Krusty-JS

n@teri k “The power of online vid

Project:
Student:
Studentnr:
Email:
Supervisor HU:
Company:

Supervisor Company:

Version:
Date:

Thesis

Krusty-]JS

David Ammeraal

1520387
david.ammeraal@student.hu.nl
Michiel Borkent

Noterik B.V.

Konstantin Radoslavov

0.8

3-06-2012

Preface

At the end of 2011 it was time for me to finish my studies at the University of Applied Sciences of
Utrecht. At the end of the studies a student has to prove to the HU that he is capable and that he
can apply all that he has learned during his studies at HU. This document will describe what I
have done during my time at Noterik.

During the summer of 2011 I had finished most of my subjects so I set out to find a suitable
assignment. Thanks to the help of a friend I was quick in finding a company that possibly had an
assignment available for me.

[was introduced to Noterik B.V. (described as Noterik from now on) in November of 2011
through Jechiam Gural, one of the owners of Noterik. [was redirected to Rutger Rozendaal. We
organized a meeting and it was not long before we came to a definition of an assignment that I
would be able to do at Noterik in the period of January 2012 until June 2012.

The time spend during my time at Noterik was thoroughly enjoyed. It pleases me to know that
they took my project seriously, and that they are actually planning to implement the product in
their system, and although it was hard work to finish everything on time, it satisfies me knowing
that the product I created during that time will actually be used. The product is actually already
being used in the LinkedTV project described in the Plan of Approach, a project in which [am
actively involved now.

[would like to thank all my colleagues at Noterik for the excellent guidance and help they
provided me with, and for allowing me so much freedom in the development of my product. If not
for their active involvement in my project, the project would not have been such a success.

[would also like to thank Michiel Borkent for his guidance during my period at Noterik, he was
actively involved in the composition of the document.

Management summary

Goals of the project

Noterik currently employs a Flash application called Krusty to present the videos stored in their
platform. Flash technology is a degenerating technology, mainly because of lack of support of the
standard on [0S devices such as the iPhone and the iPad. Other than that, Adobe has recently
announced that it will not provide further updates for the Flash player on mobile devices. Noterik
desires to reach a wide spectrum of users, including 10S and mobile device users. So therefore, the
functionality had to be transferred.

The goals of the project were to do research on how the functionality contained within the Krusty
application could be transferred to a HTML5 /JavaScript environment. After this research was
done the functionality contained within the Krusty application had to be transferred to this new
environment.

Instructing party

Noterik is the instructing party. Noterik is a small company situated at the Prins Hendrikkade 120
in Amsterdam, The Netherlands. Konstantin Radoslavov was the supervisor of the author during
the time of the project. Noterik focuses on delivering online video services to mainly non-profit
sector companies.

Environment in which the project was done

The project was mainly done at the office of Noterik in Amsterdam. The author was part of the
development team of Noterik. The author mainly worked solitary on the assignment, but had to
actively communicate with colleagues in order to implement the functionality in a correct way.

Project roles and responsibilities

Student: David Ammeraal
Supervisor HU: Michiel Borkent
Company: Noterik B.V.
Supervisor Company: Konstantin Radoslavov
Instructing Party: Noterik

Activities

The project was initiated by making a Plan of Approach. After receiving a reviewed version of a
concept of the Plan of Approach, a final version was send to the HU. After this the Research Phase
was initiated. It began with making a research plan. The following research question was
established:

"How can the functionality encapsulated within the Krusty-]S player be transferred to the HTML5
environment?"

The research question was split up into sub questions. Each sub question enveloped a certain
functionality that had to be transferred. After that the research was initiated, each sub question
was answered in order to be able to come up for a solution of the main research question.

After the research was done the design of the application was initiated. A functional design was
made. The functional design contained the functional and non-functional requirements of the
application, from which use-cases were extracted. After the functional design was made, it was
time to create a technical design.

The technical design contained descriptions of how the functionality could be implemented by
HTMLS5 and JavaScript technology.

After the functional and technical designs were created it was time to start developing the
application. In order to this in a structured way, SCRUM was employed. SCRUM is an iterative and
incremental development technique. A product backlog was constructed containing user-, and
technical stories extracted from the functional and technical design. Three sprints were defined.
Sprints are time boxes with a start time and a fixed end time. Each sprint enveloped an array of
stories that had to be developed within the sprint. After each sprint a demo had to be given about
the technology that was developed within that sprint.

Results

The research was done successfully. Almost all functionalities could be transferred to the new
HTMLS5 environment. However, because the browsers differently interpret a lot of the HTML5
AP], it might be difficult to implement all the functionality in all the browsers.

After completing all sprints, almost all functionality was implemented. However, towards the end
of the project, it was decided that the displaying of Events within the application would have to be
constructed in a completely different way. Therefore, this functionality did not make it to the
latest version of Krusty]S. Also full screen support did not make it into the final version of the
application.

Conclusions

HTMLS5 has proven to be a serious contender for the Flash technology. Most of the functionality
was implemented. The functionality that was not implemented will be implemented at a later
time. There are, however, some things that a developer should keep in the back of his/hers head
when developing an application that uses the HTML5 video element:

-No single video codec works on all browsers

-There is no widely supported streaming platform for HTML5
-HTMLS5 is very volatile environment that is constantly changing
-No DRM or other security available for copyrighted material.

Looking forward

HTMLS5 is adopted progressively more every day. Big data providers such as Youtube and Vimeo
are currently also in the progress of implementing HTMLS5 in their play out engines. In order for
Noterik to keep up with its competition it is important that following should be done:

-Integrate HTML5 play out in all of its projects that aim to reach an audience which employ a wide
arrange of devices.

-Convert the existing Montage Tool to HTML5

-Keep an eye open for a widely adopted HTML5 streaming platform

-Keep up to date concerning the current issues with securing copyrighted material with HTML5

Krusty]S should serve as a start-point for more complex implementations of the HTML5 API.

Table of contents

N 0o/ a 10 o 0) o PP 6
1.1 DEFINTTIONS covurerusrerseesseeesseessseesseessseesssessssesssesssseessseessessssessssess e ss e s R8RSR SRR R AR a R 6
2. Plan Of @D PIOaCK ..ttt ettt b bR Rk R AR 8
2.1 CONTEXE OF PIOJECE cuucureeureeureesreruseessesseessesesssssssesssasssessseesse bbb b s ER s R e bbb R bR a bbb 8
2.2 Definition Of the ProDIEIM ... ettt es s b s s s s 9
2.3 Definition Of the aSSIZNIMENT .. essees et s s s es s bbb s s 9
2.3 Products t0 DE deliVETEd ...ceuermeeeremeerreesreesseerseesssesssessesssesssssss s ssses s s sssssssssessssesssssssssssssssassssans 11
2.4 PIANIIIZ ..eeieerteeeeseeesetseeeseesessseesseessessseessessse e bbb a8 8 s AR R ER £ e ek E R R R R aes 11
2.5 Organization and reSPONSIDIIITIES ... ettt seesess e ses bbbt sess s ssss s sssssssesaenanes 11
R TR0 ST YT o o PP 12
3.1 RESEATCI QUESTION ..ceuieieect ettt eesse bbb s ees s sa s bbb bR e 12
3.2 Splitting the research question and planning the resSearch ... 12
3.3 EXECULING the T@SEATTR ...ttt ettt et sa s s bbb e b s 12
314 RESUIES c.ceerceeerees e ess s s s ees e s s R 8RR RR R R RSB E R 13
R JES I 0103 Uod L0 ES] (o) o F- 3PP 18
4. FUNCHONAL QESIZN .cuuieuieeeieectseieeetseese sttt sess et ssess s sas s £ bbb bR e bt 19
4.1 FUNCHIONA] FEQUITEIMEIITS. ...curieueeseeuseesseessesseesesessseessesssssssessssessesssessse bbbt s bbb ses s s b bbb st et 19
4.2 Non-FUuncCtional FTEQUITEIMENTSoiuriereereeneeeeeseesseessssssesssesssesssessss s s sssssesssesssesssesssssssasssssssesssssssssssanees 20
B0 D F- Y= T o X =) PP 21
T 0o F] 22
4.5 SCIEEII AESIZINS weuveeueereerseeereisseessesssesssessse s bsee s eee e s s s Eas R R E SRR EE SRR AR bt 22
5. TECRNICAL AESIZIN .ceueeeeereereeeeeereese ettt essees e es e bbb s s R £ bR AR bt 25
5.1 CUITENT STEUATION covuvevurereeseermeerseesseess s ssess s sssess s ssssessssess s s ssses s s ses s s sssss s 25
5.2 APPliCAtION AICHTILECTUTE. oo ettt et sees s ss s sss s s bbbt e b e a bbb 26
5.3 Technical iMPlemMENTATIONS.oieueeereeereeaseesseiseesesees s seess s sesss et ssseesse e bbb b bbb s s ba s basebanes 30
6. DEVEIOPIMIENIE ..uvcveeeecereeeseeseesseesse st sssee e sessseess s sesss s e e R E s SRR R £ R e R R AR et 41
6.1 DEVEIOPMENT MELNOM ..cceeeteeeeeeeeeeseee ettt s s ens e sss s sss s s st b bbb 41
7. MOTIVAtION CHOICES ..ottt b bbb s 43
7.1 Lightweight implementation 0f SCRUM ... sssssssssssssssssssssssesssssssssssssssssssesses 43
7.2 HTMLS 4 JAVASCTIPE tuttureureetreeuseessesssesssesssesssessseesssssessssssesssesssasssesssssssesssssssessss s ssss s ss et sasssesssssssesssessnesssesanes 43
485 20 30 100 NPT 43
7.4 MVC (Model, View, CONtrOllEr) PATLEITL . rcereeeeereeeseeseessessseessessssessesssessssssssssssssssssssasssesssssssesssssssssssesanes 44
7.5 BACKDOME ..ot ees s s s s s s e s s RS 44
7.6 NOt IMPIEMENTING EVENES c..ccuuieerieueesreesreesseesse e seesseessesss s sesssesssesss s bbbt s s e ss et s sasebasebasebaes 44
7.6 Not implementing fUllSCrEEN MOAEweiureereeeeereeeseeeeet et ses st sess s s sssssssesasesaes 45
8. Conclusion and reCOMMENAAtIONS ... ereesrermeereerees s ss s ssss s sess s sasessans 46
S 00 I 5 U 1 0 DTN 46

LS TV 2=Tol0] 4040 1) s Lo E=X 5 (0} o Lo 46

1. Introduction

This document describes what was done during the project that was performed by the author for
his graduation project at Noterik B.V. It will start with a brief management summary. In here a
quick summary will be given regarding the entire project.

Following that a brief version of the plan of approach will be described. The Plan of approach
contained the planning, requirements and goals of the project.

After this it will be described how the preliminary research was performed. The main research
question will be described, and how this question got divided into smaller sub questions. After

that it well be described how the research was performed and what the results and conclusions
were.

The conclusions of the research served as an entry point to the development of the actual
application. The functional and non-functional designs of the system will be shortly described
according to the requirements that were defined in the functional design.

Following this the actual realisation of the product will be illustrated. This will be done according
to technical examples and diagrams as well as textual specification. The development of the basic
requirements that were defined within the Plan of Approach will be described.

After this a summary will be given about the decisions that were made during the time of the
project. The reason for every decision will be elaborated.

Following that a summary will be given regarding the conclusion that were drawn during the
project, and what proposition there are for possible further projects.

After having read this document the reader should have clear understanding of what was done
during the duration of the project.

1.1 Definitions

Item Definition

HTMLS5 HTMLS5 is the fifth revision of the HTML standard. It is a mark-up language
for structuring and presenting content on the internet.

This fifth revision implements many new features of which the most
important (in the context of this document) is the video element.
JavaScript | 'JavaScript (sometimes abbreviated |S) is a prototype-based scripting
language that is dynamic, weakly typed, general purpose programming
language and has first class functions. It is a multi-paradigm language,
supporting object-oriented, imperative and functional programming styles. '

Source: http://en.wikipedia.org/wiki/Javascript

JavaScript is implemented in all major browsers. Many HTML elements
implement JavaScript API's with which you can manipulate them.

JQuery JQuery is a JavaScript library. Browsers differently interpret JavaScript.
This means developers will have to make many different versions for their
applications if they want to support a wide spectrum of browsers. JQuery
attempts to provide a uniform API for all browsers, so that developers that
use JQuery don't have to take into account the differences among browsers.

http://jquery.org

Backbone

Backbone is a JavaScript framework, which is loosely based on the Model-
View-Controller pattern. It implements a lot of basic functionality to help
with Object Oriented programming that can be a bit of a hassle in
JavaScript sometimes.

http://documentcloud.github.com/backbone/

Require]S

Require]S is a JavaScript library. It can inject dependencies into
encapsulated pieces of code (modules). It can do this asynchronously or
synchronously. Also comes in useful for loading templates. It also supplies
the developer with an optimizing tool, which compiles all the dependencies
into a single heavily optimized file to improve loading times.

http://requirejs.org/

[SO0-9126

ISO/IEC 9126 Is an international standard for the evaluation of the quality
of software.

http://en.wikipedia.org/wiki/ISO/IEC 9126

REST

Representational state transfer (REST) is a style of software architecture. It
is used for distributed systems. REST is replacing standards such as SOAP
and WSDL at a fast rate. This is because the style is simpler.

For a more detailed description see:

http://en.wikipedia.org/wiki/Representational state transfer

RESTful

When an application conforms to the constraints described by REST it can
be considered RESTful.

MoSCoW
Method

This is a method for attaching priorities to function requirements. It is used
to come to an agreement with the stakeholders of the product. Each of the
letters of the word (except the o's) stands for a priority level.

M stands for Must-Have
S stands for Should-Have
C stands for Could-Have
W stands for Would-Have

For a more detailed description of the method see:

http://en.wikipedia.org/wiki/Moscow Method

SCRUM

SCRUM is an iterative and incremental agile software development method
for managing software projects and product or application development.

Source: http://en.wikipedia.org/wiki/SCRUM

AJAX

Stands for Asynchronous JavaScript And XML. It is a term to describe the
asynchronous data retrieval by HTTP with JavaScript.

2. Plan of approach

2.1 Context of project

Noterik

Noterik is a small company with currently eight employees. The office is situated in the centre of
Amsterdam on the Prins Hendrikkade 120. Noterik was established in 1996 and focuses mainly
on delivering online video services. Noteriks target clients are mainly in the non-profit sector. The
European Union and the municipality of Amersfoort are examples of the target groups Noterik
delivers its services to.

Online video services

Noterik facilitates the storage as well as the streaming of mainly video over the Internet. The
videos stored in the Springfield platform, which was developed by Noterik, contain more than just
simple moving images. Instead users can actively edit the videos stored in the platform with an
annotation/montage tool.

Figure 1 An impression of Noterik's Montage Tool

With this tool users can do all sorts of video editing like splitting, deleting and adding parts of
video real time on the Internet. Users can also add annotations to the video on a specific point in
the timeline, which will be represented as artefacts overlaying the video. In this way it is possible
to attach metadata and content to parts of the video. Because of the addition of this rich data to
the videos, Noterik prefers to call these videos 'Presentations’.

Figure 2 An impression of an annotation being shown.

Internal Organization

Organisation Noterik

Management Team

Naftalie Hershler

Founder

Jechiam Gural
Founder / Advisor

Rutger Rozendaal
Account Manager

Daniel Ockeloen
Technical Architect

dodl.

Backend Developer

Pieter van Leeuwen
Backend Developer

Khrisna Akhbar
Frontend Developer

Michiel van Leeuwen
Frontend Developer

Louis Miltenburg
Bookkeeper

David

Di 3 ki

Frontend Developer

Backend Developer

Interaction Design Afstudeerder Afstudeerder

Figure 3. An organization chart of Noterik.

Jechiam Gural and Naftalie Hershler are the original founders of Noterik. Rutger has the function
of Account Manager and communicates with clients. Daniel Ockeloen is the main architect of
Noterik's software solutions. Together they form the Management Team that is responsible for
the business strategy.

Konstantin Radoslavov and Pieter van Leeuwen are the main backend developers. They are
responsible for maintaining and developing functionality for the streaming platform and
filesystem.

Khrisna Akhbar and Michiel van Leeuwen are the main frontend developers. They are responsible
for maintaining and developing new functionality for the presentation tier of Noterik's platform.
The author (David Ammeraal) mostly worked solitary. However much of the works done in the
frontend so therefore a lot of communication had to happen mostly with the other Front End
developers. Sometimes communication with the Back End programmers was necessary, in order
to make Krusty]S cooperate optimally with the Backend components. Daniel Ockeloen was
invoked in the development and architecture in order make sure that Krusty]S fitted inside the
existing architecture.

2.2 Definition of the problem

Noterik currently delivers its video services to its clients with a custom built video player based
on Adobe Flash technology. More functionality is continuously added to the player to keep up
with the growing demands of customers. Adobe Flash however, is a technology that is gradually
being used less and less. Adobe has recently announced that it will not develop further updates
for the Adobe Flash platform for mobile devices. Devices based on the i0S operating system by
Apple (such as the iPad, iPod and iPhone) do not support Flash. Users of these devices are a
potential target group for Noterik's video services and at the moment they can’t be reached, and
this group is growing quite rapidly. Therefore the functionality currently encapsulated in this
player should be transferred to a new environment.

2.3 Definition of the assignment

Research has to be done on how the functionality currently contained within the Krusty player
application can be transferred to a HTML5 environment. Krusty is only responsible for the
playback of presentations.

Before starting with the main portion of the project, research was done on why the functionality
should be transferred to a HTML5 environment. The results of this can be seen in Attachment 3.

Transferring all functionality currently contained found within the Krusty player to the HTML5
environment would be outside of the scope of the project. After contemplating with Noterik we
came to the conclusion that the functionality, which should at least be researched, is as follows:

Basic play out

Basic Play out means being able to play, pause and stop a movie stored in the Springfield
platform. Scrubbing (navigating through the timeline of a video), volume control and muting
should also be available.

Video quality selection
It should be possible to select different qualities for a video. For example: 180p, 360p, 720p and
1080p.

Showing events
It should be possible to show annotations overlaying the video as described in chapter 2.3.

Playlist support

Presentations within the Springfield
platform are playlists of items (from a single
media source) that should be played in a
chronological order. The items are played as
if it is a single video, while actually the
presentation is a concatenation of temporal
selections from a single or multiple media
sources. The timeline at the bottom of the
player should display the length of the entire
presentation. Switching between items
should be seamless, and the user should _—

experience the presentation as if it was a R
: p) p Media Source 1
single video.

m
Item 2 Start: 20, End: 30

Playlist

Dock functionality Media Source 1
In the original Flash player there is a button _W

with which the user can open a dock. The Media Source 2
dock shows several options with which a
user can do the following:

-View info of video
-Share video with others
-Log in to the system
-Tag parts of the video Figure 4. A depiction of how the playlist is build.
However after contemplating with Noterik it has been decided that dock functionalities will not
be contained within the HTMLS5 player for now. Therefore these functionalities fall out of the
scope of this project.

After researching the possibilities I should report my findings to Noterik. Following that I should
make a Functional Design and a Technical Design.

After that the development of the new player should be initiated. The new player should operate
on top of the existing Springfield platform. If needed, certain changes can be made to the backend.

2.3 Products to be delivered
To Noterik

* Plan of Approach

* Research Results

* Functional Design

* Technical Design

* Final Prototype

* Test Document

To the University of Applied Sciences
* Plan of Approach
* Thesis
* Presentation

Personal Documents
* Research Planning
* Product Backlog
* Sprint Backlog

2.4 Planning

SCRUM

It was decided that the development of the application should be cut into three sprints. These
sprints are a component of SCRUM method. Each sprint is about three weeks long, and within
every Sprint certain functionality will have to be implemented. SCRUM is an iterative and
incremental development method for software. A more detailed description of SCRUM will be
given in chapter 6.

In the original planning described in the Plan of Approach it was decided that the realisation of
the Events should be done in Sprint 2. However after contemplating with colleagues we came to
the conclusion that the Events should be moved to Sprint 3 and the Playlist and Quality selection
should moved to Sprint 2. This is because Events relies on the Playlist and Quality selection to
functional.

Product Period

Concept Plan of Approach 17/01/2012-20/01/2012

Research Plan 23/01/2012-27/01/2012

Research Results 30/01/2012-10/02/2012

Functional Design

13/02/2012-16/02/2012

Technical Design

17/02/2012 - 23/02/2012

Sprint 1 (Basic Play out)

27/02/2012 - 16/03/2012

Sprint 2 Quality, Playlist)

19/03/2012 - 06/04/2012

Sprint 3 (Events)

09/04/2012 - 27/04/2012

Presentation/Thesis

07/05/2012 - 27/05/2012

2.5 Organization and responsibilities

David Ammeraal
Michiel Borkent
Konstantin Radoslavov

Student
Supervisor University of Applied Sciences
Supervisor Noterik

3. Research

In order to implement all the functionality that is required, research had to be done. HTMLS5 is a
very volatile standard that is constantly changing. Almost every browser differently interprets
HTML5. This means that there are subtle and not so subtle differences between browsers, which a
developer will have to take into account before building something. Besides this, the
documentation for the JavaScript API, which is implemented in the new HTML5 elements, is
severely lacking. So one can not just jump in as opposed to other environments which are clearly
defined and interpreted such as Java or C#.

3.1 Research question
A research question had to be defined in order to know what I am going to research. The
following question was formulated:

"How can the functionality encapsulated within the Krusty-]S player be transferred to the HTML5
environment?"

Bounds
HTMLS5 covers a lot of ground. Certain limitations have to be implemented in the research to keep
it feasible in the limited amount of time available.

The functionality was limited to the items that are defined in chapter 2.3.

Also the following browsers will have to be taken into account when researching the
functionality:

-Firefox

-Safari (Mac 0SX and 10S)
-Chrome

-Internet Explorer

All of which are the latest versions.

3.2 Splitting the research question and planning the research

The research question that was established had a wide scope. In order to split this into chunks
that could be researched once a time, sub questions had to be established. I established the sub
questions and attached a predicted duration to it. The research had to planned over the duration
of two weeks. The duration of each sub question was predicted according to the knowledge that
was already available of the subject at hand.

Sub questions:

-Does HTMLS5 support video playback? (30/01)

-Which codecs do the browsers support? (31/01)

-What delivery protocols do the browsers support? (1/02)

-Can simple play out of a video (pause, play, stop, scrub, volume control) be obtained? (2/02 -
4/02)

-Does HTMLS5 support jumping to time offsets in a (playing) video? (5/02)

-Can the quality of a video be changed in a (playing) video? (6/02)

-Can events attached to the timeline of a video be triggered and displayed? (7/02 - 10/2)

3.3 Executing the research

Every day planned for the research was used. Some items proved to be a bit more complicated as
initially predicted, such as the streaming platform, and the quality selection sub questions. In the
next chapter a brief version of the results of the research will be described.

HTMLS5 is such a new standard that sadly there is very little literature on the subject, and the
literature that is available is out-dated very quickly because of the current volatile state of the
standard. A lot of research had to be done on the Internet by looking at examples.

In order to prove that most of the functionality is actually implementable several prototypes were
made implementing a specific sort of functionality relevant to the specific sub question.

3.4 Results

In order to answer the main research question a solution to every sub question was formulated.
In each of the following paragraphs a brief description of each solution will be described.

Does HTMLS5 support video playback?
Yes.

HTMLS5 implements the new video element. This element allows the developer to add a video
element to a HTML page. This can be done as follows:

</head>
<body style="overflow: hidden">
<div>
<div id="video">
<video controls="controls" height="320" width="640">
<source src="http://linkedtv.devel.noterik.com/demo/media/bunny.ogq" type="video/ogg"></source>
</video>
</div>
</div>
</body>

Figure 5. Video element in HTML

A source can be defined as a child element of the video element. Multiple sources can be defined.
However the way these sources are interpreted differ among browsers. Most browsers will
change to a different source in case the first one cannot be found. However, Safari for the iPad for
example will not.

Certain parameters can be passed to the element such as "controls”, "height" and "width".

When implementing the element without any parameters the default behaviour is different
among browsers. Most browsers will show the first frame of the video as an indication that a
video element is implemented in the page. Right-clicking the element will provide the user with a
context menu in which there is a play option.

What codecs do the browsers support?

This is something that is continuously changing. A video codec is a piece of software that allows a
raw video stream to be encoded, compressed and decoded. Raw video provides the highest
quality, but the size can be enormous. The storage and bandwidth available to the average user do
not allow for the storing and streaming of raw video files. Therefore codecs exist. Codecs encode,
decode and compress a raw video file. In this way the file is easier to transfer if the recourses are
limited, such as an Internet connection.

Most modern browsers at the time of writing support the video element. However the sources
specified have to be encoded in a codec that is supported by the browser. Below is a small
explanation of the two most used codecs at the moment of writing of this document.

MPEG4/H.264
Most of the files stored in the h.264 format have the .mp4 or .m4v extension. The MPEG4
container is based on Apple's older QuickTime container (.mov). It is the most used codec for

1 http://dev.w3.org/html5 /html-author/ - the-video-element

videos on the Internet at the moment of writing. It is efficient in the way it encodes its data and
thus produces files of relative smaller size, and produces higher quality video pictures in
comparison with the other codecs. It is however patent-encumbered, and thus requires vendors
and commercial users to pay royalties for the products that use this technology.

WebM

WebM is an open file standard for video files, developed by Google and Microsoft (although
Microsoft actually supports the H.264 format in most of its products). Google currently uses it in
its Chrome browser together with H.264. However Google has mentioned that it will drop support
for H.264 in the future. This announcement was made public over a year ago, and there is no
certainty if Google will actually follow up on this announcement.

At this moment the following schema is correct:

Browser/Device Video Formats Audio Formats Multiple Sources
Chrome MP4, WebM AAC, MP3, Vorbis 4
Firefox WebM Vorbis '4
Internet Explorer MP4 AAC, MP3 /
Safari MP4 AAC, MP3 '4
i0S MP4 AAC, MP3 4
Android MP4 AAC, MP3 4
Opera WebM Vorbis /

Figure 6. A Schema indicating the current state of browser codec support.

Source: http://www.longtailvideo.com/html5/

For a developer, this adds an extra layer of complexity, as both codecs will have to be served in
order to reach a large audience. There is no certainty as to which will win this "codec war", but
recently Mozilla (a big player) has announced that it will build in support for the H.264 codec in
new releases of Firefox. So it seems H.264 is "winning" at this moment.

What delivery protocols are supported by HTML5

This is also something that differs among browsers. There is no standard streaming protocol such
as RTMP for Flash. Most browsers only support progressive download as delivery protocol.
However Safari on Mac OSX and 10S do support Apple (Cupertino) Live Streaming.

Progressive download
This is the standard way a video can displayed in HTML5. The source file is defined in the source
element of the video element. The browsers requests the file over port 80 at the source specified
with a HTTP request.

It will do this with an initial HTTP range request as can be seen in figure 7. This requests the
length of the content, as indicated by the "range" variable.

Name Value

User-Agent Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:12.0) Gecko /20100101 Firefox/12.0
Range bytes=0-

Host linkedtv.devel.noterik.com

Accept video/webm,video/ogg,video/*;q=0.9,application/ogg:q=0.7, audio/*;q=0.6,*/*;9=0.5
Accept-Language en-us.en;q=0.5

Connection keep-alive

Figure 7. HTTP Range request to the server.

If the webserver has implemented the range parameter it will return the length of the content as
such:

Name Value

Date Tue, 15 May 2012 14:14:36 CMT

Server Apache/2.2.8 (Ubuntu) PHP/5.2.4-2ubuntu$5 with Suhosin-Patch proxy_html/...
Content-Type application/ogg

Connection close

Last-Modified Tue, 08 May 2012 10:03:16 CMT

ETag “34005-bbc6f72-4bf837ecfal00”

Content-Range bytes 0-196898673 /196898674

Content-Length 196898674

Accept-Ranges

Figure 8. HTTP Response from Server containing the content length.

After that ranges of bytes will be requested constantly to buffer the video. In this way only the
data, which is needed for playback of the video, is buffered. The video is saved in the cache of the
browser and the source location is open and can be downloaded by anyone.

Cupertino Streaming

Safari on Mac OSX and IOS do support the Apple (Cupertino) Live Streaming protocol. This
streaming protocol streams its contents over port 80 (the standard http port). The video stream
can obtained when requesting a .m3u8 playlist file. The playlist file is obtained through a HTTP
request as seen in figure 9.

Name Value

User-Agent AppleCoreMedia/1.0.0.11C74 (Macintosh; U; Intel Mac OS X 10_7_2; en_us)
Connection keep-alive

Host stream1l.noterik.com

Accept -

X-Playback-Sessio... 3FEC11B3-CEA9-4BBE-8B5B-65F2910C20F8

Accept-Encoding gzip

Figure 9. Requesting a playlist m3u8

After that a series of requests is initialized for handshaking purposes (such as determining a
session id). After that a new playlist. m3u8 file is requested containing a description of the chunks
of the video file. The browsers will only stream the chunks needed for the playback of the video.
The source of the video however is not known.

Can simple play out of a video (pause, play, stop, scrub, volume control) be obtained?

Yes. The HTML5 element implements several functions that allow for basic play out. Pausing,
Playing, Stopping, Scrubbing (or
seeking) and volume control are
all implemented by default.
JavaScript can invoke the
functions. Almost all major
browsers support the controls
argument which displays the
video element with a basic set of
controls as displayed in figure
10.

These controls use the same
JavaScript functions as
implemented by the HTML5
video element.

Figure 10 The Basic set of Default HTML5 Video Controls

Does HTMLS5 support jumping to time offsets in a (playing) video?
Yes. The HTMLS5 currently has one way of requesting video data from a certain timestamp, and
another standard, which is under development.

The 'currentTime' property
The HTML5 video element implements the currentTime property. When setting this property as
such:

element.currentTime = 5.2;

the video will jump to the specified position. It will not load the data up to the position specified.
This can be done before playback or during playback of the video file. In this way only the data
that is needed for the playback of the current position up until the end will be loaded. All major
browsers including Safari for iPad support the currentTime property.

The MediaFragments URI standard
Currently W3C is working on a new standard that supports a new URI standard. With the new URI
it will be possible to select temporal and spatial data from a media resource with a URI like these:

http://www.example.com/example.ogv#t=10,20h
This URI selects the temporal range of 10 to 20 seconds from the example.ogv media resource.

The standard is still very much a work in progress and support differ across browsers. However
the developments are very interesting in the context of this project, and keeping an eye on the
progress of the standard is paramount.

A full specification of the standard can be found in the footnote of this page. 2

2 http://www.w3.0org/2008/WebVideo/Fragments/WD-media-fragments-spec

Can the quality of a video be changed in a (playing) video?

Yes and no. Flash has the capability of Adaptive Streaming, which detects the CPU and bandwidth
capabilities of the end-user. With this technique it is possible to change the quality of the stream
while playing if the end-user is incapable of playing back the video smoothly. Adaptive Streaming
is also supported by the HTTP Cupertino Streaming platform, but the support of this platform
among browsers is limited.

The other way to switch the quality of the video is by requesting another media resource with a
different bitrate. So multiple versions of one video resource will have to be made available. The
user can then select in which bitrate the video is to be shown. This however, requires interaction
from the end-user, were instead the Adaptive Streaming technique does this automatically.

Can events attached to the timeline of a video be triggered and displayed?

Yes this can be done. The HTML5 video element triggers time update events. The interval of these
events can be changed. Most browsers trigger a time update every ~250 microseconds by default.
These events are triggered when the video is playing. They can be caught by attaching an event-
listener to the 'ontimeupdate’ event on the video element in JavaScript:

element.addEventListener('ontimeupdate', function(event){
//Implement logic here.

b;

The function declaration after the comma is the delegate function, which will be called on a time
update. One could check the current time of the video element and check if an event is to be
shown on that time.

An overview of all the events that are triggered by the video element, see the footnote of this
page.3

Any JavaScript logic can be encapsulated by the delegate function, one could for example do:

element.addEventListener('ontimeupdate', function(event){
console.log('This is a temporal based event!')

b;

And a dialog will be displayed to the user every time an event is handled. You can also manipulate
DOM elements in the current page with it like this.

element.addEventListener('ontimeupdate', function(event){
document.getElementById('dialog-box').innerHTML = 'This is a temporal based event!');

b;

3 http://www.w3.0org/2010/05/video/mediaevents.html

3.5 Conclusions
Itis clear that the HTMLS5 video element has powerful features, which make it very suitable for
the functionality that should be implemented in the context of this project. Below is a short

summary of the needed functionality and in what way what functionality can be accomplished by
HTMLS5.

Functionality Solution

Basic play out This can be accomplished by implementing the HTML5 video
element API. Streaming can be supported for 10S devices, but
progressive download should have priority. The videos in the file
system will have to be encoded to both MP4 and WebM to be able
to reach all browsers. Adaptive Streaming should not be a priority

for now.
Video quality This can be accomplished by making several copies of the same
selection video file with different bitrates. These copies should be made

available to the application by means of a web service or something
similar. The user should be able to select in which quality the
presentation is to be played. Adaptive Streaming is not
implementable yet for most browsers.

Triggering and By catching the temporal events triggered by the video element it is
displaying events | possible to trigger specific functionality with JavaScript. In this way
the entire webpage can be manipulated, and it should be possible
to display artefacts on the page at the time an event is triggered.

Playlist support The HTML5 video element APl implements the currentTime
function. With this function it is possible to edit the current time
position within the video. As the Playlist can exist of several items
extracted from a single media source, it should be possible to set
the currentTime property to the position at which a Playlist item is
to start within the media source and detect when the item has
ended by catching the time-update events. When the end is
detected the currentTime should be set to the start of the next item.

4. Functional design

In order to clarify between Noterik and me what functionality should be implemented, and how
the user should interact with the application a Functional Design was made. The Functional
Design is attached to this document as Attachment 4. A short description of the Functional Design
will now be defined.

4.1 Functional requirements

The functional requirements were extracted from the requirements that Noterik demanded of the
new player. The Requirements are described in chapter 2. An importance rating was attached to
each functional requirement according to the MoSCoW method (see chapter 1.2). The following
functional requirements were extracted:

ID DESCRIPTION PRIORITY

Embed in page Embed the player into a .html file with an IFRAME, and MUST-HAVE
provide it with a location to request the presentation from.

Embed with It should be possible to provide the player with a SHOULD-HAVE

dimensions dimensions parameter, so that the player will set the

dimensions of the player and video to the dimensions
provided.

Show screenshot Show a screenshot for the video after initializing the player. | MUST-HAVE
Play Play the presentation from the start or from the point where | MUST-HAVE
it was paused. It should be able to play a presentation
consisting of a playlist of several video items.
Pause Pause the presentation from playing. MUST-HAVE
Timeline Show a timeline in which you can see the progress of the MUST-HAVE
video playing. The timeline should span all the playlist
items.
Scrubbing Move the box on the timeline to a place where you want the | MUST-HAVE

presentation to start playing from.

Show screens while
scrubbing

Show a screenshot of the presentation at the time where the
scrubber is placed on the timeline.

SHOULD-HAVE

Mute presentation Mute the volume of audio in the presentation. MUST-HAVE

Control volume Control the audio (louder or quieter) of the presentation. MUST-HAVE

Set to full screen Make the presentation player full screen. COULD-HAVE

Show timer Show a timer in which you can see the progress of the video | MUST-HAVE
and the duration of the presentation.

Change quality Select and change the quality of the presentation. The MUST-HAVE

qualities that can be selected are 180p, 360p, 720p and
1080p.

Show event

Show an event planned for a certain time period in a video.

SHOULD-HAVE

4.2 Non-Functional requirements

The non-functional requirements were established according to the ISO-9126 standard. ISO-9126
defines six categories of quality characteristics, each with a specific set of sub characteristics. For
a full overview of the characteristics see chapter 2.2 of Attachment 4.

For each sub characteristic an importance rating of 1 to 5 was defined, 1 being of very low
importance and 5 being of utmost importance. A motivation for each importance rating of each

sub characteristic was also defined.

The most important characteristics were as follows:

Characteristic Motivation

Interoperability Krusty-JS will be build on top of the Springfield stack. [t means
that it will have to communicate with REST to the Springfield
stack. This is of utmost importance because all the
functionality implemented in the Krusty player is heavily
reliant on data stored within the Springfield platform. This
data can only be reached through REST.

Understandability All the elements with which the user has to interact have to be
understandable. This is because the users that are watching
the video will usually not be an expert user. This is a trivial, but
very important subject nevertheless.

Analysability This application will serve as a base for more advanced
versions. To supply a stable and good base for the next version,
it is important that the code is very analysable.

Co-existence The application will have to work in a webpage where other
applications might be active. All the logic of the application
should be encapsulated in its own namespace, and it should
not interfere with other applications in any way.

Replaceability Some browsers might not be able to support all of the Krusty-
JS functionality. In case this happens, a fall back mechanic must
be in place to fall back to the Flash version. Also removing this
component from the Springfield Platform should not have any
influence on the other components of the Springfield platform.

4.3 Data model

Presentation
The presentation contains a single playlist. This playlist

contains the video items needed.

The playlist will calculate the total duration of itself by
using the length of the videos. A playlist might also
contain events that should be triggered at certain times.

The video contains at least one RawVideo. The RawVideo
is a reference to a media source. A video contains several
RawVideos because each RawVideo is a different quality
of the same Video. Playlist

The Presentation was separated from the Playlist because
the Presentation could contain other objects than just
Playlists, such as metadata that is not relevant to the
playlist.

Video Event

RawVideo

Figure 11. The data model of Krusty]S

4.4 Use cases

; Embed

A

Developer

Control
Volume

Set
Fullscreen

Change
Quality

User

Figure 13. Use-cases.

There are two main actors in the context of the application. First the developer that is going to
embed the Krusty-JS into an HTML5 page. And second the user that is going to interact with the
player. The usecases were extracted from the functional requirements.

4.5 Screen designs

Basic Layout

This is the basic layout of the Krusty-]S presentation player. This is a mock up. The end result
should look exactly like the Flash version.

Play Button Volume Controller | Time Indicator Quality Selector Dock Button

ScrubHandle Time Line of Video Full Screen Button

Figure 12. Basic layout of the player.

Loading presentation

The player is initialized, but all buttons are
disabled, a message is shown to the user to
inform him that the presentation is being
loaded.

Done loading
This is the screen after the first video of the
presentation is loaded. The duration of the

video is added and all buttons are available.
Also a play button is added to the overlay to

indicate that video is ready to start playing.

Video playing

This is the screen when a video is playing,
all buttons are available for use, and the
progress indicator is updated every second
to indicate at what time the video is. The
play button is changed to a pause button.

Showing event
The event will overlay the video.

00:00:00/00:09:56

00:00:16/00:09:56

Lorum Ipsum

Lorem ipsum dolor sit amet,
adipiscing clit. Sed felis
ipsum, hendrerit sollicitudin
imperdict id. convallis at lco. Donec
lacus diam, placcrat vitae rutrum
venenatis, hendrerit sit amet nisi.

Added by: David Ammeraal
On:27-02-2012

" > 00:00:05/00:09:56

Buffering

When the buffer of video has run out, the
user will be informed that the video will
have to buffer before playing again.

00:00:02/

Quality selection
The quality currently playing is blacked out.

5. Technical design

5.1 Current situation

A diagram of the Springfield architecture can be seen in figure 13. At the bottom there is the
hardware layer. It exists of a mix of Windows and Linux (Ubuntu) servers collocated at the xs4all
datacentre in Amsterdam. On top of the hardware layer there is the operating system layer.
Currently there are only Windows and Linux servers, but Max OSX servers could be introduced in
the future.

On top of the operating system the services operate. This diagram does not show the dividing of
the software logic in layers. But in the context of this project this is not important. Each service is
a black box (which means that knowledge of the internal workings is not necessary), which
provides an interface to certain functionality.

On top of this, there is the Firewall Proxy layer named Bart. This is a facade. When the frontend
sends a request to Bart, Bart decides to which service the request should be sent. This provides
another layer of abstraction. One does not need to know which services are available, a request
could just be sent to Bart, and Bart will know which service is responsible for handling the
request, and will return the results of the request to the Front End. Only the interface to Bart has
to be known by the Front End. Bart can be reached through HTTP requests.

In the Front End layer Krusty operates. This is the layer that is responsible for presenting the
presentation to the end user. It presents the data with Flash technology. It requests its data by
sending HTTP requests to Bart.

Springfield Software

Frontend &

XML-API FlashClient/krusty Portal/krusty
Firewall Proxy

Services

database / smithers images / nelson

dns / homer uptime / marge

transcoding / momar | | usermanager / barny

search / lisa remote upload / apu

metadata / flanders

Operating system - java j2ee application in tomcat

Figure 13. A graphical representation of the Springfield platform.

5.2 Application architecture

Krusty-]JS is going to be operational in the context of the Springfield platform. That means that it is
already going to be part of an existing architecture. However since the functionality that is going
to be encapsulated by Krusty-]S is quite widespread, an architecture was determined for Krusty-

JS.

Goals of the architecture
In order to make the application conform to the functional and non-functional requirements

defined in chapter 4. Goals to the architecture are defined as follows:

Goals Non-functional requirements
Should be able to operate on top of the Springfield platform. Interoperability

Does not interfere with the internal working of Springfield, should be a seperate Interoperability

component.

Clear seperation of the presentation logic from the model logic, in order to make it Replaceability

possible to make changes to the presentation without interfering with the model

logic.

In order to increase analysability and testability of the the application, functionality | Understandability

should clearly be encapsulated in correct classes.

Domain Data Model

Playlist

P -id: int
-id: int -duration: int Event
~fullid: int -playlistitemCollection: Collection<Playlistitem> -id: int
-title: String -eventCollection: Collection<Event> -type: String
-description: String 1| -quality: String 0.+ |-startTime: float
-date_created: Date -volume: float -endTime: float
-website: String -currentEvent: Event -currentTime: float
-screenshottime: int -currentitem: Playlistitem -active: bool
-playlist: Playlist -currentTime: float -contents: String
+play(): void -scrubltem: Playlistitem
+pause(): void -scrubltemTime: float
+volume(float volume = 0): void, int +restart(): void
+mute(): void +scrubStart(): void
+unmute(): void +scrub(int percentage): void
+scrubStart(): void +scrubStop(): void

+scrub(int percentage): void
+scrubStop(): void

+quality(String quality): void, String
+videoElement(): element

1.0

+duration(): int
+restart(): void Playlistitem
-id:int
-active: bool
-currentTime: float
-startTime: float
-endTime: float
-video: Video
+setToStartPosition(): void
+setToPosition(float position): void
Video
-id: int
Screenshot -qualitiesAvailable: HashMap<String, RawVideo>
-second: int ! -quality: String
-element: HTML Image Element -currentTime: float)
-currentRawVideo: RawVideo

-rawVideoCollection: Collection<RawVideo>
-screenshot: Screenshot
+changeTimeTo(float time): void

VideoElement
__ RawVideo -element: HTML5 VideoElement
-id: int +play():void
-videoFullld: String +pause(): void
-element: VideoElement +currentTime(float time = 0): float, void
-volume: float 1 | +volume(float volume = 0): float, void
-cachedCurrentTime: float +mute(): void
+play(): void +unmute“: void
+pause(): void
+mute(): void
+unmute(): void

Figure 14. The domain model

Presentation: Contains the metadata of the presentation, things such as the description and the
date it was created on. It also contains a reference to the playlist. It also serves as the main entry
point for the upper layers. The Presentation class figures out how the domain is constructed and
will invoke the necessary functions on the objects of the domain when it receives a request from
another object.

Playlist: This model contains a collection of all the Playlistitems objects in the collection. It also
calculates the duration of the presentation. It will keep track of the time the current item is at and
will calculate how the actual times of the media source can be calculated to presentation time. It is
responsible for switching Playlistitems after a Playlistitem has finished playing, or when the user
is scrubbing through the presentation. It will keep track of the events and will detect when the
events should be triggered. Playlist also maintains the state of the quality and volume across all
the playlist items. Thus when switching items, the Playlist will know in what quality and volume
the last item was playing and will pass this information to next item in the queue.

Event: Events are attached to the timeline of a Playlist. This object contains the data of the Event,
which is necessary for application functionality and presentation. Specific types of Events will
have to be abstracted because they will be able to hold a wide spectrum of contents.

Playlistltem: A Playlistltem contains things such as the current time the Playlistitem is at relative
from the start time of itself. It will trigger time events containing the current relative time from
the start and the absolute time the video is at. Other objects (Playlist) can attach delegate
functions to the event. The playlist item will only trigger events if it is active (being played).

Video: The video contains references to RawVideo objects. It maps the RawVideos that are
available and attaches a quality rating to them, such as 180p, 360p, 720p and 1080p. It is then
easy to select a RawVideo by a specific quality. It also keeps track of which RawVideo is currently
playing and it will propagate the events triggered by the current RawVideo and make them
available for other objects.

Screenshot: This model contains the information of the location where the screenshots for the
current video can be retrieved. When changing the second property, the screenshot object will
automatically retrieve the actual screenshot for the given second and put it in the element
property. When a screenshot is retrieved it will trigger an event. Other objects can attach delegate
functions to this event.

RawVideo: This object contains the information about where the video media source can be
retrieved (the HTTP location). When a RawVideo is made active it will construct a VideoElement
atreal time. Video Elements are not preloaded because this would put a heavy strain on the
connection of the client.

VideoElement: This contains a reference to the actual HTMLS5 video element. It attaches event
listeners to the HTMLS5 video element and make these events available in a uniform way to other
objects, which can attach delegate functions to them. Different implementations of the
VideoElement will be necessary because the events triggered by the HTML5 video element differ
among browsers. VideoElement will be an abstract class, which provides the signatures for the
concrete classes.

Layers of the architecture

A three-layer architecture will be implemented with the addition of a utility layer that
encapsulates certain functionality such as data validation and date formatting which is used
across the entire application.

Krusty-JS Logic in Layers

Presentation

Models Utility

Figure 15. The Architectural Layers

The connectivity layer

This layer is responsible for creating and maintaining a connection to the Springfield platform. It
retrieves the data and makes it available for the model layer. The connectivity layer is separated
from the Model layer because the models should be able to work with different data sources.
Currently, only the connection to Bart should be implemented, but it should be possible to replace
this with other data sources in the future.

The models layer

The Models layer is responsible for reading out the domain data from the data source and should
parse this to objects. These objects contain the domain data as well as most of the application
logic. The objects are capable of observing each other, and change their state according to the
state of another object. Because of this, a controller layer was not implemented as a lot of the
application logic can be realised by these observing models. There should be a single interface to
this layer, so as to keep a clear line of communication between the layers.

The presentation layer

The Presentation layer is responsible for presenting the application to the end-user. It is
responsible for implementing the video element. It is also responsible for receiving user-
interaction and propagating these actions to the Models layer.

Components of the Application

Events Presentation

- Models | VideoElement —» util

Connections

(T

Bart

Figure 16 The components of the application.

Connections: This component contains the functionality of connecting to the Bart servers, and
retrieving the data sources needed for the models. They communicate with Models through
events. When the data has been loaded, Models is informed about this and can start constructing
its objects.

Models: This component contains most of the domain and application logic. Other components
can communicate with Models by making an instance of the Presentation class (which is located
in the Models component). This object implements public functions to manipulate Presentation
play out and retrieving metadata. It also triggers Events to
which other components can subscribe.

Figure 17. Components in Layers
VideoElement: This component contains the abstraction

class of the VideoElement. The HTML5 video element |
implements an API of functions and events. A lot of these ‘ : PresentaUOHZ

events are interpreted differently across browsers.
Therefore it was decided to wrap the element in a wrapper
object, which can manipulate the HTML5 video element. _= s
Th]e wrapper object imglements most of the HTML5 video -m — -
element functions but the implementations of these
functions might differ according to the environment the R ———

application is operating in.
=z

Presentation: This component contains the Presentation
logic. It displays the video player, screenshots and events.

It will also provide controls with which the play out of the
presentation can be manipulated. % o~

Events: This component contains an array of events, which can be listened to by other
components. Other components trigger a wide arrange of events, which might not all be
interesting to other components. Therefore it was decided to implement another component,
which listens to all events and normalizes these events. Only events that might be interesting to
other components such as 'presentation-playing’, '‘presentation-stopped’, etc., are triggered.

Util: Util contains a range of utility or helper classes used to format and validate data uniformly
across the application. It also contains a class for detecting the environment in which the
application is running.

5.3 Technical implementations

Loading dependencies

It was decided that Require]S would be used to structure the application. Require]S is a JavaScript
file and module loader. Modules can be defined and dependencies can be loaded asynchronously.
Require]S provides the user with a single entry point for an application, the so-called 'main’
module (equivalent of Main.java). The order in which the dependencies are loaded is not
important. Require]S figures out the relations between dependencies. Modules are defined as
such:

define([
"jquef'y" ’
"underscore”,
"backbone",

]7
function($, _, Backbone){
//MODULE CONTENTS HERE

3

The define() functions takes two arguments. The first argument contains an array of
dependencies; the second argument is a function in which the contents of the module can be
defined. Each dependency defined in the array is passed to an argument of the module function.
In this way the dependencies are only injected into that specific module and they do not
contaminate the common namespace. Require]S also provides the developer with a optimizing
tool. This tool can be used to heavily optimize the code. It merges all the modules into a single file
and minimizes the code. In this way, a browser interprets the code faster.

Implementing MVC (Model, View, Controller)

Backbone is a JavaScript Framework. It provides a lightweight implementation of the MVC
(Model, View, Controller) presentation. In this way presentation logic can be separated from
model logic. This is important if one wants to change the presentation logic without having to
change the model logic. It implements a publisher/subscriber pattern in order to communicate
changes in the state of an object to other objects. Objects can trigger events and other objects can
subscribe delegate functions to handle to these events.

A model could be defined like this:

var Robot = Backbone.Model.extend({
defaults: {
name: "Bleepy",
description: "Bloop"

},

initialize: function(Q{
//Constructor logic goes here.
this.on('change:name', function(){
console.log(this.get("name"));

s
})

sayName: function(Q{
console.log(this.get("name"));
},

changeDescription(description){
this.set("description”, description)
1
s

In this example Robot is a model. It has the properties "name" and "description”. Each child of the
Backbone.Model class implements the get(attribute) and set(attribute, value) functions. These
functions allow retrieval and changing of the properties of the model. The model can listen to
changes in it properties, when a property changes it triggers a "change:<property>" event. In this
way changes to the state of the model can be communicated to other objects.

A View could be defined as this:

var RobotView = Backbone.View.extend({
robot: new Robot();
descriptionBox: null;

initialize: function(Q{
descriptionBox = this.$('#description-box');
this.robot.on('change:description', this._descriptionChanged, this)

}7

_descriptionChanged: function(){
this.descriptionBox.html(this.robot.get("description™));
}
s

This view creates a new Robot. Each class that inherits from Backbone.View implements the this.$
function. This is a reference to a JQuery object. JQuery makes it easy to traverse the DOM tree of a
HTML page. In this example we want to have a reference to the HTML element with an id of
'description-box'. This could be a div like this:

<div id="description-box'>

<!-
-Description of Robot goes here-->
</div>

In order to get a reference to this element you could invoke the following JQuery call:
this.$('#description-box');

The # symbol means that JQuery should be looking for an element with the id of 'description-box’
within the DOM tree.

The constructor of RobotView uses the JQuery object to get a reference to the element. After that
the constructor makes the view listen to changes of the description of the Robot. It attaches a
delegate function (_descriptionChanged) to the event. And finally passes the context in which the
delegate function should be invoked (this).

When the description of the Robot gets changed it triggers the ‘change:description’ event, and the
'descriptionChanged' function gets invoked. 'descriptionChanged’ then changes the contents of
the description-box within the view. In this way the views are very loosely coupled to their model.
This makes it possible to completely replace the views without having to change the
implementation of the models.

Backbone also provides a more familiar environment if the programmer is used to programming
in non-prototype based programming languages such as Java.

Backbone was combined with Require]S in order to encapsulate the functionality as much as
possible across the application.

Building a connection to Bart

Get Presentation

Bart can be reached through a HTTP request. In earlier versions
of the Krusty player, built in Flash, Krusty had to do several Presenation
asynchronous HTTP requests to Bart in order to get all the data it
needed. This proved to cause a lot of overhead because the

server had to handle each request, and as the amount of users Viseos
looking at videos rose, so did the amount of requests.

Krusty Get Videos

Etc
—

In order relieve the server it was decided that a single request
should be sent to Bart defining which data is necessary for the
playback of the presentation (the so-called Quickstart request).
Bart then decides where that data should be retrieved and sends
it back asynchronously to Krusty. In this way only a single

Get Presentation

request is necessary to Bart. Krusty Presentation
Each presentation in the Springfield platform has its own :
il

location in the Filesystem that can be reached by BART with a
URI through HTTP. This is an example of a presentation that

belongs to me:))
Figure 18. Connecting to Bart.

http://bartl.noterik.com/bart/domain/springfieldwebtv/user/david/collection/3/presentation/2

The quickstart file can be retrieved by sending an asynchronous (AJAX) POST HTTP request to
this location with the following contents:

<fsxml mimetype="application/fscommand' id='dynamic'>

<properties>
<handler>/dynamic/presentation/playout/flash</handler>
</properties>
</fsxml>

The mimetype declares that this is a file system command. The id='dynamic' means that the id of
the presentation should be extracted from the URI. The handler element defines the object that
will be able to retrieve all the data needed for play out. In the future an extra handler should be
added which retrieves the data, which is necessary for HTML5 playback, but for now the HTML5
player should work with data that is retrieved for the Flash playback.

After sending this request by AJAX the client will have to wait for the Bart to retrieve the data.

Implementing the connection to Bart

In order to retrieve the data an AJAX call had to be made to Bart. After the data was retrieved, the
data had to be validated. A class BartConnection is created, which can make an ansynchronous
HTTP POST request to a Bart server.

Backbone.Model

BartConnection

-request: String BartDataSource

-response: int -Sinstance: BartDataSource

-timeout: String -source: String

-location: String | -connection: BartConnection

-server: String -data: XMLDoc

-errors: Object<String, String> +$getinstance(String source = ™"): BartDataSource
+initialize()

+get(String attribute): object
+set(String attribute, object value): bool
+doRequest(): bool

-validate(): bool

Figure 19. Classes for connecting to Bart.

The class BartDataSource was made to load the data retrieved from BartConnection into an
XMLDoc variable, which could be traversed by an XML parsing tool.

The BartDataSource is a Singleton. A Singleton class contains a static instance of itself inside. This
instance can then be used by other objects by calling the static method getInstance() while
maintaining the same state. This was done because each instance of an object needs a data source
without having to re-instantiate the BartDataSource every time, as this would reconnect to Bart
every time a model gets instantiated.

Parsing the contents of the Quickstart file retrieved from Bart into the Models

The data, which was stored in the Quickstart XML file has to be mapped to values of the Bacbone
models in the application. The behaviour for mapping the xml values to object values has to be
identical across all the models, this is because the functionality of retrieving data from that single
data source is identical across most of the models.

The Model and Collection classes defined within Backbone.js implement the fetch() function. This
function retrieves data and maps the values of the data into the properties of the model. In the
default implementation the fetch() function retrieves JSON data from a HTTP location. This means
it does a separate HTTP request for

every object. However in the context of Backbone Model Backbone.Coll
. . . +fetch(): Backbone.Model +fetch(): Backbone.Model
this project only a single request should +set(): bool o +set(): bool .
b d t the data source in order to -parse(): HashMap<Smn2. String> -parse(): HashMap<String, String>{]
e done to
relieve the strain on these servers. So
the fetch() function will have to be _
. . . . KrustyModel
overwritten in custom implementations Slocaion Sting. oGBS g
. -xmIMapping: HashMap<String, Strin B e Hachh . :
of the Model and Collection classes ~Tetch()” Moger PRSI T R
. . . . -parse(): HashMap<String, String> " . .
which will have to be inherited by the < o LA R
models which need to retrieve their e
data from the Quickstart file. DN 7 e
— 1
artDataSource
The classes in figure 20 were defined. | Sinstance: BartDataSowrce_____|

Figure 20. The basic models.
KrustyModel and KrustyCollection each
inherit all of the functions of Backbone.Model and Backbone.Collection. The properties
xmlLocation and xmIMapping are added to each of the child class. The xmlLocation property

defines where the data for the model can be found in the BartDataSource and the xmIMapping
defines which field belongs to what property. The xmlLocation and xmIMapping are defined in
XPath. XPath is a standard for traversing xml files. 4

The location and the mapping of the values are defined as follows:

xmlLocation: //presentation,
xmlMapping: {
id: 'eid’',
fullid: 'efullid’',
title: '/properties/title’,
description: '/properties/description’

3

Jath®
Jath is a JavaScript library with which XML data can be parsed into JavaScript objects by using
XPath to map where the data for a given object can be found.

Jath implements the Jath.parse() function. It can be invoked like this. A mapping of strings to
XPath values can be defined like this:

mapping: {
id: 'eid’',
name: '/name’
description: '/description'

3

With Jath it is possible to traverse the XML file and parse the values of the certain relevant
elements into JavaScript objects.

4 http://www.w3schools.com/xpath /xpath_syntax.asp

5 https://github.com /dnewcome /jath

Constructing the GUI

In order to implement the functionalities according to the functional design, a user interface will
have to be constructed. The user interface has to look exactly like the Krusty Flash player. The
Flash player is styled with a Flash based technology. The HTML5 player has to be styled with
HTML and CSS.

The following View classes are defined.

PresentationView

ViewportView

| ControlsView |

| ScreenshotView I | EventView I |PlazbackVIew| I DIangVIew I

Figure 21. Views of Krusty-JS

PresentationView is the main container of the application. It contains the ViewportView and

ControlsView. ControlsView contains the video controls buttons, such as play, pause and volume

control. The ViewportView contains four views which all overlay each other. The ScreenshotView

displays the screenshot at the start of the video, R ———

and also shows the screenshots while a user is Ty Gk g
This is the Title

scrubbing through a presentation. The I

EventView shows the events which are <div class="viewport"s

triggered. The DialogView is responsible for

showing a dialog to the user showing the

current state of the presentation (loading, e

presentation.html

</div>
<div class="controls">

ready to play etc). The PlaybackView is the e
. ; quireJS
container of the HTML5 video element, and T
shows the actual playback of the presentation. ! equra -
The views each contain a template, which is .tengts:;"sﬁ:%"v'ew
dynamically loaded by Require]S. These parseTemplate(: void
templates consist of HTML code, which the Figure 22. Templating system.

view can then manipulate. These templates can

be style by CSS as they are just plain HTML. This is done to keep HTML and CSS out of the
JavaScript view code. This makes it clear how the HTML is composed, as JavaScript does not
dynamically generate it.

Each view is responsible for a specific type of functionality. Some are just containers (such as the
presentation and viewport view), while other listen to and control the state of the presentation
(ControlsView, EventView, PlaybackView and DialogView). The views communicate and listen to
the Model layer by an instance of the Presentation class. A single Presentation is instantiated in
the Main file. This instance is passed to PresentationView, which then injects this instance across
all its children, which in their turn inject the instance to all their children. In this way a single
instance of the Presentation is assured, since it is only instantiated once.

View

Creating a Facade into the Models Layer

A way has to be found to connect the Views to play()
the Models. A class Presentation is defined,

which will be the central Facade into the Y
Models layer. Apart from being a Facade this Presentation

class also contains simple metadata such as
the title and description. The Presentation
class knows where calls made by the
Presentation layer should be redirected to, Video RawVideo
and it makes events triggered by the Models
layer available to other objects. In this way
there is a clear communication line between
the views and the models. All the views listen
to a single object. And if they want to manipulate the
models they can do this by calling a function in the
Presentation class.

play()

Figure 23. The Presentation Facade.

. [Environment |
Codec selection [+$getEnvironment: Object<String, String> |

Video Codec support differs among
browsers. In order to assure that a correct VideoElementFactory

. . . . Vi I : Vi I
video file (with the correct codec) is loaded (LicreateydeoRement) VioeoRerernt)

1

for every browser, a codec selection <srotums>>
mechanism will have to be implemented. v
VideoElement
-element
. 1 1 . +play(): void
This can be done by building a static thavselivoid
Environment class that can detect in what +currentTimefloat time): float
. . . . +volume(flo_at volume): float
context the application, is running. The Hmute(:void
+unmute(): vol
Environment class can be used by a class -listenToEvents(): void

VideoElementFactory. This
VideoElementFactory will detect in what

1 3 : : : SafarilOSElement C El

environment the application is running, and +ola30): void o
i i +pause(): void +pause(): void

will create a correct VideoElement, D et) float e oat Sme): foat
containing the correct codec for the given +volume(float volume): float +volume((float volume): float

. . . . +mute(): void +mute(): void .
environment. This VideoElement will also +unmute(): void +unmute(): void
aggregate all the Elements triggered by the
VideoSource and will normalize them so that the Figure 24. Abstracting the video element.
event triggering behaviour is uniform for each
VideoElement.

Playing out the Playlist

The presentations contained within the Springfield platform consist of temporal ranges from a
single or multiple video sources. These temporal ranges are defined as Playlistltems. A
Playlistltem is basically a fragment from a video with a start time and duration. All these
Playlistitems are supposed to be played out in chronological order in such a way that it seems you
are actually watching a single video. The playlist items are defined within the quickstart.xml file
as can be seen in figure 25.

The videoplaylist element contains video elements. The naming might be quite confusing but
actually these are playlist items. They have a start time and a duration. They also have a position
which defines in which order the playlist items should be played. The referid refers back to the
actual video element that was described earlier.

In order to load these properties, the video
elements were parsed into Playlistltem
objects with the method described in
chapter 6.3. Each Playlistitem object also
gets a reference to the Video that belongs to
them, so that they can listen to time-
updates triggered by the VideoElement.

After this had been done an object had to be
created that could actually control these
objects. The class Playlist was created. The
Playlist is responsible for maintaining the
state of the current Playlistltem to the next
one, so that things such as the current
quality and current volume could be passed
over to the next Playlistltem. This class is

<videoplaylist id="1">
<properties/>
<video id="2"
<properties>
<position>1</position>
<starttime>40000</starttime>
<duration=20000</duration>
</properties>
</video>
<video id="4"
<properties>
<position>3</position>
<starttime>80000</starttime>

referid="/domain/springfieldwebtv/user/david/video/5">

referid="/domain/springfieldwebtv/user/david/video/5">

<duration=20000</duration>
</properties>
</video>
<video id="5" referid="/domain/springfieldwebtv/user/david/video/5">
<properties>
<position=4</position>
<starttime>20000</starttime>
<duration=4999</duration>
</properties>
</video>
<video id="7" referid="/domain/springfieldwebtv/user/david/video/5">
<properties>
<position>7</position>
<starttime>50000</starttime>
<duration=10000</duration>
</properties>
</video>
</videoplaylist>

Figure 25. Playlist in quickstart.xml

also responsible for implementing the scrubbing functionality.

The sequence diagram in figure 26 above describes what happens when the Playlist gets
initialized. In order to begin from the start of the presentation it requests the first item from the
PlaylistitemCollection. It then calls the selectitem() function, with the first item as the argument.
The selectltem function does the following things:

-Maintain the state (quality, volume) of the last playlist item into the new item which is selected
and passed as an argument to selectltem().

-Makes the Playlist listen to events triggered by the new item.

-Sets the item to the position passed as an argument, if no position is passed, it will just set the
position to the start time of the playlist item.

Playlist | [

initializel

After the Playlistitem has started playing %
it will trigger time-updates every 250ms
(default interval). The Playlistltem

triggers two time-update events.

first()

; selectitem(first)

I\5|enToV|éleoEven(5()

listenToltemEventsifirst)
playlist-item-time-update: Contains the
time of the playlist relative to the start
time of the video. This is the time that is
displayed by the slider in the
ControlsView.

event: item-ended

next()

selectitem(next)

U unbind() :
D

]

listenToVigeoEvents()

uslenToIlemEvems(iuexl)

video-time-update: Contains the time of
the video is currently at. This is the time
relative of the start time of the video
source.

event: item-ended

:

next()
event: playlist-ended
= |

D unbind() D
—_——>

The Playlist listens to these events and
according to times of the video and

playlist it can calculate the current playlist time.
It recalculates the playlist-time every time the
Playlistitem triggers a time-update:

Figure 26. Playlist functionality.

playlist-time-update: Contains the actual playlist time, so the time relative from the start time of
the first item of the playlist.

This diagram shows the different time events, which are triggered by the application.

playlist-time-update

i ¢ Contains the time the playlist
PIayllSt > currently at, relative to the start of
the playlist.

Playlistitem 1 Playlistitem 2 Playlistitem 3
Start(Video): 40 Start(Video):100 Start(Video):10
Duration: 20 Duration: 50 Duration: 20
0 20 70 90 playlist-item-time-update

Contains the time the current

[0 Payisttem 20 o Playlistitem 2 50 _::> playlist is at relative to start of the
playlist item.

[
[{/ video-time-update
) Contains the time the current
Video >‘ video is at, relative to the start of
the video source.

P

Video Source Example:
Currentitem: Playlistitem2

CurrentitemTime: 10
0 10 30 40 60 100 150 160 CurrentPlaylistTime: 30

CurrentVideoTime: 110
Playlistitem 1 Playlistitem 2

Figure 27. The times triggered by the playlist.

After a Playlistitem has finished playing, it will trigger the 'item-ended’ update. The Playlist
listens to the event. When the event is triggered, the Playlist will look if there is a next item
available for playout, if so, it will invoke selectltem() again with the next item as an argument. The
quality and volume stays the same for the next Playlistltem and the Presentation just continues

playing.

If there is no next item available the Playlist will trigger the 'playlist-ended’ event. This will
inform the Presentation that the playlist has ended, and that it should inform the views about this.
The DialogView will display a 'Play Again' dialog to the user. If the user clicks this, the Playlist
once again selects the first item of the collection and starts over.

Scrubbing through the Playlist

The user can drag the handle of the timeslider to a desired position. When the user clicks the
handle the slider will trigger the 'onslidestart’ event. When user moves the handle an 'onslide’
event is triggered periodically. When user releases the handle the 'onslidestop’ event is triggered.

While the user is scrubbing to a new position the presentation should be paused. A screenshot
should be displayed instead of the presentation, containing an image of the current position the
handle is at. This mimics the functionality of fast forwarding through a VHS for example. You can
actually see the image of the position you are at. In this way it is clear for the user where he is
changing the position to. Figure 28 shows the sequence of scrubbing through a Playlist.

Presentation:ControlsView Presentation:ScreenshotView Models:Presentation Models:Playlist Models:PlaylistitemCollection Models:Screenshot Models:RawVideo
! 1 : : '
i | i i
! I i I

onslidestart() |

1
scrubtart()

scrubStart()

1 pause() ' :
event: scrubbing-started ! i D
N B | T
: ; :
H
H
H

| event: scrubbing-started)
ow()
e

scrub(percentage)
1

onslide()

scrub(percentage)
find(percentage)

set('secbnd', value)

event: screenhot-loaded
1 T
i |
i |
i |
i |
i P

event: screenshot-loaded
event: screenshot-loaded

U>se(Elemenltscreensholl
T
'

scrubfstop()
{

-

onslidestop()

scrubStop()

Time)

setCurrentTime{currentScrubTime)
| _event: video-loaded

; play)

| eventideo-playing

+

event: video-playing

| event: presentation-playing
D >mde()

Figure 28. Scrubbing through a playlist.

The user initializes the scrubbing sequence by clicking on the slider handle. The Controls view
will then invoke the scrubStart() function in Presentation. The Presentation then invokes the
scrubStart function on Playlist which then pauses the current RawVideo. After this it will trigger
the 'scrubbing-started’ event. ScreenshotView listens to the 'scrubbing-started' event on
Presentation. When scrubbing has started it will make itself visible, overlaying the current
VideoElement.

When the user actually starts moving the handle about, the scrub() function is invoked on the
Presentation with the current percentage of the slider passed as an argument. The Playlist will
then figure out which Playlistltem belongs to which percentage of the Playlist. It will also figure
out to what the relative time position of the Playlistitem should conform to. For example 10%
might actually be 15 seconds into the first Playlistltem. The find() function figures this out. It will
set the 'second’ property of the Screenshot object to the current video time. The screenshot object
will then load the screenshot for the given second, and will trigger the 'screenshot-loaded’ event
when the screenshot has loaded. The Presentation propegates this event to the views. Every time
a screenshot has been loaded, the ScreenshotView will update its internal HTML Image Element.

When the user lets go of the handle the scrubStop() function is invoked on the Presentation. The
Presentation calls the scrubStop() function on Playlist. The Playlist will call the selectltem() item
function with the current item the user is scrubbing over, along with the relative position of the
playlist item. selectltem will invoke the setCurrentTime on the new RawVideo to change the time.
Once the RawVideo has loaded enough data it will trigger the 'video-loaded' event. After the
'video-loaded' event has been received by the Playlist, it will call the play() function on the
RawVideo. The RawVideo triggers the 'video-playing' event which is propegated to the
Presentation. The ScreenshotView listens to the 'video-playing' event and hides itself while the
video is playing.

Achieving Quality Selection

The quality of the Presentation has to be able to be changed while playing a video. Because
HTMLS5 lacks the addition of a widely used Streaming platform this could not be done
dynamically. So for every video file on the Springfield platform multiple versions are created.

Each version is a different bitrate (or
rather quality). They are defined in the DLHEEIIRR/>
quickstart.xml as can be seen in figure 29. prooertisns

WAL h-1920< /wicth>
sudicshapaalsr</audiochannels>

s 2a_files</metadata_file>
wdeorpdes>H264</videocodec>
plrplaspect Qdde</pixelaspect>

They were already being parsed into
objects by the method defined in chapter
6.3. A way had to be found to change the
quality (bitrate of current video) of the
presentation while a presentation was
actually playing.

treamld</mount>
viceobitrate>
Jaudiobitrate>»

The sequence diagram in figure 30 shows

the sequence of switching a RawVideo BPuul ey el
: o : e 3,
Whlle a presentatlon IS playlng' <lo-Contents of second RawWideo here >
</rawvidec>
</videcHq

Figure 29. RawVideos in quickstart.xml

Frosonision Controisview | [Frsasaioniisotiew] [Hsdsipressnision e Fiayist iodeis Plaisiien Modersvides (WodsmawEss) [Hsdsn VidsoEsmeniticioy) ([setiamen

set(quality, quality)

qualityChanged()

selectitem(currentiiem, culrentPosition)

\ﬁ/awy
Get(currentyideo)

qualityChanged()

getRawVideoByQuality(quality)

%w()

set(currentRawvideo, rawvideo)

currentRawVideoChanged()

createVideoElement()

ScreateVideoElement)
| ScreateVideoEtementy
[] ‘‘‘‘‘‘ lize()

L event: video-playing

play()
U*7—mn J i

Figure 30. Switching quality.

The user initializes the sequence by changing the quality in the GUI. The ControlsView invokes the
quality() function on the Presentation with the selected quality as the argument. The Presentation
changes the quality property on the Playlist. The Playlist listens to changes of the property. When
the quality changes, the qualityChanged callback is invoked. The qualityChanged function invokes
the selectltem() function with the currentltem and the currentTime as arguments, the
Playlistitem and time should remain the same after the switch. It changes the quality of the Video.
The Video also listens to changes of the quality property. When it changes it automatically finds
out which RawVideo belongs to the quality which was set. The Video unbinds the old RawVideo,
so that time updates are not longer received. The Video sets the new RawVideo and invokes the
createVideoElement which creates a new HTML5 video element through the VideoElement
factory. Once this new VideoElement has loaded enough data it triggers the 'video-loaded' event
that is a signal that the video can resume playing from the original position

6. Development

In this chapter a brief description of the development method that was used will be given. After a
global description will be given of what was done during each sprint.

6.1 Development Method

In order to develop the application in a structured and progressive manner it was decided chose
implement SCRUM. SCRUM is an iterative and incremental development method. This means that
several time boxes (or sprints) are defined in which a certain amount of functionality has to be
completed. The functionality required is defined in a product backlog. Before each Sprint a Sprint
backlog has to be defined consisting of the functionality which has to be completed in that Sprint.

24 h

30 days

. 2
_—

N a4
E =

Product Backlog Sprint Backlog Sprint

Working increment
of the software

Figure 30. A diagram showing SCRUM in progress. Source:
http://upload.wikimedia.org/wikipedia/commons/thumb/5/58 /Scrum_process.svg/400px-
Scrum_process.svg.png

A product backlog had to be defined containing all the user stories (extracted from functional
requirements) and technical stories (extracted from non-functional requirements, and technical
requirements). After these had been defined, an importance rating and estimated time until
complete had to be attached to each story. I attached the importance rating of each story
according to the priority that was defined in the Functional Design (Chapter 4), and according to
the reliance of other stories on the specific story. A typical sprint is between 2 and 4 weeks. The
sprints were defined as follows:

Sprint 1 (Basic Play out) 27/02/2012-16/03/2012
Sprint 2 (Quality, Playlist) 19/03/2012-06/04/2012
Sprint 3 (Events) 09/04/2012 - 27/04/2012

At the end of each day I had to evaluate what was done, and what | was going to be doing the next
day. In this way there is constantly a deadline to be working to and this helps in the progress,
there can be no postponement.

After the end of each Sprint a demo had to be given to Noterik. This demo had to be 'working'. So
no static code or mock-ups were allowed.

Of course SCRUM is mostly used in a project environment of three or more members, so not all
the facets and roles of the method could be applied. But some of the rules prescribed within
SCRUM are still useful within solo development.

Test driven development

In the original Play of Approach it proposed to use Test Driven development. This means that
before developing a specific functionality, tests first have to be defined which the developed code
will have to complete successfully. In this way the code that is constructed is much more stable
and tested before it is implemented.

However, the author had very little experience with this method. Halfway through the first Sprint
it was clear that it was delaying the development in such a way that functionality could not be
completed before the end of the Sprint. Therefore it was decided to discontinue the test-driven
development. Test-driven development could have been very useful though, but in a project with
more time available and were the deadlines are not as strict.

7. Motivation choices

7.1 Lightweight implementation of SCRUM

A development method had to be implemented, in order to make sure that progress was made on
the development of the product, and to make sure that the final product achieved all the
requirements defined in Functional Design.

SCRUM was an ideal candidate, as it requires the developer to divide the functionality into
chunks, which can then be developed separately. The Product Backlogs and Sprint Backlogs serve
as monitors as to how far the functionality has progressed. The definition of tight time boxes
(sprints) makes sure that the developer is always working towards a deadline. It is clear for the
developer what has to be done in the limited time available.

SCRUM however, is a method mostly used within a team environment. This means that certain
components of the SCRUM method such as the roles and the daily scrums were not implemented
into the actual development, as they would just provide too much overhead, as the project was
done individually.

7.2 HTML5 + JavaScript

This was the only viable environment into which the application could be developed. A more
detailed description as to why can be found in the research that was done prior to the start of the
project (Attachment 3).

7.3 RequirelS

A way had to be found to structure the application, without having to litter the main HTML page
in which the application is embedded with script includes like this:

<script type="javascript/src" src="js/scriptl.js">
<script type="javascript/src" src="js/script2.js">
<script type="javascript/src" src="js/script3.js">

One of the main setbacks of this method is that these scripts might have dependencies to each
other. For example script2.js might depend on script1.js. If the scripts were included like this, it
would not work. We would have to order the includes like this:

<script type="javascript/src" src="js/script2.js">
<script type="javascript/src" src="js/scriptl.js">
<script type="javascripot/src" src="js/script3.js">

This will work. But if the list of includes grows to a larger number such as 20 includes, it can
become a big hassle to order all dependencies.

Another big setback of this method is that the scripts are loaded synchronously. This means that
the loading of the script will actually block the rendering of the page. For every script a separate
request will have to be done. Once the list of includes start to grow this can start to severely
influence the load time of the page.

So a way had to be found to asynchronously load dependencies. The dependencies had to defined
within each module of code in order to not clutter the main page with includes.

Require]S had all the functionality that was required. Require]S provides a method to define
modules. The modules contain code that might have dependencies. The dependencies are defined
in the decleration of the modules and are loaded asynchronously. For a more detailed description
see chapter 6.2. There are other alternatives such as Common]S. However Require]S provided the
most understandable documentation and syntax (in the humble opinion of the author). Require]S

also provides a optimization tool which can minify(removing whitespace) and uglify(shorten
variable names) code, so that it is interpreted faster by the browsers.

7.4 MVC (Model, View, Controller) pattern

It had to be possible to loosely couple the presentation to the domain and application logic,
because the domain and application logic might have to be reused in the Montage Tool, which is
to be developed in the future. By separating the functionality, the application becomes more
structured. It could of course have been possible to implement all the functionality needed for the
application into a single class, but this would have made the structure of the application very
chaotic, and very difficult to make quick changes to.

. (Greps E s o
The Model, View and Controller ‘ Model
pattern separates the logic as can Sl sl il
Lo | * Responds to state queries
be seen in flgure 31. * Exposes application

I functionality

+ Notifies views of changes State

Change

State
Query

Further separation was not needed
in the context of this project. As
each layer provides an extra layer
of complexity, which might

Change
Notification

influence the performance of the View S Selantion Controller

lication in a negative wav. A + Renders the models » Defines application behavior
app C ° . gative way * Requests updates from models | *Maps user actions to
very lightweight of the MVC » Sends user gestures fo controller 3 3 1 1 1 1 model updates

» Selects view for response

+ Allows controller to select view User Gestures
» One for each functionality

pattern had to be found, in order to
keep the application responsive
enough.

Method Invocations
2B B Events

7.5 Backbone Figure 31. The MVC pattern.

The application had to be build based on the MVC

method. Of course it would have been possible to the application from scratch, but this would
have proved to take too much time in the context of this project. The quality of this application
might have been questionable as well as creating an application based on the MVC pattern can be
quite complex. There are however a lot of frameworks available which already provide a tried
and tested implementation of the MVC pattern. However in the context of this project it was
important that the framework was as lightweight as possible.

Backbone.js is a very lightweight implementation of the MVC pattern. The developer already had
experience in programming in Backbone. Because of the limited time available for this project, it
was chosen not to look at too many alternatives, as the research and learning of the new
framework would have taken too much time.

7.6 Not implementing events

After seeing the capabilities of the HTML5 player during the demo of sprint 2, Noterik came to the
conclusion that events should be implemented in completely different way. Instead of the events
only being active within the context of Krusty]S, other components should also be capable of
listening to the events triggered by the application. In this way it would be possible to change the
state of elements also contained by the same page. This however adds a big layer of complexion to
the existing code. And this was something that could not be implemented anymore in the limited
time that was available. Therefore it was decided that the implementation of the events would be
postponed until a later period. This however cancelled the entire purpose of Sprint 3. Instead
sprint 3 was used to optimize the existing application.

7.6 Not implementing fullscreen mode

In the original Plan of Approach it was defined that fullscreen support should also be
implemented. However after my research it became clear the support of a fullscreen mode still
might prove very challenging in order to implement it to all the browsers. Currently a lot of
browsers do not support it. Also the fullscreen mode was defined as a 'COULD-HAVE' in the
functional design. Therefor it was decided not to be implemented in the current version of
Krusty]S.

8. Conclusion and recommendations

8.1 HTML5

Itis clear that HTMLS5 is a serious contender to Flash, certainly in the context of this project. By
implementing the API defined within the HTML5 video element almost all the functionality
described in the Functional Design could be implemented. Some things such as the Event handling
and the full screen support proved to be possible, but not implementable within the time that was
defined within the Plan of Approach.

Almost any modern browser, including 10S, supports the HTML5 video element. This means that
by using the HTML5 video element API a developer is able to reach a very wide spectrum of users,
including the group that could not be reached by Flash. The need for installing a third party plugin
in order to play back videos (Flash) is also removed. All the functionality is embedded within the
browser.

There are however some things to keep in mind when implementing HTMLS5 into an online video
service platform.

There still is no single codec that is supported by every major browser. The so-called "Codec War"
is in still progress, and though H.264 seems the likely winner there is no certainty. Both H.264
and WebM support will have to be implemented in order to reach the widest audience.

Another issue is the lack of a widely supported streaming platform such as Flash currently has.
This makes it impossible to implement adaptive streaming, and requires users to change the
quality of their videos manually. This is a double-edged blade, because progressive download
does not dynamically change the bitrate of the video. Instead, several versions have to be made of
the same video in different bitrates.

The lack of a streaming platform also has another major setback. By using progressive download,
the sources of the video are retrievable for anyone with some technical knowledge. This means
that security is a big issue at this moment.

However HTMLS5, as said before, is still very much a technology in development, and it likely that
these problems will be resolved in the near future.

8.2 Recommendations

In order to reach the widest audience possible Noterik and to keep up with competition, Noterik
should try to implement the HTML5 alongside Flash in most of its existing front-end systems.

It means that in all existing projects that aim for a large target group, such as EUScreen and
LinkedTV, the playback should be changed to HTML5 (if security is not a priority).

It also means that in the near future the Montage Tool should also be transferred to a HTML5
environment. This project will prove to be a lot more challenging, as the Montage Tool
implements a lot more functionality then Krusty.

Noterik should also keep their eyes open for changes in the security management in HTML5. As
not all of their clients like their files to be retrievable from the Web.

The MediaFragments standard, currently being developed by the W3(, also implements a lot of
technology that might be interesting for Noterik. Therefore Noterik should remain actively
involved in the development of this standard.

9. List of Sources

9.1 Literature

Pilgrim, Mark. HTML5: Up and Running, Sebastopol: O'Reilly Media, 2010

Flanagan, David. JavaScript: The Definitive Guide, 6th edition, Sebastopol: O'Reilly Media, 2011

9.2 Websites
HTML5
Definition http://en.wikipedia.org/wiki/HTML5
Usage http://w3schools.com/html5/html5 video.asp
Events http://w3.0org/2010/05 /video/mediaevents.html
MediaFragments
Proposal http://w3.org/TR/media-frags/
Javascript
JavaScript: http://en.wikipedia.org/wiki/Javascript
JQuery http://jquery.org
Backbone http://backbonejs.org
Require]S http://requirejs.org

Jath http://github.com/dnewcome/jath

Attachment 1

Plan of Approach

David Ammeraal
Studentnumber: 1520387,
Noterik B.V.,

University of Applied Sciences Utrecht, Internal
Supervisor: Konstantin Radoslavov, External
Supervisor: Michiel Borkent,
david.ammeraal@student.hu.nl

April 23, 2012

Contents

Introduction

Context in which the project will be performed

2.1 Noterik B.V. e
2.2 Services of Noteriko
2.3 Springfield e
2.4 LinkedTV e e

Definition of the problem
3.1 Desired outcome L e e e e e

Goals of the project

4.1 Research e e
42 Player e
4.3 Thesis and presentation

Scope of the project

5.1 Basic playout
5.2 Video quality and aspect ratio selection, ...
5.3 Dock functionality
54 Showing events e
5.5 Playlist support
Delivering the products
6.1 Plan ofapproach
6.2 Researching how the functionality can be transferred
6.2.1 Research planning
6.2.2 Research results
6.3 Designing the new player
6.3.1 Functional design,
6.3.2 Technical design,

[« N, NRV, TN N N

o 0

6.4 Constructing the new player 13

6.4.1 Product backlog 13
6.42 Sprint backlog 14
6.43 Prototype 14
6.4.4 Test Document L oo 14
6.4.5 Final Prototype. 14
6.4.6 Technical Documentation 14
7 Planning 15
7.1 Detailed Planning Lo 15
8 Used Methods 19
81 Research e 19
8.2 Project Management 19
8.3 Application Development 20
9 Risk Management 21
9.1 Defects of systems 21
9.2 Certain functionality of the Flash environment cannot be converted to the
new player 21
9.3 Not all the tasks scheduled for a sprint are finished within the time box of
the sprint L 22
9.4 Tllness e 22
9.5 Supervisor is not available o000 22
10 Supervisor 23
11 Contact Details 24

Chapter 1

Introduction

The past five and a half years I have been been studying informatics at the University of
Applied Sciences in Utrecht. After some delays and other diversions the time has finally
come to graduate. After having been informed as to how the graduation project should be
performed I immediately set out looking for a project. After approaching several compa-
nies I had quite a selection of possible projects. An acquaintance advised me to contact
Noterik B.V. as well. After a short correspondence by email, Rutger Rozendaal invited me
for a meeting to see if we could find a project of which both parties could profit. We found
one quickly.

By the end of the summer of 2011 I had finished most subjects of my study and already had
most of my ECT’s. I was quite quick in finding a project so I started with my assignment
earlier. I’ve been working on my assignment from the 16th of January 2012.

In this document I will elaborate the context in which the assignment will be performed.
Afterwards 1 will determine the goals and products which have to be delivered after having
completed this project. I will also elaborate as to how I am going to deliver these goals
and products.

Chapter 2

Context in which the project will
be performed

2.1 Noterik B.V.

Noterik is a small company with currently eight employees. The office is situated in the
centre of Amsterdam on the Prins Hendrikkade 120. Noterik was established in 1996 and
focusses mainly on delivering online video services. Noterik’s target clients are mainly
in the non-profit sector. The European Union and the municipality of Amersfoort are
examples of the sort of customers Noterik delivers its services to. An organization chart of
Noterik can be found in figure 2.1.

management team

Jechiam Gural Rutger Rozendal Daniel Ockeloen
Founder / advisor Account Manager Technical Architect
Pieter van Leeuwen Derk Crezee Akbar Khrisna Konstantin Radoslavov Louis Miltenburg
Front-end Programmer ~ Back-end Programmer Interaction designer Front-end Programmer Bookkeper

Figure 2.1: An organization chart of Noterik

Because Noterik is such a small company there are no real divisions within the company,
however there are different functions. The top tier consists of the management team,
this tier consists of the three managers. Jechiam Gural is the founder of company and
advices the other managers. Rutger Rozendaal is the account manager and also does a

lot of project management. Daniel Ockeloen is the technical architect of the company and
is responsible for the architecture of the software of Noterik. The bottom tier consists
of the developers and bookkeeping. Every developer has their specific speciality within
the springfield platform such as front-end programming, interaction design and back-end
programming. In reality everyone has to be able to understand the basic functionality of
every tier of the platform. Louis Miltenburg is responsible for the bookkeeping of Noterik,
and answers to the management team.

2.2 Services of Noterik

The video services delivered by Noterik have more functionality than just being capable
of watching a video stream. Events can be assigned to periods of time in the timeline of
a video. Also users can select certain regions in the canvas of the video and attach extra
information to it. In this way users can add extra information to a certain point in time
or space of the video. For example: A user can indicate who is currently speaking in a
video concerning a meeting of council members of a city. The next time a user watches this
video it will be be displayed in the player and it will be clear who is speaking and what
his/her function is. This makes a video much more interactive and information concerning
the current subject of a video can be easily shown to the user watching the video. Noterik
therefore prefers to call the combination of the video stream and event functionalities not
a video but rather a presentation.

2.3 Springfield

To accommodate the video services Noterik has developed the Springfield platform. Spring-
field is a distributed system consisting of several tiers of systems. These tiers can be seen
in figure 2.2

At the center of the system is the Services Tier. Each Service is responsible for a sepa-
rate functionality. The services can be reached by REST by sending a request to HOMER.
In the figure Homer is specified as a DNS, this is because HOMER maps the location of
the other services. For a more detailed explanation of the REST principle see the article
by Michael Jakl[1].

The services communicate with each other through HOMER to get the data which is
needed. All these services are hosted on a cluster of Windows servers in the Hardware tier.

Users can communicate with the Services tier either with a browser which sends REST
requests to HOMER or with a Flash Client which is called Krusty to communicate and
watch the video’s stored inside the system. Every request done by Krusty is done in REST.

Springfield Software

Frontend
FlashClient/krusty Portal/krusty

Figure 2.2: A graphical representation of the functionality of Springfield platforms divided
by tiers

2.4 LinkedTV

LinkedTV is an initiative by Fraunhofer IAIS. Noterik is an active participant in the de-
velopment of this system. LinkedTV aims to interconnect video and other media on the
Web, and make it watchable on a wide spectrum of systems. A more detailed explanation
can be found on LinkedTV’s website: http://www.linkedtv.eu

When dd these
ardstslive?
Who was e Whatis the name of

wechitect?

the artigtic styles they
belong to?

What other
stucturas dd be

dasign?
ot Whara was this

item recorded?

Figure 2.3: An example showing which sort of information should be possible to be tagged
and interconnected with LinkedTV.

Networked Media will be a central element of the Next Generation Internet. Online
multimedia content is rapidly increasing in scale and ubiquity, yet today it remains largely
still unstructured and unconnected from related media of other forms or from other sources.

This cannot be clearer than in the current state of the Digital TV market. The full promise
and potential of Web and TV convergence is not reflected in offerings which place the viewer
into an Internet closed garden, or expect PC-like browsing on a full screen Web, or offer in-
teresting new functionalities which however lack any relation to the current TV programme.

Our vision of future Television Linked To The Web (LinkedTV) is of a ubiquitously online
cloud of Networked Audio-Visual Content decoupled from place, device or source. Ac-
cessing audio-visual programming will be TV regardless whether it is seen on a TV set,
smartphone, tablet or personal computing device, regardless of whether it is coming from a
traditional or new media broadcaster, a Web video portal or a user-sourced media platform.

Television existing in the same ecosystem as the Web means that television content and
Web content should and can be seamlessly connected, and browsing TV and Web content
should be so smooth and interrelated that in the end even surfing the Web or watching TV
will become as meaningless a distinction as whether the film is coming live from your local
broadcaster, as VOD from another broadcaster, or from an online video streaming service
like Netflix. [2]

Springfield will be used for the storage and showing of the video’s. The player which I
will construct will be implemented into the context of this system.

Chapter 3

Definition of the problem

Noterik currently delivers its video services to its clients with a custom build video player
based on Adobe Flash technology. More functionality is continuously added to the player
to keep up with the growing demands of customers. Adobe Flash however is a technology
which is gradually being used less and less. Adobe has recently announced that it will
not develop further updates for the Adobe Flash platform for mobile devices. Devices
based on the iOS operating system by Apple (such as the iPad, iPod and iPhone) do not
support Flash. Users of these devices are a potential target group for Noteriks’ video
services and at the moment they can’t be reached, and this group is growing quite rapidly.
Therefore the functionality currently encapsulated in this player should be transferred
to a HTMLS5/Javascript environment. [did research for Noterik to establish to which
environment we should transfer the functionality. The results of this research can be seen
in Attachment 1.

3.1 Desired outcome

The functionality currently contained by the Krusty video player should be transferred to
a HTMLS5/Javascript environment. It should be done in such a way that clients have full
functionality of the player in a browser (such as Internet Explorer or Firefox), or with a
mobile device such as the iOS or Android phones.

Chapter 4

Goals of the project

This project will serve as my graduation project. After completing this project I will have
shown the University of Applied Sciences Utrecht and Noterik that I have all competences
needed to attain a Bachelor’s degree in ICT.

4.1 Research

The research to which environment the Krusty player should be transferred has already
been completed, and can be seen in Attachment 1.

I have been assigned by Noterik to research how the functionality of the Krusty player
can be transferred to an alternative environment.

4.2 Player

After publishing the results of this research to Noterik I should commence creating a pro-
totype of a player which can be used on a desktop computer running the Firefox version 9
internet browser and iPad running the latest Safari browser on iOS5.

This player will serve as a potential springboard to more advanced implementations cus-
tomized for HTMLS5, iOS and Android.

4.3 Thesis and presentation

A thesis will be written about the entire project. After all the products have been delivered I
will present them and the thesis to Noterik and the University of Applied Sciences Utrecht
during a final meeting at the University of Applied Sciences Utrecht.

Chapter 5

Scope of the project

Transferring all of the existing functionality of the Krusty video player to HTMLS5/Javascript
would be too much to be able to do for one person in the limited time available. Therefore
Noterik has made a selection of the functionality which at least has to be implemented in
the prototype. I will list them here. These are just global descriptions, in the functional
design I will go into deeper detail. In the functional design I will also specify a priority to
these functionalities according to the MoSCoW method.

During the research, it might become clear that more functionality will have to be
added, the current planning however allows for some extra functionalities to be added if
needed.

5.1 Basic playout

Basic playout means being able to play, pause and stop a movie stored in the Springfield
platform. Scrubbing (navigating through the timeline of a video), volume control and
muting should also be available.

5.2 Video quality and aspect ratio selection

It should be possible to select a different resolutions for a video. For example HD(1080p)
or SD(480p) for a given video. Also different aspect ratio’s should be selectable such 16:9
and 4:3.

5.3 Dock functionality

Users should be capable of seeing the dock which gives the following functionality:

10

View info of the video
Users should be able to view basic info of the video such as the title, description, and
author details.

Share video with others
Video’s should be able to be shared with friends through media like Facebook and
Twitter.

Log in to the system
Users should be able to log in to the Springfield platform using their credentials.

Tag events in the video
It should be possible to create events in the video and attach them to a certain
moment in the timeline of a video.

5.4 Showing events

It should be possible to see events which have been added by other users. They should be
visible in a layer above the video.

5.5 Playlist support

It should be possible to add the video to a video playlist. The video’s in this playlist should
be able to be played in sequence after each other.

11

Chapter 6

Delivering the products

Several products will have to be delivered. Some for Noterik and some for the University
of Applied Sciences.

6.1 Plan of approach

This is the document you are reading now. In this I will explain how I am planning to do
the project.

6.2 Researching how the functionality can be transferred

6.2.1 Research planning

In this document I will establish a research question, and how I’'m planning to do my
research. [will define a research question according to the problem that needs to be
solved. I will split the research questions into subquestion and I will try to answer each of
these question separately to come a answer for the main question.

6.2.2 Research results

The results will consist of several prototypes and documents describing how the function-
ality of the Krusty player can be transferred to a HTMLS environment. The prototypes
will be actual pieces of software which demonstrate a piece of functionality.

12

6.3 Designing the new player

6.3.1 Functional design

In this document I will list all the functional and non-functional requirements. I will show
the functional requirements in the form of use-cases. Also the interaction with the system
from the viewpoint of the user will be described. I will attach a priority to each use-case
according to the MoSCoW principle. These priorities will be based on how important
a certain part of functionally is for Noterik. For example: Basic Playout is of critical
importance, because of this, it will be a must-have functionality because other parts of
the application rely on this functionality to be operational. The priority rating I attach to
a functionality will also be the main influence to the importance rating for that piece of
functionality in the Product Backlog.

6.3.2 Technical design

In this document I will elaborate how all the functional and technical requirements should
be implemented. It will include a UML class-diagram, and how the application should
communicate with the services of the Springfield platform. Also certain things such as the
operational context and required software will also be specified. Certain tasks will have to
be performed for the application to work (such as making a test environment, constructing
stylesheets etc), these tasks will also be added to Product Backlog as a technical task.

6.4 Constructing the new player

I have divided the development time of the application into three sprints. In this way I
can cut the project into small pieces which I can work on one at a time.

6.4.1 Product backlog

According to SCRUM this document contains all the functionalities described in the Func-
tional Design with an importance rating. Some tasks In this document I will put all the
functional requirements of the application. I will attach an importance rating to every re-
quirement, and I will estimate the time it will take me to build the functional requirement.
After each sprint I will show the progress of each functional requirement in this backlog.

This document will also contain technical task extracted from the technical design. I
will attach an importance to each technical task. Some tasks will have a very high impor-
tance (such as making a test environment), but some will have a lower importance (such
as making stylesheets) according to the reliance of the system on these technical tasks.

13

6.4.2 Sprint backlog

Every sprint I will make a sprint backlog. I will divide the functional requirements selected
for creation in the specific spring into smaller subtasks. I will attach a new importance
rating and estimated time to every subtask. I will attach a new importance rating according
to what is described in the functional design, and how much the parent task relies on this
subtask to be operational. After every day of work I will add how far the completion of
each task has progressed. The time-estimate will be defined according to how productive
I can be in the days to come and how fast I have completed similar tasks in the past.

6.4.3 Prototype

After every sprint I will show a prototype to Noterik. In this way they can see how I am
progressing. The prototype has to be a working’ prototype. That means: it has to be able
to do something, like run a video, play a video etc. Just code is not allowed.

6.4.4 Test Document

I will document every test I write for the current functionality I'm working on together
with outcome of these tests in this document. Before delivering the final prototype I will
conduct tests to check if all the functionality described in the Functional Design works as
it should. I will also document the outcome of these tests in the test document.

6.4.5 Final Prototype

After the final sprint the prototype should have all the functionality described in the
functional design. I will present this prototype to Noterik and to the University of Applied
Sciences Utrecht.

6.4.6 Technical Documentation

In this document I will describe the technical details of the implementation. Things such
as system requirements, a final class diagram etc.

14

Chapter 7

Planning

I have made a planning for the entire duration of the project. I have placed most products
to be delivered into this planning. The final Plan of Approach however I have not been
able to add because it depends on how fast the University of Applied Sciences Utrecht will
take to check it.

7.1 Detailed Planning

January 16 - May 25: Thesis
During the entire duration of the project I will work on my Thesis. Every week I will
spend the half of Friday to work on my thesis.

January 16 - January 27: Phase 1 - Orientation

January 16 - January 27: Orientation
During this period I will focus on learning the workflow and culture of Noterik.

January 17 - January 20: Create Concept PoA

January 23 - January 27: Create Research Plan

January 30 - February 10: Phase 2 - Research
During this period I will research how the functionality currently contained within
the Krusty player could be transferred to a HTML5 environment. At the end of the
phase I will present my results.

15

February 13 - February 27: Phase 3 - Design

February 13 - February 16: Create Functional Design
February 17 - February 23: Create Technical Design

February 24: Create Product Backlog

February 27 - April 27: Phase 4 - Construction

February 27 - March 16: Sprint 1
February 27: Make Sprint Plan
February 28 - March 16: Develop Basic Playout
February 16: Show prototype with Basic Playout
March 19 - April 6: Sprint 2
March 19: Make Iteration Planning
March 20 - March 31: Develop Displaying of Events
April 2 - April 6 : Develop Adding of Events

April 6: Show prototype in which you can show and add events.
April 9 - April 27: Sprint 3

April 9: Make Sprint Planning
April 10 - April 12: Develop Video Quality Selection

April 13 - April 18: Develop Aspect Ratio Selection

16

April 19 - April 27: Develop Playlist Support

April 28: Show final Prototype

April 28 - May 6: Vacation

May 7 - May 25: Phase 5 - Evaluation and fine-tuning

May 7 - May 11: Finetuning
During this time I will fix things that are still not functioning as they should.
May 14 - May 19: Make Technical Documentation

May 21 - May 25: Make presentation

17

GAnTT

project

anuary 2012|February 2012 March 2012 |April 2012 May 2012 l,lune 2012

3 |4 |s ls |7 |s |9 |1o |11 |1z l13 14 |1s |1s |17 |1s |19 lzo |21 |zz |23 |24 |zs |
[]

Graduation Project

Work on Thesis []
Phase 1 - Orientation

=

Create Research plan

—
I
Create concept PoA !}
Product: Concept PoA
o

Product: Research plan
Phase 2 - Research r—
Researching [L
Product: Show results of research H

Phase 3 - Design
Create Functional Design

Product: Functional Design

Product: Technical Design
Create Product Backlog

—
Create Technical Design !}

Product: Product Backlog 4
Phase 4 - Construction

Iteration 1
Make Iteration Planning

|

Develop Basic Playout

Product: Prototype with Basic Playout

Make Iteration Planning

Iteration 2 ——
L

Develop Displaying of Events

Develop Adding of Events

Product: Prototype with Video Quality and Aspect Ratio Selection

Iteration 3

Make Iteration Planning

Develop Video Quality Selection

Develop Aspect Ratio Selection

—_—
Develop Playlist Support [:h

Product: Final Prototype with all functionality

Vacation [|

Phase 5 - ion and Things that didn't finish

Things that still need tuning

Product: Technical Doc

—
=
Make Technical Doc i —
i)

Make p

Product: Presentation

Figure 7.1: A gantt chart of the project planning

18

Chapter 8

Used Methods

To make sure everything in the project is done in a structured and controlled manner, I
will have to apply some methods. In this chapter I will explain some of the methods 1 will
be using during the project.

8.1 Research

I will first establish a concrete research question. After this I will split the research question
into subquestions. After this I will set out to try and answer every subquestion. After every
subquestion has been answered I should also be able to answer the main research question.

8.2 Project Management

To make sure I bring the project to a successful end, I will use some parts of the SCRUM
methodology. SCRUM is about developing in a team, however I will be working on my
own. Some things however are still good to use.

I will maintain a product backlog to be able to keep track of the progress of the project. I
will also keep strict deadlines on my sprints to make sure that I have a target to work to
every time. After every working day I will update the Sprint backlog with the progress I
have made on every task. And every morning I will establish what I will have to do in the
day to come.

After every sprint I will have to show something that ’works’. This way Noterik also
has a good idea of how I am progressing in my work. I will however not be able to have a
product owner so I will not be able to implement SCRUM to the fullest. However, I think
if I follow these practices I will be able to deliver all the products needed, and the project
will have a lot more structure.

19

8.3 Application Development

I will try to implement Test Driven development. This will mean I will establish unit tests
for a certain task in the spring backlog. And then create code that will validate for those
tests. This way I’'m sure that the code I'm writing will contain the least possible faults, and
that extra functionality build upon an existing tested functionality will have a solid base
to rely on. Test Driven development however has not been a subject in my curriculum, so
I will have to learn this. I will learn this by reading tutorials and articles on the web. If it
becomes clear that it takes too much time to write the tests, I might choose to not use it
for the rest of the project.

Code will be committed to a code.google.com while I'm developing it locally. After the
code qualifies to the tests I will submit it to the cvs server of Noterik. After that it will be
committed to the development environment, where it will be tested again. After everything
has been tested it will be submitted to the production environment. It is not clear yet who
will write these tests as there is no certainty how the new environment can be tested.

20

Chapter 9

Risk Management

In this chapter I will elaborate the risks that are possible in this project and how I'm
planning on handling these risks.

9.1 Defects of systems

I will always maintain a backup of my documents on docs.google.com, code will be com-
mitted to a code.google.com as well as to Noterik CVS server. This way I’ll always have
an up-to-date backup of all my files.

9.2 Certain functionality of the Flash environment cannot
be converted to the new player

I’ll research all the functionality needed before actually building the player. In the research
phase it should be made clear which functionalities will work and which will not.

I’ll make prototypes for the functionalities which I think might be hardest to implement,
to be able to work around eventual impossibilities.

If however during the sprint it seems that certain functionality cannot be implemented
alternatives should be looked for. However these alternatives will fall outside of the scope
of the sprint currently being working on, because new time estimates will have to be estab-
lished for the functionality. In case this happens I will add tasks planned for a later sprint
to the current spring and I will start researching alternatives in time that is not being used
during the sprint.

21

9.3 Not all the tasks scheduled for a sprint are finished
within the time box of the sprint

I will keep a few hours free in every sprint scheduled for working on things that didn’t
finish last sprint. However I will continue working on the tasks that are planned for the
current sprint.

9.4 Illness

I might have to stop working for medical reasons somewhere during the project. In case
this happens I will have to make changes to the planning. Maybe I will have to omit some
low priority tasks in the sprint. Also the vacation planned in may will only be used if all
products planned to be delivered are still on schedule. I have also included a slack period
during phase 5 of about a week. In this period there is time to fine-tune and finish of some
tasks that didn’t finish within the sprints.

9.5 Supervisor is not available

My supervisor is in Bulgaria most of the time. So he might not be able to attend all the
meetings. However channels such as Skype and e-mail should be used as much as possible
to maintain the communication between me and my supervisor and the teacher from school.

22

Chapter 10

Supervisor

At first it seemed that Rutger Rozendaal would be my supervisor. But Rutger is the
project manager and account manager and can’t really help me when I need help with
technical problems. Konstantin Radoslavov however had already done some research on
the matter of transferring the functionality of the Krusty player to a new environment and
thus it was decided that he would be appointed as my supervisor.

Konstantin mainly works from Bulgaria, but sometimes he is also in the Netherlands.
When he’s not here, we communicate through Skype and E-Mail.

Konstantin has a Bachelors Degree of Science in Engineering (Electronic) attained at the

University of Natal, Durban, South Africa, and also has a Masters Degree of Science in
Computing attained at the Griffith College Dublin in Ireland.

23

Chapter 11

Contact Details

Company
Noterik B.V.
Prins Hendrikkade 120
1001MD Amsterdam
T: 020 - 592 9966
info@noterik.nl

Supervisor
Radoslavov, Konstantin
Developer
k.radoslavov@noterik.nl

Unitversity of Applied Sciences Utrecht
Nijenoord 1,
3552AS Utrecht
T: 088 481 8283
info@hu.nl

University of Applied Sciences Supervisor
Borkent, Michiel T:
088 481 82 83
michiel.borkent@hu.nl

24

Student
Ammeraal, David
Middenweg 72
1394AL Nederhorst den Berg
T: 06 - 52 57 36 50

25

Bibliography

[1] Jakl, Michael. Representational State Transfer.
http://blog.interlinked.org/static/files/rest.pdf
25 February 2005 Web. 18 January 2012.

out the project. http://www.linkedtv.eu/about-the-
[2] Ab h j http:// linked /ab h
project/description/ Web. 19 January 2012.

[\

Attachment 2

Personal evaluation

Student: David Ammeraal
Project: Krusty-JS
Company: Noterik B.V.
Date: 3-06-2012

Introduction

In order to graduate, | had to do a graduation project. This was done in the period between
January 2012 and June 2012. This document serves as a personal evaluation of the time that was
spent at Noterik. I will evaluate each phase of the project separately. The definition of the phases
of the project can be found in the Plan of Approach (Attachment 1, if this document is attached to
the thesis). Finally a conclusion will be given regarding the entire period.

Phase 1: Creating the Plan of Approach

[started my time at Noterik on the 16th of January 2012. The usual start date for a graduation
project was between the first week of Februrari 2012 until the last week of May, however I had
almost finished all my subjects and was able to start earlier. I used the first week of my project to
used to the new environment, this was needed because some of Noteriks systems can be quite
complex. During this week I also got introduced to everyone in the office. Rutger Rozendaal and
Daniel Ockeloen instructed me with a more detailed description of what Noterik wanted from my
project. Out of these descriptions I started work on a first concept of the Plan of Approach in the
second week of the project. At the end of the first week I had finished my first Plan of Approach. |
am quite pleased about the first concept of the Plan of Approach. I thought I had everything
planned out quite well. This, however, seemed to be a bit different towards the end of the project.

Phase 2: Research

The second phase of the project went quite well. I constructed a planning of the research in the
first two days. In this planning I defined a main research question, and divided this research
question into smaller sub questions. During the research each of these questions were answered.
Everything went according to planning and I was quite please with the outcome.

Phase 3: Design

After the research was done, it was time to create Functional Design. I started out creating a
concept of the Functional Design. It turned out however, that [misinterpreted some of the
requirements, such as the playlist support and the dock support. I already sent a version of this
Functional Design to my teacher before Noterik actually approved it. So this went a bit wrong.
However I edited the Functional Design (which is added to the thesis, as Attachment 4). After this
it was complete and correct. These corrections however took a significant amount of time
reserved for the phase. In the future, extra days should be planned into a phase for editing and
reviewing.

Because of this delay, the technical design could not be constructed during the design phase. So
this had to be constructed during the Construction Phase.

Phase 4: Construction

[divided the construction of the Krusty]S player into three increments. I decided to use several
parts of SCRUM in order to assure progress. [started out by making a Product backlog. This
however proved challenging, as the Technical Design was not finished yet. Instead I decided to

76

abstract a lot of the technical stories. In this way I could just say: "Construct build environment"”,
instead of "Make Ant build-file". This worked quite well, but because these technical stories were
so abstract, these stories had to planned in with a longer duration. Which made the time available
during the sprints that much tighter.

After this I started out making a plan for the second Sprint. | extracted user and technical stories
from the Product backlog that were relevant to the first sprint, and attached an estimated
duration and importance rating to each.

Sprint 1: Basic Play out

[started this sprint out by deciding which IDE I was going to use. This was done quite quickly. I
am quite happy with the Aptana development environment for Eclipse and would advice any
JavaScript developer to consider using it.

After this it was time to start constructing the player. Everything went quite well, but some things
proved to be rather challenging, things such as codec selection for a given browser etc. But |
managed to get everything finished before the end of the Sprint. Because this was my first time
using SCRUM, I misjudged some estimated durations. But by working extra, I got everything
finished on time.

[had to, however, get rid of the test driven development. I feel that it could have been a great
addition to SCRUM, and the quality of the final product might have been higher. But it delayed the
progress of the first sprint in such a way, that I decided it should not be used anymore.

At the end of the sprint [showed a demo of the player to my colleagues, showing simple HTML5
play out of a video stored in the Noterik Video platform. They were quite pleased with the results,
and saw perspective in it.

Sprint 2: Implementing the Playlist functionality

This sprint went quite well. The technical design was finished in the first sprint, so [did not have
to abstract the technical stories as much anymore. Also I was more used to the development
environment (Javascript, Backbone, Require]S). Everything went according to plan.

At the end of the Sprint 2, I gave a demo to my colleagues. The Playlist functionality still had some
bugs here and there though, that had to be fixed. I did this in the next Sprint. I think that in the
future I will add some time for testing at the end of every sprint, so that embarrassing bugs do not
show during the demo.

Sprint 3: Implementing Events

[started this Sprint out by making a sprint planning. [was already getting quite used to SCRUM.
And I had a good estimation of how each story should be judged. I began the sprint. However at
the start of the Sprint, it became clear the events should be implemented in a completely different
way. To my disappointment I could not continue implementing the Events as they were defined in
my Functional Design. The events had to be completely redesigned, and this had to be done in
such a way that they could not have been in implemented in my sprint. Therefore I decided to use
the remaining time of the Sprint to optimize the code that was already constructed.

Phase 5: Optimization and thesis

Phase 5 was set aside for optimization of the remaining code, and for finishing my thesis. During
this time, | had time to further optimize my code and I got time to implement Progressive
Download into Krusty]S. Aside from this a lot of time was used for writing my thesis. I already had
made a very global definition of my thesis, but it was not anywhere near finished yet. I finished it
during this time.

77

Conclusions

[consider this project a success. [am quite happy with the way my Plan of Approach turned out.
Even though the phases where a bit too short for my taste, [do not think the planning could have
been done in a different way.

[am very happy with the results of the research phase. During the research I got a feel of the
HTMLS5 Video Element. The wisdom I gained during this period helped a lot during the
construction phase of the product.

[am moderately satisfied with the outcome of the design phase. I think a little more time should
have been spent reviewing and editing the functional design, because I could not get the technical
design finished before the functional design was approved.

[am satisfied about the way the construction phase turned out. Sprint 1 and 2 went according to
plan. And I had the feeling my colleagues were pleased with the results I showed them in the
demo's. Sadly the events could not be implemented. But this was not something that [could have
predicted.

Overall I am very happy with the outcome of the project, and I feel that Noterik can use the
outcomes of this project for more advanced implementations of HTML5.

78

Attachment 3

79

Selection of new environment for Krusty
functionality

27-02-2012
David Ammeraal
Noterik B.V.
University of Applied Sciences Utrecht
david.ammeraal@student.hu.nl

Abstract

Krusty is Noteriks Flash application with which it displays it presentations to its end-users. Up until
recently the Flash environment has been able to provide all the functionality needed. But with rise of
10S by Apple, the market share for Flash on mobile devices has been declining. This is because 10S
does not support Flash. Adobe has announced it will discontinue the further development of Flash
updates for mobile devices.

To keep up with the demand of end-users, the application will have to be transferred to an
environment with which Noterik can reach all its target groups. This environment will have to be
able to run on I0S and Android, and be able to implement all the functionality currently
encapsulated within the Krusty player.

After comparing all alternatives it has become clear that HTML5 and Javascript should be the
environment to which the functionality should be transferred. There are however still risks such as
codec and stream incompatibilities between browsers, as well as security issues. All these risks
should be held in mind when developing the application in this new environment.

80

1. The krusty player

Krusty is part of the presentation tier of the Springfield platform, for a more detailed description
of the architecture of the Springfield platform see chapter 2.1 of the Springfield Technical
documentation.

Krusty encapsulates most of the the presentation logic for the end user of Noterik. It is a Flash
application which can display the presentations contained in the Springfield platform. It connects
to the Services tier of the Springfield platform through REST. It plays all the video's in the playlist
of the presentations and shows events (such as information regarding the current scene, or
peercomments) at the right time.

Aside from displaying the presentations for the users, it also allows them to add events at certain
timestamps in the video, cut the video into segments, shorten video's and add video's to a
presentation.

Apart from all this, new functionality is constantly being added to the application to keep up with
demands of the users.

Krusty playing a presentation

81

2. Reason for migration

Krusty is based on Adobe Flash/ActionScript. Up until recently Flash has fulfilled all the demands
of the end-users. Flash runs in the context of the Flash Player which provides a uniform runtime
environment across most platforms, thus making development very efficient as code only has to
be written once to reach a very wide spectrum of platforms.

In january 2007 Apple introduced the iPhone. This is a smartphone which runs on their
proprietary operation system 10S. Over the years Apple has introduced more devices which run
on 10S, such as the iPad, iPod and Apple TV. At the end of fourth quarter of 2011 I0S had a market
share of 15%.

World-wide Smartphone Mobile OS Marketshare %
70 - . . . : : : : : : : : .

66 —=—=Android
o1 ¢ ——i0S
60 e\ | e Symbian
= RIM 53
50 | [7 A L 49 _51 i | | || —=Microsoft '
50\ _47
4 45 44 ——Bada 4
~U1 | ——OtherOS
40 4 6 %
33
21 21 2
19 20 20
P J — = 19 g T e R N
) >, 18 N\
- 15 15
3 3 — 35
. 1 / 1 2' 2 ‘ .
4 = L & p— + R R—

2007 2007 2007 2007 2008 2008 2008 2008 2009 2009 2009 2009 2010 2010 2010 2010 2011 2011 2011
Q1 Q2 Q@3 Q@4 Q1 Q2 Q@8 Q4 Q1 Q2 Q@3 Q4 Q1 Q2 Q@3 Q@ Q1 Q2 Q8

Source: http://en.wikipedia.org/wiki/File:World-Wide-Smartphone-Market-Share.png
As can be seen in the graph 10S is making a steady ascent with a slight decrease in market share

by the end of 2011, but with the probable introduction of the new iPad in March 2012. The
market share is likely to grow.

10S does not support Flash, and is not likely to ever do so, as can be understood from this article
by Steve Jobs (ex-CEO of Apple)

http://www.apple.com/hotnews/thoughts-on-flash/
However, a growing number of Noteriks customers are starting to use 10S and want to use the
functionality currently contained in Krusty on their mobile devices as well. Currently this is not

possible because the application will not run on IOS.

Besides the boycott of Flash on 10S, Adobe has recently announced that it will not provide further
updates for the Flash platform for mobile devices as announced here:

http://blogs.adobe.com/conversations/2011/11/flash-focus.html

82

Besides this, Flash is not an open standard. Future operating systems similar to Android and 10S
might also choose to not adopt Flash because of this.

From these arguments we can extract the following conclusions as to why the fuctionality
currently encapsulated in the Krusty player should be migrated to a new environment:

-10S-users are a large target group which can not be reached at this moment.

-Flash platform will not be updated for mobile devices, it won't grow with future technical
developments.

-Flash is not an open platform.

83

3. Requirements of the new environment

To achieve all the functionality currently encapsulated in the Krusty player the new environment
should achieve the following requirements:

1. Has be able to run on mobile operating systems [0S and Android
2. Has be able to run within the following browsers: Safari 5+, Firefox 10+, Internet Explorer 9+,
Google Chrome 17+
3. Has to be able to implement the following functionality of the Krusty player:
3.1 Embedding into HTML page
3.2 Basic Playout (playing, pausing, scrubbing, volume control)
3.3 Showing events (such as peercomments and notes)
3.4 Dock functionality(sharing video with friends, tagging moments etc)
4. Has to be an open standard.
5. Has to run on the client-side
6. Has to be compatible with the current backend structure of Noterik

84

4. Available alternatives

To migrate the functionality to a new environment, there has to be an understanding of what
alternatives are available. Below here is a list of the alternatives that are most suitable to provide
the functionality described in chapter 3.

4.1 Alternatives available

4.1 Adobe AIR

Adobe AIR is a cross-platform runtime environment which allows the developer to write code in
ActionScript 3.0 which then gets compiled to a Flash and Javascript files. This provides a very
flexible development environment because the compiled code will be able to run on a wide
spectrum of devices including 10S. However it is not a open standard.

4.2 Apache Pivot

Apache Pivot is an opensource development environment developed by the Apache Software
Foundation. Its aim is to allow developers to build installable Internet Applications. It is based on
the JavaFX platform, and used to build desktop applications. It is therefore not supported on most
mobile browsers.

4.3 HTMLS5 + Javascript

HTMLS5 is the latest version of HTML (HyperText Markup Language). This version introduces
several new elements such as the <video>, <audio> and <canvas> element. These elements
provide a new Javascript API with which you can manipulate these elements. Because HTML is
the standard on which all internet browsers are based, there is a wide acceptance of the new
version across almost all platforms. The interpretation of the standard however differs across
browsers. Browsers on [0S and Android and almost all Desktop operating systems support
HTMLS5 and the new Javascript API.

4.4 JavaFX

JavaFXis a platform developed by the Oracle Corporation used to develop Rich Internet
Applications. Developers can code in a language called JavaFX Script which then gets compiled
into Java bytecode. It is mostly used in Desktop applications and is not supported on 10S and
Android.

4.5 Microsoft Silverlight
Silverlight is a proprietary platform by Microsoft to created Rich Internet Applications. The
purposes of this platform are very close to that of Adobe Flash. Silverlight however is not

supported on 10S and Android, and it is not an open standard.

4.2 Breakdown of functionality of all alternatives

A cross in a cell means that the OS of that row can fulfill the functionality of that column.

0s I0S | Android | Basic Open Client-
Functionality | Standard side

Adobe AIR X X X X

85

Apache Pivot X X X
HTMLS5 + Javascript X X X
JavaFX X X X

X X

Microsoft Silverlight

86

5. Environment to be chosen.

As can be seen in the breakdown of the environments in the earlier chapter, there is only one
environment that fulfils all the requirements. This is HTML5 + Javascript. The other alternatives
either are not a open standard, or are not supported on all operating systems required.

HTMLS5 is already used in a lot of web applications and media content providers such as YouTube
and Vimeo. Apple (which is one of the most influential businesses in the IT branche) has already
declared its preference of this standard above Flash.

Even Adobe, which still has the largest market share of online video and RIA applications
acknowledges that HTMLS5 is currently the best technology to develop with on mobile devices, as
can be understood from the following citation:

This makes HTMLS5 the best solution for creating and deploying content in the browser across mobile
platforms.s

There are however still things which might prove difficult in the implementation to HTML5.
Video's can at this moment only be streamed through Apple's HTTP Live Streaming method or by
Progressive Download.

HTTP Live Streaming is only supported by Safari and 10S devices.

Progressive Download is supported by all browsers, however it is not secure as the file will get
downloaded to the harddisk.

Furthermore, there is no uniform codec for the video which can be used across all browsers,
below is breakdown of what codecs are supported by which browsers:

Format IE Firefox Opera Chrome Safari
Ogg No 3.5+ 10.5+ 5.0+ No
MPEG 4 5.0+ No No 5.0+ 3.0+
WebM No 4.0+ 10.6+ 6.0+ No

e 0Ogg = 0gg files with Theora video codec and Vorbis audio codec

However, since HTMLS5 is a technology still in development, a standard will probably arrive once
the technology is adopted more. But this is still a risk which should be held in mind.

6 Flash to Focus on PC Browsing and Mobile Apps; Adobe to More
http://blogs.adobe.com/conversations/2011/11/flash-focus.html

87

6. Conclusion

Because HTML5 and Javascript fulfils all the requirements needed, it has been chosen as the
environment to which the application should be migrated. There are however certain risks such
as codec and stream incompatibility which should be held in mind when developing the
application in this new environment.

88

Attachment 4

89

Functional Design

Krusty-JS

By order of:
Noterik B.V.
University of Applied Sciences Utrecht

Author:
David Ammeraal

Version:
1.0

Version date:
23-02-2012

90

Contents

N 031/ Ta 10 o) o PP 92
1.1 CAUSE ANA ZOAL ..reuueereeereeereeseeeseesseesssese s eee b ss e s s s s b bbb a s bbb 92
1.2 SCOPE Of thiS AOCUMENT c.eveeeeriereerei ettt ettt se e seb s bess s ss s bs bbb 92

B 2T=T0 100 1= 10 01 PP 93
2.1 FUNCHIONA] FEQUITEIMENTS......vuieerireeereeeeetseessesssesssesssesssebses st sesssess s sss s s bbb snsas 93
2.2 Non-functional TEQUITEIMENLES ... wereeecereeeeesseesseesseessesseessessssssesssesssesssessssssse st st ssssssssssasas 94

3. Domain model of the aPPlICATION .. ceeeeecereeeeee ettt ss e bbb ssssaeas 96

T UY=L 97

5. USECASE SPECIHICALION .uucereereeereesreereeeetete ettt es e bbbt sb s bbb 99
S0 I 25 ¢+ Lo 1= ST 99
5.2 Embed With DIMENSIONS ...ceuereereersseermeesssessessssesssesssssssessssess s sssssssssssssssssssssssssssssessanees 101
5.3 Play PreSENTAtiON .. ceeeeeeereeseetseesseesseessessseesse s bbb s s ss s s s s bbb 102
5.4 PAUSE PIrESENTALION covureueercetreesectseesseesseessessseesse st s s s ss et sesss s s ssss s bbbt 104
5.5 SCIUD PreSentation ..o eceeeereesseresseesnessssesssessssssssssssessssessssesssessssessssssssssssssssssesssssssssssssessanees 105
5.6 MUute Or UNMULE PreSENTAtION c.uceeuieeieereesreesserreeseieesessseessesssesssssssessse s bbbt st sessseses 106
5.7 CONLIOL VOIUIME.....coueeeeeermeereersess s seessesssse s sssssssssessessssessssess s sssessssssssssssssssssssssssssssssssessanees 107
5.8 Set VideOo t0 fULISCIEEIN c..uvumrermrereer e s sses s ses s ss s ses s s sanees 108
5.9 Change qUAlity Of VIA@0 ... ettt essssiseesesssessssss s sss st sesssanes 109

LYol =T= 10 LT X0 PO 110
6.1 BASIC LAY OUL c.ereurreereeeeeeeeetect ettt sessessse s eesse bbb s s s e et 110
6.2 LOAdiNg PreSENtAtiON ..o ieereeereereiceereeseesseessesssesssesssessse s bbb s s s s bbb 23
6.3 DONE L0AAING .c..ueeeeeretreeureeeseese ettt et s s s bbb e 23
6.4 VIAEO PLAYINE ceurtreureitreiureesseesseiseessessseessessesssesssesssessse s s s bbb s s s sa b e bbb 23
6.5 SNOWINZ EVENL.. o iieucerieueeeseesseiseessebese st s sssessse s s b ek b s R e bbb 23
6.6 BUTTETING.c..uieuieeeereeeect et st s et s s sse s bbb b s b bbb 24
6.7 QUALILY SEIECEION wceuvceeeeseeeeereiseeseeeet st ss s s s b e bbb 24
LSRR S] o 011 oY PPN 114

91

1. Introduction

1.1 Cause and goal

Noterik is a company which offers online video services. They have developed a platform to be
capable of accommodating these services. This platform is called the Springfield platform. The
platform consists of several tiers of functionality. One of these tiers is the frontend tier.

Springfield Software

Frontend

FlashClient/krusty Portal/krusty

Firewall Proxy

Services

database / smithers images / nelson

dns / homer uptime / marge

transcoding / momar | fusermanager / barny

search / lisa remote upload / apu

metadata / flanders

Operating system - java j2ee application in tomcat

hardware

Inside the frontend tier is the Krusty player. This is an application in which the Springfield
platform presents the video's stored in the operating system. Krusty is written in Adobe Flash.

The decision was made to construct a new Krusty player based on HTML5 and Javascript. This
document describes the functionality which is required in the new Krusty player.

1.2 Scope of this document

In this document [will describe the functionality required for Krusty-JS at the end of the
Construction phase. The following items will be described:

-Determination functional requirements

-The non-functional requirements

-A UML model describing the domain model of the application
-Determination of use cases

-Layout of the screens

92

2. Requirements

To be able to reach the wanted level of functionality, Krusty will have to meet some requirements.

2.1 Functional requirements

These are the functional requirements. | will attach a priority according to the MoSCoW model to
every specific functional requirement.

ID

DESCRIPTION

PRIORITY

FN_EMBED

Embed the player into a .html file, and
provide it with a location to request the
presentation from.

MUST-HAVE

FN_EMBED_PARAM_DIMENSIONS

It should be possible to provide the
player with a dimensions parameter, so
that the player will set the dimensions
of the player and video to the
dimensions provided.

SHOULD-HAVE

FN_SCREENSHOT

Show a screenshot for the video after
initializing the player.

MUST-HAVE

FN_PLAY

Play the presentation from the start or
from the point where it was paused. It
should be able to play a presentation
consisting of a playlist of several video
items.

MUST-HAVE

FN_PAUSE

Pause the presentation from playing.

MUST-HAVE

FN_TIMELINE

Show a timeline in which you can see
the progress of the video playing. The
timeline should span all the playlist
items.

MUST-HAVE

FN_SCRUB

Move the box on the timeline to a place
where you want the presentation to
start playing from.

MUST-HAVE

FN_SCRUB_SCREENSHOT

Show a screenshot of the presentation
at the time where the scrubber is
placed on the timeline.

SHOULD-HAVE

FN_MUTE

Mute the volume of audio in the
presentation.

MUST-HAVE

FN_VOLUME

Control the audio (louder or quieter) of
the presentation.

MUST-HAVE

FN_FULLSCREEN

Make the presentation player full
screen.

COULD-HAVE

FN_TIMER

Show a timer in which you can see the
progress of the video and the duration
of the presentation.

MUST-HAVE

FN_QUALITY

Select and change the quality of the
presentation. The qualities that can be
selected are 180p, 360p, 720p and
1080p.

MUST-HAVE

FN_EVENT

Show an event planned for a certain
time period in a video.

SHOULD-HAVE

93

2.2 Non-functional requirements

The IS0-9126 standard provides a framework for non-functional requirements. I will summarize
every non-functional requirement described in the ISO-9126 standard and attach a priority and
explanation for this.

In the table below the number 1 represents a very low priority, and the number 5 means the
highest priority.

2.2.11S0 9126

Requirement 1|2 |3|4 |5 | Description

Functionality

Suitability X Krusty-JS will have to perform as it should as
described in this document. However some things
might not finish in time, as the technology used is
quite immature.

Accuracy X The functions described in this document should be
performed as described.

Interoperability x | Because Krusty-]JS will rely on other systems for its

data (the Springfield platform and possibly others),
interoperability is very important.

Security X Security is at this moment not very important, HTML5
does not do much in means of protecting you data, and
itisn't a priority for the project.

Reliability

Maturity X Krusty-JS will not have all the functionality currently
contained in the Krusty Flash player. Krusty-]S will
serve as a springboard to more advanced versions of
the player.

Fault Tolerance X Krusty-JS should not crash on every error, it should
catch most exceptions and provide the user with
information regarding the error.

Recoverability X No important data is stored in the instance of a
Krusty-]S player. Recoverability therefore is not a
priority.

Usability

Understandability x | Krusty-JS has to be very understandable. All the
buttons have to be clear as to what functionality they
provide.

Learnability x | Krusty-JS has to be very easy to learn, a manual should
not be needed.

Operability X There shouldn't have to be much interaction with the
user.

Attractiveness X Krusty-JS should be skinnable through the use of .css
files, this is however a task for a interaction designer
and not for the developers.

Efficiency

Time Behaviour X The application has to be very responsive and
downloading extra resources should be done
asynchronously.

94

Resource Behaviour

The footprint of the application should be as small as
possible, the source should be optimized and
minimized after every build to ensure this.

Maintain-ability

Analysability

The application has to very analysable. This can be
achieved by documenting the code thoroughly and
showing function calls in the debug console.

Changeability

The code shouldn't be hard to change or add extra
functionality to. This can be achieved by creating entry
points in the code through the use of call-back
functions.

Stability

The application will not be mature after the project. It
will therefore not have to be very stable, although it
shouldn't crash at every error.

Testability

The application has to be testable. By writing tests
before actually creating code, every functionality the
of code will be very testable.

Portability

Adaptability

For now Krusty-]S only has to work properly in Safari.
Adaptability therefore is not a big priority at this
moment.

Installability

The installation of the application should not be very
complicated. However since the users that are going to
install it are mostly developers, the ease of installing
krusty-js is not very important.

Co-existence

The application will have to run inside an existing
web-app without interfering with any of the variables
or functionality of another webapp, the scope of
events and variables should therefore be kept within
the application.

Replaceability

If the user for some reason can't use JavaScript or
HTMLS5 or doesn't support the codec in which the
video is provided. It should not be possible to fall back
to the old Krusty player.

95

3. Domain model of the application

Collection

Presentation

1
*
Playlist
1
0..*
Video Event
1
1.*
RawVideo

Figure 17 http://yuml.me/diagram/dir:tb/class/%5BCollection%5D++1-
%3E*%5BPresentation%5D,%5BPresentation%5D++1-%3E*%5BPlaylist%5D,%5BPlaylist%5D++1-

%3E%5BVideo%5D,%5BPlaylist%5D-0..¥%3E%5BEvent%5D,%5BVideo%5D++1-%3E1..*%5BRawVideo%5D

96

4. Use cases

Developer

Figure 18. Developer Use cases

Embed with
Dimensions

97

User

Figure 19. User Use cases

Control
Volume

Change
Quality

98

5. Use case specification

5.1. Embed

5.1.1 Brief description
This use case describes what happens when the developer embeds a presentation in an existing
.html webpage, without any parameters.

5.1.2 Actors
-Developer

5.1.3 Domain objects involved
-Presentation

-Playlist

-Video

5.1.4 Preconditions
-A HTML page has been created.

5.1.5 Basic flow of events
1. The developer inserts the embed code into a .html document
2. The developer opens the .html document in a web-browser.
3. The system is initialized with the default settings, and the location of the quickstart file

provided by the user.

The system validates the settings.

The player view is initialized with the default dimensions and buttons.

6. Aloadingicon is shown to the user within the player view, and the buttons are disabled
but visible.

7. The system requests the quickstart file containing the presentation information from the
remote location.

8. The systems parses all settings for the presentation.

9. After getting the quickstart file the system checks if the codec of the presentation
described in the quickstart file is supported by the browser.

10. The system requests the first video of the presentation with the default quality from the
remote server.

11. The screenshots of the video for scrubbing are requested.

12. The system starts buffering the video.

13. A buffering icon overlaying a screenshot of the first video in the presentation is shown to
the user within the player view.

14. After buffering enough of the file for a successful play through a play button overlaying a
screenshot of the first video in the playlist is shown to the user within the player view.

15. The buttons are enabled.

16. Use case successfully completed.

vl

5.1.6 Alternate flow of events

5.1.6.1 The format of the url provided by the user is incorrect
If in step 4 the validation of the url doesn't complete then:
1. A message will be shown within the player view to the user that the url provided for the
video is not correct.
2. The use case ends in failure.

5.1.6.2 The remote server is not responding
If in step 7 the remote server containing the quickstart file can not be reached then:

99

1. A message will be shown within the player view to the user that the server containing the
quickstart file can not be reached.
2. Use case ends in failure.

5.1.6.3 The codec of the video on the server is not compatible with the browser being used
If in step 9 the codec of the video isn't compatible with the browser of the user then:
1. A message will be shown within the player view to the user that his browser is not
compatible with the codec of the video.
2. The use case ends in failure.

5.1.6.4 The video on the remote server can not be loaded
If in step 10 the server containing the video file can not be reached then:
1. The systems attempts to get the video from the fall back location defined in the quickstart
file (not the same as the quickstart fall back)
2. The flow of events continues from step 11.

5.1.6.5 The video on the fall back server can not be loaded
If in step 1 of 5.1.6.4 the video from the fall back server can't be loaded then:
1. A message will be shown within the player to the user that the codec of the video is not
compatible with the browser that the user is using.
2. A dialog will be shown within the player view asking the user if he wants to skip to the
next video.
3. The use case ends in failure.

5.1.6.6 The screenshots can not be found

If in step 11 screenshot can not be found then:
1. The player will continue without screenshots, scrubbing will have no screenshots
2. The flow of events continues from step 12.

5.1.7 Post-conditions

5.1.7.1 The user can play the presentation.

5.1.7.2 The user has been informed why the presentation could not be loaded.

5.1.7.3 The user has been informed why the video in the playlist could not play, and is
asked to skip to the next video in the playlist.

100

5.2 Embed with Dimensions

5.2.1 Brief description
This use case describes what happens when the developer embeds a presentation in an existing
.html webpage, with a parameter defining the maximum width of the player.

5.2.2 Actors
-Developer

5.2.3 Domain objects involved
-Presentation

-Playlist

-Video

5.2.4 Preconditions
-A html page has been created

5.2.5 Basic flow of events
1. The developer inserts the embed code into a .html document.
2. The developer defines the dimensions of the player.
3. The developer opens the .html document in a web browser.
4. The system is initialized with the default settings, and the location of the quickstart file

provided by the user.

The system validates the settings.

The player view is initialized with the defined dimensions.

7. Aloading icon is shown to the user within the player view, and the buttons are disabled
but visible.

8. The system requests the quickstart file containing the presentation information from the
remote location.

9. The systems parses all settings for the presentation.

10. After getting the quickstart file the system checks if the codec of the presentation
described in the quickstart file is supported by the browser.

11. The system requests the first video of the presentation with the default quality from the
remote server.

12. The aspect ratio of the player is changed to that of the video while maintaining the
dimensions of the player.

13. The system starts buffering the video.

14. A buffering icon overlaying a screenshot of the first video in the presentation is shown to
the user within the player view.

15. After buffering enough of the file for a successful play through a play button overlaying a
screenshot of the first video in the playlist is shown to the user within the player view.

16. The buttons are enabled.

17. Use case successfully completed.

o n

5.2.6 Alternate flow of events
Same alternate flows as in 5.1.6

5.2.7 Post-conditions
Same post conditions as in 5.1.6.1 and 5.1.7.2 with the addition of:
5.2.7.1 The player is shown in the dimensions defined by the user.

101

5.3 Play presentation

5.3.1 Brief description
This use case describes what happens when the player indicates that he wants the presentation to
be played.

5.3.2 Actors
-User

5.3.3 Domain object involved
-Presentation

-Playlist

-Video

5.3.4 Preconditions

-A HTML page has been created.

-The video is embedded in the HTML page.

-The system has already requested the first video from a presentation, and is ready to start
playing (done buffering).

5.3.5 Basic flow of events

1. The user indicates that he wants the presentation to be played.

2. The system starts playing the video, while still buffering the video in the background.

3. Ifthere are any events to be shown at any time in the presentation the system will display
those at the right time.

4. After done with playing the current video in the playlist, the player automatically skips to
the next video in the playlist.

5. After playing the last video in the playlist the player stops displaying the video and
displays the screenshot of the first video with a play button overlaying it, ready to start
playing again.

6. Use case completed successfully.

5.3.6 Alternate flow of events

5.3.6.1 The internet connection dies or the video can't be buffered anymore.

If in step 2 the video can't be buffered anymore, then:
1. Continue play out from the point where buffering stopped from a fall back location.
2. Continue from step 3.

5.3.6.2 The fall back location also can't be reached.

Ifin step 1 in 5.3.1 the fall back location also can't be reached, then:
1. Tell the user that the presentation can't be played.
2. Use case ends in failure.

5.3.6.3 The location of the next video in the playlist can't be reached
If in step 4 the location of the next video can't be reached, then:

1. Getthe video from a fall back location.

2. Redo step 5 for the next video.

5.3.6.4 Fall back location of the next video also can not be reached
If in step 1 of 5.3.6.3 the fall back location also cannot be reached, then:
1. Inform the user that video could not be loaded, and ask him to skip to the next video in the
playlist.
2. Redo step 5 for the next video.

102

5.3.7 Post-conditions
5.3.7.1 The user has finished watching the presentation and can play it again if he wants to.
5.3.7.2 The user has been informed why the presentation couldn't be played anymore.

103

5.4 Pause presentation

5.4.1 Pause Presentation
This use case describes what happens when the user presses the pause button while a
presentation is playing.

5.4.2 Actors
-User

5.4.3 Domain objects involved
-Presentation

-Playlist

-Video

5.4.4 Preconditions
-A presentation is playing.

5.4.5 Basic flow of events
1. The user indicates that he wants the presentation to be paused.
2. The presentation is paused.
3. There is a button with which the user can start the presentation playing again.
4. Ifthere is any buffering to be done, the system continues buffering.

5.4.6 Alternate flow of events
No alternate flow of events.

5.4.7 Post-conditions
5.4.7.1 The presentation has been paused and the user can start playing again if he wants
to.

104

5.5 Scrub Presentation

5.5.1 Brief description

This use case describes what happens when the user wants the presentation to continue playing
from a certain time in the video. He can do this by dragging a handle over the timeline of the
presentation and dropping it at the place he wants to continue playing from.

5.5.2 Actors
-User

5.5.3 Domain objects involved
-Presentation
-Video

5.5.4 Preconditions
-A presentation is playing, ready to be played or paused

5.5.5 Basic flow of events

1. The user drags the handle on the timeline.

2. While scrubbing the presentation, the player shows a screenshot of the presentation on

the time where the handle is on. On every move of the handle the screenshot changes.

3. The user lets go of the handle on the place where he wants the presentation to continue
playing from.
The system sets the current time to the time of that of the handle.
If the presentation was paused the video remains paused, but the position is changed, if
the video was playing the video will continue playing from that time.
6. The use case ends successfully.

o1

5.5.6 Alternate flow of events

5.5.6.1 The screenshots for the video can't be found.

If there are no screenshots available to show while scrubbing the presentation then:
1. No screenshots will be shown.
2. Continues from step 3.

5.5.7 Post-conditions

5.5.7.1 The user can scrub to any point in the video and see screenshots of the video of the
time where he is scrubbing.

5.5.7.2 The user can scrub to any point in the video.

105

5.6 Mute or unmute presentation

5.6.1 Brief description
This usecase describes what happens when the user indicates that he wants the audio of the
presentation to be muted.

5.6.2 Actors
-User

5.6.3 Domain objects involved
-Presentation

5.6.4 Preconditions
-A presentation is playing, ready to be played or paused.

5.6.5 Basic flow of events
1. The user indicates that he wants the presentation to be muted.
2. The system provides the user a button with which he can unmute the audio.

5.6.6 Alternate flow of events
No alternate flows.

5.6.7 Post-conditions
5.6.7.1 The user does not hear any audio, and is provided with a button with which he can
unmute the audio again.

106

5.7 Control Volume

5.7.1 Brief description
This use case describes what happens when a user controls the volume of the audio of a
presentation.

5.7.2 Actors
-User

5.7.3 Domain object involved
-Presentation

5.7.4 Preconditions
-A presentation is being played, ready to be played or paused.

5.7.5 Basic flow of events
1. The user indicates that he wants the volume of the audio to be lower.
2. The system lowers the volume.

5.7.6 Alternate flow of events

5.7.6.1 Volume button disabled
No alternate flows.

5.7.7 Post-conditions
5.7.7.1 The volume of the audio is changed to what the user indicated.

107

5.8 Set video to full screen

5.8.1 Brief description
This use case describes what happens when a user indicates that he wants the presentation to be
shown in full screen mode.

5.8.2 Actors
-User

5.8.3 Domain objects involved
-Presentation

5.8.4 Preconditions
-A presentation is being played, ready to be played or paused.

5.8.5 Basic flow of events

1. The user indicates that he wants the presentation to be displayed in full screen.

2. The system scales the video to full screen mode. If the aspect ratio doesn't allow the
presentation to fully fill the screen, then add black bars to the bottom and top to fill the
screen.

3. The use case ends in success.

5.8.6 Alternate flow of events
No alternate flow of events.

5.8.6.1 Full screen button disabled
1. The user can't click the full screen button.
2. The use case ends in failure.

5.8.7 Post-conditions
5.8.7.1 The presentation is displayed in full screen.

108

5.9 Change quality of video

5.9.1 Brief description
This use case describes what happens when the user indicates that he wants the quality of the
video to change.

5.9.2 Actors

-User

5.9.3 Domain objects involved
-Presentation

5.9.4 Preconditions
-A presentation is played, ready to played or paused.

5.9.5 Basic flow of events

1.
2.
3.
4

5.

The user indicates that he wants to change the quality of the video.

The system stops the current video and requests the new video.

Aloading indicator is shown to the user.

After buffering enough of the video, the presentation continues playing from the point
where the user indicated that he wanted the quality to change.

The user sees the presentation in the quality that he indicated.

5.9.6 Alternate flow of events
No alternate flow of events.

5.9.7 Post-conditions
55.9.7.1 The user sees the presentation in the quality that the user selected, and the rest of
the videos in the playlist will also be displayed in this quality.

109

6. Screen designs

6.1 Basic layout

This is the basic layout of the Krusty-]S presentation player. This is a mock up. The end result
should look exactly like the Flash version.

:00:00/90:09:56 H
Play Button Volume Controller Time Indicator Quality Selector Dock Button
ScrubHandle Time Line of Video Full Screen Button

Figure 20 Basic Layout

6.2 Loading presentation

The player is initialized, but all buttons are disabled, a message is shown to the user to inform him

that the presentation is being loaded.

110

6.3 Done loading
This is the screen after the first video of the presentation is loaded. The duration of the video is

added and all the buttons are available. Also a play button is added to the overlay to indicate that
video is ready to start playing.

00:00:00/00:09:56

111

6.4 Video playing

This is the screen when a video is playing, all buttons are available for use, and the progress
indicator is updated every second to indicate at what time the video is. The play button is changed
to a pause button.

6.5 Showing event
The event wil overlay the video.

Lorum Ipsum

Added

On:27-02-2

00:00:05/00:09:56

112

6.6 Buffering

When the buffer of video has run out, the user will be informed that the video wil have to buffer
before playing again.

“ " 1 00:00:02/00:00:56 T

6.7 Quality selection
The quality currently playing is blacked out.

113

6.8 Show dock
Dock is still empty at the moment of integration, but extra functionality should be added there.

114

