Multiagent-based agile manufacturing:
requirement-driven low cost production

Leo van Moergestel!, Erik Puik!, Daniél Telgen®, and John-Jules Meyer?

! HU Utrecht University of Applied Sciences, Utrecht, the Netherlands,
leo.vanmoergestel@hu.nl,
WWW home page: http://www.hu.nl
2 Utrecht University, Utrecht,
the Netherlands

Abstract. The production system described in this paper in an im-
plementation of an agile agent-based production system. This system is
designed to meet the requirements of modern production, where short
time to market, requirement-driven production and low cost small quan-
tity production are important issues. The production is done on special
devices called equiplets. A grid of these equiplets connected by a fast
network is capable of producing a variety of different products in paral-
lel. The multi-agent-based software infrastructure is responsible for the
agile manufacturing. A product agent is responsible for the production
of a single product and equiplet agents will perform the production steps
to assemble the product. This paper describes this multiagent-based pro-
duction system with the focus on the product agent.

1 Introduction

The requirements of modern production systems are influenced by new demands
like time to market and customer-specific small quantity production. In other
words, the time between product development and production should be mini-
mal and small quantity production must be cheap. To fulfil these requirements
new production methods need to be developed. This new approach means new
production hardware as well as co-designed software.

Our research group has developed special production platforms that are
cheap, agile and easy configurable [11]. These platforms can operate in parallel.
We call these platforms equiplets and a collection of these equiplets is called a
production grid.

The multiagent-based software infrastructure for such a production grid is
highly responsible for this agile and diverse way of manufacturing. In [4] an
agent-based software infrastructure is described as well as the reason why agents
are used. To test the concepts presented in that paper, a test environment has
been built to see how such an agent-based production system would behave. The
production planning and scheduling in this multiagent-based production system
is published in [5]. The current paper discusses the architecture and the practical
implementation of this agile production system.



It focuses on the creation and roles of the agents that are responsible for
the assembling of a single product. These agents are called product agents. In
this paper first the manufacturing model is introduced and discussed as well as
the roles of the agents. Next the architecture and the constraints of the practical
realisation are discussed. The implementation of product agents and the software
infrastructure for the production of a two-dimensional structure is presented in
combination with related issues like error recovery.

2 MAS-based agile manufacturing

First a short introduction of the agent-based agile manufacturing system will be
presented here. The basic idea is that every single product is represented by a
so called product agent. The production equipment, in this case consisting of
the aforementioned equiplets, is also represented by an agent for every equiplet.
The product agent knows which production steps are needed to manufacture
a product. An equiplet agent knows how to perform one or more production
steps. The production system consists of a grid of equiplets. An equiplet is a
cheap basic production unit with an on-board computer system for control and
communication. Each equiplet comes with a front-end, a production hardware
add-on for the equiplet, that enables it to perform certain production actions.
The front-end will determine what kind of production actions (combining into
production steps) an equiplet can perform. Let us assume that the grid offers
a set Sgriq of N production steps o;...0n. An equiplet with a certain front-end
offers a set of production steps that is a subset of Sg,;4. To make a product, a
certain set of production steps should be available. This means that the set of
needed production steps for a product is also a subset of Sy,i4. Because for a
product the order of production steps is important, the product is characterized
in its simplest form by a sequence of production steps, e.g. < 04,07,092,01 >.
Other possibilities exist. Later on we will show the situation where first two
half-products are made that will be combined. In some situations the order of
two or more production steps is irrelevant. This will result in a choice of tuples.

The equiplet is controlled by an equiplet agent. This agent is responsible for
a certain equiplet and its front-end. It interacts with the production hardware,
other agents in the grid and possibly, in a semi-automated environment, with a
human equiplet operator. An equiplet agent will:

— announce its steps on a blackboard that is readable for all product agents in
its role of publisher;

— wait for clients (product agents) to arrive in its role of waiter;

— perform production steps in its role of step performer;

— inform clients about results of a step in its role of step performer.

In all its roles it will also inform product agents about the feasibility of steps in
combination with certain parameters.

Now the so-called product agent comes into the picture. This agent is, as
earlier mentioned, responsible for the realisation of the product. Its goal is a



finished product. In its first role as planner the selection of equiplets is done in
four steps or phases:

1. Select possible equiplets for a certain production step. Repeat this for all
steps needed;

2. Ask equiplets if the production steps with given parameters are feasible;

3. Optimize production path;

4. Schedule the whole production in an atomic action.

A product agents chooses an equiplet based on the set of production steps pub-
lished by the equiplet. It will direct the yet unfinished product to the equiplet
and log the production data resulting from the production step or steps; thus
creating a production log. After the equiplet has finished its production steps,
the product agent will turn to another equiplet according to the scheduling and
direct the product there, and so on until the final production step is completed
and the product can be removed from the grid. In this way we can produce dif-
ferent products in parallel as long as the set of production steps offered by the
grid fits the needs of the products to be made. The production paths of separate
product agents with different production steps result in a fabric as depicted in
figure 1. In this figure all steps take the same amount of time. In practice how-
ever this will not be the case and in our model all steps take an integer value of
a fixed time-unit. In this paper this fixed time-unit is referred to as time step.

production steps product X

equiplet A (§%8 e e z1 @
production steps product Z
equiplet B @ a
production steps product Y
e @) <) ONORT AT
equiplet D Q —>

Time —3 equiplet £ 4*

Fig. 1. Fabric of production paths.

2.1 Roles of the product agent

The product agents act fully cooperative in the MAS. The product agent is
created in the grid itself. There are also provisions made that their production
steps fit within the capabilities of the grid.

Planning and scheduling We define a production path as a sequence of pro-
duction steps. Consider a product to be built with three production steps, this
product has production path:

< 05,09,04 >



Let us assume a simple grid with three equiplets F1, Fo and Fs3, each offering a
set of steps. The steps offered by an equiplet are denoted between parentheses
as in F1(o1,04). This grid can be described by this set of equiplets:

{E1(01,04), E2(05), E3(02,05)}

A product agent will make a selection of these equiplets based on the production
step or steps that must be performed to construct the product. Next, the product
agent will ask the equiplet if the steps offered are feasible given the parameters
for the steps. The positive response from the equiplet agent contains an estimated
time to complete a given step. This information about the duration of a step
will be used in the scheduling phase. When a negative response is received by
the product agent it will discard the equiplet. Several solutions to map the steps
to equiplets exist. A possible solution for the given situation with a minimum of
transitions is:

< E3(0-5)7 E3(02)a El (04) >

Theoretically, the number of solutions will be very high if the equiplets each
offer a big set of production steps. If the order op production steps is irrelevant,
the same thing can happen. However in practice an equiplet offers only one or
perhaps two steps. Keeping in mind that only one solution is needed, the number
of solutions that are calculated by the product agents is in our situation limited
to eight. One solution is not enough, because in case of an infeasible scheduling,
other solutions should be at hand. In [5] mechanisms to optimise the scheduling
are introduced. Summarised these optimisations are: taking care of the load of
a certain equiplet so an alternative equiplet is searched for in case an equiplet
has a high load, minimising the amount of movements of the product between
equiplets and finally avoidance of unreliable functioning equiplets.

The scheduling implementation The scheduling is implemented as an atomic
action for the product agent. The product agent will schedule all production steps
it needs, while other agents are temporarily blocked from scheduling. This will
prevent deadlocks. The products allocates available free timeslots for all equiplets
it needs for production. If the complete path of steps is within the deadline, the
scheduling is considered successful. If the scheduling fails the product agent will
do a reschedule. This reschedule is based on the ”earliest deadline first” (EDF)
approach. This approach turned out to give a high success rate [5]. The product
agent that encounters a failing scheduling, will ask all agents with a later deadline
to hand over their scheduling and the product agent with the failing scheduling
will try to reschedule itself and all agents having a later deadline according to
the EDF-approach. If this results in a feasible scheduling for all involved product
agents, the new scheduling will be reported to all agents that temporally gave
up their scheduling. If this rescheduling fails for one or more agents, the product
agent that did the rescheduling will reports a scheduling failure to its maker and
gives up. The other agents continue with their old scheduling schemes.



Planning and scheduling complex production paths In the previous sec-
tion the focus was on products with a single sequence of production steps. In
practice however, most products are manufactured by starting with the produc-
tion of half products that are combined to make the final product. In figure 2
a simple example of this situation is presented. In a more formal approach this
means that the product steps are still a tuple, but the members of these tuples
could be sets of tuples. The product path of figure 2 can be presented by:

< {< 01,02 >7< 03,04 >}7U4107702701 >

To realise such a product the product agent will spawn child agents that will be
responsible for the manufacturing of the half products. When these child agents
are finished, they will transfer the production information to the parent agent
that will finish the production. There is a catch in this situation concerning
the scheduling. If the product must be completed before a certain deadline,
the parent agent should coordinate the scheduling of the children with its own
scheduling. All children will plan and schedule their production paths and report
this planning to the parent. The parent will schedule its own remaining part of
the product path. This will result in a total schedule. If the total scheduling
is feasible, all child agents will get a go for production and the parent product
agent will wait for the children to complete their path. Afterwards the parent
will complete the product.

>

Fig. 2. Combining two half products.

Guiding the product The product agent will guide the product along the
equiplets. At every equiplet it will instruct the equiplet agent what step or steps
to perform. It will log the results of a production step and also update a globally
shared knowledge base that can be consulted by other product agent to check
the reliability of a certain equiplet for a certain step with certain parameters.

Error recovery If there is a failure on a certain equiplet, depending on the
type of failure (recoverable or severe) the product agent will try to plan the
required step on an alternative equiplet for the same reason as why one would
not prefer to hire a plumber who previously made mistakes resulting in a flood.
By putting the information about the failure (step type and parameters) in
a shared knowledge base, the product agents will learn as a group about the
reliability of the equiplets for certain steps. A more detailed discussion about
error recovery is in section 4.9.



Role in other parts of the life cycle of a product When the production is
finished the product agent could cease to exist. However, being a software entity
that knows a lot about the product and the actual production, there are a lot
of possible roles and new goals this product agent can have during the life cycle
of the product. An overview is given in [6]. In some situations shown in this
overview the role of the product agents will be to represent the product in the
Internet of Things.

3 System architecture

In this section a description of the system architecture as well as the software
will be presented. In figure 3 the layered software architecture is given. Only one
product agent and one equiplet agent is depicted and the modules in the lower
layer of the equiplet depend on the front-end that has been connected to the
equiplet. In this case an equiplet with the pick and place capabilities and vision
modules is assumed.

MAS
Product

/ AgEnt
A

Equiplet
Agent

Blackboards

Fig. 3. Layered architecture.

For the MAS layer Jade [1] was used as a platform. The reasons for choosing
Jade are:

— the production grid is a multi-agent-based system. Jade provides most of
the requirements we need for our application like platform-independence
and inter agent communication;

— Jade is Java-based. Java is a versatile and powerful programming language;

— because Jade is Java-based it also has a low learning curve for Java program-
mers;

— the product agents should be capable to negotiate to reach their goals. Jade
offers possibilities for agents to negotiate.

— agents can migrate, terminate or new agents can appear.

The Jade runtime environment implements message-based communication be-
tween agents running on different platforms connected by a network. The soft-
ware for the equiplet is based on ROS. ROS is an acronym for Robot Operating



System [12]. ROS is not really an operating system but it is middle-ware spe-
cially designed for robot control and it runs on Linux. In ROS a process is called
a node. These nodes can communicate by a publish and subscribe mechanism.
In ROS this communication mechanism is called a topic. Figure 4 shows the re-
lation between two nodes and one topic. Node /talker communicates with node
/listener by means of the communication mechanism or topic /chatter

node topic node

Fig. 4. Two nodes connected by a topic.

This platform has been chosen for the following reasons:

— open source, so easy to adapt, compliant with a lot of open source tools;

— wide support by an active community;

— huge amount of modules already available;

— nodes that are parts of ROS can live on several different platforms, assumed
that a TCP/IP connection is available.

At the lowest layer in figure 3 is a linux platform running modules that commu-
nicate with the underlying hardware. Linux is a stable, portable and versatile
platform. In the next section we will take a closer look at the implementation of
this architecture.

4 Implementation

Before discussing the software for the production grid, a description of the way
that products are made in the grid as we designed it is presented.

4.1 Production constraints

Our production model is based on trays that will carry the product to be built.
These trays are transparent boxes, so equiplets with a camera can inspect both
from the top and the bottom. In the latter case the workplace of an equiplet
should also be transparent. The trays are marked with an unique QR-code.
During the first production steps the trays are filled with all the components
required to make the product. This way a kind of construction box is generated.
This means that for all steps to come, the components are available. This is a
big advantage over a situation where logistic streams of components within the
grid should be taken care of. The disadvantage is that parallel production of
sub-parts in complex production paths is not possible. However for the proof of
concept this is not a big problem and solutions can be found where the sub-parts
are first manufactured in parallel and added to the construction box.



4.2 Final architecture and software

To test the production grid, a webserver has been added to allow end-users to
construct products to be made by the grid. This is why it can not happen that
a product is requested that does not fit within the capabilities of the production
grid, because the grid itself is offering the webinterface for designing the product.
No norms are needed for the product agents acting within the grid. If a product
can be made using the webinterface, the grid will be capable to make it. The
architecture of the software of the manufacturing system is depicted in figure 5.
Every block will be described in more detail. First the entire picture will be

Webbrowser Webserver
HTML5 D——
Javascript Tomcat
+
Timeserver Java application

Time process
BB-planning Jade Product Agent

BB-steps
BB-logfile Jade Equiplet Agents
Equiplet 1 Equiplet 2 Equiplet 3

Fig. 5. Combination with webinterface.

explained. A web server publishes a website where a customer can design his
product. By pushing a submit button, a server-side program will create and
activate a product agent. This agent will start to plan the production path and
communicate with the available equiplet agents to create the product.

As a simple example we will demonstrate the production of a mosaic con-
sisting of coloured balls in a 4 x 4 box as shown in figure 6. The reason why this
example is chosen is that it is a nice demo of the pick and place capabilities of
an equiplet that has been constructed by our group and the web-interface is still
rather simple.

4.3 Client side

At the client side a web-browser receives a web-page in HTML5 format with
embedded JavaScript to display a graphical environment where a product can
be designed. A simple example of a mosaic is shown in a screen-shot in figure 6.

The client side software is also capable to build three dimensional structures.
It has some built-in intelligence. For example if a user wants to add a part at a
place where adhesive is needed to keep it in place, it will warn the user if he did



Fig. 6. A mosaic in the webbrowser.

not select the adhesive option for the placement of this part. At the client side
a product is described by XML. For every part placed on the design grid in the
webbrowser, the parttype (ball, or block), colour (red, blue, green, yellow) and
position (coordinates on the design-grid) is entered in this XML information. By
clicking the submit button, the XML information is posted to the webserver.

4.4 Webserver and Tomcat driven Java application

The web page presented to the client is presented by a Tomcat web server.
Tomcat is designed to support Java Servlets. This means that Tomcat is capable
to start a Java program at the server the moment the client sends a request for a
product. This Java program is capable of spawning a product agent in the Jade
environment. Jade Gateway is used in the Jade environment to achieve this
functionality. This newly spawned agent will also receive the XML information
about the product to be made. From this information, the needed product steps
are generated by the product agent.

4.5 Product agent

The product agent is created and its goal is to produce the product. Therefore
it has to fulfil its sub-goals. The first sub-goal is planning the production path.
This means: selecting the equiplets involved, inquire if the steps are feasible and
finally scheduling the production. The next sub-goal is to guide the product
along the production path and to inform the equiplet about the step or steps to
perform. For every step, data acquisition of the production data is possible and
should be carried out by the product agent. It depends on the equiplet agent
what information will be made available.

4.6 Blackboard and timing

The blackboard system as described in the architecture was implemented as
actually three separate blackboards. This has to do with the fact that the per-
formance of the system could be better and also the read and write access per-
missions became more clear. The BB-steps blackboard is used by the equiplet



agents to announce its production steps. This information is under normal cir-
cumstances read-only for the product agents. The BB-planning blackboard is
read and written by the product agents and a timing process. The information
on this blackboard is the planning of timeslots or time steps for every equiplet,
and a load of every equiplet. The implementation is based on a circular buffer
of time steps for every equiplet. A time-pointer is pointing at the current time
step. This pointer is updated by the timing process, that will also clear the time
step that have been passed. It will also update the load of the equiplet when
a filled time step has passed by and thus has been cleared by the timing pro-
cess. Other time steps contain the unique product agent id that belongs to the
agent that has reserved that slot. To synchronise all agents, a timeserver has
been added to the system. As already explained, the scheduling is done by the
product agents. Every newly arrived product agent tries to schedule itself in a
way that it will not exceed its deadline. If it fails, it will ask other product agents
with a later deadline to temporally give up their scheduling. Next it will try to
generate new schedules for all involved agents. If successful, the new schedule
will be adopted. If the scheduling fails the old schedules are restored and the new
agent reports a scheduling failure [5]. The third blackboard is used to build a
knowledge base about the performance of the individual equiplets and is shared
among the product agents. Successful and unsuccessful steps are reported in this
blackboard by products agents. This blackboard serves as an extra check when
the product agent is planning the set of equiplets to be used for a certain prod-
uct. The higher the failure rate of a certain equiplet, the more it will be avoided
by the product agents. This failure rate can be reset after repair or adjustment
of an equiplet.

4.7 Equiplet agent

The equiplet agent is also implemented as a Jade agent and it is the interface
to the underlying software and hardware. It depends on the front-end of the
equiplet what modules are available. The equiplet agent is also the interface
to the product agent. Both types of agents live in Jade containers and can
communicate with each other. The communication between the product agents
and the equiplet agents as well as other product agents is FIPA-based. The Jade
platform is FTPA-compliant. For the implementation of the blackboard, Open
BBS has been chosen. This Java-based blackboard was easy to integrate in the
Jade environment; it was open-source and tests proved that it performed well
enough for our grid.

4.8 Interaction

The webinterface will deliver an XML-description of the product. This is trans-
lated to product steps by the product agent. The product agent will parse the
XML information and generate a step for every part of the XML file the actu-
ally changes the product. The webinterface takes care for deletion and retries,



so the XML file itself should not be adapted by the product agent. The XML
information for a 2x2 tray of the example looks like:

<?7xml version="1.0" encoding="utf-8"7>
<mosaic rows="2" columns="2">
<row>
<cell object="ball" colour="red"/>
<cell object="ball" colour="green"/>
</row>

</mosaic>

This will result in three similar production steps (pick-and-place) from the point
of view of the product agent. Now the product will interact will the available
equiplets agents. When a candidate is found that is capable to perform the pick
and place step, the feasibility of this step with given parameters will be checked.

In the following FIPA interaction de product agent is abbreviated as PA and the
equiplet agent as EA.

PA: query-if(action(object))

// pick-and-place(ball)

EA: confirm or disconfirm

EA: inform(yes/no, time duration)

When the step is actually carried out, the following interaction willl be used:

PA: request(action(parameters, ..)

EA: agree

EA: inform(status) // success - failure
PA: request(information) // product log
EA: inform(information)

For every interaction, a watchdog timer will take care of possible time-outs. In
case of a time-out a recovery will be done by repeating the part that was timed-
out and if a failure is detected the error recovery mechanism will be triggered.

Even though this paper focuses on the product agent, it might be a good
idea to explain some details about the equiplet agent. More information about
the equiplet internal architecture can be found in [13]. The equiplet agent will
translate the production steps in front-end-specific sub-steps. A pick-and-place
action is composed of movements and control of a vacuum pincer to pick the
objects involved. The movements and commands are send to the ROS-layer that
will control the hardware and the commands are actually carried out by the
connected hardware.

4.9 Error recovery

In this section the error recovery is discussed. Three types of errors are antici-
pated:



1. Equiplet crash: this is an unexpected hardware or software failure of an
equiplet;

2. Equiplet shut-down: the equiplet is brought down or in a state where it is
not capable to perform production steps;

3. Production step error: this means that the production step has been tried
by the equiplet but it failed to produce the right result.

In the first situation, the product agent that has this equiplet in its production
path, will discover that the equiplet agent is not responding or responding nega-
tive. As a result the product agent will clear the possible production steps on the
equiplet blackboard BB-steps. This is the only situation where an product agent
will adjust the information on this blackboard. This will prevent the schedul-
ing of this equiplet by newly arriving product agents. However other product
agents that already planned to use this equiplet will discover the same problem
and react the same way. In the second situation, the equiplet agents itself will
clear the equiplet blackboard and also mark the future planned steps on BB-
planning as cancelled. It will also inform the product agents involved about this
cancelling. These agents will reschedule their production. To prevent a burst of
atomic rescheduling actions to occur at the same time step, this rescheduling is
postponed to one step before the actual planning of the cancelled step. Normally
the scheduling takes only a small part of a time step. This way the reschedul-
ing action is smeared over the available time steps. For the last situation, only
two types of production step errors have been implemented yet. The first type
is the recoverable error. In this situation the product has not been changed by
the failing production step and the step could be retried, preferably at another
equiplet. In the second case the product has been changed, but not according to
the specified production step. This is considered to be an exception, the product
will be removed from the grid (possibly for human inspection) and the product
agent maker will get an error report. In both cases the error is also stored in a
knowledge base, so other product agents with similar parameters could decide
to avoid the error-prone equiplet in the future.

5 Results and future work

The research done so far for this agent-based production system had several
milestones. The first milestone was the proof of concept given by a simulation
of the multiagent system [4]. In that system the product agents planned their
production path along equiplet agents that used timing delays to mimic the pro-
duction steps. The equiplet agent was not combined with the equiplet hardware.
The next milestone was the implementation of a reliable and fast scheduling
algorithm [5]. The latest milestone is described in this paper where we made the
two final steps. First we integrated the MAS with the ROS-based equiplet sys-
tem, so the integration with real equiplet hardware has been accomplished. As a
second step a web front-end has been built to specify the product to be produced.
At this moment the given 2D example can be executed on the three available



equiplets. So the total chain from design to production is working. The 3D ex-
ample is already implemented at the MAS level and ROS level. The equiplet
front-end to perform these steps is under development as a glue dispenser and
an extra degree of freedom (rotation capability around the z-axis) of the pick
and place robot is needed. However using a dummy equiplet (as in the earlier
developed simulation) shows that the software is working to our expectations.
This also includes the error recovery system.

Future research will focus on more equiplets having complexer production
steps and automatic reconfiguration of equiplets.

6 Related work

Using agent technology in industrial production is not new though still not
widely accepted. Important work in this field has already been done. Paolucci
and Sacile[10] give an extensive overview of what has been done in this field.
Their work focuses on simulation as well as production scheduling and con-
trol[8]. The main purpose to use agents in [10] is agile production and making
complex production tasks possible in a standard production environment by us-
ing a multi-agent system. Our approach is a co-design of hardware and software.
Agents are also introduced to deliver a flexible and scalable alternative for MES
for small production companies. The roles of the agents in this overview are
quite diverse. In simulations agents play the role of active entities in the pro-
duction. In production scheduling and control agents support or replace human
operators. Agent technology is used in parts or subsystems of the manufactur-
ing process. We on the contrary based the manufacturing process as a whole
on agent technology. In our case a co-design of hardware and software was the
basis.

Bussmann and Jennings [2][3] used an approach that compares to our ap-
proach. The system they describe introduced three types of agents, a workpiece
agent, a machine agent and a switch agent. Some characteristics of their solutions
are:

— The production system is a production line that is built for a certain prod-
uct. This design is based on redundant production machinery and focuses on
production availability and a minimum of downtime in the production pro-
cess. Our system is a grid and is capable to produce many different products
in parallel;

— The roles of the agents in this approach are different from our approach. The
workpiece agent sends an invitation to bid for its current task to all machine
agents. The machine agents issue bids to the workpiece agent. The workpiece
agent chooses the best bid or tries again. In our system the negotiating is
between the product agents, thus not disrupting the machine agents;

The solution presented by Bussmann and Jenning has the characteristics of a
production pipeline and is very useful as such, however it is not meant to be an
agile multi-parallel production system as presented here.



Other authors focus on using agent technology as a solution to a specific
problem in a production environment. In [9] a multi-agent monitoring is pre-
sented. This work focusses on overall monitoring a manufacturing plant but doe
not focus on every single product. The approach we use monitors the production
of every single product. The work of Xiang and Lee [14] presents a scheduling
multiagent-based solution using swarm intelligence. This work uses negotiating
between job-agents and machine-agents for equal distribution of tasks among
machines. The implementation and a simulation of the performance is discussed.
In our approach the negotiating is between product agents and load balancing
is possible by encouraging product agents to use equiplets with a low load. We
did not focus on a specific part of the production but we developed a complete
production paradigm based on agent technology in combination with a produc-
tion grid. There is a much stronger role of the product agent and a product
log is produced per product. The design and implementation of the production
platforms and the idea to build a production grid can be found in Puik[11].

7 Conclusions

In this paper an agile agent-based production system is presented. We described
a real production system that has been built as a proof of concept. All software
used is based on open standards. Further research on the production of products
with a higher complexity must be done, however the basic techniques for the
implementation proved to work.

The grid is capable to produce several different products in parallel. The
production is completely demand driven and every product has its own unique
production log generated by the product agent. This product agent can play an
important role in the other parts of the life-cycle of the product. When a product
will be disassembled the product agent carries important information about the
sub-parts of the product. This can be useful for recycling and reuse of sub-parts.

The production approach described here is also applicable to a hybrid system
containing human actors as parts of the production system. The production steps
for a certain product should be translated to human-readable instructions and
humans replace the equiplet systems. In that model the equiplet agents carries
out this translation so the MAS layer is still intact. This approach is useful in the
situation where the production tasks are too complicated for an equiplet to be
performed, but it can also help in the situation where a new equiplet front-end
has to be developed [7].

References

1. Bordini, N., Dastani, M., Dix, J., Seghrouchni, A.E.F.: Multi-Agent Programming.
Springer (2005)

2. Bussmann, S., Jennings, N., Wooldridge, M.: Multiagent Systems for Manufactur-
ing Control. Springer-Verlag, Berlin Heidelberg (2004)



10.

11.

12.

13.

14.

Jennings, N., Bussman, S.: Agent-based control system. IEEE Control Systems
Magazine (Vol 23 nr.3), 61-74 (2003)

Moergestel, L.v., Meyer, J.-J., Puik, E., Telgen, D.: Decentralized autonomous-
agent-based infrastructure for agile multiparallel manufacturing. ISADS 2011 pro-
ceedings pp. 281-288 (2011)

Moergestel, L.v., Meyer, J.-J., Puik, E., Telgen, D.: Production scheduling in an
agile agent-based production grid. IAT 2012 proceedings pp. 293-298 (2012)
Moergestel, L.v., Meyer, J.-J., Puik, E., Telgen, D.: Monitoring agents in complex
products enhancing a discovery robot with an agent for monitoring, maintenance
and disaster prevention. ICAART 2013 proceedings 2, 5-13 (2013)

Moergestel, L.v., Meyer, J.-J., Puik, E., Telgen, D.: A versatile agile agent-based
infrastructure for hybrid production environments. IFAC Modeling in Manufactur-
ing proceedings, Saint Petersburg pp. 210-215 (2013)

Montaldo, E., Sacile, R., Coccoli, M., Paolucci, M., Boccalatte, A.: Agent-based
enhanced workflow in manufacturing information systems: the makeit approach.
J. Computing Inf. Technol. (10) (2002)

Ouelhadj, D., Hanachi, C., Bouzouia, B.: Multi-agent architecture for distributed
monitoring in flexible manufacturing systems (fms). ICRA 2000 proceedings pp.
2416-2421 (2000)

Paolucci, M., Sacile, R.: Agent-based manufacturing and control systems : new
agile manufacturing solutions for achieving peak performance. CRC Press, Boca
Raton, Fla. (2005)

Puik, E., Moergestel, L.v.: Agile multi-parallel micro manufacturing using a grid
of equiplets. IPAS 2010 proceedings pp. 271-282 (2010)

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Eheeler, R., A., N.: Ros: an open source robot operating system. Open-Source
Software workshop of the International Conference on Robotics and Automation
(ICRA) (2009)

Telgen, D., Moergestel, L.v., Puik, E., Meyer, J.-J.: Requirements and matching
software technologies for sustainable and agile manufacturing systems. INTELLI
2013 proceedings pp. 30-35 (2013)

Xiang, W., Lee, H.: Ant colony intelligence in multi-agent dynamic manafacturing
scheduling. Engineering Applications of Artificial Intelligence 16(4), 335-348 (2008)



