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Abstract

Tags are a convenient way to label resources on the web. An interesting question
is whether one can determine the semantic meaning of tags in the absence of some
predefined formal structure like a thesaurus. Many authors have used the usage
data for tags to find their emergent semantics. Here, we argue that the semantics
of tags can be captured by comparing the contexts in which tags appear. We give
an approach to operationalizing this idea by defining what we call paradigmatic
similarity: computing co-occurrence distributions of tags with tags in the same
context, and comparing tags using information theoretic similarity measures of
these distributions, mostly the Jensen-Shannon divergence. In experiments with
three different tagged data collections we study its behavior and compare it to
other distance measures. For some tasks, like terminology mapping or clustering,
the paradigmatic similarity seems to give better results than similarity measures
based on the co-occurrence of the documents or other resources that the tags are
associated to. We argue that paradigmatic similarity, is superior to other distance
measures, if agreement on topics (as opposed to style, register or language etc.),
is the most important criterion, and the main differences between the tagged ele-
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ments in the data set correspond to different topics.
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1. Introduction

Over the past decade, collaborative tagging has emerged as an important mech-
anism to annotate content on the World Wide Web. While users tag for different
reasons, it is tempting to compare tagging with classification and annotation by
professional editors and librarians. Professionals generally use restricted vocabu-
laries and well defined meta-data schemes. Often, they also use terms in restricted
vocabularies from a thesaurus or ontology where semantics, relations to other
terms and restrictions on their use are explicitly captured. Tags, however, do not
have such clearly defined properties. Several studies ([3], [4], [23]) have appeared
that try to derive semantic properties from usage data, in particular to reconstruct
their semantic similarity. Most of these studies use some form of co-occurrence
to determine the similarity of tags, the underlying hypothesis being that tags that
frequently co-occur, have a similar meaning. In other words, it is assumed that
syntagmatic relations of terms are good indicators for semantic similarity.

In natural language, however, words in a syntagmatic relation are not usually
synonyms but only have a dependence on each other. Consider, e.g., the synonyms
harbour and port. They seldom occur together since people tend to either use the
word harbour or the word port. In fact, in a corpus with 10 million newspaper
sentences from the University of Leipzig ([25]) we find that harbour is not among
the 25 most significant co-occurrences of port. Conversely, port is a much more
significant co-occurrence for harbour, even though it still only has rank eight. For
both words, the word ship is one of the most frequent co-occurring terms1. In this
case, the semantic similarity of port and harbour is detected by their co-occurrence
with the same words rather than simply the co-occurrence in the same documents.
This is a phenomenon of second rather than first order co-occurrence, and we will
consider it as an approximation to paradigmatic similarity, i.e. similarity based on
associations between words. Such a second order approach will naturally detect
semantic relations that are broader than synonymy because port and harbour will

1Data retrieved from http://corpora.informatik.uni-leipzig.de/ on April 27th 2012
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co-occur with words like ship, quay, or navigator that are related to, but not neces-
sarily synonyms of harbour/port. To obtain a more precise, and statistically more
stable, measure of similarity we will therefore have to keep track of the precise
frequencies of co-occurrence rather than co-occurrence per se.

There are only a few studies that investigate paradigmatic similarity for tags.
Beforehand, it is not evident that paradigmatic similarity is even useful for tags,
since the nature of tags is rather different from words in natural language. Tags
are isolated words without underlying syntactic rules restricting their selection,
they are assigned by many users, and the same tag can be assigned many times
to the same resource. In fact, tags are often presented as a “word cloud”, that
emphasizes both their lack of order and the importance of their frequency of use.

In the present paper, we will give an overview of paradigmatic approaches to
distributional similarity for tags, and give a simple formalization. We then argue
that for tags, just as for words in texts, paradigmatic similarity is a better indication
for synonymy than syntagmatic similarity.

The remainder of this paper is organized as follows. In Section 2 we discuss
a number of approaches to distribution-based similarity of words and tags. In
Section 3 we introduce and formalize our approach to distributional similarity of
tags. The resulting similarity measure between tags is studied and compared to
alternative similarity measures in Section 4 using three different data sets.

2. Related Work

The relation between language and its meaning, or more generally semiotics,
has a long history in philosophy, and linguistics. The computer science oriented
literature usually sidesteps this discussion, either by defining semantics in terms of
set theoretic interpretation of logics, making it the problem of a domain expert or
by defining some machine learning problem. The latter approach usually involves
some form of statistics. Here we also follow a statistical approach.

2.1. Distributional Similarity of Words in Texts
A central idea in structural linguistics is that essential properties of words can

be derived from their distributional characteristics. De Saussure ([7]) makes the
important distinction between syntagmatic relations between words defined by
co-presence in a linguistic structure (e.g. a text, sentence, phrase, fixed window,
words in a certain grammatical relation to the studied word and so on, see e.g.
[10]) and more associative relations now usually called paradigmatic relations.
In particular, words that appear in “similar semantic contexts” are said to be in a
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paradigmatic relation. Harris suggests ([11]) that to a great extent, words can be
described in terms of the contexts in which they appear, i.e., by their paradigmatic
and syntagmatic relations. In linguistics, this statement has become known as the
distributional hypothesis.

An unfortunate methodological problem of the distributional hypothesis, is
that “semantically similar contexts” are hard to define in a way suitable for algo-
rithmic detection. Harris was aware of this problem and suggested methods for
detecting paradigmatic relations in a text through equivalence relations generated
by intra-textual syntagmatic and grammatical relationships [12]). His approach
can be understood as 1. doing (hard) linguistic analysis to track words occur-
ring in syntagmatic contexts and 2. declaring words equivalent if they occur in
the same role in an otherwise identical syntagmatic contexts (possibly after us-
ing some universal text independent grammatical equivalences such as plural to
singular and passive to active sentence). This formally defines an equivalence
between words that can be used to repeat step 1 and 2. Harris claims that this
relation reflects paradigmatic similarity. In any case, while quite different from
our methods, his method is, in spirit, using the second order relation from words
to syntagmatic relations and then back to words again.

To find the distribution of words conditional on the usage of a given word,
Schütze and Pederson [26] suggest constructing a vector of co-occurrence prob-
abilities from a complete word co-occurrence matrix. To avoid a combinatorial
explosion, co-occurrences are counted in a fixed size window. The cosine simi-
larity of the vectors associated to words then provides a similarity measure for the
words themselves. Other authors, e.g. Niwa and Nita [24], or Lund and Burgess
[20], use different ways to define co-occurrence vectors. Curran [6] evaluates
a number of different measures for semantic similarity, including some version
similar to our first order similarity. He also gives a discussion of the difficulties
evaluating semantic similarity measures. The approach closest to ours for tags, is
that of Lindèn and Piitulainen [19] who take all words in a dependency relation
to the word under consideration, and compute the probability distribution over all
words in this dependency context. As in our approach, they then use the Jensen-
Shannon divergence to compare the distributions for different words.

The method of representing the paradigmatic relations of words by a (context
dependent) vector is quite similar to the query language models used in pseudo-
relevance feedback methods in information retrieval (see e.g. Lafferty and Zhai
[17], [32]). In these approaches, finding a set of relevant documents for a query
term is a two stage process. First, all documents containing the query term are
retrieved. Then the average distribution of words in the documents is computed,
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which in their terminology is called “the query language model”. Finally, docu-
ments are ranked according to the similarity between the document distribution
and the query language model computed using the Kulback-Leibler divergence.
If the query consists of a single word, the language model is very similar to the
co-occurrence distribution of that query term as we will define below in section
3.1. Both the language model and our co-occurrence model give the frequency of
terms that occur in the contexts in which the query term was found. As is to be
expected, details of the computation are somewhat different.

The above approaches, suffer from the problem that words are represented by
vectors in a vector space of very high dimension. Moreover, as more words are
tracked, the vectors for each word get sparser. This makes the paradigmatic ap-
proach computationally very expensive. A more efficient way to compute paradig-
matic similarity is random indexing ([14], [15]). In random indexing, we assign
a random vector to each word. The dimension of the random vector space can
be chosen freely . The syntagmetic context of each word is then characterized by
the weighted sum of all random vectors assigned to the words in this syntagmatic
context, i.e. we make a random projection of the vectors in the original vector
space model to a lower dimensional subspace. Random indexing thereby allows
for computing paradigmatic similarities between words in a much lower dimen-
sional space, with a loss in quality that depends on the dimension of the vector
space, but that tends to be small.

2.2. Tag Similarity
To define paradigmatic similarity for social tags we have various possibilities

for the “textual context” and the similarity measure to compare them. A system-
atic overview is given in [23]. Like most other approaches we are aware of, all
methods described there use syntagmatic relations to compute similarity.

Approaches using paradigmatic similarity are proposed by [3] and ourselves
([30]). The former authors use the set of tags assigned in one assignment by one
user to one resource as the context of a tag. However, it is expected, and ob-
served, that the tags in a single such context are unlikely to be synonyms, even
though they can be closely related in other ways. Clements et al. [4] note that
the most closely related tags are seldom used by the same user. They exemplify
this phenomenon by the tag pair color/colour which will be used by British re-
spectively American users, and propose to detect synonymous tags, by looking
for tags with similar distributions over documents which simultaneously have a
low similarity of distributions over users.
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3. Distributional Similarity

In this paper we follow a statistically oriented second order approach with
a syntagmatic flavour. We study, the statistics of words in larger corpora that
co-occur in the same “syntagmatic context” We thus go from the first order cor-
relation between words and syntagmatic contexts, to the second order correlation
among words that are syntagmatically correlated to the same contexts. In fact this
statistical setup is quite general, and applies to any set-up with an association of
words to recognizable “contexts”, and therefore with a notion of co-occurrence. In
particular this setup applies to social tags where people associate tags (i.e. words)
to “contexts” like web pages or online pictures. Using different kinds of ”context”
is also possible, in particular the “context” of being tagged by the same person.

In a statistical approach, it is natural to use a quantitative version of co-occurrence,
and weigh contexts depending on the number of times a word occurs. For exam-
ple, two web pages with the tag “Politics” both give co-occurrence relations with
other tags. However, web pages that are given the tag “Politics” often, should ar-
guably be given more weight. In such an approach it is natural to define similarity
itself based on the statistical properties of co-occurrences to capture the notion
of semantic similarity. Finding paradigmatically related tags is then operational-
ized to finding words that are close in a comparison measure of the distribution of
co-occurring tags.

3.1. Formalization
In a formalization of the statistical approach to paradigmatic similarity we

adopt a language suitable for the application to social tagging. Therefore, we
speak of “items” rather than syntagmatic contexts, “users” rather than authors and
“tags” instead of words. We also say that a tag is associated to an item rather than
contained in a syntagmatic context.

Given a corpus there is a collection of items (web resources, syntagmatic con-
texts) I = {i1, . . . , ik}, a collection of tags T = {t1, . . . tl} and a collection of
users U = {u1, . . .um}. Given an item i ∈ I , let p(t|i) be the probability distri-
bution on T , that gives the likelihood of the occurrence of tag t when randomly
selecting a tag associated to the item i. More generally, given a subset of items
J ⊂ I there is a probability distribution p(t|J ), which is the probability that
a random tag selected from an item in J is t. In particular, for a tag w we can
consider the subset of items Iw ⊆I that are (also) associated to w. By the above
we then have a probability distribution p(t|Iw) which we abbreviate to p(t|w),
suppressing I in the notation.

6



As an example consider the set of items I , the set of English sentences in
some text corpus. Then p(t|w) is the likelihood for a word (a.k.a. tag) t to occur in
an English sentence in that corpus that contains w. Clearly we can construct sim-
ilar probability distributions with paragraphs, or documents in the corpus. Note
that this changes both the interpretation and the values of p(t|w).

To compute the co-occurrence distribution, let n(i, t,u) be the number of times
user u associates tag t to item i. Furthermore let n(i, t) = ∑u n(i, t,u) be the num-
ber of times tag t was associated to item i, n(u, t) = ∑i n(i, t,u) the number of
times tag t was associated by user u, n(t) = ∑i n(i, t) the number of associa-
tions (“occurrences”) of tag t, n(i) = ∑t n(i, t) the number of tag associations to
item i, and n(u) = ∑t n(u, t) the number of tag association by user u. Finally, let
n = ∑t n(t) = ∑i n(i) = ∑u n(u) be the total number of tag associations. We then
define

p(t|i) = n(i, t)/n(i) the tag distribution (i.e. on T ) of item i ,
P(i|w) = n(i,w)/n(w) the item distribution (i.e. on I ) of tag w ,

p(t) = n(t)/n the background tag distribution (i.e. on T ) .

Similar distributions can be defined for the combination tags and users, or users
and items. The probability distributions p(t|i) on the set of tags T , and the dis-
tribution P(i|z) on the corpus of items I describe how tag associations to a given
item i are distributed over different tags, respectively how the associations of a
given tag w are distributed over different items.

As in [17], we use Markov chains to compute the co-occurrence distribution
as the second order statistical relation between tags. Consider a Markov chain on
T ∪I having transitions I → T with transition probabilities p(t|i) and transi-
tions T →I with transition probabilities P(i|t). The chain allows us to propagate
probability distributions from tags to items and vice versa. Given a distribution
π(t) on the set of tags T , the one step Markov chain evolution gives us an item
distribution π(1)(i), the probability to find a tag occurrence on a item i given that
the tag distribution of the occurrences is π:

π
(1)(i) = ∑

t
P(i|t)π(t).

The item distribution π(1) gives the first order statistical correlations between tags
and items coming from the tag associations. Likewise, given an item distribution
Π(i), the one step Markov chain evolution gives us a tag distribution

Π
(1)(t) = ∑

i
p(t|i)Π(i).
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Since Π(i) is the likelihood to find a tag on item i, Π(1) is the Π-weighted average
of the tag distributions of the items. It is also defined by a first order statistical
correlations between tags and items. Combining these, i.e. running the Markov
chain twice, every tag distribution π(t) gives rise to a new tag distribution

π
(2)(t) = ∑

i
p(t|i)π(1)(i) = ∑

t ′,i
p(t|i)P(i|t ′)π(t ′)

In particular starting from the degenerate “known to be w” tag distribution δw(t) =
1 if t = w, and 0 otherwise, we have the first order co-occurrence distribution over
items i in I

δ
(1)
w (i) = ∑

t ′
P(i|t ′)δw(t ′) = P(i|w)

which we recognize as the item distribution of the tag. The more interesting sec-
ond order co-occurrence distribution (also called the co-occurrence distribution)
p(t|w) on the set of tags T

p(t|w) = δ
(2)
w (t) = ∑

i,t ′
p(t|i)P(i|t ′)δw(t ′) = ∑

i
p(t|i)P(i|w). (1)

It is thus the average of the tag distributions p(t|i) of each item i weighted with
the the probability P(i|w) that tag w was assigned to item i.

The similarity between tags can now be expressed in different ways using
the associated probability measures by choosing different similarity measures for
probability measures. It is natural to use information theoretic divergences as
they have a natural interpretation as the amount of information gained by using
particularities of a distribution rather than an estimate like the background distri-
bution. In particular, we will use the Jensen-Shannon divergence which has the
nice properties of being symmetric, and finite unlike the Kullback-Leibler diver-
gence D (see e.g. [5, Section 2.3]) Recall that the Jensen-Shannon divergence of
two probability distributions p and q can be computed in either of the equivalent
ways below

JSD(p,q) = 1
2D(p||12 p+ 1

2q)+ 1
2D(q||12 p+ 1

2q) (2)

= log2+
1
2 ∑

t:p(t)6=0∧q(t)6=0
p(t) log(

p(t)
p(t)+q(t)

)+q(t) log(
q(t)

p(t)+q(t)
) (3)

The Kullback-Leibler divergence is non negative, so combining the two expres-
sions (2) and (3), we see that 0≤ JSD(p,q)≤ log(2). The latter expression (3) is

8



computationally efficient for sparse distributions. The Jensen-Shannon divergence
can be interpreted as the number of bits per symbol that is saved by optimally
compressing two equally long streams of symbols with probability distribution
p respectively q separately, rather than compressing them both with the optimal
compression for the mixed stream. In the following we will refer to (dis)similarity
of tags based on the divergence of co-occurrence distribution as second order co-
occurrence similarity. The Jensen-Shannon divergence is not a proper metric it-
self, but its square root does have this property [8]. Thus, if we want to go beyond
ranking and real distances are needed, e.g. for clustering, we will use the square
root of the Jensen-Shannon divergence.

We can then define zeroth, first and second order co-occurrence Jensen-Shannon
similarity of tags as

jsdsim0(w1,w2) = JSD(δw1,δw2) = 0 if w1 = w2; andlog(2) otherwise (4)

jsdsim1(w1,w2) = JSD(δ
(1)
w1 ,δ

(1)
w2 ) = JSD(P(−|w1),P(−|w2)) (5)

jsdsim2(w1,w2) = JSD(δ
(2)
w1 ,δ

(2)
w2 ) = JSD(p(∗|w1, p(∗|w2)). (6)

Clearly jsdsim0 is just a convoluted way to write (in)equality, and is only shown
for expository purposes. Note that for jsdsim0 and jsdsim2 the sum implied in
the definition of the Jensen-Shannon divergence JSD runs over tags t, whereas in
jsdsim1 it runs over items i. We can likewise use the cosine similarity or a χ2 test
to get similarity measures cossim1, cossim2 respectively χ2 sim1 or χ2 sim2.

Both jsdsim1 and jsdsim2 are broad second order measures because for two
tags w1 and w2 we compare the full probability distributions p(t|w1) and p(t|w2)
where t runs over all of T . Alternatively, however, we can use the the co-
occurrence probability p(w1|w2) or a symmetrized version like

(p(w1|w2)p(w2|w1))
1/2 = p(w1 and w2)p(w1)−1/2 p(w2)

−1/2 (7)

as a similarity measure. We will call this a narrow measure because it only uses a
very small part of the co-occurrence distribution.

For reference purposes, we will note one more popular first order broad co-
occurrence similarity, the Jaccard coefficient, that can be defined using our previ-
ous definitions as

jaccsim1(w1,w2) =
|{ti | δ (1)

w1 (ti)> 0 and δ
(1)
w2 (ti)> 0}|

|{ti | δ (1)
w1 (ti)> 0 or δ

(1)
w2 (ti)> 0}|

(8)
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3.2. Example
Consider the following examples taken from a sample of LibraryThing data

(see subsection 4.1) to get a better feeling for the differences between first and
second order co-occurrence.

Table 1 shows the 20 most similar terms for the tag Socrates according to 3
different similarity measures. Besides the broad second order similarity jsdsim2
and the narrow co-occurrence probability (1), we show results for first order co-
occurrence similarity using the more common cossim1 rather than jsdsim1. The
tag Socrates was used 49 times in our data set to tag 25 different books. The nar-
row co-occurrence probability favors very frequent terms (for this corpus) like phi-
losophy or non-fiction. The first order cosine similarity and second order Jensen-
Shannon similarity computed using document co-occurrence give more or less
the same results for the 5 most similar tags. After that the second order similarity
seems to contain more terms related to ancient Greece in general, without special
relation to Socrates.

A similar picture arises if we compare tags close to Aristotle, given in Table 2.
Here we see in both cases terms related to Aristotle. The cosine distance results in
a high rank for ethics and virtue , concepts that Aristotle has written two influential
works about. In contrast, the second order co-occurrence similarity results in a
high rank for Socrates and Plato, two philosophers living at the same time as
Artistotle. This is exactly the behavior we hoped for: both measures come up
with strongly related terms, but the second order co-occurrence similarity favors
similar and synonymous terms.

4. Experiments

To test whether the second order co-occurrence similarity really corresponds
to semantic similarity, we have to make a comparison to some independent mea-
sure of semantic similarity, preferably based on human judgment. E.g.[3] use
Wordnet as a ground truth. This implicitly assumes that the information in Word-
net (or another available lexicon with synonymy information) is correct and com-
plete. Moreover it assumes that the semantics of words in text can be transferred
directly to words used as tags. Since the coverage of tag vocabularies by dictio-
naries is low as tags are often abbreviations or small phrases consisting of more
than one word, this is doubtful. We will therefore evaluate the proposed similar-
ity measure indirectly by studying its behavior in a number of different scenarios
rather than using a external reference source.
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Table 1: LibraryThing tags most similar to the tag Socrates according to second order co-
occurrence similarity, (first order) co-occurrence probability and cosine similarity of the document
distribution.

jsdsim2 p(∗|Socrates) cossim1

socrates 0,00 philosophy 0,21 socrates 1,00
plato 0,12 socrates 0,04 plato 0,62
ancient philosophy 0,14 non-fiction 0,04 greek philosophy 0,60
greek philosophy 0,14 classics 0,04 ancient philosophy 0,51
classical philosophy 0,17 greek 0,03 classical philosophy 0,47
platonism 0,19 fiction 0,03 oligarchy 0,43
aristotle 0,19 greece 0,03 republic 0,30
dialogues 0,21 historical fiction 0,03 peloponnesian war 0,29
western philosophy 0,22 history 0,03 political philosophy 0,26
philosophy 0,24 ancient greece 0,02 platonism 0,25
ancient greece 0,25 plato 0,02 classes 0,23
history of philosophy 0,26 read 0,02 political thought 0,21
stoicism 0,26 ancient philosophy 0,02 philosophy 0,20
ancient 0,27 politics 0,01 ancient 0,20
political thought 0,27 ancient history 0,01 ancient greece 0,20
greece 0,27 christianity 0,01 dialogues 0,20
classical greece 0,27 ancient 0,01 ancient civilization 0,19
greeks 0,27 classic 0,01 greeks 0,19
greek 0,27 literature 0,01 dialogue 0,18
political philosophy 0,27 existentialism 0,01 pdf 0,18
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4.1. Datasets
We use tags from three data sets: a set of tags crawled from Delicious, a

publicly available data set crawled from LibraryThing and a publicly available
dump from Bibsonomy.

LibraryThing2 is an interactive web service that allows users to maintain per-
sonal lists of books, write reviews, rate books and add tags. The librarything
data set we use was collected by Maarten Clements (Technical University Delft)
and can be downloaded from the websites of the Delft Multimedia Information
Retrieval Lab3. After initial retrieval, the data set was pruned so as to create a col-
lection of annotations by users that have supplied both ratings and tags to at least
20 books and with books that were annotated by at least 5 people. The pruned
data set was made available. Details on the data set are given in Table 3. For
our purposes, pruning the data set does not pose a real problem because no co-
occurrence similarity measure can be expected to give sensible results with very
infrequent tags, and items with only a few tags provide hardly any information on
tag co-occurrence.

Delicious4 is a bookmarking service for URLs. A sample of the data con-
taining, among other things, tag, userid and URL was crawled by Matthias Lux
from Klagenfurth University [21]. In the experiment in subsection 4.2, we only
used a small subset of this dataset with tags assigned to pages from the English
Wikipedia. The number of tagged URLs, tags and users in this subset are given in
Table 3.

Bibsonomy5 is a system allowing users to store and tag references to (scien-
tific) papers [2]. In the tag clustering experiment described in 4.3 below, we used
a dump from July 2010 [16]. Characteristics of this data set are also given in Table
3.

In a number of experiments we only consider tags used at least 5 times, since
almost no interesting and useful distributional statistics can be derived for tags
with less usage. In Table 3 we additionally give the number of tags, users and
items occurring at least 5 times in a user-item-tag relation. Note, however, that
this restriction is not the same one as the pruning condition used to construct the
LibraryThing dataset. While the smaller data set contains only triples of user, item

2http://www.librarything.org
3http://homepage.tudelft.nl/5q88p/LT/
4http://www.delicious.com
5http://www.bibsonomy.org
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Table 2: Related tags according to second order co-occurrence similarity and cosine similarity
of tag distributions. Bold terms are the tags for which similar terms were computed. Tags are
ordered according to their similarity to this term.

JSD Cosine

aristotle aristotle
ancient philosophy ancient philosophy
greek philosophy ethics
plato virtue
classical philosophy greek philosophy
western philosophy loeb
socrates political thought
history of philosophy western philosophy
political thought antiquity
platonism generosity
philosophy desk

Table 3: Characteristics of 3 datasets with tags
LibraryThing sample Delicious sample Bibsonomy

Users 7,279 (7,279) 50.097 (18,214) 6,659 (4555)
(users that tagged at least 5 times)

Items 37,232 (37,232) 53,345 (20,670) 468,265 (72,330)6

(items with at least 5 tags)
Unique tags 10,559 (10,559) 49,603 (7624) 217,948 (46,028)

(tags used at least 5 times)
Tag assignments 2,056,487 278,693 2,622,423
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and tag, where each tag occurs at least 5 times, we still consider assignments from
users or resources that occur less than 5 times in the data set for computation of the
co-occurrence distribution. The effect of the different way of sampling can clearly
be observed in Figures 1, 2 and 3 where we clearly see that distribution of users,
tags and items follow a typical power law in the Bibsonomy and Delicious data
sets. The LibraryThing data sets has a different behavior for the low frequency
occurrences. The figures should be read in a such away that the upper left most
data point in Fig. 1 means that there are 11966 users in the Delicious data sample
that have associated exactly 1 tag. The next point right of this point indicates that
there are 8858 users that have made 2 tag associations, and so on.

Figure 1: Number of users (y-axis) that have assigned a given number of tags (x-axis) for three
datasets.

4.2. Experiment 1: Ontology Mapping
The first scenario in which we use second order co-occurrence similarity is in

finding a mapping between two vocabularies. The experiment models mapping
category assignments from a formal classification system to free-style tags and
vice versa. Unfortunately, we do not have at our disposal a sufficiently large data
sets that are both formally classified and have enough user generated tags. We
therefore use Wikipedia articles which, while not formally classified, are orga-
nized in a system of categories that is kept in check by the Wikipedia maintainers.
For the tagging data we use the tags from the Delicious data set assigned to these
Wikipedia articles. The experiment is described in more detail in [30].

For the computation of the tag co-occurrence distributions we consider both
user generated tags and category labels as one collection of formal “tags” in the
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Figure 2: Number of tags (y-axis) that have be assigned a given number of times (x-axis) for three
datasets.

Table 4: Characteristics of the Wikipedia category mapping experiment
Articles 53,345
Wikipedia Categories 42,445
Category assignments 222,640
Unique Delicious tags 49,603
Delicious tag assignments 278,693

sense of section 3.1. However, we do not unify tags and category labels, even
if they are represented by the same strings. Thus, we leave open the possibility
that the same word has a different meaning when used as a tag in Delicious and
as a category label in Wikipedia. The mapping is then computed by finding the
closest tag for each category label and vice versa. To determine closeness we use
the second order jsdsim2 measure and jaccsim1, the first order Jaccard coefficient
. The latter was reported to be superior to other co-occurrence similarities in
similar experiments [13]. Other measures were not taken into account, because the
computation of the mapping is computationally expensive and more importantly,
the manual evaluation of the resulting mapping is very time consuming. Table
4 summarizes the number of users, tags, and Wikipedia articles (items) for this
experiment.

We only computed mappings for all categories and tags that occur on at least
10 Wikipedia articles, since we cannot expect to get reasonable results for very
infrequent tags. For the targets we also restricted the set of candidates to that
same subset. Thus, we found 2355 mappings from tags onto a Wikipedia category
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Figure 3: Number of resources (y-axis) that have been assigned a given number of tags (x-axis)
for three datasets.

and 1827 mappings from a category onto a tag for both dissimilarity measures.
For the evaluation, we manually classified 10% of the mappings. We selected

the mapping with the 100 most and least frequent source terms with the remain-
ing mappings chosen at random. Initially, we classified each of the mappings into
one of the following 8 categories: identical term, synonym, broader term, nar-
rower term, related term, unrelated term, unclassifiable term, unknown term. The
classes were subsequently grouped together into 4 classes: synonym, related term,
unrelated term, unclassified. Here unclassified means that either the meaning of
the tag was unclear, or the source label was an organizational tag or category (like
to-read or important) for which no corresponding wiki category label exists. The
numbers of examples for each class are given in Figure 4. Mappings in both di-

Figure 4: Fraction of mappings from Wikipedia categories onto tags (left) and vice versa (right)
using different dissimilarity measures for each evaluation category
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rections show similar percentages of synonyms and unclassified mappings for the
second order co-occurrence similarity jsdsim2 and the first order Jaccard coef-
ficient. However, for both directions, the second order co-occurrence similarity
gives many more related terms than the Jaccard coefficient.

A more detailed analysis shows in particular, that the second order co-occurrence
gives better results for infrequent tags and categories. This becomes especially
clear for the mapping from (Delicious) tags to (Wikipedia) categories, where the
Jaccard coefficient does not perform too badly. Figure 5 gives the evaluation for
the mapping of the 100 most frequent tags (413 to 22 267 occurrences; if we
would exclude the three most frequent tags, Wikipedia, Wiki and Reference, the
range goes up to 4630 for history) and the 100 least frequent tags (13 to 15 oc-
currences). For the frequent tags both similarity measures perform almost equally
well. For the infrequent tags the second order co-occurrence clearly outperforms
the Jaccard coefficient.

Figure 5: Fraction of mappings from tags to Wikipedia categories for 100 most frequent tags
(left) and 100 least frequent tags (right) using different dissimilarity measures for each evaluation
category

4.3. Experiment 2: Tag Clustering
Clustering is an interesting way to create more structure in a large set of tags.

It can help users getting a better insight in the tagged collection [28] and was also
shown to improve the accuracy of automatic recommendation [31]. The topical
coherence of the clustering is strongly dependent on the distance measure used by
the clustering algorithm.Thus, the effectiveness of clustering can be used to evalu-
ate distance measures for semantic relevance. Here we compare the second order
co-occurrence similarity jsdsim2 with the first order cosine similarity cossim1 and
Jaccard coefficient jaccsim1 in a clustering experiment with tags from Bibsonomy.
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Before computing distances between tags, we first normalized the tags by uni-
fying obvious spelling variants. For each tag t, we collected all less frequent tags
with an edit distance less than 1+0.5length(t) as potentially equivalent. We then
assigned penalties of 0.5 and 0.1 for insertion or deletion of a final ’s’ and non-
alphanumeric characters, respectively. After this procedure, tags t on this list that
either have an edit distance of less than 0.5 (i.e. differ only in non alphanumeric
characters) or that have jsdsim2(t, t

′)< 0.45log(2) were considered spelling vari-
ants of t. The combination of the edit distance condition with the JSD condition
ensured that only those tags are identified that have both a similar spelling and
are used in similar contexts. This was setup to identify spelling variants with the
same meaning only. Before normalization 28,129 tags were occurring more than
twice with the papers selected below. After normalization only 23,252 tags were
left.

To evaluate clustering of tags, we manually created 12 reference clusters of
tags. We started by choosing 12 scientific disciplines for which a substantial num-
ber of tags is available in Bibsonomy. For each of these disciplines, we selected
two or three important and typical journals (Table A.6 in Appendix Appendix A).
and collected the most common spelling variants and abbreviations as used in Bib-
sonomy. We then collected all tags assigned to papers published in these journals,
and filtered out all tags that are either too frequent in the whole collection (e.g.
”imported”) or that matched regular expressions describing highly personal tags
(e.g. ”my-.*”). Finally, for each discipline we select tags that occur at least 5
times for a selected journal within that discipline and for which at least 80% of
the occurrences was on an article within its discipline. This ensured that we have
at least one unambiguously way to assign a tag a reference cluster although other
other reasonable classifications might of course exist. This resulted in a set of 215
distinct (normalized) tags (listed in Appendix A) with a total of 6,449 occurrences
in the selected, and 38,258 occurrences in the whole data set.

We clustered the 215 tags using the first order arccos(cossim1) distance, the
first order Jaccard coefficient jaccsim1, and the second order

√
jsdsim2 distance

between tags (see section 3.1). For each distance measure we use the same set of
(journal, tag) pairs, and the same k-means clustering algorithm with random clus-
ter initialization described in [1]. Results were averaged over 20 runs to estimate
the effect of the random choice. The co-occurrence distributions were computed
over all 23,252 normalized forms of tags and used all 38,258 occurrences in the
whole data set. Since the clustering results for the two first order measures turned
out to be indistinguishable well within the standard deviation from the variation
resulting from random initialization, in the following we only report on the cosine
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similarity.
Following [18] we evaluated the computed clustering C = {c1, · · · ,cn} against

the reference clustering C∗ = {c∗1, · · · ,c∗12} corresponding to the 12 scientific dis-
ciplines. For each cluster c ∈ C and reference cluster c∗ ∈ C∗ we define a recall
measure rec(c,c∗) = |c∩ c∗|/|c∗|, a precision measure prec(c,c∗) = |c∩ c∗|/|c|
and an F value

F(c,c∗) =
rec(c,c∗)prec(c,c∗)

1
2(rec(c,c∗)+prec(c,c∗))

.

Let Fmax(c∗) = maxc∈C F(c,c∗) be the F-value of the best fitting found cluster.
Finally define ‖C∗‖= ∑c∗ |c∗| and the mean maximal F-value by

F =
1
‖C∗‖ ∑

c∗∈C∗
|c∗|Fmax(c∗)

A value of F = 1 means that the set of selected tags was clustered exactly ac-
cording to the reference clustering by subject. The overall F-values for clustering
with the different similarities are given in Figure 6. We also determined the purity
of the clusters (figure 7). Purity is the average highest precision of the cluster-
ing and is defined as follows ([22, chap 16]). As above, let ‖C‖ = ∑c∈C |c|, and
precmax(c) = maxc∗∈C∗ prec(c,c∗)

Purity(C) =
1
‖C‖ ∑

c∈C
|c|precmax(c)

=
1
‖C‖ ∑

c∈C
max
c∗∈C∗

|c∩ c∗|.

Note that the purity measure does not “punish” a breakup of clusters and becomes
1 for clusters of size 1.

4.4. Relative Entropy of Co-occurrence Distributions
Tags may express many things. The most common intention seems to be clas-

sifying the topic of the item. However, a tag may also express something about
the form of an item, the medium, the relation between the tagger and the tagged
item, the context in which the tagger has found the item, and so on. For example
the tagger may express where he found an item (“You Tube”, “Bull. ACM”) state
an opinion (“nice”, “OMG cuuuute”), or the purpose of the tag (“PhD”, “Holi-
day2010”). It is even possible that a tag is ambiguous between two types of usage.
Assuming that most tags are related to a topic, the co-occurrence distribution of
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Figure 6: Overall F-Measure for clustering of 214 Bibsonomy tags matched against 12 reference
clusters. Error bars give±1 standard deviation for 20 runs with random initial points. The red line
gives results using jsdsim2, the green line the results using cossim1.

a topic-related tag should roughly correspond to a corpus dependent distribution
of topics, weighted by a corpus independent distribution of tags given a topic.
Hence, we expect the co-occurrence distribution p(−|t) = δ

(2)
t of a topic related

tag to have a relatively high divergence D(p(−|t)||p0) with the mean tag distribu-
tion p0. On the other hand a topic independent tag should have a low divergence
with the mean distribution because they can occur with most items. Indeed, this
exactly the behavior we observe. As an example, consider the tags borrowed from
library and Kansas City we found in the LibraryThing dataset. The tags have sim-
ilar frequencies (125 and 118 occurrences resp.) and occur on a similar number of
items (119 and 118 items resp.). The first tag (borrowed from library) is clearly
not about a topic while the second tag is. This is reflected by the relative entropy
of the co-occurrence distribution, which is 0.740 for borrowed from library and
2.39 for Kansas City.

In the construction of the co-occurrence distribution in section 3.1 we can
use users just as well as items, so we can compute a co-occurrence distribution
for users instead of items. We then expect to find that personal tags tend to have
higher divergence because by the same reasoning, personal tags should correspond
to people or groups of like minded people.
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Figure 7: Purity for the clustering of 214 Bibsonomy tags matched against 12 reference clusters.
Error bars give ±1 standard deviation for 20 runs with random initial points. The red line gives
results using jsdsim2, the green line the results using cossim1.

For a larger scale experiment, we first categorized tags in 5 different classes
motivated by [29]. The class ”Attributes” includes genre and some additional
properties at the level of the work and at the level of expression, including the
usage context. Self-referential tags are typically organizational tags, or tags re-
lated to the copy e.g. its physical appearance. Author tags refer to the author of
the tagged book. We then normalized the tags in a way similar to the normaliza-
tion described in Section 4.3 and manually labeled 675 tags with a class label.
A random selection of about 500 tags was labeled using 5 different class labels.
We stopped labeling after a certain number of examples for each class was found.
We then searched for more examples of opinion and self referential tags to get
balanced classes. Moreover, additional examples of attributes were selected to in-
clude enough examples of different types of attributes, like usage context. Finally,
we manually assigned every tag a class label and determined the average relative
entropy of the co-occurrence distribution of tags in each class. The result with
co-occurrence distributions computed over both items and users is given in Table
5.

Here we clearly see that for the item based co-occurrence we find a higher rel-
ative entropy for the classes that are strongly related to topics (Topic and Author)
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Table 5: Averaged relative entropy (standard deviation) of co-occurrence distributions of tags from
given classes using Kullback-Leibler divergence with natural logarithms

Class name Nr. of Rel. Entropy of Rel. Entropy of
examples item based user based

co-occurrence distr. co-occurrence distr.
Topic 200 2.90 (1.16) 1,53 (0,66)
Author 100 2.10 (0.674) 1,79 (0,59)
Attribute 200 1.67 (0.853) 1,58 (0,83)
Opinion 65 1.13 (0.502) 1,90 (0,87)
Self reference 110 0.928 (0.554) 1,91 (0,78)

and a low relative entropy for classes of tags that are independent from a topic
(Opinion and Self reference) (difference between values for author and opinion
are significant at the level of α = 0.1% using the student’s t-test), whereas for the
user based co-occurrence distribution the relative entropy of the personal Opinion
and Self reference tags are clearly higher (difference between author and opinion
tags significant at the the level of α = 5%). In [29] we have shown that two sim-
ilar eccentricity measures are a very useful feature for automatic classification of
tags.

5. Discussion and Conclusion

We have shown how second order co-occurrence distributions of tags can be
used to capture some aspects of the semantics of tags, in particular for an op-
erationalization of paradigmatic tag similarity measure. We put forward the hy-
pothesis that this second order operationalization of paradigmatic similarity cor-
responds more closely to the real semantic similarity of tags as interpreted by
people, than first order syntagmatic similarity measures. We found evidence for
this hypothesis in three different experiments: an ontology alignment task and a
clustering experiment and an experiment to recognize the topicality of tags.

For the mapping between Wikipedia category labels and Delicious tags the
second order co-occurrence similarity seems to be superior to first order co-occurrence
measures. while we did not find more synonyms, we found significantly more re-
lated and less unrelated terms than with Jaccard coefficient.

For the clustering of tags on scientific articles from Bibsonomy we also see a
clear improvement with the second order measure: in all cases, second order simi-
larity gave both better F-measure and better purity than the syntagmatic similarity.
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Finally, an investigation of tags on books from LibraryThing data shows that
co-occurrence distributions give information on other semantic aspects of tags, in
this case the degree of topicality of a tag. We argued that this is due to fact that the
majority of tags is related to a topic in the data sets we consider. Therefore, the
(co-occurrence) distribution over tags should behave approximately as if it were
generated by a corpus dependent distribution over topics and a corpus independent
distribution of tags given a topic. In the tasks we have used for evaluation, this
emphasis on topics is well in line with the goal of the task, which might be the
underlying reason for the good performance of the paradigmatic approach.

Van Vliet et al. ([27]) report on a small scale experiment also evaluating the
use of the methods presented in this paper. They compare the semantic similarity
of tags of pictures to the topical coherence of the tags as perceived by experts and
also find a tendency in this direction. However, evidence is inconclusive for lack
of sufficient number of tags and evaluations.

6. Further research

In this paper we intended to investigate the value of a paradigmatic similarity
for social tags without caring (much) for efficient computation or scalability. Now
that the value of the approach has been shown, it is a topic for further research
to investigate to what extend the results carry over to more efficient forms of
paradigmatic similarity like e.g. random indexing (see e.g. [9] for a discussion of
this topic).
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Appendix A. Details of Clusters of Bibsonomy tags
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Table A.6: Selected disciplines and journals
Discipline Journal
Artificial Intelligence Artificial Intelligence

Artificial Intelligence Review
Genetic Programming and Evolvable Machines
Machine Learning

Econometrics Economic Modelling
Journal of Econometrics
Journal of Policy Modeling

Economics Economics Letters
European Economic Review
Journal of International Economics
Journal of Public Economics

Finance Journal of Banking and Finance
Journal of Financial Economics
Journal of International Money and Finance

Heart Am. J. Physiol. Heart Circ. Physiol.
Circ. Res.
Circulation
Circulation research

Computer Science Communications of the ACM
IEEE Expert
IEEE Intelligent Systems
IEEE Software

Physics Phys. Rev. B
Phys. Rev. Lett.
Physica A: Statistical Mechanics and its Applications
Physical Review Letters

Neuro Science Journal of Neuroscience
Physiology Journal of General Physiology

Physiological Review
Physiology Reviews
The Journal of General Psychology

Planetary Science Earth and Planetary Science Letters
Icarus
Journal of Geophysical Research-Planets
Journal Of Geophysical Research-Solid Earth And Planets
Journal of Geophysical Research. E. Planets

Psychiatry Archives of General Psychiatry
Biol Psychiatry
Santé mentale

Statistics Computational Statistics and Data Analysis
Statistics
Statistics and Probability Letters

Stochastics Chaos, Solitons & Fractals
Stochastic Analysis and Applications
Stochastic Processes and their Applications
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Table A.7: Characteristic tags of the selected disciplines
Artificial Intelligence artificial; boosting; Design; inaki; induction; inductive programming;

juergen; kiwi; LCS; Machine Learning; program synthesis; Selection;
springer

Econometrics Applied; CGE; Computable; Disequilibrium; Econometrics; EU; gen-
eral; Globalization; Macroeconometric; Macroeconomics; Semipara-
metric; Specification; Test

Economics aversion; Competition; cycles; Employment; Endogenous; Environ-
mental; Fiscal; goods; Imperfect; Income; Inequality; Migration; Multi-
national; Optimal; Political; Tax; Trade; Unemployment; Wages; Wel-
fare

Finance Banks; CEO; directors; Dividends; Executive; fund; funds; IMF; Ini-
tial; Investor; investors; IPO; IPOs; Mergers; Microstructure; Mutual;
offerings; Ownership; Trading; Venture

Heart AMP-Dependent; Arrhythmia; beta-Agonists; Ca2+-Transporting;
Calcium-Binding; Cardiac; Cardiomegaly; Cardiovascular; Conges-
tive; Diastole; Electrocardiography; Fusion; Ischemia; Isoproterenol;
Knockout; Left; N.I.H; Rabbits; Recombinant; Ventricular

Computer Science agile; cites.pclass; collaborative-filtering; device; ERP; kde;
NLP; object-oriented; ontology; personalization; PIM; recom-
mender systems; research.cs.softeng; research.kr.ontologies; re-
search.nlp; SemanticWeb; v1002; visual-information-seeking; wis-
masys0809; wwwbook

Physics Boltzmann; Chaos; Complex; DNA; Econophysics; electron; experi-
ment; frustrated-phase-separation; Granular; high-tc; htsce; htsct; Ising;
Lattice; materials; Minority; Nonequilibrium; Nonextensive; Traffic;
transitions

Neuro Science Adult; attn; bg; bio; Brain; cereb; Cerebral; cond; devo; Dopamine; hip;
ltp; Male; Nerve; Perception; Resonance; striatum; thal; vis; Visual

Physiology Aniline; Cattle; Chelating; Cytosol; Dyes; Fluorescence; Fluorescent;
In; Permeability; Triphosphate; Vitro; Xanthenes

Planetary Science Atmosphere; Earth; Features; Galilean; Ganymede; Ice; Icy; Infrared;
Jupiter; Meteorites; Moon; Origin; Reflectance; Satellites; Shell; Spec-
trometer; Spectroscopy; Thermal; Volcanism; Water

Psychiatry accompagnement; Attention; contenance; écoute; émotions; entretien-
informel; grant; neuroleptics; personnalité; personnes-âgées;
santé-mentale; Schizophrenia; schizophrénie; TD; troubles-de-la-
personnalité; vieillissement

Stochastics Backward; Branching; deviations; Fleming-Viot; integral; integrals; In-
teracting; Large; logarithm; Markov; numbers; Poisson; queue; queues;
Renewal; scenery; SDEs; sheet; times; Wiener
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