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1 Abstract

A software framework is designed and implemented to aid programmers developing portable appli-
cations and software components to control andmonitor lab equipment. The goal of this framework
is to unify access to hardware parameters and provide services on top of this hardware abstraction
layer, such as I/O clustering, transaction caching, polling and user defined parameters.

2 Background

2.1 About Convergence Industry BV

Convergence makes customized measurement and control systems for liquids and gases. Many cus-
tomers use these systems to research membrane filtration systems for applications like water desali-
nation. Aside from research departments and laboratories, testing equipment developed by Conver-
gence is used by a wide range of manufacturers.

An importantaspectof these systems is that theycomewith full software support. The softwareallows
the user to directly control the various system components, run fully automated, or both, depending
on the user requirements.

2.2 Hardware Architecture

Pump

Fieldbus Coupler

0..10V Analog Output

24V Digital Output

Pressure Sensor4..20mA Analog Input

Solonoid Valve

Computer

EthernetRS485 Modbus Gateway

Digital Mass Flow Controller

Digital Pressure Controller

Figure 1: Hardware Architecture

This diagram of a typical system shows a number of commonly used components, and how they’re
hooked up to the central controller, the computer. The blue components are physical devices that
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measure or control the flow of the fluids within the system. Generally, these are the devices that the
user wants to control.

Depending on the type of system, the computer can be a low-powered embedded computer or a desk-
top PC.

Figure 2: Embedded System

The Liquid Entry Pressure (LEP) tester (fig. 2) is an example of lab-scale embedded system. The LEP is
amembrane characteristic that ismeasured by applying an increasingwater pressure to amembrane,
until the membrane allows some liquid through its pores. This results in a measurable pressure drop
at the LEP point.

In this example, a BeagleBone Black controls the display, the pressure sensors, and the pump. Some
kindof electrical interface is necessary to translate the 4.20mAoutput signal from the analogpressure
sensor to something the computer understands. This is generally done using an industrial I/O system
(Fieldbus Coupler in fig. 1), but in this particular case a specialized PCB attached to the BeagleBone
Black converts the analog signal to a digital signal.

In any case, the hardware components can be roughly divided into two groups: digital and analog
components. Digital components are typically attached to a bus; Modbus over RS485 or Ethernet is
commonly used. Some devices use a peer-to-peer serial connection, like RS232. Analog components’
signals are translated to digital using custom electronics or industrial I/O systems. These I/O systems
may in turn be attached to a digital bus and become part of a large star shaped network of devices - a
device tree, with the computer at its root.
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2.3 Software Architecture

Depending on user requirements, either an embedded software package or a desktop software pack-
age controls the system.

1. LabView desktop software. This software suite is primarily aimed at users who need full control
over their system. It allows the user to specify their own experiments based on a pre-configured
set of accessible device parameters. This software was programmed using the LabView visual
development environment because of historical reasons. Except for maintenance, no further
development of this software will take place.

2. Embedded software. This software was developed due to demand for small, portable systems.
These systems tend to have a single, well defined purpose. Both the accessible device param-
eters and the experiment (if any) are pre-configured and pre-programmed. Generally the user
adjusts a couple of parameters, and presses a button to start a fixed sequence ofmeasurements
and control commands. Because of the limited computing power available and other platform
restrictions, this software was developed in C++.

Due to the differences between the two software packages’ underlying platforms and programming
languages, almost no logic can be shared between the two. This has resulted into two independently
developed software systems, even though these systems control the same hardware architecture.

Sensors & Actuators

User Interface

Process 1

Driver 1 Driver 2

Figure 3: Existing Embedded Software Architecture
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Awide variety of devices necessitates awide variety of softwaredrivers. These driverswere developed
in an ad-hocmanner, and have no formally specified common interface as a result. As a consequence,
software is written for a specific system only. Drivers are re-used between systems, but the “business
logic”, shown in fig. 3 as “Process 1”, is tightly bound to the set of drivers a particular system uses.
The user interface controls these processes and the drivers directly. Changing vendors for a particular
component in a systemcan result in extensive changes to both the user interface aswell as dependent
processes if the driver for that component has to change as well.

3 Unifying and Improving the Software Stack

Theproblemswith thecurrent software stackare clear asday. Scattered implementationsofduplicate
functionality lead to wasted time and effort when developing a new system. To increase software
reuse, we must make sure that the boundary between system specific business logic and common
hardware control become well defined. Reducing the coupling between these two layers increases
the portability of both.

Aside from straight efficiency improvements in terms of development time, uncoupled software lay-
ers using well defined interfaces allow us to add features that were previously hard to implement. Ex-
amples include runtime hardware changes, exploration of hardware parameters by an end user and
unified configuration of a system by non-programmers.

3.1 Assignment

To that end, the primary objective of this project is to design a framework that separates the con-
cerns of the drivers with those of the user facing side (front-end); whether that is business logic imple-
mented by a programmer or an end-user that manipulates the system using a HMI.

By designing a hardware abstraction layer, we allow the user to discover the functionality of the un-
derlying hardware dynamically - no preexisting knowledge of the system is necessary just to control
the various components.

Business logic still must take into account the physical purpose of each component, but beyond that
everything shouldbe self-descriptive - thatmeans that adeviceobject should knowwhichparameters
it canoperateupon, parameter objects shouldknow their name, their unit and limits if applicable, and
this can be queried by both an end-user and any processes running on top of the framework at run-
time.

Secondary objectives include the design and implementation of various middleware services on top
of the hardware abstraction layer for commonly used functionality.
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Once this task is complete, middleware services, processes and user interfaces developed on top of
this framework can be reused, which should result in decreased development time and therefore po-
tentially higher quality projects. These projected results are however impossible to quantify without
further research after this project has concluded.

Hardware Abstraction Layer

Sensors & Actuators

I/O Scheduler

User Interface

Process 1

Metadata

Figure 4: New Software Architecture

Shown in fig. 4 is a high level viewof the planned software architecture. Notable is the “I/OScheduler”,
an example middleware component that regularly requests updates to various monitored device pa-
rameters for use in the user interface. This component can only exist if there’s a shared interface to
the hardware components, as depicted by the hardware abstraction layer.

3.2 Design Principles

The goal of this framework is primarily to serve as a building block for future projects. The primary
user of the framework is the programmer, so focusing on ease of use for the programmer is therefore
of the utmost importance. Thatmeansmaking sure that the behavior of the framework is predictable
and easy to understand, andmaps cleanly to well known programming paradigms in the language of
choice: C++ and QML.

Where possible, features of the framework should be “opt-in”, that is, if the programmer doesn’t want
to use something, for instance parameter caching, it shouldn’t be forced on them, to reduce the com-
plexity of the resulting software. Ideally, the framework consists of a set of libraries from which the
programmer can pick and choose whatever functionality is necessary to accomplish the task of driv-
ing a particular piece of equipment.

These design principles are the result of personal experiences working with external libraries. A cur-

Pieter de Goeje (110585) Convergence Industry BV 8



Framework for control andmeasurement systems

sory search on the internet shows123 that these guidelinesmatch other programmer’s ideals for good
library and framework design. The intent is to guide the design when multiple viable solutions to a
particular problemarepossible. Whether or not the framework is successful in this endeavor, canonly
be evaluated after the fact.

3.3 Use-Cases

Listed are some use cases that the framework should be able to support. Most of these are based
on features found in currently existing systems. Some were collected by looking at customer require-
ments for their systems. Others were obtained by interviewing assembly and testing engineers.

• Display &manipulation of device parameters in a GUI.
• Device/parameter discovery. The user should be able to browse through the available devices
and their parameters. Eventually this feature could be part of a fully user configurable soft-
ware/hardware platform - a feature that was prototyped previously and found to be very useful
by testing engineers working at Convergence.

• Derived parameters, potentially dependent on one or more other “hardware” parameters, and
statically configured. An example of why this is useful is shown in section 5.11.1.

• User-defined parameters. This is similar to derived parameters, except that the end user can
add these dynamically.

• Sequential programs. These programs manipulate device parameters in a sequential fashion,
sometimes with branching. Examples are initialization sequences, timed experiments, and
state machines that manage some aspect of a system. This use-case was lifted from existing
in-house software that has the same functionality.

• Real-time graphs. Graphs require frequent updates to the monitored parameters, but these
updatesmust not interferewith the performance of critical processes in the system, like control
loops.

• Parameter should support metadata, like limits and units, which in turn can be dependent on
other parameters. This use-case is the result of experience working with various sensors that
allow changing the primary measurement unit at run time.

3.4 Previous work

Two partial prototypes of this framework have been developed previously at Convergence to demon-
strate various design aspects with varying levels of success.

1https://nordicapis.com/how-to-design-frictionless-apis/
2https://www.thereformedprogrammer.net/what-makes-a-good-software-library/
3http://www.tldp.org/LDP/LG/issue81/tougher.html

Pieter de Goeje (110585) Convergence Industry BV 9

https://nordicapis.com/how-to-design-frictionless-apis/
https://www.thereformedprogrammer.net/what-makes-a-good-software-library/
http://www.tldp.org/LDP/LG/issue81/tougher.html


Framework for control andmeasurement systems

The first prototype was based on the Java platform. This prototype was fairly complete in that it sup-
ported a hardware abstraction layer, and experimented with ways to allow a user to define a custom
experiment. Some design aspects of this prototype can be found in this framework in the sense that
theywere improved upon. The Java prototype used generics to support static typing of device param-
eters. This was found to be extremely cumbersome and error prone by the developers of that frame-
work. Secondly, it supported user defined parameters and programs by implementing an explicitly
editable (by the end user) expression tree similar to the way scratch4 implements visual expression
trees. This turned out to be too complex for the average user and not expressive enough for an experi-
enced programmer. Editing that tree required the creation of an internally highly complex GUI, which
proved to be difficult to maintain.

The decision was taken to abandon the Java platform in favor of a more portable software stack with
an actively developedGUI library, C++/Qt, becausemultiple embeddedprojectswere already running
on that platform.

A second prototype was created using the C++/Qt/QML stack, with reduced scope. This prototype ex-
perimentedwith a customvisual programming language to allow the user to create simple sequential
programs. This prototype used a custom interpreter to run expressions and commands. The com-
bination of that interpreter with asynchronous I/O proved to be difficult to maintain. However, the
sequential programming interface itself was fairly successful from a usability perspective.

In terms of external frameworks, to the author’s knowledge there are none that cover the use-cases
listed previously. A quick google search reveals that there exist many driver libraries for communi-
cation with sensors that use a particular industrial automation protocol (Modbus, CANbus, etc), and
on the other end of the stack there are robotics, computer vision and IoT libraries that implement
functionality on presumed available sensor data. But those don’t provide the glue that binds the user
software (controllers) and graphical user interface to the hardware, and that is what this project is all
about.

3.5 Planning

After the preliminary research is completed, work on this framework can start in earnest. The work
itself takes place over six two week sprints. Due to the nature of software development, we’re only
going to present a very coarse planning. The first 3 sprints activities will focus on architectural work.
Getting the details (mostly) right is important to reduce the amount of rework later. Much of the archi-
tecture discussed later is inspired by previous experience in this domain, as well as experiments done
during the preliminary investigation.

4A visual programming language. https://scratch.mit.edu/

Pieter de Goeje (110585) Convergence Industry BV 10

https://scratch.mit.edu/


Framework for control andmeasurement systems

Date Activity

10-02-2020 Administration

17-02-2020 Preliminary investigation

09-03-2020 Document plan of approach

10-03-2020 Start sprint 1 - HAL Design

24-03-2020 Start sprint 2 - Polling & I/O Clustering

07-04-2020 Start sprint 3 - User Defined Parameters

21-04-2020 Start sprint 4 - User Defined Parameters

05-05-2020 Start sprint 5 - Caching & Testing

19-05-2020 Start sprint 6 - Documentation

02-06-2020 Finish concept documentation for review

15-06-2020 Complete documentation

29-06-2020 - 03-07-2020 Presentation

3.6 Tools & Languages

The choice for C++ and Qt+QML was made before this project was started. Some of the historical
reasons why this software stack was chosen include interoperability with existing software and preex-
isting experience with these libraries among software developers working at Convergence. Listed are
some of the historical reasons C++/Qt+QML was chosen as the implementation language.

• Predictable and ideally lowmemory use.
• Predictable latency.
• Portable between embedded and desktop.
• Availability of GUI toolkits.
• Availability of developers.

Qt, while traditionally a portable desktop oriented GUI library, has recently (since 5.7) grown support
formodern controls using a hardware accelerated renderer, whichmakes it suitable for use on embed-
deddevices like for instance theRaspberry Pi. Theseuser interfaces are createdusingQML5, which is a
domain specific language for graphical user interfaces. A GUI createdwithQML consists of a tree struc-
ture of QML components, which can be user controls like buttons and labels, and containers like lists.

5https://doc.qt.io/qt-5/qtqml-index.html
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Javascript bindings allow the UI to react to changes in the underlying data model. Bindings can exist
between C++ components and QML components and reuse Qt’s signals and slots mechanism6. QML
components can be defined in C++ and/or QML, and extended with a mixture of QML and Javascript
code.

Qt signals implement a publish/subscribe pattern using a convenient syntax. Each signal maintains a
list of slots that are connected to that signal. Signals (senders) and slots (receivers) live on QObject
derived classes, and if such an object is destroyed, any bindings that involve that object are automat-
ically removed. Signals can be synchronously emitted, in which case the emitter waits for the slots
to finish processing (as a regular function call), or they can be scheduled asynchronously on an event
loop. In that case, any parameters that are passed from signal to slot are serialized, stored and dese-
rialized automatically.

4 Framework Overview

The framework provides an abstraction layer (section 5.2) for hardware sensors and actuators, so that
user software can consume the associated parameters in a unified manner. On top of this, services
such as polling (section 5.9), automatic I/O clustering (section 5.10), user defined parameters (sec-
tion 5.11) and transaction caching (section 5.12) are provided. The framework is meant to integrate
well into existing or new embedded Qt/QML applications.

Listed are the core components of the framework. Examples of actual use are shown in section 11.2.
Note that in the rest of the documentation the prefix “Fcp” is left out for readability.

Fcp (Class) Helper class to make the components listed below available for use with QML when con-
structed.

FcpDevice (Interface) A collection of device parameters. Concrete implementations of this interface
(device drivers)must implement the read() and write()methods that take each take param-
eter to read andwrite respectively. Example implementation are providedwith the demo appli-
cation source. See section 5.2 for more information on its design.

FcpParameter (Class) A representation of a hardware (or software) parameter. Each parameter
holds a single value. This value can be of any type. Values can be written to and read from
parameters - the device driver that holds the parameter is responsible for writing that value to
the actual hardware.

FcpUserDefinedParameter (Subclass of FcpParameter) A parameter driven by a user defined ex-
pression. Read only. Has an expression property that can be set and updated by the user.

FcpAsync (Class) User object passed to all asynchronous methods such as read() and write. It
has a single signal, finished(), that is called when the operation completes.

6https://doc.qt.io/qt-5/signalsandslots.html
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FcpScheduler (Class) Executes a batched read. There are two methods: poll(), which takes a list
of parameters to add to the set of the parameters to read. schedule() which reads all the
parameters, previously added with poll(). It uses I/O clustering and transaction caching to
minimize the number of I/O requests that get send to the hardware. See section 5.9 for more
information on its implementation.

FcpPoller (Class) AQMLcomponent that registers a parameterwith an FcpScheduler, for the lifetime
of theFcpPoller object. Parameters registered thiswayarealways readwhenever theschedule
() function is called on FcpScheduler. A possible use of this class is in QML list delegates to
automatically poll only the parameters that are visible in that list.

FcpBulkIo (Stateless singleton) Subsystemthatallows theuser to readmultipleparameters atonce.
Uses I/O clustering optimizations if possible. Has a single method readList() that takes a
list of parameters tor read. Returns the result a map of the results in the finished() signal.
FcpDevice implementationsmust implement the FcpBulkIoTrait if they want to take advantage
of I/O clustering. See section 5.10 for more information on its implementation.

FcpBulkIoTrait (Interface) Optional trait that can be implemented by device drivers that want to
support clustered I/O. Users of the framework should not need to call this directly (and in fact
this trait is not exposed to QML).

FcpUnits (Stateless singleton) Subsystem that acts as the front end API to drivers that implement
(dynamic) units for their parameters. Has a singlemethod, unit(), that takes a parameter and
returns a parameter that contains the unit. See section 5.8 for more information on its imple-
mentation.

FcpUnitsTrait (Interface) Optional trait that can be implemented by device drivers that want to sup-
port units for their parameters.

FcpLimits (Stateless singleton) Subsystem that acts as the front end API to drivers that implement
(dynamic) limits for their parameters. Has twomethods, min() and max(), that take a parame-
ter and return a parameter that contains theminimum andmaximum value of the given param-
eter respectively. See section 5.8 for more information on its implementation.

FcpLimitsTrait (Interface) Optional trait that canbe implementedbydevicedrivers thatwant to sup-
port limits for their parameters.

5 Framework Design & Implementation

5.1 Hardware Selection

A list of representative system components was selected to guide the design and implementation of
the framework. The list was obtained by reviewing the hardware of existing systems and extracting
a set of commonly used components. If multiple components shared characteristics in terms of elec-
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trical connection and/or communication protocols, a single representative component was selected.
For example,many digital sensors implement a similar communication protocol. This is unsurprising,
because these sensors were historically selected to be as similar as possible for ease of integration
with the existing software and hardware. The exact components selected are not important - what
matters is that the way the software talks to them is sufficiently distinct. The communication direc-
tion, digital/analog, and the data types necessary were some of the deciding factors.

After review, we can come to the conclusion that many systems can be characterized as pumping sta-
tions with some sensors attached to them, and use varying quantities of the following devices.

List of common devices and some of their parameters.

Device Parameters

4..20mA Pressure Sensor Pressure (real), Unit (string), Rangemin/max (real)

0..10V Pump Power (real), Pump Enabled (boolean)

24V Solonoid Valve Valve Enabled (boolean)

Digital Flow Controller Flow (real), Setpoint (real), Fluid type (real), Unit (string),
Rangemin/max (real)

It can be assumed, based on the reasons outlined above, that if support for these devices can be im-
plemented, then the framework can be extended to support other similar devices.

5.2 Abstracting the hardware

Wemust define a common interface that can be used by the software to discover and control a hetero-
geneous system. A complete systemconsists of anumber of hardwaredeviceswith variousproperties,
so itmakes sense to take the “device” as a starting point for an object in the system. Each device has a
number of parameters that can be read/written to. This leads to the following natural design (fig. 5).
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Parameter

name
value
signal valueChanged(value)

read(ioHandler, userdata)
write(ioHandler, userdata, value)

Device

name
parameters

read(ioHandler, userdata)
write(ioHandler, userdata, value)

IoHandler

signal finished(result, error, userdata)

FlowSensor AnalogPump

*

1

Figure 5: Hardware Abstraction Layer

Of interest in fig. 5 are the Device and Parameter classes. The concrete FlowSensor and
AnalogPump implementations only serve to demonstrate the role of the Device abstract class.
Assuming that there’s a common set of parameters between devices of the same type, and the upper
layers only communicate using the Device and Parameter abstraction, it should be possible to
swap hardware with no impact on software built on this framework. So this design satisfies the
portability requirement.

5.3 Getting data in and out of the system

Hardware control requires a special approach to API design because the consumer of the API, the
software, is not always in control of the system.

If the hardware needs to communicate with the software, for example because new data is available,
it needs a way to notify the software of this fact. Traditionally, this is done by raising an interrupt on
the CPU. The CPU detects this condition, and calls a specialized interrupt handler from the operating
system, that clears the interrupt and reads the data.

Because the software reacts to a hardware event, we can call this programming interface a publish-
subscribe API, reactive API or push API.

On the other hand, some hardware doesn’t generate interrupts at all, or the software wants to write
or read some data to or from the hardware because of another event in the system. In that case, the
softwaremust initiate the communicationwith the hardware. This is traditional API or pull API design.
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Pull API’s are often combined with polling, to continuously request updates from the hardware in the
absence of interrupts.

In both cases, it is possible for data to flow in either direction - from hardware to software and vice-
versa. The difference between these API designs is determined solely by the source of the event; API
provider (hardware abstraction layer) or API consumer (user software).

5.4 Handling hardware instigated changes to parameters

This diagram shows the flow of information from the device driver, an implementation of Device, to
the user of the HAL, denoted by “view”.

Device Driver Parameter View

subscribe

ext. event

setValue(value)

valueChanged(value)

opt [value differs from previous value]

Figure 6: Push control flow

Any external or internal event that causes a change to a parameter’s value, should result in setValue()
being called on it. This method does two things:

1. It compares and replaces the previously known value with the new value.
2. If it has changed, it emits the valueChanged() signal.

If the GUI has a binding to this parameter’s value for instance, it can then update the text on the
screen.

5.5 Reading from parameters

This diagram shows how the controller of the system can request the latest value of a parameter. An
important use of this mechanism is in a finite statemachine, which can be part of device initialization
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for example. When the asynchronous read() completes, it emits a finished() signal on the pro-
vided handler. Because the user is able to associate the request with its own data, it is easy to build a
finite statemachine that handles for instance device initialization using a combination of read() and
write() (see section 5.6) calls.

Device Driver Parameter Controller

read(handler)

read(handler)

req. value

response

setValue(value)

handler.finished(value)

Figure 7: Read control flow

Worth noting is that the setValue() call results in the same logic as shown in fig. 6, which causes it
to update GUI elements with bindings to this parameter.
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5.6 Writing to parameters

Device Driver Parameter Controller

write(handler, value)

setValue(value)

write(handler, value)

req. change value

response

setValue(value)

handler.finished()

opt [speculative write]

opt [readback]

Figure 8:Write control flow

This diagram (fig. 8) shows the path a value takes through the system as the controller requests that a
value should be written to a particular parameter. The path is similar to that of a read(), except that
there are two extra, optional steps.

To ensure a responsive user interface, it is often desirable that a parameter’s value gets updated as
soon as possible, after a user (controller) requested its change to a new value. By calling setValue()
immediately after write(), the user interface gets updated immediately - but possibly with a value
the underlying hardware cannot accept. This could happen for instance if the specified value was out
of range for that parameter. After the write completes, the device driver can optionally issue a read to
verify that the value was correctly written - and if that is not the case correct the value. Alternatively,
if the protocol and device allow the driver to detect conditions like this, the device driver can update
the value without doing a read().

Support for speculative updates to parameters is entirely up to the implementation of a particular
device driver. Whether or not the device driver must issue a parameter read back depends on the
specifics of the communication protocol and the robustness of the device’s error handling.

In any case, the contract is that setValue()must be called somewhere between write() and the
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point where the driver emits the finished() signal on the given handler.

5.7 Parameter data types

In the previous sections we discussed reading and writing data from and to device parameters. The
type of the data was a detail left unspecified. As shown in section 5.1, the data can be of various prim-
itive types. As C++ is (mostly) statically typed, we must extend the API to handle all these cases, and
ideally handle more than just those listed, to allow the framework to be extended in the future.

C++ can handle generic data types in multiple ways:

• Function overloading. By duplicating the API for each possible datatype we can ensure type
safety while supporting multiple datatypes. Every time a new type is added to the system, a
new overloadmust be implemented.

• With C++ templates. Unfortunately this does not work when combined with virtual inheritance,
which is used throughout the system. In addition, each template specialization must be gener-
ated and registered individually with the Qt/QML type system to allow for interoperability be-
tween the two.

• Using tagged unions7. QVariant8 is a tagged union implemented by Qt with support for com-
plex objects as well as primitive types. In essence, this turns C++ into a dynamically typed lan-
guage.

We chose to use QVariant to hold parameter values,mainly because it keeps the API surface as small
as possible and because it provides maximum forward compatibility.

By using a QVariantwe avoid the problemof duplicated APIs and the interoperability problemswith
QML. Themain disadvantage is that the type of a value is now no longer guaranteed to be stable, and
that a user of the framework can no longer tell which type a parameter haswithout directly inspecting
its value. A benefit of QVariant in particular is that it can hold an “uninitialized” value. This can be
used regardless of the underlying datatype, in contrast with regular C++ primitive types, which don’t
have a representation for “uninitialized”.

As an application loads, it is desirable to show the user interface as soon as possible, even if that
means that some data has not yet been loaded. Using a QVariant, it is possible for the user interface
to distinguish between the initialized and uninitialized cases. This avoids the situation where invalid
data is shown to the user during the initialization process.

7Stroustrup, B. (2013) The C++ Programming Language 4th Edition. Addison-Wesley. pp 217.
8https://doc.qt.io/qt-5/qvariant.html
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5.8 Parameter metadata

Many parameters have additional associated data, which may in turn be sourced from hardware.
Some commonly used ones are units and parameters limits. For example, a certain flow controller’s
setpoint may have an associated unit, kg/h, a minimum, 0, and amaximum value, 1000.

5.8.1 Naivemetadata API

The most straightforward solution is to add this “metadata” to the Parameter class itself. The draw-
back being that every parameter must pay the cost for this additional functionality in terms of mem-
ory use and program complexity, even though only a subset of the parameters actually have meta-
data. Then, when it later turns out that we need to add additional metadata, all implementations of
Parameter and Devicemust be changed to deal with this fact, causing many changes where none
should be required.

5.8.2 API design using the decorator pattern

Another solution could be constructed using the decorator pattern 9. This pattern facilitates runtime
class inheritance by creating a decorator for each desired behavioral change. The decorator holds a
reference to the original object, Parameter in this case, and modifies the behavior by adding addi-
tionalmethods and/or by intercepting calls to the original object. Decorators can be combined to cre-
ate any desired combination of behavioral changes; in this instance, there would be a LimitDecorator,
a UnitDecorator, and by combining both, you’d have the effective functionality of a LimitUnitParame-
ter without actually having to create such a class.

However, this flexibility comes at a high cost; each decorator must forward method calls to the orig-
inal object, which means that once this interface is expanded or changed, each decorator needs to
be adjusted to match. This would be easy if there was language support for automatic method for-
warding, as is the case in some languages that don’t use static class inheritance, like python and lua;
essentially, these languages allow the user to construct the vtable at run time, which incidentally al-
most completely covers the use case for this pattern. In C++ however, each change to the interface
of Parameter or a Decorator interface, would require the programmer to alter every concrete im-
plementation of that decorator. Device implementations can live in different projects. Requiring
changes to these implementations to change the interface seems impractical.

Decorators are helpful if they alter each other’s behavior - but in this case, there is no (anticipated)
overlap in behavior. Each piece of metadata has an independent interface.

9Design Patterns: Elements of Reusable Object-Oriented Software (1995). Gamma, Erich et al. pp 175.
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Additionally, thiswould result in a complex object hierarchy at run time, especiallywhenmultiple dec-
orators are stacked. One consequence of this is that memory management becomes more complex
andmemory use harder to quantify.

The final nail in the coffin of this pattern is that in practice each parameter doesn’t live in its own
world, but is part of the device that holds it. Drivers should be able to manipulate whole groups of
parameters at once, tomaintain efficiency. Thismeans that the actual logic implementing the desired
functionality lives in concrete Devices, and not in the Parameter class.

In general it is desirable to leave the decision of whether or not to implementmetadata logic in a sub-
class of Parameter or in the Device subclass up to the programmer of that driver. If a programmer
chooses to do so, he or she can still use the decorator pattern to layer functionality for a particular
device/parameter combination - this should be invisible to users of those devices/parameters and
therefore not part of the public API.

5.8.3 Final API design

From an API design perspective, it is extremely important that a user of that API can count on a sta-
ble interface, maximizing forward and backward compatibility. To achieve this, the API should be as
compact and flexible as possible.

To that end, keeping in mind the previous discussions, the following pattern for adding support for
optional metadata was designed:

PressureSensor

pressure: Parameter
pressureUnit: Parameter

<<utility>>

Units

unit(parameter) : Parameter

Device

<<interface>>

UnitsTrait

unit(parameter) : Parameter

Parameter

Figure 9:Metadata

Figure 9 shows the relation between the Units provider, which is the API entry point for metadata
related to Units, and an example device PressureSensorwhich provides unit metadata for some of
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its parameters. The Units.unit()method returns the unit in Parameter form, based on the input
parameter. The returned parametermay be a constant value, an actual device parameter, or anything
else.

TheUnits.unit()methoddoes no actualwork; it only delegates the call to theparameter’sDevice
if it implements the UnitsTrait interface. To do this, we can leverage Qt’s RTTI system, resulting in
very succinct code:

1 Parameter *Units::unit(Parameter *p) {
2 if(UnitsTrait *trait = qobject_cast<UnitsTrait *>(p->device())) {
3 return trait->unit(p);
4 }
5 return &constUndefined;
6 }

The Device implementation of UnitsTrait is then free to use whatever method it sees fit to actu-
ally return the correct metadata Parameter. Some devices may have internal databases, others can
probably get away with a simple switch statement.

If, in the future, it turns out that the designmust change and that a Parametermust keep track of its
own unit, then we can change the implementation of Units::unit()without affecting users of the
framework, because the public API remains exactly the same.

5.9 Polling

In many cases, the software needs to communicate to the device layer that it is interested in changes
to a number of parameters. We’ve seen in previous chapters that the hardware is capable of notifying
the observers of changes to parameters, but how do the hardware drivers know which parameters
are interesting for the software? The obvious solution ofmonitoring all parameters doesn’t scale as it
will quickly overwhelm the communication buses as the number of devices andparameters increases.
Instead, itmustbepossible to somehowcommunicate to theHAL thatwe’re interested inchangesonly
to the currently visible parameters. Visible parameters are those parameters that directly or indirectly
affect the GUI and/or controlling processes.

To solve this problemwe need amechanism that manages the following tasks:

• Keeps track of visible parameters.
• Allow the user to request updates to each unique parameter in the visible parameter set with a
single call.

• Group parameters and issue batch requests if possible for efficiency.

To maintain a set of visible parameters, we can use reference counting. Each observer increases the
reference count by one. Once an observer is no longer interested, it decreases the reference count by
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one. Then, if the count is zero, the parameter is eliminated from the visible set.

This method has one particular disadvantage in practice. It is easy to forget to “unsubscribe” from a
particular parameter, which causes invisible parameters to be polled anyway, eventually leading to
the problem that we tried to prevent in the first place - an overloaded bus. To that end, it is important
to ensure that each subscription ismatchedbyanunsubscription. Wecando that bypreventingdirect
access to the referencecount. Insteadwe relyonaPollerobject,which lifetime isbound to the scope
and thus the lifetime of the observer. On construction of this object we increase the reference count
to the supplied parameter, and on destruction we decrease the reference count.

Poller

Scheduler

pollset: Map<Parameter, int>

schedule()

Parameter

0..*

Figure 10: Polling architecture

Another approach might be to have the Parameter itself ask the HAL for updates if there are any
observers of it. Essentially, every Parameter would then be responsible for its own updates. The
Scheduler class in the above diagram would no longer be necessary as we can move the observer
count to theParameter class. This simplerdesignhasan importantdrawback: it is no longerpossible
to request the set of visible parameters efficiently. We need access to the entire visible set at once to
efficiently implement read clustering, the topic of the next chapter.

5.10 Read clustering

One limitation of per-parameter read/writes is that there is limited opportunity for the underlying
driver tocombinemultiple I/Os intoasingle I/Ooperation. This isundesirablebecausemany transport
protocols incur a hefty per-I/O penalty. Half-duplex communication protocols for instance must wait
for the hardware to acknowledge each packet, and on slow physical links like RS485 this can result in
very poor bus utilization. In practice, a packet round-trip time of up to 100ms can be expected.

The followingoptimizations, dependenton theunderlying transport fabric andprotocols, arepossible
if we can cluster multiple related I/O operations. These optimizations are similar to how filesystems
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use I/O clustering10 to optimize throughput.

• Coalescing reads/writes of adjacent memory locations. This optimization works for some Mod-
bus devices that map each parameter to a specific location in device memory. Modbus allows
the user to request an entire range of memory at once, potentially covering multiple parame-
ters.

• Clustering multiple unrelated I/O operation into a single operation for protocols that support
this.

In both cases the objective is to improve throughput by reducing theper-I/Ooverhead. I/O in a control
system is generally heavily skewed towards read operations, so it makes sense to try to optimize that
path first. Thepreviously definedpolling architecture is in an ideal position to take advantage of these
optimizations, because it has access to an entire list of parameters at once that must be read very
frequently. Instead of asking each individual parameter to update its value, it can group parameters
by device, and then issue a single read request for all parameters on each device. Once the request
arrives at the hardware driver, it can then update all parameters at once if possible.

Because not every Device implementation might want to pay the additional complexity cost, the
clustered I/O API must be able to deal with Devices that don’t implement that API. To solve that we
add a new optional trait to Device, BulkIoTrait. The Scheduler can then decide at run time if a
Device supports this interface, and if it does, take advantage of it.

5.10.1 Modbus read clustering

SomeModbusdevices expose their parameters as a continuous (virtual)memory space. Amodbus I/O
request consists of an address and a length parameter. If multiple requested parameters are adjacent
inmemory, a single I/O request can be used to retrieve an entire cluster of parameters in one go. This
doesn’t work for all devices, and should probably only apply to memory ranges that are explicitly
white listed inside the driver.

Presented here is a possible strategy for optimizing access to these devices.

1. Sort the requested parameters by address. This results in a number of clusters with holes in
between.

2. Find any adjacent clusters within a small distance, according to some device dependent heuris-
tic. Merge these clusters.

3. Split clusters basedon themaximumallowable I/O size11. If a split happens on an insertedmem-
ory range from step 2, discard that memory from the start and end of the two resulting clusters.

10The Design and Implementation of the FreeBSD Operating System (2014). McKusick et al. pp 515. Detailing the design of
the Fast File System.

11A Modbus/TCP read command can retrieve up to 123 (2-byte) registers. Many parameters require 4 bytes of memory to
support the float32 and int32 datatypes, spanning two registers.
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4. Trim each cluster that ends with useless memory inserted in step 2.
5. Issue I/Os for each cluster.
6. Map the incoming data back onto the parameters using the address as a key.

5.11 User Defined Parameters

In many cases, raw sensor data is of limited use. The data needs to be processed before it can be
presented to the user in a meaningful way.

5.11.1 Use-Case: Transmembrane Pressure

An example of processed data is the transmembrane pressure (TMP), which describes the pressure
difference between two sides of a membrane.

Figure 11: Example: Cross-flow filtration

In this setup (fig. 11), a pump forces a fluid (feed), like water, to flow under pressure over a membrane
(the dotted line in the diagram above). Some fluid permeates through the membrane, increasing the
concentration of the particulate contained within the feed fluid until it leaves the membrane cell as
retentate. This particular setup is extremely common because it increases the longevity of the mem-
brane. The shear forces of the fluid on the membrane prevent particulate from building up on the
membrane surface. One of the most important applications of this principle is water desalination
using reverse osmosis.

The pressure of the fluid is continuously monitored at three distinct points, shown as 𝑃𝑖𝑛, 𝑃𝑜𝑢𝑡 and
𝑃𝑝𝑒𝑟 in the diagram.

To characterize the membrane, an important measurement is the average pressure drop over the
membrane: the transmembrane pressure or TMP. We can calculate this as follows:

TMP = 𝑃𝑖𝑛 + 𝑃𝑜𝑢𝑡
2 − 𝑃𝑝𝑒𝑟
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In this use-case, the systemmust query three parameters from three different sensors before it is able
to calculate the TMP.

5.11.2 Requirements

The requirements for user defined parameters are similar to those for regular parameters, with some
additions.

• Allow access to existing parameters via user defined algebraic expressions. This means that
there must be some way to lookup parameters from a pool of identifiers. Parameters should
probably have a name to facilitate this.

• Evaluation should remain asynchronous - hardware queries must not ever block evaluation.
• Persist across runs of the framework. User defined expressions should be able to be stored and
reloaded.

• Enable dynamic construction/destruction. These parameters can be created as the result of a
user action.

• Track dependent parameters. The system must “know” which parameters a user defined pa-
rameter depends on for the purpose of automatic updates and polling.

• Lazy (delayed) updates. This is not a hard requirement, but it would be nice to delay the update
to a value of a user defined parameter until after all its dependent parameters have been up-
dated. Not doing so can result in flickering in the user interface due to unnecessary updates to
GUI bindings.

5.11.3 Design

Evaluation of an expression is going to involve some kind of parser/compiler to shape it into a form
that can be evaluated by the system. Ideally it is possible to reuse an existing compiler for this task.
Historic prototypes of this particular feature (in Java) involved the use of a manually constructed ex-
pression parser, which generated an abstract syntax tree (AST) of the expression. This ASTwas cached
and repeatedly evaluated, using synchronous hardware I/O. At the time, tracking the dependent pa-
rameters through this AST proved to be difficult, as parameters could come and go at any time. Aside
from the problems inherent to synchronous execution (blocking GUI), this implementation was fairly
usable.

We can use the lessons learned from that prototype to guide our design. In particular, some pitfalls
like synchronous execution can be avoided if they’re part of the design from the beginning.

A generic asynchronous expression evaluator can’t be implemented as a recursive function over the
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AST in C++, because the evaluator must be suspended whenever a hardware parameter is encoun-
tered, for the duration of the I/O, in a non-blocking way.

Some languages allow this through the use of specialized constructs like async/await, co-routines,
fibers and continuations. C++ supports none of these natively - at least until C++ 20 is finalized12. In
essence, these constructs record the current state of the stack, CPU registers, and then suspend ex-
ecution until an external event restores that state. There exist libraries13 for C++ that emulate this
functionality using platform specific implementations that directly manipulate the CPU registers, or
they use the setjmp() / longjmp() API14, which is non-portable. Due to this, use of these libraries
should be very carefully considered.

Alternatively, if the evaluator is implemented as a virtual machine that executes bytecode generated
from the AST, it is possible to suspend the VM whenever a hardware I/O is going to be executed. The
VM explicitly keeps track of the call stack, so there’s no need for platform specific hacks to store it. In
essence, this would emulate fibers/co-routines for a custom language on top of C++.

A prototype was developed to test this, and this turned out to work well. However, it came at a very
high cost: code complexity due to the need for a custom interpreter mademaintenance and develop-
ment difficult.

However, we can avoid going through all that trouble by realizing that a key property of user de-
fined expressions is that they cannot have observable side effects. In other words, user defined
expressions cannot have observable state that depends on the order and/or number of executions.
Observable in this casemeans observable to the user of the system; not to the framework internally.

This follows from the fact that a user cannot reliably use side effects in expressions of user defined pa-
rameters, because they’re executed anunknownnumber of times and in ahard topredict order by the
QML evaluation engine. This is because bindings to these parameters can be created and destroyed
dynamically at runtime. In addition, the order of evaluation is hard to predict in practice.

Instead of initiating I/O during evaluation of an expression, we can use another strategy: evaluate
an expression to find out which hardware parameters are required, based on the currently known
values of these parameters. Then, once the set of parameters is collected, query all parameters asyn-
chronously. Then, run the evaluator again using the updated values for these parameters. If the set of
parameters hasn’t changed between these evaluations, in other words the evaluation of the expres-
sion used up-to-date values for all its parameters, then we have the correct result.

In pseudo-code:

1 fresh_set ← { }

12co_await and friends are defined in Coroutines (C++20)
13Themost complete library for this purpose is probably boost.context.
14See the longjmp(3), setjmp(3) manual pages. Notably, these are not guaranteed to work across function boundaries by

the standard, but specific implementations do, so they can be used to implement coroutines.

Pieter de Goeje (110585) Convergence Industry BV 27

https://en.cppreference.com/w/cpp/language/coroutines
https://github.com/boostorg/context
https://www.freebsd.org/cgi/man.cgi?query=longjmp&sektion=3


Framework for control andmeasurement systems

2 loop {
3 {result, dependencies} ← evaluate(expression)
4 if(dependencies equal_or_subset_of fresh_set) {
5 return result
6 }
7 await async_read(dependencies - fresh_set)
8 fresh_set ← fresh_set union dependencies
9 }

The await in this pseudo-code is easily implemented in C++ using a state machine. All that needs to
be kept track of during state transitions, is the fresh_set set. The complexity of async_read itself
is hidden by the read clustering subsystemwe designed earlier.

A = 'B + C' B = '3' C = '4'

read

read

read

response

response

response

Figure 12: Parallel evaluation of subexpressions

Figure 12 shows an example of execution of a user defined parameter that depends on other param-
eters. Once the set of parameters is collected, reads are executed in parallel using the clustered I/O
subsystem, detailed in section 5.10.

5.11.4 Handling automatic updates

Having established the dependencies, the parameter can then observe its requisite parameter’s val-
ues for updates. In principle, once a change to any requisite parameter’s value is detected, the expres-
sionmust be reevaluated. As a consequence, if this evaluation results in a new value, each parameter
that is dependent on that value is then updated as well.

This leads to a technically minor but very noticeable problem. If multiple requisite parameters are
updated in rapid succession, but not quite at the same time due to for instance hardware delays, the
expression will be evaluatedmultiple times, which is undesirable for two reasons.
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1. The expression is evaluated multiple times but only the last result is actually used. Similarly,
the dependencies are updatedmultiple times for no apparent benefit.

2. Because the value of the user defined parameter can change for each update to its requisite
parameters, this can result costly updates to the GUI if this parameter is directly bound to a
visible element. In addition, rapidly changing numbers can be hard to read.

We can avoid this problem by limiting the update frequency. Instead of immediately reevaluating the
expression for eachupdate,weschedule theevaluation to runat a later time. If a requisiteparameter’s
value changes before the timer is finished, we can safely ignore that change. The disadvantage of this
approach is that updates are delayed by a small amount of time. In testing, a 100ms delay was found
to be reasonable compromise for user visible parameters.

It should be noted that control processes are unaffected by this delay. Controllers issue a read()
call on the input parameters, which pulls the latest value from the hardware, completely ignoring the
automatically updated and potentially cached value.

5.11.5 Polling

In theory, a user (in all likelihood theGUI) of the framework canavoidpolling auser definedparameter
if all its requisite parameters are already polled, and rely on automatic updates. Explicitly polling a
user defined parameter is counter productive in this case, as it can lead to duplicate reads from the
underlying hardware.

However, a user shouldn’t have to handle user defined parameters differently form regular hardware
parameters to be efficient. There are multiple potential solutions to this problem.

1. The polling subsystem’s Scheduler could know about the set of requisite parameters for each
user defined parameter. It can then ensure that each hardware parameter is only read once.
This implies a tight coupling between the two subsystems, whichwewould like to avoid to keep
everything self contained.

2. Cache the result of each read during the polling cycle. Multiple reads from the same parame-
ter in the same cycle return the same result. To implement this, read() must grow support
for returning a cached value. This cache can exist for the duration of the poll cycle, or it can
be part of a generic caching mechanism that could expire entries based on their lifetime. The
latter approach has the advantage thatwe can also eliminate duplicate reads between different
polling processes, at the cost of increased complexity and loss of deterministic hardware access
patterns. Caching is further explored in section 5.12.
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5.11.6 Handling recursion

Given the following user defined parameters, the systemwill quickly run out ofmemory trying to eval-
uate either paramA or B.

1 paramA = paramB + 1
2 paramB = paramA

Because each expression is a function with no input, such a loop will never terminate. Although sit-
uations like this are unlikely to be intentional, they can arise by accident while editing multiple user
defined parameters.

The framework must detect and abort evaluations of expressions with infinite recursion before they
crash the system.

Recursion in read() calls Because the set of dependencies for each parameter is dynamically ad-
justed based on the current values of the required parameters, the framework cannot reliably detect
loops until the parameters are actually evaluated.

To that end, the expression evaluator must keep track of a call stack15. In conventional programming
languages, the call stack is allocated in a linear fashion; there’s only one function running at any time
(the topof the stack). Userdefinedparameters are slightlydifferent, in the sense that all dependencies
of a parameter are evaluated concurrently (fig. 12), resulting in multiple “child” functions that run at
the same time. This results in a call tree.

Fortunately, we don’t need to use an explicit tree representation, as each user defined parameter only
needs to check its own “lineage” - a simple list of parent parameters - in the call tree for another in-
stance of itself to detect a loop. Because this process only walks backwards towards the root of the
tree, each node (frame) in the tree can be represented by a parameter and a pointer to its parent. This
results in a number of singly linked lists that happen to share a prefix list.

Recursion in automatic (push) updates This scenario happens when one of the parameters in-
volved in an infinite recursion scenario is reevaluated because one of its required parameters was
updated.

1 paramA = paramB + flow1.measurement
2 paramB = paramA

In this example, whenever flow1.measurement changes, paramA is reevaluated. This causes paramB
to be reevaluated in turn, which causes paramA to be reevaluated, ad infinitum, until the value of

15https://en.wikipedia.org/wiki/Call_stack
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either paramA or paramB stabilizes. Once a value stabilizes, no further update events are generated,
and the loop stops. Note that in the above example the loop never terminates if flow1.measurement
is non-zero16.

This recursion does not result in infinite memory allocation, for two reasons.

1. The stack is unwound between each evaluation, because the update signal isn’t handled until
the next iteration of the global event loop.

2. The evaluation of a user defined parameter during an automatic update does not recurse into
each required parameter - instead it uses their latest known values.

It is possible to detect this situation by passing the “call stack” along the event - a history of each
event that resulted in the generation of the update event. However, since failing to do so does not
harm program operation, and the user is not expected to create such a situation intentionally, this is
currently not implemented.

5.11.7 Discussion of the expression parser

The evaluate() function itself uses the existing QML javascript interpreter to evaluate the expres-
sion. The QML javascript interpreter was primarily chosen because it is convenient to use when the
project alreadyusesQt/QML. The integrationwithQMLcomeswith anumberof benefits; it allowsuser
defined parameters that are defined in QML code to access QML properties defined in that same code
(not necessarily device parameters), andmaking user defined parameters available to the interpreter
is as easy as adding them to a shared QML context.

One disadvantage of this approach is that it is hard to collect the set of parameters that are referenced
inside the expression during execution. The currently implemented approach uses an overloaded
valueOf() function on each parameter. Thatmethod is called by the interpreter to convert an object
(parameter) to a number. It returns the latest value of the parameter and adds the parameter to the
set of dependencies of the currently executed expression. This uses global state (thread local), which
is undesirable.

Future research is necessary to find out if there’s a more elegant solution available and/or if it is nec-
essary to revisit the choice of interpreter.

16The loop in this example will eventually terminate when paramA = paramA + c is true, which is the case for very large
paramA and very small c if calculated using IEEE-754 floating point math.
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5.12 Transaction caching

Caching is often a poor band aid to fix performance problems, because it can easily lead to bugs
caused by stale cache entries, cache stampedes17, where an evicted entry is recreated by multiple
concurrent users at the same time, as well as bugs resulting from the increased total complexity of
the system.

For this project, we don’t really need a generic caching solution. All we want is to eliminate duplicate
reads from the same parameter within a single poll cycle.

It follows then that a cache for sucha transactiononly needs to live for thedurationof that transaction.
This completely insulates the user fromerrors resulting from incorrectly set cache expiration times. In
fact, the user canbe completely unaware that there is a cache - it is purely an implementation detail.

As an added benefit, by eliminating duplicate readswithin a single transaction, a parameter’s value is
only determined once, and is therefore the same for every user of that value in that transaction. This
helps the GUI maintain consistency between parameters that depend on the same value.

Theother problemsassociatedwith cachingdon’tmagically disappear however. The implementation
must take care of the cache stampede problem, which means that it must track not only cached pa-
rameters, but also parameters that are in the process of being put into the cache. Users that read()
from those parametersmust wait until a read() initiated by the first reader completes before contin-
uing.

Fortunately, this additional logic can be shared by all read() implementations that want to support
caching.

Parameter Transaction Cache

read

query cache status

cached

result

Figure 13: Cache hit

17In a naive caching system, if a cached object expires or is evicted, andmultiple concurrent readers try to fetch that object,
they all findout that at approximately the same time that the cache is stale. If there’s no further cooperationbetween the
readers, each reader will then attempt to recreate the requested object from scratch and insert that into the cache, only
to be immediately be overwritten by the next reader. This can lead to the system overloading because of the (wasted)
duplicate effort, if recreating the object is expensive compared to fetching that object from cache.
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Figure 13 shows the program flow if the parameter was already cached inside this transaction. All that
is necessary is a quick check with the transaction cache. Because cached entries never go stale the
implementation of this is trivial. The “Transaction Cache” object does not store the actual data - the
data is stored in the parameter objects themselves, as the last known value. The cache only keeps
track of which parameter is up-to-date.

Parameter Transaction Cache

read

query cache status

unknown

set parameter as scheduled

Tracker
<<create>>

read hw

hw result

setValue

readComplete

set parameter as cached

result

Figure 14: Cachemiss

However, a cache miss as shown in fig. 14 is much more complex. The framework must track the out-
standing I/O so that it can insert the parameter into the cache when the read completes. The tracker
object shown here is implemented as a lambda function that is executed once the readComplete
signal fires. The original read() implementation has no idea that this happens - all it needs to do is
call setValue() on itself, which always raises the readComplete signal. Unlike the valueChanged
signal described earlier, this signal is raised even if the value is the same, to ensure that the parameter
is marked as fresh.
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Parameter Transaction Cache

read

query cache status

scheduled

Tracker
<<create>>

readComplete

result

Figure 15: Cache hit, but incomplete

Finally, to solve the cache stampede problem, if another reader tries to access the cache (fig. 15) while
the parameter is in the progress of being read (fig. 14), it must wait until that parameter is inserted
into the cache. The tracker gets created with the context (parameter, handler) necessary to signal the
handler that was passed to the initial read() call. When the cache is filled, it can then return the
result by emitting the handler.finished() signal with the latest value of the tracked parameter.

6 Testing

6.1 Testing API design

Learning a new framework can be a difficult process, and it is therefore of the utmost importance that
use of this particular framework is as frictionless as possible. To that end, a demo application based
on this frameworkwas developed to verify the framework’s usability. This application simultaneously
acts as a system test, a learning tool, and away to “eat our owndog food” - testing API designby actual
use.
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Figure 16: Demo Application

fig. 16 shows themain screenof thedemoapplication. On the left sidea list of devices is displayed, and
on the right side the list of parameters for the selected device is displayed. Parameters can be edited
in place to adjust their values. The “User” device is not a real device but holds all the user defined
parameters. All parameter values are updated in real time.

This application allows the user to:

• Inspect parameters from devices.
• Change any value.
• Show limits and units, and alter those if they’re sourced from a hardware parameter.
• Add user defined parameters.
• Test the automatic polling support.

An application like this acts as a smoke test; the real test comes when the framework is used in pro-
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duction.

6.2 Unit testing

During development, the frameworkwas tested against simulated hardware, coarselymodeled on ex-
isting hardware drivers. This allowed functional testing, and some performance testing of the frame-
work itself.

Complexpartsof the framework, like theuserdefinedparameters, are subjected tounit tests toensure
that they remain functional during development. Basic performance tests of user defined parameters
were also performed, mostly to ensure that the performance of these features is reasonable. Some
examples:

Expression Wall Time

param118 < 1 μs

udp0 = 52 2 μs

udp1 = param1 + 123 14 μs

udp2 = param1 + udp119 17 μs

As can be clearly seen from this table, read performance of user defined parameters is an order of
magnitude worse than reading from a hardware parameter directly. Some possible reasons:

• At least two evaluations are necessary to gather the set of required parameters.
• The javascript interpreter has to cross the javascript/C++ boundary once for each referenced
parameter. These calls can’t be inlined or optimized and incur datatype conversion overhead.

• In the current implementation, each evaluation issues a clustered I/O request, even if only one
parameter is involved for simplicity. This results in unnecessary overhead in these simple cases,
because the clustered I/O subsystem is optimized for parallel I/O throughput, not for CPUusage.

7 Project Evaluation

The intended planning initially set out for this project was mostly followed. The planned bi-weekly
evaluations by the project supervisor turned to monthly evaluations, and testing against real hard-
ware was postponed due to circumstances beyond our control (COVID-19 pandemic). Instead, more
18A simulated hardware parameter, directly read for comparison purposes.
19This test uses caching to read param1 only once.
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timewas spent on the services providedon topof the framework. In addition,more timewas spent on
documenting design than was initially estimated; about 50% of the total effective time, after project
startup, was spent on this aspect.

Duringdevelopment, eachbiweekly sprintwas startedbygathering tasks thatwere scheduled for that
sprint, based on the use-cases. Standup meetings were held every morning to discuss the project’s
progress. The initial three sprints focused on development and task velocity was high, completing
most tasks that were planned for those sprints. Later on as the focus shiftedmore towards documen-
tation, development slowed down and documentation tasks regularly spilled over to the next sprint.
The lack of proper time estimates for documentation tasks can be attributed to the lack of experience
writing technical documentation for extended amounts of time. In addition, writing for a poorly de-
fined audience, consisting of individuals of wildly different experience levels and backgrounds, even
though they’re all in “IT”, turned out to be harder than expected.

Documentation is particularly important in this case, because ease of use and increased understand-
ingof this framework increases theproductivity of theuser; a direct goal of this project. In theauthor’s
opinion, more effort should have been spent towards documenting the actual use of the framework.
Unfortunately, due to the scope of this project, this has not yet come to fruition and remains future
work. Creating end-user documentationwhile the design of the frameworkwas still in fluxmeant that
this documentation was pushed backwards towards the end of the project.

The design presented in this document was strongly guided by previous work done on the same sub-
ject within Convergence; this has helped give direction to what would otherwise be a fairly abstract
work. As this project was a solo effort and Convergence lacks experienced developers in this area,
input from other people concerning implementation details or design decisions was unfortunately
limited, but not unexpected.

8 Conclusions

The most important contribution of this framework is the way it unifies access to sensor data and
control registers. Some facets of this framework like I/O clustering and transaction caching will im-
mediately benefit users by providing improved performance over a naive implementation. Others,
like optional automatic polling of visible parameters will greatly ease development of interactive user
interfaces.

As currently implemented, the framework is a suitable building block for applications and software
components that need to be portable between devices and platforms, as long as those platforms run
Qt 5. This is demonstrated by the demo application.

It is the author’s hope that with additional services built on top of this platform, applications for a
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wide variety of equipment can be rapidly developed. This framework is just one part of the equation,
but an important one, as it has a significant impact on the way an application interacts with the out-
side world. The APIs as documented here are the culmination of multiple prototype efforts, so there
is some confidence that the framework presented here is suitable for purpose. At the very least, by
strictly defining the boundary between implementation (driver details) and API user, the framework
allows rapid iteration on its implementation without breaking dependent software.

9 Future Work

Ultimately, this framework is a building block required for a fully automated and configurable experi-
ment editor and runner. Using such software, an enduser could implement anautomatedexperiment
based on simple commands like “set setpoint to 5 kg/h”, “wait until measurement > 4 kg/h”. When
combined with automatic data logging and report generation, this allows a user to conduct a wide
variety of experiments in an automated fashion without the need for specialized software.

In the near future however, the following ideas are worth exploring to increase the framework’s us-
ability.

• Various existing drivers need to be ported to the new framework. This mainly consists of updat-
ing their APIs to confirm to the HAL as described in this document.

• Persistent configuration of a hardware platform. One way of doing this would be to leverage
the QML engine to load a device tree expressed as a QML file. At the very least this would allow
the user to edit the hardware configuration outside of the application. If the framework grows
support for generating QML files, then it can store the current device tree as such a file.

• User defined parameters should support user defined units. It isn’t exactly clear how the user
is supposed to set these. Support could be added to the existing Units subsystem to bind a
parameter as a unit to another parameter, or the user defined parameter API could gain a call to
set these directly. Either way, this needs to be investigated.

• Hardware often requires a specific initialization sequence. Currently these are implemented
with explicitly coded finite statemachines. Ifwe canwrap the read/write calls inPromises, these
FSMs can be implemented as Promise chains and later using async/awaitwhen the javascript
engine grows support for these keywords. This would greatly enhance the readability of these
state machines.

• Experiment withmulti-dimensional data types, such as light spectra. This should already work,
but the interactionwith user defined parameters should be investigated and best practices doc-
umented.

• Support for time dependent properties of a parameter. For instance, a function like stable(
flow1, 10) could return true if a certain flow has been stable for 10 seconds.
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• Devices implemented in this framework are (potentially) visual QML components. It should be
possible to position them in a flowsheet, with appropriate graphics. This allows a user to easily
map the visual representation to the physical reality of the equipment the software is control-
ling.
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11 Appendix

11.1 Version History

Version Date Changelog

1 2020-05-30 Initial concept

2 2020-06-14 Final version

11.2 Usage Examples

These examples show the intended use of the framework inside a QML application.

11.2.1 Bind a Parameter to a GUI element

1 PhSensor { id: phSensor }
2 Label { text: phSensor.measurement.value }
3 Label { text: Units.unit(phSensor.measurement).value }

Note that the .value suffix is necessary to bind to the actual value, not the Parameter object. Unit
.units() also returns a Parameter. This code assumes that measurement has a unit.
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11.2.2 Polling a parameter

Setup a shared polling scheduler:

1 FcpScheduler { id: sched }
2 Timer {
3 interval: 1000
4 running: true
5 repeat: true
6 onTriggered: sched.schedule()
7 }

The FcpPoller object registers the parameter with the scheduler, ensuring that phSensor.
measurement is only updated as long as the label is in scope (visible in the user interface).

1 Label {
2 text: phSensor.measurement.value
3 FcpPoller {
4 scheduler: sched
5 parameter: phSensor.measurement
6 }
7 }

The code can easily be abstracted with a new QML item that replaces the Label to make this less
verbose.

11.2.3 Using an FSM to control sequencing

The FcpAsync::onFinished() signal has three parameters: result, userData and error. This
example uses userData to track the state, making the implementation reentrant.

1 FcpAsync {
2 id: fsm
3 onFinished: {
4 switch(userData) {
5 case 'start':
6 // setpoint = 5
7 flow1.setpoint.write(5, fsm, 'read')
8 break
9 case 'read':
10 flow1.measurement.read(fsm, 'log_data')
11 break
12 case 'log_data':
13 console.log('Measurement:', result)
14 break
15 }
16 }
17 }
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18
19 Button {
20 text: 'Start!'
21 clicked: fsm.finished(undefined, 'start')
22 }

11.3 Glossary

Fieldbus Modular industrial I/O system. Bridges the gapbetween analog hardware and adigital com-
puter.

Modbus Protocol for industrial automation. Often used in combination with RS485.
RS232 A full-duplex serial peer-to-peer connection.
RS485 A half-duplex serial master-slave bus, where each device has a unique address.
RTTI Runtime type information.
Signal Observable event. A signal can have multiple observers.
Slot Signal observer.
QML A user interface specification and programming language built on top of Qt.
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