However, both were

unable to get readable results

of more than 6 sensors at a

time which is not enough for

the goal of the project.

A new camera with a high

resolution and camera lens is

currently being ordered to

better match the requirements.

3 6 Dec

2022

Researched training object

detection models and what

steps are needed to make each

method work.

3 7 Dec

2022

Updated wiki with the last

weeks camera testing.

Met with Fabian about the last

weeks progress and what steps

to take before our Meeting with

Rogier (School Supervisor) on

the 14th of December.

Researched Neural Networks.

3 8 Dec

2022

Continued research into Neural

Networks and how they

Title Visual Registration
Page 64 / 84

compare to traditional machine

learning methods.

3 9 Dec

2022

Started collecting useable

Matrix Code images of the MTi-

1 sensors for the dataset to

train the cascade classifier.

Worked on Plan of Approach

Documentation.

4 12

Dec

2022

Submitted Plan of Approach

rough draft to Fabian and

applied recommended changes.

Worked on presentation for

Wednesday.

4 13

Dec

2022

Added finishing touches to PoA

and submitted it to Rogier.

Finalized the presentation for

Wednesday.

4 14

Dec

2022

Met with Dieuwe, Fabian and

Rogier and discussed the Plan

of Approach and work done so

far.

From the meeting, it was

determined to add Research

Questions to the PoA, and for

the future documentation be

sure to explain

why/motivation for using a

framework or method.

4 15

Dec

2022

Finished collecting preliminary

training data for the cascade

model for me to work on while

working from home.

5 19 -

23

Dec

2022

Worked on training the cascade

model and looked into what

parameters could be adjusted

to get the best result.

6 26 -

30

Dec

2022

Continued work on training the

cascade model, and worked on

the project requirements and

research questions.

Title Visual Registration
Page 65 / 84

7 5 Jan

2023

Updated the wiki space on the

work done so far and wrote a

break down the cascade model

covering what works and why

some issues were occurring.

7 6 Jan

2023

Added more negative examples

to the training data to target

the false positives that were

occurring in the model before.

Worked on another approach

with the training data to identify

the sensors rather than the

Matrix Code labels to see if it

increased it's accuracy.

8 9 Jan

2023

Updated the Cascade Object

Detection documentation to

include the results of the the

sensor model approach.

Received Raspberry Pi &

camera from Fabian, and

started work on the mechanical

setup to support the camera

above the sensor trays.

8 10 Jan

2023

Cut two aluminum T-slot rods

into an array of rods and

assembled them with corner

connectors to create the

physical set up for the camera.

Started working with the

Raspberry Pi and looked into

how to attach the camera

module to the physical

structure.

8 11 Jan

2023

Weekly meeting with Fabian

and Dieuwe, which covered the

progress of the Visual

Registration Cascade Model so

far and what approaches could

help improve it. We also

Title Visual Registration
Page 66 / 84

covered the research questions

and decided to broaden them

for the Plan of Approach.

Started working on an approach

to reduce the number of false

positives coming from the

cascade model.

8 12 Jan

2023

Started working with the

Raspberry Pi to begin testing

the program so far.

Wrote a helper program to

expand the number of training

data samples by rotating each

image by 90 degrees 3 times to

help with false negatives.

8 13 Jan

2023

Met with Rogier and caught

him up with the progress made

since their last visit and planned

on what documentation should

be worked on next and planned

our next meeting for the 27th of

January.

Continued work on importing

the current code to the

Raspberry Pi and started getting

the Pi ready to work with an on

board camera.

9 16 Jan

2023

The object recognition program

takes a little while to run on the

Raspberry Pi, so I started

training a model with a 48x48

window instead of a 24x24 to

see if this would help decrease

the runtime on the Raspberry

Pi.

While this approach takes

longer to train, it may make the

algorithm more efficient and

cover larger images in a shorter

amount of time.

Title Visual Registration
Page 67 / 84

9 17 Jan

2023

Documented the results of the

the 48x48 window training (not

much difference on the PC, but

improved the models

processing speed on the

Raspberry Pi).

Updated the file structure of the

Visual Registration program to

make it easier to transfer

between computers and easier

to update in the future.

Worked on the internship

documentation in preparation

for the mid-term of the project.

9 18 Jan

2023

Had a weekly meeting with

Fabian where we went over the

research questions and what

needs to be done for the mid-

term documentation. As well as

what the next week of the

project will look like

Attached the camera to the

structure and started collecting

some images of the filled

sensor trays, and seeing how

the trained model reacts to a

tray of sensors.

9 19 Jan

2023

Worked on the Documentation

for the mid-Term from home.

9 20 Jan

2023

Worked on the Documentation

for the mid-Term and started

working on the 3D concept for

the camera mount model from

home

10 23 Jan

2023

Gathered measurements and

started working on the 3D

camera mount and worked on

the annotation augmentation

rotation program.

Title Visual Registration
Page 68 / 84

10 24 Jan

2023

Connected to the Raspberry Pi

over ssh and got the VNC

connection working, and started

working on mounting a folder

to share data between devices.

Started looking into how the

current detection model

responds to a tray of sensors in

different lighting conditions for

trays of 20 and trays of 100

sensors.

The camera has a wide angle

lens, so when looking at a

tray with 100 sensors, the

furthest sensors start to look

a bit distorted but are still

recognized by the detection

model.

10 25 Jan

2023

Met with Fabian and Dieuwe

and talked about the progress

of the last week and what needs

to be focused on for next week.

Started looking into the Matrix

library and double checking it's

validity, by comparing what the

program read to the results of

an external app on my phone.

Some interesting Matrix

Codes were found, two

sensors had the ID of:

00000000 and two other

sensors had the same ID of:

157012699 with two different

label ID's

10 26 Jan

2023

Printed the camera mount and

prepared it to be attached to

the physical structure, and

updated the student space Use

of the 3D printer wiki page.

Finished getting the connection

between the Windows

computer and the Raspberry Pi

working and it is now possible

to share the files between them

and work on the Pi remotely.

Fixed bugs in the detection

program.

10 27 Jan

2023

Met with Rogier and talked

about the mid-term

Documentation and

Requirements. Showed Demo of

the project so far,

Title Visual Registration
Page 69 / 84

Worked on the Physical

Structure attaching the Pi

camera and Raspberry Pi.

Continued work on the

Documentation and tested the

library's accuracy when reading

Matrix Codes

11 30 Jan

2023

Worked with the physical

structure to try to get the

images to be as clear as

possible for testing the Matrix

Code library.

Began testing and validating

the libraries accuracy.

Worked on mid-term

Documentation.

11 31 Jan

2023

Talked with Fabian about the

mid-term Documentation and

what changes could be made to

make it easier to understand for

the reader.

Worked on getting the best

possible image from the

physical set up.

Looked into the accuracy of the

library and if it was able to

return the position of Matrix

Codes.

11 01 Feb

2023

Had a meeting with Fabian and

Dieuwe where we discussed the

progress of the last week, what

Movella does, for the

Documentation, and about

moving into the planning phase

of the GUI.

Worked on the mid-Term

documentation for submission.

Title Visual Registration
Page 70 / 84

11 02 Feb

2023

Worked on getting the Library

to read Matrix Codes at 100%

accuracy in perfect conditions,

and looked into the speed of

the program when cropping the

Images.

Started looking into how to

host a GUI web browser on the

Raspberry Pi.

When running the program

using only the dmtx library it

takes 30 seconds to process a

tray of 20 sensors.

The pre-annotated sensors

with cropping down to the

matrix code took about 5

seconds to process a tray of

20 sensors. Which decreased

the amount of time the

program took by 80%

11 03 Feb

2023

Worked on proof of concept of

a web server hosted on a

Raspberry Pi and what tools

could be used to accomplish

this

12 06 Feb

2023

Worked on data flow of the

program and what possible

interactions a user would need

in order to go through the

entire process. and graphed the

results of the current program

12 07 Feb

2023

Continued research of potential

tools usable for the GUI and

added a comparison graph of

the training results of the

Object Detection models

12 08 Feb

2023

Met with Fabian and talked

about the GUI so far and what

needed to be planned next, we

also went over the program so

far and discussed what

programming tools should be

used to keep the code to

standard.

12 09 Feb

2023

Updated Architecture and

worked on GUI wire frames.

Updated the main program to

follow coding standards.

Title Visual Registration
Page 71 / 84

12 10 Feb

2023

Met with Rogier and talked

about the progress of the last

two weeks, and talked about

the Documentation so far and

what changes should be made.

Met with Fabian and Dieuwe

where we talked about the

progress of the GUI planning.

Which covered the GUI page

ideas, data flow, UI Format and

how the architecture could be

improved.

13 13 Feb

2023

Updated GUI Pages and the

System Architecture, got feed

back from Dieuwe and

uploaded most recent versions

to my student space under GUI

Diagrams.

Added AutoDoc documentation

to the program and updated

the github.

Worked on researching tools

that would be needed to

implement the architectural

approaches.

13 14 Feb

2023

Researched tools to use for

implementing the GUI and

architectural approach.

Worked on presentation for

Wednesday's weekly meeting.

13 15 Feb

2023

Met with Fabian and Dieuwe

where I presented the work so

far on the GUI and architectural

approaches.

Prepared to meet with

operators to discuss the project

and gather feedback on the

GUI.

Started working on the GUI.

Title Visual Registration
Page 72 / 84

16 Feb

2023

Prepared small presentation for

the Production Operators and

made a few changes to GUI.

Worked on the GUI with PyQt

and looked into how PyQt can

be used to meet the needs of

the GUI design

17 Feb

2023

Met with Dieuwe, Marco, and

the Production Operators to

gather feed back on the GUI as

well as gathered information on

what features they would like to

see to make the Application

easy for them to understand.

20 Feb

2023

Worked on GUI using PyQt and

planned out what tasks should

be added to the Scrum board

for the first Sprint

Updated Documentation after

feedback.

21 Feb

2023

Filled Scrum back log with tasks

and attached their weights and

epics. Continued to implement

the base GUI layout.

B.2 Weekly Meeting Notes

Date Notes Goals for the next week

• Wim Luyendijk make a proposal for

planning of internship 30 Nov 2022

• Wim Luyendijk add picture to

confluence 30 Nov 2022

• Wim Luyendijk visit production

environment to see usecases 30 Nov 2022

• Wim Luyendijk understand and present

basic functionality of Matrix code 30 Nov

2022

https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com

Title Visual Registration
Page 73 / 84

• Wim Luyendijk look for relevant related

work (software, papers, report) 30 Nov

2022

• Wim Luyendijk add short summarizing

overview of related work to Wiki 30 Nov

2022

• Wim Luyendijk complete information on

your student profile Wim Luyendijk 30

Nov 2022

7 Dec
2022

• Discussed Cameras tested so far.
• Talked about Plan of Approach for

next steps of the project.
• Discussed Cascade model training

and AdaBoost.
• Sectioned Research into

Traditional Machine
Learning

• Extended Research to
incorporate Neural
Networks to compare with
Traditional Machine
learning and what data
needs to be collected for
both types of approaches.

• Planned to finish Research this
week and create a Plan of Approach
presentation for next Wednesday
(14 Dec).

• Before the 16th of December,
collect sensor data for training an
object detection model using
various cameras to increase the
robustness of the detection model.

• Planned to look into what
kind of data is needed to
create a detection model
capable of identifying
different scenarios the
sensors could be in (upside-
down, missing Matrix Code,
rotated, etc.).

https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/STUDS/Wim+Luyendijk

Title Visual Registration
Page 74 / 84

14 Dec
2022

• Talked with Rogier about the Plan
of Approach documentation

• Research Questions were
missing from the PoA.

• A lot of details were put into
the documentation, but
there is not always a reason
or motivation for choosing
something for the approach,
this should be added to
future documentation

• The final documentation will be no
more than 50 pages, and the final
presentation will be 20 minuets,
with 30 minuets of questioning
after.

• Future meetings with Rogier will
be every 4 weeks, and will
hopefully line up with weekly
meetings, but this will be
determined closer to the meeting
date.

• As a communication plan, it was
decided that sending the weekly
meeting notes to Rogier would be
beneficial for keeping everyone in
the loop, and keep meetings well
documented.

• Make a list of requirements for a
solid goal of the project

• Make research questions from these
requirements and add them to the
Plan of Approach

11 Jan
2023

• Talked with Fabian and Dieuwe
about the Research Questions for
the Plan of Approach
Documentation and what changes
should be made.

• Presented the progress of the
Cascade Model and what I was able
to achieve since the last meeting.

• Talked about what
approaches could help make
the model more robust in
the future and which issues
of the model to tackle next.

Title Visual Registration
Page 75 / 84

• Presented the progress with the
physical set up and what the next
steps are with getting it working as
an initial prototype for the final
product.

18 Jan
2023

• Covered the Research Questions so
far and what changes should be
made for the documentation.

• Presented data augmentation and
it's results on the training, as well
as discussed annotation
augmentation.

• Talked about work done with the
Raspberry Pi, and how it can be
used moving forward.

• Decided to focus the next week on
the setup and image collection and
preparing the current
documentation for the Mid-Term
Report.

• Wim Luyendijk Finish introduction to the

documentation.

• Wim Luyendijk Find out about the report

template.

• Wim Luyendijk Work on the 3D model

for the camera mount.

• Wim Luyendijk Include annotation

augmentation.

• Wim Luyendijk Fabian Girrbach Look at

the camera lens focus.

• Wim Luyendijk Fabian Girrbach Find

documentation on how to SSH to the

Raspberry Pi from windows.

• Wim Luyendijk Begin collecting matrix

code images with the Pi Camera.

• Wim Luyendijk Add documentation on

how to use the 3D printer if incomplete

here [Student Version] Use of 3D printing

explained

25 Jan

2023
• Talked about the mid-term

documentation and getting the
requirements needed for the final
documentation and the topics of
my next meeting with Rogier.

• Discussed 3D printing and
simplifying the model to avoid the
need for fine tuning measurements.

• Covered work done for the
annotation Augmentation,
currently the program can read
annotated text files and translate
rectangle positions, but work still
needs to be done on proper
alignment to the image translation.

• Wim Luyendijk Ensure the library is

correct

• Wim Luyendijk (best possible image)

Camera in combination with the library is

working (pre annotated images) Good

weather situation works 100%

• Wim Luyendijk Fix rectangle bugs

• Wim Luyendijk Graph results with
different variables (lighting, blur,
rotation, brightness)

• Wim Luyendijk meet with Rogier on the

27th

https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~FabianG
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~FabianG
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/STUDS/%5BStudent+Version%5D+Use+of+3D+printing+explained
https://wiki.xsens.com/display/STUDS/%5BStudent+Version%5D+Use+of+3D+printing+explained
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com

Title Visual Registration
Page 76 / 84

• Showed a Demo of how the model
reacts to images captured from the
physical structure, and found a bug
that may be causing matrix codes
to not be able to be read.

01 Feb

2023
• Talked about the physical Structure

and it's changes since the last
meeting, specifically the change in
lens attachment which improved
the quality of the images.

• Presented a Demo of how the
library interacts with the new
image quality and explained a bug
from the library when a Matrix
Code isn't readable.

• Discussed the mid-term
documentation and clarified what
Movella does, and what the next
steps are for the Final
Documentation

• For next week: Get current
program to a stable version, and
start working on the planning
phase of the GUI,

• Wim Luyendijk Start planning GUI,

frameworks and dataflow

• Wim Luyendijk Flow of: Input image and

get out it's data and position

• Wim Luyendijk create Graphs showing

accuracy for the object detection and

library, (false positive rates, confusion

matrix.)

08 Feb

2023
• Talked about the dataflow of the

program and how this relates to
the GUI and what architectural
approaches could be taken for the
GUI system.

• Talked about the program so far
and what tools can be used to keep
the program up to standard.

• Formatting, Auto Doc, yapf
and pep8 and interface
classes.

• Wim Luyendijk Prepare a presentation of

the GUI approach to present during the

next meeting. 15 Feb 2023

• Wim Luyendijk Create an overview of

possible approaches regarding architecture

and flow.

• Wim Luyendijk Make wireframe

diagrams of the program interface.

• Wim Luyendijk Research the tool

necessary for the preferred architectural

approach.

• Wim Luyendijk Plan a high level

overview of the timeframe of the GUI that

includes milestones and tasks.

https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com

Title Visual Registration
Page 77 / 84

15 Feb

2023
• Presented GUI pages, Architectural

approaches, time frame and tasks
to Fabian and Dieuwe.

• Talked about features of the
application and what is needed for
the system.

• Planned for Scrum approach during
GUI development with stand ups
and weekly sprints

• Planned meeting with operators to
get feedback on the GUI ideas

• Wim Luyendijk meet with operators

about GUI Frames

• Wim Luyendijk Make a quick and simple

overview of the project for operators

• Wim Luyendijk Plan out Scrum per week

to the end of the GUI development

• Wim Luyendijk Start work GUI and

loading images from PC

• Wim Luyendijk Research how to
connect PC and Pi

22 Feb

2023
• Presented the GUI layout so far and

showed a demo of the navigation
bar.

• Talked about the first Sprint and
what was expected in following a
SCRUM approach.

• Wim Luyendijk Add basic functionality

to the GUI

• Wim Luyendijk Prepare backlog of issues

for Sprint 2

• Wim Luyendijk start planning API for
connecting the backend to frontend

03 Mar

2023
• Met with Dieuwe and presented the

results of the first sprint
• Talked about the what changes

needed to be made for the next
sprint

• Covered tasks of sprint 2 and what
issues should be addressed before
the next meeting

08 Mar

2023
• Met with Fabian and Dieuwe and

showed a demo of the application
after sprint 2

• Went over backlog of issues and
which were the most important to
focus on for sprint 3

• Discussed what approaches could
be done to ensure the application
meets the requirements of the
project

• Talked about what functionality is
still needed from the application

• Wim Luyendijk Add interfaces and
documentation to backend in order to
connect Raspberry Pi to the application

• Wim Luyendijk Get application working
as expected for a good example image

• Wim Luyendijk Get application working
as expected for a bad example image

https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com
https://wiki.xsens.com/display/~wim.luyendijk@movella.com

Title Visual Registration
Page 78 / 84

C. Back end Code

C.1 Object Detector

import cv2

import os

import methods.readMatrix as readMatrix

import methods.helper as helper

class MtiDetection:

 def __init__(self, x, y, w, h) -> None:

 self._topCoordinate = (x, y)

 self._width = w

 self._height = h

 self._deviceId = None

 self._labelId = None

 self._listId = None

 self._isRead = False

 self._croppedImage = None

 def getRectangle(self):

 rect = (self._topCoordinate, self._width, self._height)

 return rect

 def getCroppedImage(self, newImage, positionX, positionY, paddingY,

paddingX):

 cropped = newImage[positionY - int(paddingY / 4):positionY +

int(paddingY * 1.2),

 positionX - int(paddingX / 4):positionX +

int(paddingX * 1.2)]

 return cropped

 def setImage(self, image):

 self._croppedImage = image

 def getXCoord(self) -> int:

 return self._topCoordinate[0]

 def getYCoord(self) -> int:

Title Visual Registration
Page 79 / 84

 return self._topCoordinate[1]

 def getIsRead(self):

 return self._isRead

 def setListId(self, id):

 self._listId = id

 def __str__(self):

 rect = (self._topCoordinate, self._width, self._height)

 print("printing: " + rect.__str__)

def findMatrixCodes(directory: str, cascade_Matrix):

 """findMatrixCodes(directory, cascade_Matrix)

 This function is used to scan a given image and find the

 Matrix Codes, each found code's position is then passed to getMatrixData

function

 Args:

 directory (str): The path to the folder of images you want to process.

 cascade_Matrix (xml file): The trained detection model used for

detecting Matrix Codes.

 """

 # Loading the image into the program

 image = cv2.imread(directory) # + "/" + filename)

 copy = cv2.imread(directory) # + "/" + filename)

 # Object Detection Model looking for Matrix Codes within the image

 rectangles = cascade_Matrix.detectMultiScale(image)

 rectangleFound = False

 sensorList = []

 for (x, y, w, h) in rectangles:

 # Filter out false detections

 if w > 70 and w < 100 and h > 70 and h < 100:

 testVar = MtiDetection(x, y, w, h)

 # saving the cropped image

 testVar._croppedImage = readMatrix.cropImage(image, x, y, w, h)

 sensorList.append(testVar)

Title Visual Registration
Page 80 / 84

 return sensorList

End of Function ###

def labelImage(rectangles: list[MtiDetection], copy):

 image = cv2.imread(copy)

 for testVar in rectangles:

 x, y = testVar._topCoordinate

 w = testVar._width

 h = testVar._height

 if testVar._isRead:

 color = (255, 0, 0)

 else:

 color = (0, 0, 255)

 cv2.rectangle(image, (x, y), (x + w, y + h), color, 5)

 # get space needed for annotation of bounding box

 (w, h), _ = cv2.getTextSize(

 str(testVar._listId), cv2.FONT_HERSHEY_SIMPLEX, 1.4, 2)

 # print the text with background

 cv2.rectangle(image, (x, y-(h*2)), (x+w, y), color, -1)

 cv2.putText(image, str(testVar._listId), (x, y-10),

 cv2.FONT_HERSHEY_SIMPLEX, 1.4, (255, 255, 255), 2)

 return image

def getCodeList(rectangles: list[MtiDetection], copy) -> list[MtiDetection]:

 image = cv2.imread(copy)

 data = []

 counter = 0

 for testVar in rectangles:

 x, y = testVar._topCoordinate

 w = testVar._width

 h = testVar._height

 testVar._deviceId = readMatrix.getMatrixData(

 image, x, y, int(w), int(h), "filename")

 if testVar._deviceId == "not read":

 testVar._isRead = False

 else:

 testVar._isRead = True

 counter += 1

 data.append(testVar)

Title Visual Registration
Page 81 / 84

 return data

def getBadList(dataList: list[MtiDetection]) -> list[MtiDetection]:

 badList = []

 for id in dataList:

 if not id._isRead:

 badList.append(id)

 return badList

def getX(data: MtiDetection) -> int:

 return (data._topCoordinate[0])

def getY(data: MtiDetection) -> int:

 return (data._topCoordinate[1])

def sortList(dataList: list[MtiDetection]) -> list[MtiDetection]:

 sortedList = []

 rowList = []

 rowSizeList = []

 rowNumber = 0

 # sort by row

 dataList.sort(key=getY)

 # Cluster detections by rows

 lastRectX = dataList[0].getYCoord()

 rowCounter = 0

 for data in dataList:

 if abs(int(lastRectX) - int(data.getYCoord())) > 60:

 # get the row size

 rowSizeList.append(rowCounter)

 rowCounter = 0

 lastRectX = data.getYCoord()

 rowCounter += 1

 # append last row of sensors

 rowSizeList.append(rowCounter)

 rowCounter = 0

Title Visual Registration
Page 82 / 84

 rowNumber = 0

 minRange = 0

 # for data in dataList: # Sort through each row

 # range example: 0-4, 5-9, 10-14

 # columns per row change on false detections

 for dynamicRange in range(0, len(rowSizeList)):

 for row in range(minRange, minRange+rowSizeList[rowNumber]):

 if row < len(dataList):

 rowList.append(dataList[row])

 # sort row

 rowList.sort(key=getX)

 # Adding row to sorted list

 for item in rowList:

 sortedList.append(item)

 # Preparing list for next row

 rowList = []

 minRange = minRange + rowSizeList[rowNumber]

 rowNumber += 1

 # Print coords of sorted list

 listId = 0

 print("list of sorted coordinates: ")

 for item in sortedList:

 listId += 1

 item._listId = listId

 testVar = item

 print(str(testVar._topCoordinate) + ", ", end='')

 return sortedList

C.2 Matrix Reader

from pylibdmtx.pylibdmtx import decode

def getMatrixData(srcImage, positionX, positionY, paddingY, paddingX, lable):

 """getMatrixData(image, X, Y, paddingY, padding X, lable)

 This function is used to read the data from a matrix code that is provided

 by the object detection algorithm. The data is printed to the console and

 a boolean is returned stating if the Matrix Code could be read.

 Args:

Title Visual Registration
Page 83 / 84

 srcImage (image): Image to be processed by the datamatrix library.

 positionX (int): The X position of the detected Matrix Code.

 positionY (int): The Y position of the detected Matrix Code.

 paddingY (int): The width of the detected Matrix Code.

 paddingX (int): The Height of the detected Matrix Code.

 lable (str): The name of the image or sensor ID.

 Returns:

 bool: Retruns a boolean on whether or not the library could read the

Matrix Code within the image.

 """

 data = False

 # check the amount of pixels

 # Cropping the image to get a smaller scan space, this significantly

decreases runtime

 cropped = cropImage(srcImage, positionX, positionY, paddingX, paddingY)

 # image[y.start:y.end, x.start:x.end]

 # Commented code below sharpens the edges of Matrix Codes when the

resolution is low

 # by creating a threshold between black and white pixels.

 # Adding image manipulation for best readability for low res cameras

 # grayScale = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY)

 # applying the adaptive gaussian threshold

 # ret, thresh = cv2.threshold(grayScale, 255,

cv2.ADAPTIVE_THRESH_GAUSSIAN_C| cv2.THRESH_BINARY, 11, 2)

 # Decode the Data Matrix

 decodedData = decode(cropped)

 # Check if the decoding worked for that Matrix Code,

 if len(decodedData) > 0:

 print("Matrix code: " + str(lable) + ", data: " +

 str(decodedData[0].data, "utf-8"))

 data = True

 return str(decodedData[0].data, "utf-8")

 else:

 print("Could not read the Data Matrix: " + str(lable))

 return "not read"

Title Visual Registration
Page 84 / 84

def cropImage(srcImage, positionX, positionY, paddingX, paddingY):

cropped = srcImage[positionY - int(paddingY / 4):positionY + int(paddingY *

1.2), positionX - int(paddingX / 4):positionX + int(paddingX * 1.2)]

 return cropped

End of Function ###

