

Graduation report

Development of an Interactive Scenario

for TenneT Virtual Vision

Student Anton Volkholz

Number 417428

Study program Creative Media and Game Technologies - Saxion Enschede

II

Graduation report

Development of an Interactive Scenario

for TenneT Virtual Vision

Student Anton Volkholz

Number 417428

Email anton.volkholz@me.com

Company Coach Marc Ortner

Guiding Teacher Taco van Loon

Project Interactive Scenario for TenneT Virtual Vision

Study Program Creative Media and Game Technologies - Saxion Enschede

Date June 18th 2019

III

I. Preface

This report describes the project I worked on as part of my graduation for the Creative Media

and Game Technologies study course at Saxion Enschede. The project was completed at

“Die Wegmeister”, a marketing agency based in Stuttgart, for their client TenneT, which is

a transmission system operator based in the Netherlands.

The work in this project focused heavily on technical art, which is extremely interesting for

me, since it combines design with technical tasks such as the development of visually

complex particle effects and the interaction with them. Working on 3D art and designing a

visually pleasing style, while also focusing on technical tasks to optimize development or

creating functionalities is very enjoyable for me.

Previous projects in cooperation with the Game Engineering course at Saxion, as well as

the Smart Solution Semester helped me develop my skills and competences in this direction.

The opportunity to work on a project such as this, in a work environment that is professional

and calm offered a valuable experience that I am thankful to have had.

I would like to thank my supervisors at the Company and at Saxion for their continuous

support and for answering any questions I had throughout this project.

Anton Volkholz

Stuttgart, June 18th, 2019

IV

II. Abstract

This report describes the development workflow of an interactive scenario in Unity that runs

on a touch table and visualizes the interdependencies of a power grid. The project was done

for the company TenneT, the first European cross border transmission system operator. In

this project, within 10 weeks of development, a scenario should be created that visualized

these interdependencies to help explain the continuous expansion of the power grid to

people from outside the field of energy transmission systems. For this, a time efficient

workflow needed to be defined to complete the development within the small time-frame

available.

This report focuses on the research process that created the basis necessary for formulating

a well-founded workflow approach, which aimed to ensure the completion of the

development process in time. It also describes the development process of visualizing an

energy grid using particle systems that interact with each other.

In the theoretical analysis existing information is collected and reviewed so a basis for

formulating a workflow and development approach can be determined. After comparing the

different pipelines Unity offers, the High Definition Rendering Pipeline (HDRP) was selected

as the most suitable one, because it offers two exclusive features, the VFX graph and the

Decal Projector, both of which were valuable for ensuring the optimal outcome of the project.

The VFX graph is suitable for simulating a large number of particles, because it calculates

on the Graphics Card, rather than the Processor. Although this has its drawbacks, regarding

the lack of physics-based interaction of particles with their environment, it proved ideal for

the particle-based power grid visualization. The underlying environment, which was meant

to support the scenario’s intention through a visually appealing background that catches the

interest of the user, was created using the Gaia Terrain Toolset, developed by Procedural

Worlds. The payed plug-in redeems its price through superior quality of the terrains it can

help create. With it the background terrain was sculpted in very short time and using the

environment textures that come with Gaia the terrain could easily be textured to fit the

intended detailed style required by the client.

To optimize the development with multiple particle systems, several tools were created that

allow convenient adjustment and management of parameters, as well as the interaction

between particle connections. To achieve an interface that gives a good overview of

available parameters and development functionalities, the Odin Inspector plug-in,

developed by Sirenix, was used.

The development could be completed in time, due to the thought through workflow that was

formulated ahead of the development. Having a thorough understanding of the advantages

and drawbacks of each tool or pipeline, prevented unexpected problems to arise during later

stages of the development, which would have cost a significant amount of time.

V

III. Table of contents

I. Preface .. III

II. Abstract .. IV

III. Table of contents ... V

IV. List of figures .. VI

1. Introduction .. 1

2. Methodology .. 2

3. Problem indication and practical analysis .. 3

Central research question .. 4

4. Knowledge analysis ... 5

Additional research questions ... 5

5. The 360-information scan .. 6

Answering the additional research questions ... 6

Theory conclusions .. 14

6. Conceptualization .. 15

7. Development .. 18

Iteration Mockup .. 19

Iteration Prototype ... 21

Iteration Alpha ... 22

Iteration Beta ... 26

8. Discussion ... 31

9. Recommendations ... 32

10. References .. 33

11. Appendix .. 35

Appendix I – Technical Information about the Touch Table 35

Appendix II – List of created assets .. 37

Appendix III – Work samples .. 39

Appendix IV – Visual progress and Beta release representing the projects

result .. 49

VI

IV. List of figures

Figure 1: Layout blueprint of the interactive touch table with technical specifications 7

Figure 2: LOD Group setup (Unity Technologies, 2019) .. 8

Figure 3: Grid Expansion Plan describing current and future energy grid expansion projects

... 13

Figure 4: Perspective and grid layout sketches provided by the client 17

Figure 5: Mockup draft based on minimalistic style reference ... 19

Figure 6: Early perspective test and improved full screen mockup 20

Figure 7: Terrain rework with more surface and texture detail ... 23

Figure 8: Comparison of old low-poly trees to the improved detailed version 24

Figure 9: Improved grid layout and environment design .. 26

Figure 10: The material shader cuts off the geometry above a certain threshold and displays

glowing edge ... 27

Figure 11: Decal Projector that created a texture overlay on any material that reacts to decals

... 27

Figure 12: Improved water shader with animated wave and foam textures 28

Figure 13: Final scenario content with all components and the power grid with surplus and

shortage ... 29

1

1. Introduction

This report describes the research and development process of a project for my Graduation.

The project was done at “Die Wegmeister”, a marketing agency based in Stuttgart, Germany.

The client in this project was the company TenneT, a transmission system operator, based

in the Netherlands. It has roughly 3.500 employees and is considered the first European

cross border transmission system operator.

Every year in May, an event is held in TenneT’s Showroom in Berlin, called TenneT Virtual

Vision. In this Showroom a variety of Stations are presented to visitors, that tell about the

history, the present state and the potential future of energy transmission in Virtual and Mixed

Reality. During the annual spring event, new Scenarios are introduced to the visitors of

TenneT Virtual Vision. The project described in this report provides an interactive scenario

for one of the Stations of the Showroom, called Tangible Bar.

In this project, the interdependencies within a power grid are to be visualized in an appealing

and understandable way. The scenario should consist of a good-looking environment as a

background, in which several grid components are visible, such as transformer stations,

renewable and conventional power generators and central areas of power consumption. A

particle-based visualization of the power grid should then react to changes made by the user

to the different components of the grid. When adding additional power generators for

example, the network should react accordingly.

The time frame was quite restricted, with only around eleven weeks available for

development. That is why large parts of the project were focused on workflow optimization

and creating an efficient development process.

My work in this project was focused on the creation of 3D assets and achieving a good-

looking environment as a background, as well as technical development for creating

interactive functionalities and interfaces that simplify the development. These include

“PathLink”, a system for enabling particles to travel along a conveniently definable path in

the scene, as well as “StateShift”, which lets the different particle systems communicate with

each other about changes in the scenario. The research prior to development is heavily

focused on determining an optimal pipeline and workflow for the project’s development

process. Going into production with a solid and efficient workflow is a valuable basis for

developing under time pressure.

A second developer focused on creating the user interface for the gameplay and how input

is handled and translated to enable the scenario to react to it. Together we developed this

interactive scenario using Unity 2018.

2

2. Methodology

The development approach is based on the design-based research model. After analyzing

the projects context, its requirements and problems, a central research question could be

formulated. This served as the basis for the following research and development.

In order to get a clear overview of the visual and technical requirements and possible issues

or obstacles during development, all existing knowledge is analyzed. In this phase it is

important to get a complete understanding of what the development workflow will look like.

That means determining which tools will be used, how the main functionalities can be

developed and what requirements and restrictions the development process might be

confronted with.

To create this theoretical basis for development, information needs to be gathered from

websites, forums and documentation on the possible tools, that can be used for development.

This is done in a 360-information scan, in order to gather as much data as possible on the

topic. Information is collected mainly through desk research, by reviewing articles or forums

online, as well as through working with Unity and the required tools directly. In this trial and

error approach, a lot of unexpected issues can be solved right away, and even during

development this method still applies and helps dealing with any problems that might occur.

After gathering information about all necessary aspects of the project’s development, a

solution for workflow and development is formulated. This describes what the optimal

workflow looks like and how the required components of the scenario can be developed.

The development process is structured in four iterations. After each development phase,

based on the conceptualization of a solution for development, the current state is tested, and

the progress is reflected on. Feedback from client and project lead is gathered and formulated

into additional requirements, to guide further development in the following iteration.

The development process starts with the mockup and prototype iterations, where the focus

lies on the scenario’s visual appearance and on testing all necessary functionality that needs

to be implemented. Later, in the Alpha iteration, both 3D design and functionality are

integrated, based on the previously developed prototypes and style mockups. In the Beta

Iteration, the feedback from Alpha testing is addressed and implemented and a finalized

version is refined.

3

3. Problem indication and practical analysis

For someone outside the field of expertise, the energy grid and its interdependencies and

functionalities might be hard to understand. Due to that, it is even more difficult to explain the

necessity of further expansion of the energy grid, as well as the investment in new

technologies focused on grid optimization.

The problem TenneT continuously has, is that it is difficult to visualize these dependencies

within the energy network in a way that explains and justifies the expansion of the existing

power grid. A visualization gives the company the opportunity to make these dependencies

understandable and easier to grasp. The project specific problem is to visualize this in a

visually appealing way, that feels reactive and organic, while conveying a clear message to

the viewer.

The scenario should consist of a background terrain, grid components and buildings on top

of that background and lastly an energy grid represented by particle streams. In the User

Interface the user should be able to alter the state of different components in the scenario.

These are structured in four categories:

• power generation

• power consumption

• power storage

• grid technologies

If changes are made to these categories, e.g. power consumption is increased, the scenario’s

components should react, such as the growing of a city and therefore a higher power

consumption. The particle streams should react as well by changing color or spawn rate

accordingly, to visualize a shortage of power in the system, for example.

The background layer should be an appealing environment with high amount of detail, so it

serves as a visually pleasing background, while not drawing too much attention away from

the scenario’s core content. The terrain should visualize an abstracted German landscape,

have good surface structure and fitting textures, as well as detail objects like trees, grass or

rocks. A water shader should help to visualize the northern seaside. The environment should

remain abstract, since a too accurate representation of Germany might cause wrong

conclusions for the users, about the layout and development of the actual power grid, which

the scenario does not intend to represent.

The component layer should contain all the grid components like power plants or wind and

solar parks, transformer stations and convertor platforms, and the urban and industrial

buildings that visualize the power consuming cities. These buildings should have a clean and

simple style, with light color, in order to be easily visible on top of the detailed environment

background. These buildings should react to changes of the above-mentioned categories by

appearing and disappearing, e.g. when a city is supposed to grow or shrink.

The grid layer should consist of particles traveling through the grid and reacting to changes

made by the user, by changing their color, size or spawn rate. This layer will be the main

4

feedback to the user of the current state of the scenario. A power shortage or surplus should

cause the particles to glow red, for example.

Finally, a functionality layer should enable all the interactive elements in the scenario to work

together and react to changes. The scenario will have one definite state at a given moment

in time and every component or particle system should be able to react whenever that state

is updated.

The project has a visual challenge, regarding the style and perspective of the scenario’s main

components, as well as the supporting visual background. The underlying terrain should be

appealing and represent a heavily abstracted German landscape.

The technical challenge is that an energy grid visualized with particles should have multiple

influencers and react to changes dynamically, while feeling organic and reactive. The particle

systems need to be connected to each other and since multiple systems will need to be used

simultaneously the development with these systems should be as efficient as possible.

Central research question

In order to determine a basis for the direction the research and development should be

focused on, a central research question is formulated.

 “How does a suitable workflow and development approach need to be formulated, that will

ensure a time efficient development process, so that an interactive scenario that uses high

quality particle systems in Unity and runs on a touch table can be created within a short

period of time?”

Since the project is extremely time restricted, the central problem focuses on establishing an

efficient workflow for optimal development within the project. This includes determining a

suitable pipeline within Unity and the creation of additional tools and interfaces that will help

during development. The workflow should present a suitable basis for the development of

the more specific designs and functionalities of the scenario.

5

4. Knowledge analysis

Before being able to create a suitable workflow, additional information needs to be collected,

in order to formulate a well-founded solution for the central research problem.

This is especially valuable due to the little available development time in the project. Through

first analyzing the existing knowledge and possibly suitable tools, a good basis for formulating

an optimal workflow can be determined. By formulating a well-founded and thought through

pipeline early on, a large amount of time is saved in later development, where problems with

certain tools or workflows can disrupt the process and progression of the project.

The following questions cover the three main fields of required knowledge and all the

information necessary, in order to determine a suitable pipeline and workflow, as well as

creating an environment and particle system in the desired style.

Additional research questions

1) How can a visual environment, style and perspective be designed, in order to work

well with the technical limitations of the interactive touch table?

This area focuses on the technical requirements and limitations and how the visual

component of the scenario can be developed, in accordance with the client’s requirements

and ideas, all while keeping a stable performance.

2) How would a pipeline need to be defined, so that it is suitable for a flexible

development process with Unity particle systems?

Different tools and pipelines in Unity will be reviewed in order to determine a suitable

workflow. With the help of documentation and literature about Unity’s built-in features, and

external plug-ins, a good overview of all available options will be achieved.

3) How can an abstract visualization of an energy grid be designed, that feels organic

and responsive and supports the scenario’s core message?

Here it is necessary to gather information about how a real power grid functions and reacts

to changes. The visualization of this will be further determined during the development of

prototypes, where the interactive functionality can be tested more accurately.

6

5. The 360-information scan

Answering the additional research questions

The additional questions, as formulated above, will be answered by collecting information on

each topic and reviewing advantages and disadvantages of possible tools, pipelines and

workflows. With the gathered data, answers to the questions will be formulated in the theory

conclusions.

1) How can a visual environment, style and perspective be designed, in order to work

well with the technical limitations of the interactive touch table?

First, the technical limitations of the touch table need to be specified. These can be

determined using the data sheet provided by the client. The table has a display as its surface

and can be controlled both by touch input and by five tokens that can be placed on the screen.

These tokens have QR codes on the bottom, which can be tracked by cameras underneath

the partly transparent screen. The table unfortunately is not available during development,

which means that any testing needs to be done in PC compatible builds.

The table screen is 55 inches in diameter with a Full HD resolution, while there are spaces

between pixels which make the display transparent enough so that four cameras behind the

screen can track the token’s QR Code markers. This is the second way of registering input

next to the conventional touch interaction. With the tokens being 8.7 centimeters (roughly 3.4

inches) in diameter, they take up a significant amount of space on the screen if all 5 are in

use.

The system the touch table runs on is equipped with a Nvidia GTX 960 graphics card and an

Intel Core i5 processor. Most important for the performance of the scenario is the GPU due

to the extensive visual component of this project. If the graphical side is kept at a reasonable

level, the workload on the CPU should not have a substantial impact on the performance.

This information was made available in form of a Technical Specification overview by the

client. (Spezifikationen (PC, Touch, Display, Etc.), 2019)

Since the scenario is played on a table display, the perspective towards the screen is a lot

different than with a conventional desktop display. The users will be standing around three of

the four table sides, the two wide sides and one end, since the tables other end is predefined

for placing the tokens when not in use (see Figure 1).

7

In order to maximize the usable space left, a vertical or “portrait” perspective would be

suitable. This way the users can stand around the remaining three sides of the table, while

still being able to have a good perspective on the scenario. Since the scenario should depict

an abstract version of the German landscape and energy grid, the northern seaside and

southern mountain range and the resulting top to bottom contrast would fit nicely into a

vertical frame.

Figure 1: Layout blueprint of the interactive touch table with technical specifications

The problem with a horizontal or “landscape” perspective is that only users standing on the

correct side of the table will have a good overview of the scenario, while the rest of the users

will have trouble keeping their orientation.

The scenario content should be visible at the same distance and quality in all parts of the

screen. That means the buildings and environment on the lower end of the screen, which

would appear to be closer to the camera, should be the same size as the buildings on the

top, which would be far in the distance, when using a perspective camera. That is why an

orthographic camera would be suitable for this situation. Every object is then rendered at the

same size on screen, since the orthographic camera has no perspective and any depth

perception is lost.

8

An object in the scene that is equipped with different levels of detail (LOD), would switch

texture and model quality to lower levels when the camera would move further away from it

(see Figure 2). This is done to optimize performance, because objects in the distance will not

be rendered at their full quality. Since every object needs to be visible at the same level of

detail when using an orthographic camera implementing different LOD levels will not have a

desired effect, if any at all. The terrain’s LOD system is built-in, however it would not use its

full functionality, since the camera has a static perspective.

Figure 2: LOD Group setup (Unity Technologies, 2019)

The client wants a simplistic representation of the energy grid. The background should be

detailed enough to portrait a nice environment terrain from mountains in the south to the

seaside up north, however abstract enough as to not actively portrait the German landscape

or power grid specifically. As mentioned earlier, a too accurate representation might lead to

users drawing wrong conclusions about which areas the grid expansion will affect.

The grid components should have little detail and a clean style, so they are easily

distinguishable from the underlying terrain. The components should have small animations

or effects that make them come alive a little more than just being static objects. Additionally,

each building should have a small foundation that will blend it in to the terrain a little better.

This can easily be achieved using decals, which could be enabled and disabled together with

the components. This way the ground texture does not have to be changed in the terrain’s

textures, but simply by adding a decal projector to the component object. The abstracted

style should not get too simple and childish due to a low poly count or simplistic textures.

Each component should be easily recognizable by using little detail to create clear shapes.

This was established in discussions between the project lead and the client about their

requirements and ideas regarding the scenario’s look.

9

There should not be any 2D icon overlay other than adaptive UI dials that the input tokens

will generate around them and an informative UI layer on the bottom of the screen. This

means all other indications on the scenario’s state need to be conveyed through the 3D

scenario itself.

Unity has a built-in system for creating simple terrains. It allows Heightmaps to be imported,

however only in RAW format, which can be created in Photoshop with some obstacles. It

allows a very comfortable painting and blending of multiple textures and, if set up correctly,

the mesh painting of trees, rocks or other detail meshes to enrich the background

environment (Unity Technologies, 2019). Some of the terrain tools, like the grass and detail

mesh painter, tend to have some minor issues with HDRP and especially the built-in tree

generator is completely incompatible with the HD Pipeline. This was discovered, by trial and

error during the testing of the terrain tool in the High Definition Pipeline. The issue is caused

by the Bark and Leaf shaders, which only work in the built-in renderer, and HDRP upgraded

versions of these are not available, as of Unity2018.3. The two shaders are required for the

terrain to recognize the model as a tree, in order to apply random rotation, height and color

values, as well as wind animations (Unity Technologies, 2019, Unity Terrain Trees). The

absence of these very helpful sub-tools makes tree placement onto the terrain extremely

tedious.

The external terrain generation tool Gaia, created by Procedural Worlds, allows very modular

editing of terrains. It has tools for procedurally texturing terrains depending on the surface

structure and slope, as well as for placement of detail meshes like plants, and even

procedural villages (Procedural Worlds, 2019, Introduction to Gaia). The most valuable tool,

however, is the terrain stamper, in which any heightmap can be imported and even converted

to an appropriate format, and then stamped anywhere on the terrain. The option to rotate,

scale and change the height of the stamp is incredibly valuable for rapid terrain generation

and for adjusting the surface in polishing, for example (Procedural Worlds, 2019, Stamper

Introduction).

Gaia offers a lot of helpful options and tools for terrain generation and provides a highly

efficient workflow, ideal for a development under time pressure. Unfortunately, the tree

painting system is very limited in the HD Pipeline and Gaia is only optimized for procedurally

filling a terrain with textures and trees, rather than detail mesh painting (Procedural Worlds,

2019, Spawners – Terrain Trees). The rather time consuming and tedious manual placement

of trees could be optimized by creating a simple custom tool for randomized transforms, for

example.

The Unity Terrain is highly performance optimized with its clustered LOD levels both on

geometry and textures and should not impact performance significantly (Unity Technologies,

2019, Unity Terrain Engine). The buildings, as mentioned, should have a clean and simple

style. This means a low polygon count and little texture detail, which will not require higher

texture resolutions.

The overall load of the environment art will be reasonably low. This leaves a lot of room for

the development of the more complex particle streams to visualize the electric grid.

10

2) How would a pipeline need to be defined, so that it is suitable for a flexible

development process with Unity particle systems?

The project is focused on an appealing visual style, which should support the main

functionality and message of the scenario. Specific effects for the animated interaction with

components would require development of custom shaders, which could be done easily with

the Shader Graph, available in all Pipelines. For ensuring a good performance, the

Lightweight Render Pipeline (LWRP) would be suitable, since it gives good results even on

a mobile device. The Projector system, used to place decals dynamically into the scene, is

only available in the HD Pipeline (Unity Technologies, 2019, Decal Projector), just like the

Visual Effects Graph.

The High Definition Render Pipeline (HDRP) offers outstanding visual quality as well as vital

features like the Decal Projector and especially the Visual Effects Graph. Both these tools

are currently not available in other Pipelines. Although an optimal performance could be

achieved with LWRP or the Built-In Renderer, the exclusive high-quality features that HDRP

offers makes it a very suitable Pipeline for this project. The post processing features and the

high rendering quality proved to be useful in designing and polishing the visual style of the

scenario.

Unity offers the Shuriken System for all Pipelines, a physics-based particle generator, that

calculates mostly on the CPU. The main advantage it has is the option for physics interaction

of particles with the environment or each other. This allows simple fluid simulations that

interact with the environment, for example, as well as triggering of collision events on any

other collider object in the scene (Unity Reddit, 2019). The huge disadvantage when creating

high quality visual effects with Shuriken is its limitation on the particle count. With the energy

net requiring a large number of particles that should be visible at the same time, this could

cause performance issues.

The Visual Effects Graph, available in the HD Pipeline, however, runs on the GPU, which

allows millions of particles to be rendered at once, while Shuriken can only handle up to about

400.000 particles (Brackeys, 2019). The VFX Graph additionally has a system for setting and

updating parameters at runtime, similar to how Animator or Shader Properties work. The

node-based workflow makes a quick, iterative workflow possible and offers convenient

overview of the systems functionality. The disadvantage of the VFX Graph is the missing

physics and collision interactions with its environment, as well as the availability only in

HDRP.

With its flexibility and convenient workflow, the Visual Effects Graph proved the more suitable

tool for creating the particle-based energy grid of this project. The variety and adjustability in

its use offered great value for the potentially changing design process of the energy grid

system.

11

When working with multiple particle systems that should behave in roughly the same way, it

would be very inefficient, if the developer is required to repeat his development steps for each

system all over again. Instead it would be extremely effective if changes made to one system

could be applied to all of them, while implementing some differences. Additionally, it would

be convenient for a developer if all important variables could be set or even automatically

generated in a particle systems interface.

This would be especially important for the already mentioned path curves of each particle

system. It would take an absurd amount of time to manually tweak each curve, for each

dimension, of each path, on each individual particle system. The value of a development tool

comes from its ability to save a developer’s time, by simplifying processes and optimizing the

required workflow. That is why in this particular situation, a development tool that optimizes

the design process and path creation of the particle systems is especially valuable.

A great way to quickly create tool interfaces in Unity is by using the Odin Inspector, developed

by Sirenix. This plug-in can be used to quickly create an interface that a designer can work

with and that supports the functionality of the tool. It enables the quick implementation of

custom editor layout options by using simple keywords in the attributes of a variable or

function (Sirenix, 2019). The tool should focus on the main and most time-consuming task,

which is the path creation, and without getting too complex in development, extract a path for

the particles to follow. For this, it would be easiest to use handles that the designer can place

into the scene and extract the path from.

The tool itself should have access to all necessary parameters of the particle system and be

able to change them directly, even when in edit mode. This can be done with the

ExecuteInEditMode attribute of the tool script’s class.

12

3) How can an abstract visualization of an energy grid be designed, that feels organic

and responsive and supports the scenario’s core message?

An energy grid consists of power lines that connect junction points and transformer stations

in throughout the grid, as well as the distributing network that connects the users to the power

grid (TenneT TSO GmbH, 2019, Projekte NEP). In the scenario, it can be nicely visualized

by letting particles travel from a point A to a point B as representation of one connection. The

grid then consists of multiple such connections, which connect central consumer areas with

renewable and conventional power generators, through several junction points (see Figure

3). A grid of connections with more than two path points, and therefore curved paths, can

seem too organic and more like veins, rather than a network.

When the entire grid reacts to a new state simultaneously, it is hard to understand the origin

of the change that was made. The grid feels stiff and not as dynamic and interactive as it

should, even when it reacts quickly.

In order to make the grid feel more organic, a new state could be visualized as spreading

through the grid originating from one or more specific points. This way a state could start on

certain focus points and travel through all connections until it has reached all points in the

grid.

Only a little delay in the spreading of states can already achieve a very dynamic effect and

make the grid feel alive as it is dynamically reacting to changes. A too large delay and low

spread speed might result in a very sluggish feeling, however, so the speed and delay need

to be fine-tuned to assure an optimal balance.

13

Figure 3: Grid Expansion Plan describing current and future energy grid expansion

projects

14

Theory conclusions

After analyzing and researching these sub questions and reviewing the newly found

knowledge, a much better perspective for further conceptualization and development was

developed. The collected information and gained knowledge served as the basis for

formulating a solution for the central problem.

It became clear that Unity’s High Definition Render Pipeline is most suitable to be used to

develop the scenario, due to the significant advantages of the HDRP-exclusive Visual Effect

Graph, which could visualize the particle-based energy grid. It would be very efficient to

create simple helper tools, especially for the design and development of the particle systems

and their path creation.

The detailed terrain can be created very conveniently with Gaia, by using the Stamper Tool.

With it, textures can be imported as heightmaps and stamped onto the terrain. The surface

can be sculpted very accurately using this tool, ensuring the detailed style that the client

desired. A simplistic and clean style should be reflected in all 3D models and textures.

Since the tree painter requires a very specific setup, the manual placement of trees would be

more suitable. The number of trees required was not too high, and while placing the trees

manually would be tedious, it offers more control over the trees’ variations in the scene.

The moderate level of overall detail in 3D and environment art will leave room for more

extensive visual development of the particle grid, without sacrificing performance on the mid-

range specs of the target platform. Because of the low graphical load, regarding 3D models

and textures, and since every object should be visible at the same distance and quality, using

an orthographic camera setup, there is no need for LOD optimization. The effect would never

be used anyway because of the scenario’s static perspective.

15

6. Conceptualization

With the basis that had been established in the Knowledge Analysis and 360 Information

Scan, a thought through and well-founded solution for the central research and development

problem can be formulated.

The scenario content is structured in four different layers. Starting with the environment layer,

which serves as a background for the scenario. It consists of the terrain and water surfaces,

the textures and detail meshes on this terrain and the perspective onto the entire 3D

environment.

The next layer will contain all grid components and buildings in the scene. These will be

placed into the environment terrain. Grid components include renewable and conventional

power generators, transformer stations and centers of power consumption.

The last visual layer contains the particle streams that will visualize the energy grid. The

different particle systems will connect all grid components from the component layer and

transport the particles, representing electricity, from the generators to the users.

The final layer consists of all the functionalities and mechanics, necessary for the scenario’s

components to interact with each other and react to input from the user. This includes scripts

that will handle the state of each particle connection from the grid layer, as well as the visibility

of buildings in the component layer.

These four layers together will form the interactive scenario. The detailed conceptualization

for the development of each layer is described in the following. In it, a balance will be defined

between the client’s requirements on functionality, the desired visual quality and necessary

measures of optimization, in regard to the technical capabilities of the target platform.

In a portrait orientation using an orthographic camera, the 3D environment will form a north

to south contrast in the scene (see Figure 4, perspective sketch). There will not be different

LOD levels, since every object in the scene should be visible at the same size and quality.

The terrain will be created using the Gaia Terrain Generation Tool, more specifically its

Terrain Stamp system. This allows importing custom heightmaps and stamping them onto

the terrain dynamically. The great control over size orientation and height of the stamp makes

this tool extremely valuable for rapid and precise terrain creation. Textures from the Gaia

toolset as well as custom-made textures will be used to create a detailed, but simplified

environment, which will support the scenario’s main components with a visually pleasing

background while not drawing attention away from them. Abstract visualizations of simple

trees will frame the components nicely into their environment. These trees will have to be

manually placed, in order to achieve the desired variation.

The Components will be modelled in a simple, abstract style, with minimal texture detail in

white and grey colors. The Components should separate themselves from the detailed and

colorful background, with their very different, clean and light style. All these Components will

be placed into the terrain (see Figure 4, grid layout sketch), with simple decal foundations

that will let the buildings blend into the environment a lot better.

16

Using the Visual Effects Graph, the energy grid will be visualized by multiple connections

between central points in the scene. The particle systems will connect generators and users

to connection points and the grid components. In these systems the particles will follow a

path, defined by several points for each grid connection. The entire particle grid will be able

to change color and spawn frequency, to visualize power balance and volatility status, and

react to changes of these variables at runtime.

When the state of the energy grid changes, the new state should be visible at the change’s

origin and travel through the grid over time.

In the graph, parameters will be predefined and used internally in the system. The graph will

allow as much external input as possible, in order to optimize the development workflow and

runtime flexibility.

The grid will react to changes at predefined junctions and will spread the new states through

the system dynamically. In order to visualize multiple states traveling through a connection

at the same time, animation curves will be used to update the color and frequency of the

connections in any direction, while the particles still travel in their normal direction. When a

new state is registered, it should be passed to the system as a keyframe on an animation

curve. This keyframe is then moved every frame until the state has reached the end of the

connection. At each junction there will be checkpoint objects that all connections will register

as either start or end point. When a connections state has finished, the checkpoint on the

finishing end of the connection should receive this state and pass is to all other connections

registered to this checkpoint. This way a state will initially be registered on one end of the

grid and then travel through the connections and junctions to the other end. The Checkpoints,

state events and keyframes moving through an animation curve, together will form the

StateShift system.

The states themselves will be visualized by color and frequency of the particle system. A

good power balance will be displayed in green particle color, an unbalance in red color.

Volatility will be visualized as gaps in the particle stream, where almost no particles will

spawn. A high volatility will result in a higher frequency, a low one in a lower frequency with

smaller gaps. The power and volatility state will be passed to the particle system in animation

curves as already described. These curves can then be sampled by the particle’s age over

its lifetime. Depending on the power state, the particle then samples from a gradient that

determines at which state the particle should have which color. The volatility is used as input

for the gap frequency, which can be sampled using a sine wave. The gaps in the particle

stream, where fewer particles spawn, should have a lower power level and therefore color

than the normal parts of the stream. To achieve this, depending on the current volatility level,

a small amount will be subtracted from the power sample and used to sample the gradient

for the gap’s particle color.

With this setup, a dynamic grid will be achieved, that feels more organic and reactive than a

grid that reacts to changes in unison. The visual feedback will be more appealing and keep

the viewers’ attention, as well as encourage users to try and see what different effects certain

changes to the grid will have.

17

To test the scenario’s interactive functionalities, an Input System will be developed by the

programmer, that will mimic the input capabilities of the actual target device, which is not

available during development. This way the scenario can be tested, and feedback can be

discussed with the client using a convenient desktop version of the application.

Figure 4: Perspective and grid layout sketches provided by the client

18

7. Development

The development consists of two main categories, 3D and technical. 3D development

includes the creation of 3D assets, such as the buildings and grid components, the underlying

terrain and environment, and the reaction of components to changes in the scenario, by

displaying a specific status color or changing visibility. The technical development involves

the designing of the particle system using the VFX graph and developing an interface for it,

as well as creating all required functionality for the grid to react to changes in the scenario.

Additional functionality like the user interface and the event system that defines the scenario’s

current state, depending on the user’s input, will be developed by the programmer.

The process of developing the scenario is structured into several iterations, starting with a

mockup and prototype. Here a basis for style perspective and overall functionality is

developed, which will be extended in the Alpha iteration. Finally, in the Beta iteration all

additional functionality is added, and visuals are adjusted to achieve the desired style.

After each iteration, the progress was discussed with the project lead and occasionally the

client. Feedback and possible additional requirements are then described in the reflection of

each Iteration. Few feedback moments were possible, due to the client’s schedule, however

constant updates were made, and the results discussed whenever possible. This was roughly

at the end of the mockup and alpha iterations.

19

Iteration Mockup

In this first iteration, after a basis for pipeline and workflow had been established, a mockup

could be worked out. This mockup should show a first take on the desired style and

perspective of the scenario.

First, based on the simplistic, low poly style direction, a few prototype assets were created.

The 3D models only had basic detail and the textures were flat colors mixed with ambient

occlusion.

Figure 5: Mockup draft based on minimalistic style reference

A couple of buildings and trees were placed onto a basic Unity terrain with simple grass

textures. After adding the Unity basic water to the scene, the minimalistic “miniature”

environment style was defined (see Figure 5). The perspective is done by using an

orthographic camera, which makes objects, that are farther away, appear at the same size

as objects closer to the camera. This way, the available screen space could be used to its

maximum, without sacrificing detail in the distance (see Figure 6).

The terrain in the mockup was done by simply lifting the surface slightly in the southern parts

of the environment, since that is where the mountains should be visible. In the north a shore

and simple water plane was added. The trees were done very simple, again in flat colors with

ambient occlusion.

20

Figure 6: Early perspective test and improved full screen mockup

Mockup Reflection

The perspective proved to be very suitable right away. The framing was good and additional

changes could later be done by decreasing the size of all other objects in the scene.

The terrain was lacking a lot of detail in structure and the textures should be more detailed in

further iterations. Overall the environment was way too empty and blunt. The buildings

needed to be smaller, so that more would fit into the scene.

The simplistic style was already going in the right direction but was getting slightly too childish

and the buildings started to look like toy houses. To make the building style cleaner, the

textures should be gray scaled, while keeping the ambient occlusion detail. All buildings

would then follow the same color scheme and appear more separated from the underlying

terrain. This way the components could be made more visible in contrast to the environment

style.

21

Iteration Prototype

The next step was to create prototype versions of all the basic interaction and reaction

mechanics, as well as the particle system visualizing energy that travels through the power

grid. Additionally, the layout of the grid was thoroughly designed, so that the size and density

of all the scenario’s components would become more defined.

To start the prototype iteration, a first version of the particle system connection was

developed, using the VFX graph. The system used a start and end point and let particles

travel in between. This is done by using the particle’s age, which ranges from 0 to 1. Each

particle has a given lifetime, and after it spawns the age in seconds increases. When the age

in seconds reaches the maximum lifetime, the particle is destroyed. The time since spawn

divided by the total lifetime determines the particle’s age. Using linear interpolation, any

position in between the start and end point can be sampled over the particle’s age. This way

it travels at a constant speed from start to end throughout its lifetime. The particle movement

presents the foundation of the energy grid system.

In the prototype version, the particle system was only reacting to a locally set power state,

which was visualized by the system changing colors from red to blue. This way the reaction

to changes could be tested. A system for globally distributing information about the current

state of the scenario was still missing.

The buildings were gray scaled and reduced in size and three central areas were defined

where the buildings should be denser, as to represent centers of energy consumption.

An early prototype version with a basic grid visualization was used as a basis to design a

more finalized layout of the grid. In a brainstorm meeting the different layers of the grid were

drawn onto transparent paper with the base in the background. Layer by layer the layout got

more complete and after combining everything in Photoshop afterwards, this sketch could be

used as reference for further building the scenario’s power grid and placing all objects into

the scene correctly.

Prototype Reflection

The central areas, where more buildings were close together to form a center of energy

consumption, were already in the right direction but needed to be even denser and contain

additional buildings. The buildings should be smaller and closer to each other so that the

centers would seem more like a city, rather than just a collection of buildings.

The terrains texture and surface were still too simple. More detail needed to be added

especially through additional textures. Surface structure easily got lost due to the lack of

perspective in the orthographic camera setup, so major differences in height would hardly be

visible, if not supported by textures and careful tree placement for example.

The trees themselves were also still too close to the rather childish mockup style and should

be enhanced as well. Overall the terrain needed a lot more attention to detail, especially on

the seashore and the mountain side. The environment should have a more realistic and

detailed style, so that the components become more visible.

22

Iteration Alpha

The grid connections were reacting to a given power and volatility value. The power state

was visualized by the particle’s color, blending between blue and red, the volatility was

visualized by gaps in the particle stream, which would change in size and frequency,

depending on the volatility value.

In order to let the particle systems react to external input, a system was created, using

scriptable objects, that would update any scripts that were registered whenever the scenario’s

state was changing. The scenario’s state consists of a power and a volatility value, and in the

net data object an event system was added, which calculated the current power and volatility

states, depending on the user input. A script holding reference to this net object could then

register to this event system and was notified on changes when the state was updated.

For editing parameters in the VFX graph, especially at runtime, a script was created that

serves as an interface for the particle system’s exposed values. This offered the possibility

to create additional functionality in the VFX handler script, that would take external input,

transform it into the required parameters and pass it to the particle system. As an example,

when updating the power value in the script, it would translate that into a color value and

pass it to the particle system. This reduced the amount of operations that had to be done in

the particle system itself and ensured a higher flexibility in development. When having to

adjust parameters or functionalities it was therefore not necessary to open and alter the VFX

graph, which takes more time than simple adding functionality in script.

To manage and quickly adjust parameters of the particle effect, scriptable objects were

introduced, which could hold different sets of parameter presets. A scriptable object is a class,

which can exist as an asset instance in the project files. This asset can be used globally,

meaning if it is changed anywhere in the project, it is changed for every script or other object

that holds a reference to it (Unity Technologies, 2019, Unity – Manual: ScriptableObjects).

Multiple instances of the same scriptable object can be created, which can hold different

values for each variable. This means that, if the VFX handler uses parameters from a

scriptable object, if it is adjusted, the parameters of all other particle systems are adjusted as

well. This way every particle system can be altered simultaneously, instead of having to

adjust every system individually. Additionally, several different behavior presets can be

created, using multiple instances of the behavior object script. When changing one behavior,

only the particle systems using the same behavior will be updated.

The VFX reactor registers to the net data event and updates the VFX handler’s power and

volatility values. In order to have maximum control over the particle’s taken path, the PathLink

system was introduced. The VFX handler takes in references to several points that can be

placed into the scene. It can then extract a 3D path from these points and pass it to the

particle system.

The path extraction considers where each point is positioned in relation to the total distance

of the path. This prevents the particles from speeding up or slowing down irregularly while

moving along the path. The positions of the path points are then passed into three animation

curves for each dimension. An animation curve takes in Keyframes, which have a time value

(normally ranging from 0, the start of the curve, to 1, the end of the curve) as well as a certain

23

individual value that can be sampled by evaluating the curve at the keyframe’s time. The

keyframe specific value is one dimension of the path point’s position (x, y, z), since one curve

can only hold information about one axis in 3D space. That is why three curves are necessary

to store a 3-dimensional path. The curves are then passed to the particle system by using

the corresponding identifiers, defined in the VFX graph’s parameters.

In the graph the three Curves are each sampled using the particle’s age over lifetime. That

means at the beginning of its lifetime the particle would sample the path at t = 0, at the end

of its lifetime at t = 1. This way, each particle individually samples the path at a consistent

speed. The lower the lifetime was, the faster the particle would travel along the path. After

sampling each Curve at the particle’s current age, the three dimensions are merged back into

a position in 3D space and used as the particle’s current output position.

Figure 7: Terrain rework with more surface and texture detail

After the particle system was drastically improved, the terrain needed to be reworked. It was

lacking a lot of surface and texture detail. In order to get a quick but high-quality result, the

Gaia Terrain Tool was used. The terrain stamper enabled very fast structuring and sculpting

of the terrain and it was easy to create a mountain range in the south, as well as an interesting

seaside in the north of the environment. Using the standard textures provided by Gaia and

several custom textures, made with Substance Designer, the terrain was textured with more

detail (see Figure 7).

24

Instead of the low-poly trees, detailed ones were added (see Figure 8). A problem was that,

because the project uses the HD render pipeline, many terrain creation options were not

working anymore. The tree painting was also affected by this. For a terrain to recognize an

object as a suitable tree, the object needs to have specific materials applied, which are

incompatible with HDRP. Therefore, while using HDRP compatible materials, the terrain

couldn’t use any of the tree specific functionality and the trees could only be painted onto the

terrain without the random rotation, height and color hue modifiers.

Figure 8: Comparison of old low-poly trees to the improved detailed version

Alpha Reflection

PathLink proved highly efficient during development. The otherwise tedious and time-

consuming task of manually setting up the curves in the VFX graph itself became very

convenient with this simple tool. It was possible to make minor adjustments and design the

path a lot more accurately than it would have otherwise been possible.

In order to make the grid react in a more organic way, the changing of color and frequency

for different power and volatility states, should gradually spread through the grid, instead of

changing simultaneously throughout the entire network. Otherwise the grid would feel a little

too stiff. The colors should be changeable to blend from red, through yellow to green, to make

the power state easier to understand. The gaps representing different levels of volatility were

disconnecting the particle stream too much. A clear, continuous stream should always be

visible. The volatility gaps should therefore consist of portions with more and gaps with fewer

particles, so that the stream is clearly visible at any state, but differences in frequency can

still be observed.

25

Although the terrain was a lot closer to the originally intended style, it was still lacking some

interesting detail. It should be more than just a monotone background and give the viewer

something pleasant to look at. Due to the restricted use of the tree painter terrain tool, the

trees all had the same size, rotation and color and therefore were extremely repetitive. This

should be fixed by either manually placing, rotating and scaling the trees, or by creating a

specific tool for randomized tree positioning.

The building models were overall too dark, since the textures were only gray scaled. To

lighten the appearance of the components and make them more distinguishable from the

environment background, the textures should have a white base color and light gray detail

on some surfaces. Together with the ambient occlusion detail this would create a simplistic

and light texture style. Additionally, the buildings were not connected to the environment

enough. In order to make them blend in with the underlying terrain textures, decals should

be used that would project a foundation texture on to the terrain.

The sizes of the buildings were now very suitable. Even with a larger amount of buildings,

the environment would still not be oversaturated. However, only few buildings were currently

used in the scene, so by using the layout reference, in the beta iteration the grid should now

be built completely. This way it would become clearer how much space all the necessary

components would cover on the screen.

Lastly, a water shader should be implemented, to replace the flat colored water planes, used

as placeholders. The water shader should offer depth and transparency functionalities, as

well as simple wave animations and foam. It should match the overall detailed style of the

terrain environment.

26

Iteration Beta

To start the Beta Iteration, which should result in a fully functioning version of the scenario,

the building textures were adjusted to the new light gray style. The centers of power

consumption were built out of industry, city and automobile components. The rest of the

terrain was filled with renewable and conventional energy generators, as well as junction

points, that would serve as a base for the particle system grid (see Figure 9).

Figure 9: Improved grid layout and environment design

The appearing and disappearing of components was improved. Instead of animating the

buildings to disappear into the ground, they were now dissolving from top to bottom of the

object and would reappear the same way. This was done with a simple dissolve shader, using

the objects height and then cutting off the objects mesh above a certain threshold. If the

threshold was de- or increased over time, the object would gradually dissolve or reappear

(see Figure 10).

27

Figure 10: The material shader cuts off the geometry above a certain threshold and

displays glowing edge

The structure of the terrain was already fitting, however the texture could still be improved.

Sand textures were added for further defining the seaside, and cliff textures helped give the

mountain range a more refined shape. Through blending multiple textures together, a nice

gradient could be established from north to south, as to add variation to the supporting

environment. In order to connect the buildings to the terrain a little better, the decal projector,

that is available in the High Definition Pipeline, was used. After creating simple textures for

the building foundations, these could be projected onto the terrain very easily. There is no

convenient system to change the terrain’s textures at runtime, so the projection of additional

textures was very helpful in this situation. The building materials could be configured to ignore

these decal projections, so that the foundation textures would only appear underneath the

buildings on the terrain (see Figure 11).

Figure 11: Decal Projector that created a texture overlay on any material that reacts to

decals

The water systems in the standard unity environment resources did not fulfill the

requirements, and most external water shaders were incompatible with HDRP. A custom

water shader was therefore developed using the Shader Graph. This allowed a more flexible

28

design of the water surface and the possibility to add foam around the shore. For this, both

a wave and a foam texture was created in Substance Designer. In the shader, the textures

were sampled multiple times with different offsets over time. When blended together this

created an animated effect for waves and foam detail. With additional parameters for

intensity, size, speed and color for both waves and foam, the water could nicely be designed

to fit the scenario’s style (see Figure 12).

Figure 12: Improved water shader with animated wave and foam textures

The particle system underwent a last major change. In order to make it react in a more natural

way and feel more organic and responsive, a change in the scenario’s state should start to

take effect at specified locations in the grid and then travel through the network. The problem

was that multiple states could move through a connection at the same time, even in opposing

directions. The more recent state should always override the older one and these different

states would somehow have to be passed to the particle system, so they could be displayed.

When having to handle multiple states within the same system, and in order to keep the

complexity of the VFX graph to a minimum, it was most suitable to pass the power and

volatility states to the system using animation curves. Similar to the path curves, the state

curves would represent a connections length from 0 to 1 on their timeline. Different states

could also be handled as values between 0 and 1 on the altitude of the timeline. Each new

state travelling through a connection was therefore represented by a keyframe starting on

one side of the state curve and being moved frame by frame towards the other. The amplitude

of the state keyframe could be sampled by the particle system and particles could then

determine their individual power and volatility values at their given position on the path.

In the scene, checkpoints were added which had a checkpoint script attached. The

checkpoint script has an event system that, when receiving a new state, pushes it through

an event function. Any particle connection that is registered to the checkpoint receives the

new state, except the one that originally pushed the state. Each connection has a queue of

states that are currently running through it. Each state in this queue has a certain power and

volatility value as well as a specific time that locates it on the connections path and most

importantly an individual age. The age of a state increases every frame and this age is also

passed on when the state reaches the end of a connection and is pushed to the checkpoint.

This way two states can be compared and the younger state can be determined. When two

states running in opposite directions pass each other, the older state is removed from the

queue and only the younger state remains. While there is still a state in the queue, the

updated state curves for power and volatility are passed to the particle system each frame.

When the queue is empty, the state shifter returns to idle and is only reactivated when a new

state is registered.

29

The VFX handler of each connection has the option to react to changes of the scenario’s

state. The direction a new state should travel can also be determined. This way, if the

scenario’s state changes, by changing the input of a specific source, the grid will start to react

at the corresponding location. For example, when reducing the amount of power generated,

the grid would turn red, starting at the generators and eventually moving towards the users.

Beta Reflection

With the StateShift functionality, the grid was reacting in a responsive and organic way as

intended. Having the states travel through the grid made it easier to locate where the change

is coming from and made the grid feel a lot more dynamic. The system was stable and

reacted well, even when the scenario state was changed multiple times in short succession.

The PathLink tool proved extremely useful when making quick adjustments to the grid layout

and the state shifter ensured a satisfying functionality of the grid.

The terrain now looked a lot more detailed and had a nice shoreline, which worked very well

with the custom-made water shader. The environment style was now closely resembling the

original concept, where the terrain had a very realistic style and high surface and texture

detail. The clean, neutral white buildings created a fitting contrast to the green and blue

background of the terrain and seaside. The cities were framed nicely by a moderate number

of trees which had some variation in height and rotation. All components were now blending

a lot better into the background terrain, after adding decal projectors to every building (see

Figure 13).

Figure 13: Final scenario content with all components and the power grid with surplus

and shortage

30

7. Conclusion

Although the project was heavy on actual development in the later stages, its successful

completion was ensured by a solid development basis, a thought through workflow and a

clear understanding of the required pipeline and functionality for the scenario to work as

desired.

Especially with the little time available for the project, it was vital to create an optimized

workflow and to have a clear view on what was required in functionality and style and how

the desired result could be achieved. Analyzing the different advantages and restrictions and

then selecting the most suitable pipeline prevented obstacles during later development,

because few unforeseen problems arose. It was important to define at least the basic

requirements for all the scenario’s components in order to design an efficient workflow. While

3D art and environment design were less of a problem regarding development efficiency, the

creation of the particle grid certainly was. Without a proper understanding of how the particle

system could be visualized and what functionality it would have to offer, it would have been

a highly inefficient development process.

The terrain could be designed very well using the Gaia Terrain Tools. The terrain stamper

and texture assets were useful for sculpting and texturing a nice and detailed terrain

background. The price of Gaia was justified by its value during development and choosing

the external software was helpful. The trees had to be manually placed into the environment,

but since the tree count was kept quite low this proved to be a very accurate and convenient

way to fill the terrain. However, a bit of time could have been saved by using the Unity Terrain

tree painter, had it worked properly in HDRP.

The available rendering pipelines could easily be compared and, through analyzing the

advantages and restrictions, the High Definition Pipeline could quickly be defined as the most

suitable one. Even though the graphical load was higher than in the LWRP because the VFX

graph was used, along with HDRP rendering and some post processing, the performance

was very balanced, because most graphical aspects had been optimized and simplified, as

to fit within the technical limitations of the target device. The Lightweight Pipeline would offer

a higher graphical performance even on less powerful systems, however in this situation if

would have prevented the use of the VFX graph and the Decal Projector, both of which were

vital features for developing the scenario.

As mentioned earlier, the target device was unfortunately not available during development,

due to the touch table being in possession of the client in Berlin. Because if this, the input

simulator proved very useful, by recreating the intended user input as best as possible.

Adapting to this situation early on enabled the development and testing to continue without

significant delay and therefore little time was lost.

The resulting scenario fulfills the requirements of the client and stays within the technical

limitations, regarding the graphical load. Environment and Components fit together well even

though they were created in different styles. The terrain presents a fitting background that

doesn’t draw the user’s attention away, but rather supports the scenario’s content. The

interactive layer handles well and makes the users interaction with the scenario feel

responsive, due to the grid reacting in a dynamic way.

31

To conclude, within a short amount of time, a suitable pipeline could be defined and a

corresponding workflow formulated. This ensured a highly time efficient development of the

scenario by selecting suitable tools and optimizing the use of particle systems, using the VFX

graph and the interaction with its exposed parameters.

8. Discussion

The established workflow and the fact that, with it, is was possible to complete a well-

structured development in a short period of time, shows how valuable a thought through basis

is for a time-restricted production process, such as in this project.

In projects with a lot of time pressure it becomes even more vital to establish a suitable

workflow early on. With the correct focus, this can quickly be achieved. Realizing problems

or obstacles throughout development might be a more common situation. However, having

to change an entire pipeline in the middle of a project, due to predictable problems that would

have been obvious, had pipeline been thoroughly analyzed, is an unnecessary waste of

valuable development time.

Creating an efficient workflow does not mean that specific development tools need to be

created or an entire custom pipeline needs to be developed. Simple things like having a

sufficient understanding of an engine’s or tool’s capabilities or collecting knowledge about

best practices or common existing workflows can already have a huge impact on the

development process. These things will therefore not have to be determined by trial and error

during development, which will save a lot of time and additional, unexpected workload. This

means that even with little time it is more than possible to establish a workflow that will aid

development and make the process more efficient.

It was very helpful to have a conceptual basis of what the scenario would have to include and

how each component was to be developed. Already thinking about how the visual

requirements could be fulfilled within the technical limitations and software restrictions proved

very valuable during later development, since there was no need for discussion about which

tool would best be suited for a particular feature. There were no unpleasant surprises, like

incompatible tools or pipelines, since all the possible issues had been addressed ahead of

the development.

Although it would have been nice to have a more refined custom pipeline for the development

with particle systems, the time it would have taken to develop the necessary tools and

interfaces for this would have probably been significantly higher than the time it could

potentially have saved during development.

32

9. Recommendations

Based on the result of this research and development project, several recommendations can

be given regarding the work with interactive particle systems and the value of a well-defined

workflow.

It is highly recommended to spend time ahead of development to analyze potential tools that

can be used to create different features and components of the project. The most suitable

pipelines and tools can be selected, and an optimal workflow determined. Additionally, all the

potential issues and problems, due to incompatibility of certain tools, for example, are already

known and can be overcome more easily. This takes a lot of stress out of the development

process, since the unexpected, unpleasant surprises will be held to a minimum.

Creating an interface for the VFX graph particle system proved extremely convenient for

development. Even if little extra functionality is desired, a system to interact with the

parameters through script makes the development process a lot easier, since the scripts’

functionalities can quickly be altered or extended, whereas the graph’s parameters can only

be changed as they have been defined and exposed in the graph itself.

In script, different behaviors can be managed, by using scriptable objects, with different sets

of parameter values. This proved very efficient when different versions of the particle effect

needed to be created. Quickly exchanging behaviors was a lot easier than creating a new

prefab version.

Without the option to test the scenario on the actual hardware it was developed for, an input

simulator had to be implemented that recreated the interaction with the touch tables input

tokens. This was a great way to test the scenario’s functionalities without having to wait for

an opportunity to test on the target device. User feedback from test sessions on the actual

device would be extremely valuable in the future, regarding possible changes and polishing

of the scenario’s interactive component.

33

10. References

Unity Terrain Tools

Procedural Worlds. (2019). Introducing Gaia. Retrieved March 2019 from

http://www.procedural-worlds.com/gaia/

Procedural Worlds. (2019). Stamper Introduction. Retrieved March 2019 from

http://www.procedural-worlds.com/gaia/tutorials/stamper-introduction/

Procedural Worlds. (2019). Spawners – Terrain Trees. Retrieved March 2019 from

http://www.procedural-worlds.com/gaia/tutorials/spawners-terrain-trees/

Unity Technologies. (2019). Unity Terrain – Getting Started. Retrieved February 2019 from

https://blogs.unity3d.com/2018/10/10/2018-3-terrain-update-getting-started/

Unity Technologies. (2019). Unity Terrain Trees. Retrieved February 2019 from

https://docs.unity3d.com/Manual/terrain-Trees.html

Unity Technologies. (2019). Unity Terrain Engine. Retrieved February 2019 from

https://docs.unity3d.com/Manual/script-Terrain.html

Particle Systems in Unity2018

Anthony Uccello, Eric Van de Kerckhove. (2018). Introduction to Unity Particle Systems.

Retrieved February 2019 from

https://www.raywenderlich.com/138-introduction-to-unity-particle-systems

Unity Technologies. (2018). Shuriken Particle System Documentation. Retrieved February

2019 from https://docs.unity3d.com/ScriptReference/ParticleSystem.html

Unity Technologies. (2019). Visual Effect Graph. Retrieved February 2019 from

https://unity.com/de/visual-effect-graph

Unity Forum Discussion [Reddit]. (2019). Shuriken (Particle System) vs VFX Graph.

Retrieved February 2019 from

https://www.reddit.com/r/Unity3D/comments/afvloq/shuriken_particle_system_vs_vfx_graph

_when_to_use/

Brackeys [YouTube]. (June 2019). How many particles can Unity handle?. Retrieved from

https://www.youtube.com/watch?v=0deXRHX9C08

http://www.procedural-worlds.com/gaia/
http://www.procedural-worlds.com/gaia/tutorials/stamper-introduction/
http://www.procedural-worlds.com/gaia/tutorials/spawners-terrain-trees/
https://blogs.unity3d.com/2018/10/10/2018-3-terrain-update-getting-started/
https://docs.unity3d.com/Manual/terrain-Trees.html
https://docs.unity3d.com/Manual/script-Terrain.html
https://www.raywenderlich.com/138-introduction-to-unity-particle-systems
https://docs.unity3d.com/ScriptReference/ParticleSystem.html
https://unity.com/de/visual-effect-graph
https://www.reddit.com/r/Unity3D/comments/afvloq/shuriken_particle_system_vs_vfx_graph_when_to_use/
https://www.reddit.com/r/Unity3D/comments/afvloq/shuriken_particle_system_vs_vfx_graph_when_to_use/
https://www.youtube.com/watch?v=0deXRHX9C08

34

Unity Editor Interface

Sirenix. (2018). Odin Inspector. Retrieved March 2019 from

https://odininspector.com/documentation/sirenix.odininspector.assetlistattribute

Scriptable Render Pipelines in Unity2018

Unity Technologies. (2019). Lightweight Render Pipeline. Retrieved February 2019 from

https://unity.com/de/lightweight-render-pipeline

Unity Technologies. (2019). High Definition Render Pipeline. Retrieved February 2019 from

https://blogs.unity3d.com/2018/03/16/the-high-definition-render-pipeline-focused-on-visual-

quality/

Unity Technologies. (2019). Decal Projector. Retrieved April 2019 from

https://github.com/Unity-Technologies/ScriptableRenderPipeline/wiki/Decal-Projector

Unity General

Unity Technologies. (2019). Unity – Manual: ScriptableObject. Retrieved April 2019

https://docs.unity3d.com/Manual/class-ScriptableObject.html

Unity Technologies. (2019). Unity – Manual: LOD Group. Retrieved March 2019

https://docs.unity3d.com/Manual/class-LODGroup.html

Power Grid Structure and Development

Copenhagen Economics. (2018). Netzentwicklungsplan für die Zukunft. Retrieved March

2019 from

https://www.tennet.eu/fileadmin/user_upload/Company/News/German/Hoerchens/2018/Ten

neT_study_clean_format_10JUNE2018_vrs10.pdf

TenneT TSO GmbH. (2019). Projekte NEP 2030. Retrieved March 2019 from

https://www.netzentwicklungsplan.de/de/projekte/projekte-nep-2030-2019

Technical Data

TenneT TSO GmbH. (2019). Spezifikationen (PC, Screen, Table, Etc.). Appendix I

https://odininspector.com/documentation/sirenix.odininspector.assetlistattribute
https://unity.com/de/lightweight-render-pipeline
https://blogs.unity3d.com/2018/03/16/the-high-definition-render-pipeline-focused-on-visual-quality/
https://blogs.unity3d.com/2018/03/16/the-high-definition-render-pipeline-focused-on-visual-quality/
https://github.com/Unity-Technologies/ScriptableRenderPipeline/wiki/Decal-Projector
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://docs.unity3d.com/Manual/class-LODGroup.html
https://www.tennet.eu/fileadmin/user_upload/Company/News/German/Hoerchens/2018/TenneT_study_clean_format_10JUNE2018_vrs10.pdf
https://www.tennet.eu/fileadmin/user_upload/Company/News/German/Hoerchens/2018/TenneT_study_clean_format_10JUNE2018_vrs10.pdf
https://www.netzentwicklungsplan.de/de/projekte/projekte-nep-2030-2019

35

11. Appendix

Appendix I – Technical Information about the Touch Table

Blueprint sketch of the touch table’s layout

36

Data about the target device, made available by the client

37

Appendix II – List of created assets

3D Models:

• stadt_Haus.obj

• stadt_Hochhaus.obj

• wind_OffShore.obj

• wind_OnShore.obj

• speicher_pump.obj

• speicher_batterie.obj

• speicher_gas.obj

• powerplant.obj

• netz_masten.obj

• kv_platform.obj

• kuehlturm.obj

• akw_kuppel.obj

• industrie_lager.obj

• industrie_haus.obj

• industrie_halle.obj

• pinetree.obj

Textures:

• stadt_Haus_albedo.png

• stadt_Haus_splice.png

• stadt_Haus_big_albedo.png

• stadt_Haus_big_splice.png

• stadt_Haus_small_albed.png

• stadt_Haus_small_splice.png

• stadt_Hochhaus_albedo.png

• stadt_Hochhaus_ splice.png

• wind_OffShore_albedo.png

• wind_OffShore_ splice.png

• wind_OnShore_albedo.png

• wind_OnShore_ splice.png

• speicher_pump_albedo.png

• speicher_pump_ splice.png

• speicher_batterie_albedo.png

• speicher_batterie_ splice.png

• speicher_gas_albedo.png

• speicher_gas_kw_albedo.png

• speicher_gas_ splice.png

38

• powerplant_albedo.png

• powerplant_ splice.png

• netz_masten_albedo.png

• netz_masten_ splice.png

• umspannwerk_albedo.png

• umspannwerk_splice.png

• kv_platform_albedo.png

• kv_platform_ splice.png

• kuehlturm_albedo.png

• kuehlturm_ splice.png

• akw_kuppel_albedo.png

• akw_kuppel_ splice.png

• industrie_lager_albedo.png

• industrie_lager_ splice.png

• industrie_haus_albedo.png

• industrie_haus_ splice.png

• industrie_halle_albedo.png

• industrie_halle_ splice.png

• industry_factory_1_albedo.png

• industry_factory_1_splice.png

• industry_factory_2_albedo.png

• industry_factory_2_splice.png

• pinetree_albedo.png

• pinetree_ splice.png

• terrain_grass.sbs

Scripts:

• ComponentReactor.cs

• ComponentHandler.cs

• StatusHandler.cs

• VerlustReactor.cs

• VerlustHandler.cs

• SpeicherReactor.cs

• SpeicherHandler.cs

• NetzPathHandler.cs

• NetzLinkReactor.cs

• StateShift.cs

• StateShiftExtensions.cs

• StateFrame.cs

• StateCheckPoint.cs

• CheckpointReactor.cs

• VFXExtensions.cs

• PathLinkSO.cs

39

Appendix III – Work samples

1) 3D development

2) Technical development

3) Technical Art

4) Script descriptions

In the following various samples of the work done in this graduation project are presented.

They range from 3D modelling and texturing to the designing of particle effects and custom

shaders using the VFX graph and Shader graph and technical tasks such as scripting

necessary functionalities for the scenario to react to changes made by the user. These scripts

will briefly be explained, along with samples of selected pieces of code.

1) 3D Development

• Terrain sculpting and texturing

• Component modelling

Terrain

Background environment created with a Unity terrain and sculpted and textured using Gaia

40

Component Modelling

3D Models

A selection of 3D models used in the scenario

41

Texturing

Texture maps and 3D model of kv_platform.obj

Albedo map (left) with white base and grey details mixed with ambient occlusion data; Splice

map (right) consisting of Metallic (R), Ambient Occlusion (G), Blend Mask (B) and

Smoothness (A), which are cast into the Red, Green, Blue and Alpha channels of a RGBA

texture.

Wireframe model and final in-game rendering

42

2) Technical development

State Shift and Checkpoint Scripting

Checkpoint event triggered by registering a new scenario state

Extracting the states in the current queue into animation curves to be passed to the particle

effect

43

3) Technical Art

• Water shader

• Morph shader

• Particle effect

• Path Link

Water Shader

Water shader in the scenario

Animated texture sampling in shader graph

44

Morph shader

Sampling the objects height and cutting the geometry in shader graph

Steps of the components morph cutting in the scenario

45

Particle Effect

VFX graph for particle effect

Particles following the defined path of the particle effect in the editor

46

Path Link

Calculating the location of each point on the path

Extracting a 3-dimensional path from the points’ positions using 3 animation curves

47

Sampling of the 3 curves in the graph in order to create a path

48

4) Script descriptions

• ComponentReactor.cs

• ComponentHandler.cs

• StatusHandler.cs

• VerlustReactor.cs

• VerlustHandler.cs

• SpeicherReactor.cs

• SpeicherHandler.cs

• NetzPathHandler.cs

• NetzLinkReactor.cs

• StateShift.cs

• StateShiftExtensions.cs

• StateFrame.cs

• StateCheckPoint.cs

• CheckpointReactor.cs

• VFXExtensions.cs

• PathLinkSO.cs

All reactor scripts inherit from Reactor.cs, created by the programmer. Reactor.cs registers

to the events of the class it should react to. The different reactor scripts, when reacting to an

event, trigger specific functions in their corresponding handler scripts.

The handler scripts contain all functionality that the component or particle system should

execute, when reacting to an event, representing a change in the scenario’s state. The

handlers hold references to the according scripts, materials or particle systems they need to

influence, for example the geometry-cutting materials on each component or the parameters

of a particle system.

StateShift.cs is a script that takes in a new state, translates this state into keyframes on an

animation curve and moves these frames over time along the curve’s timeline. If a state

reaches the end of the timeline, it is passed on to the next StateCheckPoint.

StateCheckPoint.cs reacts to states being registered by triggering an event containing data

about the new state, which all StateShift instances that are registered to the checkpoint will

be able to receive.

The initial triggering of a new event originates from the CheckpointReactor class. It inherits

from Reactor.cs as well and triggers the first checkpoint event containing the new state, if it

is specified that the checkpoint should react to a scenario change directly.

The PathLinkSO is a scriptable object class that contains variables a particle system can use.

With it different behaviors can be defined and exchanged during development. If the behavior

is updated all particle systems using the same behavior will change immediately. This

optimizes the development with particles systems.

VFXExtensions and StateShiftExtensions hold helpful functionality that can easily be reused

throughout the development, such as the updating of a particle system parameter e.g.

49

Appendix IV – Visual progress and Beta release representing the projects result

Beta Build after finalizing the last Iteration

Beta release build with full UI implementation

50

Visual development process

Mockup, Prototype and Alpha Iterations

