I UNIVERSITY
OF APPLIED
I SCIENCES
UTRECHT

Software Architecture Compliance Checking
with HUSACCT

Leo Pruijt, HU University of Applied Science, Utrecht

In cooperation with:
Raymond Slot, Wiebe Wiersema, HU, Utrecht
Christian Koppe, HAN, Arnhem
Sjaak Brinkkemper, Jan Martijn van der Werf, University Utrecht

H

Agenda

= Software Architecture & Quality Attributes

= Architecture Compliance Checking

= HUSACCT, a tool to provide SRMA support
= Example

= Questions

1
Software Architecture (SA) I 1 U

= Software architecture is of major importance to achieve
the business goals
functional requirements
quality requirements of a system

= However ...
Architectural models tend to be of a high-level of abstraction
Deviations of the software architecture arise easily during
the development and
evolution of a system

= Architectural Erosion has a negative impact on
the system’s quality attributes

SA Example (Schiphol Group)

Int tion L
nteraction Layer Hiweb ‘ Hiws
HiWebApp | HiForms ‘
HE-Kiosk | HF-Device
WebService
‘I‘ :
. i 1
HiPanels | . \', /
HP-Kiosk | \ HP-Device
N / L7
Service Layer
HiCore |
HiManager Model
HimImp ‘
I
0
Technology Layer -
Spring CorporateWebcore

Hibernate

U

Legend

Layer

Component g]

Interface

i
Dependency i
1

Package

indicates there
are more
elements

i
Common Module & Rule Types i U

In practice ...

* Modules with different semantics are used commonly

« Subsystems, Layers, Components, Interfaces, External Systems
» Rules of different types are used

« Some of them specific for a certain type of module

« E.g., ‘Back call ban’ and ‘Skip call ban’ are specific for Layers

Type of Rule

Example (E)

Is not allowed to use

HiPanels is not allowed to use HiWS.

Back call ban

Service Layer is not allowed to use the Interaction Layer.

Facade convention

Component HiManager may be accessed only via HimInterface.

Is only allowed to use

HiForms is only allowed to use HiPanels.

Is the only module allowed to use

CorporateWebcore is the only module allowed to use Hibernate.

Architecture Compliance Checking (ACC) I 1 U
i

ACC verifies the conformance of
implemented program code to
high-level models of architectural design

Static ACC focuses on
the modular architecture

Related quality attributes:
Accuracy
Maintainability
analyzability, changeability, testability
Portability
adaptability, replace ability

Intended Architecture

Modules & Rules

Architecture
Compliance
Checking

Implemented Architecture

Program Code
Packages & Classes

Static Architecture Compliance Checking I 1 U
1

Currently Intended Architecture Mapping
= Adoption of ACC in practice is limited e 5 s R == P oo
= [ool support of the common sets of Rules

ST L3 is not allowed to use L2 (Back call), ..

module & rule types is limited
Research Goals ... /
e

= Improve tool support Violations

= Promote ACC in practice & education

Architect

Program Code
Package P1
Class C1, Class C2 ...
Package P2
Class C3 ...

ACC Process

1)

H

Study the intended architecture (SAD/Architecture Notebook)
Requirements
Architectural decisions: Modules & Rules
Mapping of modules to program code
Acquire additional or missing information
Enter intended architecture in ACC-tool
Modules & Rules
Mapping of modules to program code
Run conformance check
Study and discuss results
Violations
Relevance

HUSACCT: Hogeschool Utrecht

Software Architecture Compliance Checking Tool

Analyse
Application

Explore
Implemented
Modular
Architecture

Define
Intended
Modular
Architecture

Software
Architect

Check
Conformance

Explore
Results
Conformance
Check

Java

C#

Browse Modules & Dependencies
Visualize Modules & Dependencies

Report Modules & Dependencies

Browse Violations
Visualize Violations
Report Violations

Export Violations

Analyse
implemented architecture

Define
intended architecture

Validate
conformance

Outstanding Characteristics

= HUSACCT is free-to-use & open source
Download, video & instruction at http://husacct.github.io/HUSACCT/

= Support of rich sets of Module and Rule Types

5 common Module Types with different semantics
Subsystem, Layer, Component, Interface, External system

11 common Rule Types

= Extensive Semantic Support of the Module and Rule Types, e.g.:
Automatic creation of default rules, according to the Module Type
Type of Module determines which Rule Types are selectable

= Configurable support
Enable/Disable rules, Exception rules, Default rule configuration

ACC Example:
Modular Architecture HUSACCT 1.0

nggcr)ilt%:ﬂ EI Graphics El
Top-level Components
Genera Inte raphicsinterface
Analys%e?ée Definelnterfac Validate|nterface
Analyse E Define EI Validate E
Rules

From-Module Constraint To-Module
Analyse is not allowed to use Define
Analyse is not allowed to use Validate
General GUI & Control | Is the only module allowed to use | Graphics
All five components Facade convention

Define Intended Architecture

[Define intended architecture

Module Hierarchy Module Properties
% SoflwareArchitecture Module name Analyse |
@ £ General GUI & Control o
) Elhnalyse Description
—2 Facade=Analyse=
& 5 Define Module Type Component E|
g % ‘éalld?e Assigned Soflware Units
raphics
=) Cnrﬁmnn Soflware unit name | Type Add
. @ ExternalSystems husacctanalyse PACKAGE
Rules
Rule type | To module | Enabled | Exceptions Add
Facade convention on 2
Is not allowed to use Yalidate on]
| Mew module | Is not allowed to use Defing on 0
| Remove module |

A | @ view in Browser || = | Idle

Analyse Implemented Architecture

Needed to Assign Software Units and to Check Conformance

"] Analysed Application Overview

Decomposition View | Usage View

Application Composition Statistics

= Application
@ £ husacct
e Main
i ServiceProvider
@ 1 analyse
@ 4 bootstrap
@ 4 common
@ 4 control
@ {H define
. Define3envicelmpl
v DomainParser
) |DefineService
& 4 domain
@ 4 persistency
@ 4 presentation
& {3 task
@ £ graphics
© [validate
& Ef xLibraries

Complete Application

FPackages: 105
Classes: a5y
Lines of Code: 135923

Dependencies: 50147

Selection

Packages:
Classes:
Lines of Code:

Export Dependencies || Cancel

Validate Conformance

Results of the Conformance Check

. Validate conformance :

Yiolations Per Rule All Violations

Rules with Mumber of Violations

Id | Logical module from | Rule type Logical module to |"u’inlatinns|
1 Analyse Is not allowed to use 1
2 General GUI & Control Facade convention 38

Violations

Fraom To Rule type | Dep.type |Direct|Line|_
husacct define presentation jdialog AppliedRulelDialog husacct.control. ControlZ3ervicelmpl Facade convention Import Direct |~
husacct define_presentation jdialog AppliedRulelDialog husacct.control. ControlServicelmpl Facade convention Declaration Direct
husacct.define.presentation.jdialog.ViolationTypesdDialog husacct.control.ControlServicelmpl Facade convention Import Direct
husacct.define presentation jdialog ViolationTypesdDialog husacct.control. ControlServicelmpl Facade convention Declaration Direct
husacct define presentation jdialog AddModuleValuesDi... husacct control ContralServicelmpl Facade convention Declaration Direct
husacct.define.presentation.jdialog.AddModuleValuesdDi... husacct.control.ControlServicelmpl Facade convention Import Direct
husacct.define presentation jdialog.SoflwarelnitdDialog husacct.control. ControlZervicelmpl Facade convention Import Direct
husacct define presentation jdialog SoflwarelUnitiDialog husacct.control. ControlServicelmpl Facade convention Declaration Direct

Intended Architecture Diagram

With the intended top-level components, their dependencies and violations

L Intended architecture diagram
[Q][a)[2][«][] [B]E [5 oo |

=l

«Components» -
General GUI & Control | ~~-._ _
PR T T S 20~-_
- i h " e -
e - I i - \\ - =k
7217341 - b N - £]
~98 - WM ~~._ | =Components
- : e ———3
P N _b_f_j__;,_ _____ Graphics
- === =T] .
«Components |- -—-—- i " . - !
etme F f T
i -
v - 32 16/195 T I
~ N | : e w [
'\\ " "-.._‘____ f H }f’ " b =
-, L '--,_|_‘_ I T . ’-, . " =
- * | P L S n3 =
~ . =i i.n'rl 712 . :
il) ~
™ h\\ Ir ; 7~ f,ff'.______ " b
40 \ h : Tm el S [
s “\ | : - - Tt .'-._ " 1
N ~ I ; - T = x
n - T o
H\ 1 \!- - 1"'-—-..1_‘_ @
> = «=Components
______ E
«Components | - —=====""" 33 Analyse
Validate
[+ |
[>]

Intended Architecture Diagram

With the intended layers within Define, their dependencies and violations

«Layer=
L= Define.Presentation
7383
.i-"-"
«Interface» e dayers |
Define.Facade<Define> 1 Define.Task
- - . 10/10
H'\ HH""‘-.._,H H'h_‘ :
'\\ ‘-\-___H -‘.\“
N : Hi‘gh__ 5'59“_
\"\. HL‘-"'-__ .‘"\‘
» ""'-..__‘_ Y ¥
k, 24/24 T =
. : «Layers
A § Define.Domain
b i
\\.‘ J_J.""-"r
\\ " ,..-'”H 203
«Layer=

Define.Infrastructure

Status and Outlook

HUSACCT 3.4 is fit for practical use
Accurate, fast, easy in use

Intended use:
Introduction of ACC within organizations
Software architecture education
Relate abstract models to code
Stimulation of tool vendors to provide support for
Semantically Rich Modular Architectures
Future work:
Case studies: Are you interested in a free ACC?
Extension of functionality
Metrics

Finally

= More information:
Ask me: Leo Pruijt, leo.pruijt@hu.nl
Watch the video at hitp://husacct.github.io/HUSACCT/

Read the published papers
= [hank you for your attention!

s Questions?

1) HUSACCT: Architecture Compliance Checking with Rich Sets of Module and Rule Types.
2014 IEEE/ACM Int. Conf. on Automated Software Engineering, ASE 2014-09, Vasteras, Sweden

2) Architecture Compliance Checking of Semantically Rich Modular Architectures: A Comparative
Study of Tool Support. Int. Conf. on Software Maintenance, ICSM 2013-09, Eindhoven, NL

3) A Metamodel for the Support of Semantically Rich Modular Architectures in the Context of
Architecture Compliance Checking. SAEroCon workshop, WICSA 2014-04, Sydney, Austratlia

4) On the Accuracy of Architecture Compliance Checking Support: Accuracy of Dependency
Analysis and Violation Reporting. Int. Conf. on Program Comprehension, ICPC 2013-05, San

Francisco, USA

