

MANIPULATION OF ANIMATIONS IN RUNTIME 2

Graduation

Tabletop RPG with AR & VR elements

Cas J. ter Horst

University of Applied Science Saxion

M.H. Tromplaan 28

7513 AB Enschede​.

Twinsense Online Brand Excitement

Ripperdastraat 1

7511 JP Enschede.

Author Note

Cas ter Horst, student at the Academy of Creative Technology, University of Applied

Science, Saxion Enschede.

This document has been written for the course: Graduation Report, meant to showcase the

progress and results of the student’s research and experimentations throughout the weeks,

prior to the writing of this report.

Correspondence regarding this paper should be addressed to Cas ter Horst, student of the

Saxion University of Applied Science. Email: 407589@student.saxion.com.

MANIPULATION OF ANIMATIONS IN RUNTIME 3

Abstract

This report is a final draft of the graduation report. It is a continuation of the implementation

plan report, with added research and acquired results. It will mention the reasons for choosing

the graduation assignment. The assignment being: The manipulation of animations during

run-time, revolving around the IK-system in Unity, and explain the reasoning behind it. It

will mention the client’s wishes and the limitations and conditions that have been faced

during the project. It will also depict the preliminary research done beforehand, containing

research about earlier literature, documents, websites and personal experimentations leading

up to the implementation report.

As a continuance, it will also contain the research, results and experimentations succeeding

said implementation plan report combined with an explanation of the 12 competences and

how these are imbedded in the work.

Keywords:​ research, animation manipulation, IK-systems, experimentations, 12 competences

MANIPULATION OF ANIMATIONS IN RUNTIME 4

Preface

It has been a few months since the start of the project. Thus far it has already been a

joyous journey and an enjoyable experience. I have been immersing myself into my work. As

a result I haven’t always kept my journals and documentations up to date. Luckily, I have

been posting on my blog whenever there is any relevant progress to be shown. However, I’d

would advise my future-self to record any and all failures of experiments for the next time I

am asked to defend my research, to show my development properly. I scarcely have any

non-theoretical work to show, but I have a test scene set up with tons of experimentations.

First off, I would like to thank my graduation coach, Taco van Loon, for helping me get this

position in this project. I had some trouble finding a graduation spot at the beginning of the

semester. But with the guiding hand of Taco, I managed to secure myself a spot at

Twinsense. He showed me my options and handed me some contacts for possible positions.

Taco is very willing to help with anything he can and likes to make sure all my concerns are

dealt with.

Speaking of Twinsense, I would like to thank Albert Hoekstra, my company supervisor for

allowing me to work at his company. Even though, I do not physically work at the Twinsense

headquarters. He agreed to take me in when I was down and out and in need of a graduation

position. He’s been a very friendly coach and has always shown interest in my work.

MANIPULATION OF ANIMATIONS IN RUNTIME 5

I would also like to thank Alejandro Moreno Celleri for his weekly visits and advise. Even

though he is not my guiding teacher, he is always open to answer questions and seems to be

genuinely interested and concerned about the happenings within the project group. I haven’t

always had the pleasure of meeting with him on a weekly basis, due to the sheer size of our

project team, but his messages and concerns were always relayed by the team leaders.

Furthermore, I would sincerely like to thank all my teachers which have guided me thus far,

throughout my years here at Saxion for all the work they put in me. Every single one of them

seems to love their work and have an honest interested when it comes to helping the students.

They’ve put up with my nagging and stress-filled emails, when I believed I was running out

of time for assignments submissions and the like.

I would also like to thank the team members of my graduation project group and any project

group I was a part of in the past for that matter. My team helped me out when I got stuck and

needed some insight from a different perspective. Especially when the programming got

though. I only needed to ask and they were ready to help me understand and help resolve my

problems.

Lastly, I would like to thank anyone who I still have forgotten to mention. I appreciate any

and all things you have done for me. I am proud of myself for making it this far. I couldn’t

have done it by myself.

MANIPULATION OF ANIMATIONS IN RUNTIME 6

Table of Contents

​3.​ General description 8

​4.​ Client’s Objective 10

​5.​ Limiting conditions 11

​6.​ Main questions 12
​6.1.​ Sub questions​………………………………………………………………………...13

​7.​ Theory 14
​7.1.​ Known research​……………………………………………………………………...14
​7.2.​ Known problems​……………………………………………………………………. 16

​8.​ Problem definition 18

​9.​ Scope 20

​10.​ The approach 21
​10.1.​ Methods​…………………………………………………………………………….21

​11.​ Answering the sub questions 22
​11.1.​ Differences​………………………………………………………………………….
22
​11.2.​ Workings of IK​……………………………………………………………………..23
​11.3.​ Limitations of IK​…………………………………………………………………... 26
​11.4.​ Effector​……………………………………………………………………………..28
​11.5.​ Changeable targets​………………………………………………………………….
29
​11.6.​ Skeletal compatibility​……………………………………………………………....30
​11.7.​ Event system with IK​…………………………………………………………….... 31

​12.​ Conclusion 32

​

MANIPULATION OF ANIMATIONS IN RUNTIME 7

13.​ Appendix 35
​13.1.​ Reflection​………………………………………………………………………….. 35
​13.2.​ Journal ……………………………………………………………………………...​39

​13.2.1.​ Optimal skeleton……………………………………………………………...​39
​13.2.1.1.​ Joint setup……………………………………………………………....​41

​13.2.2.​ Skeletal spine………………………………………………………………....​43
​13.2.2.1.​ Squash and stretch ……………………………………………………...​43

​13.2.3.​ Tutorials……………………………………………………………………....​45
​​13.2.3.1.​ Scripting ………………………………………………………………..​46
​​13.2.3.2.​ Experimentations……………………………………………………….​48

​13.2.4.​ Arm IK
………………………………………………………………………..​51

​13.2.4.1. Sword slashing ………………………………………………………....​52
​13.2.5.​ Other work…………………………………………………………………....​54

​13.2.5.1.​ Rigging …………………………………………………………………​54
13.2.5.2. Weightpainting
………………………………………………………….​55
13.2.5.3.​ Delta Mush ……………………………………………………………..​55
​13.2.5.4.​ Modelling ……………………………………………………………....​56
​13.2.5.5.​ Animations
……………………………………………………………...​57

​13.2.5.5.1. Plant girl ………………………………………………………….​57
13.2.5.5.2.​ Scout……………………………………………………………...​58

​13.2.6.​ Team role……………………………………………………………………..​59

​14.​ Annex 60
​14.1.​ Blog links …………………………………………………………………………..​60
​14.2.​ Scripts………………………………………………………………………………​61

​14.2.1.​ Foot IK ……………………………………………………………………….​61
​14.2.2.​ Foot IK Pro…………………………………………………………………...​63
​14.2.3. Reference Foot IK 1 ………………………………………………………….​66
​14.2.4.​ Reference Foot IK 2 ………………………………………………………….​70
​14.2.5. Punch Combo IK……………………………………………………………..​75
​14.2.6.​ Slashing IK…………………………………………………………………...​77

​14.3.​ References ………………………………………………………………………….​78

MANIPULATION OF ANIMATIONS IN RUNTIME 8

​3.​ General description

A recurring problem when playing video games, is that the immersion can be broken

quite easily by something unexpected or unrealistic happening. One of these problems is the

player character acting abnormally, when interacting with the environment. The character is

out of place or doesn’t quit react in a realistic manner, if it reacts at all. When this happens,

the player snaps back to reality and loses focus of the game, which goes hand in hand with

his or hers enjoyment.

“Immersion is a metaphorical term derived from the physical experience of being

submerged in water.” (J.H.Murray)

Most games use animations that are quite linear. For example: walking, running, jumping or

swinging a sword. These animations can be visually pleasing by applying physics and other

neat tricks, such as blending sideways walking animations for smoother transitions. Basically,

having more senses assaulted with sensory information at once, the better or stronger the

immersion will be. (​J. M. (2015, October 20). The Psychology of Immersion in Video Games​)

Bad animations can have a negative effect. For example, the latest Mass Effect Andromeda,

developed by BioWare and published by EA. Player reviews suggest that players had a hard

time being immersed and joy the game. One of the reasons being due to the facial animations.

These small, but significant details, can set off a trigger in your brain, bringing you out of

your immersion and possibly ruining your enjoyment of the game. (​Stapleton, D. (2017,

March 20). Mass Effect: Andromeda Review​)

MANIPULATION OF ANIMATIONS IN RUNTIME 9

A different example of breaking immersion that fits better with this research: When a sword

doesn’t quite reach its target in the correct manner or angle, ór when a foot slides or hovers

above the ground. The player will notices all these small details subconsciously and when

they all add up, the player will again have a hard time being immersed. Luckily, animations,

such as a sword swing, can be edited in real time via IK controls within the engine, to a

certain degree. This allows the animator to set targets where the sword can hit or its foot will

land. This will create a more believable animations and keep the immersion going.

Using IK-systems, also allows for reusability from the same animations, while holding

different weapons and with different targets, thus optimizing the workflow and efficiency.

The animator doesn’t need to recreate all animations to fit every character, except for when

the body is too differently shaped. ​Alexander Bereznyak talks about IK and gives

demonstrations at the GDC. (​Bereznyak, A. (2018, January 19). IK Rig: Procedural Pose

Animation (GDC, Ed.)​)

MANIPULATION OF ANIMATIONS IN RUNTIME 10

​4.​ Client’s Objective

According to the client’s wishes, augmented reality and virtual reality features need to

be implemented into a 3D tabletop-like game. Preferably with the requests, and vision of the

client implemented. The clients requires the students, which are assigned by the Saxion

University of Applied Science, to create a sociable and cooperative game, that thrives on

immersion and storytelling. It should be viable enough to showcase the possibilities between

augmented reality and virtual reality in a fun manner, and allow for future projects.

.

MANIPULATION OF ANIMATIONS IN RUNTIME 11

​5.​ Limiting conditions

When working with augmented and virtual reality, there are a plenty of limitations

that need to be taken in account. Especially when combining the two in a single system. For

example, VR renders every object in the scene twice, because it uses double lenses inside the

headset. It also needs to have a positive 90 frame rate, otherwise players can get nauseous.

Luckily VR is usually played on a desktop, thus the power it can handle is significantly

higher than an AR game run on a mobile device. (​Martindale, J. (2018, December 17).

Oculus Rift vs. HTC Vive: Prices drop, but our favorite stays the same​)

By combining VR and AR, it is possible to let the VR player host the game on their desktop

PC and let most of the calculations be done by the PC, instead of the mobile phone. This

enables more power to be utilized by the phone for other calculations. The PC must of course

be capable to handle those calculations and needs a certain bandwidth to establish a stable

connection to the server.

MANIPULATION OF ANIMATIONS IN RUNTIME 12

​6.​ Main questions

To refresh the memory, the research topic is: How to manipulate animations in

runtime, by use of IK-systems in Unity. The biggest challenge is creating animations, which

won’t break the immersion of the player. The plan is to help create better looking animations

to keep the player immersed and focused. It would be a shame, if the results of the research,

are the reasons that caused the immersion to break in the first place. Fortunately, there are a

few things available online about this topic that can help with figuring out a solution to the

problem. But sadly, most of those are not very detailed and some are only intended for a

different engine.

To answer the main question, several sub questions need to be answered as well. Some of

these questions can be hypothesized beforehand, but some new question will certainly arise

during the experimentations in Unity.

MANIPULATION OF ANIMATIONS IN RUNTIME 13

​6.1.​ Sub questions

The several sub questions that have come up beforehand will help to answer the main

question. There a multiple things that need to considered and researched. One of those things

that needs to research, before animating can even begin, is the need to understand how the

basics of IK work and what the best possible rig is. What could be wise to figure out as well,

is how to attach weapons and other props to the character. The weapon would of course be

the object that needs to reach the target and not the hand that holds it.

The sub questions that have arisen are broad and might even consist of multiple sub questions

themselves:

- How does inverse kinematics work within Unity?

- Does it function differently than previous experiences?

- What are the limitations of Unity’s IK system?

- How can the position of the effector be decided?

- How can the targets change seamlessly?

- What type of rig is consistent with IK?

- How does inverse kinematics work for characters with a different rig?

- How can an event system be attached to work harmoniously with the IK system?

- What things must absolutely be avoid to make it work properly?

These questions will be answered under the “​The approach​” headline, but a separate journal

will be added to help get a better understanding of my thought process and experiences.

MANIPULATION OF ANIMATIONS IN RUNTIME 14

​7.​ Theory

​7.1.​ Known research

The Unreal engine already has inverse kinematics implemented in their engine for a

few years now, under the name “​Ikinama​”. However, Unity3D has not. The plan is to do

research on how to get this to work properly in the Unity engine, to a certain degree. The

Unity engine is used for the current project after all. Unreal has made their programming

system quite easy to understand via their Blueprint system, which allows people who do not

know how to code, to be able to achieve the same results, as someone who does know how to

code. The Blueprint system is essentially programming with nodes, each node has a certain

code or function connected to it. ​(​Engine, U. (n.d.). Blueprint Best Practices)

It comes with its limitations however. If the user want to create something unusual or entirely

new, the system can’t make it work, or can only make it work to a certain degree. Unity gives

the user a lot more freedom, when it comes to what can be done within their engine. But it is

also quite a bit more difficult for an inadequate programmer, who isn’t familiar with C#,

which is the programming language Unity uses for their scripts. ​(​Documentation, Unity

scripting languages and you – Unity Blog. (n.d.))

The way this works in Unreal is pretty simple to understand, thanks to the documentation on

their site and their live tutorials on YouTube, hosted by the Unreal staff or experts. Of course

the engine works differently than Unity’s, but having a basic understanding of how this

works can help me figure out how to get it to work in Unity. After all, there might be some

similarities that can used. (​IKinema RunTime and Unreal® Engine 4. (n.d.)​)

MANIPULATION OF ANIMATIONS IN RUNTIME 15

Another great example, are the popular Assassins Creed games. The climbing system in the

series uses the Inverse Kinematic system prominently, since scaling buildings is a key feature

of the games. Ledge grabbing via normals and edge detection, allows for the character to

correctly place its hand on top of a ledge, via IK. Michael Milord talks about the system in

one of his videos, explaining the limitations, constraints and possibilities. (​Milord, M. (2016,

January 11). Developer View: Assassin Creed Unity Parkour 1​)

Regarding how this could work in Unity, there is documentation on their site that explains the

basic workings of IK in the engine. The built-in functions that can be called upon in the

scripts make the code a lot easier to handle, but there are tons a variables that come into play

when writing the code. Combined with forums found on google, of people who have tried to

approach this topic as well, and have ran into problems. There is plenty information to be

found and to be researched. There also are a few YouTubers out there that post tutorials on

how this system works in the engine and explain the possibilities of the system.

(​Technologies, U. (n.d.). Inverse Kinematics​)

MANIPULATION OF ANIMATIONS IN RUNTIME 16

​7.2.​ Known problems

The known problems about using IK-systems in Unity, is that it possibly requires

more power due to the runtime adjustments of the bones, the GPU has to do more

calculations. But the difference between the risk and the results is neglectable. The pros far

outweigh the cons, especially since we are having most calculations done by the host PC.

IK works by transposing the bones in the chain via an algorithm. The first bone in the chain

gets overlooked, because it’s the effector: The bone that needs to reach the target. The second

bone transforms first and moves the effector closer to its target. Then the 3rd bone

transforms, then the 2nd bone again, then the 3rd and 4th bone and so on, until the effector

has reached his target or has gotten as close to it as possible. Via this Method, the entire joint

chain will evidently transpose incrementally, but the first few joints in the chain will

transpose the most. The further down the chain, the lesser the transformations.

Lukas Barinka and Roman Berka talk about such methods in their paper and describe how

they work. (​L. B., & R. B. (n.d.). ​Inverse Kinematics - Basic Methods​[PDF]. Prague: Dept. of

Computer Science & Engineering​)

Luis Bermudez explains the rough workings and differences of Forward Kinematics and

Inverse Kinematics, but in a way that is much easier to understand.

(​Bermudez, L. (2017, July 10). Overview of Inverse Kinematics – Unity3DAnimation –

Medium​)

MANIPULATION OF ANIMATIONS IN RUNTIME 17

Another issue can be that the model can deform in an unrealistic manner, especially if the

model is an organic character. Therefore, certain constraints need to be set for when using

this system. If a target is too far away for the character to reach it by simply stretching its

arms, then the spine can be transformed as well, to help extend its reach. If the effector still

cannot reach, then the effector will simply get as close to the target as possible. However, this

might cause to model to deforming into an unrealistic pose, where the arm is completely

stretched and the spine bend forward. Unity’s muscle system, that can be accessed when

configuring the avatar, can limit how far a humanoid character can bend.

MANIPULATION OF ANIMATIONS IN RUNTIME 18

​8.​ Problem definition

The problem the client has brought up, is a proof of concept where augmented and

virtual reality are combined into one demo. The ultimate goal of the client, is of course to

generate revenue with this concept, where the client's wishes regarding AR and VR are met.

By demonstrating the game as a demo or prototype, the client will be able to gain some media

attention and in turn, be able to appeal to a new branch of organizations that could require

Twinsense’s services.

However, the research of immersion through manipulation of animations in runtime, is only a

small part of the ultimate goal. The research and experimentations alone will not be able to

satisfy the client wholly or even satisfy the clients needs at all. The client is not in the gaming

business and would possibly have no need for the provided research, but by working with the

other students, the team can complete the client’s request and make sure the client is indeed

satisfied. The client is mostly interested in the technical part behind the project, but requires

the beautiful aesthetics to help sell the idea.

The original research question was supposed to involve manipulation of animations by means

of physics. However, having too many physics dependable objects in the game will extremely

increase the processing power required to run the game, and the game will not be as fast

paced where one might notice these physics in play. Thus, a decision was made to take a

different approach on animation manipulation, by swapping out the physics and

implementing the IK-system instead.

MANIPULATION OF ANIMATIONS IN RUNTIME 19

IK-system based animations are a little more predictable and controllable and can drastically

change the workflow, when factoring in the reusability of the same animations for different

movements. For example, by adjusting the position of the hands, a character can hold a

variety of weaponry or can change the way he walks and moves, in such a way, that the

original animation is barely recognizable.

MANIPULATION OF ANIMATIONS IN RUNTIME 20

​9.​ Scope

The limits of the assignment are pretty clear. The focus lies on animations. That

includes the subtasks like rigging and weightpainting as well. Those tasks are essential to

creating visually pleasing animations, but are not necessary to finish the research. Those are

tasks that have to be done in order to achieve the goals in particular fashion. A simplistic

dummy can be used to showcase the result, but having an eccentric character follow the

movements draws more attention.

Nevertheless, there will most likely have to be done some minor 3D modeling and texturing

to help with achieving the goals. For example, if the plan is to be able to cut a character

model limb from limb, destructible character will need to be created. But that will be the last

step, which will only happen when all the other things turn out to be done sooner than

expected.

As estimated, a lot of time will be spent on writing code for the IK-system. Unity does not

work with visual scripting like Unreal engine does, thus a concrete understanding of the basis

of the programming language, which is c#, is needed.

Besides models, textures and animations, there is a lot more when it comes to developing a

game. The other topics can be summed up as, game design and visual effects. These tasks

will not be focused on deliberately, simply because there is no desire to gain any more

knowledge about these topics and it will not help with making natural looking animations.

MANIPULATION OF ANIMATIONS IN RUNTIME 21

​10.​ The approach

​10.1.​ Methods

To answer my main question: How to manipulate animations in runtime by use of

IK-systems in Unity, a playable prototype will be constructed. In addition, a showcase and a

possible gag reel of bloopers and failures, that have been encountered throughout the process,

will be added.

.

The plan is to create a separate side project in Unity, where all experiments with the

IK-system and all of its settings will be done. Multiple animations, rigs and IK-systems will

be created to help figure out the optimal usage of the system. All the ins and outs on how the

system functions can be seen and notes taken of its limitations and conditions.

To answer the sub-questions, research and experimentations is required. This will be done by

create a test scene, where multiple animations and models can be imported and set up with

the IK-system. The animations will be played on the custom models, created by the project

team and then be used to figure out how the IK-system overrides the current playing

animation. The next thing that needs to be understood, is how does the effector and target

correlate; if multiple targets can be set and how to switch seamlessly between them; and if the

strengths of the override can be blended to create seamless transitions.

MANIPULATION OF ANIMATIONS IN RUNTIME 22

​11.​ Answering the sub questions

​11.1.​ Differences

The first sub question that needs answering is: How does inverse kinematics work

within Unity and does it function differently than previous experiences. Inverse kinematics is

widely used in a variety of 3D software to create animations, but what was still unfamiliar,

was that it is also used in game engines to adjust animations.

A quick summary to explain the basics of inverse kinematics: By translating the effector, the

last node in a joint chain, the other joints in the hierarchy will move accordingly to allow for

the effector to reach a certain target. Basically meaning that, by moving the wrist, the elbow

bends and the shoulder rotates to allow for the hand to be placed against a surface.

The big difference between inverse kinematics in a 3D program like Autodesk Maya and

Unity, is that the translations of the bones, caused by pulling on the inverse kinematics

effector, is baked onto the joints before exporting it to the game engine. Which means the IK

gets removed from the skeleton and is only used to determine the pose or the movements for

the animation.

In Unity, the IK system is running in real time. Which means that there can always be an

influence from a target to adjust the animations. The computer normally only has to

calculated the translations of the joints from the animation itself, but now there is an external

factor that can change those rotations on a whim. Causing the computer to do more

calculations to allow for that change to happen.

MANIPULATION OF ANIMATIONS IN RUNTIME 23

​11.2.​ Workings of IK

The way inverse kinematics works in Unity is fairly simple to describe, but harder to

accomplish, because IK works via built-in functions in a C# script. A skilled programmer,

who is experienced with the language, might not have too much difficulty using the built-in

functions to all of it’s extends, but the functions can be used in multiple different methods

and for different parts of the body. Such as the arms, legs, spine and neck.

As described on the Unity documentation page (​Technologies, U. (n.d.). Inverse Kinematics​),

inverse kinematics can be used to grab and hold onto objects, such as weapons. This works

by setting targets where the effector can be pulled towards too. But it can also be used to

adjust animations in a more subtle way.

For example, if a character needs to change the way he/she walks, or sway one of its arms a

bit less. It is possible to set a target close to the body itself, with a low influence, that will

ever so slightly pull on the effector to differentiate from the original animations. Causing the

character to walk with an arched back, have a limp, have one of its hands in its pocket or even

have a broken neck. (​AiGameDev.com. (2015, June 10). Nucl.ai Conference: Ubisoft Toronto

"IK Rig" Prototype​)

The image on the next page is a gif of one of our custom characters (left), which receives

animation overrides to create a better fitting walking animation. Find the full URL for the

blog post in the Annex under the headline “​Changeable Walk​”.

There will be more blog URLs linked in this paper. For convenience purposes, keep a

separate tab open with the blog. View the blog here: ​https://tabletoprpgblog.wordpress.com

https://tabletoprpgblog.wordpress.com/2018/11/28/sprint-6-animations-weapon-override-retargeting
https://tabletoprpgblog.wordpress.com/

MANIPULATION OF ANIMATIONS IN RUNTIME 24

Lastly, a good example that is widely used in games, is inverse kinematics for the feet.

Meaning, that the feet will always be pulled down onto the ground when walking on uneven

terrain or even stairs. This is done by casting a ray downwards, from the position of the foot,

until it hits the collision box of a ledge. The raycast would then translate the foot, to the point

where the ray had hit, and rotate the foot according to the normal of the surface.

The code required to make all of this happen is in its essence, very basic: Call upon the

animator, set up a target and create a new void function called OnAnimatorIK, wherein the

majority of the code will be written. This function allows the influences of the target to

override the current animation clip that is being played. One very important step that has to

be done, is the function requires the IK Pass to be enabled in the animator or all the code will

be ignored.

MANIPULATION OF ANIMATIONS IN RUNTIME 25

Inside the function, the target can be set and the amount of influence can be determined. The

target is the only thing that needs to exert influence on the effector, ranging from 0 to 1. 0

being no influence and 1 being the max amount. It is also possible to determine if, both the

translation and rotations of the target is needed to influence the effector, or just one of them.

The value of the influence is a

float, so the transition from the

original animation pose, to a full

override can happen smoothly.

This can be done overtime or by

adding a parameter with a curve.

The curve is especially handy

when working with Foot IK to

determine when the foot is

placed down on the ground or

lifts up.

The Annex contains two script: ”​Foot IK​” and “​Foot IK Pro​”, which use the attributes of

inverse kinematics for the feet. It also contains two downloaded scripts: “​Reference Foot IK

1​” & “​Reference Foot IK 2​”. They were used as reference to better help understand the

workings. They have been slightly altered due to experimentations with the scripts.

MANIPULATION OF ANIMATIONS IN RUNTIME 26

​11.3.​ Limitations of IK

Inverse kinematics sounds incredibly versatile, but there are of course a few things it

cannot do, or are very hard to do. Speaking from previous experiences when working with

IK. As observed, inverse kinematics has a hard time adjusting animations that are not

grabbing objects or placing the feet on the ground.

Animations, such as swinging a sword into a target, seems very difficult to accomplish. The

main cause of this, is the target being too far away. If the desired result is for the blade of the

sword to slice into the target, which is actually pulling on the effector on the wrist, some

mediocre results are achieved. Since the target is too far away for the hand to reach, the arm

will stretch to its fullest extend and it influence will cause to effector to linger at the targets

position too long, making it look like the swinging motion becomes a stabbing motion.

The URL to the corresponding blog post in the Annex under the “​Slashing​” headline.

MANIPULATION OF ANIMATIONS IN RUNTIME 27

Another limitation is the rotations that can be copied from the target. The target has to be set

up in such a way, that the rotations of the effector will not be twisted in the wrong axis. This

might not be too difficult to achieve for a handful of preset targets, but it does require a

solution for when there are dozens of targets which could change in runtime.

The apparent solution was to add a script to each target, which always looks at the effector.

The base rotation of the target is wrong it the first place, and the LookAt function, that is used

to allow this to work, disregards the original rotation given to it. Thus the target is given a

rotation offset in the script. Which allows for a sword to slice the target from the below, the

side or from up top.

The last limitation: inverse kinematics currently only works on humanoid rigs and does not

work on generic rig. It is being worked on to make it work on all types of rigs, according to

Unity’s roadmap.

MANIPULATION OF ANIMATIONS IN RUNTIME 28

​11.4.​ Effector

One thing that really needed the use of inverse kinematics, was changing combat

animations, such as swinging a sword or throwing right hook punches. But while messing

around in Unity, it is seemed that the effector of the hand was being pulled towards the target,

which almost looked as if the sword was slicing the target. Reflecting on the findings, it

became apparent that the effector had to be the last node in the joint chain, which in this case

was the hand joint, but the question that remained was whether or not it could be an empty

game object in the hierarchy, which could be placed in the blade of the sword.

The way the built-in functions works, is by calling upon the “​AvatarIKGoal​”. Which is

always one of the hands of feet. It doesn’t allow for simply putting in a different gameobject

in its slot and expecting the function to work. But what can be done, is giving the IK effector

an offset, or better said: the effector can stay in place. When working on the feet IK, this

came to light. Unfortunately, recreating it, to try it out for the sword swinging animation set

up in Unity has been futile. With some more time to work on it, there will be another attempt

to try and see if it is indeed possible to recreate the code and place an empty game object in

the blade of the sword. Making the empty game object the new position of the effector.

MANIPULATION OF ANIMATIONS IN RUNTIME 29

​11.5.​ Changeable targets

One major thing that needs to be achieved, is to randomize the influence of the target

in runtime or decide via set parameters which target should exert influence. With parameters,

the engine can decide where an attack should hit depending on the critical strike factor and

luck. Making sure the experience stays surprising and fresh. The hardest part about changing

targets, is of course the coding, but besides that, it is difficult to determine when a strike or a

punch has landed. The thing that needs to be taken in account when changing between

targets, is that the transition needs to happen incrementally, so not to cause any snapping.

The coding seemed more complex than anticipated. In essence, the code can hold an array of

targets that will be randomly picked, or could in essence be picked depending on set

parameters. Then, depending on the animation, a curve needs to be added to tell the

parameter when a hit has occurred. This could possibly be done by adding colliders and

hitmarkers to the targets and the weapons. That would require more setting up, but could

ultimately give better results, due to not being animation dependent, but physics dependent.

An early iteration of the script can be found in the Annex under the headline “​Punch

Combo​”.

The image below is of the curves used to determine the influence of the inverse kinematics

and the curve used to determine how many punches have been thrown.

MANIPULATION OF ANIMATIONS IN RUNTIME 30

​11.6.​ Skeletal compatibility

As mentioned before, the humanoid rig is currently the only type of rig that is

compatible with the inverse kinematics system in Unity. But for a humanoid rig to work

properly, the avatar needs to be set up correctly, so that the AvatarIKGoal, which is called

upon in the script, matches with the correlating bone.

Setting up the avatar is quite simple, one can just drag-and-drop the bones in the correct slots,

but that is not necessary when working with the correct naming convention. Unity will

automatically detect the bones and map out the avatar. Only thing that might be required is to

set up the T-pose properly, so that the animations will be retargeted correctly. Unity’s

“​Enforce T-pose​” option does a decent job of getting it right, but it's usually pretty crooked.

MANIPULATION OF ANIMATIONS IN RUNTIME 31

​11.7.​ Event system with IK

What is meant by an event system with IK, is scripting the events, so that condition

will change automatically during runtime, without having to manually change the settings

and values. This is especially handy when, for example, a character picks up a different

weapon and needs to swing it from a different angle. An event system is immensely complex

with a lot of “​if​” and “​else​” statements that determine the next action depending on the

current condition. When implemented correctly, it can allow for a lot of varying situation that

can keep the gameplay original and fresh.

The idea was, that characters can change their angle of attack by the randomizing the

positioning and rotation of the targets throughout the enemy body. Maybe even, depending

on what target is activated, play different animations, so that the same animation is not

repeated with just an offset. But change the animation from a side swinging to an uppercut or

even an over-the-head swing.

Unfortunately, this part hasn’t been researched yet and it is doubtful it will ever be

implemented, due to the fact that the current state of the project is not ready for it, yet.

Hopefully, by the time the animations and characters are done, it is possible to implement

these functions and show a demo that is capable of demonstrating the inverse kinematics

override.

MANIPULATION OF ANIMATIONS IN RUNTIME 32

​12.​ Conclusion

Inverse kinematics has shown to be quite capable of a variety of different methods to

adjust animations in runtime. It does however come with its limitations and flaws. A few of

these limitations turn out to be just steps that need to be performed in order to get inverse

kinematic to work. Some of these steps however, should already be performed when setting

up a basic humanoid character within Unity.

For example, for inverse kinematics to work, the character needs to have a humanoid rig,

since the other types aren’t supported yet. Evidently, the avatar should be set up correctly as

well, to some extent at least. It isn’t necessary for playing the animations, but the movements

can look off if not done right.

The IK Pass in the animator window needs to be enabled as well. It tells the engine which

characters can be influenced by inverse kinematics, otherwise the function will not be able to

adjust the animations like desired.

The biggest encountered limitation has to do with the amount of influence given to the IK

effector and the manner in which that influence is given. In the research is shown, that the

influence that pulls on the effector is controlled by a parameter curve, connected to the

animation itself, to determine the placement of the effector. With further research, it is shown

that the influence can be adjusted via different, much more elaborate methods, which don’t

necessarily give better results, because snapping can occur if the method used isn’t fully

worked out.

MANIPULATION OF ANIMATIONS IN RUNTIME 33

For example, inverse kinematics for the feet with the usage of curves can transition smoothly,

but the lingering influence can disrupt the animation, making it seem as though the foot is

glued to the floor for a moment. Contrarily, an elaborate IK methods, as seen in the annex

under headline “​Reference Foot IK 1​”, which determines the placement with a more

mathematical approach, can look great on uneven terrain, but still snaps when the difference

in height is too sudden. Therefore, it is wise to implement a prediction or a smoothing factor

that can determine when a sudden height difference is close enough to step on.

Some limitations are of the users own creation and shortcomings, depending on what the IK

function is used for, because Unity only provides the user with the necessary tools. If the user

doesn’t understand the function and the coding language fully, he/she will be limited by their

own inadequacies and won’t be able to fully utilize the function or explore different methods.

The IK system is basically a pull-towards-target function. Therefore, back and forth motions

work excellent, but swinging movements suffer from lingering influence of the target,

making it appear as if effector is stuck at the target's position, until the influence has

decreased enough to continue with the animation. If this happens too sudden, the character

will snap back to its original pose.

If the target has been set too far away for the effector to reach and the influence reaches the

max value, the limbs of the character can unnaturally stretch to try and reach it. Which in

some situations might be desired when grabbing onto an object. But when the only thing that

needs to be adjusted is the angle of the arm, to keeping the animation the same, it’s better to

rotate the entire upper body, with a different IK function, instead of pulling on the effector.

MANIPULATION OF ANIMATIONS IN RUNTIME 34

A different method, that has nothing to do with inverse kinematics, can also be used to

achieve a similar result. The LookAt function allows for rotation of the shoulder bone, in

such a way, that it essentially fakes the effector in the wrist being pulled towards the target.

This method is an unorthodox workaround and is not meant to be used in this way. It requires

much fine tuning to get it right, but can essentially give better results in some cases.

MANIPULATION OF ANIMATIONS IN RUNTIME 35

​13.​ Appendix

​13.1.​ Reflection

Throughout this project I’ve learned an immeasurable amount of new knowledge. I do

think I’ve answered all my research questions and I am somewhat proud to say I answered

my main research question: How to manipulate animations in run time. But I feel as though I

have barely accomplished anything. This is easy to say in hindsight, though. Most of the

research and experimentations I have done are still in the prototyping phase and require more

in-depth knowledge and expertise to make it work successfully.

I am planning to finalize as much as I can on my own by sticking to it and I will strife to have

a better understanding of the programming language. I do believe that making animations

isn’t just setting keyframes on the right time frames, but using out of the box methods and

technical methods, to improve the animations you’ve made. All to create more elaborate and

eccentric movements, which will astound the player. To properly look back and reflect on my

project, I will be writing a bit for each of the 12 competences to show my capabilities.

“Use those talents you have. You will make it. You will give joy to the world. Take this tip from

nature: The woods would be a very silent place if no birds sang except those who sang best.”

- Bernard Meltzer.

MANIPULATION OF ANIMATIONS IN RUNTIME 36

I. Technological competences

1. Technical research and analysis

After meeting with the company, I realised that the company is very technically oriented.
They focus more on the the hardware and the programming than on the aesthetics. My goal
was to deliver immersive animation that can be adjusted in runtime so that the work could
be reused and optimized. I researched inverse kinematics and other similar functions in
Unity and set up a demo scene to demonstrate it to the client. The client was pleased with
the results and I kept working to improve the demo. I’m happy that the client liked the
results, but the client probably won’t have any need for the assets in future projects, since
the client isn’t a game developer.

2. Designing. Prototyping and realizing

During the (bi)weekly meetings, I showed the progress I had made and demonstrated new
methods I found to solve certain problems. I set up multiple characters with different
settings and played them side by side and steadily improved upon earlier iterations. The
client could see I had been busy working and complimented me on my progress. I
would’ve liked to make more progress, but my own shortcomings kept me from achieving
more.

3. Testing and rolling out

During the design process, iterative results needed to be tested. My goal was to root out
any flaws. I tested every prototype, I fine-tuned it until it worked. I created a playground
that could replicate multiple situations. Most of the results turned out to have some issues
or limitations, which needed some expert attention to properly solve. I delivered the
demonstration to the client at the end of every meeting. I believe the client was impressed
with the progress, but didn’t really understand the value of it.

II. Designing competences

4. Investigating and analyzing

With the research I gathered from multiple online sources and tutorials, I had to multiple
methods to experiment with. I need to play around with the settings and code to figure out
which one was the optimal one. My goal was to eliminate un-useful methods or combine
parts of the code. I ended up with a functional prototype that somewhat worked like
desired. I needed more knowledge of the coding language to fully optimize it.

5. Conceptualizing

The client is interested in creating a VR and AR game that demonstrates the possibilities of
the combination. However, my skill set is limited to producing assets. My goal therefore
was to focus on the adjustment of animations to help sell the concept. I believe the client
understood that my work is related to the success of the demo and liked my addition.

MANIPULATION OF ANIMATIONS IN RUNTIME 37

6. Designing

The methods are ready to be implemented, but the client would still need to have an expert
programmer take a look at the functions to fully flush out the various methods. I wanted to
finalize the methods more to fit the game better, but the basics are working fortunately.

III. Organisationalcompetences

7. Enterprising attitude

The market possibilities for a game, or any other software, with both AR and VR
implemented lies wide open, since very few people have attempted it. However, the target
audience for my work are game developers and related designers. My work can be
considered to be sold on the Asset Store, or on various 3D websites, or be used in future
similar projects. I’m excited that, once the methods are fully flushed out, they can be sold
online to create a small revenue.

8. Enterprising skills

The client mentioned, that the project results will be used to demonstrate the possibilities of
AR and VR. Possibly to attract customers. My task was to help with creating the visual
aspect. I demonstrated the possible usages of my research and results and help the client
see benefit from my work. I was happy that I could help create possible revenue for the
client.

9. Working in a project-based way

The project is executed with the cooperation of Saxion, with a team of students from
multiple different studies. I was one of the few with knowledge of the entire process and
the skills to perform certain tasks. I have unofficially worked as the quality assurer and
asset optimization and the majority of the creative work has been checked by me. The
client works in a different branch, but has a good eye and could see that the assets were of
a good quality. I liked being a person that people came to, to check their work or ask
questions.

10. Communication

During meetings with the client, I had to showcase the progress made. My goal was to
make sure the client knew what I was working on. I sat down with the client and explained
the progress, the workings and limitations of the current state of affairs. The client always
listened to my explanations and asked question. I was happy that the client showed interest
in my work.

MANIPULATION OF ANIMATIONS IN RUNTIME 38

IV. Professional competences

11. Learning ability and reflectivity

The progress often got halted by an unforeseen issue that sometimes couldn’t be solved by
myself. I needed to get feedback and insight from others to help better understand the
problems. I requested help from colleagues and reached out to friends or teachers with
expert knowledge of the topic. As a result, the issue got resolved, or worked around, within
hour, sometimes days. The new knowledge could sometimes be used to fix other issues as
well.

12. Responsibility

To make the project succeed, I had to focus on other work than just my own. I contributed
to the project in various ways, besides doing research and doing experimentations with my
code. The research I have been doing, is something I haven’t focussed on before and
proved difficult for me. It more technical than what I am used to. As a result, I sometimes
ended up neglecting my research, because the other work is more familiar to me and I was
the only one who actually knew how to do it. Plus I am better at it. I liked doing those tasks
because it made me feel more part of the team.

MANIPULATION OF ANIMATIONS IN RUNTIME 39

​13.2.​ Journal

Now that I’ve gone through and answered the sub-questions, I will share with you my

journal of the past few months and describe how I’ve used the previous mentioned methods

to tackle each obstacle. I will also share the other work I’ve done during this project in a

somewhat chronological order and explain my role in the team.

​13.2.1.​ Optimal skeleton

The first task I immersed myself in, was figuring out the rig best suited for retargeting

animations onto. I had some prior knowledge when it comes to rigging, but I would say I was

only adept at it at best, seeing as what I know now. The plan was to use one rigged character

to function as a base or template, where all other rigs and animations could be derived from. I

saw examples from ​Alexander Bereznyak at ​the Unity’s GDC talk and believed I could

recreate something similar, where multiple characters are driven by the same animation, but

look unique in their own way.

I used the HumanIK rig from Maya, because it is generally used as the default template for

characters rigs and it is compatible with all platforms. The naming convention is already set

up as well, all that is required is to place the joints accordingly. I built a dummy around it just

to help visualize the movements. I wanted to use this dummy as the base and began

experimenting with the rig to try and figure out what would work and what wouldn’t.

MANIPULATION OF ANIMATIONS IN RUNTIME 40

When researching inverse kinematics, I stumbled upon a FK/IK switch (Forward Kinematics/

Inverse Kinematics) in Maya. I always had trouble with creating smooth combat animations,

due to the fact I had always relied on inverse kinematics by itself. But by adding a switch,

that would allow me to swap between the two, I could, in essence, create smoother

animations where the character would swing a melee weapon.

The difference between IK and FK, is that forward kinematics allows you to change one node

at a time and let the other joints further down the chain stay in the same local position. By

simply adjusting the shoulder area, I could create a swinging motion which would otherwise

be a painstaking process to get right when using inverse kinematics. IK always tries to find

the shortest route from point A to B, disregarding any circular motions.

MANIPULATION OF ANIMATIONS IN RUNTIME 41

​13.2.1.1.​ Joint setup

The way I had set up the system, is by duplicating the original joint chain that needed

to be controlled by the system, twice. One duplicate will function with forward kinematics

and the other with inverse kinematics. I added the applicable constraints and IK handles and

once again constraint the original to the duplicates. Thus the original is driven by the other

bones. Then it’s only a matter of setting parameters to tell which of the duplicate bones needs

to exert influence on the original bone and which one doesn’t. By letting this be controller by

a simple float slider, your work process becomes considerably more efficient and no snapping

will occur when switching between the two.

It took me a few tries to get it right due to unforeseen circumstances. One of them being the

joint orientation, which apparently plays a big role in setting this system up. From my

personal experience, the joints need to be orientated towards the world axis. Otherwise, when

constraining the bones to each other, an offset will occur that will push the bones in

directions. Usually, when creating a character, you do not model it in an a T-pose, but in an

A-pose for a more organic look and deformation. At those moments, you do not want the

orientation to be world orientated, but orientated down towards the next bone.

After some trials and errors, I figured out that the set up needs to be done in a very specific

order and the joint orientation must absolutely not be changed after duplicating. Also

mirroring joints to the other side seems to cause issues, thus it is required to repeat the whole

process for the other arm.

MANIPULATION OF ANIMATIONS IN RUNTIME 42

The image below is a gif of the FK/IK switch in motion. You can find the URL to the

corresponding blog post in the Annex under the headline “​FK/IK​”.

On the right, you can see

the controller setup that

was required to create the

fully functional FK/IK

switch rig setup.

MANIPULATION OF ANIMATIONS IN RUNTIME 43

​13.2.2.​ Skeletal spine

When the FK/IK switch finally fully functioned, I wanted to rig the rest of the

Dummy to prepare myself for when I needed to rig the other characters, lest I make mistakes

then. Better to run into the issues beforehand, while I still have time to figure out the solution.

Fortunately, I did not run into any unforeseen problems, besides the one of my own making.

​13.2.2.1.​ Squash and stretch

I wanted to try and make the optimal rig that could be transferred to any character and

keep the same functionalities. When doing research on the spine, I came across the tutorial by

an Autodesk official and I figured I could, and should, implement this into my rig. I added a

squash and stretch spine system to the rig that would allow for minor deformations when

moving. Normally, when things move fast, they stretch out. When things come to a sudden

stop or collide with something, those things tend to squash in. The squash and stretch spine

used inverse kinematics to pull or push on the effector and scale the joints on the X and Z

axis depending on how far the Y axis got translated.

Unfortunately, when exporting the dummy character to Unity, I found out that Unity does not

allow for joint scaling, which essentially means the squash and stretch spine is not supported.

Thus I had to revert back to the original spine set up without the squash and stretch or use the

forward kinematic system. But since I had changed too much during the experimentations,

the rig got defective and would sink through the floor to the hips, when playing animations.

The probable cause is that the root of the character got deleted and the first bone of the

hierarchy took priority instead of the zero world position. A fresh rig solved the problem.

MANIPULATION OF ANIMATIONS IN RUNTIME 44

The image below is a gif of the ​squash and stretch spine at work. If you are not reading this

digitally, you can find the URL to the corresponding blog post in the Annex, under the same

headline.

The image below is a gif of the fully functioning rig at work. In the background you can see

examples of the previous iterations. If you are not reading this digitally, you can find the

URL to the corresponding blog post in the Annex, under the same headline.

MANIPULATION OF ANIMATIONS IN RUNTIME 45

​13.2.3.​ Tutorials

Now that the rig is fully functional within Unity. The first thing that I wanted to

research, is how the inverse kinematics system works in Unity. ​I imagined the best way for

me to learn to understand the system is to follow multiple tutorials, but just watching the

tutorials isn’t the way to learn something. Thus, I created an Unity scene and did exactly as

was instructed in the video.

The first tutorial I followed was from a YouTuber named Sharp Accent. An

Eastern-European man with, as you might guess, a sharp English accent. Thanks to him, I

learned the basics of inverse kinematics. But not only how it works, when it works right. But

also how it works, when it ìsn’t done right.

(Accent, S. (2015, May 28). Unity 5 Tutorial The Built-In IK System)

One of the first things I realized, was that the system can work in multiple different methods

and is much more complex than my first guess. The tutorial explained 3 different uses of

inverse kinematics to me, namely: Foot IK, Look IK and Arm IK. Each method uses the same

built in functions, but achieves a different result, depending on what you want to use it for.

MANIPULATION OF ANIMATIONS IN RUNTIME 46

​13.2.3.​1.​ Scripting

I began with the Foot IK, since the majority of the tutorials I found were about that

topic. I figured, I should familiarize myself with the topic and the code first, before I try to

tackle a more difficult subject. I wanted to use the IK system for the feet, so that the character

could step up on ledges. Our Unity terrain in the game consist of hexagonal tiles with each a

different height. Instead of a smooth, even terrain, thus beginning with the feet seemed like a

good place to start, since it a fairly important aspect of the game.

The custom code I wrote myself, following the tutorials, can be found in the Annex under the

headline “​Foot IK​”. The result of my code came in the ballpark of what I wanted it to do.

There was no snapping of the limbs and the movement looked somewhat natural, but only

when walking on slopes and uneven terrain. Unfortunately, it didn't quite work right on stairs

and ledges. The feet would move through the ledge, before smoothly placing it’s foot on top

of the ledge when the value changed from 0 to 1.

This was due to the fact that the code did not use any prediction. It only placed the feet on the

position where the downward raycast hit. It didn’t know when a ledge would come until it

was already too late. What I really wanted to happen was for the foot to raise itself and step

up upon the ledge, in a somewhat realistic manner.

I added a slight offset to the Y axis of the feet, because the point from where the ray is being

cast, is the foot joint. Which basically means that it’s being cast from the ankle and not the

bottom of the foot.

MANIPULATION OF ANIMATIONS IN RUNTIME 47

Unfortunately, trying to figure out when a ledge is coming, is far more difficult than I

anticipated. In simple terms, by shooting a raycast forward, as well as downward, you could

figure out when a ledge is coming, but combining both and place the foot accordingly,

seemed nearly impossible for a novice programmer like myself. Even the programmers in my

team had a hard time understanding the code and figuring out a solution. There are multiple

examples of people getting this Foot IK system right, with prediction implemented, but no

tutorials explaining it. Only assets that can be bought in the Asset Store or videos showcase

the script.

The downside of my code, is that the raycast is always on. Meaning that the feet will always

be glued to the floor. Therefore, I had to add an event curve and a float parameters to the

animation itself. Whenever the foot would lift itself off of the ground, I set the value to 0.

Whenever it would touch the floor, it’s automatically set to 1.

MANIPULATION OF ANIMATIONS IN RUNTIME 48

​13.2.3.​2.​ Experimentations

Trying to think of an original solution for the Foot IK problem was hard. At some

point I had given up on the Foot IK, because after spending weeks of trying and messing

around with the code, it simply wouldn’t work. I decided to let it be for some time and look

for some free code online. I still wanted the Foot IK to be in the game, but I did not want to

waste anymore time on it, since it seemed futile.

I found 2 promising scripts online. It wasn’t explained how the code worked, but only how to

set it up in Unity. Both scripts had the same issue, but were they far more elaborate than my

own code and gave much better results. Although the legs snapped into place, instead of

transitioning smoothly. Looking at the code, I tried to understand how it functioned. I got the

gist of it, but it is very complex, with a lot of functions I hadn’t used in my own code.

One of the authors of the scripts was kind enough to leave a detailed description. When

comparing the reference code with my own, and trying to integrate some parts of it, proved a

difficult task. I asked one the programmers if he could help me reverse engineer the code, but

make the transitions of the feet happen smoothly. But after days of trying, it was still a futile

attempt.

Both Scripts can be found in the Annex under the headline “​Reference Foot IK 1​” and

“​Reference Foot IK 2​”.

MANIPULATION OF ANIMATIONS IN RUNTIME 49

When discussing the situation with one of the programmers, an idea sparked in my mind,

which seemed like a logical workaround for the foot IK. The idea was, that instead of trying

to predict when the a ledge is coming, and move the foot upwards accordingly, I needed to

make 2 separate animations, that would play when the characters was about to step up the

ledge. The programmers already had a system in place that calculated the position of the

character in the world and knew the height of the next tile.

I made an animation for each foot, depending on which leg was in front, so the right step-up

animations could be played. Then we’d simply would pull down the foot by the amount it had

overshot and translate the root of the character by that amount as well, to create a smooth

transition. Unfortunately, it once again proved very difficult to write the code, but it worked

to a certain extent.

One of the side effects of using the step up animation, was that the character launched into

the air for a moment and dragged it’s foot behind it. This happened because the root of the

character overshot and was pulled down too slowly.

MANIPULATION OF ANIMATIONS IN RUNTIME 50

The image below is a gif of my custom script and the step up animation at work. The URL

for the corresponding can be found in the Annex under the headline: “​Step up​”. The first

character is driven by my scripts, the 2 behind are being driven by other scripts that show

even worse results. The script needs more tweaking and a lengthy analysis of what is causing

the issues, but it could possibly work. It seems to be an ineffective workaround, though.

MANIPULATION OF ANIMATIONS IN RUNTIME 51

​13.2.4.​ Arm IK

When starting to work on the inverse kinematics for the arms, I first needed to figure

out how I should set up the rig properly so that the character could hold a weapon. I imagined

that I could insert a 2-bone joint chain in the weapon. One bone that functions as the root, to

be constrained to the hand. The other bone would be point where the weapon would collide

with the target. I didn’t fully understand how inverse kinematics worked in Unity yet, but I

understood the basic concept.

From what I understood, the last bone in the chain was the effector. By making the weapon a

part of the rig, as a continuous chain or a separate bone with a parent-child constraint relation,

I figured I could assign the effector myself. Unfortunately, Unity’s built-in function does not

allow for that. The system only works on humanoid characters and can only call upon the

preset effectors, or AvatarIKGoal’s as Unity’s documentation describes it: (​Technologies, U.

(n.d.). AvatarIKGoal)​. Such as the hands and feet, as well as their adjourned joints, which are

the elbow and knee.

Since only the preset effectors could be used, I figured I should get rid of the bone in the

weapon, since it wasn’t doing much good anyway. I parented the weapon to the hand joint

instead.

MANIPULATION OF ANIMATIONS IN RUNTIME 52

13.2.4.​1. Sword slashing

After having some experience from working with the Foot IK, I figured the arm IK

would be an easier process and it turned out the be easier, except for the animation I chose to

use. Which is a sideward slashing animation as you can see on the right.

The code works quite well for any kind of attack animation, besides animations which have a

side sweeping motion, due to the lingering influence of the target. The influence of the target

is decided by a float parameter with a curve.

Ideally, the influence gradually increases overtime until the sword reaches the target, then

immediately disappears and the override blends into the original animation.

It took me some time trying to figure out how to smoothly transition between the override

and the original animation. Adjusting the curves seemed the most obvious thing to do, thus I

tried various options to find the perfect blending point, but nothing seemed to erase that last

lingering moment. One of the programmers suggested to cut the animation into two. One

animation that charges up and slices the target and another that continues where the other left

off. We figured it might be easier to blend between two animations rather than trying to

smoothly decrease the influence. But alas, the blending of animations seemed too difficult for

us to write in code, so we had to go back to square one.

I took some time off from trying to figure out how to smoothly blend the animations and

focused on the animation itself, because it still looked awful. The whole point of using the IK

system was to create animations that look natural whatever the target is, but when the target

goes too high or low, it looks wrong how the spine doesn’t bend as well.

MANIPULATION OF ANIMATIONS IN RUNTIME 53

I found a function, similar to inverse

kinematics, called LookAt. Which allows

for the head and spine to deform

depending on the position of a target. By

implementing this function in the script

and assigning the same target, the

animation becomes a lot more natural

looking and somehow it fixed some of the

lingering of the weapon.

You can find the corresponding code with

green highlighted explanations in the

Annex, under the headline “​Slashing IK​”.

As well as the URL to the corresponding

blog post in the Annex, under the same

headline.

MANIPULATION OF ANIMATIONS IN RUNTIME 54

​13.2.5.​ Other work

Besides working on inverse kinematics and scripting, I was required to do some other

work to help the project team succeed.

​13.2.5.1.​ Rigging

I’ve rigged all the characters currently in game, which are:

- The plant girl (role: healer)

- The owl (role: scout)

- The golem (role: tank)

- The thief (role: assassin)

- The goblin (role: enemy)

The plant girl, owl and goblin are fully

rigged within Maya with the FK/IK

controller setup. The other characters just

have a basic joint setup.

Below is an image of the goblin with its fully functional rig.

MANIPULATION OF ANIMATIONS IN RUNTIME 55

13.2.5.​2. Weightpainting

I’ve weight painted the plant girl as well as the goblin.

The image below is a gif that demonstrates the polished weightpaint. You can find the URL

to the corresponding blog post in the Annex, under the “​Weightpaint​” headline.

13.2.5.​3.​ Delta Mush

I’ve done research on what the fastest way is to skin and weightpaint a model. I knew

from previous experiences that the Delta Mush deformer tool in Maya acts as a second skin

bind, which helps deform the model better when animation, but the deformer tool cannot be

exported to another program like Unity and therefore needs to be baked onto a copy of itself.

It needs some minor polish afterwards, because the baked copy isn’t an exact rendition of the

original.

Using delta mush saves a lot of time on bigger chunks of the model, but the finer detail still

needs to be hand painted.

Below is an image of the goblin with (right) and without (left) the delta mush enabled.

MANIPULATION OF ANIMATIONS IN RUNTIME 56

13.2.5.​4.​ Modelling

I’ve reconstructed the plant girl in to a female base mesh for the other team members

to use as a template for their characters. We have multiple female characters in our game and

making sure they all have the same proportions will improve the overall aesthetic.

MANIPULATION OF ANIMATIONS IN RUNTIME 57

​13.2.5.5.​ Animations

13.2.5.5.​1. Plant girl

I’ve made several animations for the plant girl and owl. These animations are taken

from the website: Mixamo and adjusted to fit our characters. The animations for the scout

received more polish than the plant girl, since there weren’t any animations on the site that

matched the abilities, thus I mixed multiple samples and adjusted them.

Below you can see the animations for the plant girl. There are 6 animations in total, for 4

abilities.

1. Basic attack
2. Basic heal
3. Summoning roots (trap)
4. Burrowing underground
5. Burrowing back up
6. Revive

You can find the URL to the corresponding blog post in the Annex, under the “​Plant girl​”

headline.

MANIPULATION OF ANIMATIONS IN RUNTIME 58

13.2.5.5.​2.​ Scout

Below you can see the animations for the scout. There are 6 animations in total, for 3

movement and 3 abilities. Some in-between animations still need to be made to properly

transition between the animations.

1. Running
2. Flying forward
3. Casting spell while flying
4. Flying backwards
5. Whirlwind slash
6. Windwall

You can find the URL to the corresponding blog post in the Annex, under the “​Scout​”

headline.

MANIPULATION OF ANIMATIONS IN RUNTIME 59

​13.2.6.​ Team role

This project team consists of a lot of people from a lot of different studies, we started

with 16 and will end with 15, since one of us has already graduated halfway throughout the

project. Everyone has a background in arts & technology or some kind of prior knowledge of

entertainment or computer engineering. Everyone has a creative background to say the least.

But only a few, myself included, have a game design background and know the entire process

from front to back. Which resulted in me and my fellow game designers to take up the role of

project leaders.

I declined the honor, because I was not interested in doing all the tasks that come with being

a project leader, but I have functioned as a quality assurer and overall teacher to the ones who

were new to the process. I’ve taught people how to 3D model, UV-map, weightpaint and

optimize the general workflow by showing them my methods.

Once a models was done, according to the creators, I usually took a look at them to see if

they were animation worthy. If not, I would send them back, or tweak the model slightly

myself if my request was too difficult for them. I also took a look at the UV-map to see if it

could be optimized a bit more.

When the models were finalized, I rigged them with a basic joint set up and send them back

to their creators to weight paint them. I would usually keyframe a few extreme poses to help

them along.

MANIPULATION OF ANIMATIONS IN RUNTIME 60

​14.​ Annex

​14.1.​ Blog links

Changeable Walk
Ter Horst, C. (2018, November 28). Sprint 6 | Animations | Weapon override & retargeting.
Retrieved from
https://tabletoprpgblog.wordpress.com/2018/11/28/sprint-6-animations-weapon-override-reta
rgeting

FK/IK
Ter Horst, C. (2018, October 11). Sprint 1 | Research | IK/FK switch. Retrieved from
https://tabletoprpgblog.wordpress.com/2018/09/24/sprint-1-research-ik-fk-switch

Squash & Stretch spine
Ter Horst, C. (2018, October 11). Sprint 1 | Research | Dummy Rig. Retrieved from
https://tabletoprpgblog.wordpress.com/2018/09/28/sprint-1-research-dummy-rig

Fully functioning rig
Ter Horst, C. (2018, October 19). Sprint 3 | Research | Rig fixed. Retrieved from
https://tabletoprpgblog.wordpress.com/2018/10/12/sprint-2-research-rig-fixed

Step up
Ter Horst, C. (2018, November 28). Sprint 6 | Research | Foot IK. Retrieved from
https://tabletoprpgblog.wordpress.com/2018/11/28/sprint-6-research-foot-ik

Slashing
Ter Horst, C. (2018, November 07). Sprint 5 | Research | Sword Slash. Retrieved from
https://tabletoprpgblog.wordpress.com/2018/11/07/sprint-5-research-sword-slash

Weight paint
Ter Horst, C. (2018, November 22). Sprint 5 | 3D modeling | Weight painting. Retrieved from
https://tabletoprpgblog.wordpress.com/2018/11/22/sprint-5-3d-modeling-weight-painting

Slashing IK
Ter Horst, C. (2018, November 16). Sprint 5 | Research |Procedural animation (Slashing).
Retrieved from
https://tabletoprpgblog.wordpress.com/2018/11/16/sprint-5-research-procedural-animation-sl
ashing

Plant girl
Ter Horst, C. (2018, December 04). Sprint 6 | Animations | Plant Girl Abilities. Retrieved
from
https://tabletoprpgblog.wordpress.com/2018/12/04/sprint-6-animations-plant-girl-abilities

Scout
Ter Horst, C. (2018, December 18). Sprint 7 | Animations | Scout. Retrieved from
https://tabletoprpgblog.wordpress.com/2018/12/18/sprint-7-animations-scout

https://tabletoprpgblog.wordpress.com/2018/11/28/sprint-6-animations-weapon-override-retargeting
https://tabletoprpgblog.wordpress.com/2018/11/28/sprint-6-animations-weapon-override-retargeting
https://tabletoprpgblog.wordpress.com/2018/09/24/sprint-1-research-ik-fk-switch
https://tabletoprpgblog.wordpress.com/2018/09/28/sprint-1-research-dummy-rig
https://tabletoprpgblog.wordpress.com/2018/10/12/sprint-2-research-rig-fixed
https://tabletoprpgblog.wordpress.com/2018/11/28/sprint-6-research-foot-ik
https://tabletoprpgblog.wordpress.com/2018/11/07/sprint-5-research-sword-slash
https://tabletoprpgblog.wordpress.com/2018/11/22/sprint-5-3d-modeling-weight-painting
https://tabletoprpgblog.wordpress.com/2018/11/16/sprint-5-research-procedural-animation-slashing
https://tabletoprpgblog.wordpress.com/2018/11/16/sprint-5-research-procedural-animation-slashing
https://tabletoprpgblog.wordpress.com/2018/12/04/sprint-6-animations-plant-girl-abilities
https://tabletoprpgblog.wordpress.com/2018/12/18/sprint-7-animations-scout

MANIPULATION OF ANIMATIONS IN RUNTIME 61

​14.2.​ Scripts

​14.2.1.​ Foot IK

MANIPULATION OF ANIMATIONS IN RUNTIME 62

MANIPULATION OF ANIMATIONS IN RUNTIME 63

14.2.​2.​ Foot IK Pro

MANIPULATION OF ANIMATIONS IN RUNTIME 64

MANIPULATION OF ANIMATIONS IN RUNTIME 65

MANIPULATION OF ANIMATIONS IN RUNTIME 66

14.2.​3. Reference Foot IK 1

MANIPULATION OF ANIMATIONS IN RUNTIME 67

MANIPULATION OF ANIMATIONS IN RUNTIME 68

MANIPULATION OF ANIMATIONS IN RUNTIME 69

MANIPULATION OF ANIMATIONS IN RUNTIME 70

14.2.​4.​ Reference Foot IK 2

MANIPULATION OF ANIMATIONS IN RUNTIME 71

MANIPULATION OF ANIMATIONS IN RUNTIME 72

MANIPULATION OF ANIMATIONS IN RUNTIME 73

MANIPULATION OF ANIMATIONS IN RUNTIME 74

MANIPULATION OF ANIMATIONS IN RUNTIME 75

14.2.​5. Punch Combo IK

MANIPULATION OF ANIMATIONS IN RUNTIME 76

MANIPULATION OF ANIMATIONS IN RUNTIME 77

14.2.​6.​ Slashing IK

MANIPULATION OF ANIMATIONS IN RUNTIME 78

​14.3.​ References
Two Bone IK. (n.d.). Retrieved from

https://docs.unrealengine.com/en-us/Engine/Animation/NodeReference/SkeletalControls/T
woBoneIK

UE4 - Principle behind Inverse Kinematics. (2015, October 10). Retrieved from
https://www.youtube.com/watch?v=gHwhTEMlXHU

U. (2018, July 12). Unite Berlin 2018 - An Introduction to CCD IK and How to use it.
Retrieved from https://www.youtube.com/watch?v=MA1nT9RAF3k&t=1530s

Unity 5 Tutorial The Built-In IK System. (2015, May 28). Retrieved from
https://www.youtube.com/watch?v=EggUxC5_lGE

D. (2016, March 02). Unity Character Controller: Update #1 - IK Foot Placement, Ledge
Climbing System. Retrieved from https://www.youtube.com/watch?v=NoGZ3I3lcbo&t=4s

N. (2017, May 16). Unity3d :Basic IK Tutorial. Retrieved from
https://www.youtube.com/watch?v=6UgB7TMk3Bg&t=26s

D. (2014, August 23). Unreal Engine 4 - Inverse Kinematic (IK) feature. Retrieved from
https://www.youtube.com/watch?v=KsJihbJCSDQ

https://forum.unity.com/threads/stuck-with-ik-any-good-step-by-step-inverse-kinematics-tutor
ials.415677/

Technologies, U. (n.d.). Inverse Kinematics. Retrieved from
https://docs.unity3d.com/Manual/InverseKinematics.html

R. (2016, November 02). Tentacle Inverse Kinematics - VR - Unreal Engine 4. Retrieved from
https://www.youtube.com/watch?v=MmrLJpW2c4g

The Best Animation Tricks of the Trade (For 2016). (2016, November 21). Retrieved from
https://www.youtube.com/watch?v=_1j5Tf6ulII

H. (2017, October 19). Tutorial #1 || Active Ragdoll Unity || Edsonxn. Retrieved from
https://www.youtube.com/watch?v=WbyScpgl5mw

T. (2014, August 26). Tutorial: Creating an FK/IK arm setup in Maya. Retrieved from
https://www.youtube.com/watch?v=M6ViCN_sPVE

T. (2014, July 29). Tutorial: Rigging an IK Arm in Maya. Retrieved from
https://www.youtube.com/watch?v=WkKx9ijydjk&t=63s​T. (2014, July 22). Tutorial:
Rigging an IK Spline Back in Maya. Retrieved from
https://www.youtube.com/watch?v=Pj6TrmxhPew

Active ragdoll with authentic balance. (2016, August 07). Retrieved from
https://www.youtube.com/watch?v=L8R3ta7KA5Q

https://www.youtube.com/watch?v=KsJihbJCSDQ
https://www.youtube.com/watch?v=WkKx9ijydjk&t=63s

MANIPULATION OF ANIMATIONS IN RUNTIME 79

C. (2016, February 12). Active Ragdolls in Unity 5. Retrieved from
https://www.youtube.com/watch?v=GeJ1ZTQIWUI

Advanced foot IK for Unreal Engine 4 - (100% Free). (2017, May 04). Retrieved from
https://www.youtube.com/watch?v=XetC9ivIXFc

Alan Zucconi. (2018, April 30). Inverse Kinematics for Tentacles. Retrieved from
https://www.alanzucconi.com/2017/04/12/tentacles/

Animation Bootcamp: An Indie Approach to Procedural Animation. (2017, October 21).
Retrieved from https://www.youtube.com/watch?v=LNidsMesxSE&t=784s

Augmented Reality. (n.d.). Retrieved from
http://aboutaugmentedreality.blogspot.com/p/limitations-of-ar.html

Augmented Reality Tutorial No. 14: Augmented Reality using Unity3D and Vuforia (part 1).
(2015, May 21). Retrieved from https://www.youtube.com/watch?v=qfxqfdtxyVA

Basic Switch IK/FK - Maya. (2016, October 16). Retrieved from
https://www.youtube.com/watch?v=rGplirUI9R4

C. (2015, February 04). Character Rigging - Step 6 - IK/FK Arm (Autodesk Maya). Retrieved
from https://www.youtube.com/watch?v=Qtua3919Gm0

S. (2017, March 17). Coding Challenge #64.2: Inverse Kinematics. Retrieved from
https://www.youtube.com/watch?v=hbgDqyy8bIw

M. (2013, July 16). Creating a Character Rig - Part 10: Basic IK, FK, and result leg joints.
Retrieved from https://www.youtube.com/watch?v=wDy6GQjPpp0

M. (2013, May 28). Creating a Character Rig - Part 5: Torso squash and stretch. Retrieved
from ​https://www.youtube.com/watch?v=Ip-5PD3aNIg

Bereznyak, A. (2018, January 19). IK Rig: Procedural Pose Animation (GDC, Ed.). Retrieved
from ​https://www.youtube.com/watch?v=KLjTU0yKS00&t=2330s

M. (2013, May 28). Creating a Character Rig - Part 6: Torso global transform and cleanup.
Retrieved from
https://www.youtube.com/watch?v=GTwe4Ejkn6Y&index=6&list=PL8hZ6hQCGHMXK
qaX9Og4Ow52jsU_Y5veH

How to do inverse kinematics (IK) in Unity? (n.d.). Retrieved from
https://answers.unity.com/questions/11106/how-to-do-inverse-kinematics-ik-in-unity.html

IK Setups. (n.d.). Retrieved from
https://docs.unrealengine.com/en-us/Engine/Animation/IKSetups

https://www.youtube.com/watch?v=Ip-5PD3aNIg
https://www.youtube.com/watch?v=KLjTU0yKS00&t=2330s
https://docs.unrealengine.com/en-us/Engine/Animation/IKSetups

MANIPULATION OF ANIMATIONS IN RUNTIME 80

IKinema RunTime and Unreal® Engine 4. (n.d.). Retrieved from
https://www.ikinema.com/index.php?mod=documentation&show=184&id=206

Inverse Kinematics simple example #Unity3d. (2017, July 02). Retrieved from
https://www.youtube.com/watch?v=GYfeALySSq8

Martindale, J. (2017, November 21). Headsets are just the beginning. How to make a VR rig
for all your senses. Retrieved from
https://www.digitaltrends.com/virtual-reality/what-you-need-for-full-vr-immersion/

Maya fk ik switch or ik fk switch. (2017, October 10). Retrieved from
https://www.youtube.com/watch?v=TxI5DvcIdHE

Murray, J. H. (1997). Hamlet on the holodeck: The future of narrative in cyberspace.
Cambridge, MA: The MIT press.

Rig an Ik Fk Leg - Maya (Part1). (2015, October 04). Retrieved from
https://www.youtube.com/watch?v=tkQ95mGOj-U

H. (2017, August 15). RTIK Unreal Engine 4 inverse Kinematics Demo. Retrieved from
https://www.youtube.com/watch?v=Cm-hjahqLh8

3. (2012, June 28). Spline iK Setup and Use. Retrieved from
https://www.youtube.com/watch?v=rGRNJKQVIW4

Stuck with IK -- any good step by step Inverse Kinematics tutorials? (n.d.). Retrieved from
https://forum.unity.com/threads/stuck-with-ik-any-good-step-by-step-inverse-kinematics-t
utorials.415677/

Stapleton, D. (2017, March 20). Mass Effect: Andromeda Review. Retrieved from
https://www.ign.com/articles/2017/03/20/mass-effect-andromeda-review

Martindale, J. (2018, December 17). Oculus Rift vs. HTC Vive: Prices drop, but our favorite
stays the same. Retrieved from
https://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive/

Engine, U. (n.d.). Blueprint Best Practices. Retrieved from
https://docs.unrealengine.com/en-us/Engine/Blueprints/BestPractices

Documentation, Unity scripting languages and you – Unity Blog. (n.d.). Retrieved from
https://blogs.unity3d.com/2014/09/03/documentation-unity-scripting-languages-and-you/

AiGameDev.com. (2015, June 10). Nucl.ai Conference: Ubisoft Toronto "IK Rig" Prototype.
Retrieved from https://www.youtube.com/watch?v=V4TQSeUpH3Q

https://forum.unity.com/threads/stuck-with-ik-any-good-step-by-step-inverse-kinematics-tutorials.415677/
https://forum.unity.com/threads/stuck-with-ik-any-good-step-by-step-inverse-kinematics-tutorials.415677/
https://www.ign.com/articles/2017/03/20/mass-effect-andromeda-review
https://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive/
https://docs.unrealengine.com/en-us/Engine/Blueprints/BestPractices
https://blogs.unity3d.com/2014/09/03/documentation-unity-scripting-languages-and-you/

