

Realtime Networking
Technologies for Unity
Graduation Report

RODRIGO SANCHEZ, 16.06.2020

CREATIVE MEDIA AND GAME TECHNOLOGIES

SAXION UNIVERSITY OF APPLIED SCIENCES

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 2

Information Page

Student: Rodrigo Sanchez

Student ID: 436703

Email: rodrigo_jsd@hotmail.com

Graduation company: Paladin Studios

Company coach: Olaf Abbenhuis

Guiding teacher: Paul Bonsma

mailto:rodrigo_jsd@hotmail.com

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 3

Preface

This study is part of the graduation module for the Creative Media and Game Technologies course at

Saxion University of Applied Sciences, the Netherlands. The assignment was conducted at Paladin

Studios, a game development company situated in The Hague, between the 10th of February and

the 19th of July 2020.

I would like to thank the members of Paladin Studios for allowing me to complete my graduation

among them and providing their support during the quarantine period. Particularly, I would like to

express my gratitude towards Olaf Abbenhuis for his extensive patience and guidance throughout

the project. Likewise, I would like to thank Paul Bonsma, my graduation coach, for his support and

understanding during this period. Additional acknowledgments go towards the staff of the Mirror

discord, for their readiness and extensive support through the course of this project.

A quirk present in this document is the almost interchangeable use of the words framework and

service. This is due to the varying nature of the ones analysed during the project. Both terms should

generally be interpreted as referring to the same type of product: a middleware high-level API that

provides networked functionality that can be integrated to a video game.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 4

Abstract

The development of networked games is a complex science. Paladin Studios is interested in

expanding their knowledge in this area, particularly regarding real-time multiplayer technologies.

The company identifies its current networking proficiency as a limitation for exploring future

opportunities.

This paper covers research into different networking topologies and message protocols appropriate

for the development of a fast-paced, real-time multiplayer game with high player capacity.

Sustaining a smooth game experience with these qualities incurs in various technical complexities

with economic consequences attached to them which should be considered at the start of a project.

In addition, there are inherent issues with multiplayer online games that affect the experience of the

end-user, such as lag and cheating users; some of these can be minimized through effective netcode

and adding a layer of validation for a player’s actions in a server or middle communication point.

Research indicates that to achieve highly performant networked code, custom solutions are

required, tailored to the type of game in question. Hence, despite the difference in the level of

performance between frameworks, this is not a deciding factor – considering the developer is able

to add their personal optimizations to the game. Considerably more significant is the ease-of-use of

the framework, more so with inexperienced users. After their list of features, the difficulty of setup,

available support, accessibility, and maintainability both in short-term and long-term projects are

crucial in the selection of networking frameworks.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 5

Table of contents

Information Page .. 2

Preface .. 3

Abstract ... 4

Table of contents .. 5

Glossary ... 7

Introduction .. 8

Reason for the assignment ... 9

Company Outline .. 9

Objectives of the Client ... 9

The question of the client ... 9

Products and services needed by the client ... 10

Expectation of the result for the client ... 10

Limiting condition and project boundaries ... 10

Preliminary problem statement .. 11

Problem Analysis ... 11

Formulation of the preliminary problem .. 11

Theoretical background .. 12

Problem Definition .. 12

Main and Sub questions .. 13

Main question: .. 13

Sub questions: ... 13

Deliverables ... 13

Scope ... 14

Description of the product .. 14

Results ... 15

Transport Layer ... 15

Network Topologies .. 17

Peer-to-Peer (P2P) .. 17

Relay Server (P2P) ... 17

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 6

Dedicated Server ... 17

Cheating .. 18

Service analysis and comparison .. 19

Photon Bolt ... 20

Mirror Networking .. 20

Forge Networking Remastered (FNR) ... 21

Performance ... 22

Choosing a service ... 22

The product ... 23

Network Lag .. 23

Conclusion ... 26

Recommendations .. 27

References: ... 28

Appendix ... 30

1.1 Comparison chart by relevant framework features.. 30

1.2 Possible networking stacks to choose for Unity ... 30

2.1.1 Bolt Unity Editor Integration .. 31

2.1.2 Bolt Coding style .. 31

2.2.1 Mirror Unity Editor Integration .. 32

2.2.2 Mirror Coding style .. 32

2.3.1 Forge Unity Editor Integration ... 33

2.3.2 Forge Coding style .. 33

3.1 Discord servers compared by member count ... 33

4. Screenshots of the prototype ... 35

4.1 Screenshot representing a Lobby system and a headless Windows sever. 35

4.2 AI controlled clients spawned over the network during a load test. 35

4.3 Server metrics after a real-world scenario test with 13 clients connected concurrently. 36

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 7

Glossary

Term Abbreviation Definition

Application Programming Interface API Functions and procedures a framework or
service exposes to a programmer.

High-level API HLAPI Directly integrated to gameplay code, API
developers commonly use to work on
application features.

Low-level API LLAPI Less abstracted than a HLAPI, it provides
more granular control over underlying
systems.

Server A computer that hosts an instance of the
application for users to connect to.

Client A user that connects to a server through
the network via an application.

User Diagram Protocol UDP

Transmission Protocol TCP

Internet Protocol IP The online address of the device. Needed
to connect devices together.

Transport Base messaging systems that read and
write packages from and to the network.

Headless Server Application stripped of graphics and other
unnecessary data.

Matchmaking Service operation that groups together
clients to play a game online.

Packet A bundle of data sent over the network.

Lag Processing time between the start of an
action and the result of it. Seen as delay.

Peer-To-Peer P2P Network topologies where one client acts
as the host client-server of the game.

Networking Code Netcode A subset of code that manages
communication between machines.

Authoritative Refers to the owner of the object being
allowed full control of it.

Amazon Web Services AWS Collection of cloud services that can be
used for hosting servers.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 8

Introduction

Multiplayer games often stand out from their competition by the robustness of the networking

architecture that sustains them. Gambetta (n.d.) wrote about various issues that plague fast

multiplayer games, such as cheating and network delay, as well as techniques that developers have

fabricated to tackle them, such as entity interpolation, client-side prediction, and lag compensation.

The idea, however, that complex, feature rich netcode is the end solution to have good networking

in any game is misguided, as stated by Olsen and Weimann (2019) who indicate, in their interview on

high-performance game networking, to consider purely the usage of the necessary tools for the job.

Catered to the type and requirements of a game, developers must choose between different

networking architectures for client and server, transport protocol for sending messages as well as

the frequency of the synchronization, a complex series of decisions.

This document opens with the definition of the assignment and reasoning behind it, the objectives

of the client, and their expected outcomes, as well as the formulation of research questions and

scope of the project. Subsequent sections contain the description of the products created during the

research period, followed by theoretical research and the analysis of different services and the

filtering method applied during the selection process, as well as the practical experience

accumulated during the creation of the product. Finally, the conclusion condenses the major findings

of the research in relevance to the client, while the recommendations section highlights general

networking advice based on the author’s learnings.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 9

Reason for the assignment

Paladin Studios seeks to expand their knowledge of networking services and define an efficient and

easy to use networking stack suitable for the creation of real-time multiplayer games. While they

already possess some experience in the creation of networked games, the technology needed for a

fast-paced, real-time multiplayer game is vastly different. Furthermore, numerous services are

available that could prove viable for the making of one such game.

Given the reasons, the assignment consists of research and exploration of some of these services,

both theoretical and practical with the goal to generate knowledge to be spread in the company.

Company Outline

Based in Caballero Fabriek in The Hague, Paladin Studios is a game development company currently

composed of around thirty employees. Founded on July 1st, 2005, initially it centered on using 3D

game technology for non-game purposes like 3D visualizations, big train simulators, and interior

design software. In 2010, the focus of the company shifted to the creation of video games, releasing

Momonga Pinball Adventures in the same year, which gained it international renown. In recent

years, Paladin Studios has co-developed mobile free-to-play games alongside various publishers. The

studio develops high-quality games for mainstream services and digital stores, from initial concept

and beyond.

The previous experience in the networking field within the company is represented in Stormbound:

Kingdom Wars, a card collection game in which players battle one versus one over the network in

strategic turn-based combat. Otherwise, Paladin Studios has conducted live-ops for multiple of their

released games for several months after their initial release.

Objectives of the Client

The question of the client

Netcode for games in real-time poses a complex series of issues that prevent a smooth, responsive

experience for the player. The technology behind major networking structures is fairly well explained

and available online. However, the implementation of said technology is an endeavor that would

consume an unreasonable amount of time and effort for Paladin Studios.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 10

The client would like to know what the most appropriate networking services are for the creation of

a real-time multiplayer battle royale type of game. The criteria for what makes a service good is

further defined in this document, first-and-foremost of which are ease-of-use and efficiency;

reinventing the wheel requires much effort, and thus, a rich number of ready-made features is of

great importance when choosing a service.

Products and services needed by the client

The client has requested that the solution be compatible with the Unity game engine and, ideally, to

allow hosting the game server on a Linux machine and using Amazon Web Services (AWS), to reduce

the overall costs of deploying the game. There are no more specific third-party products required,

the exploration of them is part of the assignment.

Of the student, the client wishes to receive a comprehensible guide based on the conducted

research, which gives an overview of important concepts of real-time networking, useful techniques,

and a catalogue of third-party services, their strengths and weaknesses summarized. Moreover,

prepared workshops on the topic for the developers in Paladin would be a preferred outcome of the

assignment. An ideal outcome would include the creation of a framework that developers could

easily import in their projects to start prototyping networked games.

Expectation of the result for the client

The client intends to utilize the knowledge generated during this assignment to provide developers

in the studio an easy way to prototype new game ideas that may need the use of a real-time

multiplayer framework, as well as to fill in a knowledge gap in the skill set of the studio.

Limiting condition and project boundaries

The project must abide by a non-disclosure agreement on internal matters, mention of other

services in current use by Paladin, and the sharing of any code or unreleased content from any

previous or ongoing game projects. Due to this, the assignment is designed with the intention of it

being a standalone project. Other limitations include the development time of five months, working

two to three days per week on the assignment, and the budget needed to work with some of the

networking services in question.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 11

Preliminary problem statement

Problem Analysis

Paladin has lacked a general knowledge or specialists with proficiency in networking for real-time

multiplayer games. The knowledge gap makes it impossible to create games or quickly start

prototypes that need these technologies, severely limiting the possibilities of new ideas the studio

may come up with. Additionally, real-time networked games make up a considerable share of the

market in the game industry; until this gap is reduced, the company is essentially shut off from a

large volume of opportunities in business development. Most publishers will demand to see

evidence of previous work or to otherwise validate that Paladin can carry out the development of a

project that needs such skills. As a matter of fact, while there are individuals versed in the subject,

there is scant proficiency in networking within the company. While the success of this project is not

critical for the studio, it would provide substantial benefits that could lead to the acquisition and

development of a new game project in accord with a publisher.

Within the project itself, the analysis and assessment of the ease-of-use of different platforms and

services requires qualitative measurement. Likewise, ensuring the efficiency of messages sent over

the network is fundamental for a fast-paced game. More importantly, the chosen framework must

support a responsive and smooth experience for the player. These aspects must be tested and

catalogued in an easy-to-follow format.

Formulation of the preliminary problem

The lack of experience in networking games at Paladin severely limits the creative, technical, and

financial potential of the studio. Resolving this issue by spreading knowledge to the developers

through curated research and workshops, or by providing them with an “easy-to-jump-into” custom

networking framework would achieve the most success for the client.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 12

Theoretical background

Game netcode resources on the internet are scarce in comparison to other areas of development.

Most existing articles only cover a general idea, the basics of the topic, introductory notes or focus

only on the low-level messaging protocol. Attempts to find more in-depth explanations or

implementation details are hard to find. Olsen and Weimann (2019) mention that after the basics,

there are not a lot of resources for high-quality netcode, and that most good resources on the

techniques used these days are dated.

Nonetheless, several valuable resources can still be found on the internet. In Multiplayer Game

Programming, Glazer and Madhav (2015) define many fundamental concepts of game networking in

a clear way. Gambetta (n.d) publicized a series of articles on fast-paced multiplayer games in which

he details important aspects of their architecture; likewise, an article on the networking behind the

Source Engine is available to the public, covering similar topics to Gambetta’s (Valve software, 2005).

A couple of sources on more complex concepts are also available online, such as floating-point

determinism (Fiedler, 2010) and rollback (Infil, 2019).

Suitable for the comparison and filtering of networking frameworks, comparison charts, blogs, and

forums can be found online, compiled by unknown individuals. Additionally, netcode analysis of

popular games (“Battle(non)sense”, n.d.) and benchmarks of low-level networking transports

(“Nxrighthere/BenchmarkNet,” n.d.) have been made available by skilled community members.

Apart from these specific resources, a wealth of knowledge can be gathered while exploring forums

in various developer portals and communities, presented in a much less organized manner. Of note,

the wikis, documentation pages and Discord communities of the networking frameworks to be

researched are invaluable for the development of this project.

Problem Definition

The problem that the client would benefit most from solving is to fill the knowledge gap that the

company’s developers have with networking. Unfortunately, achieving this raises multiple

subproblems, like defining a good medium to share this knowledge. It is more important, however,

to choose an appropriate networking framework based on the range of features it offers and the

ease to pick up by developers at Paladin Studios. The combination of the right tools for the task and

a jump-start on networking competence will ensure that Paladin is able to easily start new

multiplayer prototypes and bring them to fruition.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 13

Main and Sub questions

Main question:

What is the most accessible and efficient, currently available networking framework that the

developers in Paladin Studios can use for the creation of a battle royale type of game for

mobile platforms using the Unity engine?

Sub questions:

1. What model of network architecture is ideal for hosting fast-paced multiplayer games?

2. What development techniques are necessary to effectively host a game with many concurrent

players?

2.1. What are the technical and economic consequences of hosting a game with many

concurrent players?

3. What are the main issues present in real-time multiplayer games and how do they affect

players?

3.1. What are the negative effects of network lag and how can they be reduced?

3.2. How can cheating be prevented in an online game?

3.3. What are some techniques developers can implement into netcode to improve the

perceived responsiveness of a game for players?

4. How can different networking services be compared with each other?

4.1. How can the ease-of-use of a networking framework be measured?

4.2. How can the efficiency of a networking framework be measured?

Deliverables

• Proof of concept prototypes that replicate a small game including the necessary technical

functionality and an overview of their difficulty of implementation.

• A workshop-type presentation and attached relevant resources. This is to be conducted at

the end of the graduation period for Paladin Studios in order to condense and transmit the

learnings of the project.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 14

Scope

The objective of the graduation assignment is not to create a fully-featured game nor a final solution

containing all features a network framework can have, but to create a proof of concept focused on

proving and testing the given technologies. Furthermore, due to the limited time period of this

project, the creation of features is discouraged over research and testing of existing tools and

services. For this reason, it is not necessary to implement advanced techniques of networking such

as rollback or compression algorithms, unless a framework offers them out of the box.

While the assignment includes the proposal of a complete technological stack, the focus of the

research is in mid- and high-level frameworks. Low-level messaging systems, backend services such

as matchmaking, and deployment of game instances to the cloud, including server orchestration, are

out of scope for this project. Finally, the game needs to run on Windows, Android, and iOS on cross-

platform networking; Consoles and other platforms will not be necessary in these tests.

Description of the product

At the start of the graduation period, the client discussed the desirable characteristics and

functionality to be proven possible to achieve with a service as a result of the project. As such, the

base requirements for the prototype delivered are as follows:

• A real-time multiplayer game that can handle as many players as possible.

• Supports cross-play between PC, iOS, Android.

• The state of the game and objects are identical between players.

• Handles player reconnection, returning them to their state before disconnection.

• Movement is synchronized and is smooth even in high latency situations.

The prototype was to be created using the Unity game engine. The design of the game had to allow

for easy analysis and confirmation of the intended behaviour. With this motive, the prototype

features a battle royale game mode, simulating a boxing match – last player alive is the winner. The

game mechanics are simple, but they present the core cases of scrutiny:

• Constant actions: Character movement and rotation.

• Instant actions: Punching.

• Persistent state: Player name and color.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 15

Figure 1. An early screenshot of the game prototype.

These cases allow for the observation of correct state synchronization and latency, as well as their

scalability as the number of concurrently connected clients is increased. Tests during development

has been carried out primarily on a Windows PC, utilizing separate game builds for server and client,

connected over the external network.

Results

In order to conduct a proper analysis of frameworks, understanding fundamental concepts of

networking and their use cases is compulsory. Literature analysis from various sources provided

insight from experts as well as the community, findings which aid to answer many of the sub-

questions of this research.

Transport Layer

A library of methods that serves as a bridge between the application code and messages sent across

the network is commonly known as the transport layer (Ubiquity Networks, n.d.). They determine

how, when, and what sockets are used to send and receive data packets over the network. These

parameters are controlled by the transport protocol used to send a message; the two most

commonly used protocols are TCP and UDP. First and foremost, the low-level network protocol to

prioritize for the research must be determined, as not all services are built on, or support using more

than one transport protocol.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 16

Each network packet is broken into a section that contains the protocol’s parameters for sending the

message, called a header, and the meaningful information of the packet referred to as the payload.

Since the payload is the same regardless of the protocol used, the difference falls mainly in the

header.

Figure 2. The structure of a TCP and UDP headers. (Software Testing Help, 2020)

In figure 2, the TCP protocol guarantees reliability and correct ordering of messages, alongside other

features. Its drawbacks include slower processing speed from the overhead caused by the extra

functionality and the increased package size due to a larger header. In contrast, data sent through

UDP is unreliable — there is no flow control, error checking, and packages may be reordered or even

dropped.

Real-time games will usually prefer sending data over UDP due to the packages being lightweight

and not incurring the increased latency of TCP (Purdom, 2013). Some transport libraries minimize

the risks of UDP’s unreliability by providing optional flags that simulate the reliability of TCP

(SoftwareGuy, 2020). This mode of sending data is known as reliable UDP or rUDP.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 17

Network Topologies

Connecting users over the internet can be achieved in different ways. In 2018, House discussed the

benefits and drawbacks of different network topologies:

Peer-to-Peer (P2P)

This model has clients connect directly to one another. Typically, one of the clients serves as the host

for the match. The use of this model has decreased through the years as it implies making too many

sacrifices — the connection quality is reliant on customer hardware, leading to widely varying

latency. Additionally, it faces major security issues due to players being able to see other players’

information and manipulate the game to cheat. Finally, if the host leaves the game, the game ends

for everyone, unless developers support host-migration, a complex feature to implement

(Battle(non)sense, 2017). One of the few real benefits of this architecture is that it tends to be

cheaper than others, as it incurs in no financial fees for server hosting.

Relay Server (P2P)

 A technique similar to peer-to-peer, except that network messages must first go through a separate

server that relays the packages to players. This can help add an extra layer of security and expand

the network reach but since messages need to make more hops around the internet before reaching

their destination, it increases the total latency of a game.

Dedicated Server

By far the most expensive option, it is also the one that offers the most benefits provided it is

implemented correctly since the level of complexity is higher over other solutions. With sufficient

coverage, dedicated servers can achieve very low levels of latency and the best possible security,

preventing cheating and keeping user information private, all while being available to more people

around the globe. The economic cost of dedicated servers is directly related to the size and locations

of the audience playing the. In 2018, House discussed the difficulty of implementing dedicated

servers for a game considers the addition and integration of various other pieces to the machine:

separation of client and server, multiple backend services, and development of features that ensure

server authority.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 18

Figure 3. A chart comparing factors of different topologies in relevance to real-time games. (Unity, 2018,

03:00–13:21)
Cheating

A commonplace saying in the networking world is to “never, ever trust the user”. This is attributed

to the certainty that players can and will exploit any vulnerabilities of an application to gain a

personal advantage. This is particularly problematic for competitive games like first-person shooters

and MOBAs. Instances of cheating can be seen as hacking an application and altering it or injecting

custom code on top of it, with which a user may change their avatars to be faster, invincible, or have

access to items that other players commonly don’t.

By far the easiest way of preventing users cheating is to enforce an authoritative server architecture

(Gambetta, n.d.). Only possible with dedicated servers, every action a client wants to perform must

be first validated by the server. The simulation and state are maintained in the server and sent to

every client. Unfortunately, this architecture generally results in delays between user input and the

desired action being performed, which may result in a terrible experience for the user. While there

are ways to resolve this issue, such as client-side prediction and rollbacks, they add an increasing

level of complexity to the netcode.

Peer-to-peer networks require complex validation methods to minimize cheating, but since the code

is run on each user’s machine, it is still possible to tamper with it. Client-server architectures utilizing

a relay server provide an extra layer of security, and some services allow for cheating prevention

code to be added in the relay.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 19

For a fast-paced action game in networked real-time, dedicated servers would prove to be an ideal

choice due to the possibility for minimal latency as well as high security. Most of the cost and

complexity drawbacks of them are not in scope for this research, and Paladin Studios considers them

manageable risks, making this a viable topology for this research. Since dedicated servers would

provide a better experience in a production environment, a networking service that supports this

topology is to be preferred.

Service analysis and comparison

There is an abundance of networking services available at the time of writing, and many promising

ones schedules to become available by 2021. Each of these products offers different features and

are placed at different price points. After research and collection of various candidates, an initial

pruning phase supported by previous comparison user-made documents, such as the ones created in

2019 by Serinx and Mikson. This filtered out misplaced services and those with low parity on the

desired features or that proved unrealistically expensive. A comparison table considering relevant

aspects of the remaining services was created in order to grade them through a high-level overview.

This table can be found on appendix 1.1.

In consultancy with the company supervisor, three of the most promising services were selected for

deeper exploration. The decision was made to consider frameworks of different categories and that

fit the project’s schedule. These are Photon Bolt, Mirror Networking, and Forge Networking

Remastered, all of which support a dedicated server topology and a UDP messaging system.

Figure 4. In order: Forge Networking Remastered, Photon Bolt and Mirror Networking logos

To further assess these frameworks, two categories were established as points of analysis:

• Feature set: The out-of-the-box capabilities of a framework, advanced features, and support

for expandability.

• Ease-of-use: The learning curve and ease of development using a framework, as well as the

amount and quality of available documentation and developer support.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 20

The following are summarized descriptions and analysis of the selected frameworks, further details

about each can be found on the appendix section, as well as companion documents.

Photon Bolt

Part of the Photon networking product stack, Photon Bolt is a paid closed-source service with an

impressive set of out-of-the-box available features, primarily focused on fast-paced action games.

Feature Set

A leading service in this category, Photon Bolt provides advanced tools that fit the target game-type

well. These include authoritative movement, lag compensation, hitbox recording, client prediction,

interpolation, and more (Exit Games, 2020). Photon Bolt requires the usage of the underlying Photon

Realtime cloud services owned by Exit Games.

Ease-of-Use

Setup is more complicated than the other frameworks selected, as it involves creating an account

and registering the game instance in a browser beforehand. Photon Bolt requires the use of Unity

editor graphical interfaces to set up and manage all networked objects. After editing these the user

needs to press the compile button in order to start the code generation process. After these steps,

the developer can extend the generated boilerplate classes via code to implement the game logic.

The documentation and API are extensive and easy to read, and while customer support is not

centralized, appropriate developer and peer support can be found on its Discord server and forums.

Mirror Networking

A community-based open-source networking library, Mirror was initially developed as a replacement

and improvement over Unity’s UNET deprecated networking solution (Mirror Networking, n.d.).

While it does not include as many ready-made features as Photon Bolt does, it offsets this advantage

through their much larger and supportive community.

Feature Set

The Mirror package includes various components for synchronization and interest management. It is

targeted for massively multiplayer online games. Mirror allows for extensive customization to refine

the engine to the game being developed, including easily swapping of the transport layer for other

supported libraries. The active amount of concurrent developers guarantee new official updates

once a month to the Unity Asset Store (Mirror Networking, n.d.). Additionally, it is the only service

that mentions test coverage as part of the suite, sitting at 50% at the time of writing.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 21

Ease-of-Use

Easy to setup, and presenting good, extensive documentation and tutorial videos. The API

documentation is easy to navigate through as well. Easily its largest benefit, the active community of

users and developers in their Discord server provide extremely helpful and quick support, with

response times within one or two hours. Since Mirror was designed as a replacement of Unity’s

UNET, the workflow is very familiar to Unity developers, requiring minimal additions and changes to

network a gameplay class.

Forge Networking Remastered (FNR)

Similar to Mirror, FNR is an open-source networking library, however, its workflow resembles that of

Photon Bolt’s more closely. As such, it could be considered a middle point between the two and a

good candidate for this research.

Feature Set

One of the main advantages FNR presents over other frameworks is that it is engine-agnostic, which

means it is not bound to the Unity engine. Developed and maintained by two main developers, FNR

has a two-year release window for major updates. Additional features provided with the framework

include a NAT-punch through server, state rewinding and Master servers.

Ease-of-Use

Presenting good quality but sometimes scarce documentation, FNR fails in this category by providing

some outdated video tutorials, and a hard-to-read API. Technical support is decent in their Discord

server, though it is mostly provided by an experienced user rather than the developers. Developing

with FNR involves frequent use of the Forge Wizard in the Unity editor to generate boilerplate

classes for each object which the user must the extend with their custom logic. FNR makes use of

threading, a great feature, however due to its implementation, user code generally includes

cumbersome code that must be used to switch between threads.

Figure 4. An example of code needed to return networked calls to Unity’s main thread with FN.

(BeardedManStudios, n.d.)

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 22

Performance

Referring to the usage, the memory footprint, and network performance of an operation, this is an

important concept for the maintenance of servers. To properly optimize an application, it must be

tested in its ideal state and target environment. While networking frameworks carry some overhead,

the main detriments to a game performance are found in the application developer’s code. Due to

this, it is important to plan ahead what data, and how and when it is sent over the network

(Weimann, Olsen, 2019). The following table presents information of the performance of different

transportation layers, put under stress tests. Worthy of note in the list, ENet is a UDP library that can

be used as a transport system by Mirror, while Bolt uses the Photon as data transport, displaying

poorer results than its competitors in this benchmark.

Figure 5. Server benchmarks of various UDP transport layers (nxrighthere/BenchmarkNet, n.d.).

Choosing a service

Simple prototyping with each framework was conducted alongside the aforementioned

comparisons. The basic prototypes were built on top of a common base of the final product and

required adding networking to spawning players, synchronizing movement and collision checking.

The hands-on experience was essential to determine the difficulty of set up and learning curve and

development workflow with each service.

When compared to Photon Bolt, both Mirror and FNR are well documented, and though Bolt adds

extra complexity during the initial setup, working with it is mostly straightforward, aside from its

abundant use of additional interfaces.

Since Mirror and FNR are in the same category as free and open-source solutions, and because

Mirror has an advantage with its ease-of-use in every regard, I consider Mirror to be the better

choice given the project’s goals.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 23

While Mirror’s feature set is strictly inferior to Photon Bolt’s, it is completely free and open source.

This, in addition to its much larger community, makes it a more appealing choice over Bolt for a user

that is experienced in the networking area. Additionally, since the framework allows for it, it can be

expanded to add features similar to Photon Bolt, given the time and effort to do so, which would

make it a viable solution for a production environment. Since one of the main targets of this project

is to facilitate the acquisition of knowledge regarding networking, Mirror is a great framework for

developers familiar with Unity but new to multiplayer, while keeping open the possibility of usage

for real-world productions.

The product

The proof of concept game developed with Mirror Networking includes the following highlights:

• Lobby System: Creates an area between the offline scene and game scene where connected

players can see each other. The lobby system manages the transfer of data from the room

objects to the gameplay objects.

• Reconnection: A server is able to store a disconnecting player’s data and re-apply the state

upon successful reconnection, as long as the player used the same login key during startup.

• Matches: Full health system, scoring system, and match loop;

• Target platform testing: Builds for the target hardware were created to ensure correct

functionality in an ideal environment. Windows and Android clients are able to connect to a

headless Linux server instanced on a separate machine.

On the other hand, there were desirable features that went unimplemented, the most relevant of

which was server authoritative movement. This feature prevents clients from cheating by giving the

server control over all objects in the game. To support the reasoning behind the exclusion of this

feature, one of the most prominent issues that networked games face must be presented: latency.

Network Lag

Network latency or lag is the roundtrip time between a message going from client to server and then

back. This includes the hardware processing time in the client and server machines. When dealing

with Netcode, one can never assume that a signal can get from A to B instantaneously, and in fact, a

large proportion of netcode exists simply to deal with this issue (Meseta, 2019). If this latency is

unaccounted for, two different machines can lose synchronization of the game state, leading to a

different outcome.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 24

Figure 6. An explanation of the total network lag a user may experience. (Unity, 2018, 13:54–17:29)
Dealing with Perceived Lag

Network lag is a real concern; however, users often attribute other factors not related to the

internet to network latency. This comes to question if there is a unified definition of latency. Players

may refer to as “lag” to the delay between their inputs and receiving a response from the

application. The refresh rate of a monitor may also affect how quickly a changed image is rendered

for the player. While these are out of reach for developers to fix or improve, there are ways to

reduce the perceived lag of a game by tweaking the design of it. Goyette describes how character

animations and speed were changed to successfully reduce the perceived latency players felt in Call

of Duty: Black Ops III (Activision, 2016).

Responsiveness is one of the main key-performance indicators for the proof-of-concept. Server

authoritative movement adds latency between player input and the action being performed in the

client, as the action needs to travel over the network before being executed. A second reason for

excluding this feature is that to solve this latency issue requires the development of a larger subset

of complementing techniques of increased complexity, that the project would not allow time for.

Some of these techniques are hereby described for completeness based on Fiedler’s and Gambetta’s

articles on the topics.

• Client-side prediction: As the client sends inputs to the server, it will also execute the logic

locally, providing instant response to the player. This is corroborated, and corrected if

needed, with the information later received by the server.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 25

• Interpolation and extrapolation: Specifically needed to smooth out the effects of client

prediction, as on its own, it can cause objects to teleport around, breaking suspension of

disbelief. These techniques slowly interpolate the client state to the real server state over

short periods of time.

• Rollback: Most prominent in fighting games or games with projectiles, rollback code can

ensure the quality of hit detection. This process follows going back in time and reapplying

the correct inputs sent by the server, replaying the game simulation frame by frame to

return it to the correct state (Heart, 2019).

Another area of the product that could have been developed further is the optimization of network

performance. Every second, various data packets are sent between server and clients, which

increases exponentially based on the number of concurrent players in a game.

 Figure 7. Network data utilization on a load test using thirty AI clients connected to an AWS server.

Load tests conducted with artificial players designed to stress the server showed to use high

amounts of bandwidth, which caused network congestion between server and client machines,

resulting in lag and disconnections. Based on these tests, a safe number of concurrent players in the

proof-of-concept game should not exceed twenty in order to provide a decent user experience.

Reducing the bandwidth required per player would necessitate further research and analysis to

utilize more efficient methods of sending data over the network, as well as a re-design of the

product to account for the least amount of required data sent per second. Alongside the increased

time debt of it, this process would introduce extra complexity to the codebase, rendering it harder

to read – an undesirable effect for a project meant as example.

Finally, a user test conducted with thirteen of Paladin Studios employees connected concurrently to

an external server showed positive reactions. Users communicated good responsiveness and low

perception of lag, but they expressed their feedback on the inconsistencies of the server-authored

collision checks when punching other players. Network usage of this test is found on Appendix 4.3.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 26

Conclusion

Fast-paced real-time games benefit from sending data primarily over UDP due to it being lightweight

and faster than TCP. While it is heavily dependent on the type of game, dedicated servers are

generally the best choice for a network architecture that can result in better player experience.

However, dedicated servers imply increments in development complexity and deployment costs

over relay and P2P networks.

Latency is the major issue players commonly face with networked games. Developers can reduce

latency by profiling and optimizing what data they send, the size of it, and the rate of sending to

avoid consuming too much bandwidth is used. Most of the time, however, studios need to add

complex algorithms to their games such as client-side prediction, rollback, and interpolation, as well

as sometimes changing the design of the game to improve the perceived responsiveness of the

game for users.

Selecting one networking service over another is a difficult task where personal preference plays a

part. While performance comparability is certainly important, most games that reach official

production will necessitate the developer to perform custom optimizations tailored to their game.

So, it is a less relevant comparison point as the feature set of a service, or its ease of use.

Creating networked games is a difficult task, so of the two points, the latter is crucial for developers

that are not as comfortable in the field. Mirror Networking is a great framework and a good fit for

Paladin Studios at this time due to the simplicity of the API, excellent support, and documentation.

In addition, heading into production with it is feasible, thanks to its expandability and

customizability. Photon Bolt, on the other hand, offers advanced functionality out of the box, if one

can afford it. At the start of a new project, developers must consider the requirements of their game

before choosing an appropriate networking stack that will result in the least amount of compromises

for the studio.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 27

Recommendations

Before starting the development of commercial or serious productions, it is imperative for the

success of the project that the users behind it have an appropriate understanding of networking to

determine the best fitting networking architecture for their specific use case. Besides laying out the

requirements of the game mechanics, a designer or producer should consider the complexity of the

networking stack required to support the type of game in question, as this factors heavily in the

costs and risks of the project.

To make a proper assessment of the networking stack required for a project to perform

appropriately, I would recommend for the developers of the project to start by making small

projects and testing them so they can become acquainted with the new workflow. As is discussed in

this paper, the addition of networking to a game adds a new level of complexity to that forces the

developer to face many new hurdles not present in single player-games, such as keeping game state

synchronized and maintaining responsiveness. While an ideal situation would be for everyone in the

team to have a decent experience with game networking, a more realistic recommendation is for a

small group to become educated in the topic, or to hire a professional with adequate qualifications.

As an additional note, networking requires extensive testing for bugs and quality of performance. I

would advise to directly double a normal time/cost estimate during project planning, to ensure that

there is sufficient room for these tests and fixes to take place.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 28

References:

Glazer, J., & Madhav, S. (2015). Multiplayer Game Programming (1st ed.). Harlow, United Kingdom:

Pearson Education.

Gambetta, G. (n.d.). Client-Server Game Architecture - Gabriel Gambetta. Retrieved March 16, 2020,

from https://www.gabrielgambetta.com/client-server-game-architecture.html

Valve software. (2005, June 30). Source Multiplayer Networking. Retrieved March 16, 2020, from

https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking

Fiedler, G. (2008). Game Networking. Retrieved March 16, 2020, from

https://gafferongames.com/categories/game-networking/

Weimann, J., Olsen, K. (2019, December 21). High Performance Game Networking in Unity3D + Q&A

- (submit questions early) [Video file]. Retrieved from

https://www.youtube.com/watch?v=5b6k_ywdjw4

Battle(non)sense. (2017, August 29). Netcode 101 - What You Need To Know [Video file]. Retrieved

from https://www.youtube.com/watch?v=hiHP0N-jMx8

Serinx. (2019, January 7). Unity Multiplayer - What are the pros and cons of available network

solutions/assets. Retrieved from https://forum.unity.com/threads/what-are-the-pros-and-cons-of-

available-network-solutions-assets.609088/

Mikson, J. S. (2019). Unity Networking Frameworks - Feature List [Comparison of networking

middleware]. Retrieved from

https://docs.google.com/spreadsheets/d/100vNy3grUgLV5M7rIUKUtRqO4cmTewQI8P5uwf-

Qb9k/edit#gid=1012362019

nxrighthere/BenchmarkNet. (n.d.). In GitHub. Retrieved March 16, 2020, from

https://github.com/nxrighthere/BenchmarkNet/wiki/Benchmark-Results

Infil. (2019, October 16). Netcode [p1]: Fightin’ Words. Retrieved March 16, 2020, from

http://ki.infil.net/w02-netcode.html

Ubiquity Networks. (n.d.). Intro to Networking - Transport Protocols & Network Ports. Retrieved May

25, 2020, from https://help.ui.com/hc/en-us/articles/115006614247-Intro-to-Networking-Transport-

Protocols-Network-Ports

https://www.gabrielgambetta.com/client-server-game-architecture.html
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
https://gafferongames.com/categories/game-networking/
https://www.youtube.com/watch?v=5b6k_ywdjw4
https://www.youtube.com/watch?v=hiHP0N-jMx8
https://forum.unity.com/threads/what-are-the-pros-and-cons-of-available-network-solutions-assets.609088/
https://forum.unity.com/threads/what-are-the-pros-and-cons-of-available-network-solutions-assets.609088/
https://docs.google.com/spreadsheets/d/100vNy3grUgLV5M7rIUKUtRqO4cmTewQI8P5uwf-Qb9k/edit#gid=1012362019
https://docs.google.com/spreadsheets/d/100vNy3grUgLV5M7rIUKUtRqO4cmTewQI8P5uwf-Qb9k/edit#gid=1012362019
https://github.com/nxrighthere/BenchmarkNet/wiki/Benchmark-Results
http://ki.infil.net/w02-netcode.html
https://help.ui.com/hc/en-us/articles/115006614247-Intro-to-Networking-Transport-Protocols-Network-Ports
https://help.ui.com/hc/en-us/articles/115006614247-Intro-to-Networking-Transport-Protocols-Network-Ports

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 29

Software Testing Help. (2020, April 20). TCP Vs UDP – What Is The Difference Between TCP And UDP.

Retrieved May 27, 2020, from https://www.softwaretestinghelp.com/tcp-vs-udp/

SoftwareGuy. (2020, April 12). SoftwareGuy/ENet-CSharp. Retrieved May 27, 2020, from

https://github.com/SoftwareGuy/ENet-CSharp/blob/master/DOCUMENTATION.md

Unity. (2018, November 19). Connected Games: Building real-time multiplayer games with Unity and

Google - Unite LA [Video file]. YouTube. Retrieved from

https://www.youtube.com/watch?v=CuQF7hXlVyk

Activision. (2016, August 30). Fighting Latency on Call of Duty Black Ops III [Video file]. Retrieved

from https://www.gdcvault.com/play/1023220/Fighting-Latency-on-Call-of

Purdom, N. (2013, August 1). How Quake came to one of the world’s first online game services.

Retrieved May 16, 2020, from

https://www.gamasutra.com/view/news/197460/How_Quake_came_to_one_of_the_worlds_first_

online_game_services.php

Exit Games. (2020, June 16). Bolt Overview | Photon Engine. Retrieved May 16, 2020, from

https://doc.photonengine.com/en-us/bolt/current/getting-started/overview

Mirror Networking. (n.d.). vis2k/Mirror. Retrieved April 23, 2020, from

https://github.com/vis2k/Mirror

BeardedManStudios. (n.d.). BeardedManStudios/ForgeNetworkingRemastered. Retrieved April 23,

2020, from https://github.com/BeardedManStudios/ForgeNetworkingRemastered/wiki/Basic-RPC-

Example

Meseta. (2019, September 22). Netcode Concepts Part 1: Introduction - Meseta. Retrieved May 12,

2020, from https://medium.com/@meseta/netcode-concepts-part-1-introduction-ec5763fe458c

https://www.softwaretestinghelp.com/tcp-vs-udp/
https://github.com/SoftwareGuy/ENet-CSharp/blob/master/DOCUMENTATION.md
https://www.youtube.com/watch?v=CuQF7hXlVyk
https://www.gdcvault.com/play/1023220/Fighting-Latency-on-Call-of
https://www.gamasutra.com/view/news/197460/How_Quake_came_to_one_of_the_worlds_first_online_game_services.php
https://www.gamasutra.com/view/news/197460/How_Quake_came_to_one_of_the_worlds_first_online_game_services.php
https://doc.photonengine.com/en-us/bolt/current/getting-started/overview
https://github.com/vis2k/Mirror
https://github.com/BeardedManStudios/ForgeNetworkingRemastered/wiki/Basic-RPC-Example
https://github.com/BeardedManStudios/ForgeNetworkingRemastered/wiki/Basic-RPC-Example
https://medium.com/@meseta/netcode-concepts-part-1-introduction-ec5763fe458c

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 30

Appendix

1.1 Comparison chart by relevant framework features

1.2 Possible networking stacks to choose for Unity

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 31

2.1 Photon Bolt workflow examples

2.1.1 Bolt Unity Editor Integration

2.1.2 Bolt Coding style

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 32

2.2 Mirror Networking workflow examples

2.2.1 Mirror Unity Editor Integration

2.2.2 Mirror Coding style

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 33

2.3 Forge Networking remastered workflow examples

2.3.1 Forge Unity Editor Integration

2.3.2 Forge Coding style

3.1 Discord servers compared by member count

 – retrieved 25th of May 2020

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 34

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 35

4. Screenshots of the prototype

4.1 Screenshot representing a Lobby system and a headless Windows sever.

4.2 AI controlled clients spawned over the network during a load test.

REALTIME NETWORKING TECHNOLOGIES FOR UNITY

Page | 36

4.3 Server metrics after a real-world scenario test with 13 clients connected concurrently.

