
Converter DEM in Studio

Mediatheek HvU•Mini"

i ? '

How did we share the work?

PRESENTATION OF THE PROJECT
Foreword
Management Summary
Structure of the thesis
References

INTRODUCnON
1. Cordys Company
2. Cordys product
3. Cordys BCP

PLAN

Joan Alvado Gareel

Olivier Fournier

Joan Alvado Gareel
Olivier Fournier

FUNCTIONAL DESIGN
1. Introduction
2. DEM models in Baan IV
3. BPM models in Studio
4. Comparison DEM-Studio

Joan Alvado Cércel
Olivier Fournier
Joan Alvado Gareel
Joan Alvado Carcel
Olivier Fournier

TECHNICAL DESIGN
1. Introduction
2. DEM data format: ASCII files
3. BPM models in Studio
4. Mapping

5. UML and Architecture

Joan Alvado Carcel
Olivier Fournier
Joan Alvado Carcel
Joan Alvado Carcel
Olivier Fournier
Joan Alvado Carcel
Olivier Fournier

TECHNICAL REALIZATION
1. Introduction
2. Parser Method
3. Modular Structure
4. Template: XSLT Version file

CONCLUSION

Joan Alvado Carcel
Joan Alvado Carcel
Joan Alvado Carcel
Olivier Fournier

Olivier Fournier

D £ SS ggCORDYS

Foreword
The purpose of this document is to provide a description of the current project to the people
inside Cordys Company who are in relationship with the "DEM Models in Studio" project, as
well as the broad of examiners from the Hogeschool van Utrecht. This description comprises
all about our approach and understanding of the project, and is used also to define and
approve its scope, planning and organization.

Management Summary
Cordys Enterprise is developing since last years Cordys Studio, a user-friendly environment
which will be part of a more complete platform to allow collaboration between business
partners, Cordys BCP. Most of the potential clients of Cordys BCP have already ERP
systems, and an important part of them work with DEM models from Baan Sw.

In relation to this, this project provides a new functionality to Cordys Studio allowing clients
to transfer their old DEM models into Studio BPM models. It makes Studio more competitive
since it can offer to customers both investment protection and a comfortable migration of
their models to the new tooi (Studio). The new functionality will be integrated in the
"Content Transfer Utility" from the "Settings" menu.

The scope will hold these main topics:

• Development and integration of a software application to convert DEM models into
Studio BPM models

• Selection of models to be executed in Studio.

• Completion of these models to make them executable.

• Development of an audiovisual presentation to customers.

• Development of user -gu ides for users.

As an important issue, note that first version of Studio is expected to be on the market after
the end of September 2004.

Structure of the thesis
About the thesis document, is important to explain how the document is structured to make
it easier to understand. The chapters that we include are placed following the normal
development of the project, i.e., chapters show the order in which the work was done.
Thus, the major chapters of the thesis are:

l: Introduction: A small introduction to explain a few principles about Cordys company and
its products.

II: Plan: A complete document to show all the preliminary study that was done to understand
and define clearly the project.

III: Functional Design: In this step is offered a first approach to DEM and BPM graphic
components.

IV: Technical Design: This step is composed of two parts: First, we did a further study of
DEM and BPM models and the respective data formats used to represent them. Also all the
design previous to the software realization is included here.

V: Technical Design: Explanations about the code that we use to implement the project.
VI: Conclusions.

D £ SS i j» S T U D I O ÜCORDYS

References
The following references have been used as input for this Release Project Plan. They are
referenced in the following text as indicated below.

'•. R *̂̂ fSÈnC6 : . ' . •^Siii'f'ffl -;: ;;• : ; : j i : •: ;?•; - ; : ' : ;; ; ;• •: ' W

Cordys website
Cordys White Paper
Cordys Studio White Paper
Cordys Framework (Appendix B)
Project Management (Appendix
C)
Cordys Studio Quick-Start Guide
World wide web consortium

^mmmmi!^:-^^^^^^-^.:- ^ %^r^
www.cordys.com
Help document about Cordys BCP.
Help document about Cordys Studio.
Document about the organization in the company.
Document about the waterfall method that we apply for
this project.
Trainer guide for beginner about Cordys Studio.
www.w3.org

OEr*Js8Tu^.._

Contents
Converter DEM in Studio

Foreword

Management Summary

Structure of the thesis

References

1 Introduction

1. 1 Cordys Companv
1.2 Cordvs product

1.3 Cordys BCP

II Plan

II. 1 Definttions and Abbreviations

11.2 Definition of the problem

11.3 Profeet assignment

11.4 Scope of the project

11.4.1 Included

11.4.2 Notincluded

11.5 Results to be delivered

11.6 Essential pre-conditions

11.6.1 Technical

11.6.2 Eauipment

11.6.3 Human resources

11.6.4 Poffcv
11.6.5 Software version

11.6.6 Methodical

II. 7 Success and Risk factor

II. 7. 1 Success factor

11.7.2 Risk factor

11.8 ActMties to be done

11.9 Methods, techniques, standards

11.9. 1 Interna! test

11.9.2 Acceptance test

II. 10 QuaHty management

II. 1 1 Project organization

II. 12 Relationship with other proiects

II. 13 Communication

II. 14 Estimate of the project cost

2

3

3

3

4

8

9

9

10

11

12

13

13

13

13

14

14

14

14

14

15

15

15

15

16

16

16

17

17

18

18

18

20

20

21

21

C Ö - M V £ R T £ R O S S S isi S T U D I O igCORDYS

11.15

III

111,1

III. 2

III. 2. 1

111.2.2

III. 2.3

111.2.4

111.2.5

III. 2. 6

111.2.7

111.3

111.3. 1

III. 3. 2

111.3.3

111.3.4

111.4

111.4. 1

111.4.2

111.4.3

111.4.4

IV

IV. 1

IV.2

IV.2.1

IV.2.2

IV.2.3

IV.2.4

IV.2.5

IV.3

IV.3.1

IV.3.2

IV.3.3

IV.3.4

IV.4

IV.4.1

IV.4.2

IV. 5

Planning

Functional design

Introduction

DEM model in Baan IV

Introduction

Types of activitv

Types of state

Types of link

Type of event

Other comoonents

List of Proporties

BPM in Cordvs Studio

BPM Comoonents

Events

Annotation

Groups

Companson DEM to Studio

Example of DEM and BPM diagram

Graphical comparison

Taking Decisions in DEM and Studio

Comparison of DEM and Studio proporties

Technical Design

Introduction

DEM data format: ASCII file

Introduction

Accessing Tables in Baan IV

DEM Tables and Fields

Analvzing the ASCII Files

Proporties converted

BPM data format: XML file

Introduction

Structure of XML files in Studio

XML Tags in BPM Data Format

Defau/t Values in Cordys Studio

Mapping DEM to Studio:

Introduction

Mapping

UML and Architecture

22

23

24

24

24

24

25

25

26

26

27

29

29

30

30

31

33

33

34

35

37

40

41

41

41

42

45

49

54

58

58

58

59

68

69

69

69

74

OEJüS ggCORDYS

IV. 5.1 Introduction __ 74
IV. 5.2 Uses cases diagram _________________________________ 74
IV. 5.3 Sequence diagram ____________________________________ 74
IV. 5.4 States diagram ______________________________________ 76
IV. 5.5 Classes Diagram _____________________________________ 76
IV.5.6 Architecture__77
V Technical nalization______________________________________ 75»
V. 1 Parser Method __ 80
V. 2 Modular stnicture ____________________________________ 81
V.3 Template: XSLT Version file ________________________________ 82
VI Conclusion __ 85
VI. 1 About the project _____________________________________ 86
VI.2 Challenge ___ 86

A? Cordvs Conwanv

1.2 Cordvs product

L3 CordvsBCP

l Introduction

9
_ 9
10

O £ SS j s S T U D I O ggCORDYS

1.1 Cordys Company
Headed by Jan Baan, Vanenburg Group, earlier called Baan Investments, was a major
shareholder in ERP (enterprise resource planning) vendor Baan in the Netherlands, until it sold
its stake to Invensys PLC in London in 2000 and later Baan was again sold, this time to SSA
Global Technologies Inc. The Vanenburg Group, however, has moved on and has
investments in several companies, including Cordys, through Vanenburg Capital
Management. The company has more than 150 clients worldwide. The following diagram
shows the structure of Vanenburg group.

Oiiconomos
jf ** &? r*-*jf *x •£ ï es- JPÏ-

KRANENBURG

Cordys Company is implanted in several continents and arms, like the following diagram:

The next diagram represents the structure of Cordys in the Netherlands. There are about 100
employees.

Legal Marketing

IT department is a part of Cordys Research and Development arm. The other part is situated
in India.

r.................ji..................j........................
Quality Navigator i j Service Navigator \ \

;R1D Neiharlandsj
—————f—

......J......
AAG

During our training period we worked on BCP product, for Research and Development arm in
the Netherlands.

L2 Cordys product
Cordys is an enterprise that provides Real-Time application solutions based on Web Services
that allow Enterprises to an easy definition, deploy and manage their business processes.
Also collaboration and interactions among different Enterprises are a main focus of Cordys

DEftS IM S T U S S O ggCORDYS

activity. Cordys Real-Time business solutions are collectively known as the Cordys Business
Framework, which comprises two different branches:

• Technology: Cordys BCP (Business Collaboration Platform)

• Application: Cordys B-Apps (Business Applications)

l. 3 Cordys BCP
This project will be in relationship mainly with Cordys BCP technologie solution. Cordys BCP
connects applications such as ERP, SCM (Supply Chain Management), CRM and Web
services using open standards such as SOAP, XML, WSDL, and LDAP.

Customers can keep their existing applications, by means of creating an application
connector. The platform takes care of infrastructure requirements such as coordinating the
interactions between applications and services. It exposes enterprise applications, via the
Internet, to external and internal business partners using WSDL, HTTP and SOAP, and can
link to external Web services complying with the same standards, according to Cordys.

Cordys BCP platform comprises four main components:

• Cordys Integrator: Cordvs Integrator enables all internal and external enterprise
applications to become exposed as Web Services using industry standards (SOAP,
XML, LDAP, WSDL). This includes both new systems that have been architected to
comply with either a «.NET» or «J2EE» framework or existing (i.e., legacy)
applications.

• Cordys Orchestrator: Cordys Orchestrator enables deployment, monitoring, execution
and management of Real-Time Collaborative Business Processes.

• Cordys Portal: With Cordys Portal, users can have an access to performance
indicators, analyze business intelligence, and use collaborative communication tools.
So these are in effect three products that talk to each other in a Web services mode.

• Cordys Business Application Connectors: Cordys Business Application Connectors
provide Web Services based access to a wide array of leading enterprise applications
such as Baan, SAP, PeopleSoft, etc and enable their business logic, data and
Information to become part of overall real-time framework deployed on Cordys BCP.

• Cordys Studio: Cordys BCP provides a graphical environment, called Studio. It is a
user-friendly environment running on the top of BCP that allow users to model,
manage, and execute their business processes and collaborative applications. Studio
includes a Business Model Repository, with three pre-configured types of business
models:

o Value Chain Model
o Business Context Model
o Business Process Model

An important part of the potential market for Cordys BCP is currently working with ERP,
SCM, and CRM systems.

One of these ERP systems is Baan software; it uses DEM models to modeling the
enterprises. To achieve the most competitive position in today's market, Cordys Studio
should be able to allow clients to make an easy migration from their existing DEM models to
Studio business models standards without the effort of re-modeling their business processes.

10

II Plan

11.1

IL2

M

IL4

H.5

M
IL7

M

IL9

11.10

11.11

11.12

11.13

11.14

11.15

Definitions and Abbreviations

Definition of the oroblem

Proiect assianment

Scooe of the oroiect

ResuHs to be delivered

Essential ore-conditions

Success and Risk factor

ActivMes to be done

Methods. technioues. standards

Qualitv management

Proiect oraanization

RelationshlD with other oroiects

Communication

Estimate of the oroiect cost

Planning

12

13

13

13

14

14

16

17

17

IS

20

20

21

21

22

B £ 5 i N & T U Ï H O ggCORDYS

11.1 Definitions and Abbreviations

llÉifiR ' v :?:lMéS
CA (Controlled
Available)

GA (general
Available)

Wiil^Êi^x^-'jfM'^iM:ïï-'S^M^^^&'^^^'-:

The product is ready to be implemented live at the first
customer(s). A special care period starts to support the
implementation and ramp up the organization for GA. The
MT delegate approves sales in this phase.
The product and the organization are ready as agreed. The
product is orderable without restrictions other than known
technical constraints (porting, backend connectivity, etc).

yH^̂ Hüi
API
BCM
BCP
BPM
BPML
BPMN
CRM
DEM
ERP
HTTP
IT
J2EE
LAN
LDAP
SCM
SOAP
VCM
WSDL
XML
.NET

liijiijiJiiii^^
Application Programming Interface
Business Context Model
Business Collaboration Platform
Business Process Model
Business Process Modeling Language
Business Process Modeling Notation
Customer Relation Management
Dynamic Enterprise Modeling
Enterprise Resources planning
Hypertext Transfer Protocol
Information Technology
Java 2 Enterprise Edition
Local Area Network
Lightweight Directory Access Protocol
Supply Chain Management
Simple Object Access Protocol
Value Chain Model
Web Services Description Language
Extensible Mark-up Language
Microsoft e-commerce platform

12

DES* iel S f U O i O igCORDYS

11.2 Definition of the problem
Cordys Studio contains an advanced business-modeling component. With this component
business processes can be modeled up to an executable model. For new users it is
important that they can directly adapt their systems to the Studio environment from an
existing library of models. Instead of reinventing business and process models they can
make a quick start by adapting existing models instead of defining complete new models.
This highly leverages previously made investments, especially for Baan users who are
currently using business processes in DEM format.

11.3 Project assignment
The main purpose of this project is to add a concrete functionality to Cordys Studio tooi.
This functionality allows Studio DEM users to convert their old DEM models into executable
Studio models. It makes Studio more competitive since is easier for new customers to adapt
their IT systems to Studio environment without re-modeling their business processes. It is
an investment protection for the customers.

Also, Knowledge Transfer must take place for the users. For this, user guides will be
developed on how to import DEM models in Studio, and make them executable. An
audiovisual demo must be done as well, to show clients how the converted models are
executed.

The objectives of this project are:

1) The creation of a general program that is able to convert DEM models into Studio
BPM models.

2) The adaptation of a library of models in order to obtain executable BPM models.

3) The creation of an audiovisual presentation for customers to show them how their
DEM models can be executed in Studio.

Some sources of models are existing models in ERP systems such as Baan. By building a
converter these existing DEM models can be converted.

The Studio Standard functionality is bigger than the previous DEM functionality. After the
DEM models are converted, they need to be completed in Studio before they can be made
executable.

11.4 Scope of the project
1.4.1 Included

• Realization of converter software to translate DEM data formats into XML files.

• Execution of different example models under this new software.

• Integration of the new software in Studio environment.

• Enhance the example models in Cordys Studio to make it executable.

• Internal documentation about the project must be presented to the Supervisors of the
project, as well as to the people from Cordys Studio team. This documentation
consists mainly in Design Documents with details about the source code.

• A user guide about how to import DEM models must be done for customers.

ggCORDYS

• A user guide about how to make imported DEM models executable must be done for
customers.

• A visual demonstration for customers must be developed.

• Final thesis report to be delivered to the Hogeschool van Utrecht.

11.4.2 Not included
• Creating the DEM models examples to be converted, since the company provides a

repository of DEM models.

• Development of a user guide for the converter software is not necessary since the
program has almost no user interface. So what we shall develop is the normal
documentation about the project (internal), but no any external quick-start guide for
customers in this first phase. Only a small description of the new functionality for
Studio will be develop to be integrated in the Studio Documentation.

11.5 Results to be delivered
• Converter Software to convert DEM models to Studio BPMN models.

• Executable Reference Models of Baan on Cordys Studio.

• Reference Model Documentation: Presentation, Internal Documentation and users
guide.

11.6 Essential pre-conditions
11.6.1 Technical

• The converter software developed does not need to be Multi-byte compatible for the
moment, because this aspect is not being considered for the Studio implementation.
It can be added afterwards without incompatibilities, but is outside the scope of this
project.

• The software has to be developed according to the CORDYS code standards.
• The software must be compatible with both Windows and Unix Systems, since DEM

models are available for both of them. Then, the Converter Program should be able to
recognize Windows and Unix return line character from the ASCII files that are
representing the DEM models.

• Developed code needs to be clear and unambiguous.

1.6.2 Equipment
• Two laptops will be provided for the IT department inside the company for the

realization of the project.

• Internet and internal network (LAN) have to be available for these laptops during the
project, as well as the required software (Baan IV, Cordys BCP, etc...}. Help in this
aspect will come from Cordys Studio team as well as from the IT department.

• A server to use Workflow AP) and Baan must be also provided.

14

ggCORDYS

11.6.3 Human resources
• The project team is composed of two members.
• Personal training on different product or technology such as Cordys BCP, Cordys

Studio, Workflow API, SOAP, etc.

11.6.4 Policy
• The project should be developed in six months (starting date: 02/02/2004).

> The realization of the converter software in Cordys Studio is planned to be ready in
May. This is related with the first step of our project (Development of a Converter
Program).

11.6.5 Software version
• For the graphical components conversion the studied version of Baan Sw is

Enterprise Modeier Baan IVc.

• After the conversion, in the third phase of the project, the study will be focused on
Baan 5.0c, to take into consideration the addition of extra functionality to the DEM
models of Baan 5.0c.

> The version of Cordys Studio for this project is Studio CA

11.6.6 Methodical
• The project will be developed according to the principles of Waterfall Method (See

"Methods, Techniques and Standard" point, as well as "References").

• The system will be developed according to UML design.

15

! N S T U D ! O igCORDYS

11.7 Success and Risk factor
11.7.1 Success factor

• The project members must be in a close collaboration with the members of Cordys
Studio team, especially for the first phase of the project

• The project members must be in collaboration with Henk Ten Voorde for the second
and third phases of the project.

I.7.2 Risk factor

Details ^ or

Loss of
information from
the original
models.

Keeping significant DEM components
out of the scope as a wrong decision
can imply a significant lose of
information from the original model. It
can be really detrimental for the
customer.

Include Annotations in Studio
for any of these components
to explain how each
functionality can be added.

License of
reference
models

To be able to work with DEM models in
Cordys Studio a Copyright is necessary.
So Studio can offer customers the
possibility to transfer their already
existing DEM models into Studio BPMN
models, but cannot offer new models
based on DEM to customers without
buying a license. Legal problems can be
found here

The company has shared Baan
licenses with SS A/Baan.

Workflow API
Baan finished in
time

The project needs Workflow API to
execute the third part (make models
executable). A delay in the development
of Workflow API can imply a delay for
the project.

Be always informed about the
Workflow API project
advance.

DEM models are
not designed for
execution

The objective is executed DEM model
after the conversion on Cordys studio,
but DEM models are not designed for
execution.

Taking into consideration
every component and
annotation of DEM models to
complete manually the BPM
models bef ore execution.

16

nt ST igCORÖYS

11.8 Activities to be done
The project is structured in six main stages. First, a complete investigation about Studio and
Baan, and how it fits in Cordys environment has to be done in order to obtain a good project
understanding. After, a program to convert DEM models, stored as ASCII files, into BPM
models, stored as XML files, must be developed. Once the program will be internally tested
and accepted, the next phase of the project consists in the select ion of a few models f rom
an existing library to run them under the converter software. Finally, after the conversion of
these models, the obtained BPM models have to be completed wit h some functionality from
Studio to make them executable.

1) Project Investigation
2) Development of a Data Conversion Program
3) Integration of the software in Cordys Studio
4) Content Preparation
5) Completing the Models
6) Developing Education Part

11.9 Methods, techniques,
standards

In a general view, this project will be developed according to the classic Waterfall method,
which is usually the methodology used in Cordys (Appendix A). The method will be applied
in different stages of the project, depending on each stage. Rcture below shows how
Cordys is used to apply the Standard phases of Waterfall:

•:;: v pi,:..;s. ' Plan Design : TR " . ' . ' • ; . f f . • ' • • ' ST v ; 1 AT;--:---- •

• PI: Project Investigation
• TR: Technical Realization
• IT: Internal Test
• ST: System Test
• AT: Acceptance Test

Of course some deviations are going to be made over this general steps.
UML techniques will be applied during the technical design to develop Java Classes and
present a group of models.
The technical realization in Java will be developed according to the Cordys standard
packages.
About testing, in this project we will do two different types of tests: interna! tests and
acceptance tests.

17

Ö £ ? $ IM S T U D I O ggCOROYS

11.9.1 Internaltest
The way to do the interna! tests usually starts by sending a description or plan to the
correspondent supervisors describing how the test is going to be done. After receiving an
approval, the two developers of the project as specified will do the tests, and the results will
be sent to the adequate responsibie person in each case, to obtain approval.

11.9.2 Acceptance test
After receipt of the approval for the internal test, new tests will be done in sessions by the
two developers of the project, and supervisors. A document with description and plan of the
tests is not necessary in this case, since the supervisors will be provided directly the new
issues to test. After the acceptance test has been approved, a meeting with more people
from the company can be organized as well to show the results of these tests, if requested.

11.10 Quality management
At this point, it is important to explain that there are two main outputs for this project. One
is the program converter, called Import DEM Model, which is developed in the first phase of
the project as part of the "content transfer utility". The other is an audiovisual presentation
for customers to show how their DEM models can be executed in Studio. The rest of the
phases complete the project with demonstrations about how the converted models are
executable. The converter program is what is going to be implemented in the end tooi, while
the audiovisual presentation is highly necessary to make the product attractive for
customers.

The quality of the converter program will be based in two factors. First, a correct translation
of each imported component from DEM models to BPM models must be achieved. But also a
strong and consistent integration of the software as part of Cordys Studio is important as
quality indicator, which will be able to do an efficiënt task importing DEM models for
customers.

This quality will be guaranteed with internal and acceptance tests, but with the steps about
select and enhance the models in Studio to make them executable. These steps are a study
to demonstrate that the new models we obtain after the conversion can be executed in
Cordys Studio successfully.

Internal test for the first phase will be done with members of Cordys Studio team (Research
and Development Department).

The main tests that will be done during the project are the following:

• 1* test: After the technical realization of the program converter. Internal and
acceptance test will be done as explained in the previous point. Quality here is
mainly based in the right correspondences between input and output models.
Expected to start on April the 28*, lasting 64 hours. (H. Rietveld).

- 2™1 test: Internal and Acceptance test that will be done after integration of program
converter. Expected to start on May the 25"1, lasting 24 hours. (Henk Rietveld).

18

O £ f$ j j j S T u os o ggCORDYS

3"" test: After make the converted models executable. In this case, workflows
obtained determine the quality of the execution. Expected to start on July the 8*,
lasting 24 hours.

19

O E M itt S T U D I O iSCORDYS

11.11 Project organization
Next table offer a view about which persons are related to the project, and which functions
do they have:

^ÜOit^^'W^-
Olivier Fournier

Joan Alvado
Cércel
Wilfried Rijsemus
Gerrit Spronk

Henk Rietveld

Erwin Nooteboom

Henk ten Voorde

Role in project
Developer

Developer

Supervisor
Student Supervisor

Technical Support

Technical Support

Project Owner

Prtüp^^^ssî
Student Project

Student Project

Program Manager
Responsible of

Students
Product Manager

Software Architect

Program Manager

îPPiiî ^̂ ^5lu-;-...:..v:
Development (Cordys Studio
Team)
Development (Cordys Studio
Team)
Program Management (Cordys)
Hogeschool van Utrecht

Development (Cordys Studio
Team)
Development (Cordys Studio
Team)
3rogram Management (Cordys)

11.12 Relationship with other
projects

This software is going to be integrated inside Cordys Studio 1.0 GA version. This project
adds functionality to Cordys Studio. It should be compatible in all the aspects with the
existing tooi.

The integration in Studio 1.0 is also part of the project. It will be tentatively a new option in
the "Content Transfer Utility" window. This option could be in the browser UI to allow the
user to select a DEM file to import into Cordys Studio.

Another issue to take into consideration is the fact that during the third phase of the project
we will use a new tooi, which is currently being developed in Cordys, Workflow API. This
tooi provides Studio an API to access Baan systems and methods to communicate with a
remote Baan system. So, the project has a dependency of the final realization of Workflow
API. Nevertheless, this dependency is not expected to have a delay for the current project,
since Workflow API is not going to be used until the third phase of the project, which will be
as much early on May. The Workflow API is planned to be ready by the end of March.

20

OEM i ss MCORDYS

11.13 Communication
• Progress Report will be sent to the project supervisors every two weeks (Tuesday).

• Meeting with People from Cordys Studio team each time it is necessary. Reports of
these meetings will be realized and send to them when required, in order to keep an
open communication.

• Interna! network with the current development of each project inside the company
will be available. Here is a link to our project that we have to fill each two weeks to
keep it updated. This information will be used as progress report for the project, and
everybody from the company can consult this information.

• Individual phones, e-mail and msn messenger will be available for the communication
between the members of the project and any other necessary person of the
company.

11.14 Estimate of the project cost
• 1000 hours will be needed for the two members of the group for the realization of

this project.

• From other persons related to the project, like the technical support people from
Cordys Studio or the Supervisors, between one and two weekly hours can be
needed. That means a total cost of 36 (average between 24 and 48) hours per each
of them.

21

DÊfiS ! N S f U D S O ggCORDYS

11.15 Planning
Project Start Date: Thu 26-2-04
Project Finish Date: Fri 30-7-04

Project inuestigation
'S Development of a Data Conuersion Program
S Integration of the software in Cordys Studio
IS Content Preparation
SI Completing the Models

Deueloping Education Part

Notice: In appendices D, you can get more details about the planning (It is a chart planning).

22

111.1

111.2

111.3

UIA

III Functional design

Intmduction

DEM model in Baan IV

BPM in Cordvs Studio

Comparison DEM to Studio

24

24

29
33

DEM •.*, S ? » o s o ÜCORDYS

.1 Introduction
This was the first phase of the project after the understanding of the project and the
realization and approval of the project plan. To be able to do a good converter software,
first we start by study in detail both systems, DEM models in Baan and BPM models in
Studio, from a high level view.

Thus, the technical design is structured in three main steps. First, a study of all the
graphic components contained in DEM models and their properties. After, the same
study has been done for BPM models in Studio, analyzing all the graphical components,
as well as some special structures, which are the groups. Finally, we finish the
functional design by establishing a comparison between the components of both
systems based on what we have studied in the two previous steps.

.2 DEM model in Baan IV

III.2.1 Introduction
In this document is offered a general overview of all the representative graphic
components from Baan DEM software, concretely Baan IVc version, although some of
them will not be taken into consideration for the translation into Studio BPM models.

l.2.2 Types of activity
Activity— - _ g

An activity box represents a manual or automated process applied
to an item.

Baan Session Activity
This draw show that the activity linked requires calling a Baan
session.

Manual Activity
The icon linked to this activity requires a manual action for its
execution.

Other appication
This type of activity is used to determine a link with another
application (other vendors). This component will be out of the
scope for the conversion.

Business Process
This icon represents a nested business process for the activity
shaded. That means that this activity is developed in another
diagram with sub-processes on a lower level.

24

i N S T U D I O ggCORDYS

Control Activity
This component represents workflow points when a decision has
to be made. An arrow is split up in two or more arrows
representing the different flows to be followed depending on the
taken decision (Xor, And, Or).

1.2.3 Types of state
In each diagram you have to define two of the states as the Begin State and End State.
Thus, the first state of a DEM model is always the Begin State and the last must be the
End State. The following pictures show the icons for these states.

Begin State
This state represents the start of a (sub) process.

End State
This icon represents the end of a (sub) process.

State
A state represents a static point in which a concrete item is. The flow of a DEM
model is always state-activity-state, so states represent static characteristics for
an object that has to be processed or has been processed. Here is important to
remark that DEM models are constructed according to the petri-net algorithm.

111.2.4 Types of link
l Relationship

Arrows represent Relationships between the different components of a diagram.
These are directed arrows that show not only the connections between
components, but also the direction of the flows within a process. A relationship
can have a condition.

Join

Sometimes two relationships can converge in a same component. Two flows
become one component. This is called a join.

25

D E M ;« S T » o i a ggCORDYS

111.2.5 Type of event
In other way, sometimes is necessary to define and associate an event to an activity or a
state. Thus, there are four types of events, represented for the following icons:

User Event
The actor assigned to the activity in the process must perform an action.

Extemal Event
An external input is required for the linked activity.

Timer Event
The activity is executed each time the timer goes off.

Automatic Event
An automatic activity is executed for a set of workflow objects, that is, a
container.

Nevertheless, events are considered outside the scope for the conversion of graphic DEM
model components, because they are manually added in DEM models.

1.2.6 Other components
Finally, more Information can be visualized from a DEM model with another three icons,
as is described below:

Text
A description has been added to this activity.

Utiflty
A utility has been linked to this activity. A utility is a group of display and/or
print sessions. This component is considered out of the scope for the
conversion.

Rokt

One or more roles have been linked to the related activity (by project model).

<free text> Fiee t6Xt

Allows adding some description about the business process model.

26

DEN1 t n S T U D I O ggCORDYS

Another interesting point to take into account for the conversion is the fact that different
diagrams can be grouped in a Project, to define a higher unit of work. Common issues to
both of them such as roles, properties, etc... can be assigned directly to projects (i.e. to
all the components of a project).

III.2.7 List of Properties
Here is presented an overview about which concrete properties are going to be taken
into consideration for the conversion. The properties are structured in six groups, which
are Business Process Activity, State, Relationship, Business Process, Version and
Project, as is showed below:

III.2.7.1 Business process activity
Below you can see the properties that will be used in the conversion.

II Activity type: With this property is possible to fix the kind of the selected
activity, choosing one of four the following five types, which are already
explained:

• Baan Session

• Manual Activity

• Business Process

• Control Activity

• Other Application

H Control type: This property fixes the logic for decisions in a control activity.

• Xor
• Or

• And

M Code: External identifier of the activity.

• Activity description: General description of the activity.

l Work instruction: Property to show is there's any comment to include any
additional instruction to the activity, as text.

IM.2.7.2 State

• Description: General Description of the state.

V State text: Additional text that can be added to a state in order to provide more
information.

H Begin and End: These properties establish if the selected state is the Begin State
or End State, respectively.

III.2.7.3 Relationship

• Condrtion: Only if the selected relationship is placed after a control activity, you
can define a linked condition for this flow.

27

: >< S T U O ! ö ggCORDYS

H Description: General Description about the condition. It can not be referred to a
relationship without condition.

111.2.7.4 Business process

H Business process name: Name or code of the business process

U Version: Version linked to the business process.

• Description: General description.

10 Generation date: Creation date of the business process.

ü Owner: User that create the business process

H Last change: Date of the last update.

H User last change: User that made the last update:

H Work instruction: As with an activity, a comment can be added to a business
process in order to provide more information.

111.2.7.5 Version

• Code: Identifier for a version.

• Description: General description of the version.

Hl Derived from version: With this property you can indicate that the current version
comes from an older version.

U Text: Additional text added to provide more information about the version.

• Effective date: Creation date of the version.

111.2.7.6 Project

H Project model: Name or code of the project.

Ui Description: General description about the project.

• Version: Version linked to the project.

H Text: Additional text that can be added to provide more information about the
version.

M Generation Date: Creation date of the project.

M Owner: User that create the project.

28

D E ra IN s T u o! o iaCOrlDTS

.3 BPM in Cordys Studio

III.3.1 BPM Components
The main difference between DEM models and Business Process Models in Studio is that
the state components from DEM diagrams are not present in the BPM diagrams. This is
because while DEM models are based on the petri-net algorithm, BPM models are based
on the BPMN standard language. BPMN (Business Process Modeling Notation)
specification provides a graphical notation for expressing business processes in a Business
Process Diagram (BPD). The BPMN specification also provides a binding between the
notation's graphical elements and the constructs of block-structured process execution
languages, including BPMLand BPEL4WS.

Thus, below are shown the five main graphic components in BPM diagrams.

UU Start State
Every process diagram contains a start state - the place where the execution begins.
There must be exactly one start state.

Ut Activity

The activity represents an elementary work - it can be an invocation of a web service
(from the CAS repository) to retrieve information from the back-end system or write
them back, or a manual task invoking a URL. If the activity is manual job then also a
role has to be assigned to it.

Hl Decision
A Decision in a business process is a way of resolving a split. Every Decision has at
least one incoming and at least two outgoing connectors. Each outgoing connector
has a description and condition associated with it. At runtime, that outgoing
Connector is followed which associated condition is true. Only the default outgoing
Connector can be left with no condition associated, and it is followed at runtime if all
other outgoing Connectors' conditions evaluate to false.

üf Connector

Arrows represent Relationships between the different components of a diagram.
These are directed arrows that show not only the connections between components,
but also the direction of the flows within a process. Connector placed after a decision
can define special properties, such as condition.

Ü End State

The execution of the process stops in this End state. There can be more than one end
state in the diagram if the flow is branching at some point to two or more flows.

It is possible to include links between different diagrams as well. This is achieved with a
special component, sub-process.

O £ S$ i•>. S T U D I O ggconDYS

Sub-process
Sub-process diagram refers to another diagram, it is also an invoking, but not as the
web service - the invoking is made as a function or procedure. If we have complex
process diagrams there maybe some parts are the same so we model them only once
and then refer to these parts as sub-processes.

III.3.2 Events
In BPM there are five different types of events, which are the following:

Ut Intermediate message
If an intermediate event is waiting for an input message, the trigger type is
'Message'. If an intermediate event with trigger type 'Message' is drawn after a
Decision, that Decision is translated to the BPML choice. This means, at runtime, the
outgoing Connector is selected depending on the message type.

Delay
If an intermediate event includes a delay, e.g. wait 7 days after a quotation is sent,
then its type is 'Delay'.

Exception

It is possible to define one or more Exception events for an Activity or sub-process.
The Exception event is fired if the Activity generales an exception (example a SOAP
processor error). You can also specify the error code (the error code that is thrown up
by the SOAP fault message) for which the Exception event should be fired. If no error
code is specified, the Exception event will be fired for all errors.

Time Out
It is possible to define a Timeout event for an Activity or sub-process. The Timeout
event is fired when the Activity or sub-process is not executed within the specified
time interval.

Compensate
It is possible to define a Compensate event for an Activity or sub-process. The
Compensate event is fired if the Activity is rolled back. An Activity is rolled back if
the total process needs to be rolled back.

111.3.3 Annotation
It is possible as well to add extra Information to a BPM component by linking an
annotation. In Studio there are two kinds of annotations:

30

DEM \$ ggcoRDYS

Annotation
Annotation, with background color and border that may be of help to the user. An
Annotation is a descriptive comment placed on the business model diagram.

Transparant annotation
Annotation, in plain text and no border that may be of help to the user. An Annotation
is a descriptive comment placed on the business model diagram.

1.3.4 Groups
Finally, different BPM components can be placed in a group in order to execute actions
for all of them, or fix a common context for these components. In studio there are the
four following kind of groups:

111.3.4.1 For each

All Activities or sub-Processes of the group are executed for each sub-part of a message.

IN.3.4.2 While

All Activities or sub-Processes of the group are executed as long as the condition is true.

31

O £ NI i s S T u o s G

11.3.4.3 Until

ÜCORDYS

All Activities or sub-Processes of the group are executed till the condition is false. Unlike
'While', here the Activities or sub-Processes are executed at least once.

Graphically, as you can see above, there's no difference between these three groups.

III.3.4.4 Context

Sometimes is necessary to group different components without specifying any condition
for an action, but just associating events or workflows to all of the context components.

32

D E 8$ -.a S T» o s o ggCORDYS

111.4 Comparison DEM to Studio

Here we include a comparison between DEM models and Studio BPM models, showing
the correspondences between the graphic components and some properties of both
systems.

111.4.1 Example of DEM and BPM diagram
First, to give an easy and intuitive approach, we include an example of a model being
represented in Baan System and in Cordys Studio. It is easy to see the differences and
similarities between the two models displayed in the table below:

DEM: Studio:

Start
i Start

End End

33

D E M ggCORDYS

1.4.2 Graphical comparlson

DEM COMPONENTS:

K Begin State

* Activity

« Control Activity

* Relationship

K End State

^ Business Process (shaded box)

» Text

* Free Text

« Role

« Utility

«K Join

STUDIO COMPONENTS:

'* Start State

« Activity j

^ Decision !

* Connector

* End State |

* Sub-process j

'm Annotation
m Transparent Annotation 1
m Not converted (Comment will be added as j
annotation to show how it can be added in l
Cordys Studio). j
m Not converted (Comment will be added as j
annotation to show how it can be represented j
in Cordys Studio). l

* Not converted

About events, note that in DEM models an event is linked to a concrete activity, but in
Studio one event is represented as between two activities. You can see an event more
as a transition between these activities than as a strict action linked to one of them.

For instance, a timer event associated to an activity X in DEM is represented in Studio as
an event between a previous activity and X.

34

D E M ÜCORDVS

111.4.3 Taking Decisions in DEM and Studio
Sometimes in the workflow of a business process it is necessary to include a decision,
which is depending on a condition. Graphically, an arrow is split in two or more arrows
representing the different workflows to follow depending on the taken decision, and both
DEM models and Studio BPM models have a defined component to represent this. These
components are Control Activity and Decision, respectively.

But also DEM and Studio have different graphic structure, mainly because of the absence
of intermediary states in Studio. Therefore is useful to detail here the equivalences and
differences of both models when they try to represent logica! conditions, i. e., show how
each logic construction from DEM is represented in Studio.

111.4.3.1 Operator And
If the type of control function is And, an explicit representation of the logic can be
displayed is Studio, even without a decision component. Looking at the example below,
we can see that this is because the only needed is to show in the diagram than an
activity can access both of the following activity. When we delete in Studio intermediary
states, this information can be represented without decision component, as follow:

DEM: Studio:

35

DEM t» S T U D I O ggCORDYS

III.4.3.2 Operator Or and Xor

For the other two kinds of control function, Or and Xor, there are no significant
differences between them. Here, a decision component is necessary in Studio to
represent that you can access a different activity depending on the condition defined on
this component. In more detail, is possible to define if you want to apply an Or condition
or a Xor condition in the properties of the decision component. The genera! schema is
showed in the diagrams below:

DEM: Studio:

36

D E M ggCORDYS

111.4.4 Comparison of DEM and Studio properties
DEM PROPERTIES

Business Process Activity

* Activity type

* Baan Session

^ Manual Activity

* Business Process

* Control Activity

* Other Application

* Control type

* Code

* External Code

* Argument

^ Activity description

* Activity Category

* AO Document

* Work instruction

* Utilrty

^ User event

** External event

* Timer event

* Automatic event

State

* Description

* State text

* Not

• Condition type

* Condition

^ Link to Business Process

* Begin State

STUDIO PROPERTIESS

» Component typelActivity
m Component fypelActivity

^ Component type\Sub process
m Component fypelDecision

« /Vope/t/es|Annotation (not converted)

^ We skip this for the moment

^ Properties\Application\Code

« Not converted

m Not converted

* Propert/esIGenera/lDescription

'* Not converted

« Not converted
m Propert/eslAnnotation

* Not converted

n Not converted

'® Not converted

* Not converted

* Not converted

m Properties\General\ Description

^ P/upert/eslAnnotation

* /Vof converted

* /Vof converted

* /Voï converted

* /Vof converted

» Component fypelStart event

37

D E S S ggCORDYS

» End State ^

Relationship

« Condition *

m Not j *

* Description %

Business Process j

• Business process name *

* Version $

* Description j $

8 Generation date j *

* Owner %

ff Last change $

^ User last change &

ff Business Process Category &

• Utility S

* Expired ^

* Work instruction '%

Version i

1 Code %

* Description $

• Derived from version &

* Status l

* Effective date &

ü Text s

» Finish date ^

* Expiry date '%

m Owner *

» Standard i

* Description on printout | ^

Project

* Project model ^

« Description ^

^ Component typelEnd event

^ We skip this for the moment.

* /Vof converted

% Properties\General\Descr\pt\on

* /Vope/ï/esIGenera/lDescription

^ Vers/b/7|Ge/7era/lVersion
1 Vers/b l̂Genera/lDescription

* Vers/bA7l/y/sto/ylCreato/7|Date

* Vere/bA7l/y/Jsfo/ylCreaf/o/JlUser

* Version\History\Last Modif/cation\Date

'* Version\H/story\Last Modif/cation\User

% Not converted

* /Vof converted

'* Not converted

'* Prope/f/eslAnnotation

'* General\Settings\Vers\on

» Generai\Settings\Descr\pt\on

'*• Genera/\Settings\Der\ved from version

s /Vof converted

* History\Creation\Date

*• Vers/on IGeneraAAn nota t ion

* /Vof converted

s /Vof converted

*• History\Creation\User

* Not converted
1 /Vof converted

Properties\Genera/\Code

Propert/es\Genera/\Description j

38

S> E S T U O S Q glCORDYS

* Version

* Text

Properties\General\Vers\on

/Vopert/eslGeneraAAnnotation

* Generation Date

* Owner

Expired

Copied from type

Copied from model

Properties\History\Creation\Date

Properties\History\Creation\\Jser

Not converted

Not converted

Not converted

Copied from model version Not converted

Name l

Address l

Not converted

Not converted

City l

Name II

Address II

City II

Internal Project Manager

External Project Manager

Not converted

Not converted

Not converted

Not converted

Not converted

Not converted

39

IV Technical Design

IV.1 Introductkm ________

/U2 OEM data format: ASCII file

BPM data format: XML file

IV.4 Maooing DEM to Studio:

41
41
58
69

IV. 1 Introduction
After Functional Design and before starting with the design and realization of the
software, we completed our previous study of DEM and Studio Systems with the
Technical Design. In this phase, what we did was enter a bit more into technical details
about how DEM and BPM models and represented in Baan and CORDYS systems,
respectively.

Then, the technical design is also structured in three big main steps. The first one is a
document about the technical representation of DEM models in Baan, which is done by
ASCII files. After that, a second document explains how BPM models are represented in
Studio by XML files following some CORDYS standards. And finally we include the
mapping between properties of both systems that was used after for the technical
realization.

In other way, in the Technical Design we include the UML models to clarify how to
realize the software, as well as a study about the structure and methods to use in our
software.

IV.2 DEM data format: ASCII file
IV.2.1 Introduction
In this chapter we will offer a study in detail about how DEM models are stored internally
in Baan IV systems in relational tables and how they can be exported in ASCII code files.
First, is important to remark that the information contained in the DEM processes in
structured in tables. Each table represents a concrete component of the processes, while
each property or attribute of these components is stored as a column of the
correspondent table.

Thus, all the information contained in one process can be stored in Baan IV within
different tables, corresponding to the different components of the process diagram.
Working with Baan IV DEM models is possible to distinguish between six main types of
tables, which are Verslons, Processes, Relations, Free Text, Activrties and States.
These tables are structured according to a hierarchical structure showed in Figure 1. In
the figure is easy to appreciate that every process has a version, and a version can be
linked to different processes. In the concrete case of this project, all the DEM models are
maintained in the same package, "tg" (package for the Organizer Baan IV), and the
module is also fixed, "brg" (Module related to the Enterprise Modeier). Thus, all the DEM
models are stored in tgbrgxxx. So this study will be only concerned to these package
and module "tgbrg". Note also from the diagram that every process can be composed of
several relation, activities, states and annotations (free text), while each one of these
components can belong only to one process.

41

C <) M M i; K t '-• R D 5? M i ?.; 8 T U O i C ggCORDYS

IV.2.2

F/gure 1: Structure of tables in Baan Sw.

Accessing Tables in Baan IV
To see all the table definitions in Baan IV, we choose the following options from the
Menu Browser:

"Baan IV Toote" -> "Application Devetopment" -> "Domains and Tables" •> "Inquiries"
"Display Tabte Definitions".

42

OE&l :•„ ggCORDYS

-Hl! BAANIV£f*«pri*»Modete

Hl fr 8MW IV ïoote
— i! SoftwatslmtaWon

— dl Devwe Management
— d^ .job Managefftent

@j D«tób«*s Management
— §3

— §3 Merw Management

PackagesandModiies

—i 5»
—O Dapiay Domwvs

After selecting this option, we obtain the window displayed below, in which you can
browse within the different DEM Data tables, and their attributes. Also is possible to
select the package and module for the tables we want to display. To do that, we click
on the "Search" icon (binocular symbol) from the toolbar. The picture shows the
correspondent window for packet "tg" and module "brg".

43

C O N V E R T E R D E 88 ia S T u o s o ggCORDVS

iiiiiiii

To see in more detail the fields of one of the DEM Data tables, first is necessary to
select one of the tables, and after we choose in the window menu the options "Special"
-> "Display Fields", as you can see in the picture.

A new window "Display Table Fields" show all the attributes contained in the selected
table. These attributes are stored as columns of the correspondent table. Below is
displayed the window with the Version attributes (tgbrglOO).

44

£> E M \'» S T U D I O ggCORDYS

IV.2.3 DEM Tables and Fields
Now we will detail the different fields for each kind of table, enumerating all the fields
for each type of table, and looking at their meaning, with a small description of each
attribute. How to access the fields of each table is already explained in the previous
point.

IV.2.3.1 Versions

Next Window shows the attributes of the Versions (tgbrglOO):

Version: Code of the version.

Description: Description of the version.

Derived-From Version: With this property you can indicate that the current version
comes from a previous version.

Status: Status of the current version. It can be "Developing", "Finished" or "Expireer.
Effective Date: Creation Date of the Version.

Finish Date: Date when the version status if fixed to "Finished".
Expiry Date: Date when the version status if fixed to "Expired".
Owner: User who create the version.

Standard: Boolean to show if the current version is standard or not.

Text: Explanation or annotation referred to the version.

Version Tree: List of previous versions.

Depth of the Tree: Depth of list of previous versions.

Description on Printout: Description to be displayed and printed at the bottom of the
Version diagrams.

45

S -j- u O l O ÜCORDYS

IV.2.3.2 Processes
Next Window shows the attributes of the Business Processes (tgbrgSOO):

Business Processes: Name or code of the business process.
Version: Code of the version linked to the process.

Description: General Description.

Business Process Category: Processes can be grouped in a higher level, Categories. To
do that, categories must be created, defined and linked to the processes.
Work Instruction: Comment that can be added to a process to add more information.
Owner: User that create the Process.
Generation Date: Creation date of the process.
Expired: Boolean value to show if the current process is expired or not.
Utility: Field that allow to link a utility to the process.
Proc-vers: Combined field, which is used as a foreign key.
Help Text Code: Runtime help code. Runtime help is generated from work instruction.

Last Change: Date of the last modification in the process.
User Last Change: User that made the last modification in the process.

46

ggCORDYS

IV.2.3.3 Relations

Attributes of the Business Process Relations (tgbrg510):

Business Process: Name or code of the Business Process of the relat ion.

Version: Version of the Business Process of the relation.

Position Number From: Position of the relation source component.

Position Number To: Position of the destination source component.

Component Type From: Type of the relation source component.

Component Type To: Type of the relation destination component.

X-Position: List of X coordinates used to place the relation (arrow).

Y-Posrtion: :List of Y coordinates used to place the relation. About the length of this list,
note that each coordinate is a point in the line, and a line has at least always two points.

Condition Type: With this field is possible to specify the kind of condition that can be
linked to an input status. There are two types, "Dynamic Condition" and "Static
Condition".
Not: The logica! function "not" can be applied to the static condition linked to the
relationship with this field.

Condition: Reference for a possible static condition linked to the relation.

Description: General description of the linked static condition.

Proc-vers: Combined field for foreign key.

Proc-vers-posf-post: Combined field for foreign key..

Dynamic Condition: Reference for a possible dynamic condition linked to the relation.

Not: The logical function "not" can be applied to the relationship with this field.

Description: Description of the dynamic condition.

IV.2.3.4 FreeTexts
Attributes of the Business Process Texts (tgbrg515):

Business Process: Code or name of the business process of the text.

Version: Version of the business process of the text.

Position Number: Identifier for the text component.

Text: Text to display as a comment in the editor.

Font: Type of letter selected to display the comment.

Position Number (xpos): X coordinate used to place the free text (left-top corner of the
text box).

Position Number (ypos): Y coordinate used to place the free text.

Proc-vers: Combined foreign key field.

47

D E M ggCORDYS

IV.2.3.5 Activities

Attributes of the Business Process Activities (tgbrg520):

Business Process: Name or code of the business process of the activity.

Version: Version code.
Position Number: Internal Identifier for the activity component.

External Code: External identifier for the activity, that is, the code that will be displayed
to identify the activity in diagrams and reports.

Activity Description: General description of the activity.

Activity Type: Kind of activity (Baan Session, Other application program, Control
Activity, Manual Activity or Business Process).

Control Type: Logica! function that can be applied to a control activity (OR, XOR, AND,
JOIN).

Program Code: Session code.

Argument: This field can be only used if the type of the activity is Baan Session or Other
Application Program. With this argument you specify the activity functionality.

Nested Business Process: Sub process code.

AO (Administrative Organization) Document: This field show if there is any
administrative form linked to the current activity.

Activity Category: Activities can be grouped in a higher level, Activity Categories,
according to their common properties.

Utilhy: Field that allows to link a utilrty to the correspondent activity.

Work Instruction: Comment that can be added to an activity to provide more
information.

Position Number (xpos): X coordinate used to place the activity (left corner on the top on
the box).

Position Number (ypos): Y coordinate used to place the activity (left corner on the top on
the box).

Width: Size for the width dimension of the graphic activity (Box).

Height: Size for the height dimension of the graphic activity (Box).

Help Text Code: Runtime help code, which is generaled from work intruction.

User Event: Boolean to indicate if the activity has linked a user event.

External Event: Boolean to indicate if the activity has linked an external event.

Timer Event: Boolean to indicate if the activity has linked a timer event.

Automatic Event: Boolean to indicate if the activity has linked an automatic event.

Proc-vers: Combined foreign key field.

Proc-vers-pono: Combined foreign key field.

IV.2.3.6 States

Attributes of the Business Process States (tgbrg530):

Business Process: Name or code of the business process of the state.

Version: Version code.

48

0 E &I ,ti S T U ö ! O ggCORDYS

Posföon Number: Interna l Identifier of the state.

External Code: External Identifier of the state, that is, the code that will be displayed to
identify the activity in diagrams and reports.

State Oescription: Description of the state.

Link to Business Process: Linked Process Code.

Condition Type: With this field is possible to specify the kind of condition that can be
linked to an input status. There are two types, "Dynamic Condition" and "Static
Condition".
Not: The logical function "not" can be applied to the state with this field.

Condition: Condition, which is linked to the state.

State Text: Text displayed inside the state.

Posrtion Number (xpos): X coordinate used to place the state, (left coordinate).

Position Number (ypos): Y coordinate used to place the state, (top coordinate).

Width (width): Size for the width dimension of the graphic state.

Width (height): Size for the height dimension of the graphic state.

X-Posrtion: X coordinate used to place the text of the state.

Y-Posrtion: Y coordinate used to place text of the state.

Help Text Code: Runtime help code reference.

Proc-vers: Combined foreign key field.

Begin State: Boolean to show if the state is the Begin State of the process.

End State: Boolean to show if the state is the End State of the process.

Proc-vers-pono: Combined foreign key field.

IV.2.4 Analyzing the ASCII Files
As is already explained, DEM models are exported in Baan IV as ASCII code files. This
point is a detailed analysis of these files, considering the structure of the files as well as
the ASCII notation used to represent the different tables and files in the export file. For
the first technical approach in this project, we only will take into consideration as
relevant for this project the six tables explained above, from the package tg, module brg.

IV.2.4.1 Structure of the ASCII Files
Every ASCII file used for the representation of a DEM model starts with a Header part.
This part can offer both genera! information about the file and many comments to
explain details about the used notation or any useful explanation considered necessary to
make easier the understanding of the file.

After the Header Part, the Contents Part present all the information contained in the
source DEM model organized in tables. In our concrete case, the six main tables of the
package tg, module brg, appears in the ASCII file following the same hierarchical order
that is showed in Figure 1. For each table, every component is stored as an entry
containing all its fields. After all the fields of a component, a new component entry is
placed, and after all the components of a table, a new table is placed in the file. Next
figure show the genera! structure of an export dump of DEM models. Since is only an
example, we only put here a few tables to show how table entries and field entries are
structured in the file.

49

8 E £ ggCORDYS

HEADER PART

CONTENTS PART

- Version tab!e
• First version entry.

- Process tab!e
• First Process entry

First entry field
Second entry field
Third entry field

• Second Process entry
First entry field
Second entry field
Third entry field

-Free text Tab!e

• First Text entry
First entry field
Second entry field
Third entry field

etc.......

IV.2.4.2 ASCII Notation for Tables and Fields
An explanation in detail about the ASCII data format is necessary to understand how the
information contained in the files should be interpreted. A few preliminary concepts must
be introduced here before enter into the code.

Every record in a table is represented by a line with the symbol "#", and a concrete
tag. After this line, the fields of this entry are also represented by a new line with the
symbol "#" followed by a specific tag. Some information is also displayed for each field
in the same line to make the file clearer, although this additional information is finally not
considered as ASCII code. Most usually, a line representing a field will be preceding a
line without the symbol "#", which represents the concrete contents filled for that
field.
Finally, it is important to note that the type of each field is specified by means of a prefix
in the beginning of the tag. The existing prefixes in Baan Sw for the representation of
DEM models are the following:

50

D E M ggCORDYS

The prefix #TB represents a table.

The prefix #TD represents a table field of type date.

The prefix #TE represents a table field of type enume.

The prefix #TL represents a table field of type long.
The prefix #TF represents a table field of type float/double.

The prefix #TS represents a table field of type string.

The prefix #TX represents a table field of type text.

The prefix #KW1 represents a keyword l of text.

The prefix #KW2 represents a keyword 2 of text.

The prefix #KW3 represents a keyword 3 of text.

The prefix #KW4 represents a keyword 4 of text.

The prefix #TXG represents a text group of text.

The prefix #EOP represents edit options of text.

IV.2.4.3 ASCII Example

As an example, now we include an entry for an activity and one of its fields to comment
the ASCII notation in more detail and show how to read the fields in the ASCII files.

#TBtgbrg520 — (Business Process Activities) —
#TStgbrg520.proc S6 (Business Process) #string 6 index part#
p roe 3

The First line is representing the entry of a new Business Process Activity. The line starts
with the symbol # followed for the basic tag to represent a Business Process Activity
Table, TBtgbrg520. This tag is composed of the different parts:

#TBtgbrg520 -- (Business Process Activities) --
TB: This prefix show that the tag represents a table.

Tg: Code of the package.

Brg: Code of the module.

520: Number that refers to the internal tgbrg table "Business Process Activities''.

After this, next lines introducé all the fields related to this table. These lines usually
contain a representation of field, which is the basic tag of the table followed by a dot
and a field code, plus other information displayed, which is not really considered as
ASCII code. Thus, second line is composed of the next parts:

#TStgbrg520.proc S6 (Business Process) #string 6 index part#

#TStgbrg520.proc: Basic representing the "Business Process" field inside the "Business
Process Activities'' table.

S6: Information displayed about the type of the file (String of length 6).

(Business Process): Information displayed about the name of the file.

51

C O B V S R T E R D I E .«. . . !W..S .TUO!O

#string 6 index part#: Comment about the field.

The third lines do not start with the symbol "#", so is a content line. It offers the
content of the previous field. In this case we just find the Business Process name
"proc3".

IV.2.4.4 Example of Version and Business process table:
Dump (tg:iB:f(3©slililisai:} ^ •--' ' • ••.=•;;,::: ^ v^:fti

.: IS] •; :c-:

of e>i}EB f f ;:. ; • (01 v i e r Fournieff;

2

IIÜo\ Previous -

(fersion) IsSi-fi|; 10|;indiil;j|ii;É;|-1
. ," ' ' : ' ' :.:,;;;.,:: .""ï-'-v ; : ï : • • • • ; . ; < - - • : ;

: — :.*•>••••

;*sfe;piiig::3ÜM:- ^•^
^•••.,r^.:r\iif.:::f;: • '•• ' " -' :

^

#enume

. . . ' : ' : - ' . . .

(EfféoÉive&Date):

r;-:- p-ó: " ' • : -, "••:•

Date):: ;ldate'.

f st.r.ing'-.,12# /-

; • • ' : ' • ' ' • . . • .

A20

52

ggCORDYS

of Tree)

— ̂ ii&iki
; :iiS t gb rgSQ Ö; ;:3p>£QjstiilN {;: (il Ji s i rte s s Pro o®N|y i; l:s te jring 6 ; j ::i3i£i£3i. pa r t #

::; (Version)
:. ' . -;X^^Afmm^ •''''-'•'

;:̂

Instrüöt ion) # text l

'tsfring 12*

• Date) : : ;f É^ll^;lily y y > «p , cid):; t

' - '̂M'4:^!l::fi;;ïi;^^
fenume v:

no . • :;|-.l<;fs : > • • • • / ; ':'• ' ' • " . i' '. ; ' : .K- " • •
i. SI O (Utillt-y);; : Istr ing :

S32 .- CHélï? Text :;Code}

(Last Change:) tdate (:yyyY,:pïi:,dd:):f:

53

O E S T u o i <s giCORDYS

IV.2.5 Properties converted
Next tables show a complete view about all the mentioned aspects, with all the fields
from the considered tables, the correspondent DEM ASCII tags for each one, and a
column to show if the related field will be take into consideration for the conversion or
not.

vers Version Tg brg.vers String #TStgbrglOO.vers S10 Yes

desc Description Tg desc30 Multi By lTStgbrglOO.desc S30 Yes

dfvr Derived from Version Tg brg.vers String #TStgbrglOO.dfvr S10 Yes

stat Status Tg brg.vrst Enumerat ITEtgbrglOO.stat No

dvdt Effective date Tg date Date #TDtgbrglOO.dvdt Yes

rldt Finish date Tg date Date iTDtgbrglOO.rldt No

xpdt Expiry date Tg date Date #TDtgbrglOO.xpdt No

user Owner Tg user String #TStgbrglOO.user S12 Yes

stnd Standard Tg yeno Enumerat tTEtgbrglOO.stnd No

txtn Text Tg txtn Text ITXtgbrglOO.txtn Yes

tver Version tree Tg brg.vers String tTStgbrglOO.tver A20 S10 No

dept Depth of tree Tg brg.intg Integer ITLtgbrglOO.dept No

pdes Description on
printout

Tg desc60 Multi By fTStgbrglOO.pdes S60 No

proc Business Process Tg brg.proc String lTStgbrgSOO.proc S6 Yes

vers Version Tg brg.vers String #TStgbrg500.vers S10 Yes

desc Description Tg descGO Multi By #TStgbrg500.desc S60 Yes

bpca Business process
category

Tg brg.bpca String #TStgbrg500.bpca S6 No

txtn Work instruction Tg txtn Text #TXtgbrg500.txtn Yes

user Owner Tg user String #TStgbrg500.user S12 Yes

date Generation date Tg date Date #TDtgbrg500.date Yes

54

O E M S r u oio ggCORDYS

expi

cuti

cmba

txtc

cdat

upus

ÉlBillill

proc

prov

posf

post

ctpf

ctpt

posx

posy

cdtp

noty

cond

desc

cmba

cmbb

dcon

dnot

ddes

proc

vers

pono

Expired

Utility

Proc-vers

Help text code

Last change

User last change

Business process

Version

Position number from

Position number to

Component type from

Component type to

x-position

y-position

Condition type

Not

Condition

Description

Proc-vers

Proc-vers-posf-post

Dynamic condition

Not

Description

Business process

Version

Position number

Tg yeno

Tg brg.cuti

Tg st32

Tg date

Tg user

Tg brg.proc

Tg brg.vers

Tg brg.pono

Tg brg.pono

Tg brg.dctp

Tg brg.dctp

Tg brg.coord

Tg brg.coord

Tg brg.cdtp

Tg yenox

Tg brg.cond

Tg descGO

Tg brg.cond

Tg yenox

Tg desc60

Tg brg.proc

Tg brg.vers

Tg brg.pono

Enumerat

String

String

Date

String

String

String

Integer

Integer

Enumerat

Enumerat

Doublé

Doublé

Enumerat

Enumerat

String

Multi by

String

Enumerat

Multi by

ü
String

String

Integer

#TEtgbrg500.expi

ttTStgbrgSOO.cuti S10

#TStgbrg500.txtc S32

#TDtgbrg500 . cdat

#TStgbrg500.upus S12

#TStgbrg510.proc S6

#TStgbrg510.prov S10

#TLtgbrg510.posf

(array of length 10)

#TLtgbrg510.post

#TEtgbrg510.ctpf

#TEtgbrg510.ctpt

#TFtgbrg510.posx

ITFtgbrgSlO.posy AIO

#TEtgbrg510.cdtp

#TEtgbrg510.noty

lTStgbrgSlO.cond 36

#TStgbrg510.desc S60

#TStgbrg510.dcon S6

#TEtgbrg510.dnot

#TStgbrg510.ddes S60

#TStgbrg515.procS6

#TStgbrg515.versS10

#TLtgbrg515.pono

No

No

No

No

Yes

Yes

No

No

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

Yes

No

No

No

No

No

^mmi
No

No

Yes

55

D E M ÜCORDYS

text

font

xpos

ypos

cmba

ifpiiispiii

H
proc

prov

pono

extc

desc

actp

cotp

prgm

argu

nbpr

aodo

catg

cuti

wkin

xpos

ypos

widt

hght

txtc

eusr

eext

etim

eaut

Text

Font

X position

Y position

Erid-vers

^M^̂ ^̂ ^̂ ^̂ É̂Ŝ iï

•&#£:,
Business processs

Version

Position number

External code

Activity description

Activity type

Control type

Program code

Argument

Nested business
process

AO document

Activity category

Utility

Work instruction

Position number

Position number

Width

Hight

Help text code

User event

External event

Timer event

Automatic event

Tg descGO

Tg st40

Tg brg.pono

Tg brg.pono

Tg brg.proc

Tg brg.vers

Tg brg.pono

Tg
brg.extcode

Tg descGO

Tg brg.actp

Tg brg.cotp

Tg brg.prgm

Tg brg.argu

Tg brg.proc

Tg brg.aodo

Tg brg.catg

Tg brg.cuti

Tg txtn

Tg brg.coord

Tg brg.coord

Tg brg.coord

Tg brg.coord

Tg st32

Tg yenox

Tg yenox

Tg yenox

Tg yenox

Multi by

String

Integer

Integer

String

String

Integer

String

Multi by

Enumerat

Enumerat

String

String

String

String

String

String

Text

Doublé

Doublé

Doublé

Doublé

String

Enumerat

Enumerat

Enumerat

Enumerat

#TStgbrg515.text

#TStgbrg515.font

#TLtgbrg515.xpos

#TLtgbrg515.ypos

Yes

Yes

Yes

Yes

No

#TStgbrg520.proc S6

#TStgbrg520.prov S10

#TLtgbrg520 .pono

#TStgbrg520.extc S32

#TStgbrg520.desc S60

#TEtgbrg520.actp

#TEtgbrg520.cotp

#TStgbrg520.prgm S15

#TStgbrg520.argu S50

#TStgbrg520.nbpr S6

#TStgbrg520.aodo S6

#TStgbrg520.catg S6

#TStgbrg520.cuti S10

#TXtgbrg520.wkin

#TFtgbrg52 0 . xpos

#TFtgbrg520.ypos

#TFtgbrg520.widt

#TFtgbrg520.hght

#TStgbrg520.txtc S32

#TEtgbrg520.eusr

#TEtgbrg520.eext

#TEtgbrg520.etim

#TEtgbrg520.eaut

No

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

No

No

Yes

Yes

Yes

No

No

No

No

No

No

No

56

D E M ggCORDYS

cmba

cmbb

lllllililill

H
proc

prov

pono

extc

desc

nbpr

cdtp

noty

cond

txta

xpos

ypos

widt

hght

xtxt

ytxt

txtc

cmba

inpt

outp

cmbb

Proc-vers

Proc-vers-pono

Business process

Version

Position number

External code

State description

Link to business
process

Condition type

Not

Condition

State text

Position number

Position number

Width

Width

X position

Y position

Help text code

Proc-vers

Begin state

End state

Proc-vers-pono

Tg brg.proc

Tg brg.vers

Tg brg.pono

Tg
brg.extcode

Tg desc60

Tg brg.proc

Tg brg.cdtp

Tg yenox

Tg brg.cond

Tg txtn

Tg brg.coord

Tg brg.coord

Tg brg.coord

Tg brg.coord

Tg brg.coord

Tg brg.coord

Tg st32

Tg yenox

Tg yenox

String

String

Integer

String

Multi by

String

Enumerat

Enumerat

String

Text

Doublé

Doublé

Doublé

Doublé

Doublé

Doublé

String

Enumerat

Enumerat

#TStgbrg530.proc 36

|TStgbrg530.prov S10

#TLtgbrg530 .pono

#TStgbrg530.extc S32

#TStgbrg530.desc S60

#TStgbrg530.nbpr 36

#TEtgbrg530.cdtp

#TEtgbrg530.noty

#TStgbrg530.cond 36

#TXtgbrg530.txta

#TFtgbrg530.xpos

#TFtgbrg530.ypos

#TFtgbrg530.widt

#TFtgbrg530.hght

#TFtgbrg530.xtxt A3

#TFtgbrg530.ytxt A3

#TStgbrg530.txtc 332

#TEtgbrg530.inpt

#TEtgbrg530.outp

No

No

Mi
HUI
No

No

Yes

No

Yes

No

No

No

No

Yes

Yes

Yes

No

No

No

No

No

No

Yes

Yes

No

57

BEM isj S f i j o s o B8^»v/l\L»«^

IV. 3 BPM data format: XML file
l V. 3.1 Introduction
Business Process Models in Studio are stored internally in a CoBOC (Collaborative
Business Object Cache) database. CoBOC is an interna! tooi provided by Cordys
Integrator used in CORDYS for creating and manipulating business objects. Thus, CoBOC
acts as a central repository and a container for XML objects (also called Business
Objects), allowing the management of these objects. These models are represented
internally as XML files, containing all the information that allows displaying a graphic
diagram. In this document we will offer a list of all the relevant XML tags for the DEM
models conversion, and also a resumé of the structure of a XML file representing a BPM
model.
To obtain these files you need to export contents from Cordys Studio. This functionality
is provided by option "Content Transfer Utility". Once you have exported your BPM
models. Studio creates a zip file, which contains different kind of files. The type of the
files to be exported can be decided, but usually the next four types are obtained:

Verslons: General information about version.
File Types: Information about the file types supported by Cordys Studio. Not considered for this
project.
Export Configuration: General information about the setting and parameters used for the export.
Models: One file per each model selected is generaled, with all the information necessary to represent
this model in XML.

The most important of these files for our purposes are the files representing the BPM models. Next
point offers an overview about the structure of these files and the XML tags used for the notation.

IV.3.2 Structure of XML files in Studio
XML files representing BPM models are structured in a simple hierarchy showed by
tabulations, as HTML files. Main tags of this hierarchy are explained below:
-<tuple>

- < bpm >
+ <documentProperties>
-< content >

+ <bpml>
-< model >

-< object >
+ <dataObject>

< /object >
+ <svg>
+ <tasks>
+ <modelProperties>
< messageMapping >

58

DEM itt S T Sj o i es

-< /content >
</bpm>

</tuple>

ggCORDYS

1 ï̂'̂ '::rrî |!|:;̂ r:;:"v';-

<tuple>

<old>

<bpm>

< documentProperties >

< content >

<bpml>

< model >

< object >

<dataObject>

<svg>:

<tasks>:

< modelProperties > :

< messageMapping >

Comments " '. •' ̂ ^i^^^^i^^ : • : illill? ;:!: '
. ::. -:i: : : ":.::'': :•: '' - : ' : . • • ' . ' • ' • : : - • • : • - . •-•-.-.-::-• - - : - : • • - : - - . . ; ;:;:;:;:;:;:;:;''\:::;:;:;/.;\.;.;:../-' Vx-:ï:ï.ï:-.-.:.::ï.-:-:

Tag with properties about the storage of the file in CoboC.

Existing records. Fixed tag.

Type of the record. Fixed tag.

General properties about all the imported models.

Fixed tag, representing the start of the model contents
definition inside the file.

Contains generated BPML.

Information directly related to the BPM components, including
next tags:

Generic properties of an object

Specific properties for a kind of object.

Used for printing

Used for storing model warnings

Properties about the current model.

Used to store message mappings

IV.3.3 XML Tags In BPM Data Format
In this paragraph we will describe in detail all the tags contained inside the interesting
tags for our project. We consider interesting tags those which are less general, but more
concretely linked with the representation of BPM models, and their components. Tags to
be further developed in this aspect are < documentProperties >, < modelProperties >,
<model>, and specially <object> and <dataObject>, which describe the properties of
the BPM components. The others are not developed since are not relevant for the
project. Each of these five significant tags will be further analyzed in this point.

IV. 3.3.1 Documentproperties

i*^P^4-.TZ?,
< name > :

<description>

<mimetype>

: : ; :-: S* v ' ' - . "'"." ' " " '.T ' " A' ' " ' ï? 'l l- '• " W ' " ' - Pi ̂ 'W^ fiiV'- •""' '" V ;*:,,": '• • ..

; :.CÖI|HI|lellt» . - -.. - • • : • . . ; . . . • : ; . : . : • : V- - :- / : 'Si ' V'! ;:> ' :- . / : : • • • :. : i ..' • . . : • ; : ; . . . ; . ; •'-.' ~ . , ., . : . -/«Ï5'

Name for the file.

Description of the model.

Type of the process. For DEM conversion always bpm.

59

DESS t n S T U D I O ggCORDYS

<notes>

< version >:

<revisk>n>:

<createdBy>:

< creationDate > :

<lastModifiedBy>:

< lastModificationDate > :

Possible annotations linked to the business process.

Version of the file.

Number of the revision of the file in studio(not yet
implemented).

User that has made the model.

Date of the creation of the model. Is expressed in
milliseconds (Java format).

User that made the last modification

Date of the last modification. Is expressed in Java format.

IV.3.3.2 Model properties

:jTi|̂ ^^^^ •"":•' " • r ' h .

< dataobject name >

< documentproperties >

<name>

<description>

<caption>

<mimeType>

< notes >

< version >

< revision >

<createdBy>

< creationDate >

<lastModffiedBy>

< lastModificationDate >

<validbpml>

<publbhed>

JT* Alï^W * ĵrt<t ' ' ' : • • -^ --''''•'-'--••-'• - ''- '-• • '- ~: '-'- : ~: :I : " '-'- -":::-:- :•: '•• ' ' V' '•: :• •:1\'::iJ;1'::i::0:

Name of the model.

Description of the model.

Description.

Type of the process. It can be "vcm", "bcm" or "bpm".
(Here it is bpm)

Possible annotations linked to the business process.

Version of the model.

Number of the revision of the file (still not implemented).

User that has created the model.

Date of the creation of the model.

User that made the last modification on the model.

Date of the last modification of the model.

Boolean that shows if the process has no warnings.

Boolean that shows if the process has been published.

IV.3.3.3 Model

^^^^^^:^~^^;-I.M M

ModelFormatVersion

FreeObjectld

liComatmK,'^^^^^
.-.-• . • : • . • . ivi'Xv.' .•" ï: - . - : - . - . : - . - . - . - - - - . - . - - - . . . • • • :A..:;;:.::::::.:...::::::::::::::::::;x:::;rr-::-r:̂ . : . ; • . . " . • : : • : . • . • . . : ; : • • : • . • : • • • . • ' \. -•• .; ;.

This tag is fixed to "1" which means that the model
represented by XML format of studio 1 .0.

is

Identifier of the next object. This is the first identifier not
yet used.

60

C o >i -! E R T S R IgCORDYS

Zoom

NrObjects

Default zooms to display the model in the editor. Is usually
fixedat 100.

Number of components included in the model.

IV.3.3.4 Object

For this tag is important to note that properties of < object> tag change depending on
the type of component. Most part of the specific properties in this tag are related with
the way to draw relationships in Studio, so a explanation about is required.
The graphic representation of a relationship in Studio is an arrow. To represent this in
Studio, we differentiate between arrows represented with only one straight line, and
arrows represented with more than one line, as is shown in the picture below:

Simple connector between
Start State and First Activity.

Simple connector between Subprocess and
Decision. Composed connector between

Subprocess and Right Activity.

If the relationship is displayed in the BPM diagram as a simple arrow, the correspondent
XML components are a "connector" and a "line". Otherwise, if the relationship is
displayed in the BPM diagram as a composed arrow, the correspondent XML format
contains a "connector" component, "line" components, and "point" components, to link
these lines. The picture below offers a clear view about this:

Source

Connector

,-Point

Thus, these component types to represent relationships are the ones that present
specific properties in the < object> tag. Note that left and fop properties are not
included in lines and connectors since its position is determined directly from the position
of the source and destination components. But left and top properties must be included

61

S T U D I O IgCORDYS

in point components. So we include here an activity as an example of the four Standard
properties that are common to most of the components, and any other component with
its common and specific properties:

Start:

•f^^im.
Object ld

ObjectType

Left

Top

'CÏOIï)ïi|li«̂ :|:;i|s; ' '•" : . v; 'ƒ. ' • ; • : ; ' :i f : ••". . . , , W^. •;, & •;'€•:•,;•• ̂ SiK^ :'

Internal identifier of the component

Type of the component

Percentage value of an available horizontal space.

Percentage value of an available vertical space.

End:

iFP ÎTÖOTi:v;̂ :̂ ;::::-.V'''.':; ..'•..'.. ••

Object ld

ObjectType

Left

Top

. ; .- , - . - _.,,,,,..,...,. ; . . . , -

Comments - 4.:;.;:.:̂ ^ •--•, 'C-':-?' ' . . ' " • '"""•' .-:-;- ;-? :- ;;-;:----t;|

Internal identifier of the component

Type of the component

Percentage value of an available horizontal space.

Percentage value of an available vertical space.

Activity:

^Swî iS ï̂iü
Object ld

ObjectType

Left

Top

Comments : .-'^:f:;f ;;̂ îtpf/.-igft-;' ~ : J: :;?T: .'•-

Internal identifier of the component

Type of the component

Percentage value of an available horizontal space.

Percentage value of an available vertical space.

Sub Process:

PiSi-2-̂ llPl
Object ld

ObjectType

Left

Top

Internal identifier

Type of the

Percentage

Percentage

of the component

component

value

value

of

of

an

an

available

available

horizontal space.

vertical space.

Decision:

Object ld

ObjectType

Left

Top

^fi^^ï^^^^^é^^^W^^
Internat identifier

Type of the

Percentage

Percentage

of the component

component

value

value

of

of

an

an

available

available

horizontal space.

vertical space.

62

M i s

iiiililiSiiilli''.
Object id

ObjectType

Connectorld

Source:

Destination

S*i3K-̂ S:';^?:^^E^^ Ï̂H r̂̂ ^"I
Interna! identifier of the component.

Type of the component.

Internal identifier of the relation component.

Identifier of the source component

Identifier of the destination component. Note that source
destination for a line could be a point, if the connector is

and
composed

Point:

Object id

ObjectType

Connectorld

Left

Top

'igjfajiF]\ ;:,Jv^KÎ r:'. r^y?r ''Iî
Internal identifier of the component

Type of the component

Internal identifier
point.

Percentage value

Percentage value

of

of

of

the

an

an

relation component, which is linked with the

available horizontal space

available vertical space

Connector:

iiP(̂ pei;ti6^v.:~v?". '-i!' " "" .

Object id

ObjectType

Connector Type

Source

Destination

Direction

Internal identifier of the component

Type of the component.

Fixed for BPM

Internal identifier of the

Internal identifier of the

source component

destination component

Fixed for bpm to "one-way connector".

Documentation:

Object id

ObjectType

Left

Top

Connector Type

Width

Height

Comments - .••;<;• ' • • : ; : ; „..̂ If̂ ;:̂ -;̂ : ̂ ^^^y.,,,,:.^M^.^^

Internal identifier

Type of the

Percentage

Percentage

of the component

component

value

value

of

of

an

an

available

available

horizontal space

vertical space

Fixed for BPM

Percentage

Percentage

value

value

of

of

an

an

available

available

horizontal space

vertical space

63

D E M S T U D : O ggCORDYS

IV.3.3.5 Data Object
In this tag, properties inside the <dataObject> tag change as well depending on the
type of component. Following the Standard schema, what we first find in this tag is a
group of general properties. After that, each object has different properties structured
mainly according to the tags <tab> and < group >. Referred to the contents referred to
the DEM conversion, we consider as relevant the tag < property > from the Standard
schema document, and specially the property name inside this tag. With this, we will

Then, here is detailed all the Standard properties for the main components, with the
common properties in each component, and also all its specific characteristics. The
property name, from the Standard schema document is analysed as well, defining all the
different values that it can have in each case. Note that components with type "line", or
"point" don't include <dataObject> tag inside the <object> tag.
Activity:

:;̂ jr«^É»:̂ tt8ll W :8i

Name

<name>

< dummy Activity >

<type>

<url>

<messageType>

< workDispatchType >

< allUsersExecuteTask >

.: V" : : ' " : ' l ' :-. ::'!.; "! " • ' . ' ' V '•••.•'i"- ' • • ' • 'r',;/- ' - - • ' • - '.'..'. ' ; ' '' : ; ~:'f ' ! ' : :3 ~

CommentS V ." -.-"• :; ::j /.0.:?-L: ;;;££• ?).;1'::?:^

Name of the object.

Name of the component.

Boolean showing if the component is a dummy
activity (task which is not executed at runtime).

Type of application service for activities. Two
possible values:

Application: The activity needs user interaction.
It can be an application or a manual task.

- Soap Service: The activity needs no user
interaction, but it can be executed by linking a
SOAP service.

If the type of the activity is "Application", this tag
shows the URL to be run with the activity.

Message type from the scheduling properties panel.
This tag is related to the Scheduling tab, which only
appears if the Application Service Task of the
activity is "Application". When a Business Process
is instantiated, the Activities that are of type
Application and have a role linked to them are sent
to the inbox or e-mail of all the users linked to the
role. There are two possible values:

Task: The instantiated Business Process will
wait till the task in the inbox is finished before
continuing.

Info: The instantiated Business Process will
continue uninterrupted.

Property from the Scheduling tab that indicates to
whom should be send the message. It can be "AH
linked users" or "Users with least work".

Boolean representing the property with the same
name from the scheduling panel in the activity
properties

64

OEiVI ,>., S T U D I O IgCORDYS

<inboxCategory>

< notificationSubject >

<annotation>

<applicatk>n>

< applicationType >

< applicationDescription >

<isvpackage>:

< namespace >

<method>

<methodset>

< documents >

< dynamicAssignment >

< assignedUserFromMessage >

< inputmessage >

< outputmessage >

<roles>

Runtime inbox category

Runtime subjects of the task (email, for instance).

Tag to show possible comments or text added to
this component.

Code for a possible application linked to the activity

Type of the application. It can be "Application" or
"Soap Service".

Description of the application

Next four properties are referred to the SOAP
methods from the repository. This one is the
Standard package in which these methods are based.

Name of a SOAP method linked to the activity

Name of a set of SOAP methods.

Documents can be linked to an activity, for example
the work instruction for an Activity in PDF format.
This tag shows the list of the linked documents.

Boolean used to show if the user to execute the
activity is dynamically assigned (true), or pre-defined
(false).

If the assignment is dynamic, the user or role that
needs to execute the Activity is read from the
message that is defined in the "Read assigned user
from message" field in Studio. This tag shows also
that user.

Message to be run when the process workflow
arrivés to the activity.

Message to be run when the process workflow
arrivés to the activity.

This tag shows the roles that are allowed to execute
a manual activity, if the assignment is static

Start State:

Properties & Tag

name

<name>

<triggerType>

H^pf: ' •' ' ;: . . • ' : '•'"• ' ' ?' ; ": f^ffV1^- -~
Name of the object.

Name of the component.

There are three possible values for this tag, which specifies the
action to be taken in the Start Event.

Message: At runtime, the process should be starled with the
defined message type. This can be used to start the process
as a sub process from a main process.

65

C om V S R T EU S r u n i o ĵ CORDYS

<inputMessage>

< timer >

<frequency>

<annotation>

Timer: The frequency as well as the time unit should be
specified. Schedule templates are created at runtime to
ensure that the processes are triggered at the appropriate
time.

No Message or Timer: Both previous techniques are not applied to
the process.

Message to be run when the process start, if the tag
<triggerType> is f ixed to Message.

Time unit used, if the tag <triggerType> is f ixed to Timer.

Frequency used if the tag <triggerType> is f ixed to Timer.

Tag to show possible comments or text added to this component

66

o « V E R T E S * D E &• IN S T U O i ö giCORDYS

End State:

Properties & Tag : • ;

name

<name>

<endType>

< outputMessage >

<processError>

<annotation>

|p»ttte ..,,;,, \-"f^^^SKr?:' .
Name of the object.

Name of the component.

Tag to show what kind of end state is applied in the model. There
are four possible values:

Message: The end event can be an output message when
the business process is used as a sub-Process of another
process.
Error: The end event will be a 'process error' if a known error
occurs in the process.

Rollback: A 'rollback' end event is reached if the entire
process is to be rolled back.

- None: None of the previous statements are applied.

Message to be send once the process is finished, if the tag
<endType> is fixed to Message.

Message to the send if the tag <endType> is fixed to Error.

Tag to show possible comments or text added to this component.

Decision:

Properties & Tag
•ïxïxïx^TV1 ': • • . . • • • . • .•" :" ." :"- :- .:"::: :"

name:

< name > :

<annotation>:

- ' :-' --•- . • ' :;::':S"5vxV'; • " • ; ' • • • • ' • • • ' : ' . . ' : • • : ' • • ? ? • ' • . • • ; . • " ' - i ':':'W:'::mlm
Comments V : : ' : •-.- - . ' W-^S^f:^^;^^^^^^'''^'''

Name of the object.

Name of the component.

Annotation is the text or explanatory comments that can
included as a descriptive aid.

be

Sub Process:

": :Ptt̂ lïiiÉ|!|iïi|i||k ;. ..,,;;., . % ' ï V ?* ̂

name

<name>

< process >

< businessChannel >

<synchonize>

< secureCommunication >

Comments : : ymMiim- •.-..:. :> : ^ ^-i-^^^iii

Name of the object

Name of the component.

Name of the parent process

A subprocess can be started in different web servers from
the Standard. These alternatives servers are defined in
Orchestrator. Only if the server to be run is not the Studio
server, we show the alternative server with this tag.

Boolean to show if the subprocess execution is
synchronized with the parent process execution.

This option can be only be used if the sub-process is called
on a Web service via a Business Channel i. e., over HTTPS
(secure HTTP).

67

C O S I V E R T E B t>E ggCORDYS

< mimeType >

< inputMessage >

< outputMessage >

< annotation >

Type of the process. It can be "vcm", "bcm" or "bpm".
(Here, it is bpm)

The message that is received from a nother BPM
component (Often an Activity).

The message that is sent to another BPM component
(Often an Activity).

Annotation is the text or explanatory comments that can
be included as a descriptive aid

Connector:

^tia^i^iU^jii^iM. - . ; • • : ;: •
name

<isDefaurt>

<condition>

< condrtionDescription >

Comments • '•^'^y^'-''-.\::^\,-:^y:.'-- ••• .!?;;.:•! '~-SG & :

Name of the object.

If the connector is placed after a decision, this tag is a
Boolean to show if the connector represents the default
condition.

Description of the condition for the connector.

This tag contains the possible description for a relationship.

Documentation:

iillip8rti»8 :̂̂ ÉH;;;v/v - :.

name

<name>

< border >

< transparant >

<fontSize>

•rf** «•«•-» »jtj»fa». • '' ' : : ' :''-:' -:-'' -''': :- ' • • • ' ' :'I:-' ::'::::i::li::\'<ï:::' • : • > : . •: •, • V»OmmenTS . -. ;: ̂ K «s; : ; : . ; : :: -4 . v ••: ;" j.? : :J; i. «? :•.:••"

Name of the object.

Name of the component.

Boolean to show if the graphic border
displayed or not.

Boolean to show if the note appear i
or not.

Size and font for the annotation.

of the comment is

n the editor diagram

IV.3.4 Default Values in Cordys Studio
For the default values, you can see the appendix B.

68

B £ M tv S r u o ! o ggCORDYS

IV.4 Mapping DEM to Studio:

IV.4.1 Introduction
Now we will describe how is converted each field from DEM ASCII files into a tag from
Studio XML files. Firstly, is important to remember that the aim of the converter program
is to obtain a zip file with different kind of files in Studio from a DEM export file. The zip
file obtained contains the following documents:

• 1 export configuration file, with general information about the setting and
parameters used for the export.

• 1 Verslons file, with general information about versions.

• 1 file per exported model containing the description of that model.

The files representing exported models are the most important for the conversion,
although sometimes we will use tags contained in another files. That is specified in the
next point.

IV.4.2 Mapping
Version: All the converted fields of the Version table from Baan IV, which are mapped to
tags from the "Versions" XML file obtained after the export of BPM models in Studio.

IV.4.2.1 Version

Version <documentProperties> <name> Version\General\Settings\Vers\on

Description < documentProperties > < description > Version\Genera/\Settings\Descr\püon

Derived from
Version

< content > < parentVersion > Version\General\Settings\Derived from
version

Effective date < documentProperties> < creationDate> Version \History\Creation\Date

Owner < documentProperties > <createdBy> Version \History\Creation l User

Text < documentProperties > < notes > Version\Generaf\Annotat\on

<tuple> Object ld

< documentProperties > < version >

69

DEM ; N S T u o s o ggCORDYS

IV.4.2.2 Process
All the converted fields of the Process table from Baan IV are mapped to tags from the
XML file related to the concrete model obtained after the export of BPM models in
Studio. This file can be accessed after the exportation following the next route:

"Business model repository" -> "Business models"

Business Process < documentProperties > < name > BPM Properties\Generai\Genera/\Code

Version < documentProperties > < version > BPM Properties\General\General\ Version

Description < documentProperties > < description > BPM
/Voperf/ëslGenera/l Genera/1 Description

Work instruction < documentProperties > < notes > BPM Prope/ï/èslAnnotation

Owner < documentProperties > <createdBy> BPM Properties\History\Creation\öser

Generation date < documentProperties > < creationDate > BPM Properties\History\Creation\Date

Last change < documentProperties > < lastModificatio
n Date >

BPM Properties\History\Last
Modification l Date

User last change < documentProperties > < lastModifiedBy BPM Properties\History\Last
Modification\(Jser

IV.4.2.3 Relation

In Studio, connectors have properties inside the < object > tag with the identifiers of the
source and destination components. For the mapping of several fields from the table
"Relations", the way is take the identifier of these components, and look for specific
tags after a research of the concrete component with that identifier. Thus, as a notation
for this method, we will put Searchsource when the mapped tag is a field from the
< object > or <dataobject> tags, representing that the mapped tag is accessed after
searching for an object with the same identifier as the source of the relationship. On the
other hand, we will put Searchdest when the mapped tag come after searching for a
component with the same identifier as the destination of the relationship.

Position number
from

< object > -> Source

Position number to < object > -> Destination

Component type
from

Searchsource -> < object >-> Object
type

Component type to Searchdest -»< object > -> Object type

70

D E M S T u o t o S§CORDYS

x-position

y-position

Description

Connectors: Is represented directly
according to the source and destination
positions.

Unes: Is represented directly according
to the source and destination positions.

Points: <objectid>-> left

Connectors: Is represented directly
according to the source and destination
positions.

Lines: Is represented directly according
to the source and destination positions.

Points: < objectid > -> left

<dataobject> -> conditiondescription

Note that first and last points to represent
relations (arrows) in DEM are shipped.

IV.4.2.4 Freetext
The object type from XML file used to represent free text from Baan is "documentation".
Tags are mapped in the files corresponding to the exported models as follow:

Position number < object > -» id Each object needs to be identified by an
number, to be able to build a link with
another object.

Text <dataobject> -> Name

Font <dataobject> -> fontSize It is the font and the size for the character

X position < object > •> left

Y position < object > -> top

IV.4.2.5 Activity

Position number < object > -> id

Activity description <dataobject> -> name

Activity type < object > -> objectType

Program code <dataobject> -> url + argument Still not decided.

Nested
process

business < object >
Process

-> objectType = Sub Tag process of object type subprocess.

Work instruction <dataobject> -» annotation

Position number < object > -» left

71

D g M m S T U D I O 8SCORDYS

(xpos)

Position number (y
pos)

< object > •> top

72

DEM i % S T U B I O giCORDYS

IV.4.2.6 State (Begin and End)

Position number < object > -> id

State description <dataobject> -> name

State text <dataobject> -> annotation

Position number (X) < object > -^ lef t

Position number (Y) < object > -> top

Begin state < object > -> objectType = start

Note that the field in Baan tables is a
Boolean while here we have the name
of the object type.

Tag process of object type start.

End state < object > -> objectType = end

Note that the field in Baan tables is a
Boolean while here we have the name
of the object type.

Tag process of object type end.

73

D E 5 S (« S T if o s o ggCORDYS

IV.5 UML and Architecture
l V. 5.1 Introduction
In this chapter are included all the UML models that we developed to design our
software converter. We respect the normal UML order to develop the design, i.e. first we
have modeled the Uses Case Diagram, followed by the Sequence Diagram, States
Diagram and Classes Diagram. It also includes a model about the architecture and
methods used to implement our software.

l V. 5.2 Uses cases diagram
This is the most genene UML diagram that we have developed for the project. It shows
how the project adds functionality to Cordys Studio. The main scenario for this diagram
is the Content Transfer Utility, in which we already have two possible user cases. Import
Model and Export Model. With the current project a new functionality is added to the
Import Model option. The new functionality is "Import DEM model".

Import DEM model
—--—_____——-—————————-

import XM L model

«include>>..--

«inchide»

IV.5.3 Sequence diagram
We develop the Sequence diagram for this new functionality, "Import DEM model". Note
that CTU is an abbreviation of "Content Transfer Utility" here, and we do not consider
the user choosing a non-ASCII file in the browser, since the scenario of the user case is
specific for import DEM models. The behavior can be understood easily following the
diagram, so no further information is needed in this case.

74

COHVSKTSK D Ê S S !S! S ï U O i O ICORDYS

Bi owse and select ASCII file i

UI (Cordvs StudioV

Select CTU

Display CTU

Select Options

Imoprtation OK

Call Import Q

Importation OK

Exlension Q

Exlension OK

^Ï^^Caü Converter ()

_______Call Read (ASCII)

Return ASCII

Call Convert (ASCII, XML)

Return XML

Caü Mapping (XML, BPM)

Return BPM

k....'.':~.'.'Return Zip file

<r~.".'.'.'.'".'.'.'.'.'Return Zip file

Extension
{if it isnot
an ASCII file
send an error
message}

Céll Store (Zip file)

! StoragpOK

75

ggCORDYS

IV.5.4 States diagram

i
DEM ASCII fil<

/XMLConvertei

file |

~' J

V

V
DEM XML veision file

/XSLTConverter

V
Studio XML Veision file

/XSLTConveision
Conveision-^J Studio XML Export configuation file

/Zip

\/

DEM XML piooessesfiles

/XSLTConverter

Ccnversion

Zip

\/

V

ZIP

V

Zip importation file

/Store

Studio XML BPM files

/XSLTConvetsion
JZif________

ZIP

V

End of conveition

l V. 5.5 Classes Diagram

Converter

Buffer: string
Input: string
Output: string
ParseO
XMLDOMO

76

DEM i f j S T U D I O ggCORDYS

l V. 5.6 Architecture
Entering inside the structure of our converter program, in further detail than with the UML
diagram, we developed the architecture diagram displayed in the next page. To explain it is
first necessary to establish that the software is structured in two main phases. The first one
is to do a direct translation from ASCII code to XML code. However, Studio has its own
Standard format to represent BPM models using the XML language. Thus, a second phase is
necessary to adapt the first XML code, which is obtained after the translation, to a new XML
code according with the Studio Standard.

To code the first part of the program we used Java combined with XMLDOM to create the
XML tree, while XSLT was the language used for the second part of the converter. We
decide to structure the program in this way to make the software as flexible as possible in
this second step. This is because Studio is a new platform, which makes more probable a
change in the Standard format of XML to represent BPM models. Thus, XSLT is a highly
flexible language that will allow in a future to does changes in XML Studio format without
entering into modify a complex code, but just implementing the changes in a genera!
template.

Then, following the diagram below to explain the steps in more detail, we start by transforming
the original DEM ASCII file into all the required XML files in Studio, that is, a versions file, an
export configuration file, and one file per each BPM model. However, these are still XML files
without the Studio standard format neither the right name of XML tags, this is what we call
XML-DEM format. After that, each one of the generaled XML-DEM files should be called from
the same Java program to apply the correspondent XSLT template and make the file compatible
with Studio. Finally, the files should be zipped to be able to import it in Studio.

77

gR D £ f& i ?>' S T U D I O ggCORDYS

D8VI ASCU
file

XSLt
versfcHifile

Da/IXML
versionfBe

XSLT Export
configuration

' ' ' : ' " :

Converter ASCII->XML Mothnric' Parco anH

DEM XML
processfile 1 ton DBWIXML

processes

Zip
importation

file

XSLTBPM

78

V Technical realization

V Technical realization 79
80
81
82

Vd ParserUethod

V.2 Modular structure

V3 Termlate: XSLT Version file

OEM \n ggCORDYS

Introduction

In this chapter is developed a general explanation about the two main issues that we deal
with in the technical realization. First, the parser used in Java to classify the input file
records and translate it into an XML-DEM file is explained here without entering in technical
Java details. Little parts of the Java code are pasted to show how the program links with
each part of the parser.

Also an explanation about XSLT language and an example file is included, to clarify details
about the second step of the technical realization.

V. 1 Parser Method
Here we will include a big part of the Java code used for the first part of the conversion to
comment how we parse the DEM ASCII files into XML-DEM files. After parse all the
components of the ASCII files, we stored them in a DOM tree, which we will use to apply a
hierarchy within the different XML tags. Now we show and explain the parts of the code
referred to the parse method:

- First we skip all the initial part of the file, which has no useful Information, until we find the
first line starting by "TX":
while(begin==false) {

line=lnr . readLine (} ;
if ((line.charAt(O) == '#') && (line .charAt (1) == "!")){

begin=true;

- Then we start to analyze the ASCII representation of the DEM model. Firstly, we check
that lines are not empty, because we only will work with lines that are not empty. After we
check if the first character of the line is different of "#" . If is different we are in a content
value line.
while(true) {

if (line.lengthf) != 0) {
if((line. charAt (0) != '#') && (skip==false)) {

Bebavior for content value lines.

-The variable "skip" is to show if the content value is from a field that is not going to be
skipped. We will skip the fields #KW and #EOP, so after we will fill the value Boolean
variable "skip" to true when we will find these fields, to show that the contents should be
skipped in the conversion. Following, we read the value and we store it in the DOM tree,
but the code is not included here since is just technical Java language.

- Next necessary thing is to determine behavior for lines that start by the "#" symbol.

i f (line. charAt (0) = = ' # ') { . . .

-Thus, the first we do with these lines is determined if the next character is a "T". If that's
the case, we have found a table line or a field line.

if ((line.charAt(l)== 'T')) {
if (line. charAt (2)=='X' && line. charAt (3) ==' G') {

skip=true; //We skip the iiTXG field

80

DEM \n S T U D I O ggCORDYS

else{
skip=false;

- If the third character after "#T" is a "N", we have detected the end of the file, and we
apply the correspondent behavior. In this case, we only need to create the last bpm file and
the export configuration file, but we also don't include here the Java details.

if(line.charAt(2) == 'N') { //End of file detected.

- Otherwise, if the third character after "#T" is a "B", what we have detected is a table
entry. We determine what kind of table is by calling the function newtable().

if(line.charAt(2) == 'B') {
space = line.indexOf(' '};
table = line.substring(3,space);
newtable(table);

//WHITE TABLE IN THE DOM TREE
node_table = doe.createElement(table);
Rest of behavior tor table entries

- Else, if the third character after "#T" is not "N", neither "B", what we have found is a
normal field entry:

else { //Otherwise is a field
Behavior for field entries.

- Now, we come back to an else clause that refers the case in which the first character is
"#", but the second is not "T". These are the fields that should be skipped in the
conversion, so the only we do here is put to true the value skip, to note also that the
posterior content values should be skipped as well.

//If the secorid character of the l.ine is not ï
skip = true; //We have detected #KW or IEOP

- After all this parse method, we take a new line of the file. We continue then analyzing all
the file like this, until we find the end of the file line "#TN".

try {
line=lnr . readLine () ;

} oatch (lOException io) {
System. err .println ("I/O failed in reading a new line\n");

V.2 Modular structure
To make the overview of the Java program more complete, in this point, we explain the
functions that we use in the Java program, as well as the main relationships between them.

81

ggCORDYS

These relations are showed in the diagram displayed below, where you can see that the
main() program, after apply a parser to the initial input (ASCII file), calls the function
createFileQ to obtain the XML-
DEM intermediate files, and from createFile(), the function formatFile() is called to obtain the
final ouput (XML Studio files).

Figure 2: Structure of the Java functions
Here is a list of the used functions with a small explanation about each one:

newtabteO: This function is called from the main program w hen a new table record is
found to determine what kind of table it is.

- createFite(): Function used to create the first XML-DEM files uing the DOM tree that
has been filled according to the parser.
formatFile(): This function is applied after createFile(), to apply the XSLT templates
to the intermediate XML-DEM files. After call this function, we obtain XML files that
are similar to the final result, but a few details must be changed.
moveFile(): This function create the necessary folders to organize the files to import
according to the Studio standards.
detete(): Here are deleted all the imported fields after zip them in only one file.
transformDate(): Function used to transform the Date fields from the DEM format (
date(22,06,2003)), to the Studio format (milliseconds).
transformFont(): We use this function to transform the font of the free text.
Connectors(): Function used to transform all the fields related to connectors that had
no direct correspondence in Studio.

V.3 Template: XSLT Version file
XSLT means eXtensible Stylesheet Language Transformation. It is a language for
transforming XML documents into other XML documents. It can add new elements into the
output file (XML file), or remove elements. It can rearrange and test elements, make
decisions about which elements to display. The execution of XSLT transforms an XML
source structure into an XML result structure (tree). To execute this transformation, XSLT
uses Xpath. Xpath is syntax for defining parts of an XML source document.
The following XSLT program represent s the Template Version file of our project. This file
transforms a XML DEM file to a BPM Version file of Studio.

//The first tag declares the version and encoding of our XSLT document.
<?xml version-"l.O" encoding~"utf-8"?>

//The second tap determine the source document.
<?xmispysamplexmi C:\eciipse\workspace\DEMpackage\Versions Fi!e.xrni?>

82

DE&J ggCORDYS

//The root element declares the document as an XSL style sheet.
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

//Ouput tag give the Information on our result (output) file.
<xsl:output
method="xml"
version="string"
omit-xml-declaration="no"
indent="yes"
media-type="string"/>

//Template determines the path in the source file structure, where we going to apply the
following program.
<xsl:template matcrt="//tgbrg1 Q0">

//All elements and attributes represent the structure of our result file.
<xsl:elementname="GetCollection">

<xsl:element name="tuple">
<xsl:attribute name="key">C:\eclipse\workspace\DEMpackage\Version
</xsl:attribute>
<xsl:attribute name="objectlD"/>
<xsl:attributename="description"xxsl:value-of

select="tgbrg100.desc"/x/xsl:attribute>
<xsl:attribute name="lastModified"/>
<xsl:attribute name="name">

//Value-of copies the value of an element or attribute that is selected in our
source file.
<xsl:value-of select="tgbrg100.vers"/x/xsl:attribute>

<xsl:attribute name="lastModified">
<xsl:value-of select="tgbrg100.ridt7></xsl:attribute>

<xsl:attribute name="level"/>
<xsl:element name="vcmVersion">

<xsl:element name="old">
<xsl:elementname="documentProperties">

<xsl:element name="name">
<xsl:value-of select="tgbrg100.vers"/x/xsl:element>

<xsl:element name="description">
<xsl:value-of select="tgbrg100.desc"/x/xsl:element>

<xsl:element name="caption"x/xsl:element>
<xsl:elementname="mimeType"></xsl:element>
<xsl:element name="notes">

<xsl:value-of select="tgbrg1 OO.txtn"/></xsl:element>
<xsl:element name="version">

<xsl:value-of select="tgbrg100.vers"/x/xsl:element>
<xsl:elementname="revision"x/xsl:element>
<xsl:element name="createdBy">

<xsl:value-of select="tgbrg1O0.user"/x/xsl:element>
<xsl:element name="createdDate">

<xsl:value-of select="tgbrg100.dvdtn/x/xsl:element>
<xsl:element name="lastModifiedBy"x/xsl:element>
<xsl:element name="lastModifiedDate"></xsl:element>

</xsl:element>
<xsl:element name="Content">

<xsl:element name="parentVersion">
<xsl:value-of select="tgbrg100.dfvr"/x/xsl:element>

83

Ö E S S i s i igCORDYS

</xsl:element>
</xsl:element>

</xsl:element>
</xsl:element>

</xsl:element>
</xsl:template >

</xsl:stylesheet>

84

VI Conclusion

VI.1 About the oioiect

VL2 Challenae

86
86

D E M ggCORDYS

VI. 1 About the project
This project provides a new functionality to Cordys Studio allowing the transfer of old DEM
models from Baan Sw into Studio BPM models from Cordys BCP platform, to be executable
on Cordys BCP.

The first part of the project was mainly focused on the conversion of DEM models from Baan
Sw to Studio BPM models from Cordys BCP platform.

In a genera! way, we realized that it was necessary to understand a certain number of very
different technologies like DEM (Baan platform). Studio (Cordys BCP platform), Java
environment, DEM ASCII format, XML, XSLT, BPML, BPMN, etc... For each one of these
technologies, the objective was to obtain a good control and knowledge of the related
techniques, in order to design and get the most efficiënt software.

However, during the project we modified a little bit our original program architecture. This is
because we encountered many problems with XSLT language. The main one was that it is
not possible to use dynamic variables in XSLT , and it was necessary to convent the
connector components, and other parts of the mapping. So finally we decided to solve these
problems in Java and unfortunately a small part of the mapping is not integrated in our XSLT
template, but in the Java Code.

Nevertheless, the idea of templates to realize the mapping was a good choice. Thereafter, if
there is an evolution of Studio, it will be easy to modify the converter software with the
XSLT templates without enter into further technical knowledge of the java conversion
program, but just applying the changes in the XSLT templates.

This first part of the work will be completed by an integration of our converter software in
Studio like a new functionality.

The second part of the project will be to choose a reference model, completing this model
after the conversion to be executable in Cordys BCP platform and develop an education
guide.

VI.2 Challenge
It was an opportunity to enter the fast developing future world of e-business. We developed
experience with modeling techniques and tools. In-depth knowledge on the concepts, tools
modeling and workflow was achieved.

86

