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Abstract—Traditional IMU based PDR systems suffer from
rapidly growing drift effects due to the inherent bias of the
inertial sensor. Many existing solutions to mitigate this problem
use aiding sensors or information as heuristics or map data. We
propose a new optimization framework to solve the PDR estima-
tion problem where the sensors biases are explicitly included as
state variables and therefore be used to correct for bias effects
in the PDR. By using a smoothing approach and exploiting the
rigid structure of a MIMU array one can solve for the slowly
varying sensor biases. This paper presents the method and gives
an exemplary result of a walking trial. Good agreements in the
position and orientation with an optical reference system were
found. Moreover, accelerometer and gyroscope biases could be
estimated accordingly. Further research includes the performance
of more experiments under various conditions such that a
more quantitative evaluation can be obtained. In addition, an
exploration of a (pseudo) realtime filter version would be valuable
such that the system can be applied online.

Index Terms—PDR, inertial sensor, IMU calibration, optimiza-
tion, sensor bias, MIMU

I. INTRODUCTION

The SaxShoe project aims to improve the safety of firefight-
ers by tracking their positions and showing this information to
the commander. To that goal, a small position tracking system
is integrated in the boots of firefighters. To be able to track the
position in all circumstances, e.g. indoor, Inertial Measuring
Units (IMUs) can be used to estimate the position relative
to the starting point without the need of GPS or any other
physical infrastructure. MEMS based IMU Pedestrian Dead
Reckoning (PDR) systems gained much attention due to the
small form factor, low weight and relatively low cost.

The main problem of PDR is the accumulation of posi-
tioning errors due to erroneous sensor readings. Without any
aiding information, position error quickly grow to several
meters within a couple of seconds. Accordingly, reduction of
errors is important for these PDR systems that has attracted a
lot of research.

In this paper, we propose a solution to enhance the state
and parameter estimation, based on IMU (accelerometer and
gyroscope) data only. There are several techniques to address
this problem. We will first give an overview of the existing
techniques and subsequently present our proposed solution.

Rajagopal gave a sound description of PDR and proposed
two solutions to reduce drift: Zero Velocity Update and

Angular Rate Update [1]. Both methods rely on the assumption
that the IMU is not moving during the stance phase of
locomotion. At that moment, both the estimated translational
and rotational velocities can be reset to zero. These techniques
reduce the accumulation of errors significantly as the average
time between two stance phases is often limited to less than
a second.

During the stance phase one can also update the inclination
of the foot by assuming that the accelerometer only measures
the gravitational acceleration. However, the heading cannot be
corrected by information from the IMU, hence those errors
still accumulate due to a biased gyroscope sensor.

A possible solution to mitigate such errors is to introduce
additional assumptions on the walking pattern. For example,
the Heuristic Drift Reduction (HDR) method assumes that
most hallways are straight and corners are 90 degrees [2].

Another approach is to include aiding sensors. MEMS IMUs
are typically extended with a 3D magnetometer which can
be used as a compass whenever the magnetic field is not
disturbed. Outside one can apply GPS information to estimate
the postion and velocity, whereas for indoor situations one can
apply a map.

Most traditional approaches to PDR are based on Extended
Kalman filters [3]. A more recent development is the use of
optimization based approaches [4] which is more flexible as
it can handle non-linearities and non-Gaussian noise sources.

The largest contribution to the position and orientation
error of a PDR system is caused by, time varying, sensor
biases. For example, gyro biases result in a drifting orientation
estimate, whereas the accelerometer biases result in velocity
and position drifting effects. Moreover, erroneous orientation
estimate introduce an error the global inertial acceleration
which is also referred as to gravity leakage.

In this paper we apply an optimization based approach
to the PDR problem. The approach is demonstrated on a
Multiple IMU (MIMU) platform which contains 4 identical
IMU sensors that are rigidly mounted on a PCB. Such MIMU
boards have several advantages. First, noise characteristics can
be improved by averaging over the sensor readings. Second,
by exploiting the relative poses of the IMUs additional infor-
mation is obtained which assists in reducing dead reckoning
errors.



The following sections present the proposed method. First
the estimation problem is formulated as a cost function which
includes the sensor models and the dynamics. Subsequently the
experimental procedure is discussed and applied on a trial in
which a rectangular trajectory has been travelled several times
by a single subject. Finally, an exemplary result is presented
to highlight the potential of our approach.

II. METHOD

The following set of variables (x) are included in the op-
timization framework from which eventually a point estimate
will be calculated:
1) Gyroscope and Accelerometer biases:{

bSi
g,t ,b

Si
a,t

}
∀Si ∈ S, ∀t ∈ T

(1)

2) Body’s kinematics:{
pL

B,t , vL
B,t , aL

B,t , qLB
t , ω

B
LB,t , α

B
LB,t
}

∀t ∈ T
(2)

Where bSi
g,t and bSi

a,t are the sensor biases of the set (S)
gyroscopes and accelerometers respectively, at every moment
in time (T). The position pL

B,t , velocity vL
B,t and acceleration

aL
B,t of the module (B) is expressed in a global static frame

(L). Similarly, the orientation qLB
t , angular velocity ωB

LB,t and
angular acceleration αB

LB,t are defined with respect to the
global static frame.

The following sections will explain the optimization frame-
work and cost functions that are involved within the frame-
work. This can be divided in state initializations, dynamic
models and measurement models.

A. Optimization framework
The problem of estimating the the state vector xt∈T can

be formulated as Maximum A Posteriori (MAP) problem. We
denote all the measurements, either real or virtual, by yt∈T.
Now, the joint probability density function (PDF) is given
by the product of the measurement’s conditional density and
the prior density. Considering the densities as being Normally
distributed (N ) one can write:

p(y,x) = p(y|x)p(x) =Ny(0,V )Nx(x̂−,P−)

The MAP results in the estimate of zzz that maximizes this
function:

x̂ =argmax
x

p(y,x) (3)

=argmin
x
− log p(y,x)

=argmin
x
−

N

∑
t=1

log p(yt |xt)︸ ︷︷ ︸
measurement models

− log p(x1|y1)︸ ︷︷ ︸
dynamic initialization

−
N

∑
t=2

log p(xt |xt−1)︸ ︷︷ ︸
dynamic model

The solution of the MAP problem (3) coincides with the
Weighted Least Squares (WLS) estimator if all probability
density functions are modeled as Gaussians.

III. SENSOR MEASUREMENT MODELS

A. Gyroscopes

The output of a gyroscope can be modeled as an angular
velocity measured in sensor frame B with respect to an inertial
frame L. We assume that the sensor Si is rigidly connected
to the underlying body, hence the relative angular velocity
ωBSi = 0. In addition we assume a bias bSi

g,t and Gaussian
noise eSi

g,t :

ySi
g,t = RSiBω

B
LB,t +bSi

g,t + eSi
g,t , eSi

g,t ∼N (0,Σg) (4)

where RSiB is the relative orientation of the sensor (Si) with
respect to the underlying body (B) expressed as a rotation
matrix. The bias is modeled as a first order Markov process :

bSi
g,t+1 = bSi

g,t +wSi
bg,t , wSi

bg,t ∼N (0,Σbgi ) (5)

B. Accelerometers

The output of an accelerometer can be modeled as the sum
of its experienced linear aL

Si,t and gravitational acceleration gL

expressed in the sensor’s coordinate frame Si. In addition, a
local bias bSi

a,t and Gaussian noise eSi
a,t term are included:

ySi
a,t = aSi

t +RSiBRBL
t gL +bSi

a,t + eSi
a,t , eSi

a,t ∼N (0,Σa) (6)

The linear acceleration can be expressed with respect to
the bodies’ acceleration assuming rigidity between sensor and
body:

aSi
t = RSiB

(
RBL

t aL
B,t +α

B
LB,t ×pB

Si
+ω

B
LB,t ×

(
ω

B
LB,t ×pB

Si

))
(7)

where pB
Si

and RSiB are respectively the position and orientation
of the accelerometer expressed in the body frame. Again, the
bias is modeled as a first order Markov process :

bSi
a,t+1 = bSi

a,t +wSi
ba,t , wSi

ba,t ∼N (0,Σbai ) (8)

IV. PSEUDO MEASUREMENT MODELS

A. Zero velocity

During stand-still we assume zero translational velocity:

0 = vL
B,t + ev0,t , ev0,t ∼N (0,Σv0) (9)

where vL
B,t is the linear velocity and ev0,t is a Gaussian error

term.

B. Zero angular rate

Similarly, we assume a zero angular velocity during stand-
still:

0 = ω
B
LB,t + eω0,t , eω0,t ∼N (0,Σω0) (10)

where ωB
LB,t is the angular velocity and e

ω0,t is a Gaussian
error term.

C. Zero height

We assume a flat walking surface and therefore that the
vertical direction (z) during stand-still is zero:

0 = pL
B,z,t + epz0,t , epz0,t ∼N (0,Σpz0) (11)

where aL
Si,t is the linear acceleration and epz0,t is a Gaussian

error term.



D. Dynamic models:
The discrete kinematic equations predict the pose and

velocity at t +T given the current accelerations and sampling
period T :

pL
B,t+T = pL

B,t +T vL
B,t +

T 2

2

(
aL

B,t +wpL
B

t

)
vL

B,t+T = vL
B,t +T

(
aL

B,t +wvL
B

t

)
aL

B,t+T = aL
B,t +waL

B
t

qLB
t+T = qLB

t � exp
(

1
2

(
T ω

B
LB,t +

T 2

2

(
α

B
LB,t +wqLB

t

)))
ω

B
LB,t+T = ω

B
LB,t +T

(
α

B
LB,t +wωB

LB
t

)
α

B
LB,t+T = α

B
LB,t +wαB

LB
t

where � is the quaternion product operator and exp the
quaternion exponential. The process noises are being described
by:

wXL
B

t ∼N (0,ΣX), X ∈ {p,v,a,q,ω,α,} (12)

The dynamics of the sensor biases have been described in
the sensor measurement model section.

V. SOLVING THE TOTAL COST FUNCTION

The total cost function is found by rewriting the individual
stochastic models such that each is a function of the particular
noise variable e or w. Subsequently, all functions are summed
and weighted according its corresponding covariance.

This nonlinear least-squares (NLS) problem is solved using
a Marquardt-Levenberg approach. To this end we used the
Ceres library, which is a large-scale numerical optimization li-
brary targeting on solving bundle-adjustment problems [5] [6].
This library has several appealing properties such as handling
large sparse matrices, using a proper quaternion parameteriza-
tion and ability to perform automatic differentiation.

VI. EXPERIMENTAL METHOD AND RESULTS

The Inertial Elements MIMU22BT was used as a MIMU
module, see Fig. 1. This module contains four Invensens 9205
inertial sensors and has the capability to read out the raw
sensor data up to 500 Hz.

Fig. 1: Top and bottom view of the MIMU22BT. Visible are
four Invensens 9205 modules. Sensor 0 is mirrored with sensor
3 and sensor 1 is mirrored with sensor 2. The right-handed
coordinate frame of sensor 0 is indicated (x=red, y=green).
The relative distance between sensor 0 and 2 is 6.3mm.

To demonstrate the feasibility, a subject was instructed to
walk repeatedly along a rectangular path (3.5 x 1.5m) while
wearing a firefighters’ boot with the sensor module embodied
in the heel, see Fig. 2. In addition, reflective markers were
attached to boot which enables the reconstruction of the path
using an optical system. The subject walked for approximately
2 minutes such that the rectangular path was traversed 10
times.

Fig. 2: Subject wearing the firefighter boots with embodied
MIMU module. Data is transmitted to a laptop via USB. The
trajectory is outlined with white adhesive tape on the floor. In
addition, optical markers and cameras of the reference system
are visible.

The inertial sensors were calibrated prior to the experiment
using the method described by Tidaldi et.al. [7]. A time
varying offset has been added to the sensor readings after the
recording to explicitly demonstrate the ability of estimating
inertial sensor biases. To demonstrate the robustness of our
algorithms, artificial values are chosen to be large compared
to common sensor biases and are slowly varying over time
according a linear trend.

Preprocessing of the data included the extraction of static
intervals using a Generalized Likelihood Ratio Test (GLRT)
described by Skog et.al. [8]. After running the smoother, data
of both measurement systems was aligned, both temporal as
spatial, for comparison purposes.

A. Results

An example reconstruction of the path is depicted in fig-
ure 3. Indicated are the position estimates obtained from the
optical (blue dots) and optical reference (grey). The zero
(angular) velocity and zero height measurement updates are
indicated with red dots.
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Fig. 3: Reconstruction of an example trajectory. Visible is the
planar position estimated with the IMU system (blue dots) and
measured with the optical reference system (grey). In addition,
ZUPT periods are indicated with red dots.

Fig. 4 illustrates the differences in orientation and position
between the inertial and optical system.
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Fig. 4: Differences in the optical and inertial measurement sys-
tems. Visible are the position (upper) and orientation (lower)
as function of time.

Finally, the ability of estimating sensor biases in depicted
in Fig. 5. For each inertial sensor the (artificial) bias of the
gyroscope and accelerometer is plotted.

VII. DISCUSSION AND CONCLUSION

Preliminary results demonstrate a method to solve for the
bias problem in a PDR system. As a work in progress
contribution this is a first attempt to show the potential of
using an IMU array with an optimization approach. Latter
allows for the incorporation of large amounts of data to
ensure the observability of various states. However, the current
method is implemented as an offline approach and therefore
not suitable for online tracking of persons. Yet, adapting
our implementation to an online method should feasible by
applying a sliding window approach.
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Fig. 5: Estimated sensor biases for each gyroscope (left) and
accelerometer (right) pair. For each sensor the x (blue), y
(orange) and z value (green) is indicated.

MIMU arrays are interesting as they can be used to improve
the noise characteristics as well as providing new information
due to the known structure of accelerometer and gyroscope
on a rigid body. However, these advantages have only been
investigated minimally so far. The conditions required for
observability as well as sing such arrays to detect for sensor
clippings requires additional research.
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