

Data Collection for Automatic Wound
Segmentation

Graduation assignment by Mattijs Kuhlmann at Nedap Healthcare for the creation of a
data collection application for automatic wound segmentation.

FINAL report version 1.0 (17-06-2019)

Graduation period: 11-02-2019 until 07-07-2019

Student: Mattijs Kuhlmann (424446)

Company: Nedap (Healthcare)

Company supervisor: Michiel Klitsie

School: Saxion University, Enschede

Study: HBO-IT: Software Engineering

School coach: Jan Stroet

 2

Table of Contents

Abstract ...3

1: Introduction ..4

2: The Process ...5

2.1: Phases ... 5
2.1.1: Planning phase .. 5
2.1.2: Global research phase ... 5
2.1.3: Implementation phase .. 6
2.1.4: Review phase... 6

2.2: Programming Strategy & Process Documentation ... 7

3: The Product - Design ...8

3.1: The Context ... 8

3.2: Global Design .. 10

3.3: Specific Requirements and Design .. 11
3.3.1: Front-end requirements ..11
3.3.2: Front-end design ...12
3.3.3: Back-end requirements ...14

4: The Product - Realization .. 15

4.1: Back-End Application ... 16
4.1.1: Initial implementation choices ..16
4.1.2 API functionality ...16
4.1.3 Security and Testing ...21

4.2: Front-End Application .. 23
4.2.1: Initial implementation choices ..23
4.2.2: Android implementation ...25

5: Conclusion and future recommendations ... 37

6: References .. 38

7: Appendix .. 39

7.1: Initial sprint backlog .. 39

7.2: Sprint progress & documentation example ... 41

 3

Abstract
This document contains the description of the graduation assignment of Mattijs Kuhlmann, part of the
Bachelor HBO IT, Software Engineering of Saxion University of Applied Sciences in Enschede, the
Netherlands. The assignment has been carried out at Nedap Healthcare, located in Groenlo, the
Netherlands.

This document explains the creation of a data collection application prototype for wound photos,
which will support the automation of the wound care process. It includes the description of a process,
created designs and an explanation of the realization of the application. The design and realization
chapters explain the reasoning and workings of the design and technology of the application.

The realized application consists of a front-end Android application that uses a back-end Python web
service to enable a user to collect wound photos on which the area of the wound is marked. The initial
marking is generated by a wound-segmentation algorithm, which is called Vesalius. A user is then able
to give feedback on this initial marking. The back-end is able to securely store the photos and marking
of the wound area, for it to be used for future training of the Vesalius algorithm.

Future steps to this project involve the integration of parts of this prototype into a wound care
application, which eventually could lead to automation of wound care registration processes.

 4

1: Introduction
Healthcare expenses in the Netherlands made up 10.1% of the total GDP in 2017 (Zorguitgaven stijgen

in, 2018). The healthcare sector in the Netherlands is big, because a lot of people get into contact with

this sector. The sector is also old, and this makes it almost unavoidable that some processes are

outdated and slower than they could be with current technical possibilities. That’s why there are many

technology companies that aim to update this sector, and one of them is Nedap Healthcare. Nedap

Healthcare is a market group within Nedap, that creates software solutions to increase efficiency of

healthcare processes and aims to automate as many steps as possible. This results in giving caretakers

more time for health care process. These products are made for their clients, which are mainly

healthcare organizations in the Netherlands. The market group has deployed multiple products and is

working on many new ones as well.

One of these new products is aimed at wound care. Wound care is a big part in healthcare and many

clients of Nedap Healthcare currently use their systems to keep track of wounds by putting images

and information about them in an electronic health record. This process, however, is tedious and most

clients work in different ways. Because of these reasons an application is being developed which aims

to make taking care of wounds by caretakers more efficient, more standardized and eventually more

automated. The name of this application is “Ons Wondzorg”.

Currently, a team within Nedap is working on a Minimum Viable Product (MVP) of this application.

The basic functionality of this application focusses on selecting a client, taking pictures of a wound and

then filling in information about the wound. Some of the information which is needed is the size of

the wound and the types of tissue of the wound. But manually measuring and filling in this information

takes time, while this is a job that is a good candidate for automation. With this goal in mind, a first

version of a wound segmentation algorithm was created by Nedap and the project has been called

“Vesalius”, after the Flemish-born anatomist. The algorithm segments the area of a wound on a

picture with the help of a neural network.

Automating measurements like extracting the size of the wound and classifying different kind of tissue

all depend on finding the actual location of a wound inside a picture. It is important that this process

is optimized. Improving a neural network greatly depends on gathering data, as the result of neural

networks improve with the amount of data. However, the current neural network does not have

enough data to be able to give back good results. Besides the lack of data, another problem is that it

is hard to understand and to know what this wound segmentation algorithm can do in practice

because there is no practical implementation of the neural network yet.

With the problems clear, a global description of an assignment was formulated that is able to tackle
the problems mentioned above:

Create a mobile Android prototype application, which should be able to take photos, show the
result of the wound segmentation algorithm and give the user the opportunity to provide
feedback on it. The images and the feedback should be stored at a secure location for future
improvement of the wound-segmentation algorithm.

This document will explain the realization of the assignment from planning to actual implementation.
This document has the following goals:

To explain how the product evolved from design to implementation, to explain what specific choices
were made, to make the reader understand some of the complex technical workings behind the
product and to make the reader understand and learn from some of the mistakes that were made
during the implementation that led to changes.

 5

2: The Process
To get from the problem description towards a software system, a structured process needed to be
designed. This resulted in the formulation of phases, which have their own input and output in terms
of products.

2.1: Phases
Figure 1 contains a visualization of the phases, their order, the flow and the input and output products.

Figure 1: Phase flow diagram, graduation assignment

2.1.1: Planning phase
The start of the graduation assignment consisted of getting to know the company and to start getting
familiar with the scope of the assignment. The product of this phase was the Plan of Approach, which
describes the assignment, the plan of the implementation process and the global planning of the
assignment.

2.1.2: Global research phase
After finishing the Plan of Approach, the next step was to work towards a global design of the final
product. The goal of this phase was to have a good overview and idea of the end product. For this, the
following points needed to be clear:

 6

- The requirements of the product
- The initial backlog of tickets, extracted from the requirements
- Decisions on techniques and different kind of technical choices that will be used for the

realization of the product
- Global and more specific visual designs of the separate parts of the product

These points were concluded in a global design document.

2.1.3: Implementation phase
The implementation phase will be the longest phase, as this will be the phase in which the final product
is realized. The input for this phase will be the global design document.

As can be seen in figure 1, the implementation phase consisted of multiple smaller stages: specific
research, coding & documenting and finally testing & review. These stages were traversed multiple
times for multiple parts of the product. Note that this visual representation shows a target process
and that the order and occurrence of every stage changed for every specific part that was worked on.
This was especially the case for testing, because that is a process that came back in every stage of the
implementation phase. There was also a lot of room for research and trying things out in this phase,
because that was the most realistic way to create software, especially for a student.

In the planning phase, a strategy had been created which is based on Scrum and Kanban. The goal of
this strategy was to make the implementation phase focused, structured and reviewable. The
explanation of this strategy can be found in chapter 2.2.

2.1.3.2 Implementation stages
2.1.3.2.1 Research

Each part of the product will have its own specifics that will require implementation choices. In the
global design document, as the name says, global design choices are made, but more specific
questions arise when working on a specific part. Without enough experience to go in depth in advance,
the decision has been made to go in depth as soon as a ticket from the initial backlog has been taken.
This going in depth will raise questions, which will be answered in the explanation about the product.

2.1.3.2.2 Coding & Documenting

Based on the ticket, the design, the specific research and with help of the defined strategy, the part
will be implemented. This also includes any documentation to make the code understandable, like
code comments, diagrams and a clear markdown files in the repositories.

2.1.3.2.3 Testing & Review

After coding has been finished, according to the strategy, the ticket will be moved to Review. This is
the moment where there will be time to test functionality and to let the supervisor do this as well.
Based on the result of this phase, a story will go to either Done, or it will go back to Doing.

2.1.4: Review phase
The review phase will be entered once the implementation phase is finished, thus all tickets are in
Done. This, however, does not necessarily mean that the product is final. This last phase has the goal
to thoroughly review and test the product and to really think about future changes, conclusions and
recommendations to be mentioned this graduation report. If, however, some functionality fails this
review, there is the option to go back into the implementation phase if necessary.

Finally, there will be time to wrap up and complete all documentation and prepare the final
presentation, based on the final software product and this report.

 7

2.2: Programming Strategy & Process Documentation
During the implementation phase, the following programming strategy has been used to make the

programming more focused, structured and reviewable.

o Once an initial sprint backlog has been created, it will be placed on Trello and it will consist of
the following lists:

▪ Backlog, Doing, Review, Done (including the sprint in which I finished it)
▪ These tickets will consist of the following points:

▪ A functional description of the functionality that will be implemented
▪ One or more type tags: Android, API, Server (or others)
▪ A priority tag: low, medium, high, highest
▪ When Done: A time approximation in working days that it took to finish the

story (Cycle time in Kanban)
▪ A ticket will be moved from Review to Done once the definition of done has been met

(see below).
o Every time a ticket is finished, another one will be picked up, like in Kanban. The next ticket

will be picked up based on the timeline, priority and dependencies.
o The work will be reflected by doing “sprints” of two weeks for a total of six sprints and doing

a (small) retrospective after each sprint, in which the following things will be documented: the
stories that were burned, how long those stories took to implement, how the process went
and how it could be improved.

o To be able to keep the team, including the company supervisor, up to date on the current
progress and blocking issues, the daily standups of the “Ons Wondzorg” team will be joined.
This will also help to learn more about the progress and strategies Nedap uses to develop
applications.

o At least once per week, a meeting with the company supervisor will be planned to discuss the
progress based on the planning, and during the implementation phase, based on the Trello
board.

o Definition of Done
To be sure that a ticket is really finished, the weekly meeting with the company supervisor will
be used to go through the tickets that are in the Review list. Besides this, code will be reviewed
by the company supervisor (or other people) by means of pull requests on GitHub. Once the
code has been reviewed and OK’d, the user story will be moved to Done, and otherwise, the
story will go back into Doing.

As mentioned above, the programming has been divided into sprints in which tickets are finished. This

sprint process documentation consists of the following parts per sprint:

- User stories finished and the time spent on these.
- A small retrospective consisting of: what went well, what didn’t go well and what am I going

to do different next time?

A visualization of the completed user stories per sprint as well as an example of the sprint

documentation can be found in the Sprint progress & documentation example in the appendix

(chapter 7.2).

 8

3: The Product - Design
Disclaimer: as this project is about wound care, this chapter contains some graphical images.

This chapter aims to explain the design of the final product, the forming and reasoning of requirements
and initial designs.

The starting point was the assignment description:

Create a mobile prototype application, which should be able to take photos, show the result
of the wound segmentation algorithm and give the user the opportunity to provide feedback
on it. The images and the feedback should be stored at a secure location for future
improvement of the wound-segmentation algorithm.

3.1: The Context
The first thing that had to be done was getting a good overview of the context and starting situation

of the assignment.

The application can best be described as a data collection tool for wound images, which will be used

to train a wound-segmentation algorithm. In the future, the goal of this algorithm will be to automate

steps in the process of taking care of wounds in the “Ons Wondzorg” application. The current vision

of Nedap for the use of this algorithm can be seen in figure 2. The parts on which this assignment

focuses on are shown as light blue arrows, which is mainly about the wound segmentation. Besides

this, arrows in figure 2 with a light blue outline depend on the wound segmentation part.

Figure 2: Vision of the use of automatic wound-segmentation by Nedap

The prototype could be used to collect data from patients. In the systems of Nedap Healthcare, these

patients are recognized with a Care organization ID and a Patient ID. Currently, the prototype of the

“Ons Wondzorg” application is built as a native Android Kotlin application, because most clients in

this sector are Android phone users. The users of the wound care application are professional care

 9

takers in home care and at health care institutions. The data collection application has the same

target group, as parts of it can be used in the wound care application in the future.

The application will be used to collect data for training a wound-segmentation algorithm, as the

application will also utilize this algorithm and show the result, it is of importance to know the

inspiration and basic workings of it. The predicting model is generated by a neural network and is

based on research by Wang, C., et al (2015). Their neural network consists of different convolutional

layers which are visualized in figure 3. This algorithm is recreated at Nedap as a Python program with

the TensorFlow and Keras libraries. The version of Nedap has been called Vesalius and takes an RGB

image of any size, reshapes it to a 256*256 RGB image and returns a 256*256 probability mask. This

mask consists of a probability value per pixel in a two-dimensional array. The value represents the

pixel’s probability that the pixel is part of the wound area.

Figure 3: Visualization of Convolutional neural network for wound-segmentation (Wang, C., et al, 2015)

Vesalius can be trained with a test set of pairs of RGB images. These pairs consist of a wound image
JPEG file and a pixel annotated PNG image file. Figure 4 shows an example of such a pair.

Figure 4: example of training data images

As can be seen, the pixel annotated image consists of three different colors:
- Wound area: RGB(255,0,0)
- Skin area: RGB(0,255,0)
- Background: RGB(192,192,192)

Note that the current version of the Vesalius algorithm only predicts the wound area and not the skin

area. The algorithm therefore only makes a difference between the wound area and the background

(which also includes the skin area).

 10

3.2: Global Design
The input and output of the Vesalius algorithm were a very important starting point, as these things

were the constants in the assignment. The next step was to start with an initial design of the

application which consisted of requirements, implementation choices and basic designs.

To fulfill the assignment goals, the decision was made to create two different applications:

- A front-end application.
o This application must handle all user interaction of the assignment, mainly consisting

of taking photos and giving feedback.
- A back-end application.

o This application must handle the execution of the wound segmentation algorithm and
storing of the feedback.

Next, requirements were formulated for the separate front-end and back-end application. These

requirements were all based on the research that was done to come to the assignment description

and the context. A visualization of the requirements and their interaction can be seen in figure 5.

Figure 5: global functionality design diagram

 11

3.3: Specific Requirements and Design
This chapter contains the requirements that were set up for the specific applications, as well as initial

designs.

3.3.1: Front-end requirements
For the front-end application, the following list of requirements was formulated.

Requirement Explanation

1 The front-end application must
be an Android application.

The front-end application needed to be a mobile
application that can be used by caretakers while taking care
of wounds. It also needs the option to be implemented in
the wound care application that is currently being
developed. That application is made in Android, which is
the mobile operating system that the users also mainly use
in practice.

2 The application should be able
to load wounds that were
previously taken by the user.
These wounds should be
displayed in a list and clicking on
a list item should show the
details of the wound photo.

To see the photos that the user has taken before and to
check the wound area on these images, opening the
application should show a list of all the previously taken
images. Clicking on one of these images would show the
image details. This requirement is not necessary for the
data collection process; therefore, it is formulated as
should.

3 A user should be able to see the
details of a previously taken
wound photo, along with the
information.

When clicking a photo in the list, a user should see the
details of the photo and the photo itself. This requirement
is also formulated as should because it is not necessary for
the data collection process.

4 A user must start the data
collection process by filling in a
Care Organization ID and Patient
ID.

To start the data collection process, some data needs to be
filled in by the user for structured storing of the results. The
photos that will be taken can be stored using the same ID’s
that Nedap uses in their system to structure patients (Care
Organization ID and Patient ID). For the prototype, this
information needs to be filled in manually. After integration
into Nedap applications, this information is available within
the app.

5 A user must be able to take a
photo of a wound.

The next step in the process is taking a photo of the wound,
as this is one of the inputs in the Vesalius algorithm. Users
must be able to take this within the application.

6 A user must be able to view the
photo and then accept or
otherwise retake it.

A user must be able to review the photo, then accept or be
able to retake it.

7 The application must be able to
send the taken photo to a server
and receive the segmentation
result.

With the patient information ready and a photo taken, the
data is available to segment the wound from the image. As
the wound segmentation algorithm will be hosted on a
separate server application, the photo must be sent there
and retrieve the result.

8 A user must be able to see the
result of the wound-recognition
algorithm on top of the taken
wound photo.

After the segmentation result has been retrieved, the result
needs to be drawn on top of the taken picture, so the result
can be displayed and understood.

 12

9 A user must be able to adjust the
result of the wound-recognition
algorithm.

The next step in the application flow is for the user to give
feedback on the result of the algorithm. The user must be
able to do this by changing the wound area on top of the
taken photo.

10 The application must be able to
send the wound area result to a
server.

After the user adjusted the wound area, the final result
must be stored. As this is handled by the back-end, the
result must be sent there.

3.3.2: Front-end design
The front-end requirements were used to make an initial design of the application with the following

screens:

1. A wound list screen with a list of cards that contains already photographed and segmented
wounds. And a floating action button to add a new wound.

2. A wound detail screen, which displays the taken picture and shows patient information
3. An enter patient info screen, in which the use enters patient information before taking the

picture.
4. A camera screen where a user can take a picture. After taking a picture, it will be shown, and

the user can decide to either take a new picture or continue to the next screen in which the
result of the wound-segmentation algorithm is shown and can be adjusted.

5. A wound area adjustment screen which displays the picture and draws the segmented wound
area on top of it. The user can adjust the layer here. It will contain buttons to change the draw
or erasing size, an undo button, an eraser button and a continue button. Optimally, it would
also be able to zoom in on specific areas of the photo to increase precision.

An initial visualization consisting of mockups of the above-mentioned screens can be seen in figure 6.

This figure consists of mockups that show the initial design of the five screens that are mentioned

above. The most interesting design is the adjust layer screen mockup. This will be the most complex

screen of the application because a user must be able to give feedback on the wound area. The plan

was that a user can do this by touching the screen. The following buttons were added in this design:

- A hand button which let the user zoom in and move the photo to increase specific drawing.
- A button that let the user change the draw size.
- A button that let that use switch between drawing and erasing.
- An undo button that let a user undo its last action.

The main goal of these mockups was to have a direction to work towards. As specific research is done
during the implementation phase, the realized screens are expected to be different.

 13

Figure 6: Initial front-end screen designs

 14

3.3.3: Back-end requirements
The functioning of the front-end application depends on the back-end application. The main

functionality of the back-end consists of segmenting wound images with the Vesalius algorithm and

storing the result in the format which the Vesalius algorithm uses for training.

The following list of requirements for the back-end application was set up:

Requirement Explanation

1 The back-end API must be
available to the front-end
application via internet.

The front-end application must be able to communicate
with the API from all locations, so it needs to be connected
to internet.

2 The back-end application must
be able to receive photo data.

The API needs to have an endpoint that receives photos
from the front-end application.

3 The back-end application must
be able to load a TensorFlow
model and apply it to images to
generate a wound-
segmentation result.

The back-end must be able to apply the Vesalius algorithm
to the received photo and generate the wound-
segmentation result.

4 The back-end application must
be able to return the wound-
segmentation result.

Once the Vesalius algorithm has been applied to the photo,
the API call has to send the wound-segmentation result
back to the front-end application.

5 The back-end application must
be able to store the image JPEG
and wound-segmentation result
as an annotated pixel PNG.

To be able to use the data for future training, the server
must store the original photo in a structured way. The
server must also store the result of the wound-
segmentation, so that the initial result of the algorithm can
be compared with the feedback from the user.

6 The back-end application must
be able to receive an adjusted
wound-segmentation result.

The API must have an endpoint which receives the feedback
of the user. This feedback consists of the pixels on the
photo that are part of the wound.

7 The back-end application must
be able to store the adjusted
wound-segmentation result as
an annotated pixel PNG.

The final feedback result, received from the previous API
call, must be stored on the server for it to be used for future
training.

Note that this application is used for data collection, so it will not be possible for the stored data to be
retrieved in a later stadium by the application. This choice was made because of the use case of this
application (data collection) and the fact that this application handles sensitive data and requires a lot
of certification and airtight authorization to be able to do this.

 15

4: The Product - Realization
Based on the requirements, the product was realized. This chapter explains the realization of the

product by explaining the implementation choices, and the final implementation along with specific

challenges that have been tackled. This chapter is divided in an explanation of the back-end and front-

end. The implementation was given structure by creating an initial backlog backed on the

requirements and implementation choices, this initial backlog can be found in the appendix (chapter

7.1)

Where figure 5 in chapter 3 shows a visualization of the design of the product, figure 7 shows a

visualization of the actual realization of the product. The main differences consist of not having the

implementation of a wound list and wound detail screen in the application. Besides that, an extra step

has been added in changing the wound-area: changing of the wound threshold. On the back-end a

more specific plan was made for storing the collected data in a separate data storage location.

Figure 7: Realized functionality realization diagram

In this chapter; the choices, challenges and implementation are explained underneath in the order:

back-end -> front-end. As this was the order in which the application was implemented. Starting with

the back-end made it easier to imagine and design the specific data flow from front-end to back-end.

And it would result in being able to start implementing the front-end without having to use mock-

data.

The back-end implementation exists in a GitHub repository with the name: vesalius-backend.

 16

4.1: Back-End Application
This part consists of the description of the realization of the back-end. First, implementation choices

will be explained. What follows is the actual implementation of the product and the explanation of

important challenges and choices that were made.

4.1.1: Initial implementation choices
After initial research, the following implementation choices were made to implement the back-end.

The first thing that was decided was the programming language in which the API and Server were

going to be implemented. The choice was made to write the whole back-end application in Python 3.6

because of the following reasons:

- It is possible for a Python application, with help of libraries, to fulfill all back-end
requirements. Of which the main requirements are being able to host API endpoints and to
apply the Vesalius algorithm.

- It is possible to keep the complexity low by keeping the API and Server in the same repository.
- There are code examples and people with expertise available within the company.

The choice to use Python depended on library support for the main requirements host API endpoints

and applying the Vesalius algorithm. For hosting API endpoints, the Connexion library (Connexion)

has been used. This choice has been made because it supports the creation of a REST API service based

an OpenApi specification (OpenApi). Connexion uses a design-first approach which makes sure that

any API is properly designed and documented before it works. As the OpenApi specification also

contains examples values, specific calls can easily be simulated. This can be used for testing the

application with specific inputs. Connexion also supports authorization with API keys and has HTTPS

support.

For implementation, a good IDE was needed. Visual Studio Code (Visual Studio Code) has been chosen

because it is intuitive and has plugin support, like Python autocompletion. These plugins also support

the use of linters and formatting. Linting was done with pep8 (pep8) and formatting with autopep8

(autopep8).

The Vesalius back-end works with the Tensorflow library (Tensorflow) and uses Keras as a high-level

API (Keras) to export and import a machine-learning model. That’s why these libraries have been used

within the application for the image wound-segmentation.

Testing of the back-end will be done manually with help of the OpenApi specification. Automated

testing of the API is possible with pytest fixtures (Pytest Fixtures).

4.1.2 API functionality
The functionality and implementation of the back-end can best be explained by looking at the different

API calls separately. Every API call has its own functionality and challenges, which will be explained

here.

The Python back-end can be reached via an API, the full specification is documented in an OpenApi

specification, which is required by the Connexion library. This specification is specified in a YAML file

and is located inside the vesalius-backend repository at vesalius/vesalius_api.yml. However, the

Connexion library also gives the option to view a parsed version of this specification by navigating to

the API endpoint: <{BASE URL}/ui/>

https://github.com/zalando/connexion
https://swagger.io/docs/specification/about/
https://code.visualstudio.com/
https://pep8.readthedocs.io/en/release-1.7.x/
https://github.com/hhatto/autopep8
https://www.tensorflow.org/
https://keras.io/
https://docs.pytest.org/en/latest/fixture.html

 17

After realizing the back-end, a development API has been deployed and can be reached via the

following base URL: https://development.ons-vesalius.nl/ and as a result; the OpenApi specification

can be viewed and used for testing by navigating to https://development.ons-vesalius.nl/ui/.

4.1.2.1 Request GET /status

The first request is a small request which is outside the scope of the assignment, and only used for a

status check of the API.

Request and
endpoint

GET /status

Functionality Simple request to check the status of the API. This request is required for all Nedap
API’s to see if the API can be reached.

Specification
request data

No specific header data required.

Specification
return data

Returns 200 and no specific body data.

4.1.2.2 Request POST /wound_image

The second request is a POST request which handles back-end requirements 2, 3, 4 and 5, which are

about the functionality to extract the wound-area from a photo, return this area (in the format of a

probability mask) and store the image.

The specification below contains the realization of the API call, but this realization contains some

implementation choices that have to be explained further. These implementation choices were made

based on problems and questions that came up during the realization of this API call.

- Because this API call is based on the requirement that a photo has to be sent to the server
from the front-end application, the format of this data needed to be determined. The options
that were considered were:

o Uploading the image to an external database and only sending the URL of this image
to the server. This option has a high complexity due to adding another data store into
the equation, because the image has to be uploaded first to this store. This option
would have positive impact on server load and security, due to more optimized data
handling by the external data store. Besides this, the data doesn’t need to be stored
separately by the server. And it makes fetching the images in a later stadium easier.

o Sending a Base64-encoded photo to the server. This option has a low complexity due
to the data being a string value that can be handled with one request to the server.
The downsides consist of a large data size and an unencrypted image string.

The choice was made to keep complexity low and send Base64 encoded images. As this option
has the lowest complexity and the application is a development prototype. In a production
application, the preference would be the first option. The main downsides of sending raw
Base64 are the increase of data size of the requests and the fact that unencrypted Base64 can
be intercepted and seen by unauthorized parties. However, these downsides will be tackled
in the prototype by setting a maximum image size on the application and the data could be
encrypted by using an HTTPS connection.

- The parameters of this request were chosen as follows:

https://development.ons-vesalius.nl/
https://development.ons-vesalius.nl/ui/

 18

o Store_image was chosen to add the option to either store the images on the server
or not, because this would give the option to reduce the data created during
development of the application.

o Get_scaled_mask was added to tackle an interesting challenge. The Vesalius
algorithm takes a 256*256 rescaled image and also returns a 256*256 probability
map. However, the original image which is sent from the front-end application will
most often be larger than this. This parameter gives the option to let the API return
the probability mask of the size of the original image. This reduces the calculation load
and the complexity of the front-end application by removing the need to rescale. The
downside is that it increases the size of the return body in most cases. Optimally,
scaling could be done on the front-end application to decrease the size of this return
body.

- As can be seen in the second argument, get_scaled_mask was added because of resizing
challenges. Because the Vesalius algorithm takes and returns only 256*256 data objects and
because the size of the photo that is taken on the front-end application is almost certainly
larger than 256*256, resizing was an important factor in the application. The choice was made
to handle this part on the back-end in this prototype. Python has a lot of libraries that handle
this very easily compared to Kotlin (the language of the Android application). One of the main
downsides to this solution consist of an increase in bandwidth use of network requests.
Another downside is less flexibility within the front-end application to display the image and
the wound area. This choice has mainly been made to decrease complexity and to be able to
get to a working prototype. However, this is a part that has to be looked at again in the future.

- Another important choice that was made was the format of the probability mask. The Vesalius
algorithm returns a floating-point value for every pixel in the image. When resizing this on the
back-end side, this potentially results in really large data objects that are returned in the body
and that have to be loaded into memory in the front-end application. To reduce the size of
these objects, the choice was made to send a byte value per pixel instead of a floating-point
value per pixel. This was done by multiplying the floating-point values by 100. A floating-point
value of 0.55 would become byte-value 55, which saves bandwidth when sent in a request.

- To make sure that pairs of images can be found in the data store. The images are stored in a
specific structure, which is based on the care organization ID, the patient ID and the image ID.
This format of structuring makes sure that images from the same patient are stored together
and that each image will end up having a unique store location. More information about this
structured storing of images can be found in chapter 4.1.3.2.

Request
and
endpoint

POST
/wound_image?store_image={boolean}&get_scaled_mask={bool

ean}

Functionalit
y

Request with body which includes a wound image and information about the image,
stores the image on the server and returns a wound-segmentation result.

The image is stored on the server as well an initial result of the wound-segmentation
algorithm as an annotated pixel image. This pixel image is generated based on an
optional specified probability threshold. The call returns the complete probability
map, consisting of a probability value per pixel. The size of this map depends on the
parameter: get_scaled_mask.

Specificatio
n request
data

Header:
- Requires the key X-API-KEY in header for authorization, with the API

authorization key as value.

Parameters:

 19

- Store_image is a Boolean if the images should also be stored on the
server. This query is mainly for development purposes. As a lot of test-
images will be sent during development, it is not necessary to store these.

- Get_scaled_mask is a Boolean if the returned probability map should
be scaled back to the dimensions of the sent image.

Body:

Contains an image with information about the image (care organization ID,
patient ID, image ID), which is used for structured storing of the images. The
body also contains an optional threshold for the initial stored annotated
pixel image (default: 0.5).

Specificatio
n return
data

Success: Body with a two-dimensional array of probability values of the mask, which
represents the image matrix. It also returns information about the dimensions of the
image and mask and the names of the files in which the images were stored on the
server.

Error: The specific return codes are specified in the OpenApi specification. Any errors
during the request are currently handled by sending the Python exception message
back.

4.1.2.3 Request POST /user_adjusted_mask

The third request is a POST request which handles back-end requirements 6 and 7, which entail the

functionality to store the adjusted wound-area.

The specification below contains the realization of the API call, but also this realization contains some

implementation choices that have to be explained further.

- An important choice was the format in which the adjusted wound area would be returned.
First, the choice was made to return an array of X and Y pairs of every pixel which was part of
the wound was sent. This meant that the maximum size of this array could be two Integer
values for every pixel in the image. Realizing this, two things were changed to decrease this
maximum size:

o Instead of an array of X and Y value pairs, an array of indices was sent. These indices
are part of a one-dimensional array that represents the matrix. Where index=0 equals
the pixels at x=0 and y=0, and index=Max (width * height) equals the pixels at x=Width
and y=Height. This divided the maximum size of the array by a factor of two.

o Another change was made that involves the parameter send_wound_indices.

This parameter is set to True if the array of indices contains all the pixels that are part
of the wound or False if it contains all indices that are not part of the wound. If the
number of wound-pixels is larger than half of the total number of pixels, the pixels
that are not part of the wound can be sent instead. This again, has a maximum
reduction of the array size by a factor of two.

Request
and
endpoint

POST
/user_adjusted_mask?store_image={boolean}&send_wound_indi

ces={boolean}

 20

Functional
ity

Request with body which contains the user-adjusted wound area and information
about the image, stores the user-adjusted annotated pixel image on the server.

Specificati
on request
data

Header:
- Requires the key X-API-KEY in header for authorization, with the API

authorization key as value.

Parameters:

- Store_image is true if the annotated pixel image should be stored on the
server. This query is mainly for development purposes. As a lot of test-images
will be sent during development, it is not always necessary to store these.

- Send_wound_indices is true if the user-adjusted wound area contains
the wound pixels or false if it contains the pixels that are not part of the
wound.

Body:

Contains an array of pixels of the image that are part of the wound area. It
also contains the information about the image used for structured storing
(care organization ID, patient ID and image ID). Along with the dimensions of
the wound-image, used for creating the annotated pixel image.

Specificati
on return
data

Success: Returns a body with the name of the file in which the image was stored on
the server, along with the dimensions of the stored image.

Error: The specific return codes are specified in the OpenApi specification. Any errors
during the request are currently handled by sending the Python exception message
back.

 21

4.1.3 Security and Testing
Especially for back-end applications, it’s important to make good decisions when it comes to security

and testing, these choices are explained here.

4.1.3.1: API security
Although it will not be possible to fetch stored sensitive medical data (images) via the API, it is still

important to add an authorization layer so that not everyone can use the functionality of the API.

This is done with an Authorization Token, which is added in the header as an X-API-KEY.

Another important aspect is the fact that the application will send, possibly sensitive, images via the

internet. These images are not encrypted and simply base64 encoded. To make sure that the sent

images won’t be able to be read by third parties, the hosted development API is secured with an HTTPS

connection. This means that all data in the request is encrypted.

4.1.3.2: Storing of images
The storing of the images also involves an important security factor. The images will be used to further

train the wound-segmentation algorithm, but as the images consist of sensitive medical data, they

have to be stored in a secure location. This secure location is available on an internally hosted server

at Nedap, but as this location isn’t directly connected to the internet, the following plan was made:

1. Store the images on the virtual machine where the server is running. The images are stored
according to the file structure shown in figure 8.

Figure 8: file structure of stored images

2. A function that automatically copies over the contents of the vesalius_development_images
folder to the available secure location. After the copying, the contents of the folder on the
virtual machine are removed. This function will be executed once per timeframe (for example
once per day).

4.1.3.3: Testing
One of the most important parts of software development is testing. During the development, this

has been done manually with the help of the OpenApi /ui page. Because the OpenApi specification

 22

contains examples of calls including the body data, these calls have been used to manually test the

API.

Besides this, automated tests have been created in Python with the pytest package. These tests can

be executed by executing the ‘pytest’ command while having the repository open in a terminal

window. Tests that have been created consist of API response tests and tests that check some parts

of the return data. The API response tests check if certain body data leads to the expected return code.

For example: if the image base64 string is invalid, the expected return value is 400. Other tests check

some parts of the return data. The precise result of the wound-segmentation algorithm depends on

the trained model, which changes over time. This makes it hard to check if a specific image returns

specific values. However, what could be tested are the dimensions of the return data, as they should

not change depending on the trained model.

An example of running the tests successfully is shown in figure 9 and having a test fail is shown in

figure 10.

Figure 9: example of successfully passing all tests

Figure 10: Example of failing test

 23

4.2: Front-End Application
This part will consist of the description of the realization of the front-end. First, implementation

choices will be explained. What follows is the actual implementation of the product and the

explanation of all interesting challenges and choices that were made. The actual implementation of

the front-end will be explained per screen of the Android Application.

4.2.1: Initial implementation choices
Based on the requirements, initial research was done that led to the following initial implementation

choices.

For the front-end Application, the choice was made to create an Android application. The main

reasons consist of the fact that currently an Android MVP is being made for regulating wound care

and that most users of this application will be Android users. As the Vesalius data collection prototype

app will initially have the same target group, the choice for Android was made.

Initial research focused on finding technological possibilities within Android to be able to fulfill the

front-end requirements. The following choices were made:

- Native Android applications are originally written in Java code and work on the Java Virtual
Machine. But the support for Kotlin (Kotlin Documentation) has been added since. The
decision has been made to write the application in Kotlin, because this is a more optimized
and modern language.

- As the application’s data source are photos of wounds, camera functionality within Android
needed to be researched. The choice was made to use an external library called Fotoapparat
(Fotoapparat). This library greatly simplifies the use of a camera within Android and can fulfill
the camera requirement of the application without any problems. One of the main benefits is
that this library handles a lot of exceptions that come with different Android devices and
cameras. Another reason for using this library is the fact that the, currently in development,
wound care application also uses this library. This makes examples available for almost the
same use case and makes integrating the two applications easier in a later stadium.

- The application needs to be able to communicate with an API via internet, so network
functionality was researched. The decision was made to use the Retrofit library for this
(Retrofit). This library is able to handle all API calls and thus fulfill all the front-end
requirements on this part. This library is also used within Nedap, so the expertise and
examples are available.

- The most complex part of this application is the displaying and adjusting of the wound area
on top of a photo. This required research in how it is possible to draw on top of a view within
Android and how the view keeps track of the pixels that are drawn upon. For this, a small and
simple application was made. This application, shown in figure 11, shows the possibility for
drawing on top of a photo in Android and undoing the last action, by keeping track of the
points that are drawn on the screen. Creating this application showed that it was possible to
fulfill the requirements.

https://kotlinlang.org/docs/reference/
https://github.com/RedApparat/Fotoapparat
https://square.github.io/retrofit/

 24

Figure 11: Test application for custom view drawing

- Besides the choices that focus on fulfilling requirements, another implementation choice was

made that focused on architecture. Creating an application without any architecture or
structure is most often the easiest, but it has downsides. For Android, a main problem is that
the Activity class (the base class for any screen) can get extremely full (Guide to App
Architecture, n.d.). This is because all functionality, domain logic and UI changes consist in this
one file. Having all functionality and domain logic inside this Activity class, also makes it hard
to test the application. Most Android architecture frameworks aim to separate the
functionality and domain logic from the Activity class and thus the User Interface (UI). The
main goals of having an architecture with this separation of concerns are creating robust,
testable and maintainable applications. Android provides its developers with some
architecture components that can be used to achieve this (Android Architecture Components,
n.d.).

In this application, the choice was made to use some of these components (LiveData and
ViewModels) to achieve a more professional, robust and maintainable application. The
architecture principle that is most conform this is the MVVM-principle (Model-view-
viewmodel).

https://developer.android.com/jetpack/docs/guide
https://developer.android.com/jetpack/docs/guide
https://developer.android.com/topic/libraries/architecture
https://developer.android.com/topic/libraries/architecture/livedata
https://developer.android.com/topic/libraries/architecture/viewmodel
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel

 25

4.2.2: Android implementation
This part explains the actual implementation of the Android front-end application per feature. During

the development of the application, quite some choices have been made that led to change in the

implementations of components of this application. These changes will be elaborated on.

The realized Android application consist of three features: Enter info, Take Wound Photo and Adjust

Wound Area. These features consist of one or more screens or UI components with different

functionalities. Together with the back-end application, these features fulfill all requirements that are

needed to achieve a complete data collection flow. To give an overview, figure 12 shows the front-

end functionality visualization.

Note that this chapter goes quite in depth into the implementation of this part. The goal of this is to

explain a principle of modern Application development and how this was applied to this application.

Figure 12: Android functionality visualization

Note that the realized Android application does not implement all requirements from the design.

Requirement 2 (displaying an array of previously added wounds) and 3 (showing the details of a

previously added wound) were not implemented because they are not required to complete the data

collection flow. Besides this, the usefulness and priority were low because the images that would be

shown, would only consist of local images.

The Android implementation exists in a GitHub repository with the name: Vesalius-Android. The

source code is also available under the same name in the same directory as this report.

 26

4.2.2.1: Enter info feature
When a user first opens the application, the first feature will start. This feature has a low complexity

and fulfills front-end requirement 4 (A user must start the data collection process by filling in a Care

Organization ID and Patient ID).

This feature only consists of one screen, visualized as number 1 in figure 12. The implementation of

this screen is shown in figure 13. The functionality of this feature is to start the data collection process

by filling in the Care organization ID and Patient ID, this information is used for storing the images in

a structured way.

Note: This information is filled in manually for this prototype, but after possible integration in official

Nedap applications, this data is available in the application itself.

Figure 13: Enter info screen implementation

This screen consists of two text input fields and a confirm button. In the background the following

happens: clicking the confirm button checks if both fields are filled in and otherwise asks the user to

fill in all the fields. If all fields are filled in, a Wound object is created containing this information and

a timestamp as Wound ID. This object is then passed onto the next screen. This feature only consists

of one class file: AddInfoActivity. Because the functionality of this feature is minimal, all functionality

is handled in this activity class, without the use of a ViewModel class. Note that future

implementations of this application won’t need this screen, because all data exists in the current user’s

authentication data.

 27

4.2.2.2: Take wound photo feature
After filling in wound information the next feature is started, which consists of taking a wound photo,

reviewing the photo and then either retaking or confirming it.

This feature fulfills front-end requirements 5 (A user must be able to take a photo of a wound) and 6

(A user must be able to view the photo and then accept or otherwise retake it). This feature consists

of two screens, visualized as number 2 and 3 in figure 12. The implementation of these two screens

are shown in figures 13 and 14.

Figure 14: Take wound picture screen implementation Figure 15: Preview picture screen implementation

While the functionality of this feature is quite simple, the implementation within Android is more

complex. To explain this complexity, the file structure within Android of this feature can be seen in

figure 16. The main class of this screen is defined in TakeWoundPhotoActivity, this activity class

contains and displays TakePhotoFragment (this fragment extends the CameraControl interface, which

enforces the use of some specific camera-related functions) and PreviewFragment. These fragment

classes contain the UI logic of both screens. While the activity class and the fragment classes handle

all UI logic, some functionality has been moved to a ViewModel class: TakeWoundPhotoViewModel.

This ViewModel class works independent from the activity and fragment classes and its main

functionality is handling the result data of a taken photo by storing the photo in a file on the device.

The file location of this device is then set in a MutableLiveData object called cameraResult. The reason

this is done is because this makes it possible for the PreviewFragment to observe this MutableLiveData

object and act on any changes of this object. In this case, the PreviewFragment will display the image

which is stored on the specified file location when a change happens. And with the help of an interface

callback function, the TakeWoundPhotoActivity is notified of a ‘click’ on the “take picture”-button so

that it can display the PreviewFragment. The final step of this feature consists of previewing the photo

and either clicking the back button. Clicking the back button automatically removes the

PreviewFragment from the navigation stack and shows the TakePhotoFragment again. Clicking the

https://developer.android.com/topic/libraries/architecture/viewmodel
https://developer.android.com/topic/libraries/architecture/livedata

 28

confirm button will add the current image file path to the wound object that had been created in the

previous feature and passes this on to the next feature.

For further explanation and understanding of the workings of this feature, see the vesalius-android

repository, which contains all (commented) code.

Figure 16: Android file structure of take wound photo feature

This feature creates the initial data object (the photo), that is part of the data collection process. This

means that this feature is responsible for the format and size of the photo. The choice has been made

to restrict the size of a photo to a size of maximum 1280*960 pixels. This is done to limit the size of

the API request, which sends the image, as some newer phones are able to create very large images.

This choice has no negative influence on the quality of the training of the Vesalius algorithm because

the algorithm decreases the size of all images to 256*256 before training. Keeping the images to a

limited size also lowers the complexity and improves the performance of the Adjust Wound Area

feature, which will be explained in that part.

 29

4.2.2.3: Adjust wound layer feature
When this feature is started, it means that a wound object exists which contains all ID’s and the file

location of a photo. This makes it possible for the most complex part of the application to be handled:

the displaying and adjusting of the wound area on top of the photo.

This feature fulfills front-end requirements 7 (The application must be able to send the taken photo

to a server and receive the segmentation result), 8 (A user must be able to see the result of the wound-

recognition algorithm on top of the taken wound photo), 9 (A user must be able to adjust the result

of the wound-recognition algorithm) and 10 (The application must be able to send the wound area

result to a server). This feature consists of one screen with multiple UI compositions, which are

visualized in figure 12 as number 4, 5, 6 and both the requests. The final implementation of the two

main different UI compositions can be seen in figure 17, these compositions show the implementation

of requirements 8 and 9.

The compositions in figure 17 show the implementation of the adjust wound layer feature. The choice

was made to split this feature up into two parts: changing the threshold and drawing/erasing the

wound area. Because the Vesalius algorithm returns a probability value per pixel the first screen is

used to change the wound area based on the direct result of the Vesalius algorithm. Based on the

slider, a threshold value is changed and only the pixels with a value above this threshold are drawn as

part of the wound area. By also returning the value of this threshold to the back-end, information is

given that can lead to a more accurate threshold value. After changing the threshold, the user is also

given the option to draw or erase parts of the wound area. This is done with the visible buttons and

by touching the photo on the device. The buttons are used to switch between drawing and erasing,

changing the drawing/erasing size and to reset the area back to the set threshold value.

Figure 17: Implementation of two main UI compositions of Adjust Wound Area feature

 30

The workings behind the UI compositions of this feature and especially the displaying of the wound

area are quite complex. These are explained below, starting with figure 18, which shows the Android

file structure of this feature.

Figure 18: Android file structure of Adjust Wound Area feature

As can be seen in figure 18, the current feature consists of three classes and to explain the workings

behind this feature, the explanation is split up into two parts:

1. The first part will explain the UI component flow in this feature. This is done by explaining the
functionality of this feature, the implementation of the AdjustWoundAreaActivity and
AdjustWoundAreaViewModel classes and how they interact. This part mainly goes in depth
into the Android architecture.

2. The second part explains the workings and reasoning of the Wound Area Image View, which
is a custom View that allows for drawing and editing a wound area on an image, while
remembering all pixel coordinates which are selected to be part of the wound area. This part
tells more about the data structures and challenges that were faced during the realization of
this, as well as the way in which this data is converted to what is drawn on the screen.

 31

4.2.2.3.1 UI component flow

The user of the application has the option to change the wound area in two different ways: changing

the probability-mask-threshold and drawing and erasing the wound area on the screen. Besides the

user input, this feature also handles some network requests which can have a loading state, a success

state or failing state. All this means that this feature consists of multiple states, which all change the

UI composition of the screen.

Because of the functionality and complexity of this screen, the decision was made to separate the UI

and the functionality as much as possible. This was done by creating the AdjustWoundAreaViewModel

class, which has a couple of main tasks:

- Keeping track of the feature state of the feature in a LiveData object -> the Activity observes
this object and updates the UI composition when a change occurs.

- Keeping track of wound area data in the form of data structures and LiveData objects -> the
Activity requests these data structures to change the WoundAreaImageView. The LiveData
objects are observed by the Activity and updates other parts of the WoundAreaImageView
when a change occurs.

- Performing operations such as API calls and using the result of the API calls to create the
wound area data, after which the state can be changed.

Figure 19 shows a visualization of the principle of the interaction between the Activity and the

ViewModel within this feature. A user gives some sort of input via the visible UI components, which

is received by the Activity. This input either directly changes the WoundAreaImageView, or the

WoundAreaImageView is changed based on operations done by the ViewModel. The user input and

ViewModel operations also change LiveData objects within the ViewModel, such as the feature state.

The Activity observes these changes and updates the UI composition accordingly.

Figure 19: Visualization of interaction principle between components of Adjust Wound Area feature

To explain the main flow and usage of this feature, the relationships between the most important

feature states and their corresponding UI compositions are explained underneath. Figure 20 shows

the UI compositions and figure 21 shows these relationships in a state flow diagram.

 32

Figure 20: Display of different UI compositions, with different feature states.

Figure 21: State transition diagram of adjust wound area feature

When this feature starts, the wound photo is set in the WoundAreaImageView and the ViewModel

sends a request to the server, containing the photo. The initial corresponding state is

SENDING_PHOTO, which is seen in the most left UI composition in figure 20.

After the photo has been sent to the server and the result of the Vesalius algorithm has been returned,

the ViewModel uses this result to generate the necessary data objects and changes the state to

RECEIVED_MASK. The Activity then updates the WoundAreaImageView with the generated data

objects. The wound area becomes visible and the state is changed to CHANGING_THRESHOLD,

which is seen in the second UI composition in figure 20.

The user can now use the slider to change the threshold, which is stored in a LiveData object in the

ViewModel. Changes of this object are observed by the Activity and change the

WoundAreaImageView.

After a user clicks the confirm button, the state changes to DRAWING_LAYER, and the activity

changes the UI to the third composition of figure 20. With the help of the UI components, the user

can draw or erase parts of the wound area by touching the WoundAreaImageView. Once a user is

satisfied with the result, the confirm button can once again be clicked. This will raise an alert screen

and after the user accepts this, the state changes to SENDING_MASK and the result is sent to the

server. The UI composition of this screen is comparable to the first composition of figure 20.

 33

If this network request is successful, the data collection process is finished, and the application

navigates back to the first feature: enter info. However, requests that depend on internet connectivity

can also fail. This can happen during the states SENDING_PHOTO and SENDING_MASK and will

result in changing the states to respectively FAILED_SENDING_PHOTO and

FAILED_SENDING_MASK. The UI composition of these two states can be seen in the fourth

composition of figure 20. Clicking the retry button will change the state back to respectively

SENDING_PHOTO and SENDING_MASK.

 34

4.2.2.3.2 Wound Area Image View

The AdjustWoundAreaActivity and AdjustWoundAreaViewModel handle the UI compositions and the

network requests. This is done to prepare and handle the data, which is needed for the user to see

the wound photo and to view and adjust its wound area. This is possible because of the

WoundAreaImageView class. This class extends the ImageView class, which is the standard Android

UI component in which images can be shown. The custom version makes it possible to control what is

draw on top of this UI component. The realization of this custom class is complex and changed multiple

times during the implementation, due to challenges. The main challenges had to do with the data

types and data structures, which influence the memory use of the application and finding a balance

between performance and the design and way of drawing of the wound area on top of the image.

4.2.2.3.2.1 Data types and data structures

The goal of the adjust wound area feature is to keep track of all pixels that a user indicates as part of

the wound area, to be able to finally send the coordinates of these pixels to the server. Whether a

pixel should be drawn or not can be influenced by two things: the result of the Vesalius algorithm in

combination with the threshold and the manual drawing and erasing by a user. This means that the

class should keep two things in memory:

1. The result of the Vesalius algorithm, which is a probability value per pixel.
2. The pixels which are part of the wound area.

The first version of the WoundAreaImageView kept this information in memory by creating an array

of instances of a data class per pixel, which contained:

- Wound area pixel: Boolean value if the pixel is part of the wound area.
- Probability: Double value of the Vesalius algorithm result of this pixel.
- X: Integer value for the X coordinate of this pixel.
- Y: Integer value for the Y coordinate of this pixel.

To be able to find if a specific pixel of the view needed to be drawn, a pixel instance with a specified X

and Y value needed to be found in this list. Then the wound area pixel value needed to be changed

based on its probability value and specified threshold.

However, based on observed memory use by using the built-in profiler in Android Studio, and the

number of times this array needed to be traversed, it became clear that this was not a good solution

and a couple of changes have been made since:

- Instead of storing the probability values as Double values (memory size of 8 bytes), the choice
was made to change this to Byte values (memory size of 1 byte).

- The creation of an instance of a data class increased the memory use by a large amount. This
is why it was decided to remove this and to instead keep the wound area pixels and probability
values outside of a data class instance. This data is currently kept in two separate, one-
dimensional arrays.

- The representation of the data of an image normally consists of a matrix, with a height-
number of rows and a width-number of columns. The Vesalius algorithm result is also
represented in a matrix, containing probability values. Originally, the rows and columns of this
matrix were traversed, and the row and column indices were used to define the X and Y values
of the pixel data instance. The pixel data was then stored in the shape of a one-dimensional
array without separate row and column indices. Because of missing the separate row and
column indices, the X and Y values were stored. However, this changed with the realization
that the X and Y values can simply be calculated by taking the index of the pixel in a one-

https://developer.android.com/reference/android/widget/ImageView

 35

dimensional array together with the width of the image. The other way around, the index can
be calculated by using the X and Y values of a pixel together with the width of the image:

o Index = (Y * width) + X

o X = index % width

o Y = index / width

Because of this it was possible to directly look up any pixel of the image in the one-dimensional
arrays.

The change of the data and data types resulted in a big reduction of memory use and the calculation

of indices resulted in removing the need to traverse the arrays more than necessary.

4.2.2.3.2.2 Design & drawing of the wound area

The necessary data is kept in memory and can be changed in an efficient way. But the next step was

to convert this data into an efficient way to draw the wound area. Finding a clear design and efficient

way of drawing this area was a challenge.

The way in which Android allows for drawing on a View is done by overriding the onDraw function,

which is called every time a change happens within the activity. Within this onDraw function, it is

possible to draw points and other shapes within the view by providing an X and Y coordinate together

with a Paint object. This Paint object contains visual aspects like size, color and alpha. Because of the

existence of an array of Boolean values per pixel and the ability to calculate the X and Y coordinates

with an index, it was possible to traverse the array and draw a point on the View for every True value.

The result of this can be seen in figure 22.

Figure 22: Wound area by drawing every separate pixel.

After testing this implementation, it became clear that another solution needed to be found. The

testing showed that the performance of this solution depended heavily on the size of the wound area.

With an image size of 960 * 1280, the maximum number of points that could be drawn was more than

1.2 million. Because of this, the application would slow down a lot. So, it was clear that another

https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/view/View.html#onDraw(android.graphics.Canvas)

 36

solution was necessary. Either the drawing needed to be done more efficient by drawing larger shapes

instead of separate points, or another solution needed to be thought of. After talking to a UI/UX

designer, it was pointed out that coloring the whole wound area makes it harder to see the image

underneath. This was partly solved by lowering the alpha value of the Paint, as can be seen in figure

22. However, since this doesn’t resolve the performance issues, the suggestion was made to look into

the possibility to draw the border of the wound area. Since this would lower the number of drawn

pixels by a large amount.

To achieve this, the border of the wound area needs to be found. This is done by comparing any pixel

that is part of the wound area to its neighboring pixels. If a neighboring pixel is not part of the wound

area, this means that the pixel is a border pixel. Every time the wound area changes, this comparison

is done and only the border pixels are drawn. Because all pixels are represented in a one-dimensional

array, a function was written that calculates all existing neighbor indices for any index. The closest

neighbors for all indices are calculated once, during the initialization of the feature. These are kept in

memory to be able to quickly find and compare the pixels with its neighbors.

The final design of the wound layer for this prototype can be seen in figures 16 and 19. However, the

optimal design of this feature is not determined yet, but other designs that have been experimented

with are for example a combination of drawing the separate pixels and the border. This can be seen

in figure 23. Future user testing would be required to find the most optimal design and

implementation.

Figure 23: Other implemented design possibility or drawing wound area.

 37

5: Conclusion and future recommendations
The goal of this graduation assignment was to create a prototype application which can collect data
for a wound-segmentation algorithm. Requirements were set up, a process was defined, designs were
created, and the applications were implemented. Using the created Android application, it is possible
for a user to finish the complete data collection process consisting of a wound photo and the marked
wound area. The realized Android application uses a created Python back-end service that segments
the wound area and stores the result of the data collection process in the exact format that the
wound-segmentation algorithm uses for training.

When comparing the specified requirements with the final product, it can be seen that almost all
requirements have been implemented. Due to time restrictions, the decision was made to not
implement two front-end requirements with a lower priority. Also, when comparing the front-end
mockups with the implemented screens, differences can be seen. The wound-area-adjustment feature
has been split up in two parts and the design of this feature shows differences with the realization.
Multiple factors led to these differences; among these factors there were implementation challenges,
specifics that were overlooked during the design phase and suggestions of other people involved
during the development.

This all leading to the conclusion that despite the differences, the main goal of the assignment has
been achieved.

However, this assignment required the creation of a prototype. And a lot needs to be done before this
application would be ready for production. If the future goal was to create a separate data collection
application for wound images, things that would need more work are the following:

- Currently, any rescaling of the result of the Vesalius algorithm is done on the back-end. The
front-end application doesn’t support this resizing and scaling. This is why the front-end
application has some scaling problems based on different screen sizes, as well as not
supporting the use of the landscape orientation. Moving scaling functionality to the front-end
application could offer more solutions for these problems. Besides this, offering support for
resizing on the front-end application brings possibilities for reducing the bandwidth
consumption of network requests.

- While the application performs smoothly on newer and higher end smartphones and
emulators, the performance on some older Android phones is less good. Drawing of the
wound area on top of the image still requires a lot of calculations to be done. Optimization in
the future is necessary to improve this.

- The adjust wound area feature is complex when it comes to design. The optimal design and
user experience can only be achieved by doing more research with the help of user testing.

The use of a standalone data collection application is useful for training the Vesalius algorithm, but

the utilization of the Vesalius algorithm within Nedap applications is something that has real future

perspective: If trained sufficiently, the Vesalius algorithm can be used to automate processes within

the currently developed wound care application. Things that could be automated are the

determination of the size of a wound as well as classifying different kinds of tissue within the wound

area. Combined with patient information, this all could theoretically lead towards an automatically

generated care plan of a wound treatment.

This is why integration of parts of this prototype within the wound care application could be a next

step to this future perspective. The parts of this prototype can be used to collect more data for the

algorithm, or these parts can be a first step towards the mentioned automation.

All by all, automatic wound-segmentation has a lot of future perspective, but a lot needs to be

improved, tested and implemented to get to this. This prototype application, however, is a physical

example of what the Vesalius algorithm can do. And this makes the future of healthcare come a little

bit closer.

 38

6: References
Android Architecture Components (n.d.). Retrieved from

https://developer.android.com/topic/libraries/architecture

Autopep8 (04-2019). Retrieved from https://github.com/hhatto/autopep8

Connexion (04-2019). Retrieved from https://github.com/zalando/connexion

Fotoapparat (02-2019). Retrieved from https://github.com/RedApparat/Fotoapparat

Guide to App Architecture (n.d.). Retrieved from https://developer.android.com/jetpack/docs/guide

Keras (n.d.). Retrieved from https://keras.io/

Kotlin Documentation (n.d.). Retrieved from https://kotlinlang.org/docs/reference/

OpenApi (n.d.). Retrieved from https://swagger.io/docs/specification/about/

Pep8 (n.d.). Retrieved from https://pep8.readthedocs.io/en/release-1.7.x/

Pytest Fixtures (n.d.). Retrieved from https://docs.pytest.org/en/latest/fixture.html

Retrofit (n.d.). Retrieved from https://square.github.io/retrofit/

Tensorflow (n.d.). Retrieved from https://www.tensorflow.org/

Visual Studio Code (n.d.). Retrieved from https://code.visualstudio.com/

Wang, C., Yan, X., Smith, M., Kochhar, K., Rubin, M., Warren, S. M., ... & Lee, H. (2015). A unified

framework for automatic wound segmentation and analysis with deep convolutional neural networks.

In Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of

the IEEE (pp. 2415-2418). IEEE.

Zorguitgaven stijgen in 2017 met 2,1 procent (05-2018). Retrieved from https://www.cbs.nl/nl-

nl/nieuws/2018/22/zorguitgaven-stijgen-in-2017-met-2-1-procent

https://developer.android.com/topic/libraries/architecture
https://github.com/hhatto/autopep8
https://github.com/zalando/connexion
https://github.com/RedApparat/Fotoapparat
https://developer.android.com/jetpack/docs/guide
https://keras.io/
https://kotlinlang.org/docs/reference/
https://swagger.io/docs/specification/about/
https://pep8.readthedocs.io/en/release-1.7.x/
https://docs.pytest.org/en/latest/fixture.html
https://square.github.io/retrofit/
https://www.tensorflow.org/
https://code.visualstudio.com/
https://www.cbs.nl/nl-nl/nieuws/2018/22/zorguitgaven-stijgen-in-2017-met-2-1-procent
https://www.cbs.nl/nl-nl/nieuws/2018/22/zorguitgaven-stijgen-in-2017-met-2-1-procent

 39

7: Appendix

7.1: Initial sprint backlog
Back-end backlog

Description Type Priority Implementation
remarks

BE1.0 Set up back-end repository and
environment

Server & API Highest

BE2.0 Set up VM to host the API and
Server and SSL certificate for
HTTPS support (from Nedap)

Server, API &
Process

Medium

API1.0 Create token-based
authorization, saved in
environment variable, to be
sent in header

API Highest

API2.0 Create GET request for wound
segmentation

API Highest

API3.0 Create POST request for
adjusted wound area
(validation)

API Highest

S1.0 Create functionality to return
wound area for a given wound
photo (#API2.0)

Server Highest

S2.0 Create functionality to receive
adjusted wound area segment
and save it on the server
(#API3.0)

Server Highest

T1.0 Create test file for API and
security with pytest fixtures

Testing High

S3.0 Research HTTPS
implementation in
connexion/python back-end
and need for extra encryption
and how-to implement this

Server & API High Research a way to
encrypt

S10.0 Deploy back-end on production
environment with HTTPS
support

Server & API High Final requirement,
Dependency:
#BE2.0 & #S3.0

Front-end backlog

Description Type Priority Implementation
remarks

D1.0 Create specific front-end
design for application

Design & Process Highest Process over time:
design based on trying
out and talking to
people in work field
and UI/UX designers.

A1.0 Set up front-end repository
and environment

Android Highest Includes technical
documentation about
packages

 40

A2.0 Research and set up Android
project with MVVM
architecture

Android Highest

A2.1 Insert Retrofit support Android Highest

A2.2 Insert Room support Android Highest
A3.0 Create a general UI theme,

visible on multiple screens
Android & Design Medium Dependency: #D1.0

A4.0 Create wound-list
functionality

Android High Based on wound list
from MVVM
Repository

A4.1 Create final wound-list UI Android & Design Medium Dependency: #D1.0

A5.0 Create enter patient info
screen functionality

Android High

A5.1 Create final enter patient
info screen UI

Android & Design Medium

A6.0 Create Camera screen
functionality

Android High Fotoapparat Library
camera component +
preview

A6.1 Create final Camera screen
UI

Android & Design Medium Dependency: #D1.0

A7.0 Create layer adjustment
screen functionality

Android High Research needed for:
Scaling problems &
most efficient drawing

A7.1 Create final layer adjustment
screen UI

Android & Design Medium Dependency: #D1.0

A8.0 Create wound detail screen
functionality

Android High

A8.1 Create final wound detail
screen UI

Android & Design Medium Dependency: #D1.0

A10.0 Deploy application on
testing/production
environment for sharing
purposes

Android Medium Final requirement

 41

7.2: Sprint progress & documentation example
A visualization of the weight of the stories burned is given in figure 24. As this project didn’t involve

story points that were planned beforehand, the visualization only shows the distribution of the

weight of the completed stories per sprint. This gives an overview of the distribution of work during

the project. This distribution was input for the retrospective after each sprint.

Figure 24: Visualization of total weight of stories per sprint

After each sprint, the finished stories were documented, and a small retrospective was done. All

retrospectives exist in the sprint documentation and an example for one sprint is given underneath.

Sprint 1 (25-03 -> 07-04)

Stories finished:

Description Time spent
(days)

BE1.0 Set up back-end repository and Python environment 1
API2.0 Create POST request for wound segmentation 2

API3.0 Create POST request for adjusted wound area (validation) 2

API1.0 Create token-based authorization, saved in environment
variable, to be sent in header

0.5

What went well?

- I started off well and managed to create a local version of an API with a first version of the
requests that I wanted to create.

- The progress went well and structured.
- I learned a lot about the principles of an API by working with the connexion library.
- I could ask questions to specific people and they were able to help me really well.

5.5

12

18.7

25.7

35.7 35.7

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7

Sprint number

WEIGHT OF STORIES FINISHED PER SPRINT

Total weight of stories finished

 42

What didn’t go well?

- I noticed that it was hard to imagine the full product, and how the API was going to
communicate with the application. This made me realize that I missed having an exact and
concrete design, which resulted in a lot of doubting and changing things.

- I planned to ask for help in realizing my product, but I didn’t ask for help as much as I would
have liked.

What am I going to do different?

- The lack of a concrete design originated from the fact that it was not yet 100% clear what
the functionality and data contents of the API requests should be. Next time, it is important
to start off by designing and planning these specific things first.

- Missing an exact and concrete design is difficult. But with my lack of experience it’s also not
that strange. What I could do different is accepting that not everything can go according to a
certain way and that I should just try things out sometimes, also if it’s not planned.

- Although I asked some questions, I had the feeling that the progress could be quicker if I
would have asked more. Asking more questions is a simple solution to the problem, and it
could also help me to ask help in creating a more exact and concrete design.

	Abstract
	1: Introduction
	2: The Process
	2.1: Phases
	2.1.1: Planning phase
	2.1.2: Global research phase
	2.1.3: Implementation phase
	2.1.3.2 Implementation stages

	2.1.4: Review phase

	2.2: Programming Strategy & Process Documentation

	3: The Product - Design
	3.1: The Context
	3.2: Global Design
	3.3: Specific Requirements and Design
	3.3.1: Front-end requirements
	3.3.2: Front-end design
	3.3.3: Back-end requirements

	4: The Product - Realization
	4.1: Back-End Application
	4.1.1: Initial implementation choices
	4.1.2 API functionality
	4.1.2.1 Request GET /status
	4.1.2.2 Request POST /wound_image
	4.1.2.3 Request POST /user_adjusted_mask

	4.1.3 Security and Testing
	4.1.3.1: API security
	4.1.3.2: Storing of images
	4.1.3.3: Testing

	4.2: Front-End Application
	4.2.1: Initial implementation choices
	4.2.2: Android implementation
	4.2.2.1: Enter info feature
	4.2.2.2: Take wound photo feature
	4.2.2.3: Adjust wound layer feature
	4.2.2.3.1 UI component flow
	4.2.2.3.2 Wound Area Image View
	4.2.2.3.2.1 Data types and data structures
	4.2.2.3.2.2 Design & drawing of the wound area

	5: Conclusion and future recommendations
	6: References
	7: Appendix
	7.1: Initial sprint backlog
	7.2: Sprint progress & documentation example

