
Agent Technology in Agile Multiparallel

Manufacturing and Product Support

Leo van Moergestel

c© Leo van Moergestel

SIKS Dissertation Series No. 2014-31
The research reported in this thesis has been carried out under the auspices
of SIKS, the Dutch Research School for Information and Knowledge Systems.

Agent Technology in Agile Multiparallel

Manufacturing and Product Support

Agenttechnologie voor Flexibele en Herconfigureerbare
Parallele Productie en Productondersteuning

(met een samenvatting in het Nederlands)

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op
gezag van rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge van het

besluit van het college voor promoties in het openbaar te verdedigen op
woensdag 10 september 2014 des middags te 12.45 uur door

Leonardus Joseph Maria van Moergestel

geboren op 24 maart 1955, te Dussen

Promotor: Prof.dr. J-J.Ch. Meyer

The work presented in this thesis was supported by the University of Applied
Sciences Utrecht (HU)

Contents

Dankwoord vii

1 Agent-based manufacturing 1
1.1 Introduction . 2
1.2 Background and domain . 2

1.2.1 Production concepts 3
1.2.2 Push-driven versus pull-driven manufacturing 4
1.2.3 Lean manufacturing 5
1.2.4 Agile manufacturing 6

1.3 Standard production automation 6
1.3.1 Standard automation software 6
1.3.2 Layers at work . 9
1.3.3 Properties of standard automation 10
1.3.4 Shortcomings of standard manufacturing 14

1.4 Equiplet-based production . 15
1.4.1 Properties of equiplet-based production 16
1.4.2 Enablers for the equiplet-based production 17

1.5 Hardware and software infrastructure 18
1.5.1 Hardware . 18
1.5.2 Equiplets . 19
1.5.3 Software infrastructure requirements 21
1.5.4 Possible software architectures 21

1.6 Agents . 26
1.6.1 Two types of agents 26
1.6.2 Multiagent systems . 28

1.7 Multiagent production system 29
1.7.1 The agent-based automation piramid 29
1.7.2 Global description of the system 29

1.8 Research questions . 32
1.9 Research methodology . 33
1.10 Overview of the thesis . 33

i

ii CONTENTS

1.11 Summary . 34

2 Simulation of the production system 35
2.1 Global roles of the Agents . 35
2.2 Production step . 36

2.2.1 Product agent and steps 37
2.2.2 Production constraint 37
2.2.3 Classification of production steps 38
2.2.4 Properties of the step concept 38
2.2.5 Production step frontend relation 38

2.3 Step path and product path 39
2.3.1 Step path classes . 40
2.3.2 Special cases of step paths 41

2.4 Considerations about the implementation 43
2.4.1 Equiplet agent . 44
2.4.2 Product agent . 44

2.5 Interagent communication . 49
2.5.1 Communication system 49
2.5.2 FIPA . 50
2.5.3 Production domain communication 50

2.6 Product agent functional requirements 52
2.6.1 Production environment 52
2.6.2 Life cycle . 53

2.7 Product agent technical requirements 54
2.7.1 Platform requirements 54
2.7.2 Platform selection . 55

2.8 Jade-based simulation . 57
2.8.1 Basic assumptions . 58
2.8.2 Implementation . 59

2.9 Related Work . 66
2.10 Conclusion . 68
2.11 Summary . 68

3 Planning and Scheduling 69
3.1 Path planning . 69

3.1.1 Graph representation 69
3.1.2 Adjacency matrix and travel time matrix 71
3.1.3 Optimisation . 71
3.1.4 Planning and scheduling complex step paths 75

3.2 Scheduling concepts . 76
3.3 Production scheduling . 77

CONTENTS iii

3.3.1 Historic overview . 78
3.3.2 Modern approach . 80

3.4 Scheduling with agents . 81
3.5 Multiagent production system 81

3.5.1 Multiagent-based scheduling in the grid 82
3.5.2 Objectives of the scheduling 83
3.5.3 Picking a timeslot . 83
3.5.4 Real time scheduling 85

3.6 Scheduling simulation . 86
3.6.1 Generating test sets . 86
3.6.2 Preparing the test sets 89
3.6.3 Negotiating . 89

3.7 Simulation software . 90
3.7.1 XML output file of the scenario generator 91
3.7.2 XML output file of the scheduling simulator 91

3.8 Results . 94
3.8.1 Weak versus strong EDF 95
3.8.2 Different scheduling algorithms 97
3.8.3 The effect of the R-parameter 99
3.8.4 Effect of extra transport steps and multiple timeslots

for steps . 101
3.8.5 Grid behaviour under load 106

3.9 Some considerations about batches 108
3.10 Related work . 112
3.11 Conclusion . 113
3.12 Summary . 114

4 Flexible transport in the grid 115
4.1 Introduction . 115
4.2 Grid manufacturing . 116

4.2.1 Manufacturing model 116
4.2.2 Similarities and differences between batch and grid pro-

duction . 116
4.3 Adaption of the grid . 119

4.3.1 Reachability of nodes 119
4.3.2 Scenarios . 121

4.4 Computations . 124
4.4.1 Grid versus line and circle 124
4.4.2 Results . 125

4.5 Discussion and future work . 128
4.6 Streams within the grid . 129

iv CONTENTS

4.6.1 Buiding box model . 129

4.6.2 Solution of problems with building box model 129

4.6.3 Including product inspection and retrying 130

4.7 Possible transport systems . 131

4.7.1 Conveyor belt-based systems 131

4.7.2 Autonomous transport 132

4.8 Path planning . 134

4.8.1 The path planning simulation tool 135

4.8.2 Results . 135

4.9 Related work . 140

4.10 Conclusion . 140

4.11 Summary . 141

5 Product agents beyond manufacturing 143

5.1 Introduction . 143

5.2 Agents supporting products 145

5.2.1 Role of agents in the life cycle of a product 145

5.2.2 Internet Of Things . 148

5.2.3 Product types . 152

5.3 Case study: Discovery robot 156

5.3.1 Embedded product agent 159

5.3.2 Related work . 164

5.3.3 Discussion . 166

5.3.4 Conclusion . 167

5.4 Case: Resource depletion . 167

5.4.1 Recycling of subsystems 168

5.4.2 Related Work . 175

5.4.3 Conclusion . 175

5.5 Case: Domotics . 176

5.5.1 Introduction to domotics 176

5.5.2 Characteristics of domotics 177

5.5.3 Design considerations 179

5.5.4 Software architecture 184

5.5.5 Implementation . 188

5.5.6 Results . 189

5.5.7 Discussion . 191

5.5.8 Related work . 193

5.5.9 Conclusion . 195

5.6 Summary . 195

CONTENTS v

6 Putting things together 197
6.1 Equiplet-based manufacturing 197

6.1.1 System architecture . 198
6.1.2 Implementation . 199
6.1.3 Results and future work 212
6.1.4 Conclusions . 212

6.2 Multiagent-based Agile Work Distribution 214
6.2.1 Introduction . 214
6.2.2 Description of the concept 215
6.2.3 Application models . 217
6.2.4 Architecture . 219
6.2.5 Agents roles and responsibilities 221
6.2.6 Case: Internet radio 223
6.2.7 Results and future work 228
6.2.8 Conclusions . 229

6.3 Related work . 229
6.4 Summary . 231

7 Conclusion and future work 233
7.1 Review of the work done . 233
7.2 Answers to research questions 234
7.3 Conclusion . 236
7.4 Future developments . 237

A Monte Carlo Method 239
A.1 Alternative for calculation . 239
A.2 Generating data sets . 240
A.3 Generating a set according to a distribution 240

Bibliography 243

Summary 255

Samenvatting 257

Curriculum Vitae 259

vi CONTENTS

Dankwoord

In januari 2010 startte officieel mijn promotietraject. In januari 2014 lag een
eerste versie van mijn proefschrift bij mijn promotor. Ik ben de Hogeschool
Utrecht zeer erkentelijk voor het bieden van de mogelijkheid om te promov-
eren. Het proefschrift draagt op de omslag naast de titel mijn naam. Dit zou
de indruk kunnen wekken dat ik in mijn eentje de klus heb geklaard. Niets
is minder waar! Veel mensen hebben mij gesteund en zijn direct of indirect
van onschatbare waarde geweest voor mijn promotieonderzoek.

Veel studenten hebben meegewerkt in het onderzoekssemester. In groep-
jes hebben ze gedurende een half jaar full-time meegewerkt aan een onderdeel
van het onderzoek, vaak met het co-auteurschap van een wetenschappelijke
paper als eindresultaat. Op het gevaar af iemand over het hoofd te zien,
ga ik toch de namen in alfabetische volgorde noemen: Alexander Streng,
Bas Alblas, Dennis van der Werf, Duncan Jenkins, Franc Pape, Frank van
Rooden, Garik Hakopian, Glenn Meerstra, Hendrik Folmer, Hielke Veringa,
Jaap Koelewijn, Johan van Schieveen, Lars Stolwijk, Maarten Aalbers, Mar-
tijn Beek, Martijn van Aalst, Martin Rijntjes, Mart van de Moosdijk, Mathijs
Kuil, Matthijs Grünbauer, Niels van Nieuwenburg, Pascal Muller, Ramòn
Hagenaars, Raymond Siudak, Robbert Proost, Roel Blaauwgeers, Roy de
Kok, Roy Scheefhals, Stefan Marchal, Tommas Bakker, Wim Wakelkamp en
Wouter Langerak. Bedankt jongens (meisjes zijn zeldzaam bij technische
informatica) voor jullie enthousiasme en jullie bijdrage aan het onderzoek.

Collega’s en medewerkers van het intitute for ICT van de HU wil ik ook
graag bedanken voor hun belangstelling en voor de soms serieuze en vaak
informele gesprekken over mijn promotiewerk. Ik heb met leidinggevenden
binnen en buiten het institute for ICT regelmatig gesproken over de voort-
gang van mijn onderzoekswerk. Bij iedere mijlpaal kon ik rekenen op een
reeks van positieve reacties. Medewerkers van het kenniscentrum wil ik ook
bedanken en met name Janny Bakker de Leeuw voor het snel en kordaat rege-
len van allerlei zaken, zoals reserveringen, boekingen en financiële overzichten
bijhouden van projecten.

De leden van de leescommissie hebben hun werk zorgvuldig gedaan. Met

vii

viii DANKWOORD

prof. dr. Cees Witteveen en prof. dr. Jaap van den Herik heb ik een mondeling
onderhoud gehad. Prof. dr. Frances Brazier, prof. dr. Andrew Tanenbaum
en prof. dr. Jörg Müller hebben via e-mail hun aanwijzigingen en tips ter
verbetering doorgegeven. Hartelijk bedankt, thank you very much, herzlichen
Dank!

In de nu volgende drie stukjes tekst zal ik mij richten tot drie personen
die een bijzondere rol hebben gespeeld tijdens mijn onderzoek. De eerste in
het rijtje is de lector Erik Puik. Vijf jaar geleden gaf ik te kennen dat ik
bij jouw lectoraat onderzoek wilde doen. Jij hebt toen het voorstel gedaan
waarmee de basis voor dit onderzoek is gelegd. Ik ben zeer onder de indruk
van je kennis en inzicht in een heel breed vakgebied. Je hebt het onderzoek
aangestuurd en mij ook weer ruim baan gegeven voor de verdere uitvoering.
Dat is op zich al heel knap, want aansturen en ruim baan geven lijken elkaar
in de weg te staan, maar niet op de wijze die jij hanteerde. Ik heb veel
van je geleerd en ben blij dat ik bij je lectoraat verder kan werken aan ons
onderzoek.

De tweede persoon die ik persoonlijk lof wil toewuiven is Daniël Telgen.
Het onderzoek waar Erik en ik mee bezig waren, was ambitieus en veelom-
vattend. Een derde onderzoeker erbij was geen luxe en gelukkig hebben we
die in jou gevonden. Jouw enthousiasme, gedrevenheid, ambitie en streven
naar kwaliteit hebben het onderzoek een enorme boost gegeven en dat geldt
ook voor de opleiding technische informatica, die wij beiden een warm hart
toedragen.

En last but not least gaat mijn dank uit naar mijn promotor John-Jules
Meyer. We zijn leeftijdsgenoten en we leerden elkaar in de tachtiger jaren
van de vorige eeuw (tjonge, wat klinkt dat lang geleden) kennen. Toen ik als
wetenschappelijk systeemprogrammeur op de VU werkzaam was in de groep
van Andy Tanenbaum, was jij promovendus bij Jaco de Bakker. Daarna
zijn we ieder onze weg gegaan totdat ik op zoek ging naar een hoogleraar, bij
voorkeur in Utrecht, die agent technology als specialisatie had en die mogelijk
promotor voor mijn onderzoek kon zijn. Het was een blij weerzien en al snel
besloot je dat ik bij jou als promovendus terecht kon. Bedankt voor het in mij
gestelde vertrouwen. Toen ik later in een mail naar Andy Tanenbaum schreef
dat ik het promotiepad was opgegaan en jij mijn promotor was, mailde hij
als reactie hierop: John-Jules is a great guy, you’re lucky to have him as
your advisor. Dit krachtige statement geeft precies de situatie weer. Ik zou
bijna zeggen dat het nog zwak uitgedrukt is. Elk bezoek aan jou heb ik als
buitengewoon prettig ervaren. Je hebt mij op een vriendelijke manier op
mogelijke fouten gewezen en me tegelijk ook geprezen om de zaken die ik
goed deed. Zoiets geeft je vertrouwen en zin om enthousiast door te gaan. Je
dacht mee over de problemen en gaf me nuttige tips en adviezen. Ik ben heel

ix

blij dat we hebben afgesproken dat onze samenwerking niet stopt na mijn
promotie.

In dit dankwoord past het ook om personen te noemen die niet direct
aan het onderzoek hebben meegewerkt, maar indirect wel een belangrijke
rol hebben gespeeld. Ik wil mijn echtgenote en kinderen bedanken voor hun
belangstelling, de support en het feit dat ze accepteerden dat ik nogal vaak
bezig was met mijn werk (en dan druk ik me nog zwak uit). Mijn gezin heeft
zich weten te redden tijdens mijn afwezigheid op de vele conferenties die ik
heb bezocht. Ook overige familieleden en vrienden die mij hebben gesteund
wil ik bedanken. Natuurlijk wil ik mijn ouders niet vergeten, Adriaan van
Moergestel (1897-1979) en Adriana van Moergestel Nieuwesteeg (1916-2011),
die mij de kans hebben gegeven om te studeren en die best wel trots zouden
zijn geweest met dit resultaat. Wie weet, misschien zijn ze dat wel.

Zaandam, 2014

x DANKWOORD

Chapter 1

Agent-based manufacturing

This thesis deals with agent technology and its use in agile multiparallel
manufacturing and product support. We will develop an agent-based soft-
ware system to control specifically developed production hardware. The use
of agent technology is extended to the whole life cycle of the products. This
chapter presents an introduction to agile agent-based manufacturing. It de-
scribes the concept of the agent-based software infrastructure for agile in-
dustrial production. This is the basis of the thesis. Several definitions and
descriptions are given for both manufacturing as well as agent technology.
The hardware and the software are described and compared to standard
production technologies. In this introductory chapter the focus is on a ba-
sic global view of the concept and the system as well as its subparts that
have been developed. In agent-based manufacturing as it will be introduced,
the production is done on special devices called equiplets. A grid of these
equiplets connected by a fast computer network and a possibility to transport
products, should be capable of producing a variety of different products in
parallel.

The content of this chapter is as follows. First an introduction about
manufacturing concepts will be presented. Next a widely accepted standard
production approach is reviewed and summarized. This will reveal why a
new approach might be useful. Then, the new approach discussed in this
thesis will be introduced together with the technologies it is based upon.
This will lead to topics of research and related research questions. Related
work will also be discussed and compared to our work. The chapter ends with
an overview of the chapters that go into more detail about specific parts of
the implementation.

1

2 CHAPTER 1. AGENT-BASED MANUFACTURING

1.1 Introduction

The requirements of modern production systems are influenced by new de-
mands such as time to market and customer-specific small quantity produc-
tion. In other words, the transition time from product development to pro-
duction should be minimal and small quantity production must be cheap. To
fulfil these requirements we need to develop new production methods. Such
a new approach means new production hardware as well as co-designed soft-
ware. At the Utrecht University of Applied Science we have developed special
production platforms that are cheap, agile and easy configurable (Puik and
Moergestel, 2010). These platforms can operate in parallel. We call these
platforms equiplets and a collection of these equiplets is called a production
grid. The idea behind the concept is that we need a production system that
is capable of producing a lot of different products in parallel. This is what we
call multiparallel manufacturing. The software infrastructure for such a pro-
duction grid is highly responsible for the agile and diverse way of production.
In this chapter we present some possible realizations of the control software
and we will propose a model that seems interesting for further investigation.
This model is based on agent technology. Though we based our model on our
own designed production hardware, the agent-based approach can be useful
in other production environments as well as will be discussed in chapter 6.

The concept of using a collection of cheap machines is comparable to the
research done around 1980 where the focus was on using cheap microprocessor-
based computer systems to cooperate in a multiprocessor or multicomputer
environment (Tanenbaum et al., 1991), but because the focus is now on man-
ufacturing real physical products, there are many differences and also many
specific problems to be solved to make the concept work.

1.2 Background and domain

This section is dedicated to manufacturing technologies. The main reason
to have this section is to give a background and reference models for the
concepts introduced in the later part of this chapter. The section contains
the following subsections.

1.2.1 Production concepts.

1.2.2 Push-driven versus pull-driven manufacturing.

1.2.3 Lean manufacturing.

1.2.4 Agile manufacturing.

1.2. BACKGROUND AND DOMAIN 3

1.2.1 Production concepts

In this thesis the words production, manufacturing and assembling are used
intermixed. There are some subtle differences in the meaning of these words.

• Production is used as the most generic term. It can be used for material
products as well as things like software, ideas, theories etc.

• The word manufacturing has its origins in Latin: manus meaning hand
and facere meaning to make. Though it literally means make by hands
it is now also applied to situations where material things are made
using machines.

• Assembling is used for the type of manufacturing where components
or sub-parts are put together using several possible techniques to make
the final product.

When we take a closer look at making things, we may distinguish three
approaches for production.

1. Making a single product. This is normally the case in situations where
a specific one time product is needed. Examples are ships, some build-
ings, special items where a single unit is needed.

2. Continuous production is a type of production, where there is a contin-
uous stream of output. This type of production is encountered in the
chemical industry.

3. Batch production. This type of production is mostly used to make a
number of similar products. Normally the number is rather big as we
shall see shortly.

When we look at the production infrastructure, especially the infrastructure
for batch processing, again three different approaches can be seen.

1. Dedicated production line. This is a concept that is widely used and
fits the need for cheap mass production. The machinery that is used is
dedicated to do one specific task in the production.

2. Flexible manufacturing system (FMS). A flexible manufacturing system
has, as its name suggests, some flexibility to react to changes. The most
well known change is changing to new product types. This change
can be incorporated in the production machines. This concept was
introduced in the time that cost-effective Computer Numerical Control
(CNC) machines became available. Another type of flexibility is routing

4 CHAPTER 1. AGENT-BASED MANUFACTURING

flexibility. This concept is based on the fact that there might be several
machines to perform the same operation on a product. This introduces
choices for the product in following the production line.

3. Reconfigurable Manufacturing System (RMS). A reconfigurable man-
ufacturing system is a manufacturing system that is designed for fast
changes, both in hardware as well as software components, in order
to quickly adjust production capacity and functionality in response to
sudden changes in market or in changes in requirements. The main goal
of RMS is to achieve cost-effective responsiveness. An RMS can adapt
easier and faster to changes than an FMS. The drawback is that RMS
is more complicated. To achieve a high level of recongurability, the
system should meet the following characteristics in its design (Koren
and Ulsoy, 2002):

• Modularity. The basic components are modules that can easily be
exchanged or replaced.

• Scalability. To adapt to changing demands, scalability is an im-
portant characteristic.

• Integrability. Modules can be easily integrated in the system.

• Convertibility. Changes to the production system are easy to
achieve.

• Customization. Adaptation of the system to specific needs are
possible.

• Being diagnosable. To prevent that searching for failing modules
takes along time, modules and the system itself should be diag-
nosable.

The cost-effectiveness of RMS is achieved by designing a system with an
adjustable structure, and around a part family. An adjustable struc-
ture enables system scalability in response to market demands and
system/machine adaptability to new products. Structure may be ad-
justed at system level by adding new machines, and at machine level
by adding/removing machine software (Koren et al., 1999).

1.2.2 Push-driven versus pull-driven manufacturing

Standard mass production is mostly push-driven. This means that the ex-
pected purchase of a product is anticipated for and products are pushed into
the market. Pull-driven waits for demands for a product and at the moment
the production is started, it is sure that the market will accept it.

1.2. BACKGROUND AND DOMAIN 5

1.2.3 Lean manufacturing

Lean manufacturing has its origins in Japan. The production at Toyota has
been the model for lean manufacturing (Shingo, 1989). The concept is based
on five steps:

1. What is the value of the product from the customers perspective?

2. Discover where in the production process this value is added.

3. Determine the waste in the process, remove it and shorten the duration
of the lead time.

4. Apply pull-driven production instead of push-driven production.

5. Keep the waste away and try to optimise the process.

The challenge is to discover what really adds value to the product. For
example, keeping a lot of products or half products in stock is considered
waste. From the client perspective it does not matter how big the stock is.
The time the client has to wait for his product is a very important issue. So
the production stream should be optimal with a minimum of internal delay.
The aforementioned steps result in a set of best practices.

The lean concept is not limited to manufacturing. Production of software
can also use this concept. Poppendieck (Poppendieck and Cusumano, 2012)
lists 10 basic practices which make Lean Manufacturing so successful and
their application to software development. It is interesting to see how the
lean concept can be applied to such a thing as software development.

1. Eliminate waste eliminate or optimize consumables such as diagrams
and models that do not add value to the final deliverable.

2. Minimize inventory minimize intermediate artifacts such as require-
ments and design documents.

3. Maximize flow use iterative development to reduce development time.

4. Pull from demand support flexible requirements.

5. Empower workers generalize intermediate documents, tell developers
what needs to be done, not how to do it.

6. Meet customer requirements work closely with the customer, allowing
them to change their minds.

7. Do it right the first time test early and refactor when necessary.

6 CHAPTER 1. AGENT-BASED MANUFACTURING

8. Abolish local optimization flexibly manage scope.

9. Partner with suppliers avoid adversarial relationships, work towards
developing the best software.

10. Create a culture of continuous improvement allow the process to im-
prove, learn from mistakes and successes.

1.2.4 Agile manufacturing

In response to the customers demand, manufacturing companies have to
focus on low cost, high quality and rapid responsiveness (Koren and Ulsoy,
2002). A new paradigm called Agile Manufacturing was invented. It focuses
on agility, i.e. the quick and accurate response to changes in the market and
technology while controlling production cost. A slightly adapted definition
from (Goldman et al., 1995) is:

Definition 1 (Agile manufacturing). An agile manufacturing system is a
system that is capable of operating profitably in a competitive environment of
continually and unpredictably changing customer requirements.

In the next section where standard production automation is discussed,
we will discover that this type of production is not agile by itself.

1.3 Standard production automation

Standard production software is mostly designed for batch production or con-
tinuous production. Continuous production can be considered as an endless
batch. These production approaches are characterized by the fact that it is
bulk processing. Many items or a large quantity of the same products are
produced. We will discuss standard automation software, the way it is used,
its properties and its shortcomings.

1.3.1 Standard automation software

The software for standard production systems is based on a layered model.
This model is mostly referenced as the automation pyramid (Vogel-Heuser
et al., 2009) (Figure 1.1).
Below we will give a short explanation of the layers in this pyramid:

• At the top, we find the business management software. This is the
software level where the orders for production come in and where the

1.3. STANDARD PRODUCTION AUTOMATION 7

Business
Management

Production management
MES

Process Management
SCADA

Process control

Figure 1.1: Automation pyramid

connection with clients, suppliers and other important things in the
outside world is handled.

• The production management layer software is mostly covered by soft-
ware systems called MES. MES is an abbreviation of Manufacturing
Execution System. This software enables high level control over pro-
duction facilities in a broad sense. We will describe the functionality
of the MES layer in more detail later.

• Process management layer is the software that supervises the process
control devices. It will also collect production data. The software in
this layer is mostly referred to as SCADA, which is an abbreviation of
Supervisory Control And Data Acquisition.

• The process control layer is responsible for the actual production pro-
cess itself. In an automated environment the software controls motors,
heating devices, robot arms, etc.

To understand a production system based on this software model, we will
first go into more detail, especially the MES and the SCADA layer will be
examined.

MES layer

The functionality of the MES layer is formulated by the Manufacturing En-
terprise Solutions Association (MESA). They defined eleven functions for the
MES layer (Kletti, 2007).

8 CHAPTER 1. AGENT-BASED MANUFACTURING

1. Resource allocation and status. The status of the resources is monitored
and controlled. Manufacturing systems as well as tools and materials
and also human workers are resources controlled by the MES.

2. Operations scheduling. Planning of the usage of the resources and
controlling the performance of the resources.

3. Dispatching production units. Execute orders and allocate resources
for the execution.

4. Document control. Management of information and making informa-
tion available to all involved parties. The information is about prod-
ucts, processes, orders, recipes, authorisation, instructions for workers,
system documentation and batch reports.

5. Data collection/acquisition. Collect and manage data about the use of
resources and other important data about the production.

6. Labour management. Management of workers, work planning schemas,
qualification and authorisation of workers.

7. Quality management. Logging, tracking and analysing the product
quality and process characteristics.

8. Process management. Control and support the work to be done and
keep operators informed.

9. Maintenance management. Planning of maintenance to keep the pro-
duction systems at the required validation level.

10. Product tracking and genealogy. Create a product history by tracking
the processing of materials and also the source of the materials used in
the production.

11. Performance analysis. Analyse the process execution and compare this
with the planned process execution to check if there are bottlenecks
in the process execution. Find ways to circumvent problems and keep
this information available for future use.

It depends on the type of production what MES functions should be available.
For example in the food and drug production, product tracking and genealogy
is obligatory while in other industries this might be optional. Most MES
implementations are based on a realtime database.

1.3. STANDARD PRODUCTION AUTOMATION 9

SCADA layer

The SCADA-layer gets its information or production commands from the
MES layer. Most SCADA implementations cover the following functions:

1. Translation of production command from the MES-layer or operator
commands to a set of actions to be done by the SCADA layer.

2. Execute these actions. These actions are more specific than the global
order commands from the MES-layer.

3. Collect and log data from the production layer. This is the data-
acquisition task of SCADA.

4. Send appropriate data to the MES layer. The SCADA system will act
here as a filter, sending only relevant data to the MES layer.

5. Setup and maintain an operator interface. Most SCADA systems of-
fer operators a graphical user interface to overview and control the
production process.

6. Handle alarm situations in the production process. When a SCADA
system is configured for a certain environment, alarm conditions are
recorded in the system, so they can be recognized at an early state.

Most SCADA systems are capable to perform more functions, but for our
understanding of the automation process, the aforementioned functions are
the most important.

1.3.2 Layers at work

We will use Figure 1.2 to describe in short what will happen when an order
for a certain quantity of products is received. The top layer will issue a
production request to the MES layer. This layer makes an inventory of
the the resources needed to make the product and checks for availability
(planning resources). At the time the resources are available, a product
batch command is issued to the SCADA layer. This layer will control the
production process by issuing commands to the production equipment. All
layers send their feedback to the layer they receive commands from. So the
MES layer will inform the top layer (sales) about the status of the production
and also when the product batches are ready for shipment. This description
is in some aspects a simplification, but gives a good idea about the production
process as a whole. A more detailed layer of the automation piramid is given
in Figure 1.3. Here all subsystems are visible and the type of networking

10 CHAPTER 1. AGENT-BASED MANUFACTURING

Request for product

Product batch

Planning resources

Controlling production process

Production equipment

Controlling
production
equipment

Feedback

Feedback

Sales

Figure 1.2: Layers in the automation piramid at work

the layers are connected with. The hard realtime systems and networks are
at the bottom, while the not so time-critical systems are positioned more
towards the top. We do not explain figure 1.3 in detail at this moment. The
main reason is to show the actual position of MES and SCADA in the general
manufacturing software model.

1.3.3 Properties of standard automation

As stated earlier, this production automation model is designed for producing
large quantities of the same product. Normally these products are produced
in batches.

Definition 2 (Batch process (Shaw, 1982)). A process is considered to be
a batch process if the process consists of a sequence of one or more steps
or phases that must be performed in a defined order. The completion of
this sequence of steps creates a finite quantity of finished products. If more
products are to be created, the sequence must be repeated

To make a product (that is a real hardware thing, not software or a ser-
vice) one needs raw material and actions to work on this raw material. In
many cases the raw material are actually components that are used as parts
of the final product. Normally these components are also produced by a
production process. As stated earlier, the production automation model is
designed for producing large quantities of the same product. Two approaches
of batch production exist. To understand what the two approaches are, con-
sider a product that is made by a sequence of actions performed by machinery
or craftsmen. These actions are also called production steps. In Chapter 2

1.3. STANDARD PRODUCTION AUTOMATION 11

Business Systems - Intranet Networks

Supervisory Network

Control SystemNetwork

Safety
System

Field
Instruments

SCADA Batch Control Lab InfoSyst
Operator Consoles

Control StationsPLC's

Field

Fieldbus

Smoke, Gas
& Fire
detection

Field
Instruments

Storage
Management

Maintenance MES Scheduling Management InformationQuality, validation

CorporateManagement
Marketing

Sales

Finance

Research

Public

Figure 1.3: Layers in the automation piramid in more detail

a definition of a product step in our context will be given. Here we mention
two different approaches.

1. Stepwise approach: the production starts and the first action of the
sequence is performed. This leaves a set of incomplete products. Then
the production environment is changed. This could be an adjustment of
the machinery to perform a new type of action or the use of other tools
by craftsmen to perform an action. This is repeated for all necessary
steps and in the last step the final product is created. The approach
is also appropriate for production of one single product. Because we
need storage for the intermediate sets of incomplete products after every
step, the approach is used for small scale production. A second property
of this type of production is that there is a long delay between start
of production and final completion of the products. The investment
on machinery however is lower than in the next approach, because we
adapt (as far as possible) the machines and/or craftsmen after each
step to the next step.

2. Pipeline approach: in this approach all machinery (or craftsmen with
specific tools) is available and the product to be made is handed over

12 CHAPTER 1. AGENT-BASED MANUFACTURING

to the machine that is capable to perform the next action for the pro-
duction.

For both cases there is an optimum for the size of a batch. Though this size
depends on several factors, the easiest approach is to consider the cost of
the overhead of batch switching and the cost of storage and inventory. The
optimum batch size is given by the point where the storage and inventory
cost plus the batch cost for a given size are at a minimum (see figure 1.4). In
practice this is more complicated as the price of raw material may fluctuate
and other parameters such as market demand influence the optimum (Sarker
and Khan, 2013). Between these two types, there is also a hybrid approach

Changeover Costs

Inventory an O
ther C

osts

Batch Size

C
o
st

Figure 1.4: Optimum batch size

where the pipeline approach is used to make half-products that are collected
to form a set and then handed over to another pipeline that will build the
actual product. This situation occurs when production platforms produce
components that are used as ’raw material’ by other production platforms
(that could be owned by a different company). A batch is a quantity of
products produced without interruption. The size of a batch should be big
enough to be cost-effective but should be limited because of maintenance and
because of production supply fill-up. For every different batch a software
configuration of normally the lower two layers of the automation pyramid
should be available. The transition from one batch to the next one is called
a batch switch. There are two types of batch switches.

1. A switch between batches of the same product.

2. A switch to a batch of a different product.

The overhead of a switch of the first type is not so large, but still some time
is required. This time is normally used for preventive maintenance of the
production equipment, for filling up component trays, etc. What also should
be done is allocate resources for the next batch and adjust the software
configuration of the lowest two layers to these newly allocated resources. In

1.3. STANDARD PRODUCTION AUTOMATION 13

Figure 1.5 we use ts to denote the time for this switch. As can be seen in
the figure, a larger batch introduces relative smaller overhead because ts is
mostly independent of the batch size.

Batch Product X Batch Product X

Batch Product X Batch Product X

time

ts

ts

Figure 1.5: Batch switch overhead when switching to a new batch of the
same product

A switch of type two takes a longer time because in addition to ts we also
need time tp to reconfigure the software on the lower two layers and perhaps
the hardware of the lowest layer (see Figure 1.6). The production equipment
will get different software to operate and also the SCADA system needs to
be reconfigured to match the new situation. Sometimes this means that a
production platform or parts of it are unavailable for some time because of
the reconfiguration that should also be tested of course. As a consequence
batch switching of this type introduces a lot of overhead and production (and
the final product) is cheaper if we produce batches of the same product and
not a sequence of batches for different products. There are situations where
switching between different batches is incorporated in the production of a
manufacturing plant. Consider for example the food industry. To produce
a batch of peanut butter, a production line could be set up. There are
however variants to standard peanut butter (with honey, pieces of peanuts,
chocolate etc.). Normally the market for these variants is not the same,
meaning that the amount of production of these variants could be lower.
It is in that case not a good idea to set up separate production lines for
these variants. It is more cost-effective to produce a batch of variant A,
next a batch of variant B, and several batches of the most popular standard
product. The same production line should be used in that situation, so
switching between different batches becomes compulsory. All batches are
also big by themselves to be cost-effective, because even switching to a new
but similar batch introduces overhead.

The introduction of a new product means development and testing of new
configurations for the three lower software layers. Sometimes we need new
software for our production system or even new hardware. The transition
from product development to producing can be time-consuming, because in

14 CHAPTER 1. AGENT-BASED MANUFACTURING

Batch Product X Batch Product X

time

ts

Batch Product X Batch Product Y

ts + tp

Figure 1.6: Batch switch overhead when switching to a batch of a different
product

the development stage we did not use the production equipment that is used
during the real production. So after development of a new product an extra
step is needed to switch to production on the production equipment. To
test this transition we also need to use the final equipment so it will not be
available for normal production for some time.

Our investigation in properties of standard batch production automation
can be summarized in four properties.

1. Huge batches for cost-effective production.

2. Small overhead introduced by batch switching of the same product.

3. Large overhead introduced by switching to another product.

4. Hard transition from product development to product production.

1.3.4 Shortcomings of standard manufacturing

After identifying the four properties of standard batch production, we men-
tion six weak points of standard production.

1. Standard manufacturing is suitable for mass production, but small
quantities or even single unique products according to user require-
ments are not advisable.

2. Standard manufacturing uses costly dedicated production machinery,
that should be used at a high load to make it cost-effective.

3. Pipelined batch production is vulnerable for failures of manufacturing
equipment.

4. Most standard manufacturing is push-driven. This can result in over-
production and waste of money, materials, resources and time.

1.4. EQUIPLET-BASED PRODUCTION 15

5. The transitions from concept to product to mass production takes sev-
eral steps and might take too long to be competitive in the market.

6. Most SCADA and MES implementations are not well suited for decen-
tralization and could introduce a single point of failure

In the next section equiplet-based manufacturing will be introduced. The
goal of this type of manufacturing is not to be a replacement of standard
production. The goal is to offer a cost-effective solution for the situations
where standard production is inadequate.

1.4 Equiplet-based production

The basic production platform for the new agile production system is the
equiplet. The concept of an equiplet has been introduced by Puik, see (Puik
and Moergestel, 2010).

Definition 3 (Equiplet). An equiplet is a reconfigurable manufacturing de-
vice that consists of a standard base system upon which one or more frontends
with certain production capabilities can be attached.

The frontends give the equiplet the possibility of production. It means
that at the moment the frontend is attached to the equiplet, certain pro-
duction steps can be accomplished. Every frontend has its specific set of
production step capabilities. A picture of an equiplet with a delta-robot
frontend is shown in Figure 1.7. A delta-robot is a special type of robot,
that can perform fast pick and place actions. With this frontend the equiplet
is capable of pick and place actions. A computer vision system is part of the
frontend. Using this vision system the equiplet can localise parts and check
the final position they are put in. The first field of application of the concept
was building microdevices with a three dimensional structure (in contrast
with the two dimensional approach used in placing electronic components on
printed circuits). In this case one could think of steps to pick up a component
and place it at a certain position (pick-and-place). Applying adhesive could
be an option for this pick-and-place step. A local computer system is avail-
able on the equiplet for running control software depending on the applied
frontends. Software configuration and management of an equiplet should be
simple and easy.

As already mentioned, we call a collection of equiplets a production grid
or in short a grid. The equiplets in a grid do not necessarily have the same
frontend. Some frontends are unique, other frontends are available on several
equiplets. The production process as a whole will dictate which frontends

16 CHAPTER 1. AGENT-BASED MANUFACTURING

Figure 1.7: An equiplet with a delta-robot frontend

are needed. In the subsection 1.4.1 the properties of this agile production
grid will be discussed, and in 1.4.2 enablers for this type of production will
be mentioned.

1.4.1 Properties of equiplet-based production

Small-scale production To produce small-scale batches or even unique
single products, standard batch production automation is inadequate be-
cause of the shortcomings mentioned and summarized in section 1.3.4. To
make a single product, we should guide a product along the set of equiplets
that offer the required steps for the product to be made. At the same time
other products, requiring different sets of steps can also be made, assuming
that access to the equiplets is adequately scheduled. When we use the con-
cept of equiplets one should think of multiple production systems capable
of producing many different products in parallel. We call this multiparallel
production. At any moment we can start the production of a new or different
product. This type of production does not introduce the overhead of batch
switching and is capable of starting the production of a different product
during the time another product is produced.

Time to market As mentioned in section 1.3.4 the transitions from con-
cept to mass production might take too long. It means that the time-to-
market might be too long. The time-to-market is the time that it will take
for a newly developed product to go into mass production. From an eco-
nomic point of view, this time should be minimal. Normally new products
are developed at the Research and Development department. Then the pro-
duction automation team will search for ways to make the transition to mass

1.4. EQUIPLET-BASED PRODUCTION 17

production. This phase is sometimes referred to as upscaling. To test this
upscaling we also need to use the production floor equipment for test batches.
The aforementioned steps are visualized in Figure 1.8.

New
Product

Upscaling to
Real Production

Equipment

Test
Batch

Production
Batch

Research and
Development (R&D)

Production
Floor

Adjust
Parameters

Time to Market

Figure 1.8: Steps involved for a new product

To make the transition from product development at the Research and
Development department much easier, equiplets are used in the product de-
velopment as well as in the final production process. So development, produc-
tion automation and testing will be combined. The extra step of upscaling or
adapting to the real production system is absent. The production is done by
the same equipment and software as in the product development phase. This
alleviates the aforementioned time-to-market problem (Puik et al., 2011). In
Figure 1.9 this approach is visualized.

New Product
made by Equiplets

using existing and/or
new frontends

Research and
Development (R&D)

Production Floor

IF (new frontend)
Integrate new

frontend in
production grid
Start production

ELSE
Start production

Figure 1.9: Developing a new product using equiplets

Reliability The grid production system is less vulnerable for failing pro-
duction machinery, because equiplets can offer redundancy and the software
architecture that will be described shortly is decentralised. System faults
will not block other still operating parts of the grid.

1.4.2 Enablers for the equiplet-based production

Developments of the last few decades support the realization of this equiplet-
based production. We mention five of them.

18 CHAPTER 1. AGENT-BASED MANUFACTURING

1. Internet and fast computer networks: our model is a distributed sys-
tem where communication between the components should be fast and
reliable.

2. Interactive web technology: this technology helps to involve the user
of the product in the design and requirements phase.

3. Powerful micro-systems: all systems should have computing power to
support a multitasking environment. This is not a problem any more
in modern processor designs.

4. 3D printing: this technology enables making possibly unique parts for
a product at low cost and low quantity.

5. Availability of cheap mobile robots: in the past attempts have been
made to implement agile manufacturing, but the flexible transport in-
frastructure turned out to be a big problem. Nowadays, cheap mobile
robot platforms are available that can be used to implement flexible
transport.

1.5 Hardware and software infrastructure

This section invcestigates possiblities for hardware and sofwtare realisation
of the agile manufacturing system. It contains four subsections.

1.5.1 Hardware. A global hardware overview.

1.5.2 Equiplets. The software for the equiplets.

1.5.3 Software infrastructure requirements.

1.5.4 Possible software architectures.

1.5.1 Hardware

Figure 1.10 shows the hardware setup of our production system. Only three
equiplets are shown, but one could think of a grid of 64 or even more equiplets.
The equiplets are connected by a standard (fast) network infrastructure based
on switches or routers, thus offering a high bandwidth communication infras-
tructure. To monitor the grid we have a system that could be a standard
industrial personal computer. This system will display information to a grid
operator about the production processes in the grid. The storage of pro-
duction information, necessary software components and the control of the
several parallel production processes is done by supporting systems.

1.5. HARDWARE AND SOFTWARE INFRASTRUCTURE 19

network switch

equiplet A equiplet B equiplet C

production grid monitorsupporting systems

frontend X front-
end Y

frontend
Z

Figure 1.10: Hardware infrastructure

1.5.2 Equiplets

The equiplets have an onboard computer system that is running an operating
system capable of network access. They also have the possibility to download
extra software from the supporting systems. The basic software model for an
equiplet is shown in Figure 1.11. In this figure we have the following software
components.

1. Local Realtime OS. This is the operating system running on the equiplet
hardware.

2. A network driver is needed to make a connection to the outside world.

3. The network can be used to load additional software parts from the
supporting systems.

4. Every equiplet has some basic control software. This software is needed
to enable the on-board communication bus that is used to connect to
the equiplet frontend devices. For the communication with frontend
devices a standard fieldbus, like CAN (Tindell et al., 1994) or Mod-
bus (Rane, 2010) can be used. USB (Axelson, 2001) is also an option
for connecting the frontend hardware, especially for devices like cam-
eras. When a frontend is attached to the equiplet, this communication
channel or bus can be used to discover the type of frontend and its
devices and this gives information about extra drivers that are needed
to control this frontend hardware.

20 CHAPTER 1. AGENT-BASED MANUFACTURING

All equiplets share this basic model. As can be seen in Figure 1.11 it is a
layered software architecture, where the lowest layers are closely tied to the
hardware. At the highest layer are the applications that run on top of an
operating system.

Local Realtime OS

Network Driver

Software Loader Basic Control Software

Figure 1.11: Basic software model for an equiplet

When we want to use an equiplet we have to take into account the software
requirements for one or more frontends. So our basic model is not sufficiently
equiped for this task. We need extra on-board software that is stored on the
supporting systems and requested by a certain equiplet, depending on the
needs of the local attached frontends. The on-board basic control software
will discover what kind of extra software is needed. From the supporting
systems two software components are requested.

• Equiplet Frontend Drivers. They are needed to actually make the con-
nection to the equiplet frontend hardware. The need for these drivers
is discovered by the on every equiplet available basic control software.

• Frontend specific software. It acts as the interface to higher soft-
ware layers to control the frontend hardware using the aforementioned
drivers.

The result is the software model of Figure 1.12. The model is shared for
all our software architectures, but some architecture solutions proposed in
subsection 1.5.4 will expand this software model for equiplets.

Equiplet Frontend Drivers

Local Realtime OS

Network Driver

Software loader Basic Control SoftwareFrontend Specific Software

Figure 1.12: Expanded software model for an equiplet

1.5. HARDWARE AND SOFTWARE INFRASTRUCTURE 21

1.5.3 Software infrastructure requirements

For adequate operating software infrastructure, we have imposed the follow-
ing three requirements:

1. Efficient use of the equiplets. Equiplets are not expensive, but we need
some kind of load balancing over all the available equiplets because
this will lead to more parallelism and also prevents us from overusing
a small subset of equiplets.

2. Small-scale production in parallel with each other should be possible.
This is one of the goals for our grid production infrastructure.

3. Time to market of a newly developed product should be minimal. The
transition from the development department to the production floor
should be easy and simple.

1.5.4 Possible software architectures

To give an idea how the production of a single product will look like, we
have plotted a path that the product will follow along certain equiplets (Fig-
ure 1.13). Such a path will be called a production path. On every equiplet
in this production path, one or more production steps are done. A produc-
tion step is an action performed on the product by a single equiplet. Some
equiplets can perform a set of production steps. Note that equiplet A is
visited twice in the production path depicted in Figure 1.13.

1 2 3 4

5 6 7

8

9 10 11

equiplet A

equiplet A

equiplet C

equiplet B

production steps

product thread

Figure 1.13: Selecting set of production steps

In Figure 1.14 we plotted the paths of three products and this results in a
fabric of production paths along the available equiplets. The first production
step is shown as circles with fat borderlines.

22 CHAPTER 1. AGENT-BASED MANUFACTURING

X2 X3 X4

X5 X6 X7

X8

X9 X10 X11

equiplet A

equiplet B

production steps product X

Y2 Y3

Y5 Y6

Y7

Y8

Y9 Y10

equiplet C

equiplet E

equiplet D

production steps product Y

Z2 Z3

Z4

production steps product Z

Time

X1

Y1

Z1

Figure 1.14: Product path fabric

To make a contrast with a possible batch process for producing a huge
quantity of similar products as is the normal way of production, we also
include Figure 1.15. The figure shows the approach that is used in batch
environments for huge quantity production. We have a pipeline of production
steps along the production platforms. In this concept all steps should take
the same amount of time or all steps will adjust to the longest step time in the
pipeline. This is not necessary in the equiplet approach, though Figure 1.14
might suggest that. In Figure 1.16 the situation for steps of different duration
is shown. This approach fits in the equiplet-based solution, giving it an extra
advantage over standard batch processing.

X1

X2

X3

X4

X5

A

B

C

D

E

X1

X2

X3

X4

X1

X2

X3

X1

X2

X3

X1

X2

X4

X5

Figure 1.15: Batch production using a pipeline

To realize this we can apply two different models or architectures.

1 A centralized system, controlling the equiplets. The equiplets have the
minimal software configuration as shown in Figure 1.12. Figure 1.17
gives an impression of this architecture. Compare this with a situa-
tion where we have a huge printer server where we connect a multiple
of heterogeneous printers. Every printer has its own commands and
capabilities.

2 A distributed system where the on-board software of the equiplet is

1.5. HARDWARE AND SOFTWARE INFRASTRUCTURE 23

X2 X3

X4

X5

equiplet A

equiplet B

production steps product X

Y2

Y3

Y4

Y5

equiplet C

equiplet E

equiplet D

production steps product Y

Z2

Z3

production steps product Z

Time

X1

Y1

Z1

Figure 1.16: Product path fabric with varying step durations

Equiplet Frontend Drivers

Local Realtime OS

Software loader Basic Control SoftwareFrontend Specific Software

Network Driver

Equiplet Frontend Drivers

Local Realtime OS

Software loader Basic Control SoftwareFrontend Specific Software

Network DriverCentral
Control
System

Figure 1.17: Centralized production control

enhanced with extra software so these equiplets can act as active nodes
in this distributed environment. Instead of sending low level commands
to the equiplets, we can now send a command to perform a certain
production step. The on-board software is capable to perform such a
production step.

Model 1 has the advantage that the equiplet software is kept to a minimum,
but it results in a complex software system running on a central control
system. The complexity is due to the requirement to run a part of the control
system of all the equiplets. This software running on the central control
system will be a single point of failure so we should have a failover system
(see 1.7.2) for a complex piece of software which increases the complexity.

Model 2 has the advantage that the local software on the equiplets could
continue the production process in case of temporary failure in the supporting
systems, the network or in one of the other equiplets. This model also uses
the available processing power in the equiplets and this will scale better when
more equiplets are added. When we concentrate on this solution we can again

24 CHAPTER 1. AGENT-BASED MANUFACTURING

choose from two possibilities:

2A A coherent distributed system where we have a central planning system
that will send different software tasks to perform certain production
steps to the equiplets. This situation is depicted in Figure 1.18.

2B A system composed by autonomous operating parts, working together
on the production tasks as depicted in Figure 1.19.

Local Realtime OS

Software loader Basic Control SoftwareFrontend Specific Software

Network Driver

Equiplet Frontend Drivers

Local Realtime OS

Software loader Basic Control SoftwareFrontend Specific Software

Network Driver

Central
Control
System

Distributed local control

Distributed local control

Equiplet Frontend Drivers

Figure 1.18: Distributed production control

Local Realtime OS

Software loader Basic Control SoftwareFrontend Specific Software

Network Driver

Equiplet Frontend Drivers

Local Realtime OS

Software loader Basic Control SoftwareFrontend Specific Software

Network Driver

Distributed local control

Distributed local control

Equiplet Frontend Drivers

Single product control

Single product control

Cooperation
and

Negotiation

Figure 1.19: Distributed production control by autonomous subsystems

In case of a coherent distributed software system, we still need a complex
software system in the central control to monitor all the equiplets and to
decide what to do next when an equiplet completes its task. This central
control system software system has at least three drawbacks:

1. Hard to maintain.

1.5. HARDWARE AND SOFTWARE INFRASTRUCTURE 25

2. Single point of failure for the whole production process.

3. Not easy to adapt to new situations, in other words not agile.

When we look at our production system it is easy to separate the production
of product X from product Y . This will result in a breakdown of complexity.
An autonomous software component or subsystem should be able to make
a single product. These product-making software entities only share the re-
sources or environment, but each having its own path along the equiplets.
Of course communication between these autonomous part is crucial. They
have to negotiate about the use of the resources (i.e., equiplets) in the en-
vironment. So the system composed of autonomous parts seems to fit the
requirements for the agile production system. Model 2B also fits the best
in the grid concept, because autonomous software entities with communica-
tion capabilities can be easy implemented on a grid infrastructure. By using
these autonomous entities we get a flexible, scalable and reliable production
system (Paolucci and Sacile, 2005) as we will show in the next sections. The
autonomous software entities must satisfy at least the following five require-
ments:

1. Autonomy. The software entity should be able to decide for itself what
to do, however, this should be within the constraints and limits of the
production system.

2. Cooperative. The entity should cooperate with other entities to solve
conflicting situations. A solution should be a situation that is accept-
able for all involved entities.

3. Communicating. To cooperate, the entities must have the capability
to communicate with each other and the environment.

4. Reactive. Based on information about the environment or the situation
an entity encounters, the entity should react.

5. Pro-active. Entities should take initiative and cope with different situ-
ations.

In the next section, we will introduce the agent concept and show that the
agent-approach fits well in our proposed software architecture based on au-
tonomy.

26 CHAPTER 1. AGENT-BASED MANUFACTURING

1.6 Agents

There are many definitions of what an agent is. We use here a commonly
accepted definition by (Wooldridge and Jennings, 1995)

Definition 4 (Agent). An agent is an encapsulated computer system that
is situated in some environment and that is capable of flexible, autonomous
action in that environment in order to meet its design objectives.

In Figure 1.20 we depicted an agent in its environment. An agent is
sensing the environment an can perform actions on the environment. As
stated in the definition, the actions the agent performs depend on the design
objectives.

Agent

Environment

Sensing Acting

Figure 1.20: An agent in its environment

In Figure 1.20 the agent is a black box, so now we must take a look at the
internal software structure of an agent. To do this we should first discuss the
possible implementations of agents, but this is too broad a field to handle
here. We will concentrate on the aspects that are important for our final
software architecture.

1.6.1 Two types of agents

We will introduce the following two types of agents:

1. Reactive agents.

2. Reasoning agents.

A reactive agent senses the environment acts according to the information
its get from this sensing. There is no internal state involved. A reasoning
agent also senses its environment but does have an internal state. Depending
on the sensing input and the internal state it will search for an action to
perform, one could say it will reason for the action to perform. The sensing
input will also change the internal state. A special type of reasoning agent is

1.6. AGENTS 27

the so called belief-desire-intention-agent or BDI-agent. This type of agent
has its backgrounds in the philosophy of Dennett and Bratman (Dennett,
1987)(Bratman, 1987). An internal schematic of a BDI-agent can be seen in
Figure 1.21 (Wooldridge, 2009).

BDI-Agent

Sensing Acting
Interpreter

Beliefs

Desires Intentions

Plans

Figure 1.21: BDI-agent

The beliefs, goals, desires and intentions could be viewed as the mental
states of a BDI-agent (Singh, 2003).

• From the inputs of its sensors the agent builds a set of Beliefs. Beliefs
characterize what an agent imagines its environment state to be.

• Desires or goals describe the agent’s preferences, that is what the agent
prefers as its internal (agent) and external state (environment).

• Intentions characterize the goals or desires the agent has selected to
work on.

An agent is equipped with a set of plans. These plans have three components.

1. The postcondition or goal of the plan. This is the agent’s internal and
external state that will be the result of carrying out the plan.

2. The precondition of the plan. This is the internal and external state
that is present before the actions of the plan are carried out. Some of
these states might be required for the plan to be carried out.

3. The course of actions to carry out. The actual actions contained in the
plan.

An agent will deliberately choose a plan to achieve its goals.

28 CHAPTER 1. AGENT-BASED MANUFACTURING

1.6.2 Multiagent systems

A multiagent system (MAS) consists of two or more interacting autonomous
agents. Such a system is designed to achieve some global goal. The agents in
a multiagent system should cooperate, coordinate and negotiate to achieve
their objectives. When we consider the use of a multiagent system we should
specify abstract concepts such as:

• Role: what is the role of a certain agent in a multiagent system. Perhaps
an agent has more than one role.

• Permission: what are the constraints the agent is tied to.

• Responsibility: this means the responsibility an agent has in achieving
the global goal. A global goal consists in most situations of a set of
sub-goals. An agent can be responsible for achieving one or more sub-
goals.

• Interaction: agents interact with each other and the environment.

Agent

Environment

Sensing Acting

Agent
Sensing ActingAgent

Sensing Acting

agent-agent
interaction

Figure 1.22: Multiagent system

When we map our five system requirements as mentioned in 1.5.4 to
a MAS and single agent properties, we see there is a perfect match. The
agent is autonomous, reactive and can be pro-active. In a MAS these agents
can be cooperative and should communicate. What we must do to realize
our software infrastructure is to define agents with a specific role in the
system. These agents play their role and interact with other agents. We
have interactions at two levels. First the actions of the agent within the
environment and second the interaction between agents. When applied to our
situation, these interactions and agent actions result in an agile production
system as a whole.

1.7. MULTIAGENT PRODUCTION SYSTEM 29

1.7 Multiagent production system

To realize our system we define two agent roles. These roles are the main
roles in the system and we should investigate if we need some extra minor
roles. Every product is represented by a product agent and every equiplet
with a certain frontend is represented by an equiplet agent. The product
agent has the intention of the product being produced. The intention of the
equiplet agent is to accomplish production steps. Every product is made
according to a certain set of production steps, while every equiplet is capable
to perform a certain set of production steps.

1.7.1 The agent-based automation piramid

The automation piramid for this design is given in Figure 1.23.

Request for product

Production Steps

Product Agents

Equiplet Agents

EQUIPLETS

Controlling
production
equipment

Feedback

Feedback

User
Interaction

Figure 1.23: Multiagent production system

The product agent operates at what was in standard production called
the MES layer, while the equiplet agent is more closely tied to the hardware.
In this thesis a system will be described that is tightly coupled to one or
more users by using a web-interface. This is one of the possibilities, but this
approach results in a purely pull-driven manufacturing system.

1.7.2 Global description of the system

Now the system will be globally described. This description will reveal the
problems to be solved and this will lead to the research questions related to
the realisation of the system.

30 CHAPTER 1. AGENT-BASED MANUFACTURING

Agent platform

The two types of agents need to communicate and negotiate. To implement
this, an agent-based platform must be built or chosen from existing solu-
tions. Here one should keep in mind the remark made by Wooldridge in
pitfalls in using agent technology (Wooldridge and Jennings, 1998), where
the authors warn against reinventing and reimplementing an agent platform,
because being a time-consuming and elaborate task the amount of work is
underestimated. It is better to search for a platform with proven capabilities
that fits the needs.

Planning and scheduling

Planning and scheduling is of an important part of the final realization.
Figure 1.24 shows the way planning is accomplished by the participating
agents. Equiplet agents need to communicate their set of production steps
with the product agents. Based on this information the product agents choose
the right equiplet agents to build the product they represent. Optimization
is an interesting feature. For instance, in the example of Figure 1.24 we could
have chosen to make step 1 on equiplet A, but this would result in an extra
equiplet change for the product and its associated product agent.

1 2 3 4

possible steps
published by equiplet
agent from equiplet A

1 3 4 7

1 2 5 6
possible steps
published by equiplet
agent from equiplet B

needed steps for product agent X

Figure 1.24: Selecting set of production steps

An important feature of a production step is the time it will take to com-
plete. This could be a function of certain parameters for that step. Steps
are published on a blackboard by the equiplet agents. The equiplet agent
knows its capabilities and its building blocks, its building material etc. so it
can announce its production steps. It is possible to add on the blackboard
an overview of the time slots at which this step is available. It may happen
that a production step is so popular that replication of this production step
on another equiplet is advised. When we monitor the behaviour of the pro-
duction grid it is easy to discover the bottlenecks. A product agent carries

1.7. MULTIAGENT PRODUCTION SYSTEM 31

in its knowledge base all the production steps that are needed to complete
the product together with the path (order) through these steps. XML might
be suitable to express such a step overview.

The planning scheduling could be realized in a multi agent negotiation
setup. The negotiation is entered by the product agents and is about taking
possession of the production steps offered by the equiplet agents. One could
search for a possible solution and afterwards start to bargain if the production
as a whole could be optimized. Exchanging steps between product agents
can be based on maximizing the sum of the utilities of the participating
agents. So a product agent could decide to have a lower utility in favour
of a much higher utility gain for another agent. To investigate this system,
further simulations have been built and studied.

Transport during production

A flexible transport mechanism should be developed for the products to
move along the equiplets. Another type of transport is bringing parts to
the equiplets.

Benefits beyond production

After completing the product, a product agent is available that collected in-
formation about the design as wel as every single product step. An important
aspect of our research is the investigation on what roles the product agent
can play in other parts of the life cycle of a product.

Human interaction

Until now the equiplet agent has not been characterized. This could be a
piece of software, but also a human-operated equiplet fits in this concept.
In the latter case a piece of interaction software is needed to instruct and
interact with the human operator and to participate in the multiagent-based
production system. One could ask if it is now easily possible to let a software
equiplet agent takeover the action of the human operator based on the pro-
duction steps model we presented in this paper. A gradual takeover could
be accomplished by learning the software agent step by step the production
steps.

Reliability

For almost every production system downtime is expensive. So now we should
focus on the reliability of our model. A list of hardware failures and possible

32 CHAPTER 1. AGENT-BASED MANUFACTURING

solutions:

• Equiplet failure: by using redundancy, meaning that other equiplets of-
fer the same production steps, the product agent can switch to another
equiplet.

• Supporting system failure: this problem can be solved by setting up a
networked failover system. In a networked failover system a networked
device is replicated. One system is the primary network system, while
the second system is a backup network system. The backup systems
monitors the primary system and will take over the function of the
primary system in case of failure. This takeover can be done transpar-
ently (Coile and Jordan, 2000). This technique is used to make systems
more fault-tolerant. Failover is often a part of mission-critical systems
that must be constantly available.

• Network failure: this problem can also be solved by using redundancy.
Nowadays network components are not that expensive any more, thus
making a redundant network not expensive.

Possible software failures:

• Equiplet agent failure.

• Product agent failure.

• Supporting software failure.

1.8 Research questions

The problem statement is: How should the proposed production system be
implemented and what could be the benefit to the whole life cycle of a product?
To answer the problem statement several topics should be dealt with in
six different areas of research. These areas are discussed in Section 1.7.2.
Each area results in one of the following research questions. Some research
questions have a set of related subquestions.

RQ1 How should we actually build the agents?. Resulting subquestions are:
What platform? Using an existing platform? How do the agents com-
municate?

RQ2 What planning and scheduling system should be used? Planning and
scheduling is an important aspect of this new way of manufacturing.
What are the constraints and how can we achieve optimisation?

1.9. RESEARCH METHODOLOGY 33

RQ3 How should the system be set up? How to transport the products during
manufacturing?

RQ4 What are the possibilities and roles of the product agent when the prod-
uct is finished? What are the advantages to keep it alive? How to tie
it to the product? What other roles can it play?

RQ5 At what point are humans involved in this manufacturing system? Here
we should investigate the possibilities of the human interaction.

RQ6 How to recover from errors and guarantee a reliable system?

1.9 Research methodology

The research in this thesis can be qualified as applied research. In applied
research, problems are solved by applying well known and accepted theories
and principles. The methodology to come to the answers of the research
questions is based on several well known research methods. A literature study
has been the start, followed by investigation how methods and theories can
be applied to find solutions for the research questions. For many research
questions, software has been built to study the effect of the chosen solutions
under different circumstances. Many simulations have been built to collect
data about a specific problem. The simulations showed the strong and weak
sides of the concepts. For other questions an analysis has been done that
led to an architecture or solution that has been implemented as a proof of
concept.

1.10 Overview of the thesis

In this chapter the basic ideas and background have been discussed. In the
next chapters these ideas are more deeply investigated and elaborated. Chap-
ter 2 is dedicated to the concept of production steps and product agents. A
selection of available agent-platforms is made and based on this selection a
simulation of the proposed manufacturing system will be presented. The an-
swer to research question 1 is given. The simulation shows that the concept
is feasible but an adequate and good performing planning and scheduling
system is very important to make the manufacturing system work. This
planning and scheduling is the subject of Chapter 3. This chapter will give
an answer to research question 2. In Chapter 4 some ideas about the produc-
tion infrastructure such as the internal transport are presented and explained.

34 CHAPTER 1. AGENT-BASED MANUFACTURING

Table 1.1: Relation research question and chapter

Chapter RQ1 RQ2 RQ3 RQ4 RQ5 RQ6

1
2 3

3 3

4 3

5 3

6 3 3 3 3 3

7 3 3 3 3 3 3

This leads to an answer to research question 3. In Chapter 5 the concept
of the product agent is further elaborated and possibilities for the product
agents in other phases of the life cycle of a product are investigated. This
results in several case studies that serve as examples. Here the answer to
research question 4 is given. Chapter 6 will give the results of the agile man-
ufacturing grid. In this prototype a combination of a web-interface where the
end-user enters his product requirements with the agent-based manufactur-
ing system is realised. Research questions 5 and 6 are answered, but because
this is the combination of previous results, additional information about pre-
vious research questions can also be found. Chapter 6 also introduces the
manufacturing concept in a human-based working environment. This aspect
also relates to research question 6. A final chapter is dedicated to conclusions
and the relevance of the presented work in the thesis. Among the chapters
some duplication is deliberately present to render the chapters more self con-
tained. In table 1.1 an overview is given of the chapters in relation to the
research questions.

1.11 Summary

In this chapter a global overview of the agile agent-based manufacturing sys-
tem has been presented. The differences with standard production systems
and special features have been discussed. The research questions to be an-
swered are given as well as several definitions in the field of manufacturing
and agent technology. As stated earlier the proposed system is not meant as
a replacement for large scale production, but as a new paradigm for small
scale agile production.

Chapter 2

Simulation of the production
system

This chapter presents the first effort in realising the proposed agile manufac-
turing system. The concept as described in chapter 1 is elaborated in more
detail and the definition of a production step is given and also discussed.
Next the functional and technical requirements of the multiagent system
and the selection of a suitable platform is presented. The realisation of a
simulation of the concept where the equiplet agents are not yet connected
to the real equiplet hardware, is given as well as results of the simulation.
The goals of the simulation model were: testing the MAS functionality as
a distributed system, testing cooperation between the agents, testing the
migration of agents over the network.

Parts of this chapter have been published in the proceedings of the Inter-
national Symposium on Autonomous Distributed Systems (ISADS 2011) (Mo-
ergestel et al., 2011) and the proceedings of the International Conference on
Computer-aided Manufacturing and Design (CMD 2010) (Moergestel et al.,
2010b).

2.1 Global roles of the Agents

To realize our agent-based system we have defined two roles ascribed to two
types of agents. These roles are the main roles in the system.

Role 1 A product agent makes a certain product by searching and using a set
of production steps.

Role 2 An equiplet agent Offers and performs production steps.

35

36 CHAPTER 2. SIMULATION OF THE PRODUCTION SYSTEM

Every product is represented by a product agent and every equiplet is rep-
resented by an equiplet agent. A similar approach is also used by Jennings
and Bussmann (Jennings and Bussmann, 2003), though there are some im-
portant differences that will be discussed in the section related work. The
product agent has the purpose of the product being produced. The purpose
of the equiplet agent is to accomplish the production steps. Every product
is made by a certain set of production steps, while every equiplet is capable
to perform a certain set of production steps. In other words: product agents
know what steps are needed to make products while equiplet agents know
how to perform these steps. In

2.2 Production step

This section starts with with a formal definition of what a production step is.
In Section 2.2.1 the relation between production steps and the product agent
is discussed. Having a limited set of production steps available, will also
limit the possibilities of the manufacturing system. This will be discussed
in Section 2.2.2. Sections 2.2.3 and 2.2.4 give additional information about
production steps. Finally Section 2.2.5 shows the relation between frontends
and production steps as well as the consequences for the equiplet software.

Definition 5 (Production step). A production step is an action or group
of coordinated or coherent actions on a product, to bring the product a step
further to its final realisation. The states of the product before and after the
step is stable, meaning that the time it takes to do the next step is irrelevant
and that the product can be transported or temporarily stored between two
steps.

An addition to this definition is that in the model presented in this thesis,
the state of the equiplet is unaltered when the step is completed, apart of
course from wear and inventory of raw material or parts. This means that
the equiplet is ready for the next step to come. For example a pick and place
action is considered one step.

Equiplets get a front-end. This is part of the initial grid hardware con-
figuration. At that very moment it is clear what kind of production actions,
resulting in production steps, they can perform. Let us assume that the grid
offers a set Sgrid of N production steps σ1...σN . An equiplet offers a set of
production steps that is a subset of Sgrid. To make a product, a certain set
of production steps should be available. This means that the set of needed
production steps for a product is also a subset of Sgrid. Because for a product

2.2. PRODUCTION STEP 37

the order of production steps is important, the product is characterized in
its simplest form by a tuple of production steps: i.e. < σ4, σ7, σ2, σ1 >.

2.2.1 Product agent and steps

The ultimate desire or goal of a product agent is the product being completed.
To do so, production steps need to be accomplished. Such a production step
has a precondition, an action and an end-condition. The precondition of a
step should be implied by the completion (end-condition) of the previous step
or for the first step, the start situation. The precondition of the first step is
TRUE if the product is going to be made. The end-condition of the step is
the message from the equiplet agent that the step is completed. For the final
step this means that the product as a whole is completed. Given these rules
an agent will decide to start with the first step to change its belief about to
state the product is in. This state will trigger the next step and so on until
the final step is done. The action to perform is finding an equiplet agent
to complete the step, visit this agent (residing in an equiplet) and collect
production information in a product log.

2.2.2 Production constraint

It is possible to build a product X when the set of steps for this product PX

is a subset of the steps offered by the grid Sgrid. This Sgrid is the joined set
of available M equiplets each offering a set Ei : (i ∈ [1, ...M]). This means
that for every equiplet i:

Ei ⊆ Sgrid

Assuming M equiplets, we have:

Sgrid = E1 ∪ E2 ∪ ... ∪ EM

Thus:
PX ⊆ E1 ∪ E2 ∪ ... ∪ EM

Or:
PX ⊆ Sgrid

Normally we do not need all the equiplet steps, so:

PX ⊂ Sgrid

Note that this is only a guarantee with regard to the existence of steps. It
might be that these steps are not available for product agents due to the
fact that they are already reserved by other product agents. It is also still
possible that a product needs all equiplets, but not all production steps.

38 CHAPTER 2. SIMULATION OF THE PRODUCTION SYSTEM

2.2.3 Classification of production steps

A production step could be seen as a statement in a computer program or
more fundamentally as a instruction of a processor. To give the reader a
feeling of what steps could be in the proposed manufacturing system we list
four possible classes of steps.

1. Steps that alter the shape of a product by chemical, mechanical or other
physical action (i.e., heating). Drilling, molding, cutting and milling
are examples of mechanical shaping.

2. Steps that add one or more components to the product by inserting,
gluing, welding, soldering, or another way of attaching. This includes
steps that combine half-products, constructed by a separate step path.

3. Steps that inspect a product made so far.

4. Steps that will test a product.

2.2.4 Properties of the step concept

By defining steps we have a way to find out how we could construct a product.
A step could be translated to instructions to a human operator or could be
translated to low level actions of a part of the production system (i.e. an
equiplet). This makes it possible to make a smooth transition from a hybrid
system (Neef, 2006) where a human operator interacts with the equiplet agent
to a complete software driven process. A step should be clearly defined
(just like a statement or instruction in a computer program). A step can
be performed if a set of preconditions is fulfilled. After the step has been
completed, we have a new situation (postcondition) for the product agent.

In this chapter we do not yet go into detail about product path planning
and scheduling though it is of course a very important part of the final
realization. Figure 2.1 shows the way product path planning is accomplished
by the participating agents for equiplet A and B in combination with a
product agent X. As explained earlier, equiplet agents publish their set of
production steps. The product agents choose the right equiplet agents to
build the product they represent.

2.2.5 Production step frontend relation

At that very moment an equiplet gets its frontend, it is clear what kind of
production actions they can perform. The production steps are linked to
the frontends as well as to the products. So every specific frontend X is

2.3. STEP PATH AND PRODUCT PATH 39

1 2 3 4

possible steps
published by equiplet
agent from equiplet A

1 3 4 7

1 2 5 6
possible steps
published by equiplet
agent from equiplet B

needed steps for product agent X

Figure 2.1: Selecting a set of production steps

connected to a set of production steps say FX . For a product Y a set of
production steps PY is needed to make that product. The control software
or driver on the equiplet can be requested by the equiplet itself. The control
or driver software is available on the supporting systems the equiplets are
connected to. This software is not the equiplet agent but will enable the
equiplet agent to act. The equiplet is part of the environment of the equiplet
agent. Equiplet agent i has a set Ei of production steps it can perform.
When an equiplet has only one frontend, which seems to be the default case,
we have:

Ei = FX

Because of the strong interaction with the equiplet driver software we expect
the equiplet agent to run on the equiplet on-board system itself. These
equiplet agents will publish their possible production steps in a global agent
accessible space like a blackboard. Then they wait until a product agent
wants to use its service.

2.3 Step path and product path

This section will define the concepts step path and product path. In Sec-
tion 2.3.1 step path classes will be introduced and in Section 2.3.2 special
cases of step paths are discussed.

Consider a situation where a product is built by 11 production steps. Let
us assume that we have 3 equiplets A, B and C. Equiplet agent A offers
production step set EA = {1, 2, 3, 4, 8}, EB = {5, 6, 7} and EC = {9, 10, 11}.
The product agent representing our 11-steps product will choose equiplet A
first to perform steps 1, 2, 3 and 4. Next equiplet B is used to perform steps
5, 6 and 7. Then we need again equiplet A for step 8 and finally equiplet C

40 CHAPTER 2. SIMULATION OF THE PRODUCTION SYSTEM

for the last tree steps 9, 10 and 11. This so called product thread or product
path is visualized in Figure 2.2.

1 2 3 4

5 6 7

8

9 10 11

equiplet A

equiplet A

equiplet C

equiplet B

production steps

product thread

Figure 2.2: Product thread or product path

Definition 6 (Step path). A step path is a path along a sequence of produc-
tion steps or along a set of sequences of production steps that a product agent
has to follow to complete a product.

In the example that is visualised in Figure 2.2 where the product path is
shown, another path emerges. This is the path along the equiplest involved.
In case of the example it is a path from equiplet A to equiplet B, from equiplet
B to A and finally from equiplet A to equiplet C. This type of path will be
referred to as product path.

Definition 7 (Product path). A product path is a path or set of paths along a
sequence of equiplets that a product agent has to follow to complete a product.

2.3.1 Step path classes

In the previous example of our 11-step product (Figure 2.2) the production
steps are in line so our path is a single thread but one could think of other
possibilities. Maybe the order of some production steps is irrelevant or a set
of steps could be replaced by another set of steps. This is another advantage
of the grid concept versus standard production. In standard pipeline-based
production it is difficult to change the order of steps. Figure 2.3 shows some
possibilities. When the order of subsets of steps is irrelevant, we start two
or more parallel paths. These paths will join at some point. A special but
often used case is a structure that starts with one or more parallel threads
of steps. In this case it is sometimes possible to use real parallel production
steps that are joined to complete the product. A special case is combining
two half-fabricates.

2.3. STEP PATH AND PRODUCT PATH 41

1 2 3 4

5

6 7 8

9 10

14

15

AND

OR

JOIN-1

sequential steps

paralle l steps

alternative steps

11

12

13

16

19

20

joining half products

17 18

22

21

JOIN-2

Figure 2.3: Different combinations of production steps

When these product paths as shown in Figure 2.3 are written in sets and
tuples this results in:

• Single path: < σ1, σ2, σ3, σ4 >

• Parallel steps: < σ5, {< σ6, σ7, σ8 >,< σ9, σ10 >}, σ11 >

• Alternative steps: < σ12{< σ13, σ14 > ∨ < σ15 >}, σ16 >

• Joining half products: < {< σ17, σ18, σ19 >,< σ20, σ21 >}, σ22 >

2.3.2 Special cases of step paths

When we introduced possible step combinations, we had the AND concept,
where we could choose which branch to complete first (Figure 2.4). Because
we start with a single production step and thus a single path we deal only with
a single (incompleted) product after step 5, so we cannot use real parallelism
in this case. The single product cannot be splitted to follow two different
paths simultaneously. Because we want to treat the join as a special situation
for real parallel manufacturing as will be introduced shortly, we re-map this
AND construction to a choice of branches (OR) as can be seen in Figure 2.4

42 CHAPTER 2. SIMULATION OF THE PRODUCTION SYSTEM

5

6 7 8

9 10

AND JOIN

parallel steps

11

5

6 7 8 9 10

OR

altenative steps

11

6 7 89 10

Figure 2.4: converting an AND to an OR

In formula, this means that we rewrite:

< σ5, {< σ6, σ7, σ8 >,< σ9, σ10 >}, σ11 >

to
< σ5, {< σ6, σ7, σ8, σ9, σ10 > ∨ < σ9, σ10, σ6, σ7, σ8 >}, σ11 >

. This means that the product agent can choose from two possibilities. In
the planning it can select the possibility that turns out to be the fastest. It
can have the other possibility at hand when a scheduling turns out to be
infeasible.

Real parallelism can be achieved if the product has a tree structure as in
Figure 2.5. On the left side of this figure, four incoming arrows each denoting
the start of a production path can be seen. Each path will construct a
subpart for the final product and because these paths are independent, these
subparts can be made in parallel. At every join in the figure these sub-parts
are combined to be input to the next step or steps.

Figure 2.5: A tree of steps

In the situation of a tree structure a collection of product agents for a
single product will be used. The start situation will be one agent, but this

2.4. CONSIDERATIONS ABOUT THE IMPLEMENTATION 43

agent will spawn child-agents for the separate tuples. In Figure 2.5 we start
at the righthand side and walk backwards to the beginning of the production
on the left. At every join child-agents will be created. The parent will wait
for its children to complete their subpart. This will be done for every join
and will be repeated until the start of the tree structure. When all agents
succeed in planning and scheduling, the production will start. At every join
the child agents are absorbed by the waiting agent, taking over the collected
information and continuing the path until the end is reached as a single agent.
This situation arises many times, because most products consist of subparts
(Figure 2.6). The product agent at the root of the tree will finally collect all
information from its children. The effect of this decomposition of complex

Part A Part B

Part C

System

Part
D

Part
E

Figure 2.6: Product consisting of subparts

products is that every product agent only has to deal with a single tuple of
production steps. The relationship of these product agents is the fact that
they are working on the same product.

2.4 Considerations about the implementation

In this section we will summarize the global requirements for the equiplet
agents (Section 2.4.1) as well as for the product agents (Section 2.4.2). Later
on we go into more detail, especially the product agent will have much at-
tention. In Section 2.4.2 implementation aspects of the product agent are
discussed in relation with the following aspects.

1. A trusted product agent versus a foreign product agent.

2. Product agent for small batches

44 CHAPTER 2. SIMULATION OF THE PRODUCTION SYSTEM

3. Living area for product agents.

2.4.1 Equiplet agent

Equiplet agents should:

• have a environment to run. For this agent running on the equiplet
onboard hardware seems to be the best solution because this agent
is closely related to the software that controls the equiplet hardware.
Another advantage is that this results in a scalable distributed system.
Every newly introduced equiplet will also deliver computing power for
the equiplet agent to run.

• be capable to communicate its production steps. This is necessary to
make the concept proposed here work. An equiplet agent that is not
telling what it can do, will not get any requests from product agents.

• tell the product agent if a production step in combination with certain
parameters is feasible. It turns out that a production step alone is still
too generic. Before the decision to select a certain equiplet for a given
step, the product agent will first check with the equiplet agent if it can
perform the step with the parameters involved.

• tell the product agent how much time to reserve for a certain step with
given parameters. The product agent needs to know or at least have
good guess about the duration of a step. This information will play a
role in the planning of the production by the product agent.

• be capable of human equiplet operator interaction if this is necessary.
The model presented here is not restricted to autonomously operating
equiplets, but can also be used in situations where a human operator
is actually controlling the equiplet.

• have their software image residing on the central server to be down-
loaded at the required equiplet.

2.4.2 Product agent

Product agents should:

• have an environment to run. This environment also denoted as the
living area of the product agent can be on the equiplet or a supporting
system. This choice will be discussed further on.

2.4. CONSIDERATIONS ABOUT THE IMPLEMENTATION 45

• have a modular design. By having a modular design, all product agents
can have the same global design, making the software maintenance
easier.

• be mobile. This has to do with the fact that the living area may chance
and the product agent has to move from one platform to another.

• collect product information during the production. This is a require-
ment for the product agent. Formerly production data were collected
by the so-called MES-layer introduced in Chapter 1.

• know the production step sequence of the product they represent. This
is the knowledge that a product agent starts with and will trigger the
agent to reach its goal.

• be capable of negotiating to claim an equiplet to be used in the produc-
tion process. First a product agent has to find an equiplet and then it
should claim it. However other product agents might also be interested
in that specific equiplet. A solution for this situation should be found.

Because of the strong interaction with the equiplet driver software we
expect the equiplet agent to run on the equiplet on-board system itself. These
equiplet agents will publish their possible production steps in a global agent
accessible space like a blackboard(Corkill et al., 1987) or shared tuple space
(Gelernter, 1985) or another way to publish globally for the MAS accessible
data. Then they wait until a product agent wants to use its service.

When a product agent comes into existence in a grid environment, two
possibilities exist for this situation. The agent was a mobile agent created
somewhere and visiting the grid. This type of product agent is called a
foreign agent and the discussion will be treated in the appropriate section.
The other situation is that the agent is created in the MAS environment of
the grid itself. This could be the case of an agent generated by a human
operator using a web-interface to construct a desired product. This type of
agent is created in an environment that is totally aware of the possibilities
offered by that environment. The web-interface is equipped with tools to
create a product that fit neatly with the production-steps available in the
grid. It means, when the web interface is capable to generate a virtual
product, the grid is capable to produce that product. The situation for a
foreign agent is completely different. The foreign agent should be handled
with care as it is not allowed to do things that might tamper the correct
functioning of the grid. It means that this type of agent should be put in a
sandbox environment and only connect to the grid by a mediator agent that
is part of and trusted by the grid MAS.

46 CHAPTER 2. SIMULATION OF THE PRODUCTION SYSTEM

Trusted product agent

The first thing that should be done by this type of product agent is check
if the required production steps together with the required parameter are
feasible. For every step involved this is an action consisting of two phases:

• Check the availability of a step and find out if the equiplet offering the
step is really available. This means it is up and running.

• Check if at least one member of the set of equiplets offering the step is
accepting the parameters required for the step.

After checking this for all needed steps it is known that the manufacturing
is feasible within the grid. When it comes to the availability of parts needed
for production three approaches for the manufacturing could be considered:

1. At the beginning of the manufacturing a box with all components
needed for manufacturing is made. It means that the equiplets them-
selves do not need to keep these parts available. This situation come
handy when there are many types of parts that can be handled by dif-
ferent equiplets. Such a situation will be called the pure building box
approach. A filling station should be available at the beginning of the
manufacturing, but it is not necessary to fill all components at once.
A bit by bit approach is possible, but it introduces extra overhead.

2. The equiplets themselves offer parts during manufacturing. The equiplet
will be kept responsible to keep parts in stock and to order new parts
if a low water mark of local availability is reached. This situation is
called the distributed parts approach.

3. There is a third hybrid situation where a building box is used, but the
equiplet is also responsible for some additional material. This is the
case of the situation where a glue dispenser is used by an equiplet and
the equiplet is responsible for adhesive being available.

During production, this type of product agent could be in full control of
the production itself. The planning, scheduling and production is directed
by the product agent. The equiplets are the production machines. Should
production fail at any point in the production tree or line, the problem should
be reported to and handled by the product agent.

2.4. CONSIDERATIONS ABOUT THE IMPLEMENTATION 47

Foreign product agent

A foreign agent could be prepared in a distant unknown environment. This
type of agents should be handled with care to prevent it compromising the
grid production system. This can be achieved to give it a thread of execution
in a sandbox container, where the only possibility is to talk with a mediator
agent. However, it is also possible and in a certain sense desirable to keep
this agent somewhere in cyberspace where it has been created.

The mediator agent takes over the role of product agent comparable to
a trusted agent. There is however a significant difference. Being a repre-
sentative of a foreign agent, this foreign production agent could possibly be
not aware of the capabilities of the production grid. That is the reason why
a thorough examination of the requested production steps and its parame-
ters is required. This is a task for the mediator agent that actually replaces
the product agent. After checking the required capabilities of the grid, the
mediator agent will act the same way as a trusted agent. At the end of
the production, the production information will be handed over from the
mediator to the foreign agent.

Product agent for small batches

A special attention should be paid to the situation where not a single product
but a small batch of similar products is required. In that case, the following
considerations should be taken into account:

• If the products are completely similar, in the MAS subsystem an op-
timisation could take place by issuing requests one time for a multiple
of products. The scheduling could also be done on the whole batch,
however, this could be complicated in case of interference with other
production requests, so in this case a batch planner and scheduler could
be advisable.

• If it is the case that products in a batch are not similar, two possibilities
arise:

1. All products have the same sequence of production steps (tuples
are the same), but the parameters are different for at least one
step and possibly for more or even all steps. An example could
be a batch of similar products but with different colours, so the
paint colour parameter is the only difference.

2. Products have a different sequence of production steps.

48 CHAPTER 2. SIMULATION OF THE PRODUCTION SYSTEM

In the second case the approach of using a product agent for every single
product seems adequate. The first case is comparable with the situation
of a batch of similar products and a batch planner and scheduler can
be used.

Living area for product agents

When we want to implement a system based on our hardware we have two
choices for the product agent:

1. A product agent can be mobile and migrate to the onboard equiplet
hardware to interact with the equiplet agent as in Figure 2.7.

equiplet A

equiplet A

equiplet C

equiplet B

equiplet agent
frontend A

product agent

product
agent
path

product flow

equiplet agent
frontend B

equiplet agent
frontend A

equiplet agent
frontend C

Figure 2.7: Mobile product-agent

2. A product agent can run on the supporting systems and communicate
with an equiplet agent by using the network address of an equiplet
where the equiplet agent resides (Figure 2.8).

The size (in embedded technology also known as the footprint) of the product
agent is important to decide what solution is the best. The advantage of a
mobile agent is better as to the use of the distributed processing power. When
all product agents reside on the central server, scaling to a big production
grid will result in an overloaded supporting system. This supporting system
could by duplicated to overcome this problem. We also have to consider the
amount of data communication when all these mobile agents are travelling
along the equiplets (Figure 2.9a). When this give rise to a loss of bandwidth
of the network infrastructure a solution could be the use of a modular agent
design. So most parts of the product agent software can reside on the equiplet
and only the part representing the essential product information travels over
the network (Figure 2.9b).

2.5. INTERAGENT COMMUNICATION 49

equiplet A

equiplet A

equiplet C

equiplet B

equiplet agent
frontend A

product agent

product agent
network connection

product flow

equiplet agent
frontend B

equiplet agent
frontend A

equiplet agent
frontend C

supporting server

Figure 2.8: Product agent on supporting system

product agent product agent

product agent

BDI

product agent

a)

b)

Figure 2.9: Mobile agent implementations

2.5 Interagent communication

The communication system of the agents has three requirements.

1. It should be based on the fact that agents act autonomously (Sec-
tion 2.5.1).

2. If possible, it should adhere to standards (Section 2.5.2).

3. The implementation in the production domain has its requirements
(Section 2.5.3).

2.5.1 Communication system

In multiagents typically three types of communication are often used (adopted
from Wooldridge (2009)).

• Peer-to-peer communication where every agent is capable to send a
message to every other agent. Each agent should know the names and
addresses of all agents.

50 CHAPTER 2. SIMULATION OF THE PRODUCTION SYSTEM

• Blackboard-based communication, where agents share a medium where
messages can be published and read by other agents.

• Federation-based communication, where the agents of the MAS are di-
vided into groups or federations, and in every group there are facilitator
agents responsible for the communication between the federations.

In autonomous agent-based communication, these types of communication
are asynchronous, meaning that the communication system does not depend
on obligatory responses.

2.5.2 FIPA

As stated in Section 2.1, the product agent knows what production steps
need to be done. The equiplet agent knows how to accomplish certain steps.
To make a cooperation between these agents possible it is necessary to define
a common language or ontology for these two agents. An important standard
for interagent communication already exists. The FIPA organisations states
on its website: FIPA is an IEEE Computer Society standards organization
that promotes agent-based technology and the interoperability of its standards
with other technologies. The FIPA standards are widely accepted and used
in the field of agent technology. This is the reason why the MAS that will
be built should be based on these standards.

2.5.3 Production domain communication

Let us consider what it means to give a production command to the equiplet.
This command is actually a request to perform a production step. The prod-
uct agent knows the status of the product in statu nascendi before and after
the production step has been done. When these two states are communicated
to the equiplet agent, the first thing the equiplet will do is to check and con-
firm the begin status. After that it is the responsibility of the equiplet agent
to realize the desired end-status. By this the product agent does not have
to take in account complex movements of several parts to the wanted posi-
tion. Only the end-position is relevant to the product agent. The problem to
avoid collisions during movements of parts is left to be solved by the equiplet
agent. Let us show in more detail what it means for the information that
should be transferred from product agent to equiplet agent. In Figure 2.10 a
situation is shown of two parts A and B that must be glued together. Both
parts are in a container. The product agent knows which parts are involved
and their positions in the container. This is considered temporary data for
manufacturing and should be stored with the product agent. It also knows

2.5. INTERAGENT COMMUNICATION 51

at what position the parts should be glued together. The command to the
equiplet agent includes information about the following nine items.

1. Adhesive type.

2. Where to add the adhesive.

3. The amount of adhesive to use (defaults to equiplet setting if omitted).

4. The adhesive dispenser type.

5. Which parts are involved.

6. Location in the tray of the parts.

7. Position of the parts after the step is completed.

8. Location in tray where the assembled (sub)product should be stored.

9. Hardening time.

A B

Figure 2.10: Glueing part A and B

The problem to be solved is: how do we communicate this information to
the equiplet agent? For every step one or more parts are involved, Every
step has a certain action to be done. Some steps require a certain resource
(adhesive, paint). This can be represented in an XML-specification. The
FIPA standard allows for embedding XML in its messages.

<step>

<parts>

<part>identifier, position</part>

<part>identifier, position</part>

</parts>

<action>

adhesive, where to dispense

part(identifier) part(identifier) (coordinates)

</action>

<resource>

adhesive(<type>, <amount>)

</resource>

</step>

52 CHAPTER 2. SIMULATION OF THE PRODUCTION SYSTEM

From the example given here the equiplet needs to know about the shapes of
components A and B to perform the required action. It should be capable to
identify the surfaces where these components should be glued together. This
is the how-part that was assigned to the equiplet agent. Finally, to realise
the system, a start will be made that is simple and gradually increase the
complexity by adding knowledge about more complex parts to the production
system. This is the bottom-up approach used in our research.

2.6 Product agent functional requirements

The functional requirements describe what the product agent shoul do. This
section has two subsections. Subsection 2.6.1 describes the functional require-
ments in the production environment. Subsection 2.6.2 descibes additional
requirements for the product agent in the life cycle of a product.

2.6.1 Production environment

The primary role of a product agent during production is taking care of the
production of the product. The responsibility of the product agent is building
the product. To fulfil this role there are certain steps that should be take
into account:

• From the design a global and abstract description of the product being
built is available in combination with the actions involved. This is a
collection of so called production steps. The first thing to do for the
product agent is planning the production. To do so the steps must
be parametrised and specified. Next the product agent should find
out which equiplets offer the required steps. The next thing to do
is investigating if the needed steps can really be performed by the
equiplet. It means that the product agents asks the equiplet agent if it
can perform the requested step with the given parameter set. When all
steps are investigated a set of possible plannings can be made. To make
the production planning an overview of steps by equiplets is needed.

• Optimization of the planning. In this phase the product agent will try
to look for the most optimal planning. Taking into account the steps
that can be performed in a row on a certain equiplet and the travelling
time for a product between the equiplets. This will result in a list of
plans sorted according to optimization.

• Scheduling the production plan. Starting with the most optimal pro-
duction plan, the product agent tries to schedule this plan. What is

2.6. PRODUCT AGENT FUNCTIONAL REQUIREMENTS 53

needed here is a blackboard. Being a passive entity the blackboard is
less vulnerable to malfunction than an active entity like a program or
agent. The blackboard shows the availability of the equiplets. Every
equiplet entry has several possible values:

– ID > 0: in use or reserved by product with identifier ID.

– 0: available for this timeslot.

– -1: unavailable because of planned work.

– -2: unavailable because of error or state (maintenance, switched-
off).

– -3: unavailable because of unknown reason.

• Starting the actual production according to the planning and the schedul-
ing. During production, the equiplets will inform the product agent
about the steps performed, thus building a unique product log.

• Error recovery. An important aspect of the production is that there
can be failures. The product agent should have ways to recover from
failures or to handle them in a neat way.

• Final inspection of the product (quality control). This should be done
by using a special equiplet, because the product agent may be living
in cyberspace and has no direct connections to the real production
environment. It would be very nice if a kind of 3D match check could
be done. Thus the checking equiplet builds a 3D image giving the
product agent the opportunity to check the final product.

To fulfil its role, the product agent should communicate with the production
infrastructure. This can be accomplished by running the agent on the same
platform as the software for production, but also a networked connection fits
this goal well.

2.6.2 Life cycle

When the product agent continues to play its role in the life cycle of the prod-
uct as will be introduced in Chapter 5, we might need additional functional
requirements.

• Mobility. Mobility is necessary if the product agent must be embedded
in the product itself. At first there is no product at all and when the
product is completed, the agent should be moved to hardware in the
product.

54 CHAPTER 2. SIMULATION OF THE PRODUCTION SYSTEM

• Wireless connectivity. A product that is freely moving around with
an embedded product agent can use wireless technology to enable the
product agent to communicate with the outside world.

• Reliable storage of important data. A product agent is responsible
for the logging of all kinds of important data. This data should be
stored for later use. The agent might use external storage and use the
aforementioned wireless connectivity to transfer data.

• Role-changing. In Chapter 5 situations are described where a product
agent will act in different roles. A role-changing mechanism should be
provided.

• Extra security. This has also to do with a product agent embedded in
a device that is already in use. Tampering with data and misleading
the product agent should be prevented.

• Error and crash recovery. A product agent should recover from error
situations and system crashes.

• Redundancy. In some situations redundancy might help to recover
from serious crashes where the product agent lost critical information
or even the product agent itself is lost.

2.7 Product agent technical requirements

The technical requirements state how the agent software should be built. In
the MAS-based system, the realisation will focus on the platform where the
agents will live. One of the pitfalls in using agent technology is developing a
platform from scratch (Wooldridge and Jennings, 1998). To avoid this pitfall,
research has be done to select a platform that seems fitted to our functional
requirements.

2.7.1 Platform requirements

The agent platform has the following requirements:

• Preferably open source with an active community.

• Based on a widely accepted and standardized language.

• Capable to dynamically create agents.

2.7. PRODUCT AGENT TECHNICAL REQUIREMENTS 55

• Capable to interact with software outside the platform runtime system.

• Support for a multiplatform networked environment.

• Support for FIPA.

2.7.2 Platform selection

Based on the requirements of 2.7.1 the following list of possible candidates
has been built.

• Jade: is a widely accepted Java Agent DEvelopment framework. JADE
is middleware system running in a distributed environment.

• Spade: SPADE (Smart Python multiAgent Development Environment)
is a Multiagent and Organizations Platform based on the Python prgram-
ming language and the XMPP/Jabber. The FIPA-ACL messages are
embedded in XMPP. XMPP stands for Extensible Messaging and Pres-
ence Protocol and it is an open standard communication protocol for
message-oriented middleware based on XML.

• 2APL: 2APL (Dastani, 2008) is the follow-up of 3APL (Hindriks, 2001).
2APL stands for A Practical Agent Programming Language and is pro-
nounced double-a-p-l. 2APL is a BDI-based modular agent-oriented
programming language that supports an effective integration of declar-
ative programming constructs such as belief and goals, and imperative
(style) programming constructs such as events and plans. 2APL is
based on the Jade platform.

• Jadex: a short overview is given by (Braubach et al., 2004): Jadex is a
Java-based FIPA-compliant agent environment, and allows to develop
goal-oriented agents following the BDI model. Jadex provides a frame-
work and a set of development tools to simplify the creation and testing
of agents. This platform is actually based on Jade, so it provides the
tools already offered by Jade.

• Jason: an introduction is given by (Bordini et al., 2005). This BDI-
based implementation is a BDI-implementation based on Agentspeak(L).
Agentspeak(L) was initially introduced by Rao and Georgeff as a lan-
guage for specifying BDI agents (Rao and Georgeff, 1996).

When these platforms were investigated, it turned out that for Java software
developers, Jade was the easiest accessible solution. The amount of time to

56 CHAPTER 2. SIMULATION OF THE PRODUCTION SYSTEM

get used to the platform was considerably lower than the other possibilities.
In the research environment, groups of computer science students with a pro-
gramming background in Java, work for at most four months on the project,
so a learning time of several weeks to get used to the platform is not desir-
able. The question was if the support for BDI was such an important issue
that this would overcome the steep learning curve for the other candidates.
For the MAS needed for the research a stable and widely supported platform
turned out to be sufficient. The agent specification can use concepts like,
roles, beliefs and intentions that can also be implemented using Jade. The
selected platform for the MAS was Jade. Six advantages are as follows.

1. The simulation is a multiagent-based system. Jade provides most of the
requirements we need for our application like platform-independence
and interagent communication.

2. Jade is Java-based. Java is a versatile and powerful programming lan-
guage.

3. Because Jade is Java-based it also has a low learning curve for Java
programmers.

4. In this first approach at least the equiplet agents are not that intelli-
gent that we need special multiagent environments. The product agents
should be capable to negotiate to reach their goals. Jade offers possi-
bilities for agents to negotiate. If we need extra capabilities, the Jade
platform can easily be upgraded to an environment that is especially
designed for BDI agents like 2APL or Jadex (Bordini et al., 2005).
Both 2APL as well as Jadex are based on Jade but have a more steep
learning curve for Java developers.

5. Agents can migrate, terminate or new agents can appear.

6. Jade is widely accepted and has an active developers community.

The Jade runtime environment implements message-based communication
between agents running on different platforms connected by a network. The
communication is asynchronous meaning that the sender is not blocked until
there is a reply from the receiver. Asynchronous communication is typical
for agents since it preserves autonomy. In Figure 2.11 the Jade platform
environment is depicted.
The Jade platform itself is in this figure surrounded by a dashed line. It
consists of the following five components.

2.8. JADE-BASED SIMULATION 57

Figure 2.11: The Jade platform

1. A main container with connections to remote containers (in our case
E1 and E2, representing equiplets).

2. A container table (CT) residing in the main container, which is the
registry of the object references and transport addresses of all container
nodes composing the platform.

3. A global agent descriptor table (GADT), which is the registry of all
agents present in the platform, including their status and location.
This table resides in the main container and there are cached entries
in the other containers.

4. All containers have a local agent descriptor table (LADT), describing
the local agents in the container.

5. The main container also hosts two special agents AMS and DF, that
provide the agent management and the yellow page service (Directory
Facilitator) where agents can register their services or search for avail-
able services.

In Figure 2.11 the product agents and equiplet agents are already denoted
by PA and EqA, where the equiplet hardware is used for container E1 and
container E2.

2.8 Jade-based simulation

The simulation presented in this section was based on the technical and
functional requirements for production and assumptions as discussed in this
chapter.

58 CHAPTER 2. SIMULATION OF THE PRODUCTION SYSTEM

2.8.1 Basic assumptions

Following is a list of basic assumptions for the simulation.

• Equiplet agents are not yet connected to equiplet hardware. This means
that no actual manufacturing will be done, but a production step is
simulated by a delay. After a certain time, the equiplet agent will
inform the product agent about the completion of the production step.

• The environment is a networked distributed system, where agents can
migrate. This opens the opportunity to test the situation where agents
travel over the network. The hardware used is a set of standard personal
computers connected by a LAN.

• Transport from equiplet to equiplet is not yet covered, thus a product
agent can switch without any delay from one equiplet to the next one.

• The product has a single tuple of steps to perform. This is a situation
that is easier to implement as a first try.

• An equiplet agent can offer a set of steps. This is one of the principles
of our manufacturing paradigm.

• Product agents select the equiplets and take the first opportunity for a
step when available. In Chapter 3 a more detailed discussion of which
step to take, will be presented.

• Product agents have a release time and a deadline. The release time is
the moment that a product agent comes to life. From that moment on,
the product agent begins to achieve its goal: the making of a product.
The deadline is the time at which the product should be completed.

• In case of an infeasible scheduling, a simple negotiation scheme should
be used to solve the problem when it only concerns a negotiation be-
tween two product agents. A more detailed solution will be presented
in Chapter 3.

• The simulation should be based on a so-called scenario file that de-
scribes the simulation constraints. This way, several different scenarios
can be easily investigated without changing the simulator.

• A GUI should be available to observe the working of the simulation in
realtime.

2.8. JADE-BASED SIMULATION 59

2.8.2 Implementation

For the implementation we set up a hardware infrastructure as in Figure 1.10.
For testing our concept, the equiplet agents are not yet connected to the
equiplet frontend hardware, so there is no real production and the production
steps are virtual steps. This means that equiplets offer production steps and
when asked to perform a production step they will enter a timing loop, faking
a real production step. We used Jade (Bordini et al., 2005) as a platform.
The reasons for choosing Jade are explained in Section 2.7.2. The equiplet
agents (EqA) and product agents (PA) run on top of this platform (see
Figure 2.11). Due to performance reasons, we decided to use our database-
based blackboard instead of the DF of the Jade platform. DF turned out to
be too slow for our implementation.

A: User interface and setup

The user interface of the simulation program is shown in Figure 2.12. Six-
teen slots are available for equiplets and a play-button will start the actual
simulation when a scenario has been chosen under the File menu.

Figure 2.12: GUI of the simulator

60 CHAPTER 2. SIMULATION OF THE PRODUCTION SYSTEM

Figure 2.13: GUI of the scenario editor

To use the simulator, a scenario editor is included. The editor is shown
in Figure 2.13. The user can add products as well as equiplets. For every
equiplet, a container can be specified, making it a distributed system. This
can be done by filling in a computer name in the filed Host. The steps
the equiplets can offer can also be specified (as skills, represented by capital
letters). For the products, the set of production steps can be specified. In the
simulation, the duration of the steps is specified in the configuration of the
product. It has to do with the fact that the equiplet agent is still a stripped-
down implementation. An option available under the Properties menu is to
make agents visible during the simulation. This option can be selected in the
scenario editor by setting GUI to TRUE. We will now take a closer look at
the agents.

B: Equiplet agent

Every equiplet agent is residing in the on-board hardware of the equiplet.
Equiplet agents control the equiplet hardware and perform production steps.
To do this, the equiplet agent waits for a product agent to contact the equiplet
agent. The product agent will inform the equiplet agent by a message of the
production step to perform. The equiplet agent will inform the product
agent about the actions taken and, if this is relevant, the building material
used. As already mentioned, the equiplet agent is not yet connected to the
equiplet hardware and performs only virtual production steps and informs
the product agent about successful completion of the steps.

2.8. JADE-BASED SIMULATION 61

The architecture is a layered system. This approach for our software
model makes it easily maintainable, expandable, testable and modular. The
agent layer contains the main software part of the agent and an asynchronous
event handler is used for communication events like messages from and to
other agents. It also contains a graphical user interface or GUI that can be
disabled. This GUI is nice for testing purposes, because it can be used to
check the behaviour or internal state of the agent during the simulation run.
The data layer contains a database handler. In our system the database is
used as a global publishing system, resembling a blackboard. The equiplet
agent has two behaviours or roles. It publishes the possible production steps
in its role as publisher. After publishing it will enter the role of executor. In
this role it enters a waiting state for product agents to arrive. As we will see
in the next subsection, the product agent is a mobile agent that will visit the
equiplets according to its scheduling in its role as walker. If a product agent
arrives it will send a message to the equiplet agent and this equiplet agent will
start producing, thus actually performing the requested production step(s).
When the production step is finished, it will inform the product agent about
the production but keeps its role as executor, waiting for the next product
agent to arrive.

Data Layer

Agent Layer

Database
Handler

> Database connection
> Generate query
> Send returnvalues

Equiplet agent

Event
Handler

> Get incoming Events
> Send outgoing Events

Behaviour Layer

GUI

> Set info on GUI

Behaviour
Switcher

> Switch between behaviours

Publicator
Behaviour

Executor
Behaviour

Figure 2.14: Equiplet agent architecture

C: Product agent

The product agent will search for production steps published by the equiplet
agent on the blackboard. It will schedule the production and thus claim
production steps on certain equiplets. Next it will travel along the equiplets

62 CHAPTER 2. SIMULATION OF THE PRODUCTION SYSTEM

asking the equiplet agents to perform the needed steps until the product
is finished. The product agent has the same layered architecture as the
equiplet agent, extended with an extra layer that is used for scheduling and
optimization. The agent layer has the same components as the agent layer
in the equiplet agent,

FilterMatrix Schedule
Data

Product
Agent

GUI Event Handler

Database
Handler

Data Layer

Agent Layer

Filter Layer Default
Schedule

Filter

Afilter
- ExecuteFilter

Default
Negotiation

Filter

Negotiator
Behaviour

SkillData

Behaviour
Switcher

Schedule
Behaviour

Revisor
Behaviour

Walker
Behaviour

Behaviour Layer

Figure 2.15: Product agent architecture

The configuration of both the product agent as well as the equiplet agent
is given as a set of parameters during startup. The steps are stored in Skill-
Data. ScheduleData contains the production scheduling. FilterMatrix is
used for data that is used during production scheduling.

The product agent comes to life at the central server and will try to sched-
ule its production steps in its role as scheduler. It will check the blackboard
to see if all needed steps are available to complete the product before the
deadline. If all steps are available the scheduling will succeed and the pro-
duction will start by the product agent switching from scheduler to walker
behaviour (it walks along the equiplets).

The product agent is a mobile agent, walking from equiplet to equiplet
as depicted in Figure 2.9. During walker behaviour, the agent is still open
for messages from other product agents. If scheduling fails due to the fact
that one or more production steps are not available, the product agent will
check the blackboard to see which product agents it should negotiate with.
It builds a list of agents to negotiate with and it will ask these production
agents with walker behaviour to negotiate about a certain production step.

2.8. JADE-BASED SIMULATION 63

If a walker agent is willing to revise its scheduling it will enter the role of
reviser and try to revise its scheduling thus making place for the step needed
by the agent with the failed scheduling. Several scenarios have been built to
test this concept and it works to our expectation (Moergestel et al., 2010b).
When the simulator is running the screen looks like Figure 2.16. In this case
the GUI option for all agents is TRUE so small windows representing the
agents are visible.

To understand the behaviours or roles of this agent we can look at the
way scheduling is performed and how it starts the production. In Figure 2.17
there are two product agents involved. Agent 1 is just starting, Agent 2 is
already busy with production. Only relevant states are represented in the
diagram.

If all steps for Agent 1 are available the scheduling will succeed and the
production will start by the product agent switching from scheduler (S) to
walker (W) behaviour (it walks along the equiplets). During walker be-
haviour, the agent is still open for messages from other product agents. If
the scheduling fails, then the Agent 1 switches to negotiator (N) and asks
walker agents to negotiate about giving up steps at a certain time en thus
revising their schedule. Agent 1 chooses a list of interesting walkers to nego-
tiate with. It will ask a walker if it is willing to negotiate. The response can
be yes, no or maybe (in this case the negotiator could try again later). In
case the answer is no the negotiator will try the next walker. If the answer is
yes, the walker (Agent 2) will switch its behaviour to reviser (R) and see if
there is a possibility to change its claimed step without losing its successful
scheduling. It will inform Agent 1 about success or failure. In case of success
Agent 2 will adjust its new scheduling in its role of scheduler and continue
its role as walker. Agent 1 will also return to its role of scheduler. And if it
has a feasible scheduling it will switch to walker. When scheduling including
negotiating fails the agent will report failure. Agent 2 will only revise its
scheduling if there is a new feasible scheduling.

The approach proposed here works in simple situations. However when
many product agents are involved and the load of the equiplets is over 50%
some problems pop up:

• An agent that is asked to abandon a step at a certain timeslot is not
capable of finding a feasible solution by itself, so it could ask other
agents whether they can offer a new slot by replacing a given slot to
another position. This would result in an avalanche of negotiations and
should be avoided.

• If we avoid the previous problem, in a heavy loaded grid, the amount

64 CHAPTER 2. SIMULATION OF THE PRODUCTION SYSTEM

F
igu

re
2.16:

T
h
e

sim
u
lator,

sh
ow

in
g

several
agen

ts

2.8. JADE-BASED SIMULATION 65

Figure 2.17: Negotiating between product agents

step1

step2

step3

Figure 2.18: Missed deadline

of failures increases when a load of about 50% is reached. This situa-
tion compares with the first implementations of ethernet (Metcalfe and
Boggs, 1976), where collisions decrease the performance of the network.

• Every time an agent encounters a scheduling problem for a certain step.
it has to enter the procedure described already again. A better solution
could be an approach that solves the scheduling problem for a product
as a whole. This will be a topic of the next chapter.

Figure 2.19: Feasible schedule

66 CHAPTER 2. SIMULATION OF THE PRODUCTION SYSTEM

2.9 Related Work

Using agent technology in industrial production is not new though still not
widely accepted. Important work in this field has already been done. Duffie
and Piper (1986) introduced the non-hierarchical control approach where
agents represented physical resources, parts and human operators. Parunak
(1998) introduced Yet Another Manufacturing System (YAMS). It applies a
contract net method in a hierarchical manufacturing model. The shop floor
is represented by agents. Paolucci and Sacile(Paolucci and Sacile, 2005) give
an extensive overview of what has been done in the field of agent-based ag-
ile manufacturing. Their work focuses on simulation as well as production
scheduling and control. The main purpose to use agents in (Paolucci and
Sacile, 2005) is agile production and making complex production tasks possi-
ble by using a multiagent system. Agents are also introduced to deliver a flex-
ible and scalable alternative for MES for small production companies. The
roles of the agents in this overview are quite diverse. In simulations agents
play the role of active entities in the production. In production scheduling
and control agents support or replace human operators. Agent technology is
used in parts or subsystems of the manufacturing process. Agent technology
in the manufacturing workflow control is treated in the work of(Montaldo
et al., 2002). Their work describes the MAKEIT approach. We on the con-
trary based the manufacturing process as a whole on agent technology. A
survey given by (Leitão, 2009) discusses agent-based manufacturing control.
It compares the traditional approach with agent-based solutions. It also
tries to explain why the agent-based approaches are not fully adopted by
the industry. Bussmann and Jennings (Bussmann et al., 2004)(Jennings and
Bussmann, 2003) used an approach that compares to our approach. The
system they describe introduced three types of agents, a workpiece agent, a
machine agent and a switch agent. There are however important differences
to our approach:

• The production system is a production line with redundant production
machinery and focuses on production availability and a minimum of
downtime in the production process.

• The roles of the agents in their approach are different from our ap-
proach. The workpiece agent sends an invitation to bid for its cur-
rent task to all machine agents. The machine agents issue bids to the
workpiece agent. The workpiece agent chooses the best bid or tries
again. This type of cooperation is well known in agent technology as
the contract-net protocol. In our system the negotiating is between the
product agents.

2.9. RELATED WORK 67

• They use a special infrastructure for the logistic subsystem, consisting
of conveyor belts controlled by so called switch agents. In their imple-
mentation, bidirectional transport is possible and a product can change
its production path. In our situation an even more agile transport sys-
tem will be needed. This will be discussed in Chapter 4.

We have developed a production paradigm based on agent technology in
combination with a production grid. This model uses only two types of
agents and focuses on agile multiparallel production. The work of Bussmann
is already implemented in real production environments, while our work is
still based on prototypes.

In agent-based manufacturing the term holon is often used. While agent
technology emerged from the field of computer science, the concept holon
has its origin in computer integrated manufacturing (CIM) (Leitão, 2009).
The concept was proposed by Koestler (1969). Parts of a system can be
autonomous and stable on their own, but by cooperation they may form a
bigger whole. This bigger whole could again be a part of an even bigger whole.
A holon is both a part and a whole. A holon can represent a physical or logical
activity. In the domain of manufacturing this can be a production machine,
a production order or a human operator (Bussmann and McFarlane, 1999).
Agent technology can be used to implement a holon. Fisher (1999) uses a
holonic approach for manufacturing planning and control. His work is based
on the use of the Integration of Reactive behaviour and Rational Planning
(InterRRap) agent architecture (Müller, 1996). Agents represent the holonic
manufacturing components, forming a multiagent system. A difference with
our approach is the design phase. A holonic design starts with identifying
the holons and next it will map this to agents or other software entities like
objects. A holon itself could by its nature be a multiagent system.

Our implementation is based on the way that humanity has made prod-
ucts for centuries. Some humans have the capability to perform some actions
for production or making something, while others have the need for a certain
product or thing. The latter group of people knows what should be done,
but lacks the skills to perform the needed actions, so they will search for
people having the set of required skills. By the nature of the production
grid, consisting of equiplets having what could be called skills, this approach
seems to fit seamlessly to our needs. This is the reason we used agent tech-
nology itself as a starting point thus skipping the holonic design phase. The
design and implementation of the production platforms and the idea to build
a production grid can be found in Puik (Puik and Moergestel, 2010).

68 CHAPTER 2. SIMULATION OF THE PRODUCTION SYSTEM

2.10 Conclusion

The multiagent-approach for the equiplet-based production system is a fea-
sible one. The Jade agent-platform performs well in the simulation envi-
ronment. The product agents are capable to select the equiplets and can
also communicate with each other to solve an infeasible scheduling. The
scheduling type used however needs to be improved, because the scheduling
problem solving is only limited to ad hoc solutions. In the next chapter a
better solution for the scheduling problem will be proposed.

2.11 Summary

In this chapter the concept of the production step has been defined and sev-
eral scenarios for combining these steps in product paths were presented.
The selection of an agent platform has been done based on the functional
requirements of the multiagent production system. To investigate this plat-
form, a simulation has been built where the product agents operate in a
distributed environment, cooperating with dummy equiplets agents, that are
not connected to equiplet hardware, but can be distributed over the network.

Chapter 3

Planning and Scheduling

This chapter is dedicated to planning and scheduling in the production grid.
An agent-based scheduling system will be proposed and results from simula-
tions of different kinds of scheduling methods will be discussed. Planning is
described in Section 3.1. Sections 3.2-3.5 are dedicated to scheduling. Section
3.6-3.8 present the scheduling simulation and its results. Section 3.9 turns
the focus on scheduling for batches. The chapter ends with an overview of
related work, a conclusion and a summary.

Parts of this chapter have been published in the proceedings of the Inter-
national Symposium on Autonomous Distributed Systems (ISADS 2011) (Mo-
ergestel et al., 2011) and the proceedings of the International Conference on
Intelligent Agent Technology (IAT-2012) (Moergestel et al., 2012).

3.1 Path planning

A product agent should plan a path along the equiplets. This path will de-
pend on the product steps to be done and the equiplets involved. In this
section, a graph-based model of the production is presented (3.1.1) followed
by matrix-based representations (3.1.2). These matrix-representations are
derived from the graph-based model. In Section 3.1.3 optimisation is ex-
plained and Section 3.1.4 is dedicated to complex step paths.

3.1.1 Graph representation

The production system can be represented using special classes of graphs,
such as a bipartite graph and a tripartite graph.

Definition 8 (Bipartite graph). A bipartite graph is defined as a triple G =
(V1, V2;E) where V1 and V2 are two disjoint finite sets of vertices and E =

69

70 CHAPTER 3. PLANNING AND SCHEDULING

{(ik, jk) : ik ∈ V1, jk ∈ V2; k = 1...d} is a set of edges.

V

E
1

V2 V

E
1

V2

Figure 3.1: Bipartitegraph and complete bipatitegraph

If all vertices of V1 have edges to all vertices of V2 the graph is called
a complete bipartite graph. If |V1| = m and |V2| = n this is denoted by
K(m,n).

Definition 9 (Product set). Let V1 and V2 be two sets. The product set of
V1 and V2 is the set of all ordered pairs (i, j) such that i ∈ V1 and j ∈ V2.
This is written as V1 × V2

By definition of the product set, it means that a bipartite graph is com-
plete if E = V1 × V2. The product set is also called Cartesian product.

Definition 10 (Tripartite graph). A tripartite graph is defined as a quintuple
G = (V1, V2, V3;E1, E2) where V1 and V2 and V3 are three disjoint sets of
vertices and E1 = {(ik, jk) : ik ∈ V1, jk ∈ V2; k = 1...d1} and E2 = {(jn, hn) :
jn ∈ V2, hn ∈ V3;n = 1...d2} are two sets of edges.

S EqP

1

2

3

4

5

1

2

3

4

1

2

3

Figure 3.2: A tripartite graph as it occurs in the production system

In Figure 3.2 the situation is shown for the agile production system. On
the left side the products to be made are in set P . In the middle, the set S

3.1. PATH PLANNING 71

of steps is displayed and on the right the set Eq of equiplets. Edges show
the connection between the products and the steps as well as the steps and
the equiplets. The step path for product P1 is:

< σ5, σ2, σ4 >

There are four equiplets, where Equiplet 1 offers steps σ1 and σ4, Equiplet 2
offers step σ5, Equiplet 3 offers steps σ2 and σ5 and Equiplet 4 offers step σ3.

3.1.2 Adjacency matrix and travel time matrix

Consider a grid G of N equiplets, together offering M production steps, this
grid can be described by a matrix. This matrix is called adjacency matrix
and is actually a matrix description of a bipartite graph consisting of the
set of equiplets, the set of product steps and the connecting edges. In our
graphs the edges have no weight and this will result in an adjacency matrix
containing only 0 or 1. The adjacency matrix Gstep shows the mapping of
equiplets to production steps.

Gstep =


a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
. . .

...
aM1 aM2 . . . aMN


In this matrix, aij = 1 if equiplet Ei offers step σj, otherwise aij = 0. Another
matrix Gtime that will be usefull in planning, shows the time to travel between
equiplets in the grid:

Gtime =


0 τ12 . . . τ1N

τ21 0 . . . τ2N
...

...
. . .

...
τN1 τN2 . . . 0


Here τij is the time in time steps to travel from equiplet Ei to Ej. Remark
that in general τij 6= τji.

3.1.3 Optimisation

A sequence of production steps was defined in Chapter 2 as a step path. For
instance, consider a product to be built with three production steps, this
product has step path:

< σ5, σ2, σ4 >

72 CHAPTER 3. PLANNING AND SCHEDULING

Let us assume a simple grid with four equiplets E1, E2, E3 and E4, each
offering a set of steps. The steps offered by an equiplet are denoted be-
tween parentheses as in E1(σ1, σ4). This grid can be described by this set of
equiplets:

{E1(σ1, σ4), E2(σ5), E3(σ2, σ5), E4(σ3)}

This situation can also be described by the adjacency matrix Gstep.

E1 E2 E3 E4

σ1 1 0 0 0
σ2 0 0 1 0
σ3 0 0 0 1
σ4 1 0 0 0
σ5 0 1 1 0

A product agent will make a selection of these equiplets based on the produc-
tion step or steps that must be performed to construct the product. Next,
the product agent will ask the equiplet if the steps offered are feasible given
the parameters for the steps. The positive response from the equiplet agent
contains an estimated time to complete a given step. This information about
the duration of a step will be used in the scheduling phase. When a negative
response is received by the product agent it will discard the equiplet. Several
solutions to map the steps to equiplets may exist. A sufficient solution for
the given situation with a minimum of transitions is:

< E3(σ5), E3(σ2), E1(σ4) >

Theoretically, the number of solutions may be very high if the equiplets each
offer a big set of production steps. However in practice an equiplet offers
only one or perhaps two different steps. Keeping in mind that only one
solution is needed, the maximum number of solutions that are calculated by
the product agents is in our situation for practical reasons limited to four.
One solution might be not enough, because in case of an infeasible scheduling,
other solutions should be at hand. These solutions can also be useful in case
one of the already scheduled equiplets breaks down. Mechanisms to optimise
the scheduling are as follows.

• Minimising the amount of movements of the product between equiplets.

• Taking care of the load of a certain equiplet, so an alternative equiplet
is searched for in case an equiplet has a high load.

• Avoidance of unreliable functioning equiplets.

3.1. PATH PLANNING 73

To find some efficient solutions we try to minimise the transitions between
different equiplets, this is done by using a so called production matrix. This
production matrix can be derived from the adjacency matrix by selecting the
rows of the production steps in the same order as in the tuple that describes
the step path < σ5, σ2, σ4 >. The production matrix is a reduction of the
adjacency matrix.

E1 E2 E3 E4

σ5 0 1 1 0
σ2 0 0 1 0
σ4 1 0 0 0

The production matrix is reduced by eliminating the colums that contain
only zeros. In this case the column under E4. This results in a matrix where
for every σi in this step path a row of a production matrix is created:

E1 E2 E3

σ5 0 1 1
σ2 0 0 1
σ4 1 0 0

The rows have the same order as the sequence of steps. Matrix element αij

gives the relation between equiplet Ej and production step σx at row i. If
the step σx at row i is supported by equiplet Ej then αij = 1. Not supported
steps result in αij = 0.

Optimization should result in a new matrix where αij has a slightly dif-
ferent meaning and can be different from 1 or 0, giving the product agent a
clue for its choice. The product agent will choose the equiplet corresponding
with the highest value of αij. A quite useful optimization is minimizing the
transitions for a product from equiplet to equiplet. The optimizing algorithm
will search for columns j with sequences of αij = 1 and increment the values
in a given sequence by the length of the sequence minus one. This will be
done for all columns starting with αij = 1 The matrix of the example has a
column under E3 with a length of 2, with the result that the values of this
sequence will be incremented by 1. The matrix transforms to:

E1 E2 E3

σ5 0 1 2
σ2 0 0 2
σ4 1 0 0

Based on this matrix, the product agent will choose equiplet E3 for steps σ5

and σ2. The optimization algorithm works stepwise. First the best starting
point is searched for. This will reveal the best equiplet(s) to start with. Let

74 CHAPTER 3. PLANNING AND SCHEDULING

us assume that we have n steps in the step path. This results in a production
matrix of n rows. Suppose that the algorithm reveals a set of k steps to be
completed by one equiplet as a start. This means that after completing this
sequence of k steps, n − k rows, representing n − k steps, should still be
done. We reached this point of n− k steps to be done, with the minimum of
movements of the product between equiplets. The algorithm is applied to the
remaining part (the n− k rows) of the product matrix, without taking into
account the previous k rows. We reach a new situation where the number
of rows is again reduced. This is repeated (iteration) until the number of
remaining rows is 0. Because of the fact that after every iteration we reach a
situation with the minimum of movements of the product between equiplets,
the final situation, where the number of rows to be done is 0, will also be
reached with the minimum of movements.

A second optimization can be achieved by introducing the workload of the
equiplets. A high load of an equiplet could decrease the associated values
for the columns associated with that equiplet. This will help to balance
the load among the available equiplets. In our model, every equiplet has a
buffer with a number St of time steps. These time steps are used for the
production planning by the product agent. This number St is constantly
updated, because when a time step has passed by, a new empty time step
will be added at the end of the buffer. By using a circular buffer, this concept
can be easily implemented in software. A useful way to use the load is to
multiply the column values by: (1− Sr/St) Where Sr is the total number of
reserved time steps for an equiplet and St the aforementioned total number
of time steps offered by that equiplet. If Sr equals St this means that all
time steps are reserved and the multiply factor becomes 0, while if all steps
are free Sr = 0, resulting in a multiply factor of 1.

The next matrix that plays an important role in finding a set of solutions
for the product path is the matrix containing transport times. This travel
time matrix can be used for the third optimisation. The matrix holds num-
bers τij that represent the time for a product to travel from one equiplet-i
to equiplet-j. For obvious reasons τii = 0. Added to this matrix are two
extra columns having the values τ0i representing the time to travel from the
starting point for a product into the grid to equiplet i and τi0 representing
the time to travel from equiplet i onto the exit of the production grid. The
production step to transport a product from equiplet i to equiplet j is σt(i, j).
The time this step σt(i, j) will take is τij. For the example < σ5, σ2, σ4 >,
the resulting planning path will be:

< σt(0, 3), σ5(3), σ2(3), σt(3, 1), σ4(1), σt(4, 0) >

3.1. PATH PLANNING 75

In this formula, apart from the special transport step σt the parameter for
the production step is the ID-number of the equiplet that will perform this
step. By comparing the results for the different planned paths, the fastest
path can be selected first.

The result from the planning phase will now be one ore more product
paths. The next phase will be the scheduling of the planned product path.
When the scheduling is completed, the actual production phase can start.
The scheduling uses a planning board where the availability of all equiplets
is visible. The process scheduling is an atomic action of the product agent.
The product agent will schedule its complete path. During that scheduling
phase, the product agent will update the planning board according to the
situation that is newly arrived at.

3.1.4 Planning and scheduling complex step paths

In the previous section the focus was on products with a single sequence of
production steps. In practice however, most products are manufactured by
starting with the production of half products that are combined to make the
final product. In Figure 3.3 a simple example of this situation is presented.
In a more formal approach it means that the production steps are still a
tuple, but the members of the tuples could be sets of tuples. The step path
of Figure 3.3 can be presented by:

< {< σ1, σ2 >,< σ3, σ4 >}, σ4, σ7, σ2, σ1 >

To realise such a product the product agent will spawn child agents that
will be responsible for the manufacturing of the half products. When these
child agents are finished, they will transfer the production information to the
parent agent that will finish the production. There is a catch in this situation
concerning the scheduling. If the product must be completed before a certain
deadline, the parent agent should coordinate the scheduling of the children
with its own scheduling. All children will plan and schedule their product
paths and report this planning to the parent. The parent will schedule its
own remaining part of the product path. This will result in a total schedule.
If the total scheduling is feasible, all child agents will get a go for production
and the parent product agent will wait for the children to complete their
path. Afterwards the parent will complete the product.

76 CHAPTER 3. PLANNING AND SCHEDULING

1 2

3 4

4 7 12

Figure 3.3: Combining two half products

3.2 Scheduling concepts

Scheduling is the process of allocating resources at a certain time to a certain
requester. Scheduling is a subject of many publications. Before a possible
scheduling solution for the production grid is introduced, an overview of
scheduling is presented here. First of all we need to state that a product has
a certain release time. This is the time when an order for a product arrives or
when the need for making a product is there. In our implementation it is the
moment the product agent is born. The product will also have a deadline.
The product should be completed before the deadline. If it is not possible
to produce the product before the deadline the production is considered not
feasible. In this case the product should be delegated to another production
grid or an alternative production method or perhaps the deadline should be
reconsidered.

In the literature about scheduling there are different concepts. To obtain
a global understanding of scheduling we will discuss some concepts here. In
our context, a task is considered a production step that should be performed
and completed. In a more general treatment of scheduling we consider a task
as an entity that claims a resource for a certain time. First we consider some
properties of the way scheduling is implemented. The description of these
realizations also depend from what perspective the scheduling is seen: the
requester of the resource or the resource itself.

• Static versus dynamic scheduling. From the viewpoint of the resource:
in case of static scheduling, there is no real scheduling algorithm, but
we just use a list of tasks to start and complete at certain fixed times
and in the same order as the list requires. Dynamic scheduling on the
other hand requires an approach where the list of tasks is dynamically
generated by some kind of scheduling algorithm. From the viewpoint
of the requester: in case of static scheduling the requester is an entry
in the list with a fixed time slot. In case of dynamic scheduling, the
requester asks for a resource at a certain moment and will be granted
a start time to access the resource by the scheduling algorithm.

• Off-line versus on-line. The scheduling of tasks can be done before the
system actually starts to work. In this case we can use a very complex
algorithm with a lot of optimization, because we are planning before

3.3. PRODUCTION SCHEDULING 77

we actually start. On-line scheduling is more a just in time approach,
where we need a fast algorithm to decide what will be the next task to
work on.

• Centralized versus distributed. In a centralized scheduling system we
have a central scheduling system that makes the planning for all the re-
questers requiring a resource. In a distributed system the scheduling is
based on negotiating between the stakeholders (requesters or resources
or both). This approach fits better in an agent-based environment.

3.3 Production scheduling

Production scheduling is the scheduling of manufacturing or assembling prod-
ucts. There are many things that play a role in this type of scheduling. We
mention seven of them.

1. Optimal use of available resources. By this production workers as well
as production machinery are meant.

2. Shifts. The planning of human resources according to their constraints
like maximum hours per day, capabilities etc.

3. Batches. Most production scheduling is based on batch production.
In this type of production bulk manufacturing is accomplished. Large
batches of the same product are planned and produced.

4. Maintenance. Normally maintenance should be taken into account
when scheduling the resources. If this aspect is neglected a long in-
terruption of the production process can occur.

5. Repair. Even though maintenance should prevent repair of equipment
during production, this aspect should be taken into account. A short
repair time can be considered if a system fails during production and
a thorough inspection and repair should be planned right after the
production batch. This aspect is also called disaster recovery and has
to do with main time to repair (MTTR) (Gnedenko et al., 1999).

6. Commodities and production material. Commodities to make the prod-
uct and production material that is needed and used for production.

7. Storage of half products. Normally storage of half products is con-
sidered wasted money, because if it can be avoided the result of the
production is still the same, without this extra overhead.

78 CHAPTER 3. PLANNING AND SCHEDULING

Most production scheduling systems focus on the sequencing or scheduling
of parts processed in high-volume. Such production systems are also called
repetitive manufacturing systems. In such settings, one can look to just-in-
time (JIT) (Schonberger, 1982) and lean manufacturing principles for how to
control production. These approaches generally do not need the same type of
production schedules discussed here. In the grid manufacturing the focus is
on agile production of small volumes. Section 3.3.1 gives an historic overview
of production scheduling followed by Section 3.3.2 that describes the modern
approach of production scheduling.

3.3.1 Historic overview

For analyzing existing production scheduling systems a background in the
development of production scheduling is useful. Therefore a short overview
of the history of scheduling is presented here. An elaborated overview is
given by (Herrmann, 2006). Wight (Wight, 1984) defines scheduling as ”es-
tablishing the timing for performing a task”. Priorities and capacity play
therefore an important role. One could say: what should be done first and
who should do it. Cox (Cox et al., 1992) define detailed scheduling as ”the ac-
tual assignment of starting and/or completion dates to operations or groups
of operations to show when these must be done if the manufacturing order
is to be completed on time.” The next observation is that there are different
levels of scheduling in a manufacturing environment.

1. Master scheduling or order scheduling.

2. Operations scheduling.

3. Shop scheduling.

The order or master schedule is the highest level of scheduling in production
and plans the production of an order that could have one or more batches.
Operations scheduling are short-time plans to realize the order- or master
schedule. These plans state which jobs should be done, possibly in parallel
or at certain times. Finally shop scheduling is the most detailed scheduling,
but only concerns one production unit. So its scope is limited. However, this
scheduling led to the notorious job-shop scheduling problem. The job-shop
scheduling problem is about scheduling a set of jobs to a set of machines,
where every machine can only handle one job at a time. Every job has a
specific order through the machines. The objective is to schedule the job
so as to minimize the sum of their completion times (Applegate and Cook,
1991).

3.3. PRODUCTION SCHEDULING 79

The first factories as we would call them today appeared during the mid-
dle of the eighteenth century. These factories were quite simple and small
and designed to produce a small number of products in large batches. Fore-
men coordinated the activities needed for the limited number of products for
which they were responsible. During the nineteenth century factories grew
bigger but not more complex. The scheduling problem was only concerned
with the fact when an order should begin or when the order is due. There
was no formal method needed for this type of manufacturing. Around 1890
this situation changed. Factories made a wider range of products (Herrmann,
2006) and this led to complexity. Foremen who were responsible for their own
so called production cells were not in the position to handle this complexity
and a separation of planning from execution emerged as introduced by Fred-
erick Taylor. Planners in a production control office took over scheduling and
formal scheduling methods were introduced. Production planners created a
master production schedule, taking into account the production capacity and
the orders from customers. So called shop orders were derived by work order
planners to provide information about production to the foremen running
their production cell. Fine tuning and disaster recovery could be done at
in the production cell itself. Here we see the aforementioned three levels of
scheduling appear.

Henry L. Gantt introduced a formal approach to scheduling by recog-
nizing the need for such a system to coordinate activities to avoid what he
called ”interferences” (Gantt, 1903). He introduced charts for production
control. A definition of a Gantt Chart given by Cox (Cox et al., 1992) is: ”A
Gantt chart is a control chart designed to show graphically the relationship
between planned performance and actual performance.” Gantt introduced
different types of charts (Gantt, 1916). We will introduce some of them that
are still useful in a modern production environment.

• Daily balance of work shows the amount of work to be done and the
amount that is done.

• The man’s record shows what each worker should do and did do.

• Machine record shows the amount of work done and to be done by a
production machine.

• The layout chart specifies when jobs are to be begun, by whom, and
how long they will take.

During time more variants of Gantt charts were introduced (Mitchell, 1939).
Today these variants are also used in project management software. The

80 CHAPTER 3. PLANNING AND SCHEDULING

charts give a graphical way to visualize schedules and states of the production
facility in all its aspects. Tools like planning boards (also called control board,
dispatching board or schedule board) were used to design the scheduling of
jobs, human resources and production hardware.

The next step in scheduling was computer-based scheduling. Large project
scheduling was the first type of scheduling to use computer algorithms (1956),
Computer-based production scheduling appeared ten years later. Around
1965 computer-generated dispatch lists from input factors like processing
time, due time, number of operations were used for production scheduling.
Every production cells received its list from the scheduling system telling
workers what to do at what time. This first generation computer-supported
scheduling involved a lot of paperwork. Interactive computer-based schedul-
ing appeared later. These systems used graphical displays to interact with
the planner and were based on data in a database system, a schedule gen-
eration routine, a schedule editor and a scheduling evaluation routine. By
that time computers also appeared on the production floor. First as stan-
dalone machines, but later these systems were connected by a network. The
paperflow from planning to production changed to dataflow.

These approaches are nowadays used in modern manufacturing planning
and control systems like ERP or MES. In more complex systems next to
production planning, also production planning-related issues like material
requirements, storage and logistics were introduced.

3.3.2 Modern approach

In modern production systems, the scheduling task is a subsystem of larger
software systems, like MES (manufacturing execution system) or ERP (en-
terprise resource planning). These systems are mostly based on a large cen-
tral database system where all kinds of production information and available
resources are real time kept up to date. These systems offer possibilities
for human interaction and fine tuning. In complex situations it is possible
to schedule production for all the three aforementioned levels, like master
scheduling, operational scheduling and shop scheduling. By using computer
systems on the production floor, it is also possible to have real time produc-
tion information feedback available at all layers in the automation pyramid.
Although the architecture is layered, we still do not have a real distributed
scheduling system that is needed for agent-based production in a grid. In
the next section we will discus special properties of agent-based scheduling.

3.4. SCHEDULING WITH AGENTS 81

3.4 Scheduling with agents

Research on scheduling in agent-based systems focusses on distributed schedul-
ing where agents try to schedule a process by exchanging information needed
to come to a feasible schedule. In such a situation a centralised scheduling
system or scheduling agent might be considered. The big advantage of such
an approach is that this scheduling system can collect all relevant data and
generate a schedule for all agents involved.

In a distributed scheduling approach the performance or quality of the
schedules generated can be compared with the central scheduling approach
and this gives a clue how good the distributed scheduling actually is (Hey-
denreich et al., 2010). In the case of scheduling in an agent-based system the
following considerations should be taken into account:

• Selfish agents versus cooperative agents.

• Trusted or foreign agents.

• Open agents or agents keeping secrets.

A big advantage of distributed agent-based scheduling can occur in situations
where a problem pops up. A central scheduling system might become over-
loaded with rescheduling requests while in a distributed system the problem
can be kept to a subset of agents involved in the problem. This is what is
called islanding and is often the real reason to use a distributed agent-based
scheduling system.

3.5 Multiagent production system

The multiagent-based production system has already been described in the
previous chapters. The scheduling will be done by the product agents. Prod-
uct agents will arrive at random times and each agent will have its own
particular set op production steps to be performed. In the real implementa-
tion, we expect that every equiplet offers only one or a small set of steps. In
this chapter the assumption of one unique step per equiplet is made. There
are important differences with the aforementioned job-shop scheduling prob-
lem. Our aim is to make sure that a product is completed before its deadline.
Though not yet used here, equiplets can offer more than one step. Equiplets
can be redundant and equiplets can be reconfigurable. Requests for product
steps arrive at random.

82 CHAPTER 3. PLANNING AND SCHEDULING

3.5.1 Multiagent-based scheduling in the grid

In a multiagent-based scheduling system a number of agents planning a sched-
ule for a certain part of the system as a whole will mostly share parts of the
environment. This results in an often distributed scheduling system where
agents work in parallel on parts of the scheduling. An important aspect is
the awareness of these agents of other agents and their willingness to coop-
erate. A selfish agent will try to schedule its subsystem without taking in
account the other agents. A more social agent is willing to negotiate with
other agents even if it has already claimed its resources. The system that we
need for the grid scheduling and that will be studied here has the following
characteristics:

• Resources are available to all agents.

• All actions in the grid take an integer value of a basic time unit.

• Agents should be willing to cooperate to help each other in case of
non-feasibility.

• An already scheduled subsystem will only be given up by an agent if
there exist a feasible alternative for that agent.

• there is a reliable data communication infrastructure between the agents.

• Agents do not have secrets or private information that is unavailable
to other agents.

Normally in production-based scheduling, there is a central scheduling sys-
tem. This centralized solution has the drawback of introducing a single point
of failure, bad scalability characteristics and the fact that the responsibility
for making the product is partly taken away from the product agent. The
system that will be described here makes it possible for every product to use
its own scheduling approach so it is not tied to the possibilities or limitations
of a centralized scheduling system. This also comes handy when a product
is made of subparts. As explained earlier there is a parent-child relation
between the production threads and when something goes wrong in one of
the already scheduled child agents, the problem to find a solution can be
restricted to the subset of agents involved.

The globally shared information is the aforementioned blackboard, con-
taining the available steps and the timeslots for every step. Every timeslot
shows a number that is the unique number of the product agent that has
claimed this slot. If the number in the timeslot is zero, it is still available.

3.5. MULTIAGENT PRODUCTION SYSTEM 83

3.5.2 Objectives of the scheduling

The scheduling has five objectives.

1. It should offer a best effort to schedule products that will arrive at
random times.

2. It should schedule products at high grid loads.

3. It should be fast and reliable. The scheduling should take a small
amount of time.

4. It should introduce only a small intercommunication overhead. This
will mean that the amount of interagent messages should be kept low.

5. It should be fair. When a product is scheduled for production with a
feasible scheduling, meaning the product will be completed before the
deadline, the scheduling will guarantee that this scheduling will not be
changed to an infeasible scheduling by the scheduling system.

3.5.3 Picking a timeslot

In the grid, all equiplets offer production steps. For every grid a sequence of
timeslots will show the availability of the equiplet. A timeslot can be free or
claimed by a product agent. The first decision that must be made is selecting
which timeslot of all free slots will be used. It might be tempting to use the
first available slot, but we should investigate if that is really a good choice,
keeping in mind that perhaps a just-in-time (JIT) scheduling might also be
a good choice, because it will keep the amount of products in the grid low.
The following four free slot selection methods were tested in our simulation:

1. First fit. Take the first slot in time available.

2. Just in time. Schedule the last step as near to (but before) the deadline
and from there move backwards in time for all steps to be scheduled.
Placing the steps as close to each other as possible.

3. Equally distributed. The steps are scheduled between release time and
deadline leaving if possible an equal distance if possible between the
steps.

4. First fit plus. This scheduling is the same as first fit, but an extra
timeslot has been inserted between every two steps to recover from
unexpected delays.

84 CHAPTER 3. PLANNING AND SCHEDULING

0

5

10

15

20

25

30

35

40

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
er

ce
nt

ag
e

of
fa

ilu
re

s

 Number of products

Failures due to method of slot selection

first fit
jit

equal
first fit plus

Figure 3.4: The influence of making a choice for a free slot

These four approaches have been used in scheduling ten sets of products,
starting with a set of 1000 products and increasing the number of products
for every next set by 1000 upto a set of 10000. No rescheduling has been ap-
plied, so only the failures in getting a feasible scheduling at once are counted.
All tests use 10 equiplets, each offering a number of 10000 timeslots. Prod-
ucts will use different number of timeslots, but on the average it will be 10
timeslots per product. Every product has a deadline and on the average, the
number of timeslots between release time and deadline will be 10 times the
number of timeslots needed by the product. Figure 3.4 shows the results.
As can be seen from the figure, the first fit approach is giving the lowest
number of failures and thus performs the best. JIT performs only good at
a very small load. This can be understood by the fact that a product will
immediately start to be produced and taking timeslots near the deadline will
skip earlier timeslots available that might disappear when time goes by. The
other two methods perform worse than first fit for comparable reasons. First
fit plus takes care of unexpected delay recovery but it is better to recover
from these kind of problems in a different way because recovery should not
be taken care of at this stage of the production, but only in situations where
it is needed. Picking a timeslot has only to do with the method that will
be used of selecting a timeslot from a set of timeslots. This might result
in a feasible schedule, but as shown in Figure 3.4, even for small numbers
of products, there are failures. To reduce the failures, a scheduling method
should be provided. In the next section, the scheduling will be examined.

3.5. MULTIAGENT PRODUCTION SYSTEM 85

3.5.4 Real time scheduling

When multiple product agents are to be scheduled, this can be considered a
multiresource real time scheduling problem. In contrast with a scheduler in
a multiprocessor environment where all the resources (i.e. processors) offer
the identical service of code execution, this scheduling must handle resources
that offer different types of service. Every product agent has its release time
and its deadline and claims resources in between. There are several solutions
proposed for real time scheduling. The type of solution depends on the given
situation. Some situations can be solved before starting the system and a
fixed (static) scheduling scheme can be used. In our case however we need
a dynamic type of scheduling. The tasks to be scheduled are unpredictable.
This type of task is called a spurious task in real time scheduling jargon.
This type of scheduling can be handled by different scheduling schemes. To
explain some schemes, some symbols used in expression should be defined:

P is the product set. A single product is denoted as Pi.
ri is the first timeslot after release of product Pi

di is the timeslot for the deadline of product Pi

τ is the current timeslot
si(τ) is the number of timeslots of product Pi that is left to be done.

Five well known scheduling schemes are as follows.

1. Fixed priority, FP. Every task is assigned a priority depending on the
task type. The highest priority tasks are completed before the lower
priorities are run.

2. Earliest deadline first, EDF. The task with the first deadline to come
gets the highest priority and is handled first.

3. Least slack first, LSF. The task with the minimum slack gets the highest
priority and is handled first. Slack is defined as the total time available
until the deadline minus the time to complete the task. The slack for
product Pi at timeslot τ can be written as (di − τ)− si(τ).

4. Smallest critical ratio first, CR. The critical ratio is defined as the
total number of timeslots available divided by the number needed. For
a product Pi at timeslot τ : (di − τ)/si(τ). If this number turns out to
be 1, all timeslots should be used. If it is lower than 1, the scheduling
is infeasible. A high number shows that many slots are available for a
relative small number of needed timeslots.

5. Shortest process first, SPF. The task with the shortest time to complete
get the highest priority.

86 CHAPTER 3. PLANNING AND SCHEDULING

All these types can be used in conjunction with what is called preemption.
By this is meant that when a higher priority task arrives, another already
running task is paused (preempted) to make way for the higher priority task.
After completion of the higher priority task, the preempted task is resumed.
Because all agents are equal, fixed priority is inadequate as a scheduling
scheme for the production grid. Both EDF and LSF are considered optimal
in the sense of feasibility: if there exists a feasible schedule, EDF or LSF will
find it (Cottet et al., 2002). However this is only true for the situation where
a single resource is scheduled among requesters, as is the case in a single
processor computer system, where the processor time is scheduled among
different tasks. In the next section a model will be described where multiple
resources are available as is the case in the production grid.

3.6 Scheduling simulation

To investigate the behaviour of the scheduling system for the grid, a simula-
tion was built. First the model will be described. It is assumed that every
product agent has a single tuple consisting of the number of production steps
between one and MAXSTEP. Every step takes one or an integer multiple of
a basic time unit. We only consider equiplets with one unique production
step. Travelling from equiplet to equiplet can also be seen as a production
step claiming one of the transport resources.

3.6.1 Generating test sets

Several test sets were used in the simulations. To generate a test set a tool has
been developed. Parameters can be set by the user: the number of products,
the maximum number of production steps for a product, the number of time
steps, the maximum production time for a product and the average shape of
the distribution of the production request in time. The minimum production
time Ptmin is calculated by summing the time of the individual steps. The
maximum production time Ptmax is:

Ptmax = Ptmin +R× Ptmin (3.1)

Where R is a range value that is a parameter for a test set. R introduces
a time buffer that can be used for rescheduling possibilities. The minimum
time is the total time of the number of production steps. The production time
for products in the test sets is for a certain product a random value between
Ptmin and Ptmax. The same so-called Monte Carlo technique is used to
generate a random number of production steps, a random release time and

3.6. SCHEDULING SIMULATION 87

Table 3.1: Example of simulation parameters

Parameter Value

Number of product agents 10000
Range 0-20
Number of steps per product 1-20
Number of different steps in the grid 10
Average distribution shape F, I, D

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n
u
m

b
e
r

o
f
p
ro

d
u
c
ts

timesteps

number of product-agents in grid

Figure 3.5: Test set with flat distribution of the number of product agents

a random deadline within the limits of minimum and maximum production
time for every product. Table 3.1 shows the parameters used for the test
sets. We generated an even distribution, a linear increasing distribution and
a linear decreasing distribution for our scheduling scenario tests.

In figures 3.5 and 3.6 these distributions are plotted. The number of
product agents in these plotted distributions was chosen such that not all
products could be produced. The test sets of Figure 3.6 and Figure 3.7
were introduced to study the behaviour of the scheduling system under an
increasing or decreasing load. In all three types of test sets, the total number
of required steps is more than the steps available. This will automatically
result in an infeasible test set. The sets to be scheduled turned out to have
an infeasible scheduling indeed.

88 CHAPTER 3. PLANNING AND SCHEDULING

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n
u
m

b
e
r

o
f
p
ro

d
u
c
ts

timesteps

number of product-agents in grid

Figure 3.6: Test set with increasing distribution of the number of product
agents

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n
u
m

b
e
r

o
f
p
ro

d
u
c
ts

timesteps

number of product-agents in grid

Figure 3.7: Test set with decreasing distribution of the number of product
agents

3.6. SCHEDULING SIMULATION 89

3.6.2 Preparing the test sets

Under normal circumstances the system should receive a production request
by the release time of every product. To investigate the feasibility of the
test sets, alternative sets were generated by sorting the sets according to
deadlines. This results in test sets that use earliest deadline first. The
scheduling results of the EDF-sets were used to generate a feasible set by
excluding the failing production schedules. However this feasibility only holds
for the set sorted according to deadlines. To generate the actual feasible test
sets used for the simulation, the feasible EDF-sets were sorted to release time
thus mimicking the real situation where product requests arrive according to
release time.

3.6.3 Negotiating

By negotiating the interaction between two or more product agents is meant
to come to a revised scheduling or the conclusion that scheduling is not
feasible. The following two assumptions about the agents are made.

• The agents will do their best to cooperate as well as possible. So hostile
behaviour should not be assumed.

• An agent will not give up its scheduling if there is no feasible alterna-
tive. So after negotiating, an agent that is already actively producing
a product will surely complete the product before the deadline.

These assumptions will result in a rather simple negotiating scheme. In the
following text, we use EDF as an example, but EDF can be replaced, mutatis
mutandis, by LSF, CR or SPF. The test sets were used in three conditions
for inter agent negotiating:

1. No negotiating. Product agents try to schedule just by looking at the
information available on the blackboard.

2. Negotiating in case of failure. If the scheduling based on the informa-
tion on the blackboard fails, the product agent will start to negotiate
with other active agents in the production system. The negotiating is
very simple. In case of EDF it will ask all active production agents with
a later deadline to temporally give back their claimed production steps
starting from the release time of the failed product agent. This failed
product agent will now try to schedule its production. In case of a new
failure it will report failure and the other active product agents will re-
claim their steps. In case of success, the agent that has now a feasible

90 CHAPTER 3. PLANNING AND SCHEDULING

schedule, will try to reschedule, in order of deadlines, all involved active
agents that had temporally gave up their schedules. Only if all of the
reschedules for these agents are successful, the new scheduling for all
participating agents as well as the newly arrived agent is accepted. In
this thesis this type of scheduling is called weak EDF.

3. Negotiating in case of an earlier deadline. In this situation, there is
always negotiating between the agents and all active agents with a
later deadline. So every newly arriving agent will start to negotiate
with all active agents with a later deadline. The disadvantage of this
approach is that the overhead of negotiating is probably much higher
than in the previous situation. In this thesis this type of scheduling is
called strong EDF.

The implementation of the latter two approaches is done by sending broad-
cast messages as well as agent to agent messages. In case of negotiating in
case of failure, an agent with a failed scheduling will broadcast its deadline
to all active product agents. In reply to this broadcast, agents with a later
deadline will send their claimed production steps to the new agent and this
will try to schedule its production assuming these claimed steps are now
available. If the scheduling succeeds it will try to reschedule all other active
agents. In case of success it will adjust the blackboard information and send
the new schedules to the participating agents. By locking the access to the
blackboard, this scheduling action is atomic.

3.7 Simulation software

Apart from some minor tools, the simulation software has three separate main
tools. The first two are command-line tools, running on Linux or Windows.
The third one is a graphical tool that uses the Qt-library to make it a multi
platform tool.

1. A scenario generator tool. This tools is based on Monte Carlo tech-
niques to generate production scenarios. It generates a list of an amount
of products to be made and for every product, the release time, the
deadline and the list op production steps needed for that specific prod-
uct. The type of scenario, the amount of products and other parameters
can be specified. The output is an XML file containing the information
for every single product.

2. A scheduling simulator. This tools simulates the multiagent scheduling
system. As input is given the output from the scenario generator. The

3.7. SIMULATION SOFTWARE 91

Table 3.2: XML-tags for the scenario files

XML-tag meaning

< P > product
< TR > release time
< TD > deadline
< NPS > number of product steps
< STEPS > product steps

type of scheduling and other parameters as well can be specified by the
user. The output will show all kinds of information about the actual
scheduling. An XML file can be generated to actually see what happens
every time step.

3. An analysing tool. The analysing tool is a graphical tool that displays
the actual scheduling over the available equiplets in a gant-type dia-
gram. It will show which products have been rescheduled and also the
failures.

3.7.1 XML output file of the scenario generator

A typical part of the output of the scenario generator looks like:

<P>P7677<TR>3</TR><TD>15</TD><NPS>2</NPS>

<STEPS>2,7,</STEPS></P>

<P>P5885<TR>5</TR><TD>263</TD><NPS>18</NPS>

<STEPS>6,5,9,2,6,9,8,9,8,7,0,6,4,2,4,6,4,6,</STEPS></P>

<P>P138<TR>6</TR><TD>119</TD><NPS>10</NPS>

<STEPS>7,2,8,5,0,4,0,7,6,8,</STEPS></P>

Table 3.2 shows the meaning of the XML-tags used. This shows the data
for three products. Product P7677 having release time 3, deadline 15, two
production steps, tuple < 2, 7 > followed by two other products. The output
is in this case sorted to release time, but other possibilities exist.

3.7.2 XML output file of the scheduling simulator

Another type of XML file can be optionally generated by the scheduling
simulator. When the scheduling simulation is generating its output to an
XML file it starts with information about the scenario properties. This looks
like:

92 CHAPTER 3. PLANNING AND SCHEDULING

Table 3.3: XML-tags for simulator output file

XML-tag meaning

< CONFIG > simulation configuration
< TSS > number of time steps
< EQS > number of equiplets
< PRS > number of products
< SCHED > scheduling information
< TS > start time tag
< P > product
< TR > release time
< TD > deadline
< NPS > number of product steps
< EQ > equiplets
< TIMESTEPS > timeslots used
< F > failing scheduling attempt
< FAILED/ > failed scheduling

<CONFIG>

<TSS>10000</TSS>

<EQS>20</EQS>

<PRS>10000</PRS>

</CONFIG>

In this case we consider 10000 time steps, 20 equiplets (each having its own
unique production step) and 10000 products. The next part of XML output
shows the successful scheduling S4698 of product P4698. This product has
only two production steps and these are scheduled at timeslots 167 and 168.

<SCHED>S4698

<TS>T167</TS>

<P>P4698

<TR> 167</TR>

<TD>189</TD>

<NPS>2</NPS>

<EQ>4,8 </EQ>

<TIMESTEPS>167,168 </TIMESTEPS>

</P>

</SCHED>

The scheduling S9134 of product P9134 will at first fail for its last produc-
tion step due to its very narrow scheduling window. This failure is visible by

3.7. SIMULATION SOFTWARE 93

the value -1 in the set of time steps. So this product should be rescheduled.
This rescheduling involves products P5649 and P9597 having later deadlines.
First a successful scheduling of P1934 is realised and for the other two in-
volved products a feasible schedule is also possible as shown in the following
XML-sniplet.

<SCHED>S9134

<TS>T545</TS>

<F>

<P>P9134<TR> 545</TR><TD>554</TD><NPS>9</NPS>

<EQ>3,1,6,5,0,1,6,1,4</EQ>

<TIMESTEPS>545,546,547,548,550,551,552,553,-1 </TIMESTEPS>

</P>

</F>

<P>P9134<TR> 545</TR><TD>554</TD><NPS>9</NPS>

<EQ>3,1,6,5,0,1,6,1,4</EQ>

<TIMESTEPS>545,546,547,548,549,550,551,552,553 </TIMESTEPS>

</P>

<P>P5649<TR> 539</TR><TD>599</TD><NPS>6</NPS>

<EQ>6,3,4,5,9,8</EQ>

<TIMESTEPS>539,541,542,543,544,545 </TIMESTEPS>

</P>

<P>P9597<TR> 533</TR><TD>793</TD><NPS>17</NPS>

<EQ>2,4,9,0,7,5,7,3,0,8,4,2,9,4,2,6,0</EQ>

<TIMESTEPS>533,534,535,536,537,538,539,540,541,542,

543,544,545,546,547,548,550 </TIMESTEPS>

</P>

</SCHED>

In the final example of the XML scheduling output, a failed scheduling is pre-
sented. At the first try, all steps will fail. This failure triggers a rescheduling
where many other products are involved (not all shown here). For one of
the involved products (P3973) there is no feasible schedule possible after
revision, so the scheduling of product P4005 fails and the other products
continue with the scheduling as already planned.

<SCHED>S4005 <TS>T9695</TS>

<F>

<P>P4005<TR>9695</TR><TD>9754</TD><NPS>17</NPS>

<EQ>0,4,9,5,9,5,1,3,5,6,5,8,9,7,4,9,7</EQ>

<TIMESTEPS>-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,-1,-1 </TIMESTEPS>

94 CHAPTER 3. PLANNING AND SCHEDULING

</P>

</F>

<P>P4005<TR>9695</TR><TD>9754</TD><NPS>17</NPS>

<EQ>0,4,9,5,9,5,1,3,5,6,5,8,9,7,4,9,7 </EQ>

<TIMESTEPS>9719,9727,9733,9734,9735,9737,9738,9739,

9740,9741,9742,9743,9744,9745,9746,9747,9748 </TIMESTEPS>

</P>

<P>P4198<TR>9405</TR><TD>9756</TD><NPS>20</NPS>

<EQ>9,2,4,2,8,0,5,9,1,4,5,7,6,9,3,8,2,1,0,5</EQ>

<TIMESTEPS>9545,9708,9710,9713,9714,9723,

9725,9737,9739,9742,9743,9744,9745,9746,9747,

9748,9749,9750,9751,9752 </TIMESTEPS>

</P>

/* many reschedules in between */

<P>P2076<TR>9411</TR><TD>9765</TD><NPS>18</NPS>

<EQ>7,8,3,1,5,4,5,4,7,1,5,9,5,1,0,6,3,7</EQ>

<TIMESTEPS>9552,9617,9646,9724,9727,9750,9751,

9752,9753,9754,9756,9758,9759,9760,9761,9762,

9763,9764 </TIMESTEPS></P>

<F>

<P>P3973<TR>9497</TR><TD>9766</TD><NPS>20</NPS>

<EQ>4,1,3,4,2,3,6,9,8,6,3,8,0,5,7,4,6,7,9,7</EQ>

<TIMESTEPS>9713,9725,9740,9751,9752,9753,9754,

9755,9756,9757,9758,9759,9760,9761,

9762,9763,9764,9765,-1,-1 </TIMESTEPS>

</P>

</F>

<FAILED/></SCHED>

By having all this data available, it is possible to replay the scheduling using
a visualisator. This is the aforementioned analysing tool. A screenshot of a
part of this tool is given in Figure 3.8. By using this graphical user interface
it is possible to go through the scheduling system step by step and see the
results of the rescheduling.

3.8 Results

In this section the results of the simulation are discussed. First weak versus
strong EDF is investigated for infeasible and feasible test sets. In the second

3.8. RESULTS 95

Figure 3.8: Visualisator screenshot

Table 3.4: Number of failures in scheduling infeasible sets, N = 10000

Negotiating type flat increasing declining

None 2240 4040 4193
Weak EDF 1042 3558 3547
Strong EDF 1033 3554 3578
Sorted to deadline 569 1904 1800

part, the results for different scheduling schemes as well as the influence of
parameter R on the scheduling success rate are presented and discussed.

3.8.1 Weak versus strong EDF

The number of product agents with infeasible scheduling are given in Ta-
ble 3.4. This set uses the infeasible sets of product agents over time as shown
in Figure 3.5 and 3.6. There is no significant difference between strong and
weak EDF. In the table is also included the failures for a set that is sorted to
deadlines. This is called ’Sorted to deadline’. What one should keep in mind
that the situation for the production system will always be similar to the
simulation set with a set sorted to release time. This is the real life situation
where product agents pop up at random moments. By sorting the test set
to deadlines one could see what could be achieved if we had the possibility
of scheduling according to deadline.

The results of both weak and strong EDF are better than no negotiating
but still much higher than the situation where we have EDF scheduling in
the test set that is sorted to deadline. Remarkable is the fact that weak
EDF scheduling is only slightly different from the strong multiagent EDF
implementation. Table 3.5 shows the results for feasible test sets.

Here again can be seen that weak EDF scheduling is only slightly different
from the strong multiagent EDF implementation. In case of the flat test
set the difference is 1 in favour of strong EDF. For the increasing set the

96 CHAPTER 3. PLANNING AND SCHEDULING

Table 3.5: Number of failures in scheduling feasible sets

Negotiating type flat increasing decreasing
N = 9431 N = 8096 N = 8200

None 1499 1115 1300
Weak EDF 24 32 33
Strong EDF 23 30 36
Sorted to deadline 0 0 0

Table 3.6: Number of failures in scheduling feasible sets

Number Pre-empt. Agents Pre-empt. Agents Succes Fail
Products Strong Involved Weak Involved Weak Weak

100 27 31 0 0 100 0
200 106 172 0 0 200 0
500 377 1123 0 0 500 0
1000 856 4899 4 4 1000 0
2000 1823 20012 15 34 1999 1
3000 2812 45213 37 138 2998 2
4000 3779 80559 83 468 3996 4
5000 4767 126867 171 1414 4995 5
6000 5758 181986 327 3785 5992 8
7000 6749 248227 647 11522 6987 13
8000 7736 323590 1519 46690 7969 31
9000 8730 409487 4235 237205 8819 181
10000 9719 504481 6336 338108 8958 1042

difference is 2 also in favour of strong EDF. However, for the decreasing test
set the difference is 3 in favour of weak EDF. So on the average the difference
is even zero. This raised the question what is the overhead of strong EDF
versus weak EDF. To measure the overhead, ten different test sets have been
used ranging from 1000 to 10000 products in 10000 time steps. The focus
was on counting how many times a reschedule would occur and the total
amount of agents that are involved in rescheduling. Table 3.6 shows the
numerical results. A graphical representations is shown in Figure 3.9 and
3.10. Weak EDF uses much less preemptions and has a considerable smaller
amount of agents involved in rescheduling. Only at large values for the
number of products a sharp increase will occur. This is the situation where
the grid of equiplets becomes overloaded and the number of failed schedules

3.8. RESULTS 97

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500
10000
10500
11000

100 200 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
ro

fp
re
em

pt
io
ns

Number of products

Strong EDF
Weak EDF

Figure 3.9: Number of preemptions for strong and weak EDF

also increases very rapidly. The strong version shows a steady increase for
both rescheduling as the number of agents involved from the start. This
can be understood because of the fact that every time an agent enters the
grid, all agents with a later deadline are required to temporarily give up their
schedule, even if it is not necessary in the given situation. When many agents
are involved, this will mean that the scheduling time requires much overhead
that will mostly be used for communication between the agents.

3.8.2 Different scheduling algorithms

In this section only the weak implementations of the scheduling algorithms
are used. Now the focus is on different scheduling algorithms. Table 3.7
shows the number of failing schedules of the infeasible test sets. It shows
that for a flat test set both EDF and LSF perform well reducing the amount
of failures when there is no negotiating. SPF is not useful as it is only slightly
better than no negotiation. For increasing and decreasing test sets the gain
for negotiating is much less due to the fact that both distributions have a
high peak (either at the beginning or at the end), resulting in much more
scheduling failures and also less possibilities during this peak load to find a
feasible schedule. EDF performs a bit better than LSF but not significantly
better. CR is worse and SPF is in all situations comparable to no negotiating.
For feasible test sets the results are shown in Table 3.8. In this case LSF is
the winner, being slightly better than EDF, while SPF is now better than no
negotiating but still far behind EDF and LSF. Negotiating does not necessar-

98 CHAPTER 3. PLANNING AND SCHEDULING

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

600000

100 200 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um
be
ro
fa
ge
nt
s
in
vo
lv
ed

Number of products

Strong EDF
Weak EDF

Figure 3.10: Agents involved for strong and weak EDF

Table 3.7: Number of failures in scheduling infeasible sets, N = 10000

Scheduling type flat increasing decreasing

None 2240 4040 4193
EDF 1042 3558 3547
LSF 1082 3606 3604
CR 1450 3679 3838
SPF 1945 3975 4066

Table 3.8: Number of failures in scheduling feasible sets

Scheduling type flat increasing decreasing
N = 9431 N = 8096 N = 8200

None 1499 1300 1115
EDF 24 32 33
LSF 4 16 23
CR 476 300 439
SPF 1087 849 958

3.8. RESULTS 99

ily result in a feasible scheduling, but the number of failures is less than 0,4%
in the worst situation when we consider EDF and LSF. Figure 3.11 shows
the number of failed schedules for test sets of ranging from 1000 to 10000
products with range value of 20 using 5 schemes: no negotiating, weak-SPF,
weak-CR, weak-LSF and weak-EDF, as a function of the number of products.
What can be seen is that until 8000 products, EDF and LSF are capable of
scheduling almost all products and at 9000 and 10000 these two schemes
give almost the same result. For a low value for the number of products CR
is not bad, but it becomes worse compared with EDF and LSF when more
products are involved. SPF is worse and no negotiating gives an impression
of what is actually achieved by the multiagent cooperation scheme.

0

500

1000

1500

2000

2500

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fa
ilu
re
s

Number of products

SPF
CR
LSF
EDF

NO

Figure 3.11: Failure-count for different scheduling algorithms

3.8.3 The effect of the R-parameter

The figures 3.15, 3.16 and 3.17 use EDF as scheduling scheme for 10000
products and show the effect of the range R as introduced in equation 3.1.
The total number of basic production time steps performed by the grid (Fig-
ure 3.15) increases at first very fast by incrementing R, however for larger
values of R it increases only slowly. The number of products in the grid
(Figure 3.16) will increase linear in R. This means that for higher values of
R an increasing storage capacity for products waiting for equiplets is needed.
The percentage of failures (Figure 3.17) shows a sharp decrease in the begin-
ning when we use a higher value for R. This figure shows a complimentary

100 CHAPTER 3. PLANNING AND SCHEDULING

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
ro

fp
re
-e
m
pt
io
ns

Number of products

SPF
CR
LSF
EDF

Figure 3.12: Number of preemptions for different scheduling

0

50000

100000

150000

200000

250000

300000

350000

400000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
ro
fa
ge
nt
s
in
vo
lv
ed

Number of products

SPF
CR
LSF
EDF

Figure 3.13: Number of agents involved in rescheduling

3.8. RESULTS 101

0

50000

100000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
ro

fa
ge

nt
s

in
vo

lv
ed

Number of products

CR
LSF
EDF

SPF

Figure 3.14: Detail of number of agents involved in rescheduling

behaviour of Figure 3.15.

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 5 10 15 20

pr
od

uc
tio

n
tim

es
te

ps

range value

Figure 3.15: Total number of production time steps for different values of R

3.8.4 Effect of extra transport steps and multiple times-
lots for steps

Two aspects are discussed here.

102 CHAPTER 3. PLANNING AND SCHEDULING

1. What is the effect of having steps that take a multiple of the unit time
step used so far?

2. What is the effect if we take into account that in between two steps a
transport slot is needed?

0

10

20

30

40

50

60

70

0 5 10 15 20

pr
od

uc
ts

in
th

e
gr

id

maximum range value

Figure 3.16: Average number of products in the grid for different values of
R

0

10

20

30

40

50

60

70

80

0 5 10 15 20

re
la

tiv
e

nu
m

be
ro

ff
ai

lu
re

si
in

%

maximum range value

Figure 3.17: Percentage of failures for different values of R

3.8. RESULTS 103

The result of having varying length of the production step is shown if
figures 3.18, 3.19 and 3.20. A non feasible test set has been used and the
failures are counted for different scheduling types. As can be seen from the
figures, the results are about the same, though a little bit worse than the
one time unit step test in the situation of a flat and increasing test set. A
longer step time is a stronger constraint, so the result being a bit worse is
not surprising. In the decreasing test set, the number of agents per time-unit
will be lower, making it easier for longer production steps to be scheduled.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

EDF LSF CR SPF

Fa
ilu
re
s
us
in
g
de
cr
em
en
tin
g
se
t

Scheduling type

NO-Glue
Glue

Figure 3.18: Effect of varying step length for different scheduling schemes for
a decreasing set

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

EDF LSF CR SPF

Fa
ilu
re
s
us
in
g
fla
ts
et

Scheduling type

NO-Glue
Glue

Figure 3.19: Effect of varying step length for different scheduling schemes for
a flat set

104 CHAPTER 3. PLANNING AND SCHEDULING

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

EDF LSF CR SPF

Fa
ilu
re
s
us
in
g
in
cr
em
en
tin
g
se
t

Scheduling type

NO-Glue
Glue

Figure 3.20: Effect of varying step length for different scheduling schemes for
an increasing set

The three figures 3.21, 3.22 and 3.23 show the results when we introduce
a time unit for transport between two consecutive steps. This will be the
case in the real production grid, where a product has to travel from equiplet
to equiplet. Like in the previous test, the simulation has been done for an
increasing, a flat and a decreasing test set. Looking at the results, we see
that for some scheduling types for the increasing and decreasing test set the
number of failures is even lower than when no transport time unit has been
used. Again the difference is not that big, but a remark should be made.
To compensate for the extra time for transport, this transport time has been
added to the so called range factor effecting in a later deadline. Every product
has its deadline extended by the amount of timeslots needed for transport. If
this had not been done the results would have been much worse compared to
the situation where the transport time is neglected. That this result is worse
when there is no compensation for the range factor R is also visible in the
earlier firstfitplus approach depicted in Figure 3.4. In that situation there
was also extra time inserted between production steps, but there it is has not
been compensated for. In such a situation, it is more difficult to schedule the
product before the deadline, due to the extra time units between production
steps.

3.8. RESULTS 105

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

EDF LSF CR SPF

Fa
ilu

re
s

us
in

g
de

cr
ea

si
ng

se
t

Scheduling type

NO-Transport
Transport

Figure 3.21: Effect of varying step length for different scheduling schemes for
a decreasing set

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

EDF LSF CR SPF

Fa
ilu
re
s
us
in
g
fla
ts
et

Scheduling type

NO-Transport
Transport

Figure 3.22: Effect of varying step length for different scheduling schemes for
a flat set

106 CHAPTER 3. PLANNING AND SCHEDULING

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

EDF LSF CR SPF

Fa
ilu

re
s

us
in

g
in

cr
ea

si
ng

se
t

Scheduling type

NO-Transport
Transport

Figure 3.23: Effect of varying step length for different scheduling schemes for
an increasing set

3.8.5 Grid behaviour under load

An important question about the scheduling behaviour is how many product
agents are actually present in the grid during production. This aspect has
already been studied when the effect of the range value was investigated.
Now we will study the behaviour of the grid in the situation of three different
test sets. These three sets are an increasing test set, a flat test set and a
decreasing test set. Again 10000 time steps are considered in a grid of 10
equiplets, each offering a single unique production step. The range factor
is again 20 and products have a set of steps ranging from 1 to 20. In the
worst-case situation, the amount of agents can be calculated by taking the
release-time and the deadline for all successfully scheduled agents and take
these values as the begin time and the end-time of the agents in the grid.
This results in figures 3.24, 3.25 and 3.26. When these figures are compared
with the figures of the test set (figures 3.5, 3.6 and 3.7, a change in slope for
the increasing and decreasing set can be seen. This is due to the fact that
the grid is saturated and product agents are rejected at a high load. It is
however a bit pessimistic to expect that all agents will live in the grid during
all the time between release and deadline. If a product is finished before the
deadline, the agent can leave the grid. So to calculate the actual number
of agents in the grid we have to take the time from release to completion.
This results in the plots shown in figures 3.27, 3.28 and 3.29. Interesing is
to see that for the increasing load until about time step 4000, the number

3.8. RESULTS 107

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

nu
m

be
ro

fp
ro

du
ct

s

timesteps

maximumnumber of products in grid

Figure 3.24: Worst case situation for increasing load

0

20

40

60

80

100

120

140

160

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

nu
m

be
ro

fp
ro

du
ct

s

timesteps

maximum number of products in grid

Figure 3.25: Worst case situation for flat load

108 CHAPTER 3. PLANNING AND SCHEDULING

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

nu
m

be
ro

fp
ro

du
ct

s

timesteps

number of products in grid

Figure 3.26: Worst case situation for decreasing load

of product agents is smaller than the number of equiplets and then it will
quickly grow to a saturation value of about 65. A saturation value of 65
means that 55 products should be stored while only 10 products are actually
worked on by the equiplets. To see what value results in a more feasible
situation, a simulation was made by using again sets running from 1000 to
10000 agents and now again computing the average number of agents in the
grid using the same assumption, that the product agent is present in the grid
from release time to completion time. The result is shown in Figure 3.30.

In Figure 3.31 the average time to compute a feasible schedule in the
simulator for a given set of product agents is plotted. The simulation was
run on a standard low-end desktop PC with an Intel(R) Core(TM)2 CPU
running at 1.86GHz, 2GByte of memory and Linux version 3.0.0-32-generic.
The plot shows a comparable figure as the plots seen before. Scheduling a
product in a heavy loaded grid takes much more time. Because there is a big
difference between the maximum and minimum time in the figure, a table
with the actual values is also included (see Table 3.9).

3.9 Some considerations about batches

So far scheduling of single unique products has been considered. The grid
is also expected to work for small or medium-sized batches. The model
introduced so far can also be used in the situation that many similar or almost
similar products should be produced. The agent for such a small batch will

3.9. SOME CONSIDERATIONS ABOUT BATCHES 109

0

10

20

30

40

50

60

70

80

90

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

nu
m

be
ro

fp
ro

du
ct

s

timesteps

actual number of products in grid

Figure 3.27: Actual situation for increasing load

0

10

20

30

40

50

60

70

80

90

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

nu
m

be
ro

fp
ro

du
ct

s

timesteps

actual number of products in grid

Figure 3.28: Actual situation for flat load

110 CHAPTER 3. PLANNING AND SCHEDULING

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

nu
m

be
ro

fp
ro

du
ct

s

timesteps

actual number of products in grid

Figure 3.29: Actual situation for decreasing load

0

10

20

30

40

50

60

70

80

2000 4000 6000 8000 10000

P
ro

du
ct

s
in

gr
id

Test set size

Figure 3.30: Actual number of products in the grid for different sizes of test
sets

3.9. SOME CONSIDERATIONS ABOUT BATCHES 111

0

500

1000

1500

2000

2500

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve
ra
ge

sc
he

du
lin
g
tim

e
[u
S
ec
]

Number of products

NO
SPF
CR
LSF
EDF

Figure 3.31: Scheduling time in µSec. for different scheduling algorithms for
different sizes of test sets

Table 3.9: Average time in µSec. to schedule a product

Number of NO EDF LSF CR SPF
Products

1000 10 13 13 12 12
2000 8 19 18 18.5 14
3000 7.4 22.3 22.7 23 20.8
4000 7.2 33 32.5 34.5 29
5000 6.8 55.9 57.2 53.5 50.1
6000 6.7 90.1 93.3 89.2 86.1
7000 6.9 172.7 169.7 160.3 155.6
8000 6.9 386 389.7 314.3 311.2
9000 7.4 1146.6 1153.4 661.2 648.9
10000 7.7 2001.5 2079.8 1225 1172

spawn child agents to do the actual production guidance. To prevent the
situation where hundreds of agents try to schedule the production, a minor
adjustment should be make to the scheduling system. Two situations should
be considered. When all steps take the same amount of time, the spawning
of child agents will be at intervals having the same time as the time it will
take to do a step. The first child agent will also communicate its scheduled
product path and, if they are available, alternatives to the parent agent that

112 CHAPTER 3. PLANNING AND SCHEDULING

1 2
3
3

4
5
5

6 7

1 unit 4 units 3 units

Figure 3.32: Actual number of product in the grid for different sizes of test
sets

can hand this over to the second and all other child agents to be spawned.
This way the communication overhead is reduced.

If the time for the production steps is not equal, the first child agents
will find this out and report to the parent the amount of time for every step
and also the amount of equiplets capable of performing a certain step. The
parent will compute:

Tmax = MAX(tstep/neq.step)

This time will be the delay between the re-spawning of child agents, because
this is the minimum time between the production of two successive products
in the batch. In Figure 3.32 the situation is explained for a path of 7 steps.
Step 3 can be performed by two equiplets. The same is true for step 5 that
takes 4 time units. Because of the fact that two equiplets can handle this
step it will reduce to effectively 2 time units. Step 7 takes 3 time units, but
is only offered by one equiplet. In this situation Tmax = 3

3.10 Related work

A good overview of multiagent scheduling is given by Weerdt and Clement
(Weerdt and Clement, 2009). Several situations and restrictions for schedul-
ing in multiagent systems are discussed. Special cases of multiagent schedul-
ing are described in (Krogt et al., 2005) and (Weerdt et al., 2001). Other
publications on multiagent scheduling include work of Rabello and van Hoeve.
In (Rabello et al., 1999) innovative and balanced perspectives of multiagent
approaches to agile scheduling are discussed, and several achieved results and
developments are described. This paper is a good overview of what has been
achieved but does not focus on the type of production scheduling that is
needed for the production grid. In (Hoeve et al., 2007) an efficient method
to compute provably optimal solutions for centralized deterministic multia-
gent scheduling problems is presented. The work is based on a multiagent
system with a common goal and interdependency between the agents. In our
situation the interdependency between agents is lacking and the scheduling

3.11. CONCLUSION 113

problem itself is different. In (Ouelhadj et al., 2000) a multiagent monitoring
is presented. This work focusses on monitoring a manufacturing plant. The
approach we use monitors the production of every single product. The work
of Xiang and Lee (Xiang and Lee, 2008) presents a scheduling multiagent-
based solution using swarm intelligence. This work uses negotiating between
job-agents and machine-agents for equal distribution of tasks among ma-
chines. In our system there might be no need for balancing the load between
equiplets, because these production platforms are cheap and their use de-
pends on what kind of production steps are needed at a certain moment.
There are however possibilities discussed in Chapter 6 to introduce a way of
load balancing. Karageorgos (Karageorgos et al., 2003) is based on agents for
optimisation of production planning and logistics in a standard production
environment, not a co-design of a production environment and its software
infrastructure as in our case. The work of Wang (Wang et al., 2003) is also
based on a standard production environment. A good overview of agile man-
ufacturing and the use of agent technology can be found in (Paolucci and
Sacile, 2005), where the focus is on the replacement of standard production
management software by agent-based software. Standard production man-
agement software is reliable but not easy to reconfigure. Our work however
proposes a new production paradigm based on a co-design of hardware as
well as agent-based software.

3.11 Conclusion

In the given situation the scheduling in a multiagent-based system can use
both LSF as well as EDF. Both are proven successful dynamic scheduling
methods in real-time operating systems, and are rather easy to implement in
a cooperative multiagent system as used in this production system. The dis-
advantage of EDF and LSF in real-time operating systems is unpredictable
behaviour in case of an infeasible scheduling. This problem has been partly
overcome by giving up an infeasible scheduling and thus not disrupting al-
ready claimed schedules. However care should be taken not to overload the
grid, because infeasible scheduling has an dramatic impact on the perfor-
mance of the production system. The scheduling scheme where negotiating
is only used in case of failure introduces much less overhead than the scheme
where negotiating is always performed between agents. The former approach
seems to be the best solution so far for the grid production system. If the
actual production time for all products is much less than the time between
release time and deadline, a high load of the production grid can be achieved.
However, this is only possible if the grid is capable of storing a certain amount

114 CHAPTER 3. PLANNING AND SCHEDULING

of unfinished products.
The scheduling scheme presented here makes a mix a scheduling schemes

for different product agents possible. This will be a subject for further re-
search.

3.12 Summary

This chapter has been devoted to planning and scheduling. A description
of the problem was presented and a description of scheduling concepts and
production scheduling was given. A description of a simulation tool and its
results and interpretation ended this chapter.

Chapter 4

Flexible transport in the grid

An important aspect of the production grid is the mechanism to transport
all products under construction from one equiplet to the other. In standard
line-based production, this is more straightforward, because the sequence of
production steps is similar for all the products. The first part of this chapter
is dedicated to research about the topology and position of the equiplets
within the grid. The second part is dedicated to the transport itself. Some
solutions offering agile transport are discussed with their advantages and
disadvantages.

Parts of this chapter have been published in the proceedings of the Inter-
national Conference on Agents and Artificial Intelligence (ICAART 2014) (Mo-
ergestel et al., 2014).

4.1 Introduction

In standard mass production, batch processing is widely accepted. The ad-
vantage of batch processing is that production equipment can be placed in
a production line. A product only has to follow this line and all produc-
tion steps will be performed. However, this set-up is not adequate for low
cost small quantity production. For agile production of small quantities in
a grid of reconfigurable production machines, equiplets, a different approach
is needed. One of the challenges in this approach is the transport of the
product between the equiplets during production. This chapter starts with
a description of some heuristic methods to reduce the average path a prod-
uct has to follow in the production grid. Another challenge is the stream of
raw material or parts for production. For this challenge a specific solution is
presented.

As discussed in the previous chapters, the production model that is pre-

115

116 CHAPTER 4. FLEXIBLE TRANSPORT IN THE GRID

sented in this thesis consists of a set of manufacturing machines. However
the production is not pipeline-based because the aim of this model is to
produce different products in parallel. Every product needs its own, possi-
bly unique, set of manufacturing machines. Because the production is not
pipeline-based, the transport between the manufacturing machines becomes
an important issue.

4.2 Grid manufacturing

In grid production, manufacturing machines are placed in a grid topology.
Every manufacturing machine offers one or more production steps and by
combining a certain set of production steps, a product can be made. This
means that when a product requires a gives set of production steps and
the grid has these steps available, the product can be made. The software
infrastructure that has been used in our grid, is agent-based. Agent technol-
ogy opens the possibilities to let this grid operate and manufacture different
kind of products in parallel, provided that the required production steps are
available as explained in chapter 2.

4.2.1 Manufacturing model

The manufacturing machines that have been built in our research group are
cheap and versatile. These machines are called equiplets and consist of a
standardized frame and subsystem on which several different front-ends can
be attached. The type of front-end specifies what product steps a certain
equiplet can provide. This way every equiplet acts as a reconfigurable man-
ufacturing system (RMS) (Koren et al., 1999).

The equiplet is in software represented by a so called equiplet agent. This
agent advertises its production steps to a blackboard that is available in a
multi agent system where also so-called product agents live. A product agent
is responsible for the manufacturing of a single product and knows what to
do, the equiplet agents knows how to do it. A product agent selects a set
of equiplets based on the production steps it needs and tries to match these
steps with the steps advertised by the equiplets.

4.2.2 Similarities and differences between batch and
grid production

Both batch and grid production are based on the concept of a production
step. In a batch environment these steps have the same sequence for all

4.2. GRID MANUFACTURING 117

products. Also in batch production the duration of steps is normally the
same, so a pipeline of a chain of production steps is easy to implement and
effective. The drawback is that all products should be similar to make this
concept work. In grid production the duration of steps can vary without
disturbing the production. Also the sequence of steps can vary among prod-
ucts opening the possibility to produce several different products in parallel.
The drawback here is the complication of different paths along the produc-
tion machines. Instead of a transport belt or a similar solution, a much
more complicated transport system is required (Bussmann et al., 2004). The
transport system can be optimised if the position of the production machines
within the grid is adapted to the set of paths that are required for produc-
tion. This is the subject of the research described in the first part of this
chapter.

The equiplets are reconfigurable machines. The product agents make
their planning according to the capabilities offered by the equiplets. Com-
bining this information the question arises: is it possible to adapt the posi-
tions of the equiplets in the grid, so that the average length of the paths of
the products is shorter than in case of a random walk within the grid? The
length of the path in the grid is also referred to as the amount of hops, where
a hop is a path between two adjacent nodes. In our model the length of a
path between two adjacent nodes is 1.

To explain in a more formal way the differences between batch production
and grid production, consider a batch production system. This system can
be represented by a tripartite graph as depicted in Figure 4.1. Every step
(member of set S) matches one single production machine (member of set
E). All products (P) use all available steps in a sequence, one by one. This

P S E

Figure 4.1: A batch process as a matching tripartite graph

tripartite graph can be transformed to the bipartite graph of Figure 4.4,
where only products (P) and production machines (E) are involved. The
production in a grid can be represented by the tripartite graph of Figure 4.3.

118 CHAPTER 4. FLEXIBLE TRANSPORT IN THE GRID

P E

Figure 4.2: A batch process as a matching bipartite graph

Here it can be seen that not all products use all the available steps and
some production machines (equiplets, denoted by E) offer more than a single
production step. After the planning phase, the product agents have chosen

P S E

Figure 4.3: Grid-based manufacturing system

their set of equiplets and the tripartite graph can be transformed to the
bipartite graph of Figure 4.4. This bipartite graph is in this case the result
of a certain planning. If a step is offered by two or more equiplets and a
product agent selects a different equiplet to perform a step, the resulting
bipartite graph is also different. In case of batch-based production, there
are no choices of this kind. Apart from the fact that this bipartite is not
necessarily a complete graph (where every node from set P matches with all
nodes from set E), there is another important difference. The edges of the
graph are not used in a fixed sequence (in Figure 4.2 from top to bottom
for every product), but the time they are active should be scheduled among
all other edges involved. This planning and scheduling is described in the
previous chapter.

4.3. ADAPTION OF THE GRID 119

P E

Figure 4.4: Grid-based manufacturing system

4.3 Adaption of the grid

There are several ways to adapt the grid to the production paths. Two
possibilities used in this research are:

1. The grid can be configured or reconfigured according to information
about the load or usage of the equiplets.

2. A grid configuration can be calculated according to the amount of inter-
equiplet hops used by the production paths.

For both approaches an alternative brute force method could be used. For
a reasonable sized grid (e.g. 4 × 4 or bigger) this requires a huge amount
of calculation because of the fast increasing set of possible configurations
being in the order of (N ×N)! for an N ×N -grid. A better solution would
be a heuristic approach that might lead to an acceptable result. To get a
feeling for what heuristic might be a good approach, this research used the
two aforementioned possibilities.

4.3.1 Reachability of nodes

The basic idea is based on the fact that nodes in a grid have different average
values for reaching other nodes in the grid. For a 5× 5-grid these values are
shown in Figure 4.5. This means that from a corner point, the average path
to any other node in the grid is 4, while the node in the center has an average
path of 2.4 to any other node. This means that it is wise to place the most
heavily used equiplet at the center and then grouping other heavily used
equiplets around it. For this grouping two patterns have been used. The
first pattern, grid pattern 1, is shown in Figure 4.6. Here we start at the
hot-spot in the middle of the grid and construct a path among other nodes
also having a low value for the average path, but we construct a path that
has only one hop between two consecutive nodes. In Figure 4.7 an alternative

120 CHAPTER 4. FLEXIBLE TRANSPORT IN THE GRID

4 3.4 3.2

2.8 2.6

2.4

3.4

3.4

3.4 3.4

3.4

3.4

2.6 2.6

2.6

3.2

2.8 2.8

2.8

3.2

3.4 4

44 3.2

Figure 4.5: Reachability of nodes in the grid

path, grid pattern 2, is shown. This path follows the lists of shortest average
paths that can be derived from Figure 4.5.

4 3 2

2 1

0

3

3

3 3

3

3

1 1

1

2

2 2

2

2

3 4

44 2

Figure 4.6: A path along the nodes

4 3 2

2 1

0

3

3

3 3

3

3

1 1

1

2

2 2

2

2

3 4

44 2

Figure 4.7: An alternative path along the nodes

We expect both patterns to give an improvement under certain circum-
stances. Pattern 2 because of the fact that heavily used equiplets are placed
at easily reachable positions from any point in the grid. Pattern 1 looks
similar, but has the order of its sequence separated by only one hop.

4.3. ADAPTION OF THE GRID 121

To test our approach, several scenarions are generated using a Monte
Carlo method. We generated sets of production steps needed for a product
and mapped these to the available equiplets. A set containing many different
products was thus generated. From these artificially generated production
sets a matrix (4.1) is constructed that has all the transitions between all
pairs of equiplets. This matrix of transitions consists of elements αij having
the number of transitions from equiplet i to equiplet j while αji shows the
number of transitions from equiplet j to equiplet i.

α11 α12 . . . α1n

α21 a22 . . . α2n
...

...
. . .

...
αn1 αn2 . . . αnn

 (4.1)

For computing purposes another matrix was also constructed using the values
of matrix 4.1. In this matrix we only look at the transition between equiplets
neglecting the direction of the transitions. This matrix is not an optimisation,
but a different representation. This results is a matrix (4.2) having only non-
zero values in the lower left triangle below the diagonal. Where the non-zero
values βij = αij + αji : ∀j < i. In the next sections this type of matrix is
referred to as a triangle matrix. In one of the computations in section 4.4
this triangle matrix is the starting point.

0 0 . . . 0
β21 0 . . . 0
...

...
. . .

...
βn1 βn2 . . . 0

 (4.2)

4.3.2 Scenarios

To test the adaption software, several scenarios were generated. All sce-
narios are based on 10000 products that could use 25 equiplets in a 5 × 5
configuration. Following is a description of the scenarios:

A All products paths are randomly generated in a flat distribution with-
out making some equiplets special. The usage is almost equally dis-
tributed over all equiplets as shown in Figure 4.8.

B Again a randomly generated set of product paths, but now there is a
linear increase of usage among the equiplets, making equiplet 25 much
more popular than equiplet 1. Figure 4.9 shows the distribution of the
equiplet usage. The equiplets are numbered from 1 to 25.

122 CHAPTER 4. FLEXIBLE TRANSPORT IN THE GRID

0

2000

4000

6000

8000

10000

0 5 10 15 20 25

U
sa

ge

Equiplet

Figure 4.8: Equiplet usage distribution for scenario A

0

2000

4000

6000

8000

10000

0 5 10 15 20 25

U
sa

ge

Equiplet

Figure 4.9: Equiplet usage distribution for scenario B

C In this set of product paths 25% of the equiplets are used twice as much.
This might be the case if equiplets offer more than one production step.
(see Figure 4.10).

0

2000

4000

6000

8000

10000

0 5 10 15 20 25

U
sa

ge

Equiplet

Figure 4.10: Equiplet usage distribution for scenario C

D A test set that is purely batch-based. 10000 products using all the 25
equiplets equally in a batch production situation (see Figure 4.11.

4.3. ADAPTION OF THE GRID 123

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25

U
sa

ge

Equiplet

Figure 4.11: Equiplet usage distribution for scenario D

E A test set having several different products with comparable paths, but
not of the same length (see Figure 4.12).

0

2000

4000

6000

8000

10000

0 5 10 15 20 25

U
sa

ge

Equiplet

Figure 4.12: Equiplet usage distribution for scenario E

F A test set having 10 different products, resulting in 10 sets of 1000
similar products. (see Figure 4.13).

0

2000

4000

6000

8000

10000

0 5 10 15 20 25

U
sa

ge

Equiplet

Figure 4.13: Equiplet usage distribution for scenario F

124 CHAPTER 4. FLEXIBLE TRANSPORT IN THE GRID

4.4 Computations

The first approach only looks at the usage of the equiplets and puts the most
popular equiplet at the hot spot. The stepwise description of the computation
looks like:

Construct the matrix of transitions

Transform it to a triangle

Calculate the total usage of an equiplet

Make a list of usage and equiplet-number

Sort this list according to usage,

putting the highest on top

Generate a grid using the list and a

grid pattern (1 or 2)

Use this grid to calculate the actual

average pathlength

If the transitions are taken into account, the situation is a little bit more
complicated.

Construct the matrix of transitions

Make a list of triplets of all transitions:

#num eq-src eq-dst

Sort this list, putting the highest number

(#num) on top

Create list of equiplets from this list

starting at the top and from there

following eq-dst as the next eq-src

IF a loop is detected, use next unused

triplet in the list.

Use the list of equiplets to generate a

grid pattern (1 or 2)

Use this grid to calculate the actual

average pathlength

4.4.1 Grid versus line and circle

Before discussing the results of the computations described in de previous
subsection, we first made some calculations on the average number of hops
for a random path between nodes on a line, on a circle and in a grid. In
Figure 4.14 the number of hops is plotted against

√
N , where N is the number

of nodes among the line, the circle or in the grid. The increase of the average
path length (number of hps) is the highest for nodes put on a line. So
a random walk along a line is behaving bad, when the number of nodes

4.4. COMPUTATIONS 125

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

nu
m

be
ro

fh
op

s

SQRT(N)

line
circle
grid

Figure 4.14: Number of hops for different configurations of N nodes

increases. When the nodes are placed on a circle, there is some improvement
because of the effect that the largest distance now is over only halfway around
the circle. When the same calculation is done for the grid, a slow and almost
linear increase will be the result as shown in Figure 4.14. Thus from these
three possibilities, the grid is by far the best choice.

4.4.2 Results

The results of the calculations are plotted as histograms. Every histogram
shows the results for one scenario. The scenarios are already introduced and
denoted by capital A to F. The numbered bars represent the following tests:

1. Random grid configuration, used as a reference measurement.

2. Using grid pattern 1 from Figure 4.6 with equiplets ordered according
to usage.

3. Using gridpattern 2 from Figure 4.7 with equiplets ordered according
to usage.

4. Again a random grid configuration (different from 1).

5. Using gridpattern 1 from Figure 4.6 with equiplets ordered according
to transition frequency.

126 CHAPTER 4. FLEXIBLE TRANSPORT IN THE GRID

6. Using gridpattern 2 from Figure 4.7 with equiplets ordered according
to transition frequency.

Figure 4.15 shows the results for the purely random situation. In this case
no gain is possible, because all equiplets have almost the same load and all
transistions have the same probability. Figure 4.16 shows the results for

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7

A
ve

ra
ge

 P
at

h

Test number

Figure 4.15: Scenario A with random use of equiplets

scenario B. Here we see a decrease of the average path length. There is not
much difference between the different approaches. In Figure 4.17 the results

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7

A
ve

ra
ge

 P
at

h

Test Number

Figure 4.16: Scenario B with increasing use of equiplets

are shown for scenario C. Again a decrease of average path length. The best
result is test number 5 where grid pattern 1 is used in combination with the
number of inter-equiplet hops. The results of a pure batch scenario is shown
in Figure 4.18. Normally in a batch the production machines are in-line
separated by one single hop. This possibility is discovered by test 5, using
grid pattern 1 in combination with the number of inter-equiplet hops. When
we look at the results based on the usage of equiplets, there is no gain at all.
This has to do with the fact that all equiplets are equally used, so sorting
does not make any difference. In Figure 4.19 the results for scenario E are

4.4. COMPUTATIONS 127

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7

A
ve

ra
ge

 P
at

h

Test Number

Figure 4.17: Scenario C with two overlapping sets of equiplets

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7

A
ve

ra
ge

 P
at

h

Test Number

Figure 4.18: Scenario D with a single batch

shown. Here we also see a gain and in this case test 6, using grid pattern 2
in combination the number of inter-equiplet hops is the best solution. The

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7

A
ve

ra
ge

 P
at

h

Test Number

Figure 4.19: Scenario E with repeated tuples of equiplets

final histogram of Figure 4.20 shown the results for test 10. Here the gain is
minimal but still available in three of the experiments.

128 CHAPTER 4. FLEXIBLE TRANSPORT IN THE GRID

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7

A
ve

ra
ge

 P
at

h

Test Number

Figure 4.20: Scenario with 10 different batches of similar products

4.5 Discussion and future work

In Table 4.1, the percentage of reduction in hops is calculated for all scenarios
and heuristics by taking the average of 3.2 and comparing it with the actual
results shown in the graphs of the previous section. The highest profit is
printed in bold typeface. It turns out that test 5 gives the best results,
but not for all scenarios, having test 3 as a winner for scenario B and test
6 for scenario E. The approach presented here can be integrated with the

Table 4.1: Reduction of hops in %

Test A B C D E F

1, 4 0 0 0 0 0 0
2 0 16.3 10.9 -3 15.6 10.9
3 0 18.5 12 -9 17.8 10.6
5 0 16.3 14.4 66.3 25.6 11.6
6 0 18.4 9.4 28.2 31.2 2

grid software architecture. In the architecture, provisions have been made
to implement a monitoring system. This system can produce the usage of
the equiplets and the inter-equiplet transport in the past and also by looking
at the planning blackboard the use and transport in the near future. This
information can be used for optimising the grid. This way the grid control
software can adapt to the production situation. In future research other grid
patterns should be investigated and specially the scenarios in a real agile
production environment should be studied to get an understanding of what
might be adequate grid scenarios.

4.6. STREAMS WITHIN THE GRID 129

4.6 Streams within the grid

In the production grid there is at least the stream of products to be made.
Another stream might be the stream of raw material, components or half
products used as components. We will refer to this stream as the stream of
components. These components could be stored inside the equiplets, but in
that case there is still a stream of supply needed in case the locally stored
components run short. In Figure 4.21 this situation is shown for four supply
streams. This increases the logistic complexity of the grid model. In the

Part-supply Lines

Manufacturing Grid

Figure 4.21: Streams of supply

next subsection models will be introduced that alleviates the complexity by
combining the stream of products with the stream of components within the
grid and keeping the supply stream of components outside the grid.

4.6.1 Buiding box model

In the building box model, a tray is loaded with all the components to create
the product. To maintain agility, this set of components can be different for
every single product. Before entering the grid, the tray is filled by passing
through a pipeline with devices providing the components. In this phase a
building box is created that will be used by the grid to assemble the product.
The equiplets in the grid are only used for assembling purposes. Figure 4.22
shows the setup.

4.6.2 Solution of problems with building box model

A problem with the previous setup is the fact that more complex products
should be built by combining subparts that should be constructed first. In
the previously presented setup all parts for the subparts should be collected in
the building box, making the assembling process more complicated. Another

130 CHAPTER 4. FLEXIBLE TRANSPORT IN THE GRID

Part-supply Lines

Manufacturing Grid

Part-filling Line

Figure 4.22: Production system with supply filling pipeline

disadvantage of putting all components for all subparts together in a building
box is that this slows down the production time, because normally subparts
can be made in parallel. A solution for these problems is shown in the setup
of Figure 4.23. In Figure 4.23 a feedback of subparts to the supply line is

Part-filling Line

Manufacturing Grid

Half-product Supply Line

Figure 4.23: Production system with loops

possible and subparts can be made in parallel each having its own building
box.

4.6.3 Including product inspection and retrying

The next refinement of the system is presented in Figure 4.24. Here a set of
special test nodes has been added to the system. These nodes are actually
also equiplets, but these equiplets have a front-end that makes them suited
for testing and inspecting final products as well as subparts that should be
used for more complicated products. A test can also result in a reject and
this will also inform the product agent about the failure. If the product agent

4.7. POSSIBLE TRANSPORT SYSTEMS 131

Part-filling Line

Manufacturing Grid

Half-product Supply Line

Test Nodes

accept
supply

accept
+ exit

reject

Figure 4.24: Production system with test and loops

is a child agent constructing a subpart, it should consult the parent agent if
a retry should be done. In case the failure happens to the product agent for
the final product, it should ask its maker what to do.

4.7 Possible transport systems

In this section transport possibilities are discussed. In batch processing,
all products follow the same path. In grid processing, paths are different.
Because cheap mass production used to be batched-based, most transport
systems in production fit well in the batch approach, however for random
walks in the grid different solutions are needed.

4.7.1 Conveyor belt-based systems

A conveyor belt is a common device to transport material. Several types are
in use in the industry. Without going into detail, some kind of classification
will be presented here:

• Belts for continuous transport in one direction.

• Belts with stepwise transport from station to station. These types of
belts can be used in batch environments, where every step takes the
same amount of time and the object should be at rest when a product
step is executed.

• Belts with transport is two directions. This can also be realised by
using two one direction belts, working in opposite direction.

132 CHAPTER 4. FLEXIBLE TRANSPORT IN THE GRID

In (Bussmann et al., 2004), an agent-based production system is built us-
ing transport belts in two directions where a switch mechanism can move a
product from one belt to another (see Figure 4.25). A special switch-agent
is controlling the switches and thus controlling the flow of a product along
the production machines. This concept fits well in the system developed by

Belt R

Belt L

switch A

switch B

Figure 4.25: Bidirectional conveyor system used by Bussmann

Bussmann, because the system is actually a batch-oriented system. In a grid
the use of conveyor belts might be considered, but for agile transport several
problems arise, giving rise to complicated solutions:

• Should the direction in the grid consist of one-way paths or should be
chosen for bidirectional transport?

• A product should be removed from the moving belt during the execu-
tion of a product step. A stepwise transport is inadequate, because of
the fact that production steps can have different execution times in our
agile model. This removal could be done by a switch mechanism as
used by Bussmann, but every equiplet should also have it own switch
to move the product back to the belt.

• Because the grid does not have a line structure for reasons explained in
the first part of this chapter, a lot of crossings should be implemented.
These crossing can also be realised with conveyor belt techniques, but
it will make the transport system as a whole expensive and perhaps
error-prone (Salvendy, 2001). In Figure 4.26 such a crossing is shown.
It consists of two sets of small wheels rotating perpendicular. By raising
one set of wheels the product can be moved according to the direction
of the rotating wheels. At the cross-section itself the other set can be
raised while the original set will be lowered, moving the product in a
perpendicular direction.

4.7.2 Autonomous transport

An alternative for conveyor belts is the use of automatic guided vehicles
(AGV). An AGV is a mobile robot that follows certain given routes on the

4.7. POSSIBLE TRANSPORT SYSTEMS 133

Figure 4.26: A crossection in a conveyor belt system

floor or uses vision, ultrasonic sonar or lasers to navigate. These AGVs are
already used in the industry mostly for transport, but they are also used
as moving assembly platforms. This last application is just what is needed
in the agile manufacturing grid. The AGV solution used to be expensive
compared to conveyor belts but some remarks should be made about that:

• These AGV offer a very flexible way for transport that fits better in
non-pipeline situations.

• Low cost AGV platforms are now available.

• From the product agent view, an AGV is like an equiplet, offering the
possibility to move from A to B. This makes the implementation fit
seamlessly in our production model.

• a conveyor-belt solution that fits the requirements needed in grid pro-
ductions will turn out to be a complicated and expensive system.

In the grid a set of these AGVs will transport the product between equiplets
and will be directed to the next destination by product agents.

AGV system components

An AGV itself is a driverless mobile robot platform or vehicle. This AGV is
mostly a battery-powered system. To use an AGV, a travel path should be
available. When more than one AGV is used on the travel path, a control
system should manage the traffic and prevent collisions between the AGVs
or prevent deadlock situations. The control system can be centralised or
decentralised.

134 CHAPTER 4. FLEXIBLE TRANSPORT IN THE GRID

AGV navigation

There are plenty ways in which navigation of AGVs has been implemented.
The first division in techniques can be made, based on the fact if the travel
path itself is specially prepared to be used for AGV. This can be done by:

• Putting wires in the path the AGV can sense and follow.

• Using magnetic tape to guide the AGV.

• Using coloured paths, by using adhesive tape on the path to direct the
AGV.

• Using transponders, so the AGV can localise itself.

An example of the pattern of a guiding path with wires, magnetic tape or
coloured tape is given in Figure 4.27. The second type of AGV does not

Figure 4.27: Path guiding pattern in a 4x4 grid

require a special prepared path. In that case navigation is done by using:

• Laser rangefinders.

• Ultrasonic distance sensors.

• Vision systems.

In the grid the equiplets are not far apart, so the length of a path to a
neighbour-equiplet is less than one meter.

4.8 Path planning

A path planning tool has been built, to calculate a path a certain product
has to follow along the equiplets. The Dijkstra path algorithm (Dijkstra,
1959) has been used. We start in Section 4.8.1 with a description of the tool
followed by Section 4.8.2.

4.8. PATH PLANNING 135

4.8.1 The path planning simulation tool

The tool can work on different grid transport patterns. In Figure 4.28 the
GUI of the simulator is shown. Using this interface a grid can be specified
as an N ×M grid. Properties of the interconnection between nodes can also
be chosen. In the figure bidirectional and unidirectional paths are displayed
and also diagonal connections with all the directional possibilities can be
chosen. This selection can be done by clicking on the boxes that connect the
nodes. A selection of the type of connection can thus be made. When the
box is blank, this means that there is no transport possible. Using this tool

Figure 4.28: GUI of the simulation tool

it is possible to analyse the paths chosen by product agents along the nodes
(representing equiplets). A possible result is shown in Figure 4.29, where
several paths are plotted for different arrangements of grids.

4.8.2 Results

To investigate the average pathlength in the grid for different paths, several
structures have been investigated.

• A fully connected grid. where all paths are bidirectional paths as in
Figure 4.30.

• A grid where all paths are bidirectional, but this design has removed
the crossings as in Figure 4.31. This structure could be implemented
by conveyor belts in combination with switches.

136 CHAPTER 4. FLEXIBLE TRANSPORT IN THE GRID

Figure 4.29: Example of a simulation result

Figure 4.30: Fully connected grid

• A structure with five unidirectional paths and two bidirectional paths
as in Figure 4.31. This structure is also a possible implementation with
conveyor belts.

• A structure with bidirectional paths combined in a single backbone as
in Figure 4.33.

• A structure with five bidirectional paths and two unidirectional paths
as in Figure 4.34.

• A fully connected grid, but now with half of the paths unidirectional
as in Figure 4.35.

For all these structures the average path is the result from a simulation
of 1000 product agents, all having a random walk within the grid. Each
agent also has a random set of equiplets it has to visit ranging from 2 to 50

4.8. PATH PLANNING 137

Figure 4.31: Grid with crossings removed

Figure 4.32: Grid with unidirectional paths and crossings removed

Figure 4.33: E-shaped grid

equiplets per agent. If the paths have no crossings, a conveyor belt might
be used, because crossing belts will result in a more complex system. All
structures can also be implemented with AGVs.

The results of the simulation are given in a table and are plotted in
a histogram 4.36. In Table 4.2 a second outcome from the simulation is
also shown. This is the percentage of agents that could find an alternative
path of the same length. This result is of interest when in a traffic control
implementation, alternative paths become important.

As could be expected, the best result is achieved in the fully connected
grid with bidirectional paths. Changing the grid to structure 6 with unidi-

138 CHAPTER 4. FLEXIBLE TRANSPORT IN THE GRID

Figure 4.34: Grid with bidirectional paths, unidirectional backbones and
crossings removed

Figure 4.35: Grid with unidirectional horizontal paths

Table 4.2: Results of the simulatiom

Structure 1 2 3 4 5 6

Average path 3.2 3.9 6.4 5.1 6.0 3.6
% Alternatives 60 16.7 8.4 0 0 27

rectional paths, results in only a small penalty. This structure could also be
useful in a AGV-based transport system, reducing the collision problem be-
cause of the one-way paths used. Both structures also offer a relatively high
percentage of alternative paths, that could also be useful in an AGV-based
system. The structures that fit a conveyor belt solution show a pathlength
that is considerably higher. For the agile and agent-based manufacturing
the buildingbox as well as the AGV-based system offers advantages:

• By using a building box, the transport of parts to the assembling ma-
chines (equiplets) is combined with the transport of the product to be
made. It will not happen that a part is not available during manufac-
turing.

• Because the product as well as it parts use one particular AGV dur-

4.8. PATH PLANNING 139

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

A
ve

ra
ge

pa
th

Structure

Figure 4.36: Simulation Results

ing the production, there is never a competition for AGVs during the
manufacturing process.

• An AGV can use the full possibility and advantage of the grid-based
system being a compact design resulting in short average paths.

• The product agent knows which equiplets it should visit and thus can
use the AGV in the same way as an equiplet. The product agent can
instruct the AGV agent to bring it to the next equiplet in the same
way as it can instruct an equiplet agent to perform a production step.

• As a movable assembly platform, the AGV can move the product under
construction in any direction in the x-y plane, while it can rotate the
product around the Z-axis thus delevering extra degrees of freedom, or
expanding the working area of a (pick and place) robot.

• If an AGV fails during production the problem can be isolated and
other AGVs can continue to work. In a conveyor belt system a failing
conveyor might block the whole production process.

There are also some disadvantages.

• There should be a provision for charging the battery of the AGV. This
provision could be attached to every equiplet, because an AGV will
visit equiplets regularly.

140 CHAPTER 4. FLEXIBLE TRANSPORT IN THE GRID

• Simulations show that the number of agents in the grid shows a strong
increase in a grid that is loaded over 80%. This is shown in figure 3.30.
To prevent the situation of too many products (each having its own
AGV) in the grid, the load should be kept under 80%. In standard
industrial production, the usage of the production machines should be
high, because of the high cost of these machines. However, equiplets are
low cost production devices and an average load below 80% should be
no problem. Compare this with the situation in the printing industry.
Printing devices used to be expensive and should be used as much as
possible. Printing a single document was costly and the price would
drop if multiple copies of the same document were produced. Today,
printing devices with comparable quality are low cost devices. In many
offices these printers spend most of there time in standby mode.

• Only products that fit within the buildingbox manufacturing model
can be made. However, this is not a disadvantage that is specific for
AVGs, but it is actually a grid-based production property that had
been chosen.

4.9 Related work

In (Koren et al., 1999) the concepts of reconfigurable manufacturing sys-
tems are introduced and explained. A more recent article about this subject
can be found in (Bensmaine et al., 2013). In this work, to take full ad-
vantage of the reconfigurability of RMSs, a new approach is proposed using
genetic algorithms and a simulation-based optimization for process planning
for a single product type. The proposed approach copes with market un-
certainty and demands fluctuation in order to satisfy demands within their
deadlines and with a minimum total cost. Our work is agent-based and is not
limited to a single product type. The transport system within production
environments is intensively studied, however these studies focus on technical
solutions within batch processing environments. In (Bussmann et al., 2004)
the transport system in combination with an agent-based infrastructure is
introduced. In this work the conveyor belt system is adapted to a more agile
transport system. However it is actually still a batch production system.

4.10 Conclusion

For the transport within the grid the use of cheap AGVs seems to be an
adequate solution. An AGV fits in the agent model because for the product

4.11. SUMMARY 141

agent the AGV is similar to an equiplet. Instead of a production step, an
AGV can deliver a transport step. Another advantage is the fact that one
failing AGV does not disrupt the production grid as a whole. The build-
ing box model fits well in the concept of agile manufacturing, reducing the
amount of transport within the grid itself.

4.11 Summary

In this chapter the focus was on the grid infrastructure. The aspect of re-
configurability has been investigated as well as the way the production grid
might be used. In Chapter 3 the path was adapted to the grid, here the
adapting of the grid itself has been investigated. The question of how the
streams within the grid could be controlled, resulted in the use of the building
box model in combination with an AGV-based transport system.

142 CHAPTER 4. FLEXIBLE TRANSPORT IN THE GRID

Chapter 5

Product agents beyond
manufacturing

So far we have seen the role of the product agents during manufacturing. In
this chapter the focus will be on the role of the product agent in other phases
of the life cycle of a product. During manufacturing, the product agent col-
lected valuable information. In this chapter we will see how this information
can be used in other phases of the life-cycle of a product and other roles of
the product agent. Parts of this chapter have been published in the proceed-
ing of the International Conference on Computer-aided Manufacturing and
Design (CMD 2010) (Moergestel et al., 2010a), the International Symposium
on Autonomous Distributed Systems (ISADS2013) (Moergestel et al., 2013e),
the International Conference on Agents and Artificial Intelligence (ICAART
2013) (Moergestel et al., 2013c) and the Workshop on Agent Technology in
Ambient Intelligence held at the International Conference on Control Sys-
tems and Computer Science (CSCS 2013) (Moergestel et al., 2013a).

5.1 Introduction

Agent technology for agile manufacturing was the starting point of this re-
search. In this research the concept of a product agent was introduced. Every
product to be made starts as a software entity or agent that is programmed
to meet its goal: the production of a single product. To be able to reach its
goal this agent knows what should be done to create the product. This entity
is called a product agent and it guides the product along the production cells
to be used for manufacturing and it will collect all kinds of important manu-
facturing data during the production process. When the product is finished,
this agent has all the manufacturing details and this agent is still available

143

144 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

for further use containing valuable information about the product. The next
step in this approach is to investigate and study the roles of this product
agent in the other phases of the life cycle of the product. First some general
concepts of agents in products are discussed. Three special case studies will
be presented next. In the first case study the situation of adding a product
agent to an existing device will be explained. This situation occurs when a
product has been made without using the manufacturing concept presented
in the previous chapters. This agent has a monitoring function. Monitor-
ing of computer networks and complex technical systems like aeroplanes is
common practice. In this case the use of a monitoring agent in an arbitrary
product is discussed. The product itself could be any product with sufficient
hardware capabilities. The focus is on the product enhancement by adding
an embedded agent. This product agent can represent the product in the
Internet of Things and it can also be a member of a multiagent system. In
this case we study the implementation of a product agent that has not been
used to create the product itself, but this agent is created for a specific phase
in the life cycle of the product. The case study for our product agent in the
use phase is based on a discovery robot. This robot is also introduced and
globally described. After this description of the product, the embedding of
the product agent is discussed and some results of the implementation of the
product agent in this complex system are shown.

The next case study describes an application of the product agent in the
recycle phase of a product. This is also related to the Internet of Things
paradigm and helps to recycle useful material and subsystems. An agent
that knows the sequence of steps that were used to build a product can be
helpful in the situation a product must be taken apart. Exchanging parts
between products is also a topic of the case study.

The third case study is dedicated to agents applied in an infrastructure
for home automation. The case has been added to study the situation where
a product agent not only has monitoring as a role. In this case product agents
have a more prominent role because they are the vital parts of the system
described. The product agent will make the system work as a whole based on
interagent communication and sharing information. The components used
in this case could be manufactured in a grid-based manufacturing system as
described in the previous chapters, however, in the case presented here this
is not yet realised. All cases discuss related work and end with a conclusion.

5.2. AGENTS SUPPORTING PRODUCTS 145

5.2 Agents supporting products

This section will focus on the possibilities for agents to support products.
First an overview of the roles in different phases of the life cycle is given.
Then a discussion of the Internet of Things (IoT) will be presented because
this concept plays an important role in this chapter. Next, a review is given
for some possibilities for embedding agents in products.

5.2.1 Role of agents in the life cycle of a product

In Figure 5.1 the life cycle of an arbitrary product is shown. After the design,
the product is manufactured in the production phase, next the product is
distributed. A very important phase is the use of the product and finally
the product should be recycled. In all these phases, the product agent can
play a role that will be globally described in the next sections. We remark

Design Manufacturing Distribution Use Recycling

Figure 5.1: Life cycle of a product

that in the literature the term product life cycle (PLC) is commonly used
to denote a concept that is different from what we call the life cycle of a
product. The product life cycle can be defined as the process wherein a
product is introduced to a market, grows in popularity, and is then removed
as demand drops gradually to zero (Lilien et al., 2003).

Design and Production

As stated earlier, the design of a product will be greatly influenced by the
individual end-user requirements. Cost-effective small scale manufacturing
will become more and more important. The manufacturing system based
on a grid of cheap and versatile production units called equiplets is already
described in the previous chapters. Important is the fact that the product
agent is responsible for the manufacturing of the product as well as for col-
lecting relevant production information of this product. This concept is the
basis for the roles of the product agent in later phases of the life cycle. The
product agent carries the product design as well as the production data and
can be viewed as the software entity that represents the product possibly in
cyber space.

146 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

Distribution

Product agents can negotiate with logistic systems to reach their final des-
tination. Logistic applications based on multiagent systems already exist
(Burmeister et al., 1997). Information of product handling and external con-
ditions, like temperature, shocks etcetera can be measured by cheap wireless
sensors and collected by the product agent in its role of guidance agent during
the transport or after arrival at the destination. The handling and external
conditions during transport can be important during product use, especially
for product quality, maintenance and repair.

Use

The role of the product agent during the use of the product could focus on
several topics. The first question one should ask is: who will benefit from
these agents, that is who are the stakeholders. In a win-win situation both
the end-user as well as the manufacturer could benefit from the information.
If a product is a potential hazard (in case of misuse) for the environment,
the environment could also be a winner if the agent is capable of minimizing
the effects of misuse or even prevent it.

In the next subsections several topics of usage of the product agent are
proposed.

Collecting information A product agent can log information about the
use of the product as well as the use of the subsystems of the product. Testing
the health of the product and its subsystems can also be done by the agent.
These actions should be transparent for the end-user. If a product needs
resources like fuel or electric power, the agent can advise about this. An
agent can suggest a product to wait for operation until the cost of electric
power is low i.e. during the night. It depends of course on the type of device
if this should be implemented.

Maintenance and repair Based on the logging information about the
product use and the use of the subsystems, an agent can suggest mainte-
nance and repair or replacement of parts. Repairing a product is easier if
information about its construction is available. Also the use of a product or
the information about transport circumstances during distribution can give
a clue for repair. An agent can also identify a broken or malfunctioning part
or subsystem. This could be achieved by continuous monitoring, monitoring
at certain intervals or a power-on self test (POST) (Arbaugh et al., 1997).

5.2. AGENTS SUPPORTING PRODUCTS 147

An important aspect of complex modern products is the issue of updates
or callbacks in case of a lately discovered manufacturing problem or flaw. In
the worst situation, a product should be revised at a service center or the
manufacturing site. Information about updates or callbacks can be sent to
the product agent that can alert the end-user in case it discovers that it fits
the callback or update criteria. This is a better solution for a callback than
globally advertising the problem and alert all users of a certain product when
only a subgroup is involved.

Miscellaneous Use of product agents could result in transparency of the
status of a product after maintenance by a third party. The agent can report
to the end-user what happened during repair so there is a possibility to check
claimed repairs. Of course the agent should be isolated from the system
during repair to prevent tampering with it. Recovery, tracking and tracing
in case of theft or loss are also possible by using this technique. When the
end-user wants to replace a certain device by a new one, the product agent
can give advice about the properties the replacing device should have, based
on what the product agent has learned during the use phase.

Recycling

Complex products will have a lot of working subsystems at the moment the
end-user decides it has come to the end of its life cycle. This is normally
the case when a certain part or subsystem is broken. The other remaining
parts or subsystems of the product are still functional, because in a lot of
complex products the mean times between failure (MTBF) (Gnedenko et al.,
1999) of the subsystems are quite different. The product agent is aware
of these subsystems or components and depending on the economical value
and the remaining expected lifetime these components can be reused. This
could be an important aspect of ’green manufacturing’. An important issue
here is that designers should also take in account the phase of destruction
or recycling. Disassembly and reuse of subsystems should be a feature of a
product for this approach to be successful.

The product agent can reveal where rare or expensive material is situated
in the product so this material can be recovered and recycled. This way the
product agent can contribute to the concept of zero waste. Zero waste is just
what it sounds like - producing, consuming, and recycling products without
throwing anything away (Gunther, 2007).

Another advance of having a product agent at hand in case of recycling
is the fact that the product agent has the information how a product is

148 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

constructed. This is helpful when a product must be taken apart. For certain
steps a kind of undo-steps should be carried out to dismantle a product.

5.2.2 Internet Of Things

Being the software entity representing the product, the product agent can
play an important role in the concept of the Internet of Things (IoT). In
this section, IoT will be discussed to clarify why the product agent fits in
this model. A possible very short definition of the Internet of Things is:
a network of communicating objects. This means that it is not necessary
to have the devices connected to the Internet. Sensor networks (wireless
or wired) using protocols like ZigBee, 802.15.4 (Baronti et al., 2007) and
WirelessHART (Song et al., 2008) fit in this concept. The connection to the
Internet as we know it, is in these cases mostly done by a gateway or another
intermediate device.

Requirements

Each device should have a way to communicate. For this communication to
take place identification of devices that it needs to communicate with is nec-
essary. Of course the devices should communicate with compatible protocols.
Depending on the device the communication at the physical layer could be
wired but mobile devices should use wireless communication technology.

Another requirement is the capability for computing. In some cases com-
putationally complex tasks should be done. It is possible to alleviate the
local computer by using remote powerful systems to do these complex tasks.
For some devices real-time operation, including real-time computing and real-
time communication is required, putting requirements on the local computing
power and speed.

To make computing possible, the devices will need power. Some devices
could be powered by the net or by the wired communication system (Power
over Ethernet), but mobile devices are mostly powered by batteries that need
to be charged at regular intervals. For some application solar cells could be
used, but most mobile devices should be connected at regular intervals to a
charger system to reload the battery. In some cases it may be possible to
reload batteries by so called power harvesting methods. A medical device
that is attached to a human can get energy from movements of the body or
a low power device can harvest energy from its surrounding electromagnetic
field generated by transmitters or special electrical equipment. The issue of
power is very important when devices are used for critical applications. In
the situation of critical applications other issues are also important like:

5.2. AGENTS SUPPORTING PRODUCTS 149

• How to handle the failure of some components?

• How to handle loss of communication?

• How to ensure secure operation, including secure storage of information
on each device?

If devices are introduced to work in an environment where other not so smart
devices are operating, the smart devices belonging to the IoT should deal with
legacy devices in a proper way. For example, in a smart traffic system a smart
car that is designed to cooperate with other smart cars should also handle and
coexist with legacy cars that are not equipped with IoT components. A smart
car should also operate on roads that are not equipped with appropriate IoT
assisting infrastructures.

To implement an IoT system one should think of a distributed framework
that can be used to build dependable, optimal and useful IoT systems. Such a
framework should provide administrative and control services, various types
of useful resources, and device-based capabilities. This includes:

• Resources to support communication, computing and storage require-
ments of each application.

• Capabilities to minimize power usage on basic devices and also to
recharge various devices.

• Services to keep track of the position of each device as needed.

• Mechanisms to achieve high availability, reliability, security, and other
dependability requirements for each application.

Classes of IoT Applications and systems

(Bastani, 2013) proposes 5 different classes of IoT systems.

1. Fully static systems

• All the devices in the system are pre-configured to communicate
and interact with each other.

• The devices can interact via wired or wireless communication net-
works.

• The application code on each device is pre-coded to interact with
the other devices that it needs to interact with. This also specifies
the type of information (sensor readings, actuator commands, etc.)
that are sent by each device.

150 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

• Application examples:

– Body area sensor networks.

– Some industrial sensor networks like WirelessHART (Song
et al., 2008).

– Various technologies for monitoring patients and alerting doc-
tors in case of emergencies.

2. Centrally administered systems with a single administrative unit.

• The devices are pre-configured to interact with a central unit -
This is the registration step.

• Each device can query the central unit to identify other devices
that it needs to interact with.

• Devices can communicate with each other directly or they can
communicate via the central unit.

• Devices can be fixed units as well as mobile units.

• Application examples:

– Smart homes with capabilities for coordinating power usage,
adapting to environmental conditions, ensuring security of the
home, etcetera.

3. Centrally administered systems with multiple administrative units where
the administrative units are centrally coordinated.

• These systems are typically widely distributed, hence several ad-
ministrative units are used at different geographical locations.

• Devices are pre-configured to locate/interact with nearby admin-
istrative units.

• The administrative units keep track of all the devices and ensure
that each device is aware of the other devices that it may need to
interact with.

• Devices can inter-communicate directly or via the administrative
units.

• Devices can be fixed units as well as mobile units.

• Application examples:

– Smart vehicle systems (AGVs) that can coordinate with other
vehicles to prevent accidents.

∗ Roadside units are deployed to keep track of each vehicle

5.2. AGENTS SUPPORTING PRODUCTS 151

∗ These units provide various services, including communi-
cation, safety alerts, etc.

– Infrastructure monitoring systems.

– Agriculture systems, etc.

4. Centrally administered systems with multiple administrative units where
the administrative units form a decentralized system.

• The administrative units are mobile systems.

• These systems cooperate with each other to identify and track all
the devices.

• Devices are made aware of the other devices they may need to
interact with.

• Devices can communicate with each other directly or they can
communicate via the administrative units.

• Devices are typically mobile units.

• Application examples:

– Smart business systems that keep track of inventories, etc.

∗ Systems that keep track of the quantity and quality of
each unit.

∗ Systems that automate customer checkouts.

∗ Systems that automate supply chain management pro-
cesses.

– Livestock and pet monitoring systems.

– Keeping track of children and old people to ensure their safety.

5. Fully autonomous decentralized systems:

• Each device is an independent unit that has capabilities to identify
other units and coordinate with them.

• Devices communicate with each other directly.

• Devices can be fixed or mobile units - The autonomy is used to
minimize the interaction time while ensuring requisite coordina-
tion and cooperation with other units.

• Application examples:

– Avionic systems: Each aircraft can autonomously identify
nearby aircraft and coordinate its motion in order to prevent
accidents.

152 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

– Ocean systems: Each vessel can autonomously identify nearby
ships and coordinate its motion in order to prevent accidents.

– Wind farm systems: Each turbine can directly interact with
neighbouring turbines to achieve optimal overall harvesting of
wind energy based on the current conditions while ensuring
that there will not be any damages to any of the turbines.

IoT and agent technology

IoT has a great potential to significantly enhance the quality of life, society
and the environment. Open standards should be used to make the concept
widely accepted and interoperable. For communication purposes, standard
TCP/IP can be used. Especially the use of IPv6 is obligatory, because of the
huge number of IP addresses needed for the implementation of this technol-
ogy. By using TCP/IP a device becomes a part of the internet as we know
it and is not using its own possibly proprietary or obscure communication
protocol hidden behind a gateway. Though interoperability is achieved by
adhering to TCP/IP, the security become an issue. When all devices are
accessible, abuse and tampering by hostile users or even hostile devices be-
comes a possibility that can have a severe impact on the adoption of the
concept of IoT.

Agent technology can play an important role in de realisation of the IoT,
especially in the situation where multiple devices will act as a multiagent
system. Agents are the software representatives of the devices. There are
several ways to tie an agent to a device as shall be discussed in the next
section.

5.2.3 Product types

This approach of having an agent for a product could be used on different
kind of products, but one should investigate if the final product has intel-
ligence and hardware to communicate with the agent. Some products have
this by nature (computers, cell-phones); for other products (cars, machinery,
domestic appliances) it should be a small investment. An important aspect
will be the possibility to connect to certain subsystems for monitoring im-
portant events. If temperature is an important item for the product agent,
connection to a temperature sensor or at least a place where this temperature
data is available is a must. If this connection is not available, a temperature
measurement system should be added to the agent.

5.2. AGENTS SUPPORTING PRODUCTS 153

Where do these agents reside?

A product agent should stay alive or at least the information the agent has
collected and the knowledge the agent has learned should be available under
all circumstances. To accomplish this, two solutions are available. The agent
can be a mobile agent moving from platform x to platform y as depicted in
Figure 5.2a. The other solution requires moving data (beliefs of the agent)
from one agent to a newly created agent as shown in Figure 5.2b. In our case
both agents should be product agents. The second solution is much easier to

product agent product agent

product agent

BDI

product agent

a)

b)

Figure 5.2: Mobile agent versus moving data

implement because of the fact that only transport of data is required, while
in the case of moving agents, the whole executable should be adapted to the
new situation. Another advantage of the second approach is that a product
agent can be added in any phase of the life cycle. This is also what has been
done for the specific research presented in the first case. A product agent was
added to a system in the use phase. The biggest challenge for implementing
the approach of a product agent or guidance agent will be in the use phase.
This is where the product is under control of the end-user and not as during
the production under control of the manufacturer. In the latter case an
agent-based infrastructure can be implemented for the production system
or production line. The same is true for transport and even disassembly of
the product. In case of the use phase, the agents should reside in a system
that is connected to the product, but should be available at the moment the
product itself is broken. This is comparable to the case of the black box in
aeroplanes. There are several possibilities, depending on the type of product:

• The agent runs on its own separate hardware that is closely tied to the
product.

• The agent runs on the hardware of the product but stores informa-
tion on a special place on the product itself. This information can be
recovered after breakdown.

154 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

• The agent runs on the hardware of the product but stores information
on a remote system.

• The agent runs on a remote system that has a continuous connection.

• The agent runs remote on a system using a ’connect when necessary’
approach.

The last two options require a stub or entry point for the remote agent to
make contact with the product system. The connection with the environ-
ment could be established by wired or wireless sensors or sensor networks
as well as computer subsystems in the product. Interaction with humans
in the environment could be established by a messaging system or human
computer interface (HCI). This interface could be implemented by standard
web technology. The advent of HTML-5 can help to develop powerful web
interfaces.

Embedded agent-based realization

There are a lot of possibilities for embedding the product agent in its role
during the life-cycle of the product. In this section, an overview of possible
realisations will be given. This overview is far from complete, but gives an
impression of how the possibilities of the agent can increase in the situation of
higher complexity. In Figure 5.3 the inclusion of an RFID-chip (Finkenzeller,
1999) in a device is depicted. This will lead to a situation where the prod-
uct can be tracked by RFID-scanners. RFID implementations are becoming
more powerful but the main use is product tracking and not yet embedding
smart agents. For RFIP no battery is required, because the RFID-chip is
powered by the reader hardware. In Figure 5.4 a more powerful solution

RFID

PRODUCT

Figure 5.3: Remote-monitored product

is presented. Here the product agent can live inside the product, using the
available processor and storage capacity. In this situation the agent is still
lacking continuous communication or communication initiated by the agent.
The system has to wait until a connection is made to the outside world. To
keep the agent alive, a power source like a battery is needed. The communi-

5.2. AGENTS SUPPORTING PRODUCTS 155

PRODUCT

Processor
Storage

information

Figure 5.4: Product with local agent environment

cation capability is added in Figure 5.5. Here the agent can communicate at
will with the external world. The communication can be continuous or on an
at hoc base. In the final situation, depicted in Figure 5.6 the product agent

PRODUCT

Processor
Storage
Network

information

information
SOA
MAS

Figure 5.5: Networked agent

can use external services as helpers to add possibilities the on-board system
cannot deliver. Storage in the cloud as well as services that can play a role for
the agent can be used using the network connectivity. This connectivity can
also update the system, in the same way as is used in standard computers.
Some heavy weighted applications, like complex reasoning, can also be used
as a service. The acronym SOA stands for Service Oriented Architecture and
is widely used in distributed business architectures (Papazoglou, 2003).

PRODUCT

Product
Agent

information
Role-Service

Storage-Service

Update-Service

Reasoning-Service

Figure 5.6: SOA-based product agent

156 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

5.3 Case study: Discovery robot

This section gives details of the a discovery robot that was built by our re-
search group. To investigate the implementation of the product agent during
the use phase, the product agent was embedded in this complex technical
system. To understand the details of the product agent implementation, it
is important to have a global understanding of the construction and working
of the discovery robot. In this section we present a short overview of the
robot capabilities, the architecture, the software and an example of a result
produced by the robot system.

Robot capabilities

The robot that will be used as a platform for the product agent is capable of
mapping a room with objects by using a laser scanner. The robot can move
by itself using the map that has been created by the laserscan. It is possible
to direct the robot to a certain point in its map. The robot is also capable
to avoid newly introduced obstacles and other moving objects. This robot is
used as a system that will be enhanced by a product agent.

Architecture

Figure 5.7 shows a picture of the hardware of the robot. Two motors are
connected to two wheels. Two swivelling wheels are added to keep the plat-
form in balance. Attached to the platform is the laser scanner, printed circuit
boards, a WiFi transceiver, a camera and a set of ultrasonic sensors placed
in a circle at the edges of the platform. These ultrasonic sensors are not yet
used at this stage. A block diagram of the robot is depicted in Figure 5.8.

Figure 5.7: Discovery robot

5.3. CASE STUDY: DISCOVERY ROBOT 157

An important aspect is shown in this figure. An external computer is part of
the system. This computer is used to do the heavy calculation to generate
the map information, to display the map in real-time and to plan the path
the robot has to follow. A wireless Ethernet connection (WiFi) connects the
robot with this external system.

WiFi
Main board
(Debian Linux)

Laser
scanner

Camera

Mechanical
Subsystem
(motors,
wheels
controller,
encoder)

External System
(Ubuntu Linux)

Robot

WiFi

Figure 5.8: Block diagram of the robot

Software

The software for this robot is based on Linux, ROS and SLAM. Linux is a
Unix-like open source operating system that is popular for technical applica-
tions, embedded systems, network servers and standard computers.

ROS ROS is an acronym for Robot Operating System (Quigley et al.,
2009). ROS is not really an operating system but it is middle-ware specially
designed for robot control and it runs on Linux. In ROS a process is called a
node. These nodes can communicate by a publish and subscribe mechanism.
In ROS this communication mechanism is called a topic. Figure 5.9 shows
the relation between two nodes and one topic.

/talker /chatter /listener

node nodetopic

Figure 5.9: Two nodes connected by a topic

A node that produces data can publish this in one or more topics. Other
nodes interested in these data can subscribe to one or more topics. TCP/IP
is used to actually carry out the communication. This type of communication
is asynchronous, meaning that after publishing to a topic, the node that did
publish will continue to do others tasks. A synchronous type of communica-
tion is also available in ROS. This type of communication is called a service.

158 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

A service is called by a node to another specific node and the calling node
will wait until the service is completed.

The ROS platform has been chosen for the following reasons:

• Open source, so easy to adapt, compliant with a lot of open source
tools.

• Wide support by an active community.

• Huge number of modules already available.

• Nodes that are parts of ROS can live on several different platforms,
assumed that a TCP/IP connection is available.

SLAM The mapping is done using SLAM. SLAM stands for Simultaneous
Localisation And Mapping (Durrant-Whyte and Bailey, 2006). This module
was already available in ROS and fitted well to the on board laser scanner.
Slam is more than just a mapping system. It can also be used in mobile
robot system as its name suggests for localisation. The idea is that a robot
will be positioned in an unknown area at an unknown position. From there
the robot will start to build step by step a model of the environment and its
position within that environment. To build the map of the environment, the
robot needs information about the environment. This information can be
achieved by using sensors, like cameras or as in our model laser rangefinders.
When a sensor is capable to detect distances and/or depths it will be a good
feature to implement and combine it with slam. In our system the robot
will start at position (0,0) and from there it will build the map. this will
only be a partial map at first, but when the robot starts to move it will use
information from the wheel encoders to keep track of the path, the robot
has followed. This technique is named odometrics. New information will be
added to the map, because the robot scans its environment from different
positions. Meanwhile the location of the robot within the map will also be
calculated.

Results

The results of a mapping in progress are displayed in Figure 5.10. Here
the robot mapped the corridors in a rather big building with three wings.
The corridors are plotted as a light grey shape. The length of the longest
corridor in this map is about 50 meters. At this stage, the robot is not yet
autonomous, but is controlled by a human operator that uses the external
system and the on-board camera to guide the robot during the mapping.

5.3. CASE STUDY: DISCOVERY ROBOT 159

Figure 5.10: 2D mapping of a building

When the map is completed, the robot is capable to navigate autonomously
to a given point in the map, even if new or moving obstacles are introduced
in the mapped environment. Now the robot system has been introduced, the
focus in the next sections will be on the embedded product agent.

5.3.1 Embedded product agent

This section describes the product agent and also shows some results of its
functioning.

Functional requirements

The product agent that is added to the robot has the following requirements:

• Monitoring status of the system or subsystems.

• Monitoring health of the system or subsystems. The difference between
health and status will be explained in the next subsection.

• React only in case of emergency.

• The robot should operate without the agent.

• Making useful data available to the outside world, like construction
details, materials used and its localisation in the robot.

160 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

Implementation

The first step in implementing this product agent in the robot is to make an
overview of information available in the system. Different types of informa-
tion are considered:

1. Status: is data available and of interest to the product agent and/or
the end-user.

2. Health: has to do with the condition of components that have mechan-
ical parts or deteriorate during use.

3. Alarm: an internal condition that could result in a troublesome situa-
tion or disaster.

4. Additional information: this is the information that was conceived in
earlier phases of the life-cycle.

Because the ROS environment is already available, it seems a natural choice
to use this environment to implement the agent. The agent consists of ROS-
nodes, ROS topics and some other subsystems. In Figure 5.11 the internal
modules of the agent are shown. All parts surrounded by an ellipse are ROS
nodes. The rectangles represent topics. For human interfacing a small web
server is included. This server is capable to serve static pages, containing
technical data about the robot as well as dynamic pages containing data
collected during use. Figure 5.11 shows the the internal parts of the product

health

status

alarm

System_logger

WiFi_monitor

R_motor_monitor

L_motor_monitor

Battery_monitor Product Agent

Web_server

Alarm_Handler

Figure 5.11: Architecture of the product agent

agent and Figure 5.12 shows the product agent in its the environment. The
product agent interacts with its environment. The agent gets its information
from the robot and its operating system. The agent will log this information
and can also display information on a web browser (web client) by using the
aforementioned webserver. A shutdown can be performed in case of a certain
alarm condition.

5.3. CASE STUDY: DISCOVERY ROBOT 161

Product
Agent

Web_client

Data_storage

OS Shutdown

WiFi
Motors
Battery

Linux OS

Figure 5.12: The product agent and its environment

Monitoring status

The monitoring function is an important aspect of the product agent. In our
prototype a selection of possibilities was made. A node will monitor the use
of the motors and this will be available to subscribers of the health topic. The
status topic is comparable to the health topic, but here information is made
available that is not a result of the wear and tear of for example mechanical
parts or of the de-charging of the battery, but is a result of measurements of
interesting data like the strength of the WiFi signal. There is one topic that
can trigger a node that will issue a system shut-down. This topic is called
the alarm topic. Apart from these nodes, the agent can also retrieve its
information directly from the Linux environment. Commands are available
to get the CPU-load and memory usage. The pseudo filesystem /proc offers
also a wealth of technical information that can be useful for the product
agent.

Figure 5.13: Strength of the WiFi signal

Examples of what can be retrieved from the product agent are plots
displayed in the following two figures. Figure 5.13 shows a picture of the
strength of the WiFi signal. The robot first moved away from the WiFi
access point and then returned towards the WiFi access point again. The
plotted data show a global decreasing and again an increasing trend but

162 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

Figure 5.14: CPU load

there are also strong fluctuations. These fluctuations are normal and due to
all kinds of reflections and interference that occur in an indoor environment.
In Figure 5.14 the load of the processor of the onboard Linux-based controller
board is plotted. This curve is quite smooth and shows that the available
processor power is adequate to operate the robot platform.

Monitoring health

In the robot there are two candidates for monitoring the health. The motors
and the battery. The battery should be monitored because of the fact that,
like almost all rechargeable batteries, it can be recharged and decharged a
finite number of times and information of its remaining charge is valuable
information to the end-user that operates the robot. In Figure 5.15 the
status of the battery is plotted during 90 minutes of operation of the robot.
A steady decrease is shown as might be expected.

Alarm conditions

In this section an alarm condition will be described. The fact that the type
of battery that is used in the robot should never be completely discharged
gives rise to such an alarm condition. When the charge capacity drops below
10% a system shut-down action should be triggered. By shutting down the
system, the discharge of the battery will stop, thus preventing the loss of a
rather expensive component. To implement this feature an Analog to Digital
Converter (ADC) should be available to check the status of the battery.

5.3. CASE STUDY: DISCOVERY ROBOT 163

Figure 5.15: Charge status of the battery

Extra functionality

The extra functionality that is offered by our implementation is embedded
documentation and a mapping of materials and components that are of in-
terest during the recycle phase. The information is offered using the same
web-interface as was used in the monitor section previously discussed. The
documentation is comparable to printed documentation that could be bun-
dled with any device. This includes a user manual, a technical manual and
a maintenance manual including a trouble shooting section.

In Figure 5.16 a webpage is displayed showing the subsystems of the
robot. This allows the user to select a subsystem to get more dertailed
information about that specific subsystem. Important information for the
recycle phase is also offered using the web interface. Two different approaches
are implemented. Using the web interface, one could point at any part of the
robot and receive information about the ’ingredients’. An example is given in
Figure 5.17. Here the wheels are selected and as a response the information
about the material available in these parts is displayed The materials as well
as other relevant information is displayed.

Another approach is presented in Figure 5.18. A list of interesting ma-
terials is presented and by clicking on an item, the subsystems containing
this material are highlighted as shown in Figure 5.18, where the subsystems
containing gold are shown. These examples only show the interface designed
for human users. The information is also available in a machine readable
form using XML.

164 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

Figure 5.16: Discovery robot

Figure 5.17: Motor and wheel subsystem

5.3.2 Related work

The work on ROS played a very important role in this research. By using
ROS we had a stable and well developed platform for our robot. The use of
proven modules prevented reinventing solutions to already solved problems.
The work on discovery robots is huge, (Wnuk et al., 2006) and (Blazovics
et al., 2011) show some developments focussing on multiagent and swarm
solutions. Agents for distribution, logistic applications and product manu-
facturing already exist (Paolucci and Sacile, 2005). In most situations agents

5.3. CASE STUDY: DISCOVERY ROBOT 165

Figure 5.18: Webinterface to show the location of materials

represent human operators or negotiators. Jennings and Bussmann intro-
duce the concept of workpiece agents that operate during the production.
These agents do not however perform individual product logging. The use of
a product is also studied by observing and/or interviewing end-users (Nielsen
and Levy, 1994) (Nielsen and Mack, 1994). Some software applications do
connect with their originating company to report the use by end-users.

Several proposals and implementations of including monitoring and doc-
umentation within the product itself are made and implemented. Burgess
(Burgess, 1998) (Burgess et al., 2002) describes Cfengine that uses agent
technology in monitoring computer systems and ICT network infrastructure.
In Cfengine, agents will monitor the status and health of software parts of a
complex network infrastructure. These agents are developed and introduced
in the use phase of this infrastructure and focus on the condition of the soft-
ware subsystems. In our approach this monitoring function for hardware and
software is the role of the product agent but that role has been played already
by an agent during the manufacturing phase where valuable information that
can be useful to the end-user has been collected. Actually this product agent
in the use phase is not necessarily the same software entity that played the
role of product agent during production, but the belief base of the product
agent is kept intact and handed over to a new incarnation of the product
agent.

In (Hamilton et al., 2007) an integrated diagnostic architecture for au-

166 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

tonomous underwater vehicles is described. In this work the focus is on an
intelligent system for system diagnostics. The architecture uses a variety
of domain dependent diagnostic tools (rulebase, model-based methods) and
domain independent tools (correlator, topology analyzer, watcher) to first
detect and then diagnose the location of faults. This work could be used
and combined with the model present in the current chapter, because the
artificial intelligence-based techniques can applied in the product agent. Our
work expands the idea of diagnosis and related data to the whole life cycle of
a product. By using this same agent again in the final phase of the life-cycle,
component reuse and smart disassembly is a very important aspect when
it comes to recycling of rare or expensive building material. The status of
the quality of used sub-parts is available from and presented by the product
agent.

In (Ashton, 2009) the concept of the ’Internet of Things’ is explained by
the first user of the term ’Internet of Things’. The main idea of this concept
is that the content of Internet is not only built and used by humans and
therefore largely depending on humans, but the content will also be built by
things connected to the Internet that are programmed to do so. The work
presented in the current case in this thesis shows a possible technique to
implement this concept of the ’Internet of Things’.

5.3.3 Discussion

In this case the focus was on implementing a product agent in a complex
product. This product was a discovery robot but could have been any other
technical system. For every system the requirements for a product agent
should be specified. However some global specifications are applicable for
every system. The choices for monitoring subsystems made in this research
were limited only to a few due to the fact that a proof of concept was the goal
of this research. The actions the agent can perform are in this case displaying
and storing system status and system health status as well as system design
and technical data. The agent is not influencing the robot itself. However,
one alarm condition is implemented resulting in a system shut-down. It is
not a difficult task to expand the capabilities of the agent. The robot itself
will be further developed. This robot technology could be the basis of the
autonomous flexible transport of products between equiplets as described in
Chapter 4. For the product agent a wide variety of future enhancements
is possible, especially when product agents of a certain type of product are
united in a multiagent system:

• A model that builds a failure overview of subsystems. This way an

5.4. CASE: RESOURCE DEPLETION 167

accurate insight in the reliability of subsystems and components can
be obtained. This model only works if a huge amount of product agents
are participating.

• On behalf of the end-user, a product agent can report component failure
and suggest or order replacement parts.

• An interesting model to implement the previous feature could be a
marketplace in cyberspace where product agents can negotiate with
other product agents about exchanging parts. This will be discussed
in the next case of this chapter.

In all these enhancements special attention should be paid to security and
the protection of privacy of the end-users of product agent enhanced systems.
An important aspect is the fact that the agent should store its information
at a safe place in case the robot hardware will fail. In our case this is the
remote system where the agent has the possibility to store important data.

5.3.4 Conclusion

Product agents can play an important role in every part of the life cycle of a
product. An important property of these agents might be that they should
have no direct impact on the product or system they are living in. However
useful information should be collected and in case of disaster, these agents
should keep a log of the events leading to the disaster.

Product agents can be a virtual digital equivalent of a product and this
concept will be an enabling technology in implementing the internet of things.

The concept presented here is a natural evolution of the concept of using
agents during production. However in case of products made by production
technology not based on agent technology, a product agent can be added
afterwards, as described in this case study. The information that could have
been collected during design and production is added afterwards and will
play a role in the recycle phase or maintenance during use phase.

The ROS platform proved to be a very good platform to implement the
product agent. This is because of the fact that the data-communication
infrastructure between nodes is already implemented in a way that helps a
lot in both the design and the implementation of the product agent.

5.4 Case: Resource depletion

A problem humanity encounters is the depletion of natural resources. This
can be seen by the sometimes enormous increase of price of some of these

168 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

Table 5.1: Depletion of elements

Name Symbol Years available

Silver Ag 29
Indium In 13
Antimony Sb 30
Hafnium Hf 10
Tantalum Ta 116

resources. The price of lead, gold and copper increased by resp. 378 %, 308 %
and 269 % from 1999 to 2009 (Bloomberg, 2009). In some cases this has to do
with the use of elements that are hard to find. In other cases the demand for
elements has increased because of certain newly developed applications or an
increased field of applications for that element. Apart from searches for new
places to mine these elements, another - for the environment perhaps better
way - to come around this problem is to reuse material. Today cellphones
containing these rare elements are considered a new kind of ore. To reuse
the elements it would be nice if it could be located within the device. This
is where the product agents come in handy. Table 5.1 shows some of these
rare elements and the expected time left before recycling is the only way to
get these elements (Cohen, 2007). The expected time left is based on the
use as it is. If the use of a certain element increases, the time left will be
shorter of course. Product agents will help us hunting for places where rare
metals are concentrated enough to be worth recovering. This is because the
product agent carries all the information that has been collected during the
production phase. To make this concept work, a list of “ingredients” should
be part of this information in the same way (or even better) as is the case in
the food industry.

5.4.1 Recycling of subsystems

In this section a Monte Carlo simulation is used to show the effect of recy-
cling subsystems of broken products. Also a marketplace model is presented
that has been developed to show a possible implementation of agent-based
recycling.

Extending the average lifetime

An interesting application for the product agent can be automatic recycling
of subsystems during its use.

5.4. CASE: RESOURCE DEPLETION 169

Subsystem

System A

OK

Subsystem

System B

OK

Replace

Figure 5.19: Two equal systems, both consisting of two equal subsystems

To explain this in more detail, consider a product consisting of 2 equal sub-
systems as depicted in Figure 5.19. This means that these subsystems have
the same average lifetime and are also similar. In this section we focus only
on products where two or more subsystems are all of equal type. We assume
that the time before a failure occurs is a normal distribution according to
formula:

f(x;µ, σ2) =
1

σ
√

2π
e−

1
2

(x−µ
σ

)2

Where µ is the average lifetime, σ the standard deviation and σ2 the vari-
ance. In (Gnedenko and Ushakov, 1995) is stated that the time of failure
of components subject to mechanical wear is a normal distribution. An end
user considers the product to be broken if one of these subsystems is bro-
ken. Normally one subsystem will be the first to fail leaving another still
functioning subsystem in the broken product. To get some insight in this
situation, a Monte Carlo simulation was set up. This simulation was based
on 1000 products, starting with two equal subsystems. For every product
we generated two failure times according to the given normal distribution.
The plot of all these failure times (see Figure 5.20) turned out to be a rough
approximation of the theoretical Gaussian curve.

If we plot the minimum and maximum failure time of the two equal systems
per product, this results in two smaller curves as depicted in Figure 5.21.

If there is no exchange of subsystems among the products, half of the prod-
ucts will be broken on the average time of the curve belonging to the first
subsystem to break. Taking the average of the left curve in Figure 5.21, this

170 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

0

20

40

60

80

100

0 20 40 60 80 100

fa
ilu

re
s

timesteps

Figure 5.20: Distribution of failing subsystems

0

10

20

30

40

50

60

70

0 20 40 60 80 100

fa
ilu

re
s

timesteps

Figure 5.21: Distribution of two failing subsystems

turns out to be at time t = 432. If exchange of subsystems is possible, half of
the products will still work at t = 500. The gain in lifetime will be: 500−432

432

and could also be expressed as a percentage. The gain for this situation will
be bigger if there are more equal subsystems in the product. In Figure 5.22
the gain in average lifetime is plotted as a function of the number n of equal
subsystems. A value of 100 for σ and 500 for µ is used. Starting with N = 1
there is no gain at all, because on the average 50% of the products will be
broken at time µ = 500.

Another observation is that larger values of σ could also result in a bigger
gain in lifetime if exchange of subsystems between products is possible. In
this plot we assumed 8 subsystems.

5.4. CASE: RESOURCE DEPLETION 171

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70

ga
in

in
%

number of subsystems

Figure 5.22: Gain as a function of the number of subsystems

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160 180 200

ga
in

in
lif

et
im

e

sigma

Figure 5.23: Gain as function of σ for n = 8

In real practice the situation is a bit more complex. Let us consider some
situations:

• If these N products contain subsystems with large value for σ, meaning
some parts will live long and other parts fail very quickly, the donor,
acceptor approach will be very useful as shown in Figure 5.23.

• Another observation that is easy to understand is: if these N products
contain one subsystem that will almost always be the first one to fail,
the donor and acceptor approach will not help that much. This type
of easily failing subsystems should be in stock as spare parts.

To make this system work for distributed products, a way of communica-
tion and exchange appointments should be provided. In the next section a
marketplace model is discussed.

172 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

Negotiating between product agents

For the implementation of this exchange of parts concept, a Jade multiagent-
based system has been developed. The reason for using Jade are the low
threshold to develop a multiagent system especially for Java programmers.
The FIPA-based communication is already available in Jade and connection
to the outside world is easy. Agents can migrate, terminate or new agents
can appear. For prototyping a negotiating system as proposed here, Jade
is a powerful platform. The product agent residing in a broken system can
send the following information to a webserver:

• Information about the status of the machine. What are the broken
parts and what parts are still functioning.

• If available: information from the end-user stating if the end-user
prefers to be a donor, an acceptor or does not care.

• The e-mail address of the end-user to contact the end-user to confirm
the negotiation outcome.

• The maximum time to wait for a successful negotiation.

The webserver contains a Java servlet. After receiving the information from
the remote product agent, this servlet will spawn a Jade agent equipped with
the information from the original source in a Jade container residing in the
computer system that runs the webserver. This Jade agent will take over the
role of the product agent. The Jade product agent of a broken product puts
its ID and status on a blackboard. Using the same blackboard it will look
for a situation where a complete product can be made. This will result in a
set of product agents available for exchange. Now comes the question:

To be or not to be a donor The product agent should decide to be a
donor or an acceptor. This decision will also be influenced by the owner of
the product. The following rules were applied to decide what the product
agent should do:

• In the first place, the end-user of the product should decide what to
do. If this user does not care, the following rules apply.

• The product with the largest amount of working subsystems should be
the acceptor. If this does not result in a decision, use the next rule:

• If a part is broken with a large value of µ (expected lifetime is long)
the role of acceptor is a good one, because of the fact that there is a
big chance that there exists a donor with this part available.

5.4. CASE: RESOURCE DEPLETION 173

• If this still does not lead to a decision, a random choice is made.

When a match between two product agents is found, these agents both con-
tact the end-user for confirmation. If both confirmations are positive, the
negotiation is considered successful.

Simple implementation

Just to give an impression of how the exchange of subparts between agents
could work, consider an induction cooktop with the following subparts (these
parts are chosen according to a real device):

• Two small heating elements.

• Two large heating elements.

• Two identical control systems each controlling a small and a large heat-
ing element.

• Glass plate (cover).

A Jade-based marketplace has been implemented, just to show how the pro-
posed system might work. At the start all systems are in good condition.
At a random time each system has a failing part. The failing part is also
randomly chosen. If there is a failure, the product agent in de Jade-based
marketplace will search for a replacement part. If there is no replacement
part available, the working parts are offered for sale. After some time parts
are offered at the marketplace and other agents representing failed systems
are capable to bid for parts. The behaviour of the multiagent system is
output to a console window. Part of it looks like:

agent-2 lost 1 of part CONTROL_UNIT

agent-2 BuyBehaviour quering for CONTROL_UNIT

agent-5 lost 1 of part CONTROL_UNIT

agent-5 BuyBehaviour quering for CONTROL_UNIT

agent-7 lost 1 of part SMALL_HEATING_ELEMENT

agent-4 lost 1 of part CONTROL_UNIT

agent-4 lost 1 of part LARGE_HEATING_ELEMENT

agent-7 BuyBehaviour quering for SMALL_HEATING_ELEMENT

agent-4 BuyBehaviour quering for CONTROL_UNIT

agent-2 BuyBehaviour no hits, selling furnace

agent-5 BuyBehaviour no hits, selling furnace

agent-7 BuyBehaviour no hits, selling furnace

174 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

agent-4 BuyBehaviour no hits, selling furnace

agent-11 lost 1 of part CONTROL_UNIT

agent-11 lost 1 of part SMALL_HEATING_ELEMENT

agent-15 lost 1 of part CONTROL_UNIT

agent-15 lost 1 of part LARGE_HEATING_ELEMENT

agent-10 lost 1 of part CONTROL_UNIT

agent-12 lost 1 of part GLASS_COVER

agent-12 lost 1 of part SMALL_HEATING_ELEMENT

agent-0 lost 1 of part LARGE_HEATING_ELEMENT

agent-0 BuyBehaviour quering for LARGE_HEATING_ELEMENT

agent-12 BuyBehaviour quering for SMALL_HEATING_ELEMENT

agent-10 BuyBehaviour quering for CONTROL_UNIT

agent-15 BuyBehaviour quering for CONTROL_UNIT

agent-11 BuyBehaviour quering for CONTROL_UNIT

agent-0 BuyBehaviour no hits, selling furnace

agent-12 BuyBehaviour no hits, selling furnace

agent-15 BuyBehaviour lowestPrice: 30 sending bid

agent-10 BuyBehaviour lowestPrice: 30 sending bid

agent-11 BuyBehaviour lowestPrice: 30 sending bid

agent-2 SellBehaviour got Bid: Bid [partType=CONTROL_UNIT,

price=31]

agent-2 SellBehaviour sending ACCEPT_PROPOSAL

agent-2 SellBehaviour got Bid: Bid [partType=CONTROL_UNIT,

price=31]

agent-2 SellBehaviour sending REJECT_PROPOSAL

agent-15 HandleBidResponse got ACCEPT_PROPOSAL

agent-10 HandleBidResponse got REJECT_PROPOSAL

agent-2 SellBehaviour got Bid: Bid [partType=CONTROL_UNIT,

price=31]

agent-2 SellBehaviour sending REJECT_PROPOSAL

agent-11 HandleBidResponse got REJECT_PROPOSAL

agent-10 BuyBehaviour quering for CONTROL_UNIT

agent-11 BuyBehaviour quering for CONTROL_UNIT

agent-10 BuyBehaviour lowestPrice: 30 sending bid

agent-0 SellBehaviour got Bid: Bid [partType=CONTROL_UNIT,

price=31]

agent-11 BuyBehaviour lowestPrice: 30 sending bid

agent-0 SellBehaviour sending ACCEPT_PROPOSAL

The behaviour can also be shown by using the standard GUI in Jade. Agents
can have their own idea about the price. In case of buy behaviour the agent

5.4. CASE: RESOURCE DEPLETION 175

can start with a certain price and can have a maximum for a higher bid if
the bidding is rejected. The selling agent on the contrary has a minimum
price and will sell to the highest bidder if its bid is above the minimum price
If the bid from different buyers are the same and above the minimum price
the first arrived bid will be accepted.

5.4.2 Related Work

The product agent proposed here has its role in the use phase for repair
and in the recycle phase. When we consider the use of a product this is
also studied by observing and/or interviewing end users (Nielsen and Levy,
1994) (Nielsen and Mack, 1994). Some software applications do connect with
their originating company to report the use by end users. Several proposals
and implementations of including monitoring and documentation within the
product itself are made and implemented. Burgess (Burgess, 1998) (Burgess
et al., 2002) describes Cfengine that uses agent technology in monitoring
computer systems and ICT network infrastructure. Cfengine is already dis-
cussed in section 5.3.2.

By using this same agent again in the final phase of the life-cycle, compo-
nent reuse and smart disassembly is a very important aspect when it comes
to recycling of rare or expensive building material. Research in the field of re-
cycling is overwhelming. Ellis (Ellis et al., 1994) describes industrial methods
to recycle rare earth elements. This article is about metallurgy and not about
using information technology. Kovacs (Kovacs and G., 2008) proposes agent
technology in car-recycling. This work focusses on exchange of information
between enterprises that recycle and destruct used cars. There is however
not a notion of a product agent in their approach. Another difference with
our approach is that it focusses only on cars. The work of Graedel et al.
(2013) shows the dependency of our modern society of several elements that
are becoming rare and thus expensive. Recycling from devices where these
elements are used is one of his proposals. Another proposal is searching for
alternatives.

5.4.3 Conclusion

Adding an agent to a product that has knowledge of the product and the
way it is made can help to extend the lifetime of a product. Besides it gives
an opportunity to locate and reuse rare elements. The product agents are
autonomous software entities that can assist in recycling.

In the concept that has been developed, agents play an important role in
the whole life cycle of a product. This concept can be an enabling technology

176 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

for the internet of things. The product agent will be the representative of
a product. It is a software entity that collects information for a product
from the internet, shares information with other product agents and sends
information to other product agents.

Interesting further research will be the insight in the reliability of subsys-
tems. The distributed multi agent system of autonomous product agents can
generate all kinds of statistical interesting data about the MTBF of these
subsystems. This could help manufacturers to improve the quality of their
products.

5.5 Case: Domotics

This section describes the case of an agent-based architecture for domotics.
This architecture is based on requirements about expandability and hardware
independence. The heart of the system is a multiagent system. This system
is distributed over several platforms to open the possibility to tie the agents
directly to the actuators, sensors and devices involved. This way a level of
abstraction is created and all intelligence of the system as a whole is related
to the agents involved. A proof of concept has been built and functions
as expected. By implementing real and simulated devices and an easy to
use graphical interface, all kinds of compositions can be studied using this
platform.

The components used in this case are good examples of what the grid-
based manufacturing system described in the previous chapters could be used
for.

5.5.1 Introduction to domotics

An interesting application field for agent technology is domotics. Domotics
is also called home automation and it is a field within building automation.
Though building automation focuses normally on big buildings where people
come together for work, education, shopping, recovering, sporting or having
a meeting, domotics is specializing in the specific automation requirements
of private homes. The application of automation techniques is meant for
the comfort and security of its residents. Domotics applies many techniques
used in building automation such as light and climate control, control of
doors and window shutters, security and surveillance systems, etcetera but
additional features are used in domotics. These additional functions in home
automation include the control of multi-media home entertainment systems,
automatic plant watering and pet feeding, and automatic scenes for dinners

5.5. CASE: DOMOTICS 177

and parties (future.wikia.com/wiki/Domotics, 2008). Additional features are
also security and adaptation of the system to the behaviour of the inhabi-
tants.

An important difference between building automation and home automa-
tion is, however, the human interface. In home automation, the control of the
system is not done by highly trained technical people as is the case in build-
ing automation. Because the control should be done by the home inhabitants
the control should be easy, largely image-based and self-explanatory.

Home automation could use wireless techniques, but normally a wired
infrastructure is used. A wired infrastructure is a bit more reliable and more
tampering proof. When home automation is installed during construction of
a new home, control wires can usually be added without much extra work. In
standard automation systems these control wires run to a controller, which
will then control the environment. However, in practice home automation
is often added after the home has been built and even then it should be
easily adaptable in the future when new opportunities and techniques become
available. In automation there is a trend towards more intelligent devices and
a distributed approach for the system as a whole.

In the next sections at first we focus on domotics and its characteristics.
In this section also the goal of the research project is explained resulting
in system requirements. Next, the design of the system is discussed. In
that section hardware and software platforms are introduced. The system
architecture is explained in a separate section that will be followed by the
implementation, the results and a of course a discussion about related work
and a comparison of our work with other research in the field of domotics.

5.5.2 Characteristics of domotics

In this section we first discuss domotics and its levels and global architectures.
Next the formulation for the goals of our system will be introduced as well
as the global system requirements.

Domotics

Home-automation is sometimes used as a synonym for domotics, but Harper
(Harper, 2011) describes five levels of home automation and states that only
level four and five apply to domotics (Harper et al., 2003). The five levels
are:

1. Homes containing stand-alone intelligent objects.

178 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

2. Houses containing intelligent communicating objects. In this case a
performance gain can be achieved by sharing information between the
objects.

3. Homes that communicate by themselves. In this case internal and
external data communication networks open the possibilities to remote
control and monitoring.

4. Learning homes: activity patterns are recognized and applied to opti-
mize the technology in house.

5. Attentive homes: the activity and location of people and objects within
the homes are constantly registered, and this information is used to
control technology in anticipation of the occupants needs.

Looking at these levels we observe an increase of the amount of communi-
cation, interoperability and artificial intelligence techniques going from the
first level to the highest level. Thus to open the road to the highest level,
from the starting point technologies should be applied that do not obstruct
this path towards higher levels. In (future.wikia.com/wiki/Domotics, 2008)
three possible architectures are described.

1. Centralized architecture: a centralized controller gets information from
all kinds of sensors or sensor networks and controls the actuators avail-
able.

2. Distributed architecture: the sensors and actuators are intelligent by
themselves and communicate to get the desired actions.

3. Mixed architecture: both sensors and actuators are intelligent but there
is also a central system to coordinate the actions.

Goals for our system

For our domotics system the most important goals are to develop a system
that is simple to use, easy to implement, reliable and expandable. To achieve
these goals interoperability between components is an important issue. This
interoperability could be possible by adhering to open standards that are
widely supported like network protocols and software platforms that can
be connected by applying these protocols. These platforms should support
modern software applications. Nowadays powerful computing platforms are
available having a small size and a low price.

5.5. CASE: DOMOTICS 179

Global system requirements

Considering the characteristics and the aforementioned goals, we come to the
following system requirements.

1. Modularity: to be expandable a modular design must be followed.

2. Configuration of the system should be easy but the configuration sys-
tem should also be expandable.

3. Maintenance and monitoring should be properties of the system to
assure high reliability.

4. Adaptivity to new situations, like new devices and new rules for oper-
ation should be possible.

As a general definition we consider a device to be a sensor or actuator. The
system is rule-based where rules are applied to events, measurements and
preferences of the end-users. By applying these concepts the domotics system
is not only a set of automation islands, but offers integration of the different
parts. Smart integration, where rule-based knowledge adjusts to the needs
of the users (humans) should be possible. To make this possible, end-users
are represented by agents to communicate their preferences to the system.
A high level of integration is achieved by putting agents in devices at the
hardware level, thus introducing a kind of abstraction layer. The system as
a whole is a multiagent system (MAS) and its working is based on interagent
communication. The reasons for this approach will be explained in the next
section.

5.5.3 Design considerations

To design the domotics system according to the requirements mentioned in
the previous section, some considerations have to be made. Why is agent
technology apt for the system, what communication model should be used
and finally is there a relationship with other work in our research department.

Agents

A device in a domotics system is acting in an environment and its actions
are influencing that same environment. The devices should have the possibil-
ity to communicate and cooperate to achieve systemwide goals. Looking at
these requirements and properties of devices, they are also found in the defi-
nitions of agents for example the definition given by Wooldridge (Wooldridge,

180 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

2009): An agent is an encapsulated computer system that is situated in some
environment and that is capable of flexible, autonomous action in that envi-
ronment in order to meet its design objectives. Considering these similarities
agent technology seems to be a natural choice.

To mention a few tasks that should be done by the device agents:

• At start-up testing the device and registering the device in the MAS.

• Interfacing at the lowest level with the hardware for actions to be per-
formed or measurements to be done.

• Offering an abstraction layer usable for interoperability.

• Monitoring the use and health of the device.

Communication models

When agents must be coupled with devices several approaches are possible.
In Figure 5.24 the situation is shown where agents reside in an agent runtime
environment that is coupled with the actual devices by several means of com-
munication links. Interfaces will provide the actual coupling. A drawback of
this situation is that most devices offer different interfaces so the communi-
cation methods depend largely on the types of devices used. The advantage
is that interagent communication is simple, having the agents running in the
same environment. Another possibility is shown in Figure 5.25. Here the

Device
1

in
te

rfa
ce

Device
2

Agent
1

Agent
2

in
te

rfa
ce

Agent runtime
environment

in
te

rfa
ce

in
te

rfa
ce

Figure 5.24: Communication model 1

agents are tightly coupled with the devices and a network, depicted as a
cloud, will be used for the agents to communicate. In this model the com-
munication is only between agents and this can be done on basis of TCP/IP
using standard webtechnologies. The problem that agents are running on
different platforms can be solved by using an environment that makes in-
teroperability of agents on different platforms possible. As we shall see the
Jade platform that was selected for this research couples different containers
running agents over the network in a transparent way.

5.5. CASE: DOMOTICS 181

Device
1

in
te
rfa

ce

Device
2

Agent
1

Agent
2

in
te
rfa

ce

Figure 5.25: Communication model 2

Connection with related cases

In the previous two cases, the roles of agents in the life-cycle of products were
investigated. From this research it became clear that adding an agent to a
product or device offers all kinds of possibilities and advantages. To mention
a few advantages of adding this so called product agent:

• If connected to the internet, products can communicate worldwide.
The embedded agent is the enabling technology for the concept of the
Internet of Things (Ashton, 2009).

• The embedded product agent can monitor the use of a product.

• The product agent can perform a power-on self test (POST) where the
functionality of the product is tested every time it is switched on and
the product agent can also test the subsystems of a device.

• In case of a broken subsystem the embedded agent can search for a
replacement.

Considering these advantages embedding the agents in the device itself or
make a tight coupling with the device as proposed is Figure 5.25 can introduce
the aforementioned advantages.

It is important to emphasize that the role and responsibilities of product
agents in the use-phase of a product is different from the role and responsi-
bilities of the agents that are part of the domotics MAS. However, a product
agent is closely tied to a product and thus needs a hardware platform to
run on. It can share this platform and software environment with the agents
that play a role in de domotics system. However, there is no reason why the
product agent should not take a more active role in the device. This is what
has been done in this research: giving the product agent a more prominent
role. This way, it is a natural step to create a distributed multiagent system
as the basis for our domotics system and the advantages as described here
for having product agents in the system are also available.

Hardware set-up

To implement the distributed approach it is necessary to create an envi-
ronment for agents near the devices. Devices were equipped with a small

182 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

computer system for the agents to run. After some research for platforms
for our system, the Raspberry-Pi seemed to fit the requirement of offering
a stable and cheap hardware platform, capable and powerful enough to run
a Java virtual machine to support the Jade environment, offering standard
Ethernet connection and last but not least having the possibility to attach
the hardware device itself to this system. Though this might seem overkill
to use such a sophisticated device, it offers opportunities for the embedded
agent having a huge system resource for future expansions. These resources
might be needed is case of expanding the domotics system to the level of
attentive homes.

Software platform

A short investigation of available platforms has been done to select a platform
that fits the need for this project. For the selection of the software platform,
the following considerations were used:

• Is there an active development on the platform?

• What type of licence has the software? An open source-based platform
is preferred.

• Is the platform widely used?

• How good is the available documentation? This is also related to the
first criterion, because an active development is many times always a
reason for participators to write good documentation.

• Compatibility with operating systems. A platform that runs on several
standard operating systems has an advantage over a platform that can
only be used on a specific operating system.

• What is the basic language of the platform? A standard language is
preferred over the use of uncommon languages.

The list of platforms that has been investigated for tis research consists of:

• ABLE.

• DIET Agents.

• FIPA OS.

• JACK intelligent agents.

5.5. CASE: DOMOTICS 183

• Jade.

• Spade.

All these plaforms except for Spade are Java-based, meaning that they can
run on a operating system that offers a Java-virtual machine. Spade is based
on Python and is also runnable on several operating systems. For the docu-
mentation Jade seems to be the best one, having several tutorials, an active
community publishing documentation and examples. There is also a book
available describing the architecture, installation and use of Jade (Bellifem-
ine et al., 2007). In the software developers group working on this project,
there was already some experience using Jade, combined with the advantages
over alternatives mentioned here the choice for Jade as a software platform
was made.

The Jade runtime environment implements message-based communica-
tion between agents running on different platforms connected by a network.
In Figure 5.26 the Jade platform environment is depicted.

LADT

GADT (cache)

Container S1

Java

LADT

GADT

DF AMS

Main Container

Java

LADT

GADT (cache)

Agents

agent

Container S2

Java

JADE - Platform
Remote System Server Remote System

CT

agentagentagent

Figure 5.26: The Jade platform

The Jade platform itself is in this figure surrounded by a dashed line. Fig-
ure 5.26 is slightly different from an earlier Jade platform picture in this
thesis. In that earlier picture the position of the equiplet agents and product
agents was shown. Figure 5.26 is a more generic picture. It consists of the
following components:

• A main container with connections to remote containers.

• A container table (CT) residing in the main container, which is the
registry of the object references and transport addresses of all container
nodes comprising the platform.

• A global agent descriptor table (GADT), which is the registry of all
agents present in the platform, including their status and location.
This table resides in the main container and there are cached entries
in the other containers.

184 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

• All containers have a local agent descriptor table (LADT), describing
the local agents in the container.

• The main container also hosts two special agents AMS and DF, that
provide the agent management and the yellow page service (Directory
Facilitator) where agents can register their services or search for avail-
able services.

Agents running on this platform are also visible in Figure 5.26. These agents
can be implemented in Java by extending the agent-class offered by Jade.
Every container can run its set of agents and these agents can communicate
with each other.

5.5.4 Software architecture

In this section the architecture of the system is presented. First the global ar-
chitecture. In the next subsection the roles and responsibilities of the agents
involved are discussed as well as the global architecture of two design models
of the device agent. Finally the interagent communication and message types
are presented.

Global system architecture

In Figure 5.27 the global architecture of the domotics system is shown. A
GUI subsystem is provided for configuration, control and monitoring. The
blackboard system in the middle is the place where all relevant informa-
tion that could be shared among the participating agents is collected. This
blackboard system supports a publish and subscribe system that is used for
interagent communication. At the bottom we see the actual device agents.

GUI

Blackboard

Device

Figure 5.27: Global system architecture

5.5. CASE: DOMOTICS 185

Agent roles and responsibilities

In agent-oriented software engineering (AOSE) (Bordini et al., 2006), the
roles and responsibilities of the agents form the basis of the agent software
model. Our MAS contains four types of agents.

1. The device agent, closely coupled to the hardware devices in the do-
mestic environment.

2. The human agent representing the human inhabitants of a home.

3. The blackboard agent controlling the interagent communication and
the storage of important data.

4. The GUI-agent serves as a middleman between the GUI and the MAS.

Looking at roles and responsibilities results in the following observations:
The device agent will directly control a device. The actual control depends
on the device being a sensor or actuator, so actually a device agent can be
an actuator agent or sensor agent. It will receive information that it has
subscribed to and it will publish information on the blackboard. Depending
on the information received and its rule-base it will control the device. In
an earlier section 5.5.3, the concept of a product agent was introduced. This
product agent could be the representation of a product in the Internet of
Things and has the responsibilities mentioned in section 5.5.3. Being tightly
coupled to a device (actually a product) and capable of communicating,
the device agent could possibly also play the role of a product agent, this
means; monitor the device, perform a power-on-self-test to check the health
of the device and collect information about usage of the device. However,
the product agent can also be implemented as a separate agent running on
the same hardware platform in the same software environment as the device
agent.

The human agent will present a human in the system. This agent is
implemented as a sensor agent and shows the location of a human inhabitant
along with its preferences and physical situation. The blackboard agent will
control the agent network, storing information and giving information to
other agents. It will keep track of subscriptions done by the other agents
and will inform these subscribed agents when requested or when an update
is done by another agent. The GUI-agent: is a part of the GUI subsystem.
It has been implemented to make communication with the blackboard agent
and other agents in the MAS at an interagent communication level possible.

In Figure 5.28 the inheritance model of a device agent for a lamp device
is shown. First a general device agent will be responsible for communication

186 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

with the outside world. This agent is expanded to a lamp agent at the
application layer and finally this results in a real hardware lamp agent or a
simulated lamp agent. This way it is easy in our implementation to introduce
simulated devices. These simulated devices are visible in a GUI environment
and can be used to build a system for testing purposes or in situations were
the actual hardware is not yet available. The actual working of these non-
existent devices can be observed using the GUI.

Device Agent

Lamp Agent

Hardware
Lamp
Agent

Simulated
Lamp
Agent

Communication
Layer

Application
Layer

Hardware
Layer

Figure 5.28: Inheritance model for a lamp device

In Figure 5.29 another type of device agent is shown: a light sensor. This
agent is also derived from the device agent. However at the application layer
an extra functionality typical for sensors is added. This extra block performs
polling of the sensor to get new data values.

Device Agent

Sensor Agent Lightsensor
Agent

Hardware
Lightsensor

Agent

Simulated
Lightsensor

Agent

Communication
Layer

Application
Layer

Hardware
Layer

Figure 5.29: Inheritance model for a light sensor

Interagent communication

All communication for the system as a whole is done at the agent level. The
device agent have their own specific and perhaps dedicated communication
interface with sensors and actuators. The Jade environment supports the
FIPA-standard for interagent communication (FIPA stands for Foundation
for Intelligent Physical Agents). So the standard FIPA possibilities are al-
ready implemented and supported. Within FIPA a message format must be
chosen. Four possibilities were investigated:

5.5. CASE: DOMOTICS 187

• Design of a new specific format.

• CSV (Comma Separated Values).

• JSON (JavaScipt Object Notation).

• XML (eXtensibel Markup Language).

The first two options were rejected. A new format means a lot of extra
software tools to be developed. CSV is too primitive, for example nesting is
not supported. This leaves JSON and XML as a choice. For both choices
validator tools and libraries are available, however XML is more mature and
this was the reason that at that time XML has been chosen.

A message contains the following items:

• A value.

• A key, if a device can send different kinds of values.

• The topic the value is related to (i.e. light etc.).

• An agent/device identifier.

Using this information a device agent can send different values by submitting
key-value pairs, where key identifies a specific type for the value. By sending
these kind of messages to the blackboard agent, the information is stored in
a database and the blackboard agents will direct this information to other
agents that have subscribed to this information.

Several types of messages are possible: to mention a few:

• Subscribe: subscribe to information for a certain topic. If the infor-
mation of a topic changes, automatic information update is sent to a
subscriber.

• Unsubscribe: used to stop a subscription.

• Request Value: get information from the blackboard about an agent.

• Publish: this can be done by a device agent. This way it will put
information on the blackboard.

188 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

5.5.5 Implementation

In the next three figures some details of the internal structure of the agents
and gui system is shown. The communication layer is part of all agents and
the GUI system. In Figure 5.30 the internals of a device agent is depicted.
These agents interact with the actual hardware using the hardware layer
though it is also possible to simulate the hardware. The embedded GUI sub-
system in this agent is available to monitor the actual devices or in case of
a simulation the simulated device. Artificial intelligence software runs in the
application layer in combination with a message processor for interpreting the
messages received from other agents (using the blackboard) or to construct
messages meant for other agents. The blackboard agent takes care of data

Device Agent

Communication Layer

Application Layer

Hardware / Simulation Layer

Hardware
Control

GUI

AI
Message
Processor

Incoming
Messages

Outgoing
Messages

Figure 5.30: Internal structure of a device agent

storage in the application layer and the message processor implements the
publish and subscribe mechanism. The communication layer serves the same
goal as in the device agent: supporting communication with other agents.
The GUI system is not an agent, but has an embedded agent to make it

Blackboard Agent

Communication Layer

Application Layer

Data
Storage

Message
Processor

Incoming
Messages

Outgoing
Messages

Figure 5.31: Internal structure of the blackboard agent

part of the multi agent system. This agent has only a communication layer

5.5. CASE: DOMOTICS 189

GUI System

Communication Layer

Application Layer

Incoming
Messages

Outgoing
Messages

GUI Communication Agent

GUI

Figure 5.32: Internal structure of the GUI system

to support the communication with the MAS. The actual implementation
was made on a standard desktop system connected by ethernet interfaces
to several raspberry-Pi systems. Ethernet over powerlines was used to min-
imise additional cabling requirements. Because many devices are actually
connected to powerlines this approach seems to be the most natural. In the
future devices could embed an agent environment system based on embedded
technology and by attaching these devices to the power, the communication
infrastructure is immediately established. On top of ethernet, TCP/IP is
used as the carrier of interagent communications. Devices having special
interfaces are connected to the agent platforms close to these devices. This
way it is not necessary to support all kinds of exotic or non-standard cabling
systems.

Using the GUI drawing tool, a map of the home was easy to draw and in
this map the position of several devices could be drawn. The map is stored
as an XML file so other XML aware applications can easily get the actual
information data about the map. Figure 5.33 gives an impression of how this
part of the GUI looks like. This tool is based on graphic standards that can
also be used in other applications. This way a portable and open system is
also applied at the GUI level. Using this map, several types of devices can be
added to the system by the end-user of the system. A device-related agent
will be created as well. In Figure 5.34 a dialog window for creating an new
device is shown. Using this GUI a domotics system for a home could easily
be built by the end-user because of the intuitive and simple user interface.
As shown in Figure 5.34 a device can also be removed from the system. This
removal includes the device-related agent.

5.5.6 Results

What has been created is a domotics implementation based on agent tech-
nology. By using agent technology the devices involved were closely tied to

190 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

Figure 5.33: The design part of the GUI subsystem

agents, making these devices versatile as well as intelligent. For the system
as a whole these devices could be considered as entities capable to operate
at a high abstraction level. These combined device-agent system can be seen
as nodes operating in the internet of things. By using a blackboard and
a publish and subscribe system these agents could interact and exchange
information. This fits the basic requirements of the system.

Figure 5.35 shows the actual implementation of the lamp-device. By
just plugging in this device into the power outlet the device is powered,
the Raspberry-Pi is activated and the communication over the power-line
is set up. The lamp is coupled with the raspberry-Pi by a simple interface
on the breadboard shown in the picture. This interface is connected to a
relay for switching the lamp on and off. The light sensor device is shown
in Figure 5.36. Other devices like controllers have been implemented as
simulated devices. The same is true for the agents representing the human
inhabitants. These simulated agents can be accessed and controlled by the
GUI to check the working of the domotics system as a whole. In the domotics
system, both communication and the software implementation were based

5.5. CASE: DOMOTICS 191

Figure 5.34: Adding a new device to the system

Figure 5.35: Prototype of the lamp device hardware

on open and widely available standards. This makes it easy to expand the
system and combine it with other open standard-based techniques. This was
an important goal of this project.

5.5.7 Discussion

First the focus is on the network infrastructure used in our solution. In
domotics among others KNX is a widely supported solution (www.knx.org,
2012). Most KNX-based systems use a centralized control and configuration
system. KNX claims to have the following advantages:

• Interoperability. KNX devices from different manufacturers will opper-
ate together.

• International standard. KNX is an international standard, adopted
among a wide range of manufacturers.

192 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

Figure 5.36: Prototype of the light sensor

• High product quality. Products conforming the KNX requirements
should have a high quality.

• Manufacturer-independent tooling. Tools for supporting KNX are avail-
able from different manufacturers.

• All home and building control. KNX claims to support all control
requirements within home and building automation.

• Different kind of building. Simple and complex systems can use the
same standard.

• Support for different configuration mode. Simple and complex config-
uration modes are possible.

• Different communication media, like wireless, twisted pair or using the
wiring of the power net.

• Connection to other systems is possible.

• Independent from any hard- or software technology.

Almost all of these advantages except perhaps the high product quality also
apply to a TCP/IP-based system as described in the current case in this
thesis. TCP/IP does not guarantee high quality of a product, only adhering
to the TCP/IP standard. A further advantage is that in most cases existing

5.5. CASE: DOMOTICS 193

network infrastructure is already based on TCP/IP thus introducing new
devices is easy to accomplish. In industry the last decades have shown a
trend towards the use of standard networking techniques like ethernet and
TCP/IP replacing so called field-buses except for special situations where
extreme conditions occurring in the chemical industry require special solu-
tions or when extremely hard real-time requirements play a role. For most
situations however standard networking solutions, often with enhanced reli-
ability like industrial Ethernet, offer the same reliability as field-bus-based
solutions and are also very cost-effective. The advent of the next version of
the Internet Protocol (IPv6) will also ease the adoption of standard internet
in new fields, because the new features like an enormous number of node-
addresses, support for different types of network traffic (Flow labelling and
priority) and security (IPsec is standard included in IPv6) (Tanenbaum and
Wetherall, 2010). Integration with smartphones becomes easy because these
systems can operate in dual mode. This means that they can communicate
using the cellphone communication infrastructure as well as WiFi to connect
to a wireless LAN. By using the cellphone network they are capable to co-
operate with the home network from all over the world. If the smartphone
is within the reach of the local wireless network it can use WiFi and become
a node in the network without introducing extra costs.

As a second aspect we will now focus on the properties of the agent-
based solution proposed in this section of the thesis. What has been done
was bringing a powerful yet cheap and reliable platform close to the device.
This approach also fits with the product agent concept introduced earlier
in 5.5.3. This agent is monitoring, performing a power-on self test and other
tasks mentioned in section 5.5.3. This results in two levels of error detection.
At one level it might be that the whole node is unavailable and therefore this
node will be excluded from the domotics system and an error message can
be generated on the GUI. At another error level within the node itself a part
or subsystem of the device is not operating. In this case the domotics system
can pinpoint the problem to be solved.

Using a MAS where humans are represented by agents themselves is an
enabling technology to integrate the humans in a MAS-controlled home au-
tomation system. A human is represented by an agent in the MAS and is
capable to influence the system each using their own preferences.

5.5.8 Related work

The implemention of domotics systems based on agent technology has been
done by several authors. Some publications like (Muñoz et al., 2006) and

194 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

(Ruta et al., 2006) focus on systems for disabled people. This can be con-
sidered as a specialisation within domotics where for example multimodal
interfaces (gestures, text, voice and haptic devices) are used to interact with
the domotics system. In (Brink et al., 2008) a Jade-based system is presented
that has been developed to support elderly people. In that publication the
authors also promote the use of open standards and open systems to make
interoperability possible. However, their system has been designed for a spe-
cial target group, while our system is meant for all kinds of implementations
of domotics. Other papers describe systems where agents are used to save
energy like (Ruta et al., 2012) and (Abras et al., 2006). In this work agents
focus on coordination of devices to minimise peak loads or to shift to mo-
ments of low energy prices.

The work of Bolzabi and Netto (Bolzani and Netto, March 2009) describe
the Home Sapiens, a smart home framework. They developed their own
framework where three types of agents cooperate. User agents, representing
users, Micro agents, representing devices and system agents to glue these
components together. Our approach is different from this: by using Jade
and agents that are tied closely to the devices, a clean abstraction layer
is presented. All kinds of interaction between these agents is in principle
possible without the need for extra system agents.

DomoBuilder presented in (Addis and G. Armano, September 2010) is
an agent-based system using the Jade platform. The agent model is used to
achieve an abstraction level. So far for the similarities with our model. The
difference with our model is that DomoBuilder is using a central controlling
system called Kernel. This Kernel has some of the functionalities realised by
the blackboard-agent in our model, but it has much more power to actually
control the system using timers and event handlers. This results in a more
centralized model while in our model the control power is delegated to the
agents in the devices, resulting in a distributed model. In case of a commu-
nication problem, a distributed model has the advantage that the agents tied
to the devices can control these devices themselves using rules how to operate
in case of missing information, while in a centralized model the control of
the devices is lost.

The work of R. Nunes as presented in (Nunes and da Silva, 2004) and
(Nunes, 2003) has its focus on the intelligence of home automation systems as
well as smart energy management. In our work we focus on an architecture
that enables the use of artificial intelligence techniques.

In (Conte et al., 2009) a Labview simulation is presented by Conte e.a. to
control resource management in Home automation systems. In this paper the
human user is also considered to be an agent. Though this simulation is based
on agent technology, it does not take advantage of an agent-aware platform,

5.6. SUMMARY 195

as Labview is a programming environment based on graphical building blocks
to build all kinds of experimental and technical systems. Being commercial
software Labview is also tied to licence costs. Except for DomoBuilder, most
systems are based on a central system where the MAS is implemented and
agents keep contact with sensors and actuators by a specific data communi-
cation infrastructure and interfaces.

5.5.9 Conclusion

In this research we implemented a powerful system. In our proof of concept
only a few real devices were implemented. However the concepts that are
used makes it easy to expand this approach to a much more complicated
system without the need for redesigning the system as a whole. We also
implemented simulated devices to show this possibility. An important aspect
is the inclusion of a user interface for the end-user for configuring the system
for a certain environment. This interface can also be used to adapt the
system to a newly created situation. In future research smarter and learning
agents will be used. Also the interaction with real human inhabitants should
be implemented. This could be done by using smartphone devices but other
possibilities should also be investigated. Having this platform available is a
good start for this new research.

5.6 Summary

This chapter introduced the product agent as the software representative of
a product during its whole life cycle. In three cases the enhancement of a
system by adding a product agent was shown. A product agent could be
seen as an add-on as in the first two cases, but it can also be a powerful
component of a device to make it operate in a network of devices as shown
in case three.

196 CHAPTER 5. PRODUCT AGENTS BEYOND MANUFACTURING

Chapter 6

Putting things together

In the previous chapters, aspects of the agile agent-based manufacturing
system have been described as well as the use of the product agent in the
life cycle of the product. This chapter will be devoted on describing the
prototypes of the manufacturing system that has been built so far. Two
types of realisation are described: first the equiplet-based manufacturing
system and in the second part a manufacturing system that is based on the
same architecture but uses human workers instead of equiplets to realise the
production.

Parts of this chapter have been published in the proceedings of the IFAC
Modeling in Manufacturing (MIM-2013) (Moergestel et al., 2013d), the pro-
ceedings of the International Conference on Intelligent Agent Technology
(IAT-2013) (Moergestel et al., 2013f) and the European MultiAgent Systems
workshop (EUMAS 2013) (Moergestel et al., 2013b).

6.1 Equiplet-based manufacturing

The equiplet-based manufacturing decsription will have its focus on the MAS
where the equiplet agent is the representative of the equiplet. The details of
the implementation of the equiplet are not the subject of this thesis. Work
on the equiplet can be found in (Telgen et al., 2013). The product agent has
several roles:

• Path planning of the production.

• Scheduling of the production.

• Guiding the product during manufacturing: The product agent will
guide the product along the equiplets. At every equiplet it will instruct

197

198 CHAPTER 6. PUTTING THINGS TOGETHER

the equiplet agent what step or steps to perform. It will log the results
of a production step and also update a globally shared knowledge base
that can be consulted by other product agent to check the reliability
of a certain equiplet for a certain step with certain parameters.

• Error recovery: Having the responsibility for the manufacturing of a
product, the product agent is also the entity that should recover from
errors during manufacturing. If there is a failure on a certain equiplet,
depending on the type of failure (recoverable or severe) the product
agent will try to plan the required step on an alternative equiplet for
the same reason as why one would not prefer to hire a plumber who
previously made mistakes resulting in a flood. By putting the informa-
tion about the failure (step type and parameters) in a shared knowledge
base, the product agents will learn as a group about the reliability of
the equiplets for certain steps. A more detailed discussion about error
recovery is in section 6.1.2.

• Role in other parts of the life cycle of a product: As presented in
chapter 5 being a software entity that knows a lot about the product
and the actual production, there are a lot of possible roles and new
goals this product agent can have during the life cycle of the product.
To achieve these roles, the agent could be embedded in the product
itself. This embedding will also be described in this chapter.

6.1.1 System architecture

In this section a description of the system architecture as well as the software
will be presented.

In figure 6.1 the layered software architecture is given. Only one prod-
uct agent and one equiplet agent is depicted and the modules in the lower
layer of the equiplet depend on the front-end that has been connected to the
equiplet. In this case an equiplet with the pick and place capabilities and
vision modules is assumed.

For the MAS layer Jade (Bordini et al., 2005) was used as a platform.
The reasons for choosing Jade have been given in chapter 2.

The software for the equiplet is based on ROS. ROS is an acronym for
Robot Operating System (Quigley et al., 2009). ROS is not really an oper-
ating system but it is middle-ware specially designed for robot control and it
runs on Linux. In ROS a process is called a node. These nodes can commu-
nicate by a publish and subscribe mechanism. In ROS this communication

6.1. EQUIPLET-BASED MANUFACTURING 199

MAS

ROS

LINUX

Product
Agent

Equiplet
Agent

Blackboard

Database

Equiplet
Node

Pick & Place
Node

Vision
Node

Gripper Motors Camera

Figure 6.1: Layered architecture

mechanism is called a topic. In section 5.3 of chapter 5 the ROS proper-
ties are already introduced. Just as in the case of the discovery robot from
chapter 5, this platform has been chosen for almost the same reasons:

• Open source, so easy to adapt, compliant with a lot of open source
tools.

• Wide support by an active community.

• Huge amount of modules already available.

• Nodes that are parts of ROS can live on several different platforms,
assumed that a TCP/IP connection is available.

At the lowest layer in figure 6.1 is a Linux platform running modules that
communicate with the underlying hardware. Linux is a stable, portable and
versatile platform. In the next section we will take a closer look at the
implementation of this architecture.

6.1.2 Implementation

Before discussing the software for the production grid, a description of the
way that products are made in the grid as we designed it is presented.

200 CHAPTER 6. PUTTING THINGS TOGETHER

Production constraints

Our production model is based on trays that will carry the product to be
built. These trays are transparent boxes, so equiplets with a camera can
inspect both from the top and the bottom. In the latter case the workplace
of an equiplet should also be transparent, which is the case for the equiplets
built so far. The trays are marked with an unique QR-code. During the
first production steps the trays are filled with all the components required to
make the product as described in chapter 4. This way a kind the construction
box as presented in chapter 4 is generated. This means that for all steps to
come, the components are available. This is a big advantage over a situation
where logistic streams of components within the grid should be taken care
of. The disadvantage is that parallel production of sub-parts in complex
production paths is not possible. However for the proof of concept this is
not a big problem and solutions can be found where the sub-parts are first
manufactured in parallel and added to the construction box as described in
chapter 4. Of course within our conceptual model other production models
could be used, but the examples given here are based on this model.

Webinterface

To test the production grid, a webserver has been added to allow end-users
to construct products to be made by the grid. This is why it can not hap-
pen that a product is requested that does not fit within the capabilities of
the production grid, because the grid itself is offering the webinterface for
designing the product. No norms are needed for the product agents acting
within the grid. If a product can be made using the webinterface, the grid
will be capable to make it.

The addition of a webinterface is not only for testing purposes, but this
idea fits neatly in the concept of agile manufacturing, where the end-user
plays a prominent role in the production itself. The end-user specifies the
product that will be tailor-made to his or her requirements. This pull-driven
type of manufacturing will not lead to overproduction and waste of material.

The architecture of the software of the manufacturing system is depicted
in figure 6.2. A web server publishes a website where a customer can design
his product. By pushing a submit button, a server-side program will create
and activate a product agent. This agent will start to plan the production
path and communicate with the available equiplet agents to create the prod-
uct. A more technical picture showing the distributed nature of the system
is given in figure 6.3. The numbered components in figure 6.3 are:

1. The client PC as used by end-user. The end user can use any HTML-5

6.1. EQUIPLET-BASED MANUFACTURING 201

Webbrowser
HTML5
Javascript

Webserver

Tomcat

Java application

Jade Product Agent

Jade Equiplet Agents

Equiplet 1 Equiplet 2 Equiplet 3 ...

Timeserver
Time process

BB-steps
BB-planning

BB-logfile

Figure 6.2: Combination with webinterface

LEGEND

Node

Platform

database

Agent

System
boundaryuses

Gridcomputer

Gridserver

Collective
DB

Knowledge
DB

Product
Agent

blackboard

Other
object

Gateway
server

JADE

OS

OS

Server

Tomcat
server

OS

Client
PC

Browser

OS

1
2

3

4

5

6

7

Figure 6.3: Different platforms and their relations

enabled browser.

2. Connection to the Tomcat server is established via a web socket.

3. The Tomcat server on which the website is hosted. The server can be
placed on the grid server, but it can also be located somewhere else.

4. A connection between the gateway server and the Tomcat server is
made through a (Java) socket.

5. The gateway server is responsible for spawning a product agent in the

202 CHAPTER 6. PUTTING THINGS TOGETHER

jade container. The gateway server acts as a gateway to the outside
world, implemented to be able to spawn agents.

6. The Jade container of the grid contains all agents. Agents can commu-
nicate with the Tomcat server.

7. The grid server is where the databases and blackboards reside. These
are the systems where shared and individual knowledge will be stored.

8. Agents have to be able to report back to the user. In order to do so, an
algorithm was implemented to allow them to send information over a
socket. In order to keep the connection alive, a heart-beat system has
been developed. This system will be described in the next section.

Communications with the web interface/Tomcat server

Once a product agent is created through the web interface, the agent will
create a socket behaviour. This socket behaviour is the way for a product
agent to communicate with the server and thus to the web interface. To check
whether or not the server is still alive and reachable a heart message is sent. If
this message is not answered with a beat message it is assumed that the server
is down. This is how the socket behaviour is used and implemented: The
socket behaviour is used for the communication with the web interface. This
web interface will be called WIMP as an acronym for Web Interface Managing
Production. The socket behaviour extends the Jade Waker behaviour which
means it will become active after a certain amount of time. At the time
of writing the wake up period for the socket behaviour is set at 5 seconds.
This means that every 5 seconds the socket behaviour will become active and
check if it is connected to the WIMP server. If it is connected it will check
if there are data in the buffer, if any it will process the data. If the buffer
is empty or if all data is processed the socket behaviour will go idle and will
become active once the Waker behaviour is fired again (which at the time of
writing means it will become active after 5 seconds). The socket behaviour
can also be used to write messages to the WIMP server even if the socket
behaviour is not active, this is because it will be executed within the action
method of another behaviour.

The heartbeat behaviour was created to eliminate a problem which we
were having with the socket behaviour. The problem encountered was that
the socket behaviour is unable to see if the socket connection is still alive, if it
is not closed properly. The socket behaviour will only know if the connection
is closed when either the client closed it properly or when the socket behaviour
is trying to write on the socket when it is closed. Because we can receive

6.1. EQUIPLET-BASED MANUFACTURING 203

commands from the WIMP server, we need to be sure the connection is
active. If the connection is closed, but the socket behaviour is not aware
of this, that would mean that the socket behaviour simply cannot receive
messages from the WIMP server. And since the socket behaviour does not
know the socket is closed, it will not try to reconnect. This was the reason
why the heartbeat behaviour was created. The heartbeat behaviour sends a
heart message every 5 seconds and sets a timeout timer for 15 seconds. After
sending a heart message the heartbeat behaviour expects a response within
15 seconds from the WIMP server. The response should be a beat. If it does
not receive a response message within 15 seconds it will report to the socket
behaviour that the connection is no longer active and will tell the socket
behaviour to reconnect. If it is not possible to reconnect immediately, the
socket behaviour will try to reconnect every time it becomes active (every 5
seconds).

WIMP

At the client side a web-browser receives a web-page in HTML5 format with
embedded JavaScript will display a graphical environment where a product
can be designed. This is what has been called the WIMP. At this moment 4
typical product design web interfaces are constructed in WIMP:

1. Pick and place: 2D ball in cradle placement.

2. Paint pixels: pixel-based picture.

3. Pick, place and stack: simple 3D design.

4. Inspection of 3D printing object in STL-format.

A simple example of the pick and place interface is shown in a screen-shot
in figure 6.4. A case with compartments of a certain dimension specified by

Figure 6.4: Case with coloured balls in the webbrowser

the user is to be filled with coloured balls. The end-user selects a ball of a
certain colour and moves the ball to an empty compartment.

204 CHAPTER 6. PUTTING THINGS TOGETHER

An example of a sceenshot of the paint design interface is given in fig-
ure 6.5. On a canvas, a pixel-based painting using a combination of several
colours can be made.

Figure 6.5: A simple paint example

The WIMP software is also capable to build three dimensional structures.
It has some built-in intelligence. For example if a user wants to add a part
at a place where adhesive is needed to keep it in place, it will warn the user
if he did not select the adhesive option for the placement of this part. This

Figure 6.6: A 3D structure

part of WIMP is only a basic implementation and in future development
all kinds of special provisions should be added. For example when gluing
two objects together several points of special interest arise. First of all the
location of the objects you want to glue is very important. If the object
is glued onto an existing structure it is possible that the existing structure
will tip over. The structure must be stable enough and strong enough to
support the new object. To determine if those conditions are met you have to
know the material of the current structure, how much it weighs, and several
other factors. Another important aspect of gluing objects is the type of
adhesive. Not all materials can be glued together and not all types of adhesive
can be used in combination with all materials. During manufacturing the
objects that will be glued must be held together. This must be done until
the adhesive is dry. Some adhesive types need heat to function properly,
other types can be hardened by using UV-light (Lafeber et al., 2012).

6.1. EQUIPLET-BASED MANUFACTURING 205

Figure 6.7: View of an STL-image

At the client side a product is described by JSON. JSON, or JavaScript
Simple Object Notation is a popular alternative to XML. XML was almost
the de-facto standard before the existence of JSON. Until HTML 5, you
needed to include libraries to encode and decode JSON objects. Now, the
JavaScript engine that comes with HTML 5 has built-in support for encod-
ing/decoding JSON objects. For every part placed on the design grid in
the webbrowser, the parttype (ball, or block), colour (red, blue, green, yel-
low) and position (coordinates on the design-grid) is entered in this JSON
information. It is also possible to choose whether or not to use adhesive.
By clicking the submit button, the JSON information is transferred to the
webserver. In figure 6.8 the internal structure of a product step information
block is given. A unique ID is followed by a capability. This is the step
action required and will be tied to an equiplet capable to perform this step.
The parameters give extra information about the object the action has to
work on. For example in a pick and place action, the parameters will specify
the coordinates of the final positions and the object that has to move to that
position.

ID Capability Parameters

Figure 6.8: Components of a step object

Webserver and Tomcat-driven Java application

The web page presented to the client is presented by a Tomcat web server.
Tomcat is designed to support Java Servlets. This means that Tomcat is
capable to start a Java program at the server the moment the client sends a
request for a product. This Java program is capable of spawning a product
agent in the Jade environment. To do this a Gateway is used in the Jade
environment to achieve this functionality. This newly spawned agent will
also receive the JSON information about the product to be made. From this

206 CHAPTER 6. PUTTING THINGS TOGETHER

information, the needed product steps are generated by the product agent.
An overview of the connection sockets is shown in figure 6.9.

Socket A

Socket C

Socket D

Socket B

Socket D

Socket B

Socket A

Socket C

Agent A

Agent B

Agent C

Agent D

Gateway Server Tomcat Server

Figure 6.9: Socket connections between product agents and the user interface
Every product agent is capable to receive information from the Tomcat server
using the Gateway Server. Every product agent can also directly send infor-
mation to the Tomcat Server. This will create the possibility to inform the
end-user in realtime about the progress of the production.

Product agent

The product agent is created and its goal is to produce the product. Therefore
it has to fulfil its sub-goals. The first sub-goal is planning the production
path. This means: selecting the equiplets involved, inquire if the steps are
feasible and finally scheduling the production. The next sub-goal is to guide
the product along the production path and to inform the equiplet about the
step or steps to perform. For every step, data aquisition of the production
data is possible and should be carried out by the product agent. It depends
on the equiplet agent what information will be made available.

Blackboard and timing

The blackboard system as described in the architecture was implemented as
actually three separate blackboards (see figure 6.2). This has to do with the
fact that the performance of the system could be better and also the read and

6.1. EQUIPLET-BASED MANUFACTURING 207

write access permissions become more clear. The BB-steps blackboard is used
by the equiplet agents to announce its production steps. This information
is under normal circumstances read-only for the product agents. The BB-
planning blackboard is read and written by the product agents and a timing
process. The information on this blackboard is the planning of timeslots or
time steps for every equiplet, and a load of every equiplet.

The implementation is based on a circular buffer of time steps for every
single equiplet. A time-pointer is pointing at the current time step slot. This
pointer is updated by the timing process, that will also clear the time step
slot that has been passed. It will also update the load of the equiplet when
a filled time step has passed by and thus has been cleared by the timing
process. Other time steps slots contain the unique product agent id that
belongs to the product agent that has reserved that slot. The selection of

Short term
EQ-load

timeslot
pointer

P,S,E P,S,E P,S,E P,S,E P,S,E

Short-term planning

Long-term planning

Figure 6.10: Long-term and short-term planning

the time step slot duration was based on the consideration that a product
will arrive by an AGV. The product has to be at rest during the production
step and the AGV has to move away from the working place to make place for
the next product to arrive. This whole process takes at least a few seconds.
A choice for one second has been made and given a buffersize of 10000 slots
this means that the short-term planning is for around 3 hours. By increasing
the buffersize or enlarging the timeslot this can be adjusted to the properties
of the production devices in the grid. As a consequence it should be possible
to combine several production steps having a short duration in one timeslot
if these steps are to be performed by the same equiplet.

To synchronise all agents, a timeserver has been added to the system.
The scheduling is done by the product agents. Every newly arrived product
agent tries to schedule itself in a way that it will not exceed its deadline. If it

208 CHAPTER 6. PUTTING THINGS TOGETHER

fails, it will ask other product agents with a later deadline to temporally give
up their scheduling. Next it will try to generate new schedules for all involved
agents. If successful, the new schedule will be adopted. If the scheduling fails
the old schedules are restored and the new agent reports a scheduling failure.
This solution has been described in chapter 3.

The third blackboard in figure 6.2 (BB-logfile) is used to build a knowl-
edge base about the performance of the individual equiplets and is shared
among the product agents. Successful and unsuccessful steps are reported
in this blackboard by products agents. This blackboard serves as an extra
check when the product agent is planning the set of equiplets to be used for
a certain product. The higher the failure rate of a certain equiplet, the more
it will be avoided by the product agents. This failure rate can be reset after
repair or adjustment of an equiplet.

Equiplet agent

The equiplet agent is also implemented as a Jade agent and it is the interface
to the underlying software and hardware. It depends on the front-end of the
equiplet what modules are available. The equiplet agent is also the interface
to the product agent. Both types of agents live in Jade containers and can
communicate with each other. The communication between the product
agents and the equiplet agents as well as other product agents is FIPA-
based. The Jade platform is FIPA-compliant. For the implementation of
the blackboard, Open BBS has been chosen. This Java-based blackboard
was easy to integrate in the Jade environment; it was open-source and tests
proved that it performed well enough for our grid.

Interaction between the agents

The webinterface will deliver a JSON-object describing the product. This is
translated to product steps by the product agent. The product agent will
parse the JSON information and generate a step for every part of the JSON
object that actually changes the product. The webinterface takes care of
deletion and retries, so the JSON object itself should not be adapted by the
product agent.

For example consider a situation where three balls are placed in a crate
at certain compartments. This will result in three similar production steps
(pick-and-place) from the point of view of the product agent. Now the prod-
uct agent will interact with the available equiplets agents. When a candidate
is found that is capable to perform the pick and place step, the feasibil-
ity of this step with given parameters will be checked. In figure 6.11 the

6.1. EQUIPLET-BASED MANUFACTURING 209

FIPA interaction the product agent and equiplet agents is shown. For every

Product
agent

Equiplet
agent 1

Equiplet
agent 2

[Query-If]
[CanPerformStep]

[Confirm/Disconfirm]
[CanPerformStep]

[Query-Ref]
[ProductionDuration]

[Inform]
[ProductionDuration]

[Request]
[ProductionStep]

[Inform]
[StatusUpdate]

Schedule

Planning

Perform
Steps

Repeat for all Equiplets involved

Figure 6.11: Interaction between product agent and equiplet agents

interaction, a watchdog timer will take care of possible time-outs. This is
necessary in an environment such as Jade where this asynchronous type of
communication is applied. In case of a time-out a recovery will be done by
repeating the part that was timed-out and if a failure is detected the error
recovery mechanism will be triggered.

Even though this chapter focuses on the product agent, it might be a
good idea to explain some details about the equiplet agent. More information
about the equiplet internal architecture can be found in (Telgen et al., 2013).
The equiplet agent will translate the production steps in front-end-specific
sub-steps. A pick-and-place action is composed of movements and control of
a vacuum pincer to pick the objects involved. The movements and commands
are sent to the ROS-layer that will control the hardware and the commands
are actually carried out by the connected hardware.

210 CHAPTER 6. PUTTING THINGS TOGETHER

Error recovery

In this section the error recovery is discussed. Three types of errors are
anticipated:

1. Equiplet crash: this is an unexpected hardware or software failure of
an equiplet.

2. Equiplet shut-down: the equiplet is brought down or in a state where
it is not capable to perform production steps.

3. Production step error: this means that the production step has been
tried by the equiplet but it failed to produce the right result.

In the first situation, the product agent that has this equiplet in its produc-
tion path, will discover that the equiplet agent is not responding or respond-
ing negative. As a result the product agent will clear the possible production
steps on the equiplet blackboard BB-steps. This is the only situation where
an product agent will adjust the information on this blackboard. This will
prevent the scheduling of this equiplet by newly arriving product agents.
However other product agents that already planned to use this equiplet will
discover the same problem and react the same way. In the second situation,
the equiplet agents itself will clear the equiplet blackboard and also mark
the future planned steps on BB-planning as cancelled. It will also inform the
product agents involved about this cancelling. These agents will reschedule
their production. To prevent a burst of atomic rescheduling actions to occur
at the same time step, two solutions are proposed:

1. This rescheduling is postponed to one step before the actual planning
of the cancelled step. Normally the scheduling takes only a small part
of a time step. This way the rescheduling action is smeared over the
available time steps.

2. Another solution might be initiated by the equiplet agent itself. This
agent will inform the product agents involved and also give a sequence
number. The agent with the lowest sequence number will reschedule
in the next coming timeslot, the agent with the next lowest number
will skip one slot and use the next one and so on for all product agents
involved. The advantage of this approach is that the rescheduling is
done as soon as possible giving a bigger chance for success.

For the last situation, only two types of production step errors have been
implemented yet. The first type is the recoverable error. In this situation
the product has not been changed by the failing production step and the

6.1. EQUIPLET-BASED MANUFACTURING 211

step could be retried, preferably at another equiplet. In the second case the
product has been changed, but not according to the specified production
step. This is considered to be an exception, the product will be removed
from the grid (possibly for human inspection) and the product agent maker
will get an error report. In both cases the error is also stored in a knowledge
base, so other product agents with similar parameters could decide to avoid
the error-prone equiplet in the future.

Reliability For almost every production system downtime is expensive. So
now we should focus on the reliability of our model. In chapter 1 a list of
possible hardware and sofwtare failures was already presented:

• Equiplet failure.

• Equiplet agent failure.

• Product agent failure.

• Supporting systems failure.

• Network failure.

Here some solutions are presented in more detail. Equiplet failure and
equiplet agent failure can be overcome by equiplet replication. We have a
grid of equiplets and in this grid we can allocate a spare equiplet to take over
the task of the failing equiplet. The failing equiplet can be restarted and can
again become a working member of the production grid. When an equiplet
system fails during a production step, the product agent must recover from
the failing step. This can be done by special recover equiplets that can be
human-operated and complete a halfway-broken production step. This has
been explained in the previous section.

Failure of a product agent can be taken care of by using a software repli-
cation of the product agent on the central server. This agent is updated after
every production step and triggered by a watchdog timer in case it takes too
long for the actual product agent to finish a production step. The replicated
product agent will try to contact the actual product agent to see if it is still
alive. If not, it will take over the product and try to recover the production
state by using the afore mentioned recover equiplet.

The supporting systems can use standard failover techniques that are also
used in other kind of critical server systems. Virtualization and replication
play an important role in modern high availability systems and are nowadays
a well understood and mature technique to assure uptime.

212 CHAPTER 6. PUTTING THINGS TOGETHER

A network failure can be discovered by grid techniques like heartbeat and
again watchdog timers. It depends on the actual situation how we should
recover from such a failure. The communication used is at the network and
transport layer based on TCP/IP resulting is a best effort network. When
used on the same switch with probably the same VLAN, this type of com-
munication has been proven to be quite reliable. VLAN is an acronym for
Virtual Local Area Network. Modern switches are capable to configure sub-
sets of their network connections to act as a LAN. Such a software configured
LAN is called a VLAN (Tanenbaum and Wetherall, 2010).

6.1.3 Results and future work

The research done so far for this agent-based production system had sev-
eral milestones. The first milestone was the proof of concept given by a
simulation of the multiagent system as described in chapter 2. In that sys-
tem the product agents planned their production path along equiplet agents
that used timing delays to mimic the production steps. The equiplet agent
was not combined with the equiplet hardware. The next milestone was the
implementation of a reliable and fast scheduling algorithm as described in
chapter 3. The latest milestone is described in this chapter where we made
the two final steps. First the MAS with the ROS-based equiplet were inte-
grated in the system, so the integration with real equiplet hardware has been
accomplished. As a second step a web front-end has been built to specify
the product to be produced. At this moment the given 2D examples can
be executed on the three available equiplets. So the total chain from design
to production is working. In figure 6.12 a design in the paint application of
WIMP is made. In figure 6.13 the result of this product is shown. Though
this example might look a bit disappointing because of its simplicity, it shows
that the multiagent system is working to our expectations. The 3D exam-
ple is already implemented at the MAS level and ROS level. The equiplet
front-end to perform these steps is under development as a glue dispenser
and an extra degree of freedom (rotation capability around the z-axis) of
the pick and place robot is needed. However using a dummy equiplet (as in
the earlier developed simulation) shows that the software is working to our
expectations. This also includes the error recovery system.

6.1.4 Conclusions

In this first part of the current chapter an agile agent-based production sys-
tem is presented. Before this system was built, a simulation system was
developed and tested. A multiagent-based production scheduling has been

6.1. EQUIPLET-BASED MANUFACTURING 213

Figure 6.12: WIMP paint design

Figure 6.13: Resulting product on the equiplet

developed and tested. In this section we described a real production system
that has been built as a proof of concept. All software used is based on open

214 CHAPTER 6. PUTTING THINGS TOGETHER

standards. Further research on the production of products with a higher com-
plexity must be done, however the basic techniques for the implementation
proved to work.

The grid is capable to produce several different products in parallel and
every product has its own unique production log generated by the product
agent. This product agent can play an important role in the other parts of the
life-cycle of the product. When a product will be disassembled the product
agent carries important information about the sub-parts of the product. This
can be useful for recycling and reuse of sub-parts.

The production approach described here is also applicable to a hybrid
system containing human actors as parts of the production system. The pro-
duction steps for a certain product should be translated to human-readable
instructions and humans replace the equiplet systems. In that model the
equiplet agents carries out this translation so the MAS layer is still intact.
This approach is useful in the situation where the production tasks are too
complicated for an equiplet to be performed, but it can also help in the sit-
uation where a new equiplet front-end has to be developed. This approach
will be discussed in the next part of this chapter.

6.2 Multiagent-based Agile Work Distribu-

tion

This section describes an agent-based and web-based system to instruct work-
ers to build a product or to perform certain actions. The making of a product
or work to be done for a task is conducted by a so-called product agent that
knows what actions should be done. The work is collected and divided in
smaller tasks to be done by workers. The workers advertise their capabili-
ties and a product agent selects workers for a task and distributes the work
among the workers. Both workers and tasks to be performed are represented
by agents that interact in a multiagent system. An example implementation
is also presented as a proof of concept.

6.2.1 Introduction

Today new ways of working are explored like working at home, distributed
production of small quantities of products or manufacturing of user-specified
products. This section describes an agent-based infrastructure that helps
to support these new ways of working. Two types of agents play a major
role in this system: product agents and worker agents. The work to be
done or the product to be made is presented by the product agent to the

6.2. MULTIAGENT-BASED AGILE WORK DISTRIBUTION 215

worker agents that will instruct the workers according to their capabilities
and preferences. Workers can publish in a global accessible data storage their
possible actions and other preferences by using the aforementioned worker-
agent. All communication is web-based so the only infrastructure needed is
an internet connection. The product agent is guiding the production process
or the work to be done and collects valuable information. In some cases
this product agent could finally embed itself in the product to serve as a
representative for the product in the Internet of Things.

The concept that will be explained in the next section resulted from
previous research on agile production in a grid of production machines called
equiplets (Puik and Moergestel, 2010). This approach turned out to be a
good solution for certain situations. In the current case the same agent-based
model for the infrastructure is used while the grid of production machines is
replaced by a group of human workers.

In the next section the concept will be explained as well why an agent-
based approach is appropriate and the advantages of this concept. The next
section discusses models where this concept can be applied. The architecture
and agent multiagent design is discussed next and as a proof of concept an
implementation of a production model for an internet radio is presented.
Future work, related work and a conclusion finalise the section.

6.2.2 Description of the concept

In the next parts of this section we will refer to the making of a product or
work to be done as a task. A task consists of subtasks that will be referred to
as steps. At one end of the system, an end-user or principal will enter a task
to the system. This task will describe in detail what the end-user expects.
It will be a list of steps possibly provided with parameters.

When the description is completed, the product agent will be created that
will start to search for workers capable to perform the steps that are required
to complete the task. This is done by a blackboard where the steps that can
be performed by the workers are announced. Actually the worker agent will
announce these steps on behalf of the human workers.

Agent-based system

As already mentioned, the system as proposed consists among other parts of
two types of agents.

1. Product agents that describe what should be done and control the
actual execution of the task, that might consists of subtasks or steps.

216 CHAPTER 6. PUTTING THINGS TOGETHER

2. Worker agents, representing the humans that actually carry out the
requested work.

There are several reason why this system is based on agent technology. In the
first place it is a good representation of the common situation where people
work together.

Generating a task consisting of steps and looking for work to be done
are asynchronous events. That means that at any time a worker can look
for work to be done while there may be no work available at that time. A
worker agent can stay alert for newly arriving work to be done and inform
the real worker when there is work to be done. This solves the problem of
being available all the time, because the agents are there to alert a worker.
The same is true the other way around for the situation where there is a
task generated. The human that generated the task can quietly wait for
the task to be done, without interfering with the system, because the prod-
uct agent has taken over the responsibility to delegate the steps, that are
needed for a certain task, to the workers. Both tasks and workers may be
unique. Tasks are dynamic, workers can also vary in time. Because every
task might be unique, it is a good idea to create a software entity for every
task instead of trying to generate a general task software entity and adapt
that to every single new task. Another advantage of using agents is the fact
that a worker agent that is always representing the same worker, can adapt
to special features or capabilities of this human worker. The infrastructure
and software remains the same, but because the worker agents added more
capabilities the system will become more powerful. Adding more workers
means adding more worker agents without adapting the system as a whole.
Agents could migrate to another plant or branch organisation that uses the
same agent-based infrastructure. The specific features of the worker agent
are carried along. The product agent can be a representative of a product in
later phases of its life cycle.

Advantages of the proposed system

There are reasons why for some specific situations this approach might be
very useful.

• It integrates agile task handling software with a standard human work-
intensive environment.

• It scales well: a new worker introduces a new worker agent without the
need to change other parts of the software.

6.2. MULTIAGENT-BASED AGILE WORK DISTRIBUTION 217

• It also fits well in a distributed system approach where worker and
people announcing the tasks are not at the same place.

• When a worker increases his set of production capabilities, the corre-
sponding worker agent will announce this to the multiagent system. In
this way the approach is agile in regards to the capabilities of the par-
ticipating workers. A worker that learns a new skill can quickly apply
this in the production environment.

• A log of production done by an individual worker is created and main-
tained by the worker agent, so the worker can be paid by the amount
of work done and not by the amount of time spent.

• This approach fits well in a distributed environment where workers at
home are supported by and interacting with the multiagent system.

• It is easy to enhance this system with individual help to workers. The
worker agent can be offered the possibility to show an instruction film
to explain details of a certain production step. This is also a nice
feature for workers that do their work remotely (i.e. at home).

• An individual training facility is also easy to implement. This way a
worker can expand his set of production steps, making himself more
competent and thus useful for the production environment. This will
adjust the production system as a whole to the capabilities and the
aspirations of the individual workers.

• Workers can make individual adjustments to the work time planning.
This will also be useful in case of remote workers.

6.2.3 Application models

The model presented here is not applicable to all possible situations, but
there are application areas where this concept can be applied successfully.
Some examples are explained in the next subsections.

Small batches or single products

The system proposed here has already been introduced in a so called pro-
duction grid. In this grid the workers are represented by machines that are
instructed to perform certain production steps. This production system was
designed for affordable small-scale production. Instead of machines also hu-
man workers can be instructed, having the possibility to construct at a low

218 CHAPTER 6. PUTTING THINGS TOGETHER

volume products of high complexity, depending on the skills of the human
workers involved.

Step by step guidance

Because of the fact that for every step an instruction is generated that can be
illustrated by a picture or a video, this method is useful in situations where
workers are still in the situation of being trained or maybe unsure about
how to perform a certain step. Instead of every time calling for assistance,
the worker agent itself can assist the worker. In this situation a knowledge
base of frequently asked questions and solutions can enhance the supporting
infrastructure system on the fly.

Products according to user specification

User requirements for products are difficult to combine with mass produc-
tion. The system described in the current section opens the possibilities to
produce tailor-made products according to user requirements. This can be
done by letting select the end-user a set of properties of the product to be
made. During production, these requirements are presented at the appropri-
ate time to the worker. In section 6.2.6 where the case study implementation
is discussed, this model is taken as an example.

Office-like work done by home-workers

This situation is already in use all over the world, though the infrastructure
is not agent-based as described in the current section. The reason why this
situation is popular is because of the fact that the logistics for transferring
physical components is not needed. Having a connection over the internet is
a sufficient base for this model. The proposed agent-based solutions offers the
advantages already mentioned in previous sections. Possible applications of
the concept are: software development, web design, translation work etcetera.

Educational system

The model can also be applied to educational situations. In this case the
instructor tries to train the students by sending tasks to be completed. It
can also be applied to test the competences of a student by letting him
perform a task.

6.2. MULTIAGENT-BASED AGILE WORK DISTRIBUTION 219

6.2.4 Architecture

In this section a description of the system architecture as well as the software
that has been used, will be presented. Figure 6.14 shown the global system

MAS
User

requirements and
specifications

Assembly
guidance system

Capablity
announcing system

Figure 6.14: Basis system setup

architecture. On both sides of figure 6.14 a human or humans are situated.
The user on the left side creates the tasks, users on the right side will do the
work. To get to the functional specification of the system, the services that
should be offered by the system must be specified. The infrastructure offers
several services:

• It brings together the party asking for certain services with the party
offering certain services.

• It will check if the work to be done and the tasks to be completed are
feasible.

• It will do all the planning and scheduling.

• It will inform both sides of the humans involved about the status of
the process involved.

• It will keep track of the preferences of the humans involved.

• It will collect information during the time the work is done. Using
these data a knowledge base of the task being performed is built.

• It will log the amount of work done by the human worker represented
by the worker agent.

These functional requirements will actually be carried out by the agents
involved. A more detailed view on the heart of the system is presented in
figure 6.15.

In this figure the MAS contains a product agent and a worker agent.
When a task is requested, a product agent is created that is responsible for
the that single task to be completed. As explained before, a task might be
the creation of a single product, a small batch of products or just work to
be done. A task contains subtasks or steps. A step is an action plus zero,

220 CHAPTER 6. PUTTING THINGS TOGETHER

MAS

Product
agent

Worker
agent

BB
step
list

step
actions

Figure 6.15: More details of the MAS-related system

one or more objects. User specification results in a list of steps to be done to
complete a task. This step list belongs to the knowledge base of the product
agent. The worker agent on the other hand controls the worker capabilities
resulting is a description of step actions. This list of actions is generated in
cooperation with the worker. The system maintains a list of needed actions
for tasks to be performed in a certain context and inquires a worker about
his possibility to perform that action. For example if the system is used in
an environment where documents should be translated to other languages, a
worker could tell the system, by using his web interface, that he can translate
English to Dutch. In the action list the line: translate English to Dutch is
entered. In our implementation, XML has been used to construct the action
list. Of course this could be enhanced by extra information like, type of
document (fiction, technical, ...) and level of expertise.

To bring the agents together, blackboards are used. There are two black-
boards involved: one blackboard for publishing the step actions that can be
performed by the worker agents and a blackboard for planning and reserva-
tion.

In figure 6.16 the layered software architecture and interaction between
the components is given. Only one product agent and one worker agent is
depicted.

The goal of the product agent is the completion of a task. To achieve
this goal it will first plan and schedule the task in its role as planner. In this
role it will try to plan a schedule based on the information on the blackboard
put there by the worker agents. If the scheduling is successful it will adjust
the reservation information on the planning blackboard and change its role
to task controller. In case the scheduling fails it will report this to its maker
and cease to exist.

For the MAS layer Jade (Bordini et al., 2005) was used as a platform.
The reasons for choosing Jade are already mentioned in other parts of this
thesis.

6.2. MULTIAGENT-BASED AGILE WORK DISTRIBUTION 221

MASProduct
Agent

Worker
Agent

Planning
Blackboard

Worker
Agent-Human

Interface

Production
Steps

Blackboard

Production Floor

End-user
Agent-Human

Interface

Task
Specification

Figure 6.16: Layered architecture

6.2.5 Agents roles and responsibilities

In this section the roles and responsibilities of the two types of agents are
discussed in more detail.

Worker agent roles

The role of the worker agent is being the software representative of a human
worker. The worker agent is unique for every worker and will be created when
a worker is introduced to the system for the first time. It will be connected
to that worker as long as this worker is a member that participates. A
worker agent can be pro-active if the worker is not available at a certain
moment. This is because of the fact that the worker informed the worker
agent about its availability, preferences and capabilities. So the worker agent
is still an active participant of the multiagent system. The responsibilities of
the worker agent are:

• In the first phase after creation, the worker agent collects information
about the worker involved. It will be tied to this worker as long as this
worker stays available for tasks to be performed.

• Announcing the capabilities, by publishing the possible production
steps.

• Announcing the availability.

222 CHAPTER 6. PUTTING THINGS TOGETHER

• Updating capabilities as requested by the worker.

• Updating availability as needed.

• Confirming or denying feasibility of steps when inquired.

• Logging the work done by the worker.

Product agent roles

This agent is responsible for the completion of a task. Its goal is a completed
task. To reach that goal, the product agent has several roles.

Planning and scheduling The task can only be completed by workers so a
product agent will make a selection of worker agents based on the production
step or steps that must be performed to complete a task. The selection of
workers is done in four steps or phases:

1. Select workers for a certain production step.

2. Ask worker agent if the production step with given parameters are
feasible. When a negative response is received by the product agent it
will discard the worker agent.

3. Depending on the situation or model, optimize task execution.

4. Schedule production.

A product agent chooses a worker based on the set of production steps pub-
lished by the worker.

Task controller When the planning and scheduling is completed, the
product agent changes its role to task controller. This means:

• Collecting logging information received from the worker agent.

• Informing the human who ordered the task about the progress.

• Reporting errors.

Roles after completion When the task is finished, the product agent
could cease to exist because it has reached its goal. However in case the task
is the production of a product, there are a lot of possible roles and new goals
the product agent can have during the life cycle of the product as explained
in chapter 5.

6.2. MULTIAGENT-BASED AGILE WORK DISTRIBUTION 223

6.2.6 Case: Internet radio

To implement the concepts discussed so far, a system has been built to con-
struct a device for playing audio streams from the internet: a so-called inter-
net radio. The hardware of the radio is based on a small and cheap Linux-
based computer system, the Raspberry-Pi. Several casings are available and
also the audio system has several options. In this example the possibilities
are still limited, but the possibilities can be easily expanded without chang-
ing the concept. The whole assembly is considered to be one single sequence
of steps. These steps are performed by one worker.

The scheduling and planning is already described and implemented is a
similar environment (Moergestel et al., 2012), where instead of workers, pro-
duction machines were used. This time the production machine is replaced
by a human worker that interacts with this system by a web interface. In
this case only one worker will be selected. The corresponding worker agent
will receive the user preferences from the product agent.

Description

The user selects among other features, the casing of the radio by material
(wood, metal, plastic), colour (the palette of options depends on the choice of
the material) and the audio-subsystem (speakers, earphone, high-end audio).

Web interface for user requirements

The web interface is actually Java-based to make the connection with the
Java-based agent system easier. The browser at the user-side should support
HTML 5 and also JavaScript to make the page interactive and dynamic.
The user selects the options by clicking and finally submits his request to
assemble the radio to the system. At that moment a product agent is created.
This agent also gets an XML-file from the web server that incorporates the
user selections. XML has been used, because both JSON and XML were
candidates for this implementation and in the previous case JSON has already
been used. This way a proof might be given that both standards can be
applied to this situation. Part of this file looks like:

<parts>

<part id="" name="colour">

<property id="value">

<value>black</value>

</property>

224 CHAPTER 6. PUTTING THINGS TOGETHER

</part>

<part id="" name="material">

<property id="value">

<value>wood</value>

</property>

</part>

...

</parts>

In this XML-file the user preferences for material and colour are shown. After
submitting his preferences, the user will get an unique ID that can be used
to connect to the product agent in a later stadium. This ID can also be used
to connect to the product when the product is made and in its use-phase.

Converting steps to required actions

The worker agents should command the human worker to actually carry
out the requested steps. The worker agent received the user preferences
from the product agent. This is slightly different from the situation where a
worker executes only one step. In that situation the worker agent receives the
parameters for that step. In this case however, the task is performed by only
one worker and for efficiency reasons the whole set of preferences are handed
over in one transaction. This is done by a user selection file, containing the
user preferences in XML-format.

Another file that is also based on XML, describes what actions to perform
for a given step. This is the parts/actions XML-file. This information is
combined with a standard template XML-file that should be used for all
internet radios to be built. Combining the three aforementioned XML-files
results in the builder XML-file containing the actions, part positions in the
warehouse and possibly training and demo information for the worker to
view. Figure 6.17 shows this combination of the XML-files. A simplified
version of this builder XML-file looks like

<builder>

<parts>

<part>

</part>

</parts>

<actions>

<action order="0">

Take the [type] part from [location]

6.2. MULTIAGENT-BASED AGILE WORK DISTRIBUTION 225

<XML>
radio template

</XML>

<XML>
user selection

</XML>

<XML>
parts / actions

</XML>

<XML>
<builder>
<steps>

...
</steps>

</builder>
</XML>

Figure 6.17: Basis system setup

in the warehouse

</action>

<action order="1">

Place the [type] part in the [casing]

casing

</action>

<action order="2">

Paint the [casing] [color]

</action>

</actions>

</builder>

When using this file on the webserver side of the worker, the worker finally
gets instructions in his browser like:

Take the controller-board part from

shelve 2A in the warehouse

Place the controller-board part in the

wooden case

Paint the wooden case black

Web interface for worker

The worker is instructed by the worker agent using the web interface. After
logging in, the worker will be connected to its own representative, the worker
agent associated with the worker. This agent will inform the worker of the
work to be done. In several ways the web interface can be used to instruct
the worker. When a step is finished the worker can add additional comments
that will be collected by the worker agent and next communicated to the
product agent as logging information for the making of a product.

226 CHAPTER 6. PUTTING THINGS TOGETHER

The same web interface is also used by the worker to announce his pref-
erences. In this case it will announce his availability for work.

Embedding the product agent

Before the way of embedding the product agent for this particular case is
explained, first an overview of possibilities for embedding are presented.

Pull techniques A product can pull its agent to the onboard environment
at the moment is is completed and tested or at the moment it is switched
on by the user. In both situations there should be a communication channel
available. Another problem to be solved is: how does the device know its
particular product agent? In case of an ethernet attached device, during con-
struction the product agent might be aware of the unique ethernet address
of the device and at the moment the connection is made, the product agent
knows from the MAC-address that its device in requesting the agent or the
agent information. This method can only be used if the device is connected
to the LAN segment that is shared with the hardware the agent is running
on. If the device is operating at a remote internet node, it needs a special
identifier to get its particular agent. To prevent some security issues, encryp-
tion techniques should be used to prevent illegally pulling the agent or its
information. Software installation programs can also be used to install the
product agent on the device.

Push techniques In case of a push technique, the agent is sent to the
device by the production system itself. This can be done in an active or a
passive way. In the passive way, the agent is embedded in the software that
is to be downloaded into the device. By installing the firmware the agent
will hitch hike with it into the device. An active push techniques requires
the device to be switched on and have a connection with the production
environment. The agent can migrate from the production environment to
the device if the appropriate provisions are made. By this is meant, that
there should be an environment where the product agent can live.

Example applied to the case Returning to the case presented here, the
last phase of the construction will be the transfer of the product agent into
the product itself. The Jade-platform has the possibility to transfer an agent
to another container, however, transferring to another platform is a different
story because this means a new environment. To accomplish this step JADE
Inter-platform Mobility Service (JIPMS) has been used. JIMPS makes it

6.2. MULTIAGENT-BASED AGILE WORK DISTRIBUTION 227

possible for a Jade agent to migrate to another jade environment. So in this
case the product itself should have its own Jade environment. This has been
done by downloading the required software to the Raspberry Pi during the
construction of the internet radio. So the product agent thus far collected
the assembly information from the designer web interface, transferred the
information to the worker agent, monitored and collected construction data
from the worker agent during assembly and now transfers itself using a push
technique to the final product. In the next four screenshots, the creation and
migration of agents is visualised. In picture 6.18

Figure 6.18: Start situation with two separte agent containers

Figure 6.19: Creating an agent in the main container

228 CHAPTER 6. PUTTING THINGS TOGETHER

Figure 6.20: Specifying agent properties

Figure 6.21: Final result of two migrated agents

Figure 6.22 shows the situation where the product agent has embedded
itself in the product and can offer a user manual to the end-user as well as
other information. The same web interface can also be used to let the device
communicate with other devices and servers so the device participates in the
Internet of Things (IoT).

6.2.7 Results and future work

With the case study we implemented a production system that has the pro-
posed multiagent-based core at its basis. The end-user can specify an internet
radio with specific features and a worker will be instructed to actually build
the system as required. Finally the product agent will embed itself in the
product to continue its life in the remaining parts of the life-cycle of the prod-
uct. This agent-based work distribution or task execution approach uses a
similar model as the equiplet-based agile manufacturing system described in
the first part of this section. In the case study we opted for the production of
a device with a lot of user specified features. So the total chain from design
to production is shown. Future research will focus on enhancing the web

6.3. RELATED WORK 229

Product
Agent

User
Manual

Product
Properties

Manufacturing
Information Usage

Data

Security
Data

Web
Server

Human
Interface

IoT
Interface

Figure 6.22: More detailed system

interface to the worker side with multimedia support and implementing the
model in other environments.

6.2.8 Conclusions

The production approach described is indeed applicable to a hybrid system
containing human actors as parts of the production system. The production
steps for a certain product should be translated to human readable instruc-
tions and humans replace the equiplet systems presented in the first part of
this chapter. In that model the equiplet agents carries out this translation so
the MAS layer is still intact. This approach is useful in the situation where
the production tasks are too complicated for an equiplet to be performed,
but it can also help in the situation where a new equiplet front-end has to
be developed.

Both approaches presented in this chapter are implementations of what
in terms of cloud computing could be characterised as Manufacturing as a
Service (MaaS).

6.3 Related work

This section discusses related work for the equiplet-based manufacturing sys-
tem and the the work distribution system. The section about the work dis-
tribution system has relationships with both agent human interaction as well
as agent-based production systems. An important aspect in that field is the
agent-human interaction. In research papers, this aspect is commonly re-
ferred to with the term mixed-initiative. An overview of early research in
this field can be found in [(Hearst, 1999)]. Another important paper in this
field is (Shneiderman and Maes, 1997) . More resent research includes in-
terfacing agents and humans using natural language. In (Vergunst, 2011) a

230 CHAPTER 6. PUTTING THINGS TOGETHER

system for robust task-oriented dialogues is presented. This work focusses
on human-machine dialogues. In our work the interaction is still simple, but
the results of the research done by Vergunst could be an interesting future
enhancement.

A nice overview of agent-controlled manufacturing is presented by (Shen
et al., 2006). In this paper all kinds of aspects in manufacturing where agents
could possibly play a role are discussed among with references to important
publications about that specific aspect. The work of Monostori and others
[(Monostori et al., 2006)] is also an overview of using agents in manufacturing.
This work explains the agent paradigm and translates this to several fields
in the production industry. The proposed solutions are mostly apt to an
existing manufacturing infrastructure and are based on quite a number of
different agents, each having a specific role. Our concept is at an abstract
level based on the difference between the what to do and how to do concept
that is the basis of every production process.

Bussman and Jennings [(Bussmann et al., 2004)] used an approach that
compares to our approach regarding the fact that the execution of tasks is
controlled by a small set of agent-types. The system they describe introduced
three types of agents, a workpiece agent, a machine agent and a switch agent.
There are however important differences to our approach:

• The production system is a production line with redundant production
machinery and focuses on production availability and a minimum of
downtime in the production process.

• The roles of the agents in this approach are different from our approach.
The workpiece agent sends an invitation to bid for it current task to all
machine agents. The machine agents issue bids to the workpiece agent.
The workpiece agent chooses the best bid or tries again. In our system
the negotiating is between the product agents.

• They use a special infrastructure for the logistic subsystem, controlled
by so called switch agents.

• This design does not include a hybrid system where human workers are
involved.

Other authors focus on using agent technology as a solution to a specific
problem in a production environment. The work of Xiang and Lee [(Xiang
and Lee, 2008)] presents a scheduling multiagent-based solution using swarm
intelligence. This work uses negotiating between job-agents and machine-
agents for equal distribution of tasks among machines. In our approach

6.4. SUMMARY 231

the negotiating is between product agents and load balancing is possible by
encouraging product agents to use workers or equiplets with a low load or
workers that are eager to work. We have developed a paradigm equiplet-
based agile manufacturing and for work distribution among workers. Both
solutions are based on agent technology. Both models are based on two types
of agents and focus on agile and new ways of manufacturing or working. The
product agent involved can also play an important role in the life-cycle of
the product.

6.4 Summary

This chapter showed two implementations of the agent-based manufacturing
system. The architecture of both implementations is similar, but the setting
is quite different. This shows that the architecture and the concept of the
MAS-based system is a generic approach and can be used in many situations.
Also the benefits of the concept of the product agent are applicable in both
situations described here. For the production description at the agent level
in the first part JSON has been used, while in the second part XML was
chosen. Both approaches are suitable to the system proposed.

232 CHAPTER 6. PUTTING THINGS TOGETHER

Chapter 7

Conclusion and future work

What has been presented in the previous chapters is work that contributes
to a long term project. The aim of the project is to develop an new way of
agile enduser-driven manufacturing.

7.1 Review of the work done

What has been presented is this thesis can be summarized as follows:

• The concept of product agent and equiplet agent, where the product
agent is in this case the carrier of the DNA of a single product.

• A planning and scheduling system that showed that in our case a load
of 80% of the grid is feasible. To achieve higher loads, the temporary
storage is needed. The amount of interagent communication will also
strongly increase at higher loads.

• The extension of the product agent to the whole life cycle, making the
product agent a software representation of a product from manufactur-
ing to recycling.

• A proposal for the production system and the internal transport within
the grid.

The role of the product agent in the life cycle should also be considered
from the aspect of security and privacy. As often is the case in some respects
it can be very helpful, but from another point of view it be be a threat for
personal privacy. Mechanisms to preserve privacy as needed should be used
in the implementation.

233

234 CHAPTER 7. CONCLUSION AND FUTURE WORK

The work on the equiplet agent and its internal architecture has been
published in several publications, but was not the primary focus of this thesis.
There are also many publications about grid production is general.

7.2 Answers to research questions

RQ1 How should we actually build these agents? What platform?
Using an existing platform? How do the agents communicate?

The selection of the platform and the communication has been the topic
of chapter 2. A simulation of a multiagent implementation answered the
questions of what platform to use, how the agents communicate and how
the agents could be implemented. Summarized: the Jade platform is used
for the MAS. FIPA-based communication is provided by this platform. An
existing platform has been chosen, because of the fact that it fits our needs to
build a system as a proof of concept. The FIPA-based communication system
supports the inclusion of messages in XML format as well as other formats.
XML has been used in the first implementation to specify production steps.

RQ2 What planning and scheduling system should be used? The
planning and scheduling topic was discussed in chapter 3. Here a planning
and scheduling system that fits the needs for the manufacturing grid is pre-
sented with results from several simulations. This planning and scheduling
mechanism is also used in the final implementation discussed in chapter 6.
The planning results in a limited set of possible paths along the equiplets.
The best path will be chosen and then the production steps will be sched-
uled. This scheduling is based on realtime scheduling solutions. Simulations
showed that Earliest Deadline First turned out to be a good choice. A special
implementation called weak EDF is proposed where the interagent commu-
nication is only used in case the product agent cannot schedule all its steps
before the deadline by itself. This weak EDF introduced much less interagent
communication overhead.

RQ3 How should the system be set up? How to transport the products
during manufacturing?

The system setup and considerations about the transport system was
the subject of chapter 4. The effect of the position of frontends in the grid
has been investigated as well as possibilities for agile transport. Only when
certain patterns in the production paths exist, the position of the frontends
in the grid becomes important. For Agile transport the use of AGVs has been

7.2. ANSWERS TO RESEARCH QUESTIONS 235

proposed. Using conveyor belts is complicated in a real grid topology and
changing to a line topology conflicts with the agile manufacturing paradigm.

RQ4 What are the possibilities and roles of the product agent when
the product is finished? What are the advantages to keep it alive? How
to tie it to the product? What other roles can it play?

An important question was what to do when the product is made. Most
discussions about agent technology in manufacturing do not consider using
agent technology in the other parts of the life cycle of a product. Several cases
are discussed in chapter 5 and these concepts are a promising field for further
research. Embedding a product agent that contains valuable production
data, can make the product agent a good candidate to represent the product
in the Internet of Things. Many possibilities are proposed in chapter 5.
A nice application is component exchange between broken products, thus
enlarging the average lifetime of a product. The best solution to tie an agent
to a product is to embed it in the product itself.

RQ5 At what point are humans involved in this manufacturing
system? Humans can be involved in the manufacturing system introduced
in this thesis in two ways. First a human can design a product to be made
using a webbrowser running the WIMP software. WIMP stands for Web
Interface Managing Production and can be used to compose or design a
product to be made and WIMP also visualises the manufacturing progress.

Another way that humans can be involved is when equiplets are replaced
by human workers. This is described in chapter 6 as an agent-based work
distribution system showing that the production paradigm can be used in
several situations. A hybrid approach where part of the work is done by
humans and part of the work is done by equiplets is also a possibility.

RQ6 How to recover from errors and guarantee a reliable system?
In chapter 6 mechanisms for error recovery are discussed. These mechanisms
are mostly based on replication. Fail-over techniques will make the hard-
ware much more reliable. Product agents can also rate the performance of
equiplets, making it less likely that a product agent will chose an equiplet
that is badly performing for steps with certain parameters.

The main question or problem statement was: how should the
agent based agile manufacturing system be implemented and what
could be the benefit to the whole life cycle of a product. Chapter 6
shows a prototype of a realisation. In this chapter the paradigm is also

236 CHAPTER 7. CONCLUSION AND FUTURE WORK

extended to a human worker environment, where the same approach can
be used to distribute work. All aspects coming from questions previously
answered in this section are combined in the final implementations. Chapter 5
describes the benefits to the whole life cycle of a product.

7.3 Conclusion

When we compare our approach with the existing solutions for production
automating we have these advantages:

1. Scalability. When the production capacity is inadequate, one can sim-
ply add more equiplets and to a certain limit, the software adapts
automatically.

2. MES and SCADA functionality is available (at least what is needed in
the proposed paradigm).

3. Agile. The system can adapt quickly to new situations and production
requirements.

4. Testing the system to prove its reliability can be done in a scaled-down
situation.

5. The production grid can be working on all kinds of different products
in parallel. The size of a production batch is not important.

6. Robust. There is no single point of failure and temporary problems
with one ore more equiplets or product agents do not have a severe
impact on the production process as a whole.

7. We can use the information of the grid to analyse the production system
as a whole and to discover bottlenecks in the production. We can
remove these bottlenecks to streamline and optimize the production
process. If the production dynamically varies we can continually adapt
the grid to optimize the production process.

8. A short transit time from research and development to the produc-
tion floor. When a product is under development, we propose the
capabilities of the equiplets. The needed frontends are formulated and
eventually built. Such a frontend can be introduced on the production
floor and the product can be built. When we need a lot of products
of this new type we can replicate the needed equiplets by constructing
multiple frontends.

7.4. FUTURE DEVELOPMENTS 237

9. The grid as a whole can inform us if it can make a certain product,
based on the needed steps for this product. It can also report what
production steps cannot be done yet for this product to complete, thus
gaining a clue to expand the production capabilities of the grid.

10. A web-based user interface has been built to enable the user to spec-
ify a product to it needs. This interface can also be used to inform
the end-user of the progress of the manufacturing process. This way
Manufacturing as a Service (MaaS) can be realised.

7.4 Future developments

At this moment a proof of concept is given, but a lot of work needs to
be done to make this concept acceptable for the industry. The transport
system should be realised as well as more equiplets with a wider variety of
capabilities. In Figure 7.1 an impression of the AGV on its way between
two equiplets is given. The case with the discovery robot was the basis
for the AGV. However, this discovery robot had an expensive laser range-
finder and its functionality surpasses what is actually needed in our transport
system. A cheap and reliable solution is now the topic of research. When

Figure 7.1: AGV and two equiplets

more equiplet capabilities become available, the web interface should also
offer more possibilities to design a product.

238 CHAPTER 7. CONCLUSION AND FUTURE WORK

The possibilities for reuse of parts and material should also be further
developed. When the production steps are available at the time of disas-
sembling a product, this could be helpful to decide how a product should
be taken apart by investigating if and how a production step could be re-
versed. Standards should be developed to describe a product so parts can be
identified and reused. This will help to realise zero waste

Appendix A

Monte Carlo Method

In this thesis at several places Monte Carlo techniques are used. Here some
basic concepts of the method will be explained. Only some examples used in
this the thesis are explained here. The Monte Carlo Method is based on using
random numbers to get to a certain result. Its most well known application
domain is simulations, where events with a probability distribution occur.

Figure A.1: Random number generator

Three possible application of the method will be described.

1. Alternative calculation of a result.

2. Generation of data sets for testing or simulations.

3. Generating events conform a certain probability distribution.

A.1 Alternative for calculation

An example of this can be found in Moergestel (2009). Here π is calculated
using random numbers. In Figure A.2 a unit square with a quarter of a circle

239

240 APPENDIX A. MONTE CARLO METHOD

is displayed. By generating random pairs (x, y) where x ∈ [0, 1] ∧ y ∈ [0, 1]
it is easy to detemine (using Pythagoras) if x, y is within the surface of the
quarter circle. By using the fact that the surface of the quarter circle is π/4.

1

10

Figure A.2: Calculating π

The chance that (x, y) is within the quarter circle is also π/4, because the
surface of the square is 1. Now, a huge number of random pairs is generated
and for this set the amount within the quarter circle is divided by the total
amount of random pairs. This results for 10000000 pairs in π being equal to
3.141550 (instead of 3.141593 for a mathematical calculation).

A.2 Generating data sets

In this thesis the planning and scheduling simulations were driven by datasets
that had been generated using random generators. To check if the generated
sets are according to the expectation, a plot of values can be generated. For
our purposes this is sufficient. For example, a test has been generated where
all products agents are choosing at random one of the 11 available equiplets.
For a large number of products (42000), the distribution among the equiplets
should be flat. In Figure A.3, the resulting distribution is shown.

A.3 Generating a set according to a distribu-

tion

The last application that will be described here is generating datasets ac-
cording to a certain given distribution. In this case we use an approach that
compares to the earlier given circle example. We surround the give distribu-
tion by a bounding box and generate random pairs (x, y) within the surface
of the bounding box. Next we check if the pair is within the surface of the
given distribution and if it is, the pair is used in the set, otherwise it will be
rejected. The result for a set data having a Gaussian distribution is shown
in figure A.4.

A.3. GENERATING A SET ACCORDING TO A DISTRIBUTION 241

0

1000

2000

3000

4000

5000

0 2 4 6 8 10 12

"stahist.dat"

Figure A.3: Load distribution among 11 equiplets

0

50

100

150

200

250

300

350

0 20 40 60 80 100

Y

X

Generated Gausian Distribution

Figure A.4: Monte Carlo generated distribution

242 APPENDIX A. MONTE CARLO METHOD

Bibliography

S. Abras, S. Ploix, S. Pesty, and M. Jacomino. A multi-agent home automa-
tion system for power management. Proceedings of the Third International
Conference in Control, Automation, and Robotics, ICINCO 2006, pages 3–
8, 2006.

A. Addis and G. G. Armano. Domobuilder: A multiagent architecture for
home automation. Proceedings of the 11th Workshop Dagli Oggetti Agli
Agenti (WOA 2010), 621 of CEUR Workshop Proceedings, September
2010.

D. Applegate and W. Cook. A computational study of the job-shop schedul-
ing problem. OSRA Jounal of Computing, 3(2):149–156, 1991.

W.A. Arbaugh, D.J. Farber, and J.W. Smith. A secure and reliable bootstrap
architecture. Proceedings of the IEEE Symposium on Security and Privacy,
pages 65–71, 1997.

K. Ashton. That ’the internet of things’ thing. RFID Journal, (22 july),
2009.

J. Axelson. USB Complete: Everything You Need to Develop Custom USB
Peripherals. Lakeview Research, 2nd edition, 2001.

P. Baronti, P. Pillai, V.W.C. Chook, S. Chessa, A. Gotta, and Y. Fun HU.
Wireless sensor networks: A survey on the state of the art and the 802.15.4
and zigbee standards. Computer Communications, 30(7):1655–1695, 2007.

F. Bastani. Keynote presentation at isads 2013: Internet of things. Proceed-
ings of the International Symposium on Autonomous Distributed Systems
(ISADS 2013) Mexico City, 2013.

F. Bellifemine, Caire G., and D. Greenwood. Developing multi-agent systems
with Jade. John Wiley & Sons Ltd., 2007.

243

244 BIBLIOGRAPHY

A. Bensmaine, M. Dahane, and L. Benyoucef. A simulation-based genetic
algorithm approach for process plans selection in uncertain reconfigurable
environment. IFAC Conference on Manufacturing Modelling, Management
and Control, pages 2002–2007, 2013.

L. Blazovics, C. Varga, K. Csorba, M. Fehr, B. Forstner, and H. Charaf.
Vision based area discovery with swarm robots. Second Eastern European
Regional Conference on the Engineering of Computer Based Systems, ecbs-
eerc, pages 149–150, 2011.

Bloomberg. Increase in prices of various resources over a period of 10 years,
www.bloomberg.com. 2009.

C.A.M. Bolzani and M.L. Netto. The engineering of micro agents in smart
environments. International Journal of Knowledge Based Intelligent En-
gineering Systems 13, no. 1, pages 31–38, March 2009.

N.R. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni. Multi-Agent
Programming. Springer, 2005.

R.H. Bordini, L. Braubach, M. Dastani, A.E.F. Seghrouchni, and J.J..
Gomez-Sanz. A survey of programming languages and platforms for multi-
agent systems. The Free Library, 2006.

M.E. Bratman. Intention, Plans, and Practical Reason. Harvard University
Press, Cambridge, Mass, 1987.

L. Braubach, A. Pohkahr, and W. Lamersdorf. Jadex: A short overview.
Proceedings of the Main Conference Net.ObjectDays, 2004.

M. Brink, A.J. Jessurun, F. Franchimon, and J.E.M.H. van Bronswijk. An
open agent-based home automation system. Gerontechnology 2008;7(2),
2008.

M. Burgess. Cfengine as a component of computer immune-systems,. Pro-
ceedings of the Norwegian Informatics Conference, 1998.

M. Burgess, H. Hagerud, S. Straumnes, and T. Reitan. Measuring system
normality. ACM Transactions on Computer Systems (TOCS) Volume 20
Issue 2, pages 125–160, 2002.

B. Burmeister, A. Haddadi, and G. Matylis. Application of multi-agent
systems in trafc and transportation. IEEE Proceedings on Software Engi-
neering 144 (1), page 5160, 1997.

BIBLIOGRAPHY 245

S. Bussmann and D.C. McFarlane. Rationales for holonic manufacturing
control. Proceedings of the second international workshop on intelligent
manufacturing systems, pages 177–184, 1999.

S. Bussmann, N.R. Jennings, and M. Wooldridge. Multiagent Systems for
Manufacturing Control. Springer-Verlag, Berlin Heidelberg, 2004.

D. Cohen. Earth’s natural wealth: an audit. New Scientist, (2605), 2007.

B.W. Coile and J.A. Jordan. Method and apparatus for transpar-
ently providing a failover network device, August 22 2000. URL
http://www.google.com/patents/US6108300. US Patent 6,108,300.

G. Conte, G. Morganti, A. A. Perdon, and D. Scaradozzi. Multi-agent system
theory for resource management in home automation systems. Journal
of physical agents, Special session on practical applications of agents and
multiagent systems, 3, NO 2, 2009.

D.D. Corkill, K.Q. Gallagher, and P.M. Johnson. Achieving flexibility, ef-
ficiency, and generality in blackboard architectures. Proceedings of the
National Conference on Artificial Intelligence, pages 18–23, 1987.

F. Cottet, J Delacroix, C. Kaiser, and Z. Mammeri. Scheduling in Real-Time
Systems. John Wiley and sons, Chichester, West Sussex, 2002.

J.F. Cox, J.H. Blackstone, and M.S. Spencer. APICS Dictionary. American
Production and Inventory Control Society, Falls Church, Virginia, 1992.

M. Dastani. 2apl: a practical agent programming language. Autonomous
Agents and Multi-Agent Systems, 16(3):214–248, 2008.

D.C. Dennett. The Intentional Stance. MIT Press, Cambridge, Mass, 1987.

E. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269271, 1959.

N. Duffie and R. Piper. Non-hierarchical control of manufacturing systems.
Journal of Manufacturing Systems, 5(2):137–139, 1986.

H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping
(slam): Part i the essential algorithms. Robotics and Automation Magazine
13 (2), pages 99–110, 2006.

T.W. Ellis, F.A. Smith, and L.L. Jones. Methods and opportunities in the
recycling of rare earth based materials. The Metallurgical Society (TMS)
conference on high performance composites, (IS-M–796), 1994.

246 BIBLIOGRAPHY

K. Finkenzeller. RFID handbook: Radio-frequency identification fundamen-
tals and applications. John Wiley, 1999.

K. Fisher. Agent-based design of holonic manufacturing systems. Robotics
and Autonomous Systems, 27(1-2):3–13, 1999.

future.wikia.com/wiki/Domotics. http://future.wikia.com/wiki/Domotics.
accessed in 2012, 2008.

H.L. Gantt. A graphical daily balance in manufacture. Transactions of the
American Society of Mechanical Engineers, 24:1322–1336, 1903.

H.L. Gantt. Work, Wages, and Profits. Reprinted by Hive Publishing Com-
pany, Easton, Maryland, 1973, 1916.

D. Gelernter. Generative communication in linda. ACM Transactions on
Programming Languages and Systems (TOPLAS), 7(1):80–112, 1985.

B. Gnedenko and I. A. Ushakov. Probabilistic Reliability Engineering. Wiley-
Interscience, 1995.

B. Gnedenko, I.V. Pavlov, and I.A. Ushakov. Statistical Reliability Engineer-
ing. Wiley-Interscience, 1999.

S.L. Goldman, R. N. Nagel, and K. Preiss. Agile competitors and virtual
organizationsmeasuring agility and infrastructure for agility. 1995.

T. E. Graedel, E. M. Harper, N. T. Nassar, and Barbara K. Reck. On the
materials basis of modern society. Proceedings of the National Academy of
Sciences, 2013.

M. Gunther. The end of garbage. Fortune, 2007.

K. Hamilton, D.M. Lane, K.E. Brown, and J. Taylor. An integrated diag-
nostic architecture for autonomous underwater vehicles. Journal of Field
Robotics, (24(6)):497–526, 2007.

R. Harper. The Connected Home: The future of domestic life. Springer,
2011.

R. Harper et al. Inside the smart home. Springer, 2003.

M.A. Hearst. Mixed-initiative interaction. IEEE Intelligent Systems, septem-
ber/october:14–24, 1999.

J. Herrmann. Handbook of Production Scheduling. Springer, 2006.

BIBLIOGRAPHY 247

B. Heydenreich, R. Mller, and M. Uetz. Mechanism design for decentralized
online machine scheduling. Operations Research, 58(2):445–457, 2010.

K. Hindriks. Agent programming languages: Programming with mental mod-
els. PhD-thesis University of Utrecht, 2001.

W.-J. van Hoeve, C.P. Gomes, M. Lombardi, and B. Selman. Optimal multi-
agent scheduling with constraint programming. IAAI 2007 proceedings,
2007.

N.R. Jennings and S. Bussmann. Agent-based control system. IEEE Control
Systems Magazine, (Vol 23 nr.3):61–74, 2003.

A. Karageorgos, N. Mehandjiev, G. Weichhart, and A. Hämmerle. Agent-
based optimisation of logistics and production planning. Engineering Ap-
plications of Artificial Intelligence, 21(1):28–32, 2003.

J. Kletti. Manufacturing Execution System - MES. Springer-Verlag, Berlin
Heidelberg, 2007.

A. Koestler. The Ghost in the Machine. Arkana Books, London, 1969.

Y. Koren and G. Ulsoy. Vision, principles and impact of recongurable man-
ufacturing systems. 2002.

Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy, and
H. van Brussel. Recongurable manufacturing systems. 1999.

G. Kovacs and Heidegger G. Car-recycling sme network with agent-based so-
lutions. European Research Consortium for Informatics and Mathematics,
(73), 2008.

R.P.J. van der Krogt, M.M. de Weerdt, N. Roos, and C. Witteveen.
Multiagent planning through plan repair. In Frank Dignum, Vir-
ginia Dignum, Sven Koenig, Sarit Kraus, Munindar P. Singh, and
Michael Wooldridge, editors, Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS-
05), pages 1337–1338. ACM press, 2005. ISBN 1-59593-094-9. URL
http://www.pds.ewi.tudelft.nl/ mathijs/aamas05poster.pdf.

R. Lafeber, G van den Bosch, M. Murre, J.. Bassa, L.J.M. van Moergestel,
and E. Puik. Characterisation of high accuracy, feedback controlled, adhe-
sive bonding. Proceedings of the International Precision Assembly Seminar
(IPAS 2012), 2012.

248 BIBLIOGRAPHY

P. Leitão. Agent-based distributed manufacturing control: A state-of-the-art
survey. pages 979–991, 2009.

G.L. Lilien, P. Kotler, and K. Sridhar Moorthy. Marketing models. Prentice-
Hall of India, 2003.

R. M. Metcalfe and D. R. Boggs. Ethernet: Distributed packet switching for
local computer networks. Commun. ACM, 19(7):395–404, July 1976.

W.N. Mitchell. Organization and Management of Production. McGraw-Hill
Book Company, New York, 1939.

L.J.M. van Moergestel. In Zee met C. Academic Service, SDU, 2009.

L.J.M. van Moergestel, J.J.Ch. Meyer, E. Puik, and D.H. Telgen. The role of
agents in the lifecycle of a product. CMD 2010 proceedings, pages 28–32,
2010a.

L.J.M. van Moergestel, J.J.Ch. Meyer, E. Puik, and D.H. Telgen. Simulation
of multiagent-based agile manufacturing. CMD 2010 proceedings, pages
23–27, 2010b.

L.J.M. van Moergestel, J.J.Ch. Meyer, E. Puik, and D.H. Telgen. Decentral-
ized autonomous-agent-based infrastructure for agile multiparallel man-
ufacturing. Proceedings of the International Symposium on Autonomous
Distributed Systems (ISADS 2011) Kobe, Japan, pages 281–288, 2011.

L.J.M. van Moergestel, J.J.Ch. Meyer, E. Puik, and D.H. Telgen. Production
scheduling in an agile agent-based production grid. Proceedings of the
Intelligent Agent Technology (IAT 2012), pages 293–298, 2012.

L.J.M. van Moergestel, J.J.Ch. Meyer, W. Langerak, G. Meerstra, N. van
Nieuwenburg, F. Pape, E. Puik, and D.H. Telgen. Agents in domestic
environments. International Conference on Control Systems and Computer
Science (CSCS 2013), Bucharest, Romenia, pages 487–494, 2013a.

L.J.M. van Moergestel, J.J.Ch. Meyer, E. Puik, and D.H. Telgen. Multiagent-
based agile manufacturing: requirement-driven low cost production. Work-
shop EUMAS 2013, Toulouse, 2013b.

L.J.M. van Moergestel, J.J.Ch. Meyer, E. Puik, and D.H. Telgen. Monitoring
agents in complex products enhancing a discovery robot with an agent
for monitoring, maintenance and disaster prevention. Proceedings of the
International Conference on Agents and Artificial Intelligence (ICAART
2013), 2:5–13, 2013c.

BIBLIOGRAPHY 249

L.J.M. van Moergestel, J.J.Ch. Meyer, E. Puik, and D.H. Telgen. A versatile
agile agent-based infrastructure for hybrid production environments. IFAC
Modeling in Manufacturing proceedings, Saint Petersburg, pages 210–215,
2013d.

L.J.M. van Moergestel, J.J.Ch. Meyer, E. Puik, and D.H. Telgen. Embedded
autonomous agents in products supporting repair and recycling. Proceed-
ings of the International Symposium on Autonomous Distributed Systems
(ISADS 2013) Mexico City, pages 67–74, 2013e.

L.J.M. van Moergestel, J.J.Ch. Meyer, E. Puik, D.H. Telgen, R. van Rijn,
and B. Segerius. A multiagent-based agile work distribution system. Pro-
ceedings of the Intelligent Agent Technology (IAT 2013), pages 293–298,
2013f.

L.J.M. van Moergestel, J.J.Ch. Meyer, E. Puik, and D.H. Telgen. Agent-
based manufacturing in a production grid: Adapting a production grid
to the production paths. Proceedings of the International Conference on
Agents and Artificial Intelligence (ICAART 2014), 1:342–349, 2014.

L. Monostori, J. Vancza, and S.R.T. Kumara. Agent-based systems for man-
ufacturing. Annals of the CIRP, 55(2), 2006.

E. Montaldo, R. Sacile, M Coccoli, M Paolucci, and A Boccalatte. Agent-
based enhanced workflow in manufacturing information systems: the
makeit approach. J. Computing Inf. Technol., (10), 2002.

C. Muñoz, D. Arellano, F.J. Perales, and G. Fontaned. Perceptual and intel-
ligent domotic system for disabled people. Proceedings of the 6th IASTED
International Conference on Visualization, Imaging and Image Processing,
pages 70–75, 2006.

J.P. Müller. The design of intelligent agents: a layered approach. Springer,
1996.

M. Neef. A taxonomy of human - agent team collaborations. Proceedings of
the 18th BeNeLux Conference on Artificial Intelligence (BNAIC), pages
245–250, 2006.

J. Nielsen and J. Levy. Measuring usability: preference vs. performance.
ACM, 1994.

J. Nielsen and R.L. Mack. Usability Inspection Methods. John Wiley & Sons,
1994.

250 BIBLIOGRAPHY

R.J.C. Nunes. Home automation - a step towards better energy management.
International conference on renewable energies and power quality, 2003.

R.J.C. Nunes and S.J. da Silva. Adding intelligence to home automation
systems. IADIS international conference applied computing, 2004.

D. Ouelhadj, C. Hanachi, and B. Bouzouia. Multi-agent architecture for
distributed monitoring in flexible manufacturing systems (fms). ICRA
2000 proceedings, pages 2416–2421, 2000.

M. Paolucci and R. Sacile. Agent-based manufacturing and control systems
: new agile manufacturing solutions for achieving peak performance. CRC
Press, Boca Raton, Fla., 2005.

M.P. Papazoglou. Service-oriented computing: concepts, characteristics and
directions. Proceedings of the Fourth International Conference on Web
Information Systems Engineering (WISE 2003), pages 3–12, 2003.

H.V.D. Parunak. What can agents do in industry, and why? an overview
of industrially-oriented r&d at cec. Cooperative Information Agents II
Learning, Mobility and Electronic Commerce for Information Discovery
on the Internet, Lecture Notes in Computer Science, 1435:1–18, 1998.

M. Poppendieck and M.A. Cusumano. Lean software development: A tuto-
rial. Software, IEEE, 29(5):26–32, 2012.

E. Puik and L.J.M. van Moergestel. Agile multi-parallel micro manufactur-
ing using a grid of equiplets. Proceedings of the International Precision
Assembly Seminar (IPAS 2010), pages 271–282, 2010.

E. Puik, L.J.M. van Moergestel, and D.H. Telgen. Cost modelling for mi-
cro manufacturing logistics when using a grid of equiplets. International
Symposium on Assembly and Manufacturing (ISAM 2011), 2011.

M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Eheeler, and Ng A. Ros: an open source robot operating system. Open-
Source Software workshop of the International Conference on Robotics and
Automation (ICRA), 2009.

R.J. Rabello, L.M. Camarinha-Matos, and Afsarmanesh H. Multi-agent-
based agile scheduling. Robotics and Autonomous Systems Volume 27,
Issues 1-2, pages 15–28, 1999.

P. Rane. Design of modbus controller using vhdl for remote administrations
of a network of devices. pages 694–697, Nov 2010.

BIBLIOGRAPHY 251

A.S. Rao and M.P. Georgeff. Agentspeak. Proceedings of the Seventh Euro-
pean Workshop on Moddeling Autonomous Agents in a Multi-Agent World,
1038 of LNAI Springer, 1996.

M. Ruta, F. Scioscia, G. Loseto, and E. Di Sciascio. Perceptual and intelligent
domotica systems for disabled people. 2006.

M. Ruta, F. Scioscia, G. Loseto, and E. Di Sciascio. An agent framework for
knowledge-based homes. Third International Workshop on Agent Tech-
nologies for Energy Systems (ATES 2012). A workshop of the Eleventh
International Conference on Autonomous Agents an Multiagent Systems
(AAMAS 2012), 2012.

G. Salvendy. Handbook of Industrial Engineering, Technology and Operations
Management. John Wiley & Sons Ltd., 2001.

R.A. Sarker and R. Khan. An optimal batch size for a production system
operating under periodic delivery policy. Computers & Industrial Engi-
neering, 37 issue 4:711–730, 2013.

R.J. Schonberger. Some observations on the advantages and implementation
issues of just-in-time production systems. Journal of Operations Manage-
ment, 3(1):1–11, 1982.

W.T. Shaw. Computer Control of BATCH Processes. EMC Controls, 1982.

W. Shen, Q. Hao, H.J. Yoon, and D.H. Norrie. Applications of agent-based
systems in intelligent manufacturing: An update review. Advanced Engi-
neering Informatics, pages 415–431, 2006.

S. Shingo. A Study of the Toyota Production System. Productivity Press,
1989.

B. Shneiderman and P. Maes. Direct manipulation vs. interface agents. In-
teractions, 4 No. 5:42–61, 1997.

M.P. Singh. Agent communication languages: Rethinking the principles.
Lecture Notes in Computer Science, 2650(0302-9743):37–50, 2003.

J. Song, H. Song, A.K. Mok, and D. Chen. Wirelesshart: Applying wireless
technology in real-time industrial process control. Symposium on Real-
Time and Embedded Technology and Applications, pages 377–386, 2008.

A.S. Tanenbaum and D.J. Wetherall. Computer Networks. Prentice Hall,
5th edition, 2010.

252 BIBLIOGRAPHY

A.S. Tanenbaum, F.M. Kaashoek, R. van Renesse, and H.E. Bal. The amoeba
distributed operating system - a status report. Computer Communications,
(14):324–335, 1991.

D.H. Telgen, L.J.M. van Moergestel, E. Puik, and J.J.Ch. Meyer. Require-
ments and matching software technologies for sustainable and agile man-
ufacturing systems. INTELLI 2013 proceedings, pages 30–35, 2013.

K.W. Tindell, H. Hansson, and A.J. Wellings. Analysing real-time commu-
nications: controller area network (can). pages 259–263, 1994.

N. Vergunst. BDI-based Generation of Robust Task-Oriented Dialogues. The-
sis Utrecht University, 2011.

B. Vogel-Heuser, G. Kegel, K. Bender, and K. Wucherer. Global information
architecture for industrial automation. ATP, Automatisieringstechnische
Praxis, 1(2):108–115, 2009.

Y.H. Wang, C.W. Yin, and C.W. Zhang. A multi-agent and distributed ruler
based approach to production scheduling of agile manufacturing systems.
International Journal of Computer Integrated Manufacturing, 16(2), 2003.

M.M. de Weerdt and B.J. Clement. Introduction to planning in mul-
tiagent systems (preprint). Multiagent and Grid Systems An In-
ternational Journal, 5(4):345–355, 2009. ISSN 1574-1702. URL
http://www.st.ewi.tudelft.nl/ mathijs/publications/mags09.pdf.

M.M. de Weerdt, H. Tonino, and C. Witteveen. Cooperative heuristic multi-
agent planning. In Proceedings of the Thirteenth Belgium-Netherlands Ar-
tificial Intelligence Conference (BNAIC-01), pages 275–282, 2001. URL
http://www.pds.ewi.tudelft.nl/ mathijs/bnaic01.pdf.

O.W. Wight. Production and Inventory Management in the Computer Age.
Van Nostrand Reinhold Company, Inc., New York, 1984.

K. Wnuk, B. Fulkerson, and J. Sudol. A scalable architecture for multi
agent vision based robot scavenging. American Association for Articial
Intelligence, 2006.

M. Wooldridge. An Introduction to MultiAgent Systems, Second Edition.
Wiley, Sussex, UK, 2009.

M. Wooldridge and N. Jennings. Intelligent agents: Theory and practice.
The Knowledge Engineering Review, (10(2)):115–152, 1995.

BIBLIOGRAPHY 253

M. Wooldridge and N. Jennings. Pitfalls of agent-oriented development. Pro-
ceedings of the Second International Conference on Autonomous Agents,
ACM Press, New York, (Agents 98), 1998.

www.knx.org. http://www.knx.org/knx-standard/main-advantages/. ac-
cessed in 2012, 2012.

W. Xiang and H.P. Lee. Ant colony intelligence in multi-agent dynamic man-
afacturing scheduling. Engineering Applications of Artificial Intelligence,
16(4):335–348, 2008.

254 BIBLIOGRAPHY

Summary

The thesis describes the application of agent technology in product manu-
facturing and product support. In this context an agent is an autonomous
operating software entity designed for a special goal and living in an environ-
ment. Agents receive information about the environment, can influence the
environment and are capable to communicate with each other. Important
issues in the requirements of modern production are short time to market,
requirement-driven production and low cost small quantity production. To
meet these requirements special low cost production platforms have been de-
veloped in our research. These reconfigurable platforms are called equiplets.
A grid of these equiplets connected by a fast network is capable of producing
a variety of different products in parallel. This is what we call multiparallel
agile manufacturing.

The multiagent-based software infrastructure is responsible for the ag-
ile manufacturing. Two types of agents play an important role. A product
agent is responsible for the production of a single product and equiplet agents
will perform the production steps to assemble the product. The equiplet
agent will receive product step parameters from the product agent and the
equiplet agent will inform the product agent about the completion of a prod-
uct step. This concept has many differences with standard mass production.
Every product needs its own, possibly unique path along the equiplets. The
scheduling is product-based and not batch-based. There is no concept as a
general production line, but every product should be transported according
to its path along the equiplets. The thesis describes the software architec-
ture of this production system and proposes solutions for path planning,
scheduling and product transport during manufacturing. For path planning,
software has been developed that generates a route with a minimum of tran-
sitions between equiplets. The scheduling is based on scheduling concepts,
used in real-time operating systems. The transport will be based on auto-
mated guided vehicles. The product agent plays an important role in these
solutions.

At the end of the production phase, a product has been produced and

255

256 Summary

there is a software entity, the product agent, that was responsible for the pro-
duction, that collected production data during manufacturing. This product
agent can play an important role in other phases of the life cycle of a product.
The concept of the Internet of Things can be implemented by using this prod-
uct agent, embedded in the product itself of closely tied to the product and
living in cyberspace. Several possibilities and advantages of this approach are
proposed and investigated in the thesis. To prove these possibilities, several
cases have been studied and actually built as a proof of concept.

The third major concept proposed in the thesis is the use of a web inter-
face to enable end users to specify and design their products. The system
that has been built, can be characterized in terms of cloud computing as
the implementation of a manufacturing as a service (MaaS) system. Using
equiplets that can perform 3D printing in combination with equiplets that
can assemble the printed parts, this creates a new paradigm for automated
manufacturing. This paradigm meets the requirements of modern manufac-
turing as mentioned earlier.

A final topic of research has been the investigation if the proposed man-
ufacturing model could also be applied to situations that differ from the
production grid. It turned out that the agent-based architecture can also
be applied to situations where equiplets are replaced by human workers. A
proof of concept that covers this situation concludes the thesis.

Samenvatting

Dit proefschrift heeft als onderwerp de toepassing van agenttechnologie in
productie en productondersteuning. Onder een agent verstaan we in deze
context een autonoom opererende software entiteit die gemaakt is om een
zeker doel te realiseren en daartoe met de omgeving comuniceert en zelf-
standig acties kan uitvoeren. In moderne productiesystemen streeft men
ernaar om de tijd van ontwerp tot productie zo kort mogelijk te houden en
de productie af te stemmen op de wensen van de individuele eindgebruiker.
Vooral dit laatste streven past niet in het concept van massaproductie. Een
methode moet gezocht worden om kleine hoeveelheden of zelfs unieke pro-
ducten tegen een lage kostprijs te fabriceren. Om dit te verwezenlijken zijn
voor dit onderzoek speciale goedkope productieplatforms ontwikkeld. Deze
herconfigureerbare productiemachines noemen we equiplets. Een verzame-
ling van deze equiplets in een gridopstelling geplaatst en gekoppeld met een
snelle netwerkverbinding is in staat om een aantal verschillende producten
tegelijk te produceren. Dit noemen we flexibele parallelle productie.

Voor de softwareinfrastructuur is agenttechnologie toegepast. Twee typen
agenten spelen hierin een hoofdrol. Een productagent is verantwoordelijk
voor de totstandkoming van een enkel product. De productiemachines wor-
den voorgesteld door zogenoemde equipletagenten. De productagent weet
wat er moet gebeuren voor het maken van een product terwijl de equiple-
tagent weet hoe een of meer productiestappen moeten worden uitgevoerd.
Het hier voorgesteld concept verschilt in veel opzichten van standaard mas-
saproductie. Elk product in wording volgt zijn eigen, mogelijk unieke pad
langs de equiplets, de productie wordt per product gescheduled en niet per
batch en er is geen sprake van een productielijn. Dit proefschrift stelt de soft-
warearchitectuur voor en beschrijft oplossingen voor de routeplanning waar-
bij het aantal wisselingen tussen equiplets geminimaliseerd is, een scheduling
die gebaseerd is op schedulingschema’s zoals toegepast in real-time operating
systems en een op autonome voertuigen gebaseerd transportsysteem. Bij al
deze oplossingen speelt de productagent een belangrijke rol.

Na de productiefase is er een product, maar ook een software entiteit,

257

258 Samenvatting

namelijk de product agent die vanaf het begin het bouwplan van het product
heeft meegekregen en tijdens de productie belangrijke gegevens heeft verza-
meld. Gezien deze set van gegevens, is de productagent een interessante
kandidaat om een verdere rol te spelen in andere fasen van de levenscyclus
van een product. De productagent kan aan de basis staan van de imple-
mentatie van ’the Internet of Things’. De productagent kan hiervoor in het
product zelf opgenomen worden of in cyberspace voortleven en van afstand
contact houden met het product. Verschillende mogelijkheden voor imple-
mentatie en voordelen van deze aanpak worden voorgesteld en onderzocht
in dit proefschrift. Om de mogelijkheden en voordelen ook te toetsen is een
aantal situaties bestudeerd en zijn hier proof of concepts van gegeven door
ze daadwerkelijk te bouwen.

Na deze twee onderdelen is als derde punt een webinterface ontwikkeld
om het productiegrid vanuit de eindgebruiker te benaderen. Een eindge-
bruiker kan zo zelf zijn product specificeren of ontwerpen. Het systeem dat
op deze wijze is gebouwd kan in termen van cloud computing gekarakteriseerd
worden als een Manufacturing as a Service (MaaS) systeem. Door gebruik
te maken van equiplets die 3D-printing als productiestap kunnen uitvoeren
in combinatie met equiplets die vervolgens de assemblage van de onderde-
len kunnen verzorgen, ziet op deze wijze een nieuw productieconcept het
daglicht. Dit concept zal de massaproductie niet doen verdwijnen, maar
biedt een interessant alternatief. Dit alternatief voldoet aan de eerder ge-
noemde doelstellingen, namelijk dat de tijd van ontwerp tot productie kort is
en de eindgebruiker het product geheel naar eigen wens kan specificeren. Het
maken van kleine oplagen of enkele producten is op een kosteffectieve manier
mogelijk, omdat dit binnen het productiegrid voor verschillende producten
gelijktijdig kan gebeuren met relatief goedkope productiemachines.

Als laatste onderzoeksonderwerp is gekeken of het voorgesteld produc-
tiemodel ook toe te passen is op andere situaties dan een productiegrid,
zoals een productie- of werkomgeving met mensen in plaats van equiplets.
Ook hier is een proof of concept gebouwd om de veronderstelling te staven.

Curriculum Vitae

Persoonlijke gegevens

Naam: Leonoardus Joseph Maria van Moergestel
Geboortedatum: 24-03-1955 Geboorteplaats: Dussen

Opleiding

Gymnasium B
Kandidaats natuurkunde met bijvak sterrenkunde
Doctoraal experimentele natuurkunde met bijvak elektrotechniek

Onderzoekscripties: Elektron-atoom botsingen,
Monte Carlo simulatie van ladingstransport in silicium,
Generatie-recombinatieruis in silicium

Werkervaring

1981-1990 Wetenschappelijk systeemprogrammeur en hardwarespecialist bij
de Vrije Universiteit in Amsterdam.
1990-2013 Hogeschooldocent aan de Hogeschool Utrecht in onder meer de
vakken elektrotechniek, elektronica, programmeren in C, operating systems.
2014: Hogeschoolhoofddocent aan de Hogeschool Utrecht

259

SIKS Dissertatiereeks
====
2009
====

2009-01 Rasa Jurgelenaite (RUN)
Symmetric Causal Independence Models

2009-02 Willem Robert van Hage (VU)
Evaluating Ontology-Alignment Techniques

2009-03 Hans Stol (UvT)
A Framework for Evidence-based Policy Making Using IT

2009-04 Josephine Nabukenya (RUN)
Improving the Quality of Organisational Policy Making
using Collaboration Engineering

2009-05 Sietse Overbeek (RUN)
Bridging Supply and Demand for Knowledge Intensive Tasks
Based on Knowledge, Cognition, and Quality

2009-08 Volker Nannen (VU)
Evolutionary Agent-Based Policy Analysis in Dynamic Environments

2009-09 Benjamin Kanagwa (RUN)
Design, Discovery and Construction of Service-oriented Systems

2009-10 Jan Wielemaker (UVA)
Logic programming for knowledge-intensive interactive applications

2009-11 Alexander Boer (UVA)
Legal Theory, Sources of Law & the Semantic Web

2009-12 Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin)
Operating Guidelines for Services

2009-13 Steven de Jong (UM)
Fairness in Multi-Agent Systems

2009-14 Maksym Korotkiy (VU)
From ontology-enabled services to service-enabled ontologies
(making ontologies work in e-science with ONTO-SOA)

2009-15 Rinke Hoekstra (UVA)
Ontology Representation
Design Patterns and Ontologies that Make Sense

2009-16 Fritz Reul (UvT)
New Architectures in Computer Chess

2009-17 Laurens van der Maaten (UvT)
Feature Extraction from Visual Data

2009-18 Fabian Groffen (CWI)
Armada, An Evolving Database System

2009-19 Valentin Robu (CWI)
Modeling Preferences, Strategic Reasoning and
Collaboration in Agent-Mediated Electronic Markets

2009-20 Bob van der Vecht (UU)
Adjustable Autonomy: Controling Influences on Decision Making

2009-21 Stijn Vanderlooy (UM)
Ranking and Reliable Classification

2009-22 Pavel Serdyukov (UT)
Search For Expertise: Going beyond direct evidence

2009-23 Peter Hofgesang (VU)
Modelling Web Usage in a Changing Environment

2009-24 Annerieke Heuvelink (VUA)
Cognitive Models for Training Simulations

2009-25 Alex van Ballegooij (CWI)
RAM: Array Database Management through Relational Mapping

2009-26 Fernando Koch (UU)
An Agent-Based Model for the Development of Intelligent Mobile Services

2009-27 Christian Glahn (OU)
Contextual Support of social Engagement and Reflection on the Web

2009-28 Sander Evers (UT)
Sensor Data Management with Probabilistic Models

2009-29 Stanislav Pokraev (UT)
Model-Driven Semantic Integration of Service-Oriented Applications

2009-30 Marcin Zukowski (CWI)
Balancing vectorized query execution with bandwidth-optimized storage

2009-31 Sofiya Katrenko (UVA)
A Closer Look at Learning Relations from Text

2009-32 Rik Farenhorst (VU) and Remco de Boer (VU)
Architectural Knowledge Management: Supporting Architects and Auditors

2009-33 Khiet Truong (UT)
How Does Real Affect Affect Affect Recognition In Speech?

2009-34 Inge van de Weerd (UU)
Advancing in Software Product Management:
An Incremental Method Engineering Approach

2009-35 Wouter Koelewijn (UL)
Privacy en Politiegegevens;
Over geautomatiseerde normatieve informatie-uitwisseling

2009-36 Marco Kalz (OUN)
Placement Support for Learners in Learning Networks

2009-37 Hendrik Drachsler (OUN)
Navigation Support for Learners in Informal Learning Networks

2009-38 Riina Vuorikari (OU)
Tags and self-organisation:
a metadata ecology for learning resources in a multilingual context

2009-39 Christian Stahl (TUE, Humboldt-Universitaet zu Berlin)
Service Substitution – A Behavioral Approach Based on Petri Nets

2009-40 Stephan Raaijmakers (UvT)
Multinomial Language Learning: Investigations into the Geometry of Language

2009-41 Igor Berezhnyy (UvT)
Digital Analysis of Paintings

2009-42 Toine Bogers
Recommender Systems for Social Bookmarking

2009-43 Virginia Nunes Leal Franqueira (UT)
Finding Multi-step Attacks in Computer Networks using Heuristic Search
and Mobile Ambients

2009-44 Roberto Santana Tapia (UT)
Assessing Business-IT Alignment in Networked Organizations

2009-45 Jilles Vreeken (UU)
Making Pattern Mining Useful

2009-46 Loredana Afanasiev (UvA)
Querying XML: Benchmarks and Recursion

====
2010
====

2010-01 Matthijs van Leeuwen (UU)
Patterns that Matter

2010-02 Ingo Wassink (UT)
Work flows in Life Science

2010-03 Joost Geurts (CWI)
A Document Engineering Model and Processing Framework for
Multimedia documents

2010-04 Olga Kulyk (UT)
Do You Know What I Know?
Situational Awareness of Co-located Teams in Multidisplay Environments

2010-05 Claudia Hauff (UT)
Predicting the Effectiveness of Queries and Retrieval Systems

2010-06 Sander Bakkes (UvT)
Rapid Adaptation of Video Game AI

2010-07 Wim Fikkert (UT)
Gesture interaction at a Distance

2010-08 Krzysztof Siewicz (UL)
Towards an Improved Regulatory Framework of Free Software.
Protecting user freedoms in a world of software communities and eGovernments

2010-09 Hugo Kielman (UL)
A Politiele gegevensverwerking en Privacy, Naar een effectieve waarborging

2010-10 Rebecca Ong (UL)
Mobile Communication and Protection of Children

2010-11 Adriaan Ter Mors (TUD)
The world according to MARP: Multi-Agent Route Planning

2010-12 Susan van den Braak (UU)
Sensemaking software for crime analysis

2010-13 Gianluigi Folino (RUN)
High Performance Data Mining using Bio-inspired techniques

2010-14 Sander van Splunter (VU)
Automated Web Service Reconfiguration

2010-15 Lianne Bodenstaff (UT)
Managing Dependency Relations in Inter-Organizational Models

2010-16 Sicco Verwer (TUD)
Efficient Identification of Timed Automata, theory and practice

2010-17 Spyros Kotoulas (VU)
Scalable Discovery of Networked Resources: Algorithms, Infrastructure, Applications

2010-18 Charlotte Gerritsen (VU)
Caught in the Act: Investigating Crime by Agent-Based Simulation

2010-19 Henriette Cramer (UvA)
People’s Responses to Autonomous and Adaptive Systems

2010-20 Ivo Swartjes (UT)
Whose Story Is It Anyway?
How Improv Informs Agency and Authorship of Emergent Narrative

2010-21 Harold van Heerde (UT)
Privacy-aware data management by means of data degradation

2010-22 Michiel Hildebrand (CWI)
End-user Support for Access to Heterogeneous Linked Data

2010-23 Bas Steunebrink (UU)
The Logical Structure of Emotions

2010-24 Dmytro Tykhonov
Designing Generic and Efficient Negotiation Strategies

2010-25 Zulfiqar Ali Memon (VU)
Modelling Human-Awareness for Ambient Agents: A Human Mindreading Perspective

2010-26 Ying Zhang (CWI)
XRPC: Efficient Distributed Query Processing on Heterogeneous XQuery Engines

2010-27 Marten Voulon (UL)
Automatisch contracteren

2010-28 Arne Koopman (UU)
Characteristic Relational Patterns

2010-29 Stratos Idreos(CWI)
Database Cracking: Towards Auto-tuning Database Kernels

2010-30 Marieke van Erp (UvT)
Accessing Natural History - Discoveries in data cleaning, structuring, and retrieval

2010-31 Victor de Boer (UVA)
Ontology Enrichment from Heterogeneous Sources on the Web

2010-32 Marcel Hiel (UvT)
An Adaptive Service Oriented Architecture: Automatically solving
Interoperability Problems

2010-33 Robin Aly (UT)
Modeling Representation Uncertainty in Concept-Based Multimedia Retrieval

2010-34 Teduh Dirgahayu (UT)
Interaction Design in Service Compositions

2010-35 Dolf Trieschnigg (UT)
Proof of Concept: Concept-based Biomedical Information Retrieval

2010-36 Jose Janssen (OU)
Paving the Way for Lifelong Learning;
Facilitating competence development through a learning path specification

2010-37 Niels Lohmann (TUE)
Correctness of services and their composition

2010-38 Dirk Fahland (TUE)
From Scenarios to components

2010-39 Ghazanfar Farooq Siddiqui (VU)
Integrative modeling of emotions in virtual agents

2010-40 Mark van Assem (VU)
Converting and Integrating Vocabularies for the Semantic Web

2010-41 Guillaume Chaslot (UM)
Monte-Carlo Tree Search

2010-42 Sybren de Kinderen (VU)
Needs-driven service bundling in a multi-supplier setting - the computational
e3-service approach

2010-43 Peter van Kranenburg (UU)
A Computational Approach to Content-Based Retrieval of Folk Song Melodies

2010-44 Pieter Bellekens (TUE)
An Approach towards Context-sensitive and User-adapted Access to
Heterogeneous Data Sources, Illustrated in the Television Domain

2010-45 Vasilios Andrikopoulos (UvT)
A theory and model for the evolution of software services

2010-46 Vincent Pijpers (VU)
e3alignment: Exploring Inter-Organizational Business-ICT Alignment

2010-47 Chen Li (UT)
Mining Process Model Variants: Challenges, Techniques, Examples

2010-48 Milan Lovric (EUR)
Behavioral Finance and Agent-Based Artificial Markets

2010-49 Jahn-Takeshi Saito (UM)
Solving difficult game positions

2010-50 Bouke Huurnink (UVA)
Search in Audiovisual Broadcast Archives

2010-51 Alia Khairia Amin (CWI)

Understanding and supporting information seeking tasks in multiple sources

2010-52 Peter-Paul van Maanen (VU)
Adaptive Support for Human-Computer Teams:
Exploring the Use of Cognitive Models of Trust and Attention

2010-53 Edgar Meij (UVA)
Combining Concepts and Language Models for Information Access

====
2011
====

2011-01 Botond Cseke (RUN)
Variational Algorithms for Bayesian Inference in Latent Gaussian Models

2011-02 Nick Tinnemeier(UU)
Organizing Agent Organizations.
Syntax and Operational Semantics of an Organization-Oriented Programming Language

2011-03
Jan Martijn van der Werf (TUE)
Compositional Design and Verification of Component-Based Information Systems

2011-04 Hado van Hasselt (UU)
Insights in Reinforcement Learning;
Formal analysis and empirical evaluation of temporal-difference learning algorithms

2011-05 Base van der Raadt (VU)
Enterprise Architecture Coming of Age
- Increasing the Performance of an Emerging Discipline.

2011-06 Yiwen Wang (TUE)
Semantically-Enhanced Recommendations in Cultural Heritage

2011-07 Yujia Cao (UT)
Multimodal Information Presentation for High Load Human Computer Interaction

2011-08 Nieske Vergunst (UU)
BDI-based Generation of Robust Task-Oriented Dialogues

2011-09 Tim de Jong (OU)
Contextualised Mobile Media for Learning

2011-10 Bart Bogaert (UvT)
Cloud Content Contention

2011-11 Dhaval Vyas (UT)
Designing for Awareness: An Experience-focused HCI Perspective

2011-12 Carmen Bratosin (TUE)
Grid Architecture for Distributed Process Mining

2011-13 Xiaoyu Mao (UvT)
Airport under Control. Multiagent Scheduling for Airport Ground Handling

2011-14 Milan Lovric (EUR)
Behavioral Finance and Agent-Based Artificial Markets

2011-15 Marijn Koolen (UvA)
The Meaning of Structure: the Value of Link Evidence for Information Retrieval

2011-16 Maarten Schadd (UM)
Selective Search in Games of Different Complexity

2011-17 Jiyin He (UVA)
Exploring Topic Structure: Coherence, Diversity and Relatedness

2011-18 Mark Ponsen (UM)
Strategic Decision-Making in complex games

2011-19 Ellen Rusman (OU)
The Mind ’ s Eye on Personal Profiles

2011-20 Qing Gu (VU)
Guiding service-oriented software engineering - A view-based approach

2011-21 Linda Terlouw (TUD)
Modularization and Specification of Service-Oriented Systems

2011-22 Junte Zhang (UVA)
System Evaluation of Archival Description and Access

2011-23 Wouter Weerkamp (UVA)
Finding People and their Utterances in Social Media

2011-24 Herwin van Welbergen (UT)
Behavior Generation for Interpersonal Coordination with Virtual Humans On
Specifying, Scheduling and Realizing Multimodal Virtual Human Behavior

2011-25 Syed Waqar ul Qounain Jaffry (VU)
Analysis and Validation of Models for Trust Dynamics

2011-26 Matthijs Aart Pontier (VU)
Virtual Agents for Human Communication - Emotion Regulation and Involvement
- Distance Trade-Offs in Embodied Conversational Agents and Robots

2011-27 Aniel Bhulai (VU)
Dynamic website optimization through autonomous management of design patterns

2011-28 Rianne Kaptein(UVA)
Effective Focused Retrieval by Exploiting Query Context and Document Structure

2011-29 Faisal Kamiran (TUE)
Discrimination-aware Classification

2011-30 Egon van den Broek (UT)
Affective Signal Processing (ASP): Unraveling the mystery of emotions

2011-31 Ludo Waltman (EUR)
Computational and Game-Theoretic Approaches for Modeling Bounded Rationality

2011-32 Nees-Jan van Eck (EUR)
Methodological Advances in Bibliometric Mapping of Science

2011-33 Tom van der Weide (UU)
Arguing to Motivate Decisions

2011-34 Paolo Turrini (UU)
Strategic Reasoning in Interdependence: Logical and Game-theoretical Investigations

2011-35 Maaike Harbers (UU)
Explaining Agent Behavior in Virtual Training

2011-36 Erik van der Spek (UU)
Experiments in serious game design: a cognitive approach

2011-37 Adriana Burlutiu (RUN)
Machine Learning for Pairwise Data, Applications for
Preference Learning and Supervised Network Inference

2011-38 Nyree Lemmens (UM)
Bee-inspired Distributed Optimization

2011-39 Joost Westra (UU)
Organizing Adaptation using Agents in Serious Games

2011-40 Viktor Clerc (VU)
Architectural Knowledge Management in Global Software Development

2011-41 Luan Ibraimi (UT)
Cryptographically Enforced Distributed Data Access Control

2011-42 Michal Sindlar (UU)
Explaining Behavior through Mental State Attribution

2011-43 Henk van der Schuur (UU)
Process Improvement through Software Operation Knowledge

2011-44 Boris Reuderink (UT)
Robust Brain-Computer Interfaces

2011-45 Herman Stehouwer (UvT)
Statistical Language Models for Alternative Sequence Selection

2011-46 Beibei Hu (TUD)
Towards Contextualized Information Delivery:
A Rule-based Architecture for the Domain of Mobile Police Work

2011-47 Azizi Bin Ab Aziz(VU)
Exploring Computational Models for Intelligent Support of
Persons with Depression

2011-48 Mark Ter Maat (UT)
Response Selection and Turn-taking for a Sensitive Artificial Listening Agent

2011-49 Andreea Niculescu (UT)
Conversational interfaces for task-oriented spoken dialogues:
design aspects influencing interaction quality

====
2012
====

2012-01 Terry Kakeeto (UvT)
Relationship Marketing for SMEs in Uganda

2012-02 Muhammad Umair(VU)
Adaptivity, emotion, and Rationality in Human and Ambient Agent Models

2012-03 Adam Vanya (VU)
Supporting Architecture Evolution by Mining Software Repositories

2012-04 Jurriaan Souer (UU)
Development of Content Management System-based Web Applications

2012-05 Marijn Plomp (UU)
Maturing Interorganisational Information Systems

2012-06 Wolfgang Reinhardt (OU)
Awareness Support for Knowledge Workers in Research Networks

2012-07 Rianne van Lambalgen (VU)
When the Going Gets Tough: Exploring Agent-based Models of Human
Performance under Demanding Conditions

2012-08 Gerben de Vries (UVA)
Kernel Methods for Vessel Trajectories

2012-09 Ricardo Neisse (UT)
Trust and Privacy Management Support for Context-Aware Service Platforms

2012-10 David Smits (TUE)
Towards a Generic Distributed Adaptive Hypermedia Environment

2012-11 J.C.B. Rantham Prabhakara (TUE)
Process Mining in the Large: Preprocessing, Discovery, and Diagnostics

2012-12 Kees van der Sluijs (TUE)
Model Driven Design and Data Integration in Semantic Web Information Systems

2012-13 Suleman Shahid (UvT)
Fun and Face: Exploring non-verbal expressions of emotion during playful interactions

2012-14 Evgeny Knutov(TUE)
Generic Adaptation Framework for Unifying Adaptive Web-based Systems

2012-15 Natalie van der Wal (VU)
Social Agents. Agent-Based Modelling of Integrated Internal and Social
Dynamics of Cognitive and Affective Processes

2012-16 Fiemke Both (VU)
Helping people by understanding them
- Ambient Agents supporting task execution and depression treatment

2012-17 Amal Elgammal (UvT)
Towards a Comprehensive Framework for Business Process Compliance

2012-18 Eltjo Poort (VU)
Improving Solution Architecting Practices

2012-19 Helen Schonenberg (TUE)
What’s Next? Operational Support for Business Process Execution

2012-20 Ali Bahramisharif (RUN)
Covert Visual Spatial Attention, a Robust Paradigm for Brain-Computer Interfacing

2012-21 Roberto Cornacchia (TUD)
Querying Sparse Matrices for Information Retrieval

2012-22 Thijs Vis (UvT)
Intelligence, politie en veiligheidsdienst: verenigbare grootheden?

2012-23 Christian Muehl (UT)
Toward Affective Brain-Computer Interfaces: Exploring the Neurophysiology
of Affect during Human Media Interaction

2012-24 Laurens van der Werff (UT)

Evaluation of Noisy Transcripts for Spoken Document Retrieval

2012-25 Silja Eckartz (UT)
Managing the Business Case Development in Inter-Organizational IT Projects:
A Methodology and its Application

2012-26 Emile de Maat (UVA)
Making Sense of Legal Text

2012-27 Hayrettin Gürkök (UT)
Mind the Sheep! User Experience Evaluation & Brain-Computer Interface Games

2012-28 Nancy Pascall (UvT)
Engendering Technology Empowering Women

2012-29 Almer Tigelaar (UT)
Peer-to-Peer Information Retrieval

2012-30 Alina Pommeranz (TUD)
Designing Human-Centered Systems for Reflective Decision Making

2012-31 Emily Bagarukayo (RUN)
A Learning by Construction Approach for Higher Order Cognitive Skills
Improvement, Building Capacity and Infrastructure

2012-32 Wietske Visser (TUD)
Qualitative multi-criteria preference representation and reasoning

2012-33 Rory Sie (OUN)
Coalitions in Cooperation Networks (COCOON)

2012-34 Pavol Jancura (RUN)
Evolutionary analysis in PPI networks and applications

2012-35 Evert Haasdijk (VU)
Never Too Old To Learn
On-line Evolution of Controllers in Swarm- and Modular Robotics

2012-36 Denis Ssebugwawo (RUN)
Analysis and Evaluation of Collaborative Modeling Processes

2012-37 Agnes Nakakawa (RUN)
A Collaboration Process for Enterprise Architecture Creation

2012-38 Selmar Smit (VU)
Parameter Tuning and Scientific Testing in Evolutionary Algorithms

2012-39 Hassan Fatemi (UT)
Risk-aware design of value and coordination networks

2012-40 Agus Gunawan (UvT)
Information Access for SMEs in Indonesia

2012-41 Sebastian Kelle (OU)
Game Design Patterns for Learning

2012-42 Dominique Verpoorten (OU)
Reflection Amplifiers in self-regulated Learning

2012-43 Withdrawn

2012-44 Anna Tordai (VU)
On Combining Alignment Techniques

2012-45 Benedikt Kratz (UvT)
A Model and Language for Business-aware Transactions

2012-46 Simon Carter (UVA)
Exploration and Exploitation of Multilingual Data for Statistical Machine Translation

2012-47 Manos Tsagkias (UVA)
Mining Social Media: Tracking Content and Predicting Behavior

2012-48 Jorn Bakker (TUE)
Handling Abrupt Changes in Evolving Time-series Data

2012-49 Michael Kaisers (UM)
Learning against Learning
Evolutionary dynamics of reinforcement learning algorithms in strategic interactions

2012-50 Steven van Kervel (TUD)
Ontologogy driven Enterprise Information Systems Engineering

2012-51 Jeroen de Jong (TUD)
Heuristics in Dynamic Sceduling;
a practical framework with a case study in elevator dispatching

====
2013
====

2013-01 Viorel Milea (EUR)
News Analytics for Financial Decision Support

2013-02 Erietta Liarou (CWI)
MonetDB/DataCell: Leveraging the Column-store Database Technology
for Efficient and Scalable Stream Processing

2013-03 Szymon Klarman (VU)
Reasoning with Contexts in Description Logics

2013-04 Chetan Yadati(TUD)
Coordinating autonomous planning and scheduling

2013-05 Dulce Pumareja (UT)
Groupware Requirements Evolutions Patterns

2013-06 Romulo Goncalves(CWI)
The Data Cyclotron: Juggling Data and Queries for a Data Warehouse Audience

2013-07 Giel van Lankveld (UvT)
Quantifying Individual Player Differences

2013-08 Robbert-Jan Merk(VU)
Making enemies: cognitive modeling for opponent agents in fighter pilot simulators

2013-09 Fabio Gori (RUN)
Metagenomic Data Analysis: Computational Methods and Applications

2013-10 Jeewanie Jayasinghe Arachchige(UvT)
A Unified Modeling Framework for Service Design.

2013-11 Evangelos Pournaras(TUD)
Multi-level Reconfigurable Self-organization in Overlay Services

2013-12 Marian Razavian(VU)
Knowledge-driven Migration to Services

2013-13 Mohammad Safiri(UT)
Service Tailoring: User-centric creation of integrated IT-based
homecare services to support independent living of elderly

2013-14 Jafar Tanha (UVA)
Ensemble Approaches to Semi-Supervised Learning Learning

2013-15 Daniel Hennes (UM)
Multiagent Learning - Dynamic Games and Applications

2013-16 Eric Kok (UU)
Exploring the practical benefits of argumentation in multi-agent deliberation

2013-17 Koen Kok (VU)
The PowerMatcher: Smart Coordination for the Smart Electricity Grid

2013-18 Jeroen Janssens (UvT)
Outlier Selection and One-Class Classification

2013-19 Renze Steenhuizen (TUD)
Coordinated Multi-Agent Planning and Scheduling

2013-20 Katja Hofmann (UvA)
Fast and Reliable Online Learning to Rank for Information Retrieval

2013-21 Sander Wubben (UvT)
Text-to-text generation by monolingual machine translation

2013-22 Tom Claassen (RUN)
Causal Discovery and Logic

2013-23 Patricio de Alencar Silva(UvT)
Value Activity Monitoring

2013-24 Haitham Bou Ammar (UM)
Automated Transfer in Reinforcement Learning

2013-25 Agnieszka Anna Latoszek-Berendsen (UM)
Intention-based Decision Support. A new way of representing
and implementing clinical guidelines in a Decision Support System

2013-26 Alireza Zarghami (UT)
Architectural Support for Dynamic Homecare Service Provisioning

2013-27 Mohammad Huq (UT)
Inference-based Framework Managing Data Provenance

2013-28 Frans van der Sluis (UT)
When Complexity becomes Interesting: An Inquiry into the Information eXperience

2013-29 Iwan de Kok (UT)
Listening Heads

2013-30 Joyce Nakatumba (TUE)
Resource-Aware Business Process Management: Analysis and Support

2013-31 Dinh Khoa Nguyen (UvT)
Blueprint Model and Language for Engineering Cloud Applications

2013-32 Kamakshi Rajagopal (OUN
Networking For Learning;
The role of Networking in a Lifelong Learner’s Professional Development

2013-33 Qi Gao (TUD
User Modeling and Personalization in the Microblogging Sphere

2013-34 Kien Tjin-Kam-Jet (UT
Distributed Deep Web Search

2013-35 Abdallah El Ali (UvA
Minimal Mobile Human Computer Interaction

2013-36 Than Lam Hoang (TUe)
Pattern Mining in Data Streams

2013-37 Dirk Börner (OUN)
Ambient Learning Displays

2013-38 Eelco den Heijer (VU)
Autonomous Evolutionary Art

2013-39 Joop de Jong (TUD)
A Method for Enterprise Ontology based Design of Enterprise Information Systems

2013-40 Pim Nijssen (UM)
Monte-Carlo Tree Search for Multi-Player Games

2013-41 Jochem Liem (UVA)
Supporting the Conceptual Modelling of Dynamic Systems:
A Knowledge Engineering Perspective on Qualitative Reasoning

2013-42 Léon Planken (TUD)
Algorithms for Simple Temporal Reasoning

2013-43 Marc Bron (UVA)
Exploration and Contextualization through Interaction and Concepts

====
2014
====

2014-01 Nicola Barile (UU)
Studies in Learning Monotone Models from Data

2014-02 Fiona Tuliyano (RUN)
Combining System Dynamics with a Domain Modeling Method

2014-03 Sergio Raul Duarte Torres (UT)
Information Retrieval for Children: Search Behavior and Solutions

2014-04 Hanna Jochmann-Mannak (UT)
Websites for children: search strategies and interface design
Three studies on children’s search performance and evaluation

2014-05 Jurriaan van Reijsen (UU)
Knowledge Perspectives on Advancing Dynamic Capability

2014-06 Damian Tamburri (VU)
Supporting Networked Software Development

2014-07 Arya Adriansyah (TUE)
Aligning Observed and Modeled Behavior

2014-08 Samur Araujo (TUD)
Data Integration over Distributed and Heterogeneous Data Endpoints

2014-09 Philip Jackson (UvT)
Toward Human-Level Artificial Intelligence:
Representation and Computation of Meaning in Natural Language

2014-10 Ivan Salvador Razo Zapata (VU)
Service Value Networks

2014-11 Janneke van der Zwaan (TUD)
An Empathic Virtual Buddy for Social Support

2014-12 Willem van Willigen (VU)
Look Ma, No Hands: Aspects of Autonomous Vehicle Control

2014-13 Arlette van Wissen (VU)
Agent-Based Support for Behavior Change:
Models and Applications in Health and Safety Domains

2014-14 Yangyang Shi (TUD
Language Models With Meta-information

2014-15 Natalya Mogles (VU)
Agent-Based Analysis and Support of Human Functioning in Complex
Socio-Technical Systems: Applications in Safety and Healthcare

2014-16 Krystyna Milian (VU
Supporting trial recruitment and design by automatically interpreting eligibility criteria

2014-17 Kathrin Dentler (VU)
Computing healthcare quality indicators automatically:
Secondary Use of Patient Data and Semantic Interoperability

2014-18 Mattijs Ghijsen (VU)
Methods and Models for the Design and Study of Dynamic Agent Organizations

2014-19 Vincius Ramos (TUE)
Adaptive Hypermedia Courses:
Qualitative and Quantitative Evaluation and Tool Support

2014-20 Mena Habib (UT
Named Entity Extraction and Disambiguation for Informal Text: The Missing Link

2014-21 Kassidy Clark (TUD)
Negotiation and Monitoring in Open Environments

2014-22 Marieke Peeters (UT)
Personalized Educational Games - Developing agent-supported scenario-based training

2014-23 Eleftherios Sidirourgos (UvA/CWI)
Space Efficient Indexes for the Big Data Era

2014-24 Davide Ceolin (VU)
Trusting Semi-structured Web Data

2014-25 Martijn Lappenschaar (RUN)
New network models for the analysis of disease interaction

2014-26 Tim Baarslag (TUD)
What to Bid and When to Stop

2014-27 Rui Jorge Almeida (EUR)
Conditional Density Models Integrating Fuzzy and
Probabilistic Representations of Uncertainty

2014-28 Anna Chmielowiec (VU)
Decentralized k-Clique Matching

2014-29 Jaap Kabbedijk (UU)
Variability in Multi-Tenant Enterprise Software

2014-30 Peter de Kock Berenschot (UvT)
Anticipating Criminal Behaviour

