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Summary: Knowing firefighters’ locations in a burning building would dramatically improve 

their safety. In this study, an algorithm was developed and tested to enhance the estimation of a 

person’s location, based on inertial measurements combined with measurements of the earth’s 

magnetic field. The developed algorithm is an extension of the zero velocity update technique. 

Without any enhancements, the accuracy of the estimation is in the order of several meters after 

measuring for only a few seconds. With enhancements, the accuracy improved to be within five 

meters after measuring for ten minutes. Our result demonstrated that it is possible to determine in 

which room and on which floor a person is after ten minutes. Major improvements were observed 

in the estimation of the sensor’s height. The results are promising and the following phases of the 

project focus on improving the solution and on developing the concept into a practically 

applicable system. 
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Introduction 
There are several ways to determine an object’s location. For example, the global 

positioning system (GPS) is a well-known technology that is used in navigation 

systems. A major drawback of GPS is that it does not work indoors, because walls 

and ceilings hinder the radio signals transmitted by satellites. In the current study, we 

focused on determining the location of a person within a building. The study was 

performed within the FireBee project [1] that aims to improve firefighters’ safety. 

Firefighters face hazardous situations on a daily basis and sometimes they get 

injured, become lost, or lose contact with their colleagues. This can lead to dangerous 

and sometimes even fatal situations. FireBee aims to 

improve firefighters’ communication means and to 

provide lifesaving information, such as the locations of 

individual firefighters inside a building. Although our 

current solution is aimed towards emergency situations, 

knowledge of the location of an object or a person opens 

up a world of possibilities and opportunities in domains 

ranging from logistics to sports and science. 

State of the Art 
As stated above, there are several technologies to determine the location of a 

sensor, such as (assisted) GPS, optical systems, radio based systems (time of flight, 
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Figure 1 - Inside fire attack 



signal strength, angle of arrival), ultrasound systems, laser systems, etc. None of 

these systems is perfect and each has its typical drawbacks. For example, GPS does 

not work indoors, ultrasound sensors require clear line of sight, optical sensors have 

troubles with heavy smoke, and magnetic sensors are disturbed by ferromagnetic 

materials such as iron. To compensate for such drawbacks, multiple systems can be 

combined. Besides compensating for the drawbacks, fusion of measurements can also 

improve the estimations’ accuracy. A complete overview of the field of localisation is 

beyond the scope of this paper. For a review and classification of the field we refer to 

Muthukrishnan’s dissertation [2]. 

Inertial measurement and dead reckoning 

There were several requirements for the solution of the localisation problem. 

First, the solution should work in situations with heavy smoke with many signal-

blocking obstacles in the way, and accordingly no clear line of sight. Furthermore, 

the solution must not rely on prior knowledge about the infrastructure of the building. 

Thus, we cannot use the locations of radio beacons. Finally, the solution should be 

cost-effective. 

A common technique that can be used in situations described above is inertial 

measurement. Recent inertial measurement units (IMUs) are small devices that 

measure acceleration and rotation using micro-electro-mechanical systems (MEMS) 

technology. Inertial MEMS sensors are known to suffer from drift and noise, 

resulting in errors in the output. Another drawback of inertial systems for our 

problem is that they don’t directly measure location. IMUs measure acceleration and 

rotation. Thus, when the starting position and the acceleration and rotation up to a 

certain point in time is known, the position can be calculated. Several other projects 

tried to estimate the location of a person using one or more inertial sensors with 

varying results [2,3,4]. There are several approaches to such pedestrian dead 

reckoning problems. The conventional inertial approach relies on the measured data 

from the sensor. More advanced methods use additional knowledge, such as the 

biomechanical model of the person, or use pattern recognition to identify different 

types of movements. The conventional approach estimates the location by integrating 

the measured acceleration and rotation values. For example, if the estimated velocity 

at the previous measurement was 1 m/s and an acceleration of 0.2 m/s
2
 is measured 

for half a second, then the new estimated velocity is 1.1 m/s. If the same technique is 

applied to the velocity, the position is estimated. With this double integration 

technique, measurement errors lead to immense errors in the estimated location. 

Zero velocity update technique (ZUPT) 

A common technique to compensate for the drift and error of IMUs is the zero 

velocity update (ZUPT) [4,5]. Because the velocity estimation is based on inertial 

measurements, it is possible that the estimated velocity is not zero, while the sensor is 

actually not moving. The ZUPT algorithm entails that when a zero velocity is 

detected, the velocity estimation is forced to be zero. The result is that measurement 

errors are not blown up, but each time the sensor is in a stationary position, the 



velocity is corrected to zero. A drawback of ZUPT is the incorrect application of 

ZUPT or not applying ZUPT while in fact the sensor was stationary. According to the 

sensor’s specification, application of ZUPT results an accuracy of around 2 cm for 

each step, which means an accuracy of 10 cm for a five second walk [6]. 

ZUPT extension 

ZUPT, as described above, corrects the velocity estimation when the sensor is not 

moving. However, when the sensor is stationary and the estimated velocity is not 

zero, there must have been some error in the period between the last and the current 

ZUPT. Otherwise, the estimated velocity would also have been zero. Therefore, we 

introduced a velocity correction algorithm that retrospectively corrects all velocities 

from the last ZUPT to the current ZUPT. In our approach, the error correction is 

linearly applied to the movement phase. For example, if there are 100 measurements 

between the last ZUPT and the current one, and the observed error was, for example, 

10 units. We update all 100 measurements and apply the error correction with a 

weight ranging from 0.0 to 1.0. This entails that at the moment the sensor detects a 

zero velocity, the last estimations are estimated again, resulting in an update for the 

current position estimation. 

A similar technique can be applied to the estimated height. When the sensor is 

stationary while we are walking on a flat surface, we can assume that the foot is on 

the floor and not several centimetres above or below the floor. Thus, when a zero 

velocity is detected and the estimated height is slightly above or below the height 

during the last ZUPT, a height correction can be applied retrospectively. 

Method 

Material 

We used an Xsens MTw sensor. An MTw is a highly 

accurate wireless motion tracker that measures acceleration, 

rotation and the earth’s magnetic field, all in three 

directions. Measurements of an MTw are transmitted to a 

wireless receiver connected to a computer. In our trials we 

used a laptop computer to record and store all measurement 

data. The transmission rate of the sensor was set to 100 Hz. 

Design 

We performed several types of recording trials where participants walked known 

patterns. The trials included walking on a straight line, walking on a large rectangle, 

walking in the stair house, and walking for ten minutes throughout the building, 

starting and ending at exactly the same location. During the trials, measurements 

were recorded on a laptop, so they could be played back and analysed afterwards. 

Based on the recorded trials, all algorithms were run to provide an estimation of 

the position. These estimated positions were plotted on a visual two-dimensional 

map, so they could be visually inspected and compared against each other. Our goal 

 
Figure 2 - MTw sensor 

 



was to find an algorithm that could compensate for the measurement errors and give 

an estimation of the location within the set accuracy bounds. 

Results 

Without any corrections, there are immense errors in the estimated location. 

When the participants walked for 6 metres in one direction, we found errors in the 

estimate of the end position orthogonal to the walking direction (m = 7.54 m, SD = 

0.96 m), but also in the walking direction (m = 2.21 m, SD = 1.46 m). After 

application of ZUPT the accuracy was much better. Orthogonal direction (m = 0.29 

m, SD = 0.23 m) and in the walking direction (m = 0.19 m, SD = 0.15 m). 

Walking more complex patterns shows similar results. Figure 3 shows two plots 

of the same measurement data. One plot shows the estimations with corrections and 

the other without corrections. For detailed descriptions of the measurements we refer 

to the full research report [7]. 

  

 

 
 

Figure 3 - Two plots of the same measurement data. The deviating plot shows the estimated position 

without error correction. The rectangular plot show the estimation with ZUPT. 

Height 

Application of the ZUPT resulted in huge improvements in the estimations in the 

lateral dimensions. However, there were still large errors for the height. Figure shows 

the estimated height of a person walking on a flat floor. Figures 4b and 4c show the 

estimated height of a trial in the stair house. The actual height of the top floor is 

15.11 m. 

 

              
Figure 4a - Height estimation when walking on flat surface with ZUPT. Figure 4b - Height estimation in 

stair house with ZUPT. Figure 4c - Height estimation in stair house with ZUPT and correction. In all graphs 

the y-axis represents the height and the x-axis represents the movement towards the east. 

  

North (m) 

East (m) 

Without 

correction 

With correction 

Height (m) 

15 m 

13 m 

4a 4b 4c 



Long trial 

A longer, ten-minute trial was 

performed outside the laboratory. 

Figure 5 shows a plot of the estimations 

on the map of the building. The 

observed errors were within 5 m in the 

lateral directions and within 2 m for the 

height.  

Discussion 
We developed an elegant and 

relatively simple algorithm to enhance 

the accuracy of the estimated location 

of a person inside a building, based on 

inertial measurements. We achieved an 

accuracy of five meters after a ten-

minute walk throughout the building. 

Estimations without any corrections are way too inaccurate to be usable. 

Applying the common ZUPT results in better results, especially in the lateral 

directions. However, ZUPT still has major errors in the height estimation. 

Application of both the velocity correction and the height correction resulted in 

usable results. After ten minutes of walking, we have an accuracy of 5 metres. For 

example, this accuracy is appropriate to determine in which room and on what floor a 

person is.  

 Calculations for the extended ZUPT are relatively light, compared to, for 

example, the calculations required for the Kalman Filter. So, it can be assumed that 

the additional algorithms can be calculated in (soft) real time on a microcontroller or 

another small device that is already running the other filters. 

During our study, we observed that the quality of the used sensors was important. 

Because an Xsens MTw sensor is not really cheap, we hoped that we could also use 

inferior, low-cost sensors. However, we observed large errors in our estimations 

when the sensors were not correctly calibrated. 

Future work 

There are four directions that we want to explore in the following phases of the 

project. First, we observed some unexplainable errors in the estimated headings that 

are the result of the Kalman filter. As these errors are relatively large, we need to 

understand what is happening. Moreover, we have developed some improvements for 

our algorithms and we have to test whether these improvements actually increase the 

accuracy. 

Second, we want to combine our estimations with other data. Another group in 

the FireBee project tries to determine the location by using time of flight 

measurements with radio signals. Results from this group can be fused with and fed 

 
 

Figure 5 - Long trial in Saxion building 

 



into our algorithms to improve the location estimation. A possible direction is the 

application of particle filters. 

Third, the design should be developed into a practical solution. In the current 

approach, measurements are recorded on a laptop computer and the location 

estimates are determined using post-processing. However, to be usable in a practical 

situation, the location estimates should be calculated in real-time on a portable 

device. That device should be able to communicate with the sensors, to run all the 

filters, and to communicate the estimated locations to another device. Moreover, we 

need to test if the circumstances of firefighters cause additional problems with the 

algorithms. Finally, we want to test the proposed solution with multiple persons, 

because the recorded trials for the current study were based on two subjects. 
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