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ABSTRACT 

This thesis describes a research project with the goal of creating a reference architecture for 

big data solutions. Big data is an evolution of the field business intelligence and at the same 

time a revolution in terms of the business value it can bring to organizations. Cloud computing 

and other inventions make massive parallel processing of data across a large amount of 

commodity PCs possible. Following the big data breakthroughs, the field of predictive analytics 

has received a boost, since boundaries of performance and costs have dropped significantly. 

Thanks to big data technology, organizations can now register, combine, process and analyze 

data to answer questions that perceived unsolvable a few years ago. An important part of the 

big data realm is open data. Anyone can obtain or access these data sources directly from the 

internet, ready to be combined with enterprise data. Useful predictions are possible by 

combining the internal data of an organization to open data and linking the datasets in a 

meaningful way. 

 

Making the right predictions is only possible when organizations choose the right technology. 

All the technology options call for a reference architecture that provides guidance to architects 

for creating big data solutions. This solution reference architecture is an abstraction of 'real' 

solution architectures. It aims to give guidance to organizations that want to innovate using big 

data technology, open data sources, and predictive analytics mechanisms for improving their 

performance. The purpose of the reference architecture is to help with setting up a concrete 

architecture for big data solutions. 

 

The Big Data Solution Reference Architecture was developed and evaluated with one iteration 

of Hevner’s Information Systems Research Framework. Angelov’s framework for analysis and 

design of software reference architectures guided the creative design process. An extensive 

literature study and a qualitative research study using grounded theory on transcribed 

interviews with big data experts forms the basis of the theoretical model. The resulting reference 

architecture consists of an abstract diagram of components and interfaces, two architectural 

patterns, two architecture principles, and two architectural best practices. 

 

Ten big data experts evaluated the final reference architecture by answering a questionnaire 

that measured several quality criteria. Their answers give the indication that the created model 

is a reasonably good reference architecture for big data solutions, with good practical usability. 

This model is of scientific and non-scientific importance, since it is be the first empirically 

reviewed solution reference architecture for big data technology. 
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1 INTRODUCTION 

The research field of business intelligence (BI) exists since the mid-1970s. The aim of BI is to 

aid decision making in organizations, hence the name of systems in the BI-area is Decision 

Support Systems. Organizations gather, process, and analyze enterprise data to gain insight in 

the performance and success of internal business processes (Power, 2007). 

 

Large organizations with few constraints on budget have since long analyzed extremely large 

datasets. To name a few examples, the United States Department of Homeland Security 

analyses computer systems and network traffic as part of its cyber-security program (U.S. 

Department of Homeland Security, 2013), NASA simulates climate changes (Mangelsdorf, 

2012), and CERN analyses gigantic datasets that are procured from its detectors in the Large 

Hydron Collider when particles are collided at near-light speed (CERN, 2013). However, this 

kind of data analyses was only attainable for a few organizations that have access to 

supercomputers. Data in that size could only be processes in a reasonable amount of time 

when using massive parallel-processing machines, for example the Titan system in the United 

States or the JUQUEEN computer in Germany (Top 500 Supercomputers, 2012). BI in the 

traditional way, using relational databases, OLAP cubes, and dedicated servers was not 

powerful enough to process very large amounts of data, unstructured data, or multiple formats 

of data in a reasonable amount of time. 

 

However, in the past few years there were several technology breakthroughs in the BI 

community. Thanks to cloud computing and the possibilities to use commodity hardware in 

parallel, it is now possible to analyze very large datasets in a relatively short time for relatively 

low costs. ‘Very large’ in this case means an order of magnitude 1000 more than before: 

thousands of terabytes of data, thousands of servers to process and analyze the data. 

According to McKinsey, “Big data refers to datasets whose size is beyond the ability of typical 

database software tools to capture, store, manage, and analyze” (McKinsey Global Institute, 

2011). The reported breakthroughs mark the start of a ‘big data’ era for ordinary organizations, 

starting with Google who invented a paradigm to crawl internet sites and rank them for search 

statistics using batch scripts that run across a multitude of ordinary PC components instead of 

a supercomputer (Brin & Page, 1998). 

 

Organizations in the public and private sectors now begin to see the benefits that exist in the 

analysis of large datasets that reside in the organization when combined with open data 

sources. With big data technology, organizations can now register, combine and process data 

to make predictive analyses that where not possible a few years ago. Useful predictions are 

possible by combining the internal data of an organization to open data and linking the datasets 

in a meaningful way. For example, an organization that sells TVs could link its internal database 



 

Big Data Reference Architecture   

 

 

© Utrecht University of Applied Sciences 

   9  

 

of TV models to an open dataset of TV reviews. It is possible to state the hypothesis that an 

increase in positive reviews of a certain model will lead to more interest for the TV model, and 

thus in more sales. The production department of the organization could prepare for that by 

producing more TVs of that model. 

 

These kind of predictions are only possible when organizations choose the right technology 

and ask the right questions. This research project focusses on the components of solutions that 

make these predictions possible. Its target is (architects of) organizations that want to innovate 

using big data technology, open data sources, and predictive analytics mechanisms for 

improving their performance. 

 

This research project will greatly help organizations in their big data / open data projects. The 

reference architecture, if proven successful, can be a solid basis for solutions that make use of 

big data technology and open datasets to predict the future of an organization. The reference 

architecture can serve as a guidance for architects working on big data projects. The reference 

architecture will be of scientific and non-scientific importance, since it will be the first empirically 

reviewed model for big data technology. 

1.1 PROBLEM STATEMENT 

The big data era has just begun; organizations are trying to find uses for the new possibilities. 

Some business cases are eminent when searching for opportunities to analyze large datasets: 

customer profiling using sales data, doing predictions of maintenance intervals of vehicles using 

sensor data, etc. When combining big data technology with open data sources, the possibilities 

for organizations are immense. To name a few: Twitter feeds can be used to gauge market 

trends on which the prices of products can be based, and geospatial data of sickness can be 

used to predict outbreaks of diseases. 

 

The problem is that companies are eager to apply big data technology and use open data 

sources, but are struggling to find a proper solution architecture for these projects. There is little 

experience in the field, and there is almost no literature of renowned source. If only these 

organizations could get some guidance in the form of a reference architecture, they would more 

easily engage projects aimed at increasing their performance by creating IT systems that make 

predictions of their enterprise data combined with open data. The results of this research project 

will support architects in aligning strategy and direction to concrete implementations of 

hardware and software technology. 
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1.2 RESEARCH QUESTION 

The research question is: 

“What is a good reference architecture for a solution that is able to use big data 

technology to perform predictive analyses of open data sources combined with 

structured, semi-structured, and unstructured enterprise data?” 

 

The word “good” implies that the research project has the ultimate goal of creating a high-quality 

reference architecture. Good in itself is an abstract word. However, the model must be 

scientifically measurable. Therefore, concrete criteria have to be set that can assess the 

reference architecture. Paragraph 3.3.2 describes these criteria and the selection method.  

 

The underlying business goals of this research question are: 

 Organizations struggle with big data and open data projects. They require guidance for 

working with the new technologies. A reference architecture provides this guidance in 

the form of a model that can be adjusted and tailored for individual organizations; 

 Creating a solution reference architecture gives insight into the workings of big data 

technology in organizations. 

 

This research question has the following sub-questions: 

 Which architecture principles, patterns, and best practices are applicable when using 

big data technology and open data sources to create a solution for predictive analysis 

of enterprise data? 

 Which components from the field of big data are good building blocks to create a 

solution architecture capable of predictive analysis of enterprise data, and in what 

configuration? 

 In what way can open data sources help to perform predictive analytics of enterprise 

data? 

 Is Angelov’s framework useful to create a reference architecture for big data solutions? 

 Is Hevner’s Information Systems Research Framework useful to create a reference 

architecture for big data solutions?  
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2 LITERATURE STUDY 

This chapter contains the results of an investigation of the existing literature in the fields of BI, 

big data, open data, predictive analytics, and reference architectures. 

2.1 BUSINESS INTELLIGENCE 

Big data has a place in the research field of BI. Gartner defines BI as “an umbrella term that 

includes the applications, infrastructure and tools, and best practices that enable access to and 

analysis of information to improve and optimize decisions and performance” (Gartner, 2012). 

The goal of BI is to support and improve decision-making. A good name of a BI system is a 

decision support system (DSS). 

 

Already in 1958, a conceptually designed BI system processed enterprise data (Luhn, 1958). 

In 1967, Wilensky introduced the concept of an organization that shows intelligent behavior by 

collecting and processing data (Wilensky, 1967). Howard Dresner (then a Gartner analyst) 

introduced the expression “Business Intelligence” in 1989 as an umbrella-term for concepts, 

technology, and methods to improve decision-making. Since then, BI is used in many 

organizations, separately or as part of an information management program. For an extensive 

history of BI, see (Power, 2007). 

 

A typical architecture for BI solutions include extract, transformation, loading (ELT) modules, a 

master data warehouse, a metadata warehouse, online analytics processing (OLAP), 

dashboards, performance scorecards and/or reports including drill-down capacities (Howson, 

2008). There is little theoretical work on BI, but there have been studies to the link to business 

strategy (Rouibah & Ould-ali, 2002). 

2.2 BIG DATA 

Traditional BI has been around for a long time and there is still a big market for IT systems with 

large data warehouses and reporting solutions. However, traditional BI cannot cope with the 

demands of organizations to store and use ever more data, process data faster, and make 

better predictions. ‘New’ data sources such as social media networks, on-line news, open data, 

sensor data from the “internet of things”, log files, email, video, sound, images and file shares 

offer huge opportunities for data analysis, which is simple too complex and demanding for 

traditional BI (Ferguson, 2012). For example, a retailer of computer supplies may want to 

analyze all actions on their web store, not just the sales transactions. Every mouse click is a 

potential source of information, based on which the organization can make a decision (e.g. 

promote products on sale). For these kind of requests, big data technology appears. 
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2.2.1 Definition 

Big data is the term that is used for the field of analysis of large datasets. The origin of the term 

‘big data’ goes back as far as the 1990s (Lohr, 2013). The term became widespread with an 

article in The Economist in 2010 (The Economist, 2010). The amount of data in organizations 

is growing rapidly. Data production will be 44 times greater in 2020 than it was in 2009 and 

there will be a 650% growth in enterprise data in the next five years (CSC, 2012). In the near 

future, many machines and other devices will get an IP address and connect to the web in the 

‘internet of things’, providing even more data to be accessed (Ashton, 2009). However, big data 

is not just about size; after all, what is ‘big’ is relative and changes across the years. Other 

aspects of big data are the speed of data (e.g. streaming media) and the different types and 

formats of the data (e.g. non-relational, semi-structured, or unstructured content). Therefore, 

the definition of big data according to Gartner is “high volume, velocity and/or variety information 

assets that demand cost-effective, innovative forms of information processing that enable 

enhanced insight, decision- making, and process automation” (Gartner, 2012). Doug Laney 

introduced this “3V” definition in 2001 (Laney, 2001). IBS and IBM provide another definition: 

“Big data is a term associated with new types of workloads that cannot be easily supported in 

traditional environments”, which indicates the switch from traditional BI to big data and the 

relativeness of the term (Ferguson, 2012). IDC expects the big data technology and services 

market to grow in revenue from $6 billion in 2011 to $23.8 billion in 2016. This represents an 

annual growth rate of 31.7% (Vesset, et al., 2012). 

2.2.2 Shared-nothing 

A report of CSC’s Leading Edge Forum described big data as both an evolution and a revolution 

(Koff & Gustafson, 2011). The evolution is the technology, which has just evolved along the 

years. The revolution is the business opportunities that have suddenly risen from this evolution 

of technology. CSC gives a good explanation of one of the fundamental technological 

breakthroughs in big data: the “shared nothing” architecture. The convergence of hardware, 

application and data architectures to a stateless "shared nothing" world, where each computing 

node is independent and self-contained is one of the fundamental differences of big data 

compared to the old “shared-disk” or “shared-memory” technologies of SAN clusters, relational 

databases and client-server applications, which rely on a central data store (Stonebreaker, 

1986). Shared nothing systems are scalable because adding extra computers (nodes) will not 

impact the general performance as in causing a bottleneck. Figure 1 gives a visual 

representation of the developments that led to the shared nothing architecture. 
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Figure 1: The convergence of hardware, application and data architectures to a stateless "shared nothing" 
world is redefining the data foundation (Koff & Gustafson, 2011) 

Big data has its origin in parallel computation algorithms developed in the 1980s. Leslie Valiant 

made an important contribution, when he introduced the Bulk Synchronous Parallel (BSP) 

bridging model for parallel algorithms (Valiant, A Bridging Model for Parallel Computation, 

1990). This model suddenly increased in popularity when multi-core processors in commodity 

hardware became commonplace and clusters of multiple computers could connect over the 

internet (Valiant, A bridging model for multi-core computing, 2010). The research fields of 

parallel computing, cluster computing, distributed computing and cloud computing all originate 

from these ideas. More recently, Google used the BSP model to create Pregel, a system for 

large-scale graph processing in which graphs represent social networks (Malewicz, et al., 

2010). Pregel in its turn forms the basis of the Apache Giraph framework. Facebook uses this 

framework to analyze the social graph of users and their connections, which is an excellent 

example of big data (Ching, 2013). 

2.2.3 Batch Processing 

Big data technology is for analyzing very large collections of data sets on shared nothing, 

parallel-distributed commodity hardware. A breakthrough came in 2004, when Dean and 

Ghemawat introduced the MapReduce programming paradigm (Dean & Ghemawat, 2004). 

MapReduce is a way to make use of commodity hardware and massive parallelism to process 

very large datasets in batches. Google used this paradigm to crawl internet sites and rank them 

for search statistics using batch scripts (Brin & Page, 1998). Once this technology became 

widespread, it became the basis of a new wave of innovative technologies to analyze data. 



 

Big Data Reference Architecture   

 

 

© Utrecht University of Applied Sciences 

   14  

 

Since a few years, it is possible to process data of a size that was previously not possible, at 

an enormous speed. 

2.2.4 Software 

The world of big data technology has concentrated around a number of free and open-source 

software (FOSS) components. A very important framework is the Apache Hadoop ecosystem, 

which offers an implementation of the MapReduce algorithm and HDFS, a distributed file 

system. The big data technology group includes more than MapReduce, for example the 

underlying file system (e.g. GFS (Ghemawat, Gobioff, & Leung, 2003)) and database (e.g. 

BigTable (Chang, et al., 2006) and HBase). There are a number of commercial products 

available that provide enterprise solutions based on Hadoop, for example Cloudera, 

Karmasphere, MapR, HortonWorks, and IBM InfoSphere BigInsights (Kolbielus, 2012). Other 

examples of commercial big data products are Amazon Web Services Elastic MapReduce, 

Infochimps Enterprise Cloud, EMC GreenPlum, Microsoft Windows Azure, and Google 

BigQuery (Feinleib, 2012). Some system integrators such as CapGemini, Accenture, CSC, HP, 

and Dell offer big data products and services to their clients. 

2.2.5 NoSQL 

Shared nothing architectures also form the basis of a relatively new type of lightweight, non-

relational database that are often part of a big data solution: NoSQL databases. The purpose 

of these databases is to store unstructured and semi-structured data such as files, documents, 

email, and social media. Carlo Strozzi coined the term “NoSQL” in 1998 when he developed a 

database without a SQL interface (Lith & Mattson, 2010). In 2009, Eric Evans reintroduced the 

term when he organized a meeting at Last.fm in San Francisco. Participants in the meeting 

discussed several “open source, distributed, non-relational databases” databases: Voldemort, 

Cassandra, HBase, Hypertable, and CouchDB (Evans, 2009). This was the beginning of the 

NoSQL movement. Since then, databases with NoSQL-characteristics have won in popularity; 

presently there are several variations and implementations (Edlich, 2013). In particular, 

Google’s BigTable (Chang, et al., 2006) and Amazon’s Dynamo (DeCandia, et al., 2007) have 

set the standard. Strozzi suggests renaming the NoSQL movement to “NoREL”, which would 

be a better name for this database type since it abandons the relational model altogether 

(Strozzi, 2012). There are certainly some drawbacks to NoSQL databases, for example an 

increased rate of overhead and complexity, and a decreased reliability and consistency (Leavitt, 

2010). However, these characteristics are an intended result of the design of NoSQL 

databases; rather than the traditional relational databases which guarantee atomicity, 

consistency, isolation, and durability (ACID) in transactions (Gray, 1981), NoSQL databases 

are basically available, soft state, and eventually consistent (BASE), meaning that eventually 

all data in a system will get updated and become consistent (Vogels, 2009). For a short 

overview of NoSQL databases, see (Cattell, 2010). 
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2.2.6 Visualization 

Big data can greatly benefit from visualization techniques. When analyzing very large amounts 

of data, business users have to interpret the results. Text is difficult to process for people; 

images and graphs are preferred over tables. Therefore, there is specialized software for big 

data visualization. A good example an illustration of the human genome by the Circos tool, 

showing location of genes implicated in disease, regions of with self-similarity and those with 

structural variation within populations (Krzywinsk, et al., 2009). 

2.2.7 Stream Processing 

After MapReduce, several new technologies appeared that create even more possibilities for 

organizations. An important technique is the streaming of high-speed data. Platforms such as 

S4 (Neumeyer, Robbins, Nair, & Kesari, 2010), Twitter Storm, and Akka are capable of 

processing enormous amounts of data in (near) real-time, by making use of clever algorithms 

and the architecture principles that were already used for MapReduce: massive parallelism on 

commodity hardware. 

2.2.8 Data sources 

Examples of big data sources are: 

 Astronomical data; 

 Climate data; 

 Credit card transactions; 

 Customer transactions in large supermarkets; 

 Digital books; 

 Enterprise email; 

 Genetic information, e.g. the human genome; 

 Health data, e.g. the combined heart pulse ratios of all patients in a hospital; 

 Mouse-clicks on the web; 

 RFID tags; 

 Sensor data from machines, e.g. trains, airplanes, construction tools; 

 Signals for intelligence analysis, e.g. used by ministries of defense; 

 Social media sites, e.g. Twitter and Facebook. 

2.3 OPEN DATA 

Open datasets are datasets which are publicly available for use. The impact that open data can 

have becomes apparent in the true story of Moneyball, where a baseball team becomes very 

successful with a marginal budget by using statistical analysis of player data (Lewis, 2004). 

This kind of “data-first thinking” is becoming more fashionable in commercial and governmental 

organizations, again pleading for the need for a reference architecture that combines the 

strength of open data sources and big data technology. 
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2.3.1 Definition 

As in free software, open data are ‘free’ as in ‘free speech’, not in ‘free beer’ (Stallman, The 

Free Software Definition, 2013). According to opendefinition.org: “A piece of content or data is 

open if anyone is free to use, reuse, and redistribute it — subject only, at most, to the 

requirement to attribute and/or share-alike” (The Open Knowledge Foundation, 2009). The 

European Commission wants to open up government data, because “information already paid 

for by the public purse should not be paid for again each time it is accessed or used” (European 

Commission, 2012). This research project extends the open data definition to incorporate 

commercial open data sources, i.e. data is not free of charge. The reason for broadening the 

scope is that otherwise the dataset would be too limited, and primarily originating from 

governmental organizations. The reference architecture considers open data to be data that is 

accessible for anyone, be it free or paid. This means that organizations who want to use Twitter 

feeds, Facebook likes, financed sports data, and so forth, to combine with their enterprise data 

in a big data solution will benefit from the resulting reference architecture. By extending the 

open data definition, the reference architecture gets a wider scope and is suitable for more use 

cases. 

2.3.2 Repositories 

Braunschweig et al. of the Technical University Dresden studied over fifty open data platforms 

and found that, unsurprisingly, the current open data repositories vary greatly in size, domains, 

technology, form, and purpose (Braunschweig, Eberius, Thiele, & Lehner, 2102). However, they 

argue that the usefulness and appropriateness of open data sources is varied, and therefore 

architects have to evaluate each source carefully before using it in an enterprise organization. 

Subsequently, Braunschweig et al. created an overview of possible features of open data 

platforms (sources) and datasets. They list requirements for a successful open data platform 

and dataset, grouped into categories. For example, the API of a successful open data source 

has the feature or requirement of fine-grain access and a successful dataset within that source 

has indeed a granularity of raw data. The possible features and requirements formed the basis 

of a classification model for open data platforms. Figure 2 contains a duplication of this model. 
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Figure 2: Classification of open data platforms (Braunschweig et al., 2012) 

Figure 2 contains four categories (or dimensions) for classification of open data sources: Level 

of Integration, Form of Access, organization, and Technical Implementation. Each category 

contains two or three options for classification. Each option has a certain value, e.g. a 

“Collection of Links” is a lesser form of open data than “Integrated Database”. Braunschweig et 

al. used this classification model for a survey of open data repositories. The website of the 

University of Dresden contains the results of the survey are published at (The Open Data 

Survey, 2013). The findings were not encouraging: most open data repositories do not 

implement standards, do not use open APIs, and contain data in a non-machine readable 

format. 

2.3.3 Open Science Data 

Open science data is open data acquired through scientific research. Open data is recognized 

as an important contribution to science; however there is still reluctance to publish datasets free 

for anyone to use (Murray-Rust, 2008). An example of open science data is the Human Genome 

Project, which created a map of human DNA. The US government released the resulting data 

to the private sector to stimulate the biotechnology industry (U.S. Department of Energy 

Genome Program, 2012). The European Commission recommends open access of scientific 

data (European Commission, 2012). Other examples of places where scientific open data 

sources are located are http://linkedscience.org/data and http://data.uni-muenster.de. 

2.3.4 Variations 

Open datasets come in two basic variations: dynamic and static. Updates to a static open 

dataset only happen occasionally. For example, the dates of public holidays are only updated 

once a year. Updates to dynamic open datasets are regular and these datasets provide (near) 

real-time information. For example, weather data is updated almost continuously. Users can 

http://linkedscience.org/data
http://data.uni-muenster.de/
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acquired open datasets in many ways: as downloadable content on servers connected to the 

internet, written on CDs or DVDs, etc. Modern ways to publish data is via APIs or web services 

using SOAP or REST protocols, to make machine-readable datasets. When exchanging open 

data, these protocols are important as they determine the data format and data access method. 

Common open data protocols are Microsoft’s OData (Microsoft, 2013), Google’s GData 

(Google, 2012), and W3C’s RDF (W3C, 2004) and SPARQL (W3C, 2013). Data management 

systems such as CKAN (The Open Knowledge Foundation, 2013) can help to open, store, and 

distribute datasets. There are websites that host open data for small groups, communities, 

commercial or governmental organizations, for example http://datahub.io. 

2.3.5 Examples 

Examples of governmental open data sources are http://publicdata.eu/, http://data.gov, 

http://data.gov.uk, http://data.overheid.nl, and http://data.worldbank.org. Examples of 

commercial open data sources are The World Bank, Twitter (microblogging), LinkedIn 

(business network), Kadaster (the Dutch national land registry office), RDW (Dutch national 

registration of cars), and OpenWeatherMap (weather data). 

2.4 PREDICTIVE ANALYTICS 

Predictive analytics is a complex field of research that has its origin in Artificial Intelligence. 

2.4.1 Definition 

The aim of predictive analytics is to predict the future based on historical data, possibly 

combined with open data sources. By making use of clever algorithms, and statistical models, 

people working on predictive analytics try to find trends in the data and then project these trends 

to say meaningful things about the upcoming events. The results of predictive analytics always 

contain uncertainties. Predictions and forecasts contain a certain amount of probability, for 

example: “There is a chance of 67% that a customer buys book A if he has already bought book 

B, if we offer book A for the price of X”. In sophisticated models, the probabilities spread out in 

a function, for example a normal distribution. This helps organizations to make decisions and 

to mitigate risks. Techniques from the fields of statistics and machine learning can be used or 

combined; a predictive analysis engine or forecasting program can contain regression models 

and/or neural networks, for example in time series forecasting (Zhang, 2003). Examples of 

concrete prediction methods are autoregressive integrated moving average (ARIMA) and 

machine learning. The concept of a model is crucial in predictive analytics; the model 

determines the prediction based on the data. This model is constantly adjusted, tuned, 

optimized, and trained depending on the environment and altering insights of the users. 

 

Predictive analytics is not a new research field. There are already a number of success stories, 

for example in insurance companies (Nyce, 2007). It has recently received more attention due 

to the big data era, since it has become easier to analyze large amount of data in various forms. 

http://datahub.io/
http://publicdata.eu/
http://data.gov/
http://data.gov.uk/
http://data.overheid.nl/
http://data.worldbank.org/
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More data and more variations in data simply mean that more predictions are possible, with 

more data sources. There are several free and open-source tools that can be used for predictive 

analytics, including R, KNIME, Orange, and Weka. In addition, enterprise software vendors 

such as Angoss, Alteryx, KXEN, Salford Systems, StatSoft, SAP, SAS, IBM, Tibco, and Oracle 

provide solutions that help with analyzing data and predicting the future (Gualtieri, 2013). 

2.4.2 Data Exploration and Discovery 

A special case of predictive analytics and data mining is data exploration and discovery. Other 

names for this research field are knowledge extraction and knowledge discovery. With big data, 

it is possible to analyze and combine very many data from very many different sources. 

Specialized software can identity relationships or clusters in those combinations of data sets, 

which are invisible to the human eye (Fayyad U. M., Piatetsky-Shapiro, Smyth, & Uthurusamy, 

1996). For example, by combining the family history of patients in a hospital with the diagnosis, 

a computer program can identify if a certain disease has a genetic nature. Another purpose of 

data exploration and discovery is the correlations between geographic data, email, video, and 

other data sources in homeland security, to identify possible national security threats. With the 

increasing use of the internet, a wealth of data is available that has real value in data exploration 

and discovery use cases. For instance, web usage data, mouse clicks, and weblogs that 

together determine the behavior of people possibly correlate to demographic data or healthcare 

records. 

 

The main difference between data exploration and discovery with other areas of predictive 

analytics is that the order of data sources does not matter. In ‘normal’ predictive analytics, there 

usually is a time sequence or transaction sequence, where in data exploration and discovery 

the data is just ‘there’, in a random or unimportant order. In addition, data exploration and 

discovery calls for a data-driven approach, whereas business questions or use cases drive 

other methods of predictive analytics. In data exploration and discovery, there is no a priori 

hypothesis for the results of the analysis. 

 

There are several techniques and methods available from the fields of mathematics and 

artificial intelligence that have a relation with data exploration and discovery, for example 

association rule learning, spatial indices, affinity analysis, pattern recognition, and certain 

machine learning algorithms (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). Some commercial 

vendors (e.g. SAS and IBM) offer solutions specifically for data exploration and discovery 

(Cheung, Resende, Lindner, & Saracco, 2012). K-means, decision trees, deep learning (multi-

layered neural networks) and random forests (weighted multiple decision trees based on 

randomly selected sets of variables) are the most successful prediction algorithms. 

2.4.3 Drawbacks 

Predictive analytics is a research field that offers huge opportunities and interesting business 

cases, but performing predictive analytics can be very difficult. There is some debate about the 
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practical use of predictive analytics, and the real-world possibilities. Recently there has been 

discussion if a tool such as Google Trends can actually predict the stock market (Leinweber, 

2013). The discussion shows that scientists are debating the worth of predictive analytics tools. 

Nate Silver described the difficulties of performing predictive analytics in his book of 2012 

(Silver, 2012). He argues that although we have the tools of statistics and analytics, humans 

fail to get to the real meaning of (big) data because of our limited understanding of uncertainty 

and probability. These observations must serve as a reminder to the fact that technology such 

as big data may not be the key to predicting the future. A reference architecture for big data 

and predictive analytics will be helpful, but the architects and business people using it must 

concern themselves about the complexity of the research field. 

2.4.4 Examples 

Some examples of specific uses for predictive analytics are: 

 Demand forecasting (e.g. in manufacturing, consultancy); 

 Disease outbreak detection; 

 Financial forecasting; 

 Forensic analytics; 

 Fraud detection (e.g. in credit card transactions, financial crimes in banks, claims, tax); 

 Predicting customer behavior based on historical sales data; 

 Predicting customer behavior based on social media sentiment analysis; 

 Video analysis. 

2.5 REFERENCE ARCHITECTURES 

A reference architecture is an abstraction of ‘real’ architectures. There are various forms of 

reference architectures: enterprise reference architectures, solution reference architectures, 

information systems reference architectures, etc. This paragraph explains the concept of a 

solution reference architecture, and the various possible implementations. 

2.5.1 Definition 

A solution reference architecture is a skeleton for a solution, where the elements are templates 

or outlines for components. According to Muller, architects can use a reference architecture as 

guidance to create a concrete architecture for their organization, business context and 

technology (Muller, A Reference Architecture Primer, 2008). A solution reference architecture 

contains hardware and components, patterns and best practices, principles, and presents itself 

in a visually appealing way. Typically, proven existing architecture form the basis for a reference 

architecture. According to the Rational Unified Process, a reference architecture is “in essence, 

a predefined architectural pattern, or set of patterns, possibly partially or completely 

instantiated, designed, and proven for use in particular business and technical contexts, 

together with supporting artifacts to enable their use. Often, these artifacts are harvested from 

previous projects.” (Reed, 2002) This definition targets, so it is applicable for this research. 
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However, several authors have tried to generalize this definition. Cloutier et al. defined the true 

purpose of reference architectures. Figure 3 contains a summary of their conclusions (Cloutier, 

et al., 2010). 

 

 

Figure 3: The role of reference architectures (Cloutier et al., 2010) 

2.5.2 Framework for analysis and design 

In 1996, the general framework for enterprise reference architectures GERAM was developed. 

It contains an overview of the contents of a generic reference architecture (Bernus & Nemes, 

1996). GERAM eventually evolved into a model with a methodology and enterprise-modelling 

framework (IFIP–IFAC Task Force on Architectures for Enterprise Integration, 1999). Although 

the model is very consistent, it is abstract is not as practical and hands-on as other frameworks. 

Angelov et al. defined a more useful framework for the analysis and design of software 

reference architectures (Angelov, Grefen, & Greefhorst, 2012). The framework contains 

classifications of reference architectures, for different context of use of a reference architecture. 

2.5.3 Varieties 

A reference architecture can be either horizontal (industry-independent) or vertical (industry-

specific). Muller and Van de Laar researched architectural frameworks and architecture 

methods, and found that these concepts are not domain specific, and thus horizontal, in 

comparison to system and product line architectures. They argue that reference architectures 

are similar to the system and product line architectures as they generally contain more domain 

information, with the difference being mainly in the abstraction level; reference architectures 

are abstract (Muller & Laar, Researching Reference Architectures and their relationship with 

frameworks, methods, techniques, and tools, 2009). However, this research project aims for a 
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horizontal reference architecture, independent of industry or organization size. That provides 

the risk that the reference architecture will become too general. 

 

The aim of the Big Data Solution Reference Architecture is to be technology-independent. The 

model will contain conceptual components, with a list of options as possible implementations. 

These options are free and open-source projects such as Apache Hadoop and Cassandra, as 

well as products and solutions of commercial big data vendors such as EMC, IBM, Microsoft, 

Oracle, SAP, and SAS. The technology itself does not matter, the business value it brings does. 

2.5.4 Examples 

Examples of domain-specific, technology-independent reference architectures are AUTOSAR 

for the automobile industry (AUTOSAR, 2013) and SAFE for federated enterprises, as part of 

the MIKE2.0 standard for information management (McClowry, Rindler, & Simon, 2012). 

 

The Dutch government used various reference architectures for different domains, for example: 

 NORA for all government organizations (Goutier & Lieshout, 2010); 

 GEMMA for local municipalities (KING - Kwaliteitsinstituut Nederlandse Gemeenten, 

2011); 

 ROSA for educational organizations (Ministry of Education, Culture and Science, 

2012); 

 The NICTIZ reference model for hospitals (Nictiz, 2013). 

 

A solution reference architecture that is similar in scope and goal to the Big Data Solution 

Reference Architecture is IBM’s SOA Solution Stack. IBM designed this reference architecture 

for architects who are creating a service-oriented architecture solution. The model contains 

elements from several layers like infrastructure, application, and business (Arsanjani, Zhang, 

Ellis, Allam, & Channabasavaiah, 2007). In its broadest context, application platforms such as 

Java EE and Microsoft SharePoint are domain-independent reference architectures; they 

define the context for applications and provide tools, mechanisms, and best practices to help 

developers create real solution architectures and software solutions. 

2.6 SUMMARY 

To summarize this literature study: the combined force of big data technology, predictive 

analytics, and open data offers a wealth of possibilities for organizations that want to make 

predictions about the future. There are plenty of free and open-source big data products and 

frameworks. In addition, several commercial vendors offer big data products or as-a-service 

platforms. Organizations will have to choose components for their big data solutions, and find 

ways to approach the big data projects. A big data solution reference architecture will facilitate 

and guide architects of these organizations. 
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3 RESEARCH METHOD 

This chapter describes the research method for the research project. The method contains 

three models: Hevner’s Information Systems Research Framework, Angelov’s framework for 

designing reference architectures, and Kazman’s Software Architecture Analysis Method 

(SAAM). The latter two are interpretations of the elements Develop/Build and Justify/Evaluate 

of Hevner’s model. 

 

Hevner’s model (Hevner, March, Park, & Ram, 2004) is the de facto standard for creating 

information systems artifacts. It is perfectly suited to structure the design of the Big Data 

Solution Reference Architecture, since that is an information system artifact based on business 

needs and existing literature (the knowledge base). Figure 4 contains and overview of Hevner’s 

model. 

 

Figure 4: Information Systems Research Framework (Hevner et al., 2004) 

In Hevner’s framework, the business needs of the ‘environment’ identify new artifacts, such as 

the new to be developed reference architecture. In the Big Data Solution Reference 

Architecture case, the problem statement of this research proposal contains the business needs 

(see paragraph 1.1). Next, a loop of develop, justify, develop, justify … creates the artifact, 

using the existing knowledge base. Finally, executing the two steps in the bottom of the diagram 

apply the artifact to the environment, and make it an addition to the knowledge base. 
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The research project for a big data solution reference architecture executes all steps in Hevner’s 

framework, with the exception of the application in the appropriate environment. The 

assess/refine loop was completed once. More iterations would be desirable, as this would 

increase the quality of the model over time; however, due to time restrains this was not possible. 

In short, there were five steps in the research method. The numbers correspond to the blue 

circles in Figure 4: 

1. Problem statement (see paragraph 1.1) and literature review (see paragraph 3.1); 

2. Development of reference architecture, using the existing knowledge base and the 

expert interviews (see paragraph 3.2); 

3. Justification / evaluation of reference architecture (see paragraph 3.3); 

4. Addition of the reference architecture to the knowledge base (see paragraph 3.4). 

 

The following paragraphs explain these steps in detail. 

3.1 LITERATURE REVIEW 

The first step in the research method is a literature review. By researching the existing 

knowledge base of both scientific and non-scientific sources, the researcher got an overview of 

the current state of affairs in BI, big data, open data, predictive analysis, and relevant reference 

architectures. In Hevner’s model, the insights from the literature form a basis of the new 

information system artifact. In the case of designing the Big Data Solution Reference 

Architecture, the relevant literature was searched for elements that could be reused in the 

model. For example, if the literature contains lists of software components for a big data 

solution, these components could possibly be included in the reference architecture in an 

abstract form. 

3.2 DEVELOPMENT OF REFERENCE ARCHITECTURE 

Angelov’s framework guided the development of the reference architecture. Figure 5 contains 

an overview of the process. 

 

Figure 5: The design of a reference architecture (Angelov et al., 2012) 

The following paragraphs describe the steps in this process. 
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3.2.1 Define “Why”, “Where” and “When” 

Angelov’s model requires a clear statement on the following aspects of the reference, before 

commencing the design of the model: 

 The goal of the reference architecture (“Why”); 

 The application context of the reference architecture (“Where”); 

 The timing aspects of the reference architecture (“When”). 

3.2.2 Classify the reference architecture 

Next, the architecture type was classified using these “Why”, “Where” and “When” answers. 

This gives the reference architecture a place amongst other reference architectures, in one of 

the five types defined by Angelov et al. 

3.2.3 Invite stakeholders (“Who”) 

To gather more data for the creation of a reference architecture, the research conducted a 

number of interviews with experts in big data, open data, and/or predictive analytics. The 

interview data formed the basis for the reference architecture. Qualitative data analysis 

techniques facilitated in acquiring the building blocks of the reference architecture. 

3.2.4 Define “What” and “How” 

The activity in this step was to define the following characteristics of the final reference 

architecture: 

 The concreteness of the described components; 

 The representation, e.g. visually or text; 

 The level of details. 

 

To generate the model (the reference architecture) from the data, the researcher conducted 

several iterations grounded theory. Grounded theory is “theory that was derived from data, 

systematically gathered and analyzed through the research process. In this method, data 

collection, analysis, and eventual theory stand in close relationship to one another.” (Corbin & 

Strauss, 2008) A central process in grounded theory is coding, a practice where the researcher 

processes the transcripts of interviews (or other sources such as diagrams, field notes, etc.) by 

labelling text and categorizing the labels (codes). When working in iterations, with each iteration 

the code base diminishes in size as the understanding of the researcher grows and codes group 

or combine. For more explanation of grounded theory and the coding process, see chapter 22 

of (Bryman & Bell, 2007). 

 

Performing grounded theory as qualitative analysis of the interview data produced concepts 

that were used in the creation of the reference architecture. The researcher transcribed and 

coded the interview data using qualitative data analysis (QDA) software. For example, if a large 

number of architects mention a type of database, it will be logical to include that database in 

the reference architecture. The interview data, together with the literature, gave insight into 
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concepts such as hardware and software components, frameworks, architecture principles, and 

best practices that could serve as generic components in a reference architecture. As such, the 

concepts coming from the qualitative data analysis of the interviews forms the basis of a new 

reference architecture, which is actually a conceptual model for organizations when they start 

working with big data technology and open data sources. 

3.2.5 Summary 

Angelov et al. created a model for creation and classification of reference architectures, wherein 

answers to questions are guiding the type of a reference architecture. The model consists of 

dimensions, split up in sub-dimensions. Each sub-dimension has a code and is linked to one 

question, with the exception of sub-dimension ‘Design (D)’ in dimension ‘Goal (G)’, which is 

linked to four questions (D1 – D4). The model is summarized in Table 1; the first column lists 

the dimensions of the types of reference architectures, the second column contains the codes 

and names of the sub-dimensions and the third column contains the questions (sometimes with 

codes) that are linked to the sub-dimensions. The downward-pointing arrows indicate the logical 

dependencies in the model; e.g. the possible answers to the “where”, “who” and “when” 

questions follow from the answer to the “why” question. 

Dimension Sub-Dimension Question 

Goal G1 Why 

↓ 

Context C1 Where 

Context C2 Who 

Context C3 When 

↓ 

Goal G2 D1: What 

Goal G2 D2: Detail 

Goal G2 D3: Concreteness 

Goal G2 D4: How 

Table 1: The multi-dimensional space for reference architectures (derived from Angelov et al., 2012) 

3.3 JUSTIFICATION / EVALUATION OF REFERENCE ARCHITECTURE 

After creating the Big Data Solution Reference Architecture, it was justified and evaluated 

according to the research design. This is step 3 in Hevner’s Information Systems Research 

Framework (see Figure 4). Angelov’s framework for analysis and design of reference 

architectures offers a good method for analysis of a reference architecture. In Angelov’s 

analysis method, dimensions of a reference architecture produce a classification of the model. 

While this method is perfectly usable for any reference architecture, applying it to the Big Data 
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Solution Reference Architecture would not produce any new insights, since the model was 

already created by setting the dimensions (see paragraph 3.2 and 4.2). Therefore, the outcome 

is already defined: the reference architecture will be of type 3. 

 

Since Angelov’s framework is not suitable for the justification/evaluation phase, a short 

literature search was done to select a proper method for the analysis of the Big Data Solution 

Reference Architecture. The following paragraphs describe the selected method and the 

implications for the remainder of the research project/ 

3.3.1 Method 

The goal of the research project is to create a ‘good’ reference architecture. ‘Good’ means that 

big data architects and other potential users consider the model of high quality. As stated in the 

research question (see paragraph 1.2), ‘good’ and ‘high-quality’ are not concrete and 

measurable. Therefore, these terms were ramified into concrete criteria. 

 

There are several methods of evaluating (reference) architectures using criteria. Most of these 

methods target a specific type of architecture, for example software architectures or enterprise 

architectures. There are no known, well-documented methods for evaluating reference solution 

architectures, in contrary to the analysis of software architectures. Abowd et al. compared the 

architecture analysis methods questionnaire, checklist, scenarios, metrics, and 

prototype/simulation/experiment (Abowd, et al., 1997). They found that a questionnaire is most 

suitable for evaluating general architectures, with ‘coarse’ level of detail, in an early phase. 

These characteristics suit the Big Data Solution Reference Architecture perfectly. Accordingly, 

the questionnaire method was chosen for the analysis of the model. 

3.3.2 Criteria 

Dobrica and Niemalä analyzed the quality attributes of the most widely used software 

architecture analysis methods (Dobrica, Liliana & Niemalä, 2002). They found that the Software 

Architecture Analysis Method (SAAM) (Kazman, Bass, Abowd, & Webb, 1994) and its 

derivatives focus on the criteria maintainability, portability, modularity, and reusability. 

Examples of criteria used with the ATAM method (Kazman, et al., 1998), which is a successor 

of SAAM, are modifiability, security, performance, and availability. The criteria of SAAM 

functioned in an evaluation of a software reference architecture by Graaf et al. They found that 

the SAAM method and the provided criteria are suitable for evaluating a reference architecture 

(Graaf, Dijk, & Deursen, 2005). Therefore, the SAAM criteria form the basis for the evaluation 

of the Big Data Solution Reference Architecture. The criteria of portability was removed from 

the list, since it only relates to software architectures (regarding elements such as software 

compilers and platforms), which is too specific for the Big Data Solution Reference Architecture. 

Two additions were made to the list of criteria: performance and scalability. A big data solution 

relies on the speed of data processing (velocity), so the reference architecture has to be 

intrinsically high-performing. Since big data is about scale and size (volume), the solution 
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architectures that spring from the reference architecture have to be scalable. Therefore, the 

reference architecture in itself has to incorporate scalability as well. 

 

To summarize, the five criteria for the evaluation of the Big Data Solution Reference 

Architecture are: 

 Maintainability: the ease with which the reference architecture and concrete 

implementations of the reference architecture can be maintained in order to isolate and 

correct defects or their cause, meet new requirements, make future maintenance 

easier, or is able to cope with a changed environment. This is also known as robustness 

or fitness; 

 Modularity: the compartmentalization and interrelation of the parts of the reference 

architecture, which allows the reference architecture and its components to be 

manageable for the purpose of implementation and maintenance. This is also known 

as partitioning or loose coupling; 

 Reusability: the likelihood that the reference architecture and its components can be 

used for other purposes and use cases. This is important for the model since it should 

be flexible and generic; 

 Performance: the amount of useful work accomplished by the reference architecture 

compared to the time and resources used; 

 Scalability: the ability of the reference architecture and its components to handle a 

growing amount of work and its ability to be enlarged to accommodate that growth. 

3.3.3 Questionnaire 

To evaluate the Big Data Solution Reference Architecture, the researcher presented the model 

to group of 50 big data specialists. The subject matter experts that were interviewed in step 3 

were part of the invited group. Together with the reference architecture, this group was given a 

questionnaire that targets the underlying criteria of a ‘good’ big data reference architecture, as 

well as some additional characteristics. The researcher created the questionnaire on-line with 

the software of Qualtrics and distributed it via a link in an email. Respondents could participate 

anonymously in the survey. The questionnaire consists of four following sections. The following 

sub-paragraphs contain the rationale behind these sections, and the contents of the 

questionnaire. 

3.3.3.1 Section 1: Introduction 

The first section contains two closed multiple-choice questions that indicate the primary working 

role and the level of knowledge and experience about big data and predictive analytics. 

Answers to these questions can be used to filter the results, e.g. if a respondent would have no 

knowledge and experience with big data the score would possibly not be relevant. Figure 6 and 

Figure 7 display the questions and possible answers in this section, as presented to the 

respondents on screen. 
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Figure 6: Section 1, question 1 

 

Figure 7: Section 1, question 2 

3.3.3.2 Section 2: Impressions of the Big Data Solution Reference Architecture 

This section contains eight closed multiple-choice questions that evaluated the general 

characteristics of the reference architecture. The first four questions asked after the likeliness 

that the respondent will use the elements of the Big Data Solution Reference Architecture in his 

or her daily work. The scale for this question is: very unlikely (score 1), unlikely (score 2), 

undecided (score 3), likely (score 4), and very likely (score 5). Answers to this question will give 

an indication of the usefulness of the model. Figure 8 contains an overview of the questions 1 

to 4, as displayed to the respondents on screen. 

 

Figure 8: Section 2, questions 1 to 4 

In the following four questions, respondents were asked to rate some aspects of the reference 

architecture on a scale of ‘poor’ to ‘excellent’. Answers to these questions will provide an 

indication of the meaning of potential user of the reference architecture. These answers serve 

as basis for future improvements to the, in subsequent iterations of Hevner’s framework. Figure 

9 gives an overview of these questions, as presented to the respondents. 
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Figure 9: Section 2, questions 5 to 8 

At the bottom of the section, a free text box offered the respondents the opportunity to give 

explanatory remarks about their answers. 

3.3.3.3 Section 3: Quality of the Big Data Solution Reference Architecture 

The third section contains six questions that evaluate the quality of the reference architecture. 

The questions and possible answers are displayed in a matrix, with the questions on the vertical 

axis and the possible answers on the horizontal axis. Each question is a closed multiple-choice 

question, related to one of the criteria (maintainability, modularity, reusability, performance, and 

scalability). The criterion maintainability was evaluated by two questions: “Rate the reference 

architecture […] on the ease with which it can cope with defects […]” and “Rate the reference 

architecture […] on the ease with which it  can meet new requirements […]” The other criteria 

all have one related question, in the order of appearance as in the list above. There are five 

possible answers to the questions (poor, fair, good, very good, and excellent) that correspond 

to scores from 1 to 5. The combined view of scores on all criteria in section 3 gives an overview 

of the quality of the Big Data Solution Reference Architecture. Figure 10 displays the questions 

as presented to the respondents. 
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Figure 10: Section 3, question 1 to 6 

At the bottom of section 3, a text box again offers the respondents the opportunity to give 

explanatory remarks about their answers. 

3.3.3.4 Section 4: Additional questions 

Finally, section 4 contains three open questions that are optional to answer: 

 Is the reference architecture complete, or are any important components missing? 

 What are the strong and weak points of the reference architecture? 

 Please add any comments or questions in the text box below. 

 

Answers to these questions can provide further insight in the perception of the Big Data Solution 

Reference Architecture, and could contain valuable suggestions or possible improvements for 

future work. 

3.4 ADDITION OF REFERENCE ARCHITECTURE TO THE KNOWLEDGE BASE 

In the fourth and final step of Hevner’s framework, the Big Data Solution Reference Architecture 

will be published in a scientific journal. Next to that, the reference architecture will be actively 

promoted in social media, conferences, seminars, and other media. 
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4 FINDINGS AND DISCUSSION 

The previous chapter describes the research method. This chapter contains the results of the 

research project. 

4.1 LITERATURE REVIEW 

As a first step, the researcher searched the existing literature for big data architectures. Both 

scientific and non-scientific sources were used to get an overview of work that has been done 

on architectures considering big data, open data, and predictive analytics.  

 

After the literature review, in line with the research method explained in paragraph 3.1, an 

evaluation of the literature identified the usable elements for the Big Data Solution Reference 

Architecture. Paragraph 4.1.4 contains a description of that analysis. 

 

This literature review consists of three parts: 

 Scientific sources, which lists peer-reviewed articles or journal proceedings (see 

paragraph 4.1.1); 

 Commercial sources, which lists white papers and non-peer reviewed articles from 

commercial vendors (see paragraph 4.1.2); 

  Private sources: blog posts, articles, and websites created by individuals (see 

paragraph 4.1.3). 

4.1.1 Scientific Sources 

4.1.1.1 Herodotou et al. 

In 2011, Herodotou et al. published a paper about Starfish, a self-tuning system for big data 

analytics based on Hadoop (Herodotou, et al., 2011). The goal of Starfish is to get good 

performance from Hadoop by automatically tuning the system. Figure 11 contains the 

architecture of the Starfish ecosystem. 
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Figure 11: Starfish architecture (Herodotou et al., 2011) 

Starfish is interesting from an architectural point of view as Starfish has its place in a very logical 

ecosystem of big data products and frameworks. It is clear to see that Herodotou et al. see the 

big data landscape as a pipeline of data: data input on the left is processed and analyzed using 

tools such as Hadoop, HDFS, Pig, Hive, and Oozie, and finally published in a database on the 

right side of the diagram. 

4.1.1.2 Law, Schroeder, Martin, & Temkin 

An architecture that is interesting for appliance in a big data solution is the multi-threaded 

streaming pipeline architecture for large structured data sets by Law et al. (Law, Schroeder, 

Martin, & Temkin, 1999). In this architecture, data splits into smaller bits, which go into a 

pipeline. In doing so, a system built on this architecture is able to process large amounts of 

data. The architecture relies on techniques such as multithreading, data separability, and 

caching. Figure 12 explains the core concept of the architecture. 

 

Figure 12: A conventional pipeline (top) compared to a streaming pipeline (bottom) (Law et al., 1999) 
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Figure 12 shows a data pipeline for visualization use cases, e.g. computer simulation. While a 

conventional pipeline just processes data in line with the “Pipes and Filters” pattern (Avgeriou 

& Zdun, 2005), the streaming pipeline of Law et al. uses clever caching mechanisms and 

parallelization on small data pieces  to achieve better performance. 

4.1.1.3 Demirkan & Delen 

In the field of decision support systems (or commonly referred to as business intelligence; see 

paragraph 2.1), efforts are carried out to research the options for organizations to use big data 

technologies and predictive analytics. One of those studies by Demirkan and Delen produced 

an interesting conceptual architecture, see Figure 13 (Demirkan & Delen, 2012). 

 

Figure 13: Conceptual architecture of service oriented DSS (Demirkan & Delen, 2012) 

The interesting notion about this diagram and about the article in general, is that there is no 

MapReduce engine in the architecture. The reason for this is probably that the authors 

approach the subjects of big data and predictive analytics from a BI perspective, and their aim 

was to create a service-oriented architecture. However, many elements surface that are 

common to other architectures. First, the architecture contains a pipeline of data. The left side 

of the diagram contains the data input, which is imported (ETL), managed and eventually 

displayed on the machines on the right. A second notion is the traditional approach to data 

storage: a data warehouse, data marts, and OLAP are central in the architecture. That means 

big data is not necessary Hadoop, HDFS, and NoSQL. Further, Demirkan & Delen point out 

that all software components can exist in on the ‘cloud’, as a service. That is interesting when 

creating the reference architecture, since the abstract components, architecture principles, and 

best practices have to be in line with that approach. 
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4.1.1.4 Marz & Warren 

Marz and Warren introduced the concept of a Lambda Architecture for big data (Marz & Warren, 

2013). Figure 14 contains a summary of this architecture. 

 

Figure 14: Lambda Architecture diagram (Marz & Warren, 2013) 

In a Lambda Architecture, big data solutions span three layers: the Speed layer, the Serving 

Layer, and the Batch layer. Each layer has its own characteristics, and layer carries out a 

specific type of computation. For example, the Batch layer is designed to run functions that can 

be executed periodically (e.g. every day at night) and require a significant time to complete (e.g. 

2 hours), such as a MapReduce job that processes all web clicks in a web store to determine 

potential buyers’ behavior. 

4.1.1.5 TechAmerica Foundation 

The TechAmerica Foundation, which includes scientists of the Western Governors University 

and North Carolina State University as well as analysts of IBM, SAP, and Amazon, examined 

big data from a government perspective and created a “Big Data Enterprise Model”, replicated 

in Figure 15 (TechAmerica Foundation, 2012). Although this model is not in a peer-reviewed 

paper, the scientific nature and non-commercial goals of the framework justify the treatment of 

this literature source as scientific. 
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Figure 15: Big Data Enterprise Model (TechAmerica Foundation, 2012) 

TechAmerica’s model clearly shows some components we already encountered in other 

literature, for example MapReduce and dedicated databases. Interesting elements of the model 

are the structured, semi-structured, and unstructured data sources on the left side of the 

diagram, which serve both as input and as output to the architecture. To use them, 

TechAmerica defined abstract components in the “Infrastructure” layer and “Connectors” and 

“Analytic Applications” in the “Accelerators” layer. The interesting notion about this model is that 

is does not focus on the technology, but rather on the functional aspects of the architecture, 

something which can be maintained in the Big Data Solution Reference Architecture. 

4.1.2 Commercial Sources 

4.1.2.1 Karmasphere 

Karmasphere presents an example of an existing domain-independent reference architecture 

for big data, built on Hadoop. Figure 16 contains an overview of this reference architecture 

(Harris, 2012). 
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Figure 16: Hadoop environment of Karmasphere (Harris, 2012) 

Karmasphere is one of the companies who have built a commercial offering on top of a free 

and open source software stack. Their reference architecture (or environment) contains generic 

building blocks in a layered structure. The model is consistent and complete, but since it is 

abstract and high-level, the practical is limited. More concrete implementation options, more 

descriptive text, and examples of real-world usage would improve the model. 

4.1.2.2 Hortonworks 

Hortonworks names the Apache Hadoop framework a data refinery, in analogy with the oil 

industry (Hortonworks, 2012). This principle results in a reference architecture as depicted in 

Figure 17. 

 

Figure 17: Big Data Refinery architecture (Hortonworks, 2012) 
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Hortonworks’ model is interesting because it is a very simple representation of a big data 

reference architecture, in which many software components find a place that are also in the 

other literature: structured and unstructured data sources, Hadoop, HBase, Hive, traditional BI, 

various types of databases, etc. That makes the Big Data Refinery model an interesting basis 

to build the Big Data Solution Reference Architecture on, although it would need concretization 

and expanding. 

4.1.2.3 Fujitsu 

In 2013, Fujitsu published a white paper that presents “approaches” for creating big data 

solutions (Fujitsu, 2013). Figure 18 contains the high-level overview of a typical big data solution 

that is included in the paper. 

 

Figure 18: Big data solution architecture (Fujitsu, 2013) 

This paper is an extension to a white paper of 2012, in which Fujitsu elaborates on linked (open) 

data and gives thoughts about the ways to exploit big data (Mitchell & Wilson, 2012). Fujitsu 

identifies three platforms (data sources, analytics, and access) and four main steps (extract & 

collect, clean & transform, analyze & visualize, decide & act) in the process of big data analysis. 

There are four types of data in the diagram: various data, consolidated data, distilled essence, 

and applied knowledge. By its simplicity, this reference solution architecture is very 

understandable and applicable to many use cases. On the downside, the model combines high-

level components with detailed instructions for usage. For example, an in-memory database 

(IMDB) apparently lives in multiple places, touched by several data flows. 

4.1.2.4 McKinsey 

McKinsey has not actually defined an architecture for big data, but their 2011 report contains a 

list of technologies and abstract software components that are important for big data (McKinsey 

Global Institute, 2011). The list includes obvious things such as MapReduce, but also highlights 

several components on the outskirts of a big data architecture such as genetic algorithms, 

neural networks, sentiment analysis, and predictive modeling. These concepts are included in 

the analysis for the definitive reference architecture. 
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4.1.2.5 IDC 

In 2011, Philip Carter of IDC published a white paper that dives into the ‘future’ architectures of 

big data analytics (Carter, 2011). Besides giving an interesting overview of the rise of analytics, 

Carter describes a taxonomy of tools and components that make up a big data solution and 

gives a list of big data technologies. Figure 19 contains a reproduction of the taxonomy. 

 

Figure 19: Business Analytics Taxonomy (IDC, 2011) 

This taxonomy contains components from traditional BI and the ‘new world’ of big data 

analytics. What is interesting in this model is that Carter created a unique abstraction and 

classification of real-world software components, thereby giving architects a conceptual 

framework alike a reference architecture to work with. Further, the model focuses on the 

business aspects of analytics, while at the same time providing a generic overview (not industry-

specific) of components. 

4.1.2.6 Oracle 

Software giant Oracle produced a holistic capability map that contains many big data 

components (Oracle, 2012). Figure 20 contains an overview of the capability map. 

 

Figure 20: Oracle Integrated Information Architecture Capabilities (Oracle, 2012) 
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The beauty and usefulness of Oracle’s model is in the pipeline approach (Data  Acquire  

Organize  Analyze  Decide), and the abstract components that are displayed. Oracle 

elaborated on this model in their white paper of February 2013, in which an Information 

Management and Big Data Solution Reference Architecture is presented (Oracle, 2013). In that 

paper, Oracle identifies as key architecture principles: “treating data as an asset through a 

value, cost, and risk lens, and ensuring timeliness, quality, and accuracy of data”. 

4.1.2.7 SAS 

Software vendor SAS has many products and service with big data technology. SAS focuses 

mainly on the high-performance side of big data. Their technology stack includes in-memory 

databases and in-memory analytics, aimed at doing analytics as close to the data as possible 

(SAS, 2012). SAS adds two new dimensions to the “3V” model: Variability and Complexity. 

According to SAS, the increasing amount of data and the increasing variety in usable data 

sources results in an increasing amount of linking, matching, and transformation of data across 

organizations and applications.  

 

The SAS Intelligence Platform contains an overview of the SAS landscape (SAS, 2010). This 

model is a reference architecture for organizations who want to use SAS products. Figure 21 

contains a duplication of the SAS Intelligence Platform. 

 

Figure 21: SAS Intelligence Platform (SAS, 2010) 

The SAS Intelligence Platform is a combination of traditional BI and big data, the latter in the 

form high-performance analytics tools. Since this model is from 2010, it is possible that it is 

outdated and will be replace by a newer version soon. Typical big data components such as a 

distributed file system and NoSQL database are missing. This is because SAS primarily uses 

its own products, but also due to the age of the Intelligence Platform and the traditional BI point 

of view. In several recent publications, SAS highlights its dedicated big data solutions. For 

example, Figure 22 displays a model from SAS that is specific for in-memory big data analytics 

(Mendelsohn, Chew, Kent, & Holmes, 2013). This model contains several modern big data tools 

such as unstructured data sources, streaming data, Hadoop, and predictive analytics tooling. 
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Nevertheless, the model is an unclear mixture of technology, business processes, and 

industries. 

 

Figure 22: SAS in-memory analytics (SAS, 2013) 

4.1.2.8 MicroStrategy 

According to MicroStrategy, its business intelligence architecture (see Figure 23) is capable of 

big data analytics (MicroStrategy, 2012). 

 

Figure 23: Single Unified Architecture (MicroStrategy, 2013) 
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The Single Unified Architecture is very broad and complete. MicroStrategy positions only its 

own products in the platform, which makes the model very vendor-specific. The data in the 

platform flows from bottom to top and passes several (optional) components. Remarkable is 

that MapReduce is pictured as a “database”, instead of a batch-processing module. Further, 

this is a typical example of seeing big data as an evolution of BI. The title of MicroStrategy’s 

web page is literally “Big Data: Bigger, Faster, and More Efficient Business Intelligence”. 

Compared to competitor SAS, MicroStrategy focuses on traditional BI and data warehousing 

while SAS focuses on big data and real-time analytics with external data sources. 

4.1.2.9 Gartner 

Gartner introduced the “3V” model  and published an article in which the effects of big data on 

established architecture models, principles and patterns is investigated (Natis, Laney, & 

Altman, 2012). In their report, they suggest some interesting recommendations: 

 Make applications stateless to accommodate scaling and parallelism (potentially in the 

cloud); 

 The service-oriented architecture (SOA) model must be extended with advanced 

patterns of separation of concerns; 

 Big data architectures can benefit from event-driven architecture (EDA) when it comes 

to handling data streams. 

 

These recommendations point out that big data can benefit from established architecture 

patterns and principles, but at the same time must extend the traditional paths that architects 

take when creating solutions. Next to this specific paper, Gartner published a large set of 

material on big data that dives deeper into the technology and methods of big data architecture 

(Gartner, 2013). 

4.1.2.10 Forrester 

Similar to Gartner, Forrester also publishes a lot of content on the subject of big data (Forrester, 

2013). In an interesting article, Forrester plotted the Enterprise Hadoop solutions on the axis of 

‘strength of offering’ and ‘market presence’, resulting in the diagram duplicated in Figure 24 

(Kolbielus, 2012). 
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Figure 24: Forrester Wave, Enterprise Hadoop Solutions, Q1 '12 (Forrester, 2012) 

The remarkable point in the Forrester research is that the listed enterprise Hadoop solutions 

include both free and open-source and commercial (proprietary) products. This poses an 

interesting question that is related to the research question and that was addressed in the 

interviews: is there a best practice or architecture principle to use free and open-source 

software? 

4.1.2.11 Others 

There are more commercial organizations who have in some way or another published about 

big data architecture. For example, Teradata has created a Unified Data Architecture (Teradata, 

2013) and ThinkBig has defined their own Big Data Reference Architecture (Think Big Analytics, 

2013). VMware published considerations for creating big data solutions, amongst which a 

simple framework that can be viewed as a high-level reference architecture (Ibarra, 2012). 

TDWI published an article about the integration of Hadoop into BI, in which a survey leads to 

an interesting overview of big data technology and some trends and best practices (Russom, 

2013). In a post of 2012, TDWI calls for new architectures and approaches for big data (Briggs, 

2012). Forbes created a useful, up-to-date overview of the big data landscape (Feinleib, 2012). 

CSC’s report on the big data (r)evolution contains an extensive overview of methods and 

technologies (Koff & Gustafson, 2011). CapGemini has created a reference architecture for big 

data but not published it; however, in a recent video Chief Technical Officer Manual Sevilla 

explains that CapGemini’s Big Data Reference Architecture consists of a pipeline of five pillars, 

or steps: Identifying, Acquiring, Organization, Analytics, and Acting (Sevilla, 2013). Computer 

giant IBM published a series of articles and books about big data, both of their own products 

(Zikopoulos, et al., 2013) and the FOSS stack (Eaton, deRoos, Deutsch, Lapis, & Zikopoulos, 
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2012). An interesting IBM resource is their article about data exploration and discovery, which 

indicates that IBM believes in the power of this big data appliance (Cheung, Resende, Lindner, 

& Saracco, 2012). Finally, O’Reilly published two short books about the ‘emerging architecture’ 

of real-time big data analytics (Barlow, 2013) and ‘current perspectives’ on big data (O'Reilly, 

et al., 2012). All these bits and pieces contribute to the overall knowledge of big data 

architecture. 

4.1.3 Private Sources 

4.1.3.1 Anuganti 

A good example of a diagram that can be part of a Big Data Solution Reference Architecture is 

Anuganti’s model (Anuganti, 2012), duplicated in Figure 25. Anuganti created this model based 

on years of experience as a data architect, working for large enterprises in several industries. 

 

Figure 25: Big Data Architecture (Anuganti, 2012) 

Anuganti’s architecture is complex due to the many layers and software components involved. 

However, it is a ‘pick and choose’ model where each component is optional. Anuganti created 

a certain data pipeline through the model: data flows from the structured, semi-structured, and 
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unstructured data sources on the bottom left side of the diagram, to the Hadoop/HDFS cluster, 

takes some sidesteps, to end up finally in the Reporting engine on the top right of the diagram. 

4.1.3.2 Busa 

Busa created an overview of the big data landscape, which is a complete big data reference 

architecture (Busa, 2013). Figure 26 contains a duplication of the landscape. 

 

Figure 26: Big Data Landscape (Busa, 2013) 

Busa combines components from the BI practice with modern technology. His architecture 

model is clear and concise but lacks the detail for a successful implementation. In addition, the 

components are all concrete frameworks, which makes it difficult to make choices based on 

abstractions (e.g. replace Mahout with R or SPSS) and makes the model very time-specific; 

there are no guarantees that a software component that is the best choice on this moment 

remains on top of the preferred stack in the future. 

4.1.3.3 Joshi 

InformationWeek published a blog post by Rajive Joshi in 2011, which highlights key design 

challenges and principles of data-centric design in the big data era (Joshi, 2011). Joshi argues 

that data-centric design, which is the practice of separating data from behavior, results in 

loosely coupled systems connected via a data bus. Such an architecture pattern is suitable for 

big data solutions, since it allows distributed systems to work independently and in parallel. A 

data-centric design begins with adhering to some architecture principles, for example: 

 Expose the data and metadata; 

 Hide the behavior; 

 Delegate data handling to a data bus; 

 Explicitly define data-handling contracts. 
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4.1.3.4 Kimball 

Ralph Kimball, a renowned architect and founder of the Kimball Group and Kimball University, 

published a whitepaper about best practices for big data (Kimball, 2012). In the whitepaper, 

Kimball puts forward some interesting best practices, for example the notion to “Apply filtering, 

cleansing, pruning, conforming, matching, joining, and diagnosing at the earliest touch points 

possible” and “Perform big data prototyping on a public cloud and then move to a private cloud”. 

Kimball’s best practices will be put forward in the interviews and potentially included in the Big 

Data Solution Reference Architecture. 

4.1.3.5 Soares 

Director of Information Asset, LLC and former Director of Information Governance at IBM, Sunil 

Soares, specializes in big data governance. He created a reference architecture for big data, 

with the purposes of giving guidance to architects and showing organizations “how the pieces 

fit together”, in training and consulting (Soares, 2012). The main diagram of the reference 

architecture is duplicated in Figure 27. 

 

Figure 27: Reference Architecture for Big Data (Soares, 2012) 

Soares’ reference architecture is very extensive. In later editions, Soares added Business 

Process Management (BPM) and created diagrams that show the interaction between different 

parts of the reference architecture with a focus on data governance. 

4.1.3.6 MIKE2.0 

MIKE2.0 is an open framework for information management (McClowry, Rindler, & Simon, 

2012). The contents are published on a website to which free contributions can be made, similar 
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to a wiki. Parts of the MIKE2.0 framework are solution offerings in the fields of BI, information 

asset management, enterprise data management, enterprise content management, and others. 

Solution offerings present options for solutions to common problems in the field of their subject. 

The solution offerings contain technology and business solutions, for example design patterns, 

guidance for processes, reference architectures, and other methods and techniques. A recent 

addition is the Big Data Solution Offering (Rindler, McKnight, & McClowry, 2012). This solution 

offering contains explanations of Hadoop, NoSQL, and other technologies, and gives insight in 

the usage of these tools. Also, some best practices are given. Overall this source can be seen 

as a reference architecture, as it gives guidance to big data architects. A strong point of the 

model is that it is a part of the SAFE Architecture Framework. However, the relation is only 

dimly explained and the mapping is very weak. The model could be improved by elaborating 

more on big data architecture. 

4.1.4 Evaluation 

This chapter contains an overview of literature on the subject of big data architecture. Several 

scientific, commercial and private sources contain useful diagrams or texts, from which 

elements for a big data reference architecture can be distilled. Some notable big companies 

are not listed as reference, for example Microsoft and SAP. Although these organizations 

certainly offer big data products and services (e.g. SAP HANA and Microsoft Windows Azure 

HDInsight), they have not published any material that is interesting for this research project. 

 

In total, 27 literature sources were investigated. Most articles and websites mention several 

aspects of big data architecture. It is not just about software; a solution architect should also 

concern himself with business processes, infrastructure, patterns, principles, and best 

practices. Big data architectures in literature points contain the following elements: 

 Hardware and software components; 

 Architecture principles; 

 Best practices. 

 

Table 14, Table 15 and Table 16 in Appendix I contain the scientific, commercial, and private 

sources and the elements that were found. The tables list the literature sources at the top, in 

the order of appearance in this document. The left side of the tables contain the elements of 

(reference) architectures that were found in the articles, websites and books, sorted on the 

number of appearances in column “Count”. A ‘V’ indicates a match; the architecture in the 

source contains the listed component, principle, or best practice. In this way, by plotting the 

components, principles, and best practices in a crosstab, the tables can be used for getting a 

high-level overview of the literature on the subject of big data architecture. Obviously, the 

sources are very different in nature and each has a specific topic or address a specific area of 

the research field. Therefore, only counting the check-marks is a limited evaluation method of 

the literature. However, the elements on the left side of the tables present a reasonable 
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collection of components, principles and best practices that could form the basis of a reference 

architecture. The remainder of this paragraph highlights the findings from these tables. 

 

First, the literature clearly defines the core of a big data architecture. Nearly all sources contain 

the following components: 

 A parallel batch-processing engine (e.g. Hadoop MapReduce); 

 A distributed file system (e.g. HDFS); 

 A NoSQL database. 

 

Second, there is obviously more than MapReduce: data sources, data mining processes, 

coordination and configuration engines, databases, monitoring, etc. In addition, traditional BI 

systems and software components still seem to have a place in a big data architecture. All 

these components play a role in the literature, some more than others. Several other 

components are typical for a big data architecture, simply because they surface often in the 

literature. The following components have a place in the majority of the literature that describes 

a big data architecture: 

 A querying engine; 

 A predictive analytics engine; 

 A statistical analysis or machine learning engine; 

 A data importing / collecting / ETL engine; 

 A real-time / stream / complex event-processing engine. 

 

Third, several architecture principles exist in the articles and websites on big data. Loose 

coupling, cloud computing, and scalability are popular principles in literature. There are several 

principles about whom the literature sources disagree. For example, IBM, SAS, and Kimball 

very strongly believe in the principle of “Close-to-source data processing”, which implicates that 

data should be analyzed as early as possible to reduce storage costs and processing time. On 

the contrary, MicroStrategy believes in retrieving and storing as many data as possible and 

performing analytics at a relatively late stage. The researcher discussed these contradictions 

with the experts in the interviews. 

 

Fourth, for best practices there is only one item that truly stands out: the “data pipeline 

approach”. This best practice indicates that a big data architecture is like a pipeline through 

which data flows. Several literature sources point to another best practice that is in contract 

with the pipeline approach, namely the “data exploration and discovery” method. This best 

practice is actually a type of big data analytics where the data is not retrieved or imported, but 

remains at its source and is approachable directly for analytical purposes (see paragraph 2.4.2). 
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Fifth, there seems to be more consensus about the hardware and software component than 

about the principles and best practices. This indicates that people agree about big data 

technology, but have yet to reach a common understanding about the approaches and patterns 

in big data architecture. For example, TDWI considers the best practice of data governance 

very important, but the majority of articles about big data best practices do not even mention it. 

 

The components, architecture principles, and best practices found in literature were put forward 

in the expert interviews to confirm their place in the final model. In this way, the literature review 

in Hevner’s framework served to create a provisional model of the final Big Data Solution 

Reference Architecture. 

4.2 DEVELOPMENT OF REFERENCE ARCHITECTURE 

At the beginning of this step, the researcher created a provisional model based on the literature 

review. This provisional model is actually a list of elements that make up the reference 

architecture. This provisional model formed the basis to work with from this step forward. For 

example, the interview questions were based on the elements of the provisional model. The 

provisional model of the reference architecture consists of the following elements, in 

conformance with the categories highlighted in paragraph 4.1.4: 

 Hardware and software components; 

 Architecture principles; 

 Best practices. 

 

There are two sources for the Big Data Solution Reference Architecture: literature and 

interviews with stakeholders. The question is: do these sources contain common elements? If 

subject matter experts mention a component, architecture principle or other part of a reference 

architecture often, and this component has a significant place in literature, it will get a place in 

the reference architecture. This paragraph also explains the evaluation method of the reference 

architecture. To make an objective evaluation, a list of acceptance criteria measures the fit of 

an element in the reference architecture. 

4.2.1 “Why”, “Where” and “When” 

Answers to the “why”, “where” and “when” questions in Angelov’s model have to be stated 

clearly to give meaning to the reference architecture, and to place it into context. This paragraph 

explains the rationale behind the choices. 

4.2.1.1 Why 

The goal of the Big Data Solution Reference Architecture is to guide architects who want to 

create a solution architecture that is capable of working with big data. Angelov et al. defined 

two possible values for the Goal sub-dimension G1: standardization and facilitation. The Big 

Data Solution Reference Architecture clearly aims at providing guidelines and inspiration for 
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the design of solutions. The main ambition is not to standardize concrete architectures or to 

improve interoperability of existing components/systems. Thus, the goal of the Big Data 

Solution Reference Architecture is facilitation. 

4.2.1.2 Where 

The context of the reference architecture is organizations who want to predict the future using 

large datasets of enterprise data combined with open data sources. The reference architecture 

is industry-independent but targets organizations of considerable size that have the resources 

(time, money, and people) available to perform a big data project under architectural guidance. 

Typically, an organization using the reference architecture has at least 100 employees and an 

IT department of at least 10 employees. The intended recipient of the Big Data Solution 

Reference Architecture is a lead architect who is able to make decisions about the concrete 

solution architecture, architecture principles, and resources. Since the Big Data Solution 

Reference Architecture must be industry-independent, the Context sub-dimension C1 gets the 

value “multiple organizations”. 

4.2.1.3 When 

The reference architecture is time-independent. However, it is likely that the abstract hardware 

and software components that are included in the reference architecture will be outdated in a 

few years’ time. Therefore, the owner must maintain and update the reference architecture on 

a regular basis. The C3 sub-dimension has two possible values: preliminary and classical. A 

typical preliminary reference architecture is designed when no concrete components or other 

parts of the reference architecture exist in practice. This is not the case for the Big Data Solution 

Reference Architecture; there are several known big data solutions working in practice 

(Anuganti, 2012) (CSC, 2012) (Joshi, 2011). Rather, the Big Data Solution Reference 

Architecture takes the practical experience of a group of experts and uses that to give a “best 

practice reference architecture”. Thus, the Context sub-dimension C3 gets the value “classical”. 

4.2.2 Classify the reference architecture 

According to the “why”, “where”, and “when” statements above, the reference architecture is of 

“type 3”. Reference architectures of type 3 are facilitating, classical, designed for multiple 

organizations and created by an independent organization. 

4.2.3 Invite stakeholders (“Who”) 

The Context sub-dimension C2 contains the list of stakeholders that were involved in the design 

of the Big Data Solution Reference Architecture. There are two groups involved: requirements 

Designers (D) and providers (R). 

4.2.3.1 Designers 

The first group of stakeholders in Angelov’s model is the designers of the reference architecture. 

According to Angelov, an independent organization should design The Big Data Solution 

Reference Architecture of type 3. That is the case, since the Hogeschool Utrecht is a research 

organization and therefore has the freedom to be independent. The group of Designers consists 
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of one person: Bas Geerdink, researcher at the Hogeschool Utrecht and the author of this 

thesis. 

4.2.3.2 Requirements Providers 

As stated by Angelov et al., the group of stakeholders that provides requirements must match 

the type of reference architecture. In the case of the Big Data Solution Reference Architecture, 

which is type 3, the requirements from software and user organizations determine the design 

of the reference architecture. 

 

Following these guidelines, a group of five stakeholders was identified and has been 

interviewed in the months April and May of 2013. The group consists of subject matter experts 

in the field of big data, from multiple organizations (software and user). Every expert elaborated 

about his experience in the field of big data and explained the hardware and software 

components, architecture principles, and best practices that he uses in big data projects. 

 

The following stakeholders have been interviewed from software organizations: 

 A chief technologist and data architect at ScaleIN; 

 A big data pre-sales consultant at CSC; 

 A software architect at Xebia. 

 

The following stakeholders have been interviewed from user organizations: 

 An enterprise solutions architect at 4Synergy; 

 An application development consultant at Unisys. 

 

At this point in time, the research processed with the conduction of the actual interviews. The 

interviews were structured; each interview followed a fixed schedule of questions while leaving 

room for side steps and digression (Bryman & Bell, 2007). In addition, the researcher used 

elements of the provisional model and the acquired insights from the literature during the 

interviews. The structured, guiding question list in the expert interviews was: 

 Which hardware and software components would you consider important in a big data 

architecture? 

 What is the best way to integrate big data components? 

 Which patterns and best practices would you adopt in a future big data solution? 

 Are there any architectural principles that you use in big data projects? 

 In which situations have you applied a big data solution? 

 

As described in chapter 3, grounded theory and qualitative data analysis was used to process 

the transcribed interview data. The following paragraph reveals the resulting codes and 

categories. 
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4.2.4 Define “What” and “How” 

This paragraph describes the aspects of the reference architecture, and the rationale of the 

choices. The values of the “what” and “how” dimensions follow from the classification of the Big 

Data Solution Reference Architecture as type 3 in Angelov’s model. 

4.2.4.1 D1: What is described? 

According to Angelov’s model, type 3 reference architectures should consist of components, 

interfaces, and policies/guidelines. Adhering to this model, the codes were categorized in the 

following categories: 

 Components & interfaces; 

 Policies & guidelines: 

o Architectural patterns; 

o Architecture principles; 

o Architectural best practices. 

 

These categories match the provisional model, with the exception of the architectural patterns. 

After reviewing the literature, interviewing the stakeholders and analyzing the transcripts with 

grounded theory and using the provisional model, the coded transcripts pointed out that this 

category is necessary for the reference architecture. 

 

Components are business processes, software applications or frameworks, and hardware. 

Interfaces are the functional relationships, technical connections, data flows, compositions, and 

aggregations between these components. 

 

Architectural patterns are proven solutions to recurring enterprise architecture problems. They 

offer architects abstracted methods and techniques to work with, which have been applied in 

similar problems by other experts in the field (Buschmann, Meunier, Rohnert, Sommerlad, & 

Stal, 1996). In this regards they are similar to application architecture patterns in software 

engineering, which have been more widely used in practices (Gamma, Helm, Johnson, & 

Vlissides, 1994), (Fowler, 2002). Garlan and Shaw introduced some examples of architectural 

patterns and called them “Common Architectural Styles”. Examples of their patterns are Pipes 

and Filters (also known as the Data Flow pattern), Data Abstraction and Object-Oriented 

Organization, and Layered Systems (Garlan & Shaw, 1994). 

 

Architecture principles are “fundamental approaches, beliefs, or means for achieving a goal” 

that give guidance to architects (Beijer & de Klerk, 2010). Architecture principles are very 

important parts of any solution or enterprise architecture. Principles can be normative or 

scientific. A normative principle is “a declarative statement that normatively prescribes a 

property of something”, whereas a scientific principle is “a law or fact of nature underlying the 

working of an artifact” (Proper & Greefhorst, 2011). The Big Data Solution Reference 
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Architecture will contain normative principles that give guidance to architects who are designing 

big data solutions. In a sense, the normative architecture principles work as constraints to the 

organization; they give a certain amount of freedom to work with, but specify absolute 

boundaries for the solution. 

 

Finally, architectural best practices describe other aspects that are important when creating a 

big data architecture. These best practices give guidance in the processes in which architects 

surely are involved: management, planning, estimating, budgeting, cooperation with internal 

and external suppliers, and so forth. 

4.2.4.2 D2: How detailed is it described? 

Type 3 reference architectures prescribe semi-detailed components and policies/guidelines, 

and aggregated or semi-detailed interfaces. That suits well with the Big Data Solution 

Reference Architecture since it is supposed to be an industry-independent, generic reference 

architecture. Angelov et al. suggest to measure the level of detail by counting the number of 

elements (e.g. components, guidelines) or the number of aggregation levels (e.g. layers in an 

enterprise architecture). The Big Data Solution Reference Architecture, with semi-detailed 

components, interfaces and policies/guidelines, should not contain numerous elements at more 

than two aggregation levels. 

4.2.4.3 D3: How concrete is it described? 

Reference architectures of type 3 should have abstract or semi-concrete elements. This implies 

that the Big Data Solution Reference Architecture will describe its components, interfaces, and 

policies/guidelines in a non-specific, abstract way. The components that surfaced from the 

literature and interviews will become abstract concepts rather than concrete products or 

frameworks in the reference architecture. This will keep the reference architecture high-level, 

and keep the reference architecture simple because the number of components will be small. 

The abstraction will be done in the iterative coding cycles of the transcribed interview data. For 

example, if an expert mentions ‘MongoDB’ or ‘Cassandra’, both are coded as ‘NoSQL 

database’. In the reference architecture, the abstract concept of a ‘NoSQL database’ is then 

added to the list of components. 

4.2.4.4 D4: How is it represented? 

According to Angelov’s model, type 3 reference architectures have semi-formal element 

specifications. The semi-formal representation requires well-defined notations of the elements 

of the reference architecture. The different parts of the Big Data Solution Reference 

Architecture are presented in different ways. The hardware and software components are 

presented visually, in a diagram on one page. Additional text will explain the components in 

detail, and their interfaces. The choice for the visual representation, aided by text, was made 

because that is the standard in existing literature (for example, see the diagrams in paragraph 

3.1) and because this representation will give an overview of the reference architecture in one 

notion. The other elements of the reference architecture, e.g. the architecture principles and 
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best practices, will be represented as text, tables, or lists, since no good visual representation 

is possible. The Big Data Solution Reference Architecture uses the following notations: 

 ArchiMate 2.0 (The Open Group, 2012) for the components and interfaces; 

 The Pattern Language of Avgeriou and Zdun (Avgeriou & Zdun, 2005) for the  

architectural patterns; 

 TOGAF 9.1 (The Open Group, 2011) for the architecture principles; 

 No specific format for best practices. 

 

The remainder of this paragraph elaborates on the choices for the representation of the 

elements of the reference architecture. 

4.2.4.4.1 Components & interfaces 

The reference architecture depicts the components and interfaces in ArchiMate, because this 

is a modelling language that provides a complete overview of the architecture of a solution. 

Figure 28 summarizes the ArchiMate Framework. 

 

 

Figure 28: Architectural Framework of ArchiMate (The Open Group, 2012) 

As depicted in Figure 28, ArchiMate offers three layers of architecture. The Application layers, 

where software components and interfaces sit, has connections to two architecture layers that 

are very important in big data predictive analysis enterprise solutions: the Business layer with 

business processes/functions and the Technology layer with infrastructure components. Each 

layer defines three categories of components: 

 Passive structure, which are concrete components that physically exist; 

 Behavior, which are components that execute actions; 

 Active structure, which are entities that are capable of performing behavior. 

 

Since the literature and interviews with the subject matter experts indicate that big data 

solutions consist of elements in the Application and Technology layers, ArchiMate is the 

sensible choice for visual representation of the Big Data Solution Reference Architecture 

components. 
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Another option for the notation of components and interfaces is UML (ISO/IEC 19501:2005) 

(Object Management Group, 2011). Since the Big Data Solution Reference Architecture allows 

for creation of solution architectures, UML would be a logical choice for representation of the 

components and interfaces. However, this notation focuses solely at software architecture 

diagrams, in contrary to (for example) ArchiMate, which is primarily used for enterprise solution 

design. UML is considered too technical for representing business processes (Wiering, et al., 

2004) and considered not accessible and understandable for managers and business 

specialists (Lankhorst, 2004). 

4.2.4.4.2 Architectural Patterns 

Avgeriou and Zdun introduced their universal language for documenting architectural patterns 

in 2005. They link architectural patterns to the common notion of views and viewpoints. For a 

number of commonly used views such as the Layered View, the Data Flow View, the Data-

centered View, the User Interaction View, and the Component Interaction View, Avergiou and 

Zdun presented patterns that match the views. For example, the Data Flow View contains the 

patterns “Batch Sequential” and “Pipes and Filters”. Consequently, in their article gives an 

excellent overview of reusable architectural patterns, linked to well-known views and viewpoints 

and visualized in a unified way. These patterns serve as examples to ‘new’ patterns that might 

emerge for the Big Data Solution Reference Architecture, but also as reference library of 

reusable items for the reference architecture. 

4.2.4.4.3 Architecture Principles 

Architecture principles (definition: see paragraph 4.2.4.1) are a somewhat underexposed part 

of solution architecture and enterprise architecture (Proper & Greefhorst, 2011). The best 

representation found in literature is part of The Open Group’s TOGAF 9.1 framework 

(Greefhorst & Proper, 2011). TOGAF lists four components of architecture principles, and 

recommends a format for representing them (The Open Group, 2011). Each principle has four 

attributes: Name, Statement, Rationale, and Implications. Table 2 contains a reproduction of 

the template for the representation of a principle. 

Name Should both represent the essence of the rule as well as be easy to remember. Specific 

technology platforms should not be mentioned in the name or statement of a principle. 

Avoid ambiguous words in the Name and in the Statement such as: "support", "open", 

"consider", and for lack of good measure the word "avoid", itself, be careful with 

"manage(ment)", and look for unnecessary adjectives and adverbs (fluff). 

Statement Should succinctly and unambiguously communicate the fundamental rule. For the most 

part, the principles statements for managing information are similar from one 

organization to the next. It is vital that the principles statement be unambiguous. 

Rationale Should highlight the business benefits of adhering to the principle, using business 

terminology. Point to the similarity of information and technology principles to the 

principles governing business operations. Also describe the relationship to other 
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principles, and the intentions regarding a balanced interpretation. Describe situations 

where one principle would be given precedence or carry more weight than another for 

making a decision. 

Implications Should highlight the requirements, both for the business and IT, for carrying out the 

principle - in terms of resources, costs, and activities/tasks. It will often be apparent 

that current systems, standards, or practices would be incongruent with the principle 

upon adoption. The impact to the business and consequences of adopting a principle 

should be clearly stated. The reader should readily discern the answer to: "How does 

this affect me?" It is important not to oversimplify, trivialize, or judge the merit of the 

impact. Some of the implications will be identified as potential impacts only, and may 

be speculative rather than fully analyzed. 

Table 2: Format for Defining Architecture Principles (The Open Group, 2011) 

4.2.4.4.4 Architectural Best Practices 

Since the category of architectural best practices is very broad, there is no semi-formal notation 

for the representation of its elements. Rather, each element will be explained in text and 

supported by case studies, theories, and/or models from literature. 

4.2.5 Summary 

Table 1 in paragraph 3.2.2 summarized Angelov’s classification model for reference 

architectures; it contains the dimensions, sub-dimensions and questions that determine the 

type of a reference architecture. Paragraphs 4.2.1 to 4.2.4 contain the answers to the questions. 

Table 3 contains the same data as Table 1, with the addition of column ‘Answer’, which contains 

the answers to the questions for the Big Data Solution Reference Architecture, and column 

‘Explanation’ which contains the reference to the paragraphs above. 

Dimension Sub-

Dimension 

Question Answer Explanation: 

see paragraph 

Goal G1 Why Facilitation 4.2.1 

↓ 

Context C1 Where Multiple organizations 4.2.1 

Context C2 Who Independent organization (D), 

Software organizations (R), 

User organizations (R) 

4.2.3 

Context C3 When Classical 4.2.1 

↓ 

Goal G2 D1: What Components, interfaces, 

policies/guidelines 

4.2.4 

Goal G2 D2: Detail Semi-detailed components 

and policies/guidelines, 

4.2.4 
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Aggregated or semi-detailed 

interfaces 

Goal G2 D3: 

Concreteness 

Abstract or semi-concrete 

elements 

4.2.4 

Goal G2 D4: How Semi-formal element 

specifications 

4.2.4 

Table 3: The multi-dimensional space for the Big Data Solution Reference Architecture of type 3 

4.3 RESULTS: THE BIG DATA SOLUTION REFERENCE ARCHITECTURE 

At this point in time, the reference architecture was designed. This paragraph contains the Big 

Data Solution Reference Architecture that was created after investigating the literature, 

interviewing the experts, using grounded theory to perform quantitative data analysis, and 

determining the representations of the various elements. The reference architecture is a 

guideline, not a prescription. Each element in the model is optional in the solution architecture 

that is ultimately created. In analogy with creating an architecture for a house, the reference 

architecture will contain the layout of the rooms, doors and windows, but omits the actual 

physical descriptions of the wallpapers, latches, and window frames. The components are 

integrated building blocks that can be deployed in a working state, with processes, policies, and 

best practices on how to use it. 

 

The reference architecture consists of categories, according to the elements that were defined 

in the “what” question (dimension D1) of Angelov’s model. For all elements and sub-elements, 

tables of coding frequencies are displayed. These tables consist of three columns: Code, 

Cases, and Count. The Code columns contains the codes that were found in the category. The 

Cases column contains the number of cases in which the code was used. This number has a 

maximum of 5, since five interviews were taken. The Count column contains the total number 

of times the code was used in the transcripts. The tables are all sorted: first on Cases, next on 

Count. 

 

The reference architecture can be used to create solutions for use cases of predictive analytics 

using big data technology and open data sources. Table 4 contains a list of typical use cases. 

The table is only a very small subset of all use cases, meant to give an appetite of the 

possibilities; there are plenty example in the given industries and sectors such as telecom, 

energy, education, and others. Each organization should find its own use case and purpose for 

the reference architecture. 

Industry Use Case 

Defense A ministry of defense wants to build a system to collect and analyze signals, to 

notice national security threats (SIGINT). The system predicts the chance that a 
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certain data source or communication contains hostile information that could harm 

citizens. 

Financial 

Services 

A national authority for financial markets wants to improve fraud detection of credit 

card data. By using a sophisticated prediction engine, individual transactions can be 

marked as likely to be fraud based on the behavior of clients. 

Financial 

Services 

A large bank wants to offer a service to clients that predicts account balance. When 

a client log in to his or her personal online banking website, a forecast of the 

balance on the bank accounts in possession is shown on the screen. The forecast 

is based on historical earnings and spending of the individual as well as the group 

the person is in, based on social categorization. Forecasts can also include other 

data sources such as the search behavior of the person on the internet; if the client 

visited second-hand car sales pages it's likely he or she will buy a car in the near 

future. 

Government A local government organization with its own customer support helpdesk want to 

predict the load of calls, and thereby the staffing needs of the helpdesk 

Government A national law enforcement agency wants to predict crime threats by analyzing 

sensory data, social media, web traffic and email records. 

Healthcare A hospital wants to reduce re-hospitalization figures, and improve "patient flow" to 

increase the quality of care and reduce costs. A prediction is made for each patient 

that determines the risk of recurring illness once he or she is discharged from the 

hospital. The prediction is based on historical data, patient profile, and the latest 

illness research reports. 

Healthcare A national health organization wants to predict outbreaks of diseases as soon as 

possible, to distribute medication, and take other pre-emptive actions. Sources for 

the predictions are hospital data, social media, illness records of companies, online 

news feeds, and others. 

Insurance An insurance company wants to forecast the amount of deaths and other indicators 

of life insurance payments, to adjust policies and manage costs. The data used for 

these predictions are customer profiles (including income, location, age, and sex), 

historical data, and sources that contain indications of disease outbreaks such as 

news feeds and social media. 

Retail A manufacturer of mobile phones want to forecast the amount of sales for the 

upcoming period, based on historical data, market trends, and sentiment of 

(potential) customers. 

Retail An e-commerce website wants to promote cross-selling of products by presenting 

related products to potential customers. The prediction of products that are likely to 

be interesting to the customer is performed by an analytics engine that takes 

various sources as input: other clients' buying behavior, web traffic of the customer 

from cookies, and price differentiation of products on sale. 
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Oil and gas An oil refinery wants to predict machine failures to optimize costs and downtime. 

The machines produce sensory data that can be used for analytics, as well as 

working schedules and sales forecasts. 

Transportation A railway company wants to lower the costs of maintenance on trains by improving 

the predicted replacements of train parts, based on sensor data of the trains. 

Transportation A national government wants to predict road traffic flows and congestions. These 

predictions can be used to optimize digital road signs and send better routes to in-

car satnav systems. The predictions are based on actual traffic data, historical data, 

Twitter feeds, public holidays, and other sources. 

Table 4: Examples of use cases for the Big Data Solution Reference Architecture 

The elements of the Big Data Solution Reference Architecture are described in the following 

paragraphs. 

4.3.1 Components & Interfaces 

This category contains all components (business, software, and hardware) that are part of the 

reference architecture, as well as the interfaces between them. In the interviews, stakeholders 

were asked to identify the most important components given the business challenge of 

predicting the future. Business processes (as business components), software and hardware 

components, and other elements that the interviewee talked about, were captured immediately. 

However, if an interviewee did not mention a component that was a critical part of the literature 

(e.g. mentioned in 70% of the articles, see Table 14 in Appendix I), it was mentioned specifically 

to the interviewee in questions such as: “Do you also know about [component]?”, “Have you 

considered [component]?”, “The literature mentions [component], do you have any experience 

with that?” 

 

The literature (see paragraph 4.1) and expert interviews (see paragraph 4.2) point out one thing 

very clearly: big data is largely about MapReduce. Abstracted, this means that the centerpiece 

of a big data architecture is a parallel batch-processing engine. This is combined with a 

distributed file system to allow large quantities of data to be processed. However, the reference 

architecture not only aims at batch processing but also incorporates big data solutions that are 

created for (near) real-time data processing. 

 

Table 5 gives an overview of the codes and categories for the components and interfaces.  

Code Cases Count 

MapReduce Framework 5 19 

NoSQL Database 5 16 

Relational Database 5 7 

ETL Framework 4 10 
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Query Engine 4 8 

Distributed File System 4 7 

Logging Framework 3 3 

Unstructured Data 3 3 

Machine Learning Framework 2 8 

Configuration Management tool 2 4 

Statistical Analysis Engine 2 4 

Visualization tool 2 4 

Real-time MapReduce engine 2 3 

Structured Data 2 2 

Graph Processing Engine 1 3 

HBase 1 3 

Bulk Synchronous Parallel (BSP) mode 1 2 

In-memory Caching 1 2 

Neural Network 1 2 

Provisioning Engine 1 2 

Analytics Engine 1 1 

Data Discovery Engine 1 1 

Data Mining Engine 1 1 

OLAP Engine 1 1 

Reporting engine 1 1 

Table 5: Code frequency for Components & Interfaces 

First, a selection was made of components and their relationships. All codes result in a abstract 

component in the reference architecture, with the exception of “OLAP Engine”, and “Reporting 

Engine”. These codes point to the traditional world of BI, which is not relevant for the Big Data 

Solution Reference Architecture. Since the frequencies, both in terms of cases and overall 

counts, are very low, the codes will not be represented as components in the Big Data Solution 

Reference Architecture. 

4.3.1.1 Overview 

Using the knowledge gained in the literature and interviews, a visual representation in 

ArchiMate was made of the components that make up the big data reference architecture. 

Figure 29 displays the diagram. 
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Figure 29: Components & Interfaces of the Big Data Solution Reference Architecture 

The visual representation of the components and interfaces is semi-detailed and contains semi-

concrete elements, following the guidelines of Angelov et al. for a “type 3” reference architecture 

(see paragraph 4.2.2). The level of detail can be measured from the number of layers and the 

number of components. In the Big Data Solution Reference Architecture, both are reasonably 

low: three layers and relatively small number of components. 

 

The ArchiMate language allows for very complex diagrams, with architectures including 

functions, interfaces, interactions, services, collaboration, devices, locations, etc. None of these 

elements was used. Rather, the diagram is simple and includes only the following elements 

(definitions from (The Open Group, 2012)): 

 Business Process ( ): a behavior element that groups behavior based on an 

ordering of activities. It is intended to produce a defined set of products or business 

services; 

 Data Object ( ):a passive element suitable for automated processing; 
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 Application Component ( ): a modular, deployable, and replaceable part of a 

software system that encapsulates its behavior and data and exposes these through a 

set of interfaces; 

 Technology Artifact ( ):a physical piece of data that is used or produced in a 

software development process, or by deployment and operation of a system; 

 Network ( ): a communication medium between two or more devices; 

 Node ( ): a computational resource upon which artifacts may be stored or deployed 

for execution; 

 System Software ( ): a software environment for specific types of components and 

objects that are deployed on it in the form of artifacts. 

 

Next to these components, the following ArchiMate relationships are used in the diagram 

(definitions from (The Open Group, 2012)): 

 Composition ( ): the composition relationship indicates that an object is 

composed of one or more other objects. This relation is visualized as components 

overlapping. For example, the Predict business process consists of four sub-

processes, amongst which Import Data; 

 Used By ( ): the used by relationship models the use of services by processes, 

functions, or interactions and the access to interfaces by roles, components, or 

collaborations. For example, the Analytics Engine application component is used by 

the Analyze Data process; 

 Flow ( ): the flow relationship describes the exchange or transfer of, for 

example, information or value between processes, function, interactions, and events. 

For example, data flows between the Distributed Database and  the Analytics Database 

system software components; 

 Realization ( ): the realization relationship links a logical entity with a more 

concrete entity that realizes it, e.g. the Imported Data artifact is realized by the 

Importing Engine; 

 Specialization ( ): the specialization relationship indicates that an object is a 

specialization of another object, e.g. the Open Data artifact is a specialization of the 

Raw Data artifact; 

 Assignment ( ): the assignment relationship links active elements (e.g., 

business roles or application components) with units of behavior that are performed by 

them, or business actors with business roles that are fulfilled by them. For example, 

the Analytics Data artifact is assigned to the Analytics Database. 
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The size of the component blocks in the Application Layer give an indication of the “importance”, 

the complexity, and the required amount of computer resources (memory, disk space, number 

of frameworks, etc.) of the component. For example, the Processing Engine is displayed larger 

than the Management Engine since it has more tasks, demands more resources and is 

considered one of the core components of the big data solution. 

 

The model focusses on “what” rather than “how”. The conceptual elements of the reference 

architecture are all structures, residing in the left column of the diagram in Figure 28. The 

structural character of the model was chosen on purpose, to give architects a clear guidance 

while still presenting abstract components. The focus on “what” allows for an easy translation 

of the abstract reference architecture to real physical components in the big data solutions that 

are implementations of the model. The level of concreteness is apparent from the abstractness 

of the components; no concrete components are listed but rather the templates or concepts. 

For example, instead of including “HDFS”, the concept of a Distributed File System is used. 

However, in the supporting text several options and examples are provided for the components, 

to give architects a feel for the possibilities. The criteria for the components that are selected 

for the architecture are scalability, ease of use, maturity, and level of support. The options are 

presented in tables, which are alphabetically sorted by component name. Amongst the options 

provided are commercial (proprietary) components and free and open-source (FOSS) 

components. Commercial, proprietary solutions often have FOSS frameworks under the hood, 

and one of the architectural best practices of this reference architecture is “Use free and open-

source software” (see paragraph 4.3.2.3.1). Therefore, architects using the reference 

architecture are recommended to opt for FOSS. 

 

A concept that sprouts from the literature and the interviews is to see big data analytics as a 

data pipeline (also see the Architectural Patterns category in paragraph 4.3.2.1). In contrast to 

other solution architectures where data ‘moves around’ between services, databases, 

applications, objects, and so forth, big data is about getting a large dataset “streaming” through 

a set of tools and frameworks to get insight and derive meaning, and ultimately take action. In 

our research, the sources are enterprise data and open data, and the insight is a statement of 

predictive analytics. Thus, one of the first choices was to represent the reference architecture 

as a data pipeline. In the diagram, the data "flows" at the Application layer and the Technology 

layer; the application components communicate and pass data to each other figuratively, while 

the actual data flow happens in the infrastructure. As mentioned above, the reference 

architecture aims at both batch processing and (near) real-time data processing solutions. 

 

The remainder of this paragraph highlights various elements and aspects of the Big Data 

Solution Reference Architecture, explaining and illustrating the most important components and 

interfaces per layer. 
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4.3.1.2 Business Layer 

 

Figure 30: Business Layer 

Prediction or forecasting is the main business problem that needs to be solved. The business 

layer (see Figure 30) contains one main business process: “Predict”. This is the main goal of 

the entire solution for which the reference architecture is used: to predict the future using 

enterprise data, open data sources and big data technology. The business process is divided 

into four sub-processes or business process steps: Import Data, Process Data, Analyze Data, 

and Decide. All sub-processes can be triggered by users of a system, e.g. by the press on a 

button, or it can be automatically triggered by an event or as part of a workflow. The sub-

processes have relationships to the application components in the Application Layer. All 

relationships are “Used By” relations. This means that the processes use application 

components, e.g. to analyze data, an actor (human or machine) uses the functions of a 

visualization program. 

 

An example of a business process that suits the reference architecture is: prediction of the 

weather. To make a prediction, sensor and historical data has to be imported into a system, 

processed (e.g. filtered, cleaned, normalized), and analyzed. Finally, a meteorologist can make 

a decision about the weather forecast. 

4.3.1.2.1 Import 

The first step or cycle in the data pipeline is importing the data. The business process is 

responsible for gathering all the relevant data to the business problem, from within the 

organization and from external sources. This action can be triggered automatically or can be 

executed manually. For example, a business owner who is interested in the forecasted 

maintenance of trains in the upcoming month might initiate a procedure that gathers all sensor 

data of the trains that are in working order. 

4.3.1.2.2 Process 

Once the data has been imported into a suitable repository, it has to be processed to make it 

suitable for analysis. This business process takes care of data filtering, cleaning, enriching, etc. 

Usually these actions are sequentially executed and automated. For example, an automatic 

nightly batch in an e-commerce organization processes all sales records of the day, matches it 

to historical data and market trends and produces a new dataset that can be used for cross-

selling purposes. 
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4.3.1.2.3 Analyze 

The data must be analyzed by a sophisticated algorithm, tool or process that predicts the future. 

This business process analyses the data and makes it suitable for representation. The 

underlying technology of this business process is statistics, artificial intelligence, etc. The type 

of analysis that is performed to give insight depends on the use case. For example, in the case 

of customer insight, the analysis can consist of market basket analysis (to identify cross-selling 

opportunities), click-stream analysis to determine on-line behavior of potential customers, and 

even real-time analysis of GPS locations of mobile users to determine whether they are in the 

vicinity of a suitable shop. Another example is the use of neural networks to recognize patterns 

in weather data or social media messages. 

4.3.1.2.4 Decide 

Finally, the business process Decide is used to make a decision about the data. This business 

process is also known as business insight, actionable insights, actionable intelligence, etc. 

Typically, a business user is looking at a visual representation, such as a graph, about the 

prediction. The interpretation of the visuals can be a challenging and complex task. The people 

using the technology have to be aware of the implications of working with predictive analytics. 

For one, the outcomes of the “Analyze” function will be “fuzzy”. The big data systems will 

produce figures such as “there is a chance of 52.3% that the workload on your customer support 

helpdesk is above 40% during the next weekend”. This uncertainty is sometimes qualified as 

the fourth “V” in the big data model: Veracity (next to Volume, Variety, and Velocity) (Schroeck, 

Shockley, Smart, Romero-Morales, & Tufano, 2012). 

 

In a sense, this step can also be named “Act”. However, a decision does not always imply an 

action; after data analysis, doing nothing can be the best choice. The business process “Decide” 

is not by definition a human action. The process to import, process, and analyze data, and 

consequently make a decision, can be fully automated. In that case, a machine makes the 

decision. An example of such a situation is the prediction of the weather on a website; the 

produced forecasts are the result of a fully automated sequence of data gathering, analysis, 

and visualization. An example of a human Decide action is a manager of an insurance 

company, who decides to lower the price of a life insurance policy based on a graph of 

predictions that cover the life insurance business. 

4.3.1.3 Application Layer 

 

Figure 31: Application Layer 
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The Application Layer, depicted in Figure 31, contains the core elements of the big data solution 

from an Information Systems perspective. The components in this layer are applications, 

software packages, frameworks, or products. The components are given the name of 

“Engines”, as that closely represents what they do; each component converts raw input into 

useful output, similar to a car engine, which is a machine that converts fuel into motion. 

According to Wikipedia, “the field of computer science uses the term Engine to provide a mental 

model of software components an order of magnitude more complex than an ordinary modules 

of software, such as a libraries, platforms, SDKs or objects” (Wikipedia, 2013). The name 

“Engine” also provides a link to “Software Engineering”, where this layer is all about: the 

software has to be analyzed, build, integrated, configured, tested, implemented, and 

maintained. 

 

From the Importing Engine to the Visualization Engine, “Flow” relationships are visible that 

indicate the data flow on the application level. The actual data is transferred in the Technology 

Layer; however, when looking sec at the Application Layer it is safe to say the data flows from 

one Application Component to another. Next to the “Flow” relations, the engines have 

relationships with the data artifacts in the Technology Layer, as follows: 

 The Importing Engine accesses Raw Data; 

 The Importing Engine realizes Imported Data; 

 The Processing Engine uses Imported Data; 

 The Processing Engine realizes Processed Data; 

 The Analytics Engine uses Processed Data; 

 The Analytics Engine realizes Analytical Data; 

 The Visualization Engine uses Analytical Data. 

 

There are four components that are mapped one-to-one to the business processes of the 

Business Layer, described in paragraph 4.3.1.2. Next to that, there is a “Raw Data” data object 

and the component “Management Engine”, which are not directly related to a business process. 

The following paragraphs describe these six components. 

4.3.1.3.1 Raw Data 

Raw data is open data from a source on the internet or enterprise data that resides somewhere 

in the organization. This data can be in structured, semi-structured, or unstructured form. 

Together, these data are characterized as multi-structured data. 

4.3.1.3.2 Importing Engine 

Raw data gets imported from its source and must be stored on a distributed file system. The 

importing engine has the following tasks:  

 Data Discovery; 

 Data Mining; 

 Data Collection; 
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 Data Loading; 

 Data Acquisition; 

 Data Ingestion. 

 

In the traditional world of BI, this component is responsible for the extract, transform, and load 

(ETL) of data. In the case of (near) real-time data analysis, this step is skipped; incoming data 

is processed immediately once it arrives at the organization. Table 21 in Appendix III contains 

a list of possible products and frameworks for importing data. However, this list far from 

complete; options such as custom-made scripts or programs are also good solutions for getting 

data into the file system. 

4.3.1.3.3 Processing Engine 

Imported data has to be processed to be ready for analysis. The Processing Engine, together 

with the Analytics Engine, is the core of a big data solution for predictive analytics. It typically 

contains MapReduce jobs, querying mechanisms, and other distributed parallel processing 

tools. The Processing Engine retrieves the input data from a distributed file system and it writes 

data to a distributed database after processing. The processing engine can run multiple 

iterations with different configuration, e.g. if multiple MapReduce jobs are required to process 

the data. The key to big data is distributed parallel processing. A “shared nothing” architecture 

combined with a fast network is the key to processing huge volumes and varieties of data, with 

high velocity. The processing engine is responsible for any and all of the following tasks: 

 Data Transportation; 

 Data Cleaning; 

 Data Filtering; 

 Data Serialization; 

 Data Integration; 

 Data Search; 

 Data Querying; 

 Data Transformation; 

 Complex Event Processing; 

 Log Processing. 

 

Since this component contains many tasks and therefore many possible implementations, the 

Processing Engine is further split up into categories. The categories are Processing Engines 

with their own specialty. Each category is a possible implementation of the Processing Engine. 

As with all other components, the categories are optional; e.g. the big data solution is not 

required to include a Data Transformation Engine. There are five categories or Engines: 

 Data Preparation Engine; 

 Data Querying Engine; 

 Batch Processing Engine; 
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 Stream Processing Engine; 

 Log Processing Engine. 

 

Figure 32: Processing Engine 

The sub-components of the Processing Engine and their relationships are displayed in Figure 

32. There are several “Flow” relations between the components, meaning that it’s possible that 

data flows from one Engine to another. For example, the architecture could contain a Log 

Processing Engine that collects log files, aggregates and filters them, and stores the result in a 

distributed file system that is used by a Hadoop cluster. The remainder of this paragraph 

explains the components in the Processing Engine in detail. 

Data Preparation Engine 

The tasks Transportation, Serialization, Cleaning, Filtering, and Integration of data fall under 

the category of Data Preparation. Software is available that processes data in these ways. It is 

for each organization to decide which tasks are required and which components will suit best. 

Table 22 in Appendix III contains an overview of several options for the Data Preparation 

Engine. 

Data Exploration Engine 

The Data Exploration Engine takes care of the tasks Data Search and Data Querying. There 

are big data tools that are built for searching/crawling/indexing large datasets. Data Querying 

is a task that makes life easier for big data developers. For efficient processing of multi-

structured data sources, a tool can be used that translates declarative queries to MapReduce 

jobs. Examples of high-level languages that are suitable for this job are Jaql, Pig Latin, and 

HiveQL. When interpreted by a search or query tool, the language queries are automatically 

executed in parallel and distributed. For example, the HiveQL query “SELECT customerId, 

orderNr FROM orders;” is processed by the Hive framework to create a MapReduce job 

that outputs a list of orders. Table 23 in Appendix III contains a list of options for the Data 

Exploration Engine. 

Batch Processing Engine 

The most widely used software framework for distributed parallel processing engine is Apache 

Hadoop. This FOSS solution is incorporated in a number of commercial offerings. Some 
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organizations offer a Hadoop solution, e.g. a software suite that incorporates Hadoop. Other 

companies offer distributions of the Hadoop stack, providing a managed ready-to-use 

environment and support. Table 24 in Appendix III contains several of these options. 

Stream Processing Engine 

In case the big data solution has to analyze real-time or near real-time data streams, specialized 

software must be used to process the incoming data streams. Table 25 of Appendix III lists the 

options for stream processing software. 

Log Processing Engine 

A special category of Data Processing is the handling of log files. These machine-generated 

data contain a wealth of information for an organization if analyzed in the correct way. Typically, 

a software product collects log files in an organization and makes the logs available for 

analytical processing. Table 26 in Appendix III contains a list of software components that are 

specialized in processing log files. 

4.3.1.3.4 Analytics Engine 

The processed data must be analyzed to make useful predictions about the future. Using 

techniques from the fields of statistics and artificial intelligence (such as neural networks, 

genetic algorithms, and machine learning), this software actually performs the predictive 

analytics calculations. Machines need to be trained to make correct predictions about the future. 

The components in this engine have one or more of the following tasks: 

 Simulation; 

 Machine Learning; 

 Genetic algorithms; 

 Natural language processing; 

 Statistical Analysis; 

 Pattern recognition; 

 Text analytics; 

 Sentiment analysis; 

 Geospatial analytics; 

 Time-series forecasting; 

 Video analytics; 

 Voice analytics. 

 

The analytics engine can be database-based, or in-memory. Table 27 in Appendix III contains 

a list of possible options for the Analytics Engine component. Again, these are just some 

options. Particular in the field of analytics and forecasting, components can be custom build or 

derived from models such as ARIMA or regression analysis. 
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4.3.1.3.5 Visualization Engine 

A visualization engine is a software package that is capable of presenting the predictive data in 

a useful way. Dashboards, reports, graphs, tagclouds, clustergrams, and history flows are 

suitable for such tasks. Although many software vendors try to sell products or big data suites 

with visualization engines, there is FOSS available that does the job. The SVG format, an open 

World Wide Web Consortium (W3C) standard, is an XML-based format for drawing two-

dimensional graphical objects (W3C, 2013). Using JavaScript and tools like D3 that support 

SVG rendering, it is possible to create beautiful and informational browser-based visuals. 

 

Table 28 in Appendix III contains a list of options for the Visualization Engine. The tools 

mentioned are only the software equivalents of the Visualization Engine. One could also think 

about the component as a service or even a human action. For instance, the creation of 

infographics is a manual job that is extremely well suited to present a lot of information in a 

short overview. 

4.3.1.3.6 Management Engine 

The Management Engine is the director of all other components in the Application Layer. This 

software has the following tasks: 

 Storage and execution of the workflow across all components in the Application layer; 

 Coordination of tasks that run in the Application layer; 

 Provisioning of infrastructure, system software and information systems in the 

Technology and Applications layers; 

 Monitoring of infrastructure and applications. 

 

It can also be argued that tasks such as data governance, data security, master data 

management, and metadata management play a role in the Management Engine. However, 

the expert interviews and resulting codes have not indicated these tasks to be important. Table 

29 in Appendix III contains a list of the options for the Management Engine. 

4.3.1.4 Technology Layer 

 

Figure 33: Technology Layer 
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The Technology layer (see Figure 33) contains the low-level infrastructure and system software 

that is needed for a big data solution. On two possible networks (Intranet and Internet), raw 

data is hosted and three types of server clusters provide the ability to store the various types of 

data. Outside of the network, four artifacts represent the data that is stored in the layer.  

 

Data flows from the Distributed File System into the Distributed Database, and then into the 

Analytics Database. This is represented by the ArchiMate “Flow” relationships between the 

components, and follows the Pipes and Filters architectural pattern (see paragraph 4.3.2.1.1). 

The data artifacts represent the actual data. The “Association” relationships with the system 

software components indicate the location of the data files / tables, e.g. a set of imported sensor 

data is stored on the distributed file system. The technology artifacts are realized by or used by 

the application components in the Application Layer; for an explanation of the relationships, see 

paragraph 4.3.1.3. The components in the Technology Layer are explained in detail in the 

following paragraphs. 

4.3.1.4.1 Intranet & Internet 

The layer contains two networks (Intranet and Internet), with two artifacts that represent open 

data and enterprise data, and three nodes that represent server clusters. The nodes (clusters) 

are located on one network, or both networks. For example, a file cluster can be obtained as 

infrastructure-as-a-service (IaaS) from a service provider in the cloud, while the database 

cluster is a hybrid form (mixture) of on-premise and cloud-based servers, and the analytics 

cluster resides on internal servers. 

 

The network(s) should be fast. To allow distributed parallel processing, especially in the 

Importing Engine and the Processing Engine, the supporting network of the software should be 

able to handle huge amounts of data extremely efficient.  

4.3.1.4.2 Raw Data 

The Raw Data artifact consists of Open Data and Enterprise Data sources. Open data resides 

on the internet, enterprise data on the intranet. Table 6 contains an overview of internal and 

external data sources. 

Type Structured Semi-structured Unstructured 

Enterprise Data Relational databases  File shares, log data 

Open Data REST open data sources Social media sources  

Table 6: Data sources that can be used in big data architectures 

The reference architecture uses open data, so the interviews contained questions about the 

way that external data sources should be connected to enterprise data. The interviews and 

literature point out that a big data architecture should handle multiple types of data: structured, 

semi-structured and unstructured. Together, this is referred to as multi-structured data. CSC’s 

big data consultant Martijn Loderus has an interesting notion of treating all external data as 
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‘sensors’. Elaboration on this idea in a metaphorical way: a big data solution can be seen as an 

instrument, or even an organism, that “feels” its way around in the surrounding environment 

(open data), takes into account its own internal state (enterprise data), processes the combined 

set (MapReduce) and eventually produces a meaningful advice (predictive analytics). 

4.3.1.4.3 File Cluster 

The file cluster is a big data solution that is capable of storing large amounts of data in a 

distributed, fail-safe way. Table 30 in Appendix III contains a list of options for the Distributed 

File System component. 

4.3.1.4.4 Database Cluster 

The database cluster is a hardware component that is capable of hosting a large, distributed 

big data database. The database can store data in-memory or on disk. In-memory databases 

load all data and the database applications (e.g. stored procedures, functions) into the RAM 

memory of server, which has faster read and write access than a hard drive. This type of 

databases can be used when speed is crucial for success of the use case, for example when 

(near) real-time analysis has to be done. 

 

The distributed database that runs on the cluster can be one of the following types: 

 Relational (RDBMS): high-performing table-oriented databases with shared-disk or 

shared-everything architecture. These databases are optimized for data quality and 

ACID transactions, not for concurrency; 

 NoSQL: databases with built-in scalability, optimized for storing distributed 

unstructured data, with shared nothing architecture (see paragraph 2.2 for an 

explanation). There are several types of NoSQL databases: 

o Key-Value: a schema-less mechanism to store data of any kind; 

o Document: mechanism used for storing semi-structured information. A 

document is a package of data in any format, e.g. XML or JSON, which are 

stored via unique keys in the database; 

o Object: a database that stores objects as in object-oriented programming. 

 

Table 31 in Appendix III contains a list of options for the Distributed Database component. 

4.3.1.4.5 Analytics Cluster 

The analytics cluster is a hardware component that stores the processed data. The database 

that runs on the cluster is typically smaller but more sophisticated and specialized than the 

distributed database on the database cluster, for example graph (NoSQL database with 

element in hierarchical graph structures), neural network databases or data warehouses that 

go beyond the traditional BI capabilities. There is certainly overlap with the databases in the 

Database Cluster; most products cannot be place in only one category. Table 32 of Appendix 

III lists some options for the Analytics Database. 
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4.3.2 Policies & Guidelines 

As part of the “what” dimension in Angelov’s framework, the policies and guidelines in the Big 

Data Solution Reference Architecture consist of three sub-categories: architectural patterns, 

architecture principles, and best practices. 

4.3.2.1 Architectural Patterns 

Architectural patterns “offer well-established solutions to architectural problems help to 

document the architectural design decisions, facilitate communication between stakeholders 

through a common vocabulary, and describe the quality attributes of a software system as 

forces” (Avgeriou & Zdun, 2005). These architectural patterns are important to the working of 

the reference architecture; they define the way the reference architecture is constructed and 

the way the architects should work with the reference architecture.  Table 7 contains the codes 

that point to architectural patterns that were found in the expert interviews. 

Code Cases Count 

Data Pipeline 2 2 

Cloud 1 3 

Application layer is leading 1 2 

Amdahl's Law 1 1 

Use MapReduce to prepare data 1 1 

Table 7: Coding frequencies for Architectural Patterns 

The interview data shows that relatively few architectural patterns were mentioned. However, 

these architectural patterns are important to the working of the reference architecture; they 

actually define the way the reference architecture is constructed and the way the architects 

should work with the reference architecture. In particular, the “Data Pipeline” code is important 

to the construction of the reference architecture and to the architectures that will be created 

from it. Together with code “Use MapReduce to prepare data” this forms the basis of patterns 

“Pipes and Filters“ and “Batch Sequential”, as part of the “Data Flow View” (Avgeriou & Zdun, 

2005). The Batch Sequential pattern is an excellent way to look at one MapReduce job, but is 

no good guide for the entire data flow within a big data solution. The pattern is too simplistic 

and too low-level to be a good candidate for the reference architecture. Therefore, the pattern 

that was chosen as the one giving guidance to the data flow is the “Pipes and Filters” pattern. 

 

Another architectural pattern that surfaces from the interviews is the “Layers” pattern. Codes 

“Cloud” and “Application layer is leading” both indicate a layering in the architecture. Code 

“Amdahl’s Law” is mentioned only once, and is not a clear indicator of a common pattern that 

should be used in the Big Data Solution Reference Architecture. Therefore, this codes is not 

used any further in the process of designing the reference architecture. 

 

The following sub-paragraphs explain the the patterns “Pipes and Filters” and “Layers” in detail. 
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4.3.2.1.1 Pattern 1: Pipes and Filters 

Following the data analysis, the first architectural pattern included in the reference architecture 

is the “Pipes and Filters” pattern. This pattern deals with how streams of data are successively 

processed or transformed by components. 

 

The definition of the Pipes and Filters pattern is as follows: 

"Consider as in BATCH SEQUENTIAL the case where a complex task can be sub-divided into 

a number of smaller tasks, which can be defined as a series of independent computations. 

Additionally the application processes streams of data, i.e. it transforms input data streams into 

output data streams. This functionality should not be realized by one monolithic component 

because this component would be overly complex, and it would hinder modifiability and 

reusability. Furthermore, different clients require different variations of the computations, for 

instance, the results should be presented in different ways or different kinds of input data should 

be provided. To reach this goal, it must be possible to flexibly compose individual sub-tasks 

according to the client’s demands. In a PIPES AND FILTERS architecture a complex task is 

divided into several sequential subtasks. Each of these sub-tasks is implemented by a 

separate, independent component, a filter, which handles only this task. Filters have a number 

of inputs and a number of outputs and they are connected flexibly using pipes but they are 

never aware of the identity of adjacent filters. Each pipe realizes a stream of data between two 

components. Each filter consumes and delivers data incrementally, which maximizes the 

throughput of each individual filter, since filters can potentially work in parallel. Pipes act as 

data buffers between adjacent filters. The use of PIPES AND FILTERS is advisable when little 

contextual information needs to be maintained between the filter components and filters retain 

no state between invocations. PIPES AND FILTERS can be flexibly composed. However, 

sharing data between these components is expensive or inflexible. There are performance 

overheads for transferring data in pipes and data transformations, and error handling is rather 

difficult." (Avgeriou & Zdun, 2005) 

 

Using the Pipes and Filters pattern implies that the architecture of a big data solution must be 

built around a series of tasks. In the Big Data Solution Reference Architecture, all layers contain 

an example of the division into tasks. The best example is the Application Layer, which consists 

of the components Importing Engine, Processing Engine, Analytics Engine, and Visualization 

Engine. Each component is independent and modular, and can be thought of as a filter. Data 

flows or streams in a pipe between these components, represented by the “Flow” ArchiMate 

relation. 

 

The Pipes and Filters pattern matches best with the common form of predictive analytics, where 

data is presented, imported and processed in a sequence. In case of data exploration and 

discovery (or knowledge discovery) as explained in paragraph 2.4.2, there is less of a data flow. 

In that case, the Importing Engine is probably not used, or only has the function of a throughput 
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engine that simply transfers the data without doing anything with it. The Processing Engine will 

contain data exploration and/or stream processing engines, and the Processing Engine takes 

the form of a high-performance machine learning, mathematical analytics, or pattern recognition 

framework. 

4.3.2.1.2 Pattern 2: Layers 

Another architectural pattern that can be identified from the interviews is “Layers”, as part of the 

“Layered View”. Codes “Cloud” and “Application layer is leading” both indicate a layering in the 

architecture. The Layers pattern is closely connected to the architecture principle “Loose 

coupling” (see paragraph 4.3.2.2.1). 

 

The definition of the Layers pattern is: 

“Consider a system in which high-level components depend on low-level components to 

perform their functionality, which further depend on even lower-level components and so on. 

Decoupling the components in a vertical manner is crucial in order to support modifiability, 

portability, and reusability. On the other hand, components also require some horizontal 

structuring that is orthogonal to their vertical subdivision. To achieve these goals, the system is 

structured into layers so that each layer provides a set of services to the layer above and uses 

the services of the layer below. Within each layer, all constituent components work at the same 

level of abstraction and can interact through connectors. Between two adjacent layers, a clearly 

defined interface is provided. In the pure form of the pattern, layers should not be by-passed: 

higher-level layers access lower-level layers only through the layer beneath.” (Avgeriou & Zdun, 

2005) 

 

The Layers pattern is implemented in the Big Data Solution Reference Architecture by 

representing the components of the architecture in the layers Business Layer, Application 

Layer, and Technology Layer. This division follows TOGAF and ArchiMate and is a standard 

partition of solution architectures (see paragraph 4.2.4.4). 

4.3.2.2 Architecture Principles 

As stated in paragraph 4.2.4.1, normative architecture principles will be identified that give 

guidance to architects that create big data solutions. Table 8 contains the codes that were 

categorized as “Architecture Principle” in the expert interviews. 

Code Cases Count 

Higher-level programming language 4 6 

Linux 2 3 

Loose coupling 2 2 

Open standards 2 3 

Web Architecture 1 2 

Table 8: Coding frequencies for Architecture Principles 
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The frequent occurrence of the code “Higher-level programming language” shows that the 

subject matter experts often refer to programming languages. Programming languages that 

were specifically mentioned in the interviews are Java, Python, Scooby, and Scalding. This 

could be an important notion for software developers or system administrators, but is not 

suitable for the goal and scope of the Big Data Solution Reference Architecture as the principles 

should be semi-detailed and abstract or semi-concrete according to “type 3” reference 

architectures of Angelov’s model (see paragraph 4.2.2). 

 

The code “Linux” indicates an architecture principle that implicates a preferred use of the Linux 

operating system over other operating systems. While architects will agree to use Linux in a big 

data solution, the reference architecture must be independent of the implementation of 

components, and thus independent of operating system. Therefore, the code “Linux” will not be 

translated into an architecture principle. 

 

The code “Web Architecture” is only used in one interview, and therefore too weak to be 

considered for usage in the reference architecture. The codes “Loose coupling” and “Open 

standards” result in two principles: “Loose coupling” and “Interoperability”. These principles are 

presented in the following sub-paragraphs, with the notation prescribed by TOGAF 9.1 (see 

paragraph 4.2.4.4.3). 

4.3.2.2.1 Principle 1: Loose coupling 

Name Loose coupling 

Statement Create a solution with loosely coupled building blocks, e.g. message-exchanging 

software components instead of integrated frameworks 

Rationale By loosely coupling the components, the modularity, reusability and modifiability of 

the solution increases. Big data is a fast-moving field, where components are 

developed, improved, and retired frequently. To be able to cope with the changing 

requirements and components, the big data solution has to be flexible. If a building 

block has to be replaced, upgraded, removed, or added, other building blocks should 

be impacted as little as possible. By loosely coupling the components, these kind of 

actions are relatively easy. 

Implications Components of the solution such as software packages, frameworks, databases 

should be selected based on their ability to be decoupled from the solution. That 

means components should have clear service contracts, 

data interfaces, and/or APIs that preferably rely on messaging. 

Table 9: Loose coupling architecture principle 

4.3.2.2.2 Principle 2: Interoperability 

Name Interoperability 
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Statement Software and hardware should conform to defined standards that promote 

interoperability for data, applications, and technology. 

Rationale Standards help ensure consistency, thus improving the ability to manage systems 

and improve user satisfaction, and protect existing IT investments, thus maximizing 

return on investment and reducing costs. Standards for interoperability additionally 

help ensure support from multiple vendors for their products, and facilitate supply 

chain integration. 

Implications  Interoperability standards and industry standards will be followed unless there 

is a compelling business reason to implement a non-standard solution. 

 A process for setting standards, reviewing and revising them periodically, and 

granting exceptions must be established. 

 The existing IT platforms must be identified and documented. 

Table 10: Interoperability architecture principle 

4.3.2.3 Architectural Best Practices 

Architectural best practices describe other aspects that are considered important when creating 

a big data solution architecture. These best practices are aimed at processes in which architects 

surely are involved: management, selection of components, planning, estimating, budgeting, 

cooperation with internal and external suppliers, and so forth. The category Architectural Best 

Practices consists of codes that indicate important concepts, methods, and techniques for 

architects when working on big data solutions. Table 11 contains an overview of the codes. 

Code Cases Count 

Free and open-source 4 7 

Highly skilled team 4 5 

Individualization 4 4 

Fuzzy Logic 3 5 

Don't use commercial products 3 4 

Agile development 2 6 

Database type 2 5 

Scalability 2 5 

Top-down approach 2 5 

Reference architecture is necessary 2 4 

Use service providers 2 4 

CAP Theorem 2 3 

Get an overview 2 3 

Manage the hype 2 3 
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Performance 2 2 

Risk of obsolete technology 2 2 

Industry-independent 1 4 

Data quality 1 2 

Filter data before use 1 2 

Basic model 1 1 

Bottom-up approach 1 1 

Details matter 1 1 

DevOps 1 1 

Objectivity 1 1 

Think in batch-processing 1 1 

Use large files 1 1 

Work cost-effective 1 1 

Table 11: Coding frequencies for Best Practices 

Two best practices were distilled from these codes: “Use free and open-source software” and 

“Agile development”, which are explained in detail in the following sub-paragraphs. 

4.3.2.3.1 Best Practice 1: Use free and open-source software 

Most architectures that are addressed in the interviews and literature are based on FOSS 

components. When asked specifically, the interviewed architects agree to the notion that free 

and open-source software forms the core of big data. As mentioned in the literature study (see 

paragraphs 2.2 and 4.1), there are commercial (proprietary) products and services available 

that are based on the FOSS stack; for example, several large IT companies are trying to 

solutionify Hadoop. However, as pointed out by the interviewed stakeholders, the free and 

open-source community is leading in innovation when it comes to big data software 

components. This notion is even supported by commercial organizations such as IBM 

(Zikopoulos, et al., 2013). The FOSS products are simply better than the commercial ones in 

terms of usability, modifiability, performance, reliability, and costs. Vendor lock-in is avoided, 

and the architecture principles “Loose coupling” and “Interoperability” can be applied more 

easily with FOSS. 

 

Free and open-source (FOSS) in this reference model is software that is both free and open-

source, classified according to the definition of the Free Software Foundation. This definition 

states that software can used, copied, changed, and distributed by anyone (Free Software 

Foundation, 2013). The FOSS definition is tighter than the Open Source definition, which only 

states that the software should be free of charge and the source code should be publicly 

available and modifiable (The Open Source Initiative, 2008). The Open Source definition is only 
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applicable to practical applications, not to the social and political aspects (Stallman, Why Open 

Source misses the point of Free Software, sd). In contrast, FOSS is about the liberty of software, 

not about the price. The unfortunate event is that the word “free” in English speech has two 

meanings, unlike for example French where there is libre and gratuit. This point is made clear 

in Richard Stallman’s famous article in which he states: “think of “free speech,” not “free beer.”” 

(Stallman, The Free Software Definition, 2013). Examples of FOSS licenses are the GNU 

(Lesser) Public License, the Apache Licenses, the Microsoft Public License, the Mozilla Public 

Licenses, and the Intel Open Source License (Free Software Foundation, 2012). 

 

Preferring FOSS components over proprietary software can have some impact on organization, 

especially if this best practice is not implemented yet. With FOSS, organizations cannot rely on 

support contracts and have to build up knowledge of the components in-house. 

4.3.2.3.2 Best Practice 2: Agile development 

The codes “Agile development’ and “DevOps” indicate a strong preference for agile 

methodologies when it comes to creating big data solutions. There should be a strong 

preference for agile methodologies when it comes to creating big data solutions. Architects 

should be advised to create software and hardware iteratively, and release small changes to 

an existing working solution. Examples of methodologies that have proven to be successful in 

an “agile” way are Scrum (Schwaber, 1995), Kanban (Kniberg & Skarin, 2009), Lean 

(Poppendieck & Poppendieck, 2003), and XP (Beck, Extreme Programming Explained: 

Embrace Change, 2004). All these methods have in common that they strive for high-quality 

working solutions by having small teams working collaboratively in short iterations, focusing on 

the delivery of useful artifacts. In a certain sense, the Rational Unified Process (RUP) can also 

be considered “agile” when applied in the correct way, although this methodology is usually not 

thought of as a purely iterative but rather as a mixture of traditional “waterfall” and modern 

“agile” approaches (Kruchten, 2003). Each organization should take their pick for a method, as 

long as the principles in the Agile Manifesto (Beck, et al., 2001) are applied strictly. For some 

organizations that are engaging a big data project, an agile way of working will already be in 

place since agile is becoming the de-facto standard in software development (Dingsøyr, Nerur, 

Balijepally, & Moe, 2012). If that is not the case, the introduction of agile development will 

introduce some difficulties as a switch from traditional methodologies can be a cultural 

challenge (Livari & Livari, 2011). 

4.3.3 Summary 

The Big Data Solution Reference Architecture is a model for creating solutions that make 

predictions about the future using open data sources and structured, semi-structured, and 

unstructured enterprise data. The reference architecture is usable for architects in “green field” 

situations or in projects with an existing technology base. The reference architecture is generic 

on purpose; any commercial or public organization can use it to apply in a typical big data use 

case. 
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The Big Data Solution Reference Architecture presents the following key points to architects: 

 Create a big data solution that is derived from the components & interfaces diagram 

presented in paragraph 4.3.1.1; 

 Think of the big data solution as a pipeline, with components that act as filters; 

 Divide the solution in layers; 

 Make sure components are loosely coupled; 

 Use open standards to enable interoperability; 

 Use free and open-source software components where possible; 

 Develop agile. 

4.4 JUSTIFICATION / EVALUATION OF REFERENCE ARCHITECTURE 

This paragraph contains a justification of the Big Data Solution Reference Architecture, 

described in paragraph 4.3. This evaluation is part three of Hevner’s Information Systems 

Research Framework (see Figure 4) and the method that was used is a questionnaire that 

evaluated the quality criteria of a reference architecture, based on SAAM (see paragraph 3.3). 

The following paragraphs describe the most interesting findings of the questionnaire, per 

section. For an overview of the sections, see paragraph 3.3.3. Appendix II contains the full list 

of the questionnaire results. 

4.4.1 Sampling 

The target population of the reference architecture is all big data architects. Of this population, 

a representative group of 50 big data architects was selected as a representative sample. This 

group was considered a representative sample of the population. The sampling was done by 

selecting big data specialists from the personal network of the researcher. Of this sample, ten 

respondents answered the questionnaire. The response rate is therefore 20%. The number of 

respondents is considered not big enough to formulate definite conclusions about the quality of 

the reference architecture, so any conclusions should be taken lightly as three is no full scientific 

proof. 

4.4.2 Section 1: Introduction 

The respondents have several roles (manager, architect, developer, etc.), but all are related to 

IT. All respondents are more or less experienced with big data and predictive analytics. Three 

respondents use big data technology in their day-to-day work. This indicates a small but highly 

skilled group of respondents. 

4.4.3 Section 2: Impressions of the Big Data Solution Reference Architecture 

The answers to the first four questions in section 2 indicate that the respondents are likely to 

use the elements of the Big Data Solution Reference Architecture in their work. The mean score 

on these questions is  
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The respondents give high scores to the goal and purpose of the reference architecture 

(question 6). That is in line with the scores on the questions 1 to 4; if people are likely to use 

the model, they find the model relevant in their work. The completeness, level of detail, and 

concreteness of the model are regarded ‘fair’ on average. The answers to other questions 

indicate that the respondents would like to see more elements, more detail, and more 

concreteness. These characteristics of the reference architecture were set when determining 

the type of the reference architecture according to Angelov’s framework (see paragraph 4.2). 

Therefore, new versions of the reference architecture could be of a different type that allow for 

more elements, detail, and concreteness. 

 

The explaining remarks in section 2 give some criticism on the model: there is some repetition, 

and some elements are considered too generic. These remarks are in line with the scores on 

the questions in the questionnaire. 

4.4.4 Section 3: Quality of the Big Data Solution Reference Architecture 

The average scores that were assigned to the quality criteria are displayed in Table 13, with a 

scale of 1 to 5. 

Criterion Score 

Maintainability 2.95 

Modularity 3.10 

Reusability 3.00 

Performance 2.70 

Scalability 2.70 

Table 12: Average scores to quality criteria 

The overall average quality score is 2.99 on a scale of 1 to 5. This score is very close to the 

average of the 1 to 5 scale, 3. This indicates that the overall quality of the reference architecture 

is ‘good’. The criterion that received the highest rating is modularity. That means the reference 

architecture is flexible when it comes to selecting and replacing components. Respondents 

rated the performance and scalability slightly less than average. An explanation for this rating 

is that the model incorporates both batch and real-time processing. Even though big data is a 

relatively new research field, batch processing is sometimes regarded as an old-fashioned and 

low-performing technique. 

 

The explaining remarks contain some additional feedback on the reference architecture, both 

positive and negative. 

4.4.5 Section 4: Additional questions 

The answers to the questions in section 4 prove to be very helpful for the evaluation of the 

model. The respondents clearly indicate that the reference architecture is too abstract and too 
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generic on many points. There are several compliments to the model: clear diagrams and 

descriptions, layering, etc. The sections contain the following suggestions for improvements: 

 Add caching mechanism. This could result in an additional component, a new 

architecture pattern or an architectural best practice; 

 Increase the amount of (near) real-time processing options; 

 Add organizational elements: business/application functions in addition to concrete 

components. This is a suggestion to add more components in the Behavior structure 

in the ArchiMate diagram; 

4.4.6 Summary 

Ten big data experts out of a sample of 50 completed a questionnaire that investigated the 

quality aspects of the Big Data Solution Reference Architecture. The results of the 

questionnaire indicate that the reference architecture meets all of the quality criteria that were 

defined in the research design: maintainability, modularity, reusability, performance, and 

scalability. Moreover, the general impressions of the model are reasonably positive. There are 

high scores on the likeliness that architects and other big data experts are going to use 

elements of the model. Altogether, this indicates that the model can be qualified as a 

‘reasonably good’ reference architecture. It will have its use in the architecture community, and 

will probably be adopted once published. However, there is some criticism on the reference 

architecture as well. Most importantly, respondents question the usability of the model. The 

respondents give relatively low ratings to the performance, scalability, completeness, level of 

detail, and the concreteness of the model. The reason for doubt on the usability is primarily due 

to the level of abstraction; the model is considered too general, especially the architectural 

patterns, architecture principles, and architectural best practices. 
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5 CONCLUSION 

This thesis describes a research project with the aim of creating a reference architecture for big 

data solutions. The research question of the project was: “What is a good reference architecture 

for a solution that is able to use big data technology to perform predictive analytics of open data 

sources combined with structured and unstructured enterprise data?” To answer this research 

question, the project consisted of the creation of a big data solution reference architecture 

based on existing literature and expert interviews. A group of ten big data experts responded 

to a questionnaire to evaluate and justify the model. 

5.1 OBSERVATIONS 

The research method used Hevner’s Information Systems Research Framework and Angelov’s 

reference architecture creation framework for the design and analysis of the reference 

architecture. 

 

First, the researcher conducted an extensive literature review and created a provisional model 

of the reference architecture. Using the knowledge gained in the literature study and the 

provisional model, the researcher interviewed five big data experts and analyzed the 

transcribed interview data using grounded theory and qualitative data analysis tools, thereby 

producing a coded dataset. The derived coding categories of the dataset form the basis of the 

contents of the reference architecture: 

 Software components & interfaces; 

 Policies & guidelines 

o Architecture principles; 

o Architecture patterns; 

o Architectural best practices. 

 

By presenting a questionnaire to a group of big data experts, the resulting reference architecture 

was justified and evaluated. The quality of the model was ramified into five criteria: 

maintainability, modularity, reusability, performance, and scalability. A group of ten people 

completed the questionnaire was, out of a sample of 50. That is too little to make hard 

classifications about the quality of the model. However, the questionnaire was only distributed 

to people working with big data, and all respondents were more or less knowledgeable and 

experienced in that area. This makes the results of the questionnaire fairly accurate, and gives 

certain weight to the outcome. Nonetheless, the results should not be treated as scientific proof 

but as indicative evidence. 
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The results of the questionnaire indicate that big data architects will likely use the Big Data 

Solution Reference Architecture in their work. Table 13 displays the average scores on the 

quality criteria, on a scale of 1 to 5. 

Criterion Score 

Maintainability 2.95 

Modularity 3.10 

Reusability 3.00 

Performance 2.70 

Scalability 2.70 

Table 13: Average scores to quality criteria 

The overall average quality score is 2.99 on a scale of 1 to 5. This answers the main research 

question; the created model is a ‘reasonably good’ reference architecture for a solution with big 

data technology to perform predictive analytics of open data sources combined with structured, 

semi-structured, and unstructured data sources. 

 

The answers to the sub-questions of the main research question are as follows: 

 Which architecture principles, patterns, and best practices are applicable when using 

big data technology and open data sources to create a solution for predictive analysis 

of enterprise data? 

o The reference architecture contains two architecture principles, next to 

architecture patterns and best practices, that architects are advised to adhere 

to when creating a big data solution: Loose coupling and Interoperability; 

 Which components from the field of big data are good building blocks to create a 

solution architecture capable of predictive analysis of enterprise data, and in what 

configuration? 

o The reference architecture contains the most important components and 

interfaces for a big data solution. These components are displayed as abstract 

building blocks in a one-page overview and are explained in detail in the 

supporting text; 

 In what way can open data sources help to perform predictive analytics of enterprise 

data? 

o As stated in the reference architecture, open data sources can play an 

imported role in a big data solution architecture. This surfaces in the structured 

and unstructured data sources that are part of the reference architecture; 

 Is Angelov’s framework useful to create a reference architecture for big data solutions? 

o Angelov’s framework has greatly helped in designing the Big Data Solution 

Reference Architecture. The framework gave guidance and structure to the 

creative process. However, respondents of the survey gave criticism on the 

level of detail and concreteness of the resulting model. Determining these 
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aspects was part of applying Angelov’s framework, after setting the type of the 

reference architecture (see paragraph 4.2.4). The type of the reference 

architecture is fundamental to its design. At the same time, the model could 

benefit from more detail and concreteness. This is a contradiction; therefore, 

Angelov’s framework may not be suitable for possible future improvements. If 

Angelov’s framework is maintained, the type of the reference architecture 

should be adjusted, which would lead to a completely new reference 

architecture; 

 Is Hevner’s Information Systems Research Framework useful to create a reference 

architecture for big data solutions? 

o Hevner’s model has proven to be an excellent guideline for creating a reference 

architecture. All steps in the research design followed each other logically. 

Working with the model was a pleasant way of performing this research project. 

All steps were logical, clearly explained, and easy to execute. 

5.2 CONTRIBUTION 

Since the Big Data Solution Reference Architecture is a ‘good’ reference architecture for its 

purpose, the question rises what this implies. 

 

First, the model is unique in its kind. It is the first (and currently only) reference architecture for 

big data, predictive analytics, and open data that is somewhat supported by scientific evidence. 

This makes the model the best reference architecture for architects working in this area; all 

other reference architectures are either commercial in intend or have been created by 

individuals or organizations without evidence of the components. Most authors even fail to 

explain the reasoning behind their model. 

 

Another aspect that makes the Big Data Solution Reference Architecture unique is it 

completeness. Most similar reference architectures only consist of a diagram of software 

components. In contrast, the Big Data Solution Reference Architecture contains components & 

interfaces, architectural patterns, architecture principles, and architectural best practices. All of 

these elements are described in detail and are backed up by literature research and a 

qualitative data analysis (grounded theory) of expert interviews. 

 

The results of the questionnaire indicate that it is likely that big data experts will use the Big 

Data Solution Reference Architecture in their daily work. That statement in itself is a strong 

accomplishment; an important goal of the model is to have a place in real projects by big data 

architects. 
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Finally, by performing extensive literature research and interviewing subject matter experts, this 

thesis has made an important contribution to the fields of big data, solution architectures, 

reference architectures, BI, and predictive analytics. By documenting the findings, the 

knowledge about these subjects has been enlarged and deepened. 

 

To summarize, the Big Data Solution Reference Architecture is a new and unique model that 

delivers a strong contribution to the community of architects and other people who are working 

with big data technology, open data, and predictive analytics. 

5.3 FUTURE RESEARCH 

This paragraph contains suggestions for future research that would contribute to the scientific 

community with the use of the Big Data Solution Reference Architecture. 

 

An obvious future step is to create a solution architecture with guidance of the reference 

architecture. By conducting one or more case studies with the model, its practical use and 

quality can be investigated. An example of a case study is to create a solution architecture for 

a bank, with the goal of combining open data sources (e.g. weather data) with enterprise data 

(e.g. bank account balances) to produce a forecast (e.g. buying behavior of citizens in a 

shopping area). Another example is to create an architecture in a government organization that 

helps to predict the amount of violence in the upcoming weekend by combining holiday dates, 

the football calendar, traffic data, weather data, and others. 

 

The Big Data Solution Reference Architecture was only evaluated with ten respondents to the 

questionnaire. A future research project could repeat the evaluation with a larger sample, to 

gain more accurate insight into the quality of the reference architecture. 

 

It would be interesting to see how the Big Data Solution Reference Architecture evolves over 

time. Angelov et al. provided a framework for the evolution of reference architectures (see 

Figure 34). For example, it is possible that the Big Data Solution Reference Architecture evolves 

from type 3 to type 1 or variant 3.1. 
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Figure 34: Framework for the evolution of reference architectures (Angelov et al., 2012) 

Another iteration of Hevner’s Design Science framework could improve the model. As 

suggested, the type of reference architecture according to Angelov’s framework could be 

adjusted to increase the levels of concreteness and detail of the reference architecture. Another 

option is to maintain a type 3 architecture, and design the model so that the concreteness and 

detail are maximized within the boundaries of Angelov’s model. The third option is to step away 

from Angelov’s framework and use another model to design an improved version of the 

reference architecture. 

 

Finally, a future research project could investigate the way in which organizations move from 

traditional BI systems to modern big data analytics. It would be useful to see if the Big Data 

Solution Reference Architecture can play a role in migration projects, e.g. by mapping the 

existing BI software components to new systems in the target architecture. 

  



 

Big Data Reference Architecture   

 

 

© Utrecht University of Applied Sciences 

   88  

 

6 REFERENCES 

Abowd, G., Bass, L., Clements, P., Kazman, R., Northrop, L., & Zaremski, A. (1997). 

Recommended Best Industrial Practice for Software Architecture Evaluation. Software 

Engineering Institute. Pittsburgh, PA, USA: Carnegie Mellon University. 

Angelov, S., Grefen, P., & Greefhorst, D. (2012). A framework for analysis and design of 

software reference architectures. (Elsevier, Ed.) Information and Software 

Technology(54), 417-431. 

Anuganti, V. (2012, November 30). Typical "Big" Data Architecture. Retrieved from Venu 

Anuganti Blog: http://venublog.com/2012/11/30/typical-big-data-architecture/ 

Arsanjani, A., Zhang, L.-J., Ellis, M., Allam, A., & Channabasavaiah, K. (2007, March 28). 

Design an SOA solution using a reference architecture. Retrieved from IBM: 

http://www.ibm.com/developerworks/library/ar-archtemp/ 

Ashton, K. (2009, June 22). That 'Internet of Things' Thing. Retrieved from RFID Journal: 

http://www.rfidjournal.com/articles/view?4986 

AUTOSAR. (2013, March 15). 4.1. Retrieved from AUTOSAR: http://www.autosar.org 

Avgeriou, P., & Zdun, U. (2005). Architectural Patterns Revisited – A Pattern Language. 10th 

European Conference on Pattern Languages of Programs, (pp. 1-39). Irsee, Germany. 

Barlow, M. (2013). Real-Time Big Data Analytics: Emerging Architecture. Sebastopol, CA, USA: 

O'Reilly Media, Inc. 

Beck, K. (2004). Extreme Programming Explained: Embrace Change (2nd ed.). Addison-

Wesley. 

Beck, K., Beedle, M., Bennekum, A. v., Cockburn, A., Cunningham, W., Fowler, M., . . . Thomas, 

D. (2001). Principles behind the Agile Manifesto. Retrieved from Manifesto for Agile 

Software Development: http://agilemanifesto.org/ 

Beijer, P., & de Klerk, T. (2010). IT Architecture - Essential Practice for IT Business Solutions. 

Lulu.com. 

Bernus, P., & Nemes, L. (1996). A framework to define a generic enterprise reference 

architecture and methodology. Computer Integrated Manufacturing Systems, 9(3), pp. 

179-191. 

Braunschweig, K., Eberius, J., Thiele, M., & Lehner, W. (2102). The State of Open Data - Limits 

of Current Open Data Platforms. International World Wide Web Conference 2012. 

Lyon, France. 

Briggs, L. L. (2012, October 24). Big Data Calls for New Architecture, Approaches. Retrieved 

from TDWI: http://tdwi.org/articles/2012/10/24/big-data-architecture-approaches.aspx 

Brin, S., & Page, L. (1998). The Anatomy of a Large-Scale Hypertextual Web Search Engine. 

Computer Networks and ISDN Systems, 30(3), 107-117. 

Bryman, A., & Bell, E. (2007). Business Research Methods (2nd ed.). Oxford: Oxford University 

Press. 



 

Big Data Reference Architecture   

 

 

© Utrecht University of Applied Sciences 

   89  

 

Busa, N. (2013, February 2). Big Data: A technology overview. Retrieved from Natalino Busa: 

http://www.natalinobusa.com/2013/02/big-data-technology-overview.html 

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pattern-Oriented 

Software Architecture. Wiley. 

Carter, P. (2011). Big Data Analytics: Future Architectures, Skills and Roadmaps for the CIO. 

Singapore: IDC. 

Cattell, R. (2010, December). Scalable SQL and NoSQL Data Stores. SIGMOD Record, 39(4), 

pp. 12-27. 

CERN. (2013). Data analysis. Retrieved from CERN: 

http://public.web.cern.ch/public/en/research/DataAnalysis-en.html 

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., . . . Gruber, R. 

E. (2006). Bigtable: A Distributed Storage System for Structured Data. 7th USENIX 

Symposium on Operating Systems Design and Implementation (OSDI), (pp. 205-218). 

Seattle, WA, USA. 

Cheung, S., Resende, L., Lindner, S., & Saracco, C. M. (2012, April 23). Developing a big data 

application for data exploration and discovery. Retrieved from IBM: 

http://www.ibm.com/developerworks/library/bd-exploration/ 

Ching, A. (2013, August 14). Scaling Apache Giraph to a trillion edges. Retrieved from 

Facebook: https://www.facebook.com/notes/facebook-engineering/scaling-apache-

giraph-to-a-trillion-edges/10151617006153920 

Cloutier, R., Mullet, G., Verma, D., Nilchiani, R., Hole, E., & Bone, M. (2010). The Concept of 

Reference Architecture. Systems Engineering, 13(1), 14-26. 

Corbin, J., & Strauss, A. (2008). Basics of Qualitative Research: Grounded Theory Procedures 

and Techniques (3rd ed.). SAGE Publications, Inc. 

CSC. (2012). Big Data Just Beginning to Explode. Retrieved from CSC: 

http://www.csc.com/insights/flxwd/78931-

big_data_growth_just_beginning_to_explode 

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., . . . Vogels, 

W. (2007). Dynamo: Amazon's Highly Available Key-value Store. 21st ACM 

Symposium on Operating Systems Principles (pp. 205-220). Stevenson, WA, USA: 

ACM. 

Demirkan, H., & Delen, D. (2012). Leveraging the capabilities of service-oriented decision 

support systems: Putting analytics and big data in the cloud. Decision Support 

Systems, 1-10. doi:10.1016/j.dss.2012.05.048 

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of agile methodologies: 

Towards explaining agile software development. The Journal of Systems and 

Software(85), 1213-1221. 

Dobrica, Liliana, & Niemalä, E. (2002, July). A Survey on Software Architecture Analysis 

Methods. IEEE Transactions on Software Engineering, 28(7), pp. 638-653. 



 

Big Data Reference Architecture   

 

 

© Utrecht University of Applied Sciences 

   90  

 

Eaton, C., deRoos, D., Deutsch, T., Lapis, G., & Zikopoulos, P. (2012). Understanding Big Data 

- Analytics for Enterprise Class Hadoop and Streaming Data. (S. Sit, Ed.) New York, 

USA: McGraw-Hill. 

Economist Intelligence Unit. (2011). Big data: Harnessing a game-changing asset. London, UK: 

Economist Intelligence Unit Limited. 

Edlich, S. (2013). List of NoSQL Databases. Retrieved from http://nosql-database.org/ 

European Commission. (2012, July 17). Commission recommendation of 17.7.2012 on access 

to and preservation of scientific information. Brussels, European Union. 

European Commission. (2012, July 7). Towards better access to scientific information: Boosting 

the benefits of public investments in research. Brussels, European Union. 

Evans, E. (2009, June 11). NOSQL meetup. Retrieved from Eventbrite: 

http://nosql.eventbrite.com/ 

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R. (1996). Advances in 

Knowledge Discovery and Data Mining. American Association for Artificial Intelligence. 

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996, Fall). From Data Mining to Knowledge 

Discovery in Databases. AI Magazine, pp. 37-54. 

Feinleib, D. (2012, July 6). The Big Data Landscape. Retrieved from Forbes: 

http://www.forbes.com/sites/davefeinleib/2012/06/19/the-big-data-landscape/ 

Ferguson, M. (2012). Architecting A Big Data Platform for Analytics. IBM. Wilmslow, UK: 

Intelligent Business Strategies. Retrieved from 

http://www.ibmbigdatahub.com/whitepaper/architecting-big-data-platform-analytics 

Forrester. (2013). Big Data. Retrieved from Forrester: http://www.forrester.com/Big-Data 

Fowler, M. (2002). Patterns of Enterprise Application Architecture. Addison-Wesley. 

Free Software Foundation. (2012, July 15). Various Licenses and Comments about Them. 

Retrieved from Free Software Foundation: http://www.gnu.org/licenses/license-list.html 

Free Software Foundation. (2013, June 18). The Free Software Definition, 1.122. Retrieved 

from Free Software Foundation: http://www.gnu.org/philosophy/free-sw.html 

Fujitsu. (2013). Solution Approaches for Big Data. Munich, Germany: FUJITSU Technology 

Solutions GmbH. 

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of 

Reusable Object-Oriented Software. Addison-Wesley. 

Garlan, D., & Shaw, M. (1994). An Introduction to Software Architecture. Pittsburgh, PA: School 

of Computer Science, Carnegie Mellon University. 

Gartner. (2012). Business Intelligence (BI). Retrieved from Gartner IT Glossary: 

http://www.gartner.com/it-glossary/business-intelligence-bi/ 

Gartner. (2013). Big Data, Bigger Opportunities: Investing in Information and Analytics. 

Retrieved from Gartner: http://www.gartner.com/technology/research/big-data/ 

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The Google File System. Proceedings of the 

19th ACM Symposium on Operating Systems Principles (pp. 29-43). Boston Landing, 

NY, USA: ACM. 



 

Big Data Reference Architecture   

 

 

© Utrecht University of Applied Sciences 

   91  

 

Google. (2012, April 27). Google Data APIs. Retrieved from Google Developers: 

https://developers.google.com/gdata/ 

Goutier, H., & Lieshout, J. v. (2010, September 29). NORA, 3.0. Retrieved from e-overheid: 

http://e-overheid.nl/onderwerpen/e-overheid/architectuur/nora-familie/nora 

Graaf, B., Dijk, v. H., & Deursen, A. v. (2005). Evaluating an Embedded Software Reference 

Architecture. Proceedings of the Ninth European Conference on Software Maintenance 

and Reengineering (CSMR’05) (pp. 354-363). Manchester, UK: IEEE. 

Gray, J. (1981). The Transaction Concept: Virtues and Limitations. VLDB '81 Proceedings of 

the Seventh International Conference on Very Large Databases (pp. 144-154). 

Cannes, France: Tandem Computers Incorporated. 

Greefhorst, D., & Proper, E. (2011). Architecture Principles: The Cornerstones of Enterprise 

Architecture. Springer. 

Gualtieri, M. (2013, January 3). The Forrester Wave™: Big Data Predictive Analytics Solutions, 

Q1 2013. Cambridge, MA, USA: Forrester. Retrieved from 

http://www.forrester.com/The+Forrester+Wave+Big+Data+Predictive+Analytics+Solut

ions+Q1+2013/fulltext 

Harris, D. (2012, February 6). What it really means when someone says ‘Hadoop’. Retrieved 

from Gigaom: http://gigaom.com/2012/02/06/what-it-really-means-when-someone-

says-hadoop/ 

Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F. B., & Babu, S. (2011). Starfish: 

A Self-tuning System for Big Data Analytics. 5th Conference on Innovative Data 

Systems Research (CIDR '11) (pp. 261-272). Asilomar, California: Duke University. 

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004, March). Design Science in Information 

Systems Research. MIS Quarterly, 28(1), pp. 75-105. 

Hortonworks. (2012). Apache Hadoop: The Big Data Refinery. Sunnyvale, CA. 

Howson, C. (2008). Successful Business Intelligence: Secrets to Making BI a Killer App. 

Chicago: McGraw-Hill/Osborne. 

Ibarra, F. (2012, August 28). 4 Key Architecture Considerations for Big Data Analytics. 

Retrieved from VMware: http://blogs.vmware.com/vfabric/2012/08/4-key-architecture-

considerations-for-big-data-analytics.html 

IEEE. (2013). IEEE Standards Association. Retrieved from IEEE - Advancing Technology for 

Humanity: http://standards.ieee.org/ 

IFIP–IFAC Task Force on Architectures for Enterprise Integration. (1999, March). GERAM: 

Generalised Enterprise Reference Architecture and Methodology. Retrieved from 

Griffith University: 

http://www.ict.griffith.edu.au/~bernus/taskforce/geram/versions/geram1-6-

3/v1.6.3.html 

Joshi, R. (2011, March 26). A Model For The Big Data Era - Data-centric architecture is 

becoming fashionable again. Retrieved from InformationWeek: 



 

Big Data Reference Architecture   

 

 

© Utrecht University of Applied Sciences 

   92  

 

http://www.informationweek.com/development/architecture-design/a-model-for-the-

big-data-era/229301115 

Kazman, R., Bass, L., Abowd, G., & Webb, M. (1994). SAAM: A Method for Analyzing the 

Properties of Software Architectures. ICSE '94 Proceedings of the 16th international 

conference on Software engineering (pp. 81-90). Sorrento, Italy: IEEE. 

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., & Carriere, J. (1998). The 

Architecture Tradeoff Analysis Method. Proceedings of the Fourth IEEE International 

Conference on Engineering of Complex Computer Systems (ICECCS) (pp. 68-78). 

Monterey, CA, USA: IEEE. 

Kimball, R. (2012, September). Newly Emerging Best Practices for Big Data. Retrieved from 

Kimball Group: http://www.kimballgroup.com/2012/09/30/newly-emerging-best-

practices-for-big-data/ 

KING - Kwaliteitsinstituut Nederlandse Gemeenten. (2011). GEMMA. Retrieved from KING: 

http://www.kinggemeenten.nl/king-kwaliteitsinstituut-nederlandse-gemeenten/e-

dienstverlening-verbeteren/gemma 

Kniberg, H., & Skarin, M. (2009). Kanban and Scrum - making the most of both. InfoQ. 

Retrieved from http://www.infoq.com/minibooks/kanban-scrum-minibook 

Koff, W., & Gustafson, P. (2011). Data rEvolution. Retrieved from CSC Leading Edge Forum: 

http://www.csc.com/lef/ds/84818-data_revolution 

Kolbielus, J. G. (2012, February 2). The Forrester Wave™: Enterprise Hadoop Solutions, Q1 

2012. 

Kruchten, P. (2003). The Rational Unified Process: An Introduction (3rd ed.). Addison-Wesley. 

Krzywinsk, M. I., Schein, J. E., Birol, I., Conners, J., Gascoyne, R., Horsman, D., . . . Marra, M. 

A. (2009). Circos: An information aesthetic for comparative genomics. Genome 

Research, 1639-1645. Retrieved from Circos: http://circos.ca/intro/genomic_data/ 

Laney, D. (2001, February 6). 3D Data Management: Controlling Data Volume, Velocity, and 

Variety. Retrieved from Gartner: http://blogs.gartner.com/doug-

laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-

and-Variety.pdf 

Lankhorst, M. M. (2004). Enterprise architecture modelling—the issue of integration. Advanced 

Engineering Informatics(18), 205-216. 

Law, C. C., Schroeder, W. J., Martin, M. K., & Temkin, J. (1999). A Multi-Threaded Streaming 

Pipeline Architecture for Large Structured Data Sets. Proceedings of the conference 

on Visualization '99 (pp. 225-232). San Francisco, CA, USA: IEEE Computer Society 

Press. 

Leavitt, N. (2010, February). Will NoSQL Databases Live Up to Their Promise? IEEE Computer, 

43(2), pp. 12-14. 

Leinweber, D. (2013, April 26). Big Data Gets Bigger: Now Google Trends Can Predict The 

Market. Retrieved from Forbes: 



 

Big Data Reference Architecture   

 

 

© Utrecht University of Applied Sciences 

   93  

 

http://www.forbes.com/sites/davidleinweber/2013/04/26/big-data-gets-bigger-now-

google-trends-can-predict-the-market/ 

Lewis, M. (2004). Moneyball: The Art of Winning an Unfair Game. New York: W. W. Norton & 

Company. 

Lith, A., & Mattson, J. (2010, June). Investigating storage solutions for large data - A comparison 

of well performing and scalable data storage solutions for real time extraction and batch 

insertion of data. Göteborg, Sweden. 

Livari, J., & Livari, N. (2011). The relationship between organizational culture and the 

deployment of agile methods. Information and Software Technolgy(53), 509-520. 

Lohr, S. (2013, February 1). The Origins of ‘Big Data’: An Etymological Detective Story. 

Retrieved from The New York Times: http://bits.blogs.nytimes.com/2013/02/01/the-

origins-of-big-data-an-etymological-detective-story/?_r=0 

Luhn, H. P. (1958). A Business Intelligence System. IBM Journal, 314-319. 

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., & Czajkowski, G. 

(2010). Pregel: A System for Large-Scale Graph Processing. Proceedings of the 2010 

ACM SIGMOD International Conference on Management of data (pp. 135-145). 

Indianapolis, IN, USA: ACM. 

Mangelsdorf, J. (2012, Spring). Supercomputing the Climate: NASA's Big Data Mission. CSC 

World, pp. 10-13. Retrieved from 

http://www.csc.com/cscworld/publications/81769/81773-

supercomputing_the_climate_nasa_s_big_data_mission 

Marz, N., & Warren, J. (2013). Big Data - Principles and best practices of scalable realtime data 

systems. Manning Publications Co. 

McClowry, S., Rindler, A., & Simon, P. (2012, September 17). SAFE Architecture. Retrieved 

from MIKE2.0: http://mike2.openmethodology.org/wiki/SAFE_Architecture 

McKinsey Global Institute. (2011, June). Big data: The next frontier for innovation, competition, 

and productivity.  

Mendelsohn, A., Chew, M., Kent, P., & Holmes, S. (2013, May 1). Big Data - Dream IT. Build 

IT. Realize IT. Retrieved from SAS Global Forum 2013: 

http://support.sas.com/resources/papers/proceedings13/ 

Microsoft. (2013, January 18). OData V3 Protocol Specification. Retrieved from OData: 

http://www.odata.org/ 

MicroStrategy. (2012). Architecture for Enterprise Business Intelligence: An Overview of the 

MicroStrategy Platform Architecture for Big Data, Cloud BI, and Mobile Applications. 

Tysons Corner, VA, USA: MicroStrategy. Retrieved from MicroStrategy: 

http://www.microstrategy.com/software/business-intelligence/big-data 

Ministry of Education, Culture and Science. (2012). ROSA. Retrieved from Rijksoverheid: 

http://www.wikixl.nl/wiki/rosa 

Mitchell, I., & Wilson, M. (2012). Linked data: Connecting and exploiting big data. London, UK: 

Fujitsu. 



 

Big Data Reference Architecture   

 

 

© Utrecht University of Applied Sciences 

   94  

 

Muller, G. (2008, February 21). A Reference Architecture Primer. Retrieved from Gaudí System 

Architecting: http://www.gaudisite.nl/info/ReferenceArchitecturePrimer.info.html 

Muller, G., & Laar, P. v. (2009). Researching Reference Architectures and their relationship 

with frameworks, methods, techniques, and tools. 7th Annual Conference on Systems 

Engineering Research. Loughborough. 

Murray-Rust, P. (2008, March). Open Data in Science. Serials Review, 34(1), 52-64. 

Natis, Y. V., Laney, D., & Altman, R. (2012). The Nexus Effect: How Big Data Alters Established 

Architecture Models. Stamford, USA: Gartner. 

Neumeyer, L., Robbins, B., Nair, A., & Kesari, A. (2010). S4: Distributed Stream Processing 

Platform. ICDMW 2010 IEEE International Conference on Data Mining Workshops (pp. 

170-177). Sydney: ACM. 

Nictiz. (2013). Referentiedomeinenmodel ziekenhuizen (RDZ). Retrieved from Nictiz: 

http://www.nictiz.nl/page/Expertise/Specialistische-zorg/iZiekenhuis-

RDZ/Referentiedomeinenmodel 

Nyce, C. (2007). Predictive Analytics. Malvern: American Institute for CPCU / Insurance 

Institute of America. 

Object Management Group. (2011, August). OMG Unified Modeling Language (OMG UML), 

Infrastructure. Needham, MA, United States of America. Retrieved from 

http://www.omg.org/spec/UML/2.4.1 

Object Management Group. (2011, August). OMG Unified Modeling Language (OMG UML), 

Superstructure. Needham, MA, United States of America. Retrieved from 

http://www.omg.org/spec/UML/2.4.1 

Oracle. (2012). Oracle Information Architecture: An Architect's Guide to Big Data. Retrieved 

from http://www.oracle.com/technetwork/topics/entarch/articles/oea-big-data-guide-

1522052.pdf 

Oracle. (2013). Information Management and Big Data: A Reference Architecture. Oracle. 

Retrieved from http://www.oracle.com/technetwork/topics/entarch/articles/info-mgmt-

big-data-ref-arch-1902853.pdf 

O'Reilly, T., Dumbill, E., Howard, J., Zwemer, M., Loukides, M., Slocum, M., . . . Hill, C. (2012). 

Big Data Now: 2012 Edition. (M. Slocum, Ed.) Sebastopol, CA, USA: O'Reilly Media, 

Inc. 

Poppendieck, M., & Poppendieck, T. (2003). Lean Software Development: An Agile Toolkit. 

Addison-Wesley. 

Power, D. J. (2007, maart 10). A Brief History of Decision Support Systems, 4.0. Retrieved from 

Decision Support Systems Resources: http://dssresources.com/history/dsshistory.html 

Proper, E., & Greefhorst, D. (2011, February). Principles in an Enterprise Architecture Context. 

Journal of Enterprise Architecture, pp. 8-16. 

Reed, P. (2002, September 15). Reference Architecture: The best of best practices. Retrieved 

from IBM developerWorks: 

http://www.ibm.com/developerworks/rational/library/2774.html 



 

Big Data Reference Architecture   

 

 

© Utrecht University of Applied Sciences 

   95  

 

Rindler, A., McKnight, W., & McClowry, S. (2012, November 4). Big Data Solution Offering. 

Retrieved from MIKE2.0: 

http://mike2.openmethodology.org/wiki/Big_Data_Solution_Offering 

Rouibah, K., & Ould-ali, S. (2002). PUZZLE: a concept and prototype for linking business 

intelligence to business strategy. Journal of Strategic Information Systems 11, 133-

152. 

Russom, P. (2013). Integrating Hadoop Into Business Intelligence And Data Warehousing. 

Renton, WA, USA: TDWI Research. 

SAS. (2010, May). SAS 9.2 Intelligence Platform: Overview, Second Edition. Cary, NC, USA. 

Retrieved from SAS: 

http://support.sas.com/documentation/cdl/en/biov/63145/HTML/default/viewer.htm#a0

03069226.htm 

SAS. (2012). Big Data Meets Big Data Analytics. Cary, NC, USA: SAS. 

Schroeck, M., Shockley, R., Smart, J., Romero-Morales, D., & Tufano, P. (2012). Analytics: The 

real-world use of big data - How innovative enterprises extract value from uncertain 

data. Saïd Business School at the University of Oxford. Somers, NY: IBM Institute for 

Business Value. 

Schwaber, K. (1995). SCRUM Development Process. Proceesings of the OOPSLA'95 

Workshop on Business Object Design and Implementation (pp. 1-23). Austin, TX, USA: 

Springer. 

Sevilla, M. (2013, May 30). Big Data Reference Architecture. CapGemini. Retrieved from 

http://www.capgemini.com/resources/video/big-data-reference-architecture 

Silver, N. (2012). The Signal and the Noise: Why So Many Predictions Fail - but Some Don't. 

Penguin Press. 

Soares, S. (2012, July 22). Big Data Reference Architecture. Retrieved from sunilsoares: 

http://sunilsoares.wordpress.com/2012/07/22/big-data-reference-architecture-2/ 

Stallman, R. (2013, February 28). The Free Software Definition, 1.111. Retrieved from GNU: 

https://www.gnu.org/philosophy/free-sw.html 

Stallman, R. (n.d.). Why Open Source misses the point of Free Software. Retrieved from Free 

Software Foundation: http://www.gnu.org/philosophy/open-source-misses-the-

point.html 

Stonebreaker, M. (1986). The Case for Shared Nothing. Database Engineering, 9(1), 4-9. 

Strozzi, C. (2012, March 20). NoSQL: A Relational Database Management System. Retrieved 

from www.strozzi.it: http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql 

TechAmerica Foundation. (2012). Demystifying Big Data - A Practical Guide To Transforming 

The Business of Government. Washington, D.C. 

Teradata. (2013). Teradata Unified Data Architecture - Give Any User Any Analytic on Any 

Data. Dayton, Ohio: Teradata. Retrieved from http://www.teradata.com/products-and-

services/unified-data-architecture/ 



 

Big Data Reference Architecture   

 

 

© Utrecht University of Applied Sciences 

   96  

 

The Economist. (2010, February 25). Data, data everywhere. Retrieved from The Economist: 

http://www.economist.com/node/15557443 

The Open Data Survey. (2013). Retrieved from Technische Universität Dresden: 

http://wwwdb.inf.tu-dresden.de/opendatasurvey/ 

The Open Group. (2011). Architecture Principles. Retrieved from TOGAF 9.1: 

http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap23.html 

The Open Group. (2012, January). ArchiMate 2.0 Specification. Berkshire, United Kingdom. 

Retrieved from The Open Group: 

http://www.opengroup.org/subjectareas/enterprise/archimate 

The Open Knowledge Foundation. (2009, November). Defining the Open in Open Data, Open 

Content and Open Services, 1.1. Retrieved from Open Definition: 

http://opendefinition.org/ 

The Open Knowledge Foundation. (2013). CKAN, the world’s leading open-source data portal 

platform. Retrieved from http://ckan.org/ 

The Open Source Initiative. (2008). The Open Source Definition (Annotated), 1.9. Retrieved 

from Open Source Initiative: http://opensource.org/osd-annotated 

Think Big Analytics. (2013). Big Data Reference Architecture. Retrieved from Think Big 

Analytics: http://thinkbiganalytics.com/leading_big_data_technologies/big-data-

reference-architecture/ 

Top 500 Supercomputers. (2012, November). Retrieved from Top 500 Supercomputers: 

http://www.top500.org/ 

U.S. Department of Energy Genome Program. (2012, July 31). Human Genome Project. 

Retrieved from U.S. Department of Energy: 

http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml 

U.S. Department of Homeland Security. (2013). Cybersecurity. Retrieved from Homeland 

Security: http://www.dhs.gov/topic/cybersecurity 

Valiant, L. G. (1990, August). A Bridging Model for Parallel Computation. Communications of 

the ACM, 33(8), 103-111. 

Valiant, L. G. (2010). A bridging model for multi-core computing. Journal of Computer and 

System Sciences(77), 154-166. 

Vesset, D., Nadkarni, A., Olofson, K. W., Schubmehl, D., Flemin, M., Wardley, M., . . . Dialani, 

M. (2012, December). Worldwide Big Data Technology and Services 2012–2016 

Forecast. Retrieved from IDC: http://www.idc.com/getdoc.jsp?containerId=238746 

Vogels, W. (2009, January). Eventually Consistent. Communications of the ACM, 52(1), pp. 40-

44. 

W3C. (2004, February 10). Resource Description Framework (RDF) . Retrieved from W3C: 

http://www.w3.org/RDF/ 

W3C. (2013). Scalable Vector Graphics (SVG). Retrieved from 

http://www.w3.org/Graphics/SVG/ 



 

Big Data Reference Architecture   

 

 

© Utrecht University of Applied Sciences 

   97  

 

W3C. (2013, March 21). SPARQL 1.1 Overview. Retrieved from W3C: 

http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/ 

Wiering, M., Bonsangue, M., Buuren, R. v., Groenewegen, L., Jonkers, H., & Lankhorst, M. 

(2004). Investigating the mapping of an Enterprise Description Language into UML 2.0. 

Electronic Notes in Theoretical Computer Science(101), 155-179. 

Wikipedia. (2013, April 9). Software engine. Retrieved from Wikipedia: 

http://en.wikipedia.org/wiki/Software_engine 

Wilensky, H. (1967). Organizational Intelligence: Knowledge and Policy in Government and 

Industry. Basic Books. 

Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. 

Neurocomputing(50), 159-175. 

Zikopoulos, Z., Parasraman, K., Deutsch, T., Corrigan, D., Giles, J., & deRoos, D. (2013). 

Harness the Power of Big Data - The IBM Big Data Platform. (R. B. Melnyk, Ed.) New 

York: McGraw-Hill. 

 

 



 

Big Data Reference Architecture   

 

 

© Utrecht University of Applied Sciences 

   98  

 

APPENDIX I LITERATURE EVALUATION 

This appendix contains three tables that contain a summary of the literature review. The 

literature sources at the top are plot against elements of a (reference) architecture on the left. 

A ‘V’ indicates a match; the architecture in the source contains the listed component, principle, 

or best practice. Column ‘COUNT’ indicates the number of appearance in literature for a 

component, principle or best practice. The tables are sorted descending by this column. 
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Parallel batch-processing engine V V V V V V V V V V V V V V V V V V V V V V V V V 25

NoSQL database (key-value, graph, document) V V V V V V V V V V V V V V V V V V V V V 21

Predictive analytics engine V V V V V V V V V V V V V V V V V V V V V 21

Distributed fi le system V V V V V V V V V V V V V V V V V V V V 20

Structured data sources V V V V V V V V V V V V V V V V V V V V 20

Data importing / collecting / ETL engine V V V V V V V V V V V V V V V V V V V 19

Real-time / stream / complex event processing engine V V V V V V V V V V V V V V V V V V V 19

Reporting engine (traditional BI) V V V V V V V V V V V V V V V V V V V 19

Unstructured data sources V V V V V V V V V V V V V V V V V V 18

Visualization engine V V V V V V V V V V V V V V V V V V 18

Query engine V V V V V V V V V V V V V V V V V 17

Relational database V V V V V V V V V V V V V V V V V 17

OLAP data warehouse V V V V V V V V V V V V V V V V V 17

Semistructured data sources V V V V V V V V V V V V V V V 15

Data mining / integration / serialization engine V V V V V V V V V V V V V V V 15

Statistical analysis engine V V V V V V V V V V V V 12

External / open data sources V V V V V V V V V V V V 12

Coordination engine V V V V V V V V V V V 11

Machine learning engine V V V V V V V V V V V 11

Monitoring engine V V V V V V V V V V V 11

Workflow / orchestration / scheduling engine V V V V V V V V V V 10

Deployment / configuration / dependency engine V V V V V V V V V 9

Text indexing / NLP engine V V V V V V V V 8

Search engine V V V V V V V V 8

Log processing engine V V V V V V V V 8

Data cleaning / fi ltering / validation engine V V V V V V V V 8

Geospatial data analysis V V V V V 5

Sentiment analysis engine V V V V 4

Signal processing V V V 3
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I.II ARCHITECTURE PRINCIPLES 

 

Table 15: Architecture principles in literature 
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Cloud computing V V V V V V 6

Service orientation V V V V V 5

Loose coupling / modularity V V V V 4

Scalability V V V V 4

Open standards V V V V V 4

Close-to-source data processing V V V 3

Robust and fault-tolerant V V 2

Data separability V 1

Mappable input V 1

Result invariant V 1

Digital nervous system V 1

Data-centric design V 1

Platform-independence V 1



 

Big Data Reference Architecture   

 

 

© Utrecht University of Applied Sciences 

   100  

 

I.III ARCHITECTURAL BEST PRACTICES 

 

Table 16: Architectural best practices in literature 
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Best practice

Data pipeline approach V V V V V V V V V V 10

Data governance V V V V 4

Data security / privacy management V V V V 4

Architecture layering V V V V 4

In-memory processing V V V V 4

Data exploration and discovery V V V V 4

(Master/Meta) data management V V V 3

Simulation V V V 3

Agile development V V V 3

Top-down analytics (by theory/hypothesis) V V 2

Sandbox mentality V V 2

Bottom-up analytics (by data) V V 2

Stateless applications V 1

Data audit, balance and control V 1

Information policy management V 1

Workload optimization V 1

Data caching V 1

Event-driven architecture V 1

Crowdsourcing V 1

Storytelling V 1

Structure around analytics V 1

Lifecycle management V 1
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APPENDIX II RESULTS OF QUESTIONNAIRE 

This appendix contains the full questionnaire and the results of the survey. For an explanation 

of the contents of the questionnaire, see paragraph 3.3.3. The results are evaluated in 

paragraph 4.4. Each section contains one or more questions. Answers to open questions are 

displayed in bulleted lists. For each range of multiple-choice questions, a table is displayed that 

contains the ‘raw’ scores on the questions. 

 

For the multiple-choice questions in section 1, the possible answers are listed the column 

‘Answer’ on the left side of the table, and the number of respondents who have selected that 

answer to the question are displayed in column ‘Responses’. Finally, in the column ‘%’ the 

number of responses is translated into a percentage. 

 

For the multiple-choice questions in sections 2 and 3, the questions are listed in the column 

‘Question’ on the left side of the table. The possible answers are listed in the following five 

columns, since there are five possible answers. The values in the table cells indicate the 

number of respondents who have selected the answer for the question. 

II.I SECTION 1: INTRODUCTION 

Please indicate your primary working role. 

# Answer Response % 

1 Software architect 3 30% 

2 Software developer 1 10% 

3 Manager / supervisor / team lead 1  10% 

4 Business analyst 0 0% 

5 Business architect 0 0% 

6 Data scientist 0 0% 

7 Other, namely: 

 tech lead and scrum master (1) 

 IT Architect (1) 

 Solutions Architect (1) 

 enterprise architect (1) 

 CIO (1) 

5 50% 

 TOTAL 10 100% 

 

Give an estimation of your knowledge and experience with Big Data and predictive analytics. 
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# Answer Responses % 

1 None. 0 0% 

2 I've only heard some of these things. 0 0% 

3 I've read some books/articles/blogs, have gone to some 

presentations/seminars, but have no real-world experience. 

3 30% 

4 I've practiced with these topics, and have done some work with it. 4 40% 

5 I use Big Data technology in my day-to-day work. 3 30% 

 TOTAL 10 100% 

Table 17: Answers to question in section 1 

II.II SECTION 2: IMPRESSIONS OF THE BIG DATA SOLUTION REFERENCE 
ARCHITECTURE 

How likely is it that you are going to use the elements of the Big Data Reference Architecture 

in your work, in the near future (1-2 years)? 

# Question Very 
Unlikely 

Unlikely Undecid
ed 

Likely Very 
Likely 

Mean 

1 Components & Interfaces 0 1 4 3 2 3.56 

2 Architectural Patterns 0 2 4 3 1 3.22 

3 Architecture Principles 0 4 2 2 2 3.11 

4 Architectural Best 

Practices 

0 3 2 4 1 3.22 

 TOTAL 0 10 12 12 6 3,28 

Table 18: Answers to questions 1 to 4 in section 2 

Please give a rating to the various aspects of the Big Data Solution Reference Architecture. 

# Question Poor Fair Good Very Good Excellent Mean 

5 The goal and purpose of the 

model 

0 0 6 2 2 3.60 

6 The completeness of the 

model 

1 3 5 1 0 2.60 

7 The level of detail, e.g. the 

number of components 

0 5 2 3 0 2.80 

8 The concreteness of the 

elements, e.g. abstract 

concepts vs. concrete 

implementations 

3 2 2 2 1 2.60 

 TOTAL 4 10 9 8 3 2.90 

Table 19: Answers to questions 5 to 8 in section 2 
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Provide any explaining remarks: 

 there is quite some repetition in the architecture. in my opinion it could be possible to 

remove some of the vervosity, by better naming the elements of each layer. 

 Re. the Architectural patterns, principles and best practices: they all do make sense 

but (at least for me) they are a bit obvious and not that big data specific. 

 Missing risk/security aspects (the RA restricts itself to happy flows), which could be 

covered by techniques such as abuse case modeling and, possibly, architectural risk 

analysis. 

 Ik vind het componentenmodel heel goed en de patterns ook hoewel het er weini zijn, 

maar de achitectuur principes en de architectuur best practices heel beperkt en 

algemeen en daardoor niet of nauwelijks interessant of bruikbaar. Daar zou ik graag 

meer van zien. 

II.III SECTION 3: QUALITY OF THE BIG DATA SOLUTION REFERENCE 
ARCHITECTURE 

Rate the reference architecture, or a concrete solution architecture as implementation, on: 

# Question Poor Fair Good Very 

Good 

Excellent Mean 

1 the ease with which it can 

cope with defects, e.g. be 

adjusted to fix a bug in the 

Analytics Engine 

1 2 4 3 0 2.90 

2 the ease with which it can 

meet new requirements, 

e.g. add a new data source 

0 1 8 1 0 3.00 

3 the ability to switch 

components, e.g. replace 

an implementation of the 

Visualization Engine 

0 1 7 2 0 3.10 

4 the likelihood that it can be 

used for multiple use cases 

in different industries, e.g. 

healthcare, finance, 

government, oil & gas, etc. 

0 2 6 2 0 3.00 

5 the speed and performance 

it can accomplish, 

compared to similar models 

1 2 6 1 0 2.70 



 

Big Data Reference Architecture   

 

 

© Utrecht University of Applied Sciences 

   104  

 

or other BI / Big Data 

architectures 

6 the ability to scale when the 

data are increased 

significantly in volume, 

velocity or variety 

1 1 8 0 0 2.70 

 TOTAL 3 9 39 9 0 2.90 

Table 20: Answers to questions 1 to 6 in section 3 

Provide any explaining remarks: 

 the architecture is very abstract yet. I gave it good to many points but in fact in oreder 

to answer properly the reference architecture should be further refined 

 I think the model in general is too abstract to make any assumptions on the 

characteristics. 

 I do not have sufficient domain knowledge to accurately assess these quality criteria, 

so in order to avoid statistical bias I have chosen "Good" as answer for each question. 

 "The speed and performance" en "the ability to scale" en "ease to cope with defects" 

snapte ik niet als eigenschappen van een referentie architectuur. Gaat het nu om 

eigenschappen van een Big Data toepassing? Of om de onderhoudbaarheid en 

kwaliteit van de referentiearchitectuur? 

II.IV SECTION 4: ADDITIONAL QUESTIONS 

Is the reference architecture complete, or are any important components missing? 

 caching: reuse of data and results.   multi-tenancy  latency analysis: slow path, fast 

path 

 Well, a reference architecture can be very high level as well as rather detailed, so it is 

difficult to answer this question. I consider this somewhat in between and do find it very 

useful. It is useful for big data novices, and is useful for more advanced users as well. 

 I'd like to add the more realtime (stream processing) elements. More and more BigData 

is moving from batch oriented solutions to online. 

 I'd rather discuss functions than components.   In terms of functions the model seems 

fairly complete  However, I would like to see links to the organizational aspect of it. See 

for example DAMA DMBOK 

 2.2.3 => Je zou nog een schema kunnen toevoegen met verbindingen die er onderling 

stappen die je er benoemd.. Data transportation,..enz. 

 As indicated before, risk/security is not addressed. 

 Ik mis een antwoord op de vraag wanneer je een Big Data oplossing zou moeten 

willen? Daarmee samenhangend: wat zijn de kaders en de belangrijkste 
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uitgangspunten?   De patterns zijn een krachtig hulpmiddel maar het zijn er jammer 

genoeg maar twee. Zijn erniet meer? 

 The model seems complete to me. 

 For me the picture looks complete. 

 

What are the strong and weak point of the reference architecture? 

 strong: is abstract, layered  weak: is abstract, layered    :) 

 Strong: component diagrams, mapped to tools. Clear description, good visualisations.    

Week: architectural principles etc. seems rather generic (and from that perspective still 

useful, but not that big data relevant). 

 Weak:  -too general    Strong:  -Good guideline for Big Data novices. 

 Strpong point: simplicity    Weak point: since you chose components rather than 

functions, it is now harder to model things like: I am choosing to group two logical 

components in 1 physical component 

 Sterke punt dat het is gevisualiseerd is in de verschillende lagen die we tijdens lessen 

hebben behandeld over architectuur.    Ik snap de keuze van 'open data' in internet, 

maar het zou ook natuurlijk in intranet kunnen vallen.., maar dat is een beetje geneuzel 

van mij.    De indruk die het bij mij achterlaat is dat het een goed model is. 

 Strong: comprehensive and traceable use of generalisation and specification 

techniques, abstraction  Weak: contextual layer (as exists in Zachman 

Framework/SABSA) seems a bit thin, traceability to business drivers is missing 

(disclaimer: I am not a seasoned architect, so please take these comments with a 

reasonable grain of salt, they are merely meant to help), risk/security aspects are not 

addressed 

 Sterk punt: keurig overzichtelijk ArchiMate model. Complimenten!  Zwakke punt: 

principes en best practices.  De best practices vond ik veeeeeel te algemeen. Als je 

het zo algemeen formuleert heeft het geen toegevoegde waarde in een 

referentiearchitectuur voor Big Data. 

 For me as technician, the architecture is very high level. This is a strong but also a 

weak point. The architecture is a good starting point. 

 

Please add any other comments or questions: 

 it not quite clear to me the reason why processing and analysis are two different steps. 

maybe you can explain it to me next time we meet. 

 Soms heb je afkortingen genoemd, maar dan is het onbekend waar die afkorting voor 

staan voor mijn: bijvoorbeeld: HDFS, SDK    Ik hoop dat je er wat aan hebt en succes 

ermee 

 Goede eerste poging maar verdient nog wel een flinke verdiepingsslag om echt 

bruikbaar te zijn als referentie architectuur. 
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APPENDIX III OPTIONS FOR SOFTWARE COMPONENTS 

This appendix contains a series of tables that contain some options for the software 

components of a big data solution architecture. The tables can be used to get an overview of 

the free and open source software (FOSS) available, as well as the commercial/proprietary 

offerings. The lists are by no means complete; products and frameworks change continually 

and the big data environment is far from settled. Many components cannot be placed in one 

category. In that case, the best match was picked based on the core functionalities of the 

component. The tables are sorted alphabetically on the Name column. 

I.IV IMPORTING ENGINE 

Name Purpose License Description 

Angoss 

Knowledge-

SEEKER 

Data Mining Proprietary Tool with data mining capabilities including data 

preparation, profiling, decision tree design 

functionality 

Chukwa Data 

Collection 

Apache 

(FOSS) 

Data collection for distributed systems 

IBM 

InfoSphere 

Data Explorer 

Data 

Discovery 

 

Proprietary Federated navigation and discovery across a 

broad range of applications, data sources and file 

types 

MuleSoft 

Anypoint 

Data 

Integration 

Proprietary SaaS integration tool 

Pentaho Data 

Integration 

(Kettle) 

Data 

Integration 

Proprietary Data integration platform 

Rapid Miner Data Mining Affero 

General 

Public 

License 

(FOSS) 

Tool for data mining, data Integration, analytical 

ETL, and data analysis 

Splunk Data 

Collection 

Proprietary Collection and indexing of machine-generated 

data 

Talend Open 

Studio 

Data 

Collection, 

Data Loading 

Data 

Acquisition 

GNU 

General 

Public 

License 

(FOSS) 

Loading, extraction, transformation and 

processing of large and diverse data sets 

Table 21: Options for the Importing Engine component 



 

Big Data Reference Architecture   

 

 

© Utrecht University of Applied Sciences 

   107  

 

I.V PROCESSING ENGINE 

I.II.I Data Preparation Engine 

Name Purpose License Description 

Angoss 

Knowledge-

SEEKER 

Data 

Transformation 

Proprietary Tool that allow users to extract, manipulate 

and transform data to prepare it for modeling 

Apache Avro Data Serialization Apache 

(FOSS) 

Data serialization system 

Apache 

Sqoop 

Data 

Transportation 

Apache 

(FOSS) 

Transferring bulk data between Hadoop and 

other (relational) databases 

DataCleaner Data Cleaning GNU Lesser 

General 

Public 

License 

(FOSS) 

Data quality analysis application 

Google 

Refine and 

OpenRefine 

Data Cleaning New BSD 

(FOSS) 

Tool for working with messy data, cleaning it 

up, transforming it from one format into 

another, extending it with web services, and 

linking it to databases 

Informatica 

Vibe 

Data Integration Proprietary A data management engine that can access, 

aggregate, and manage data 

Scribe Data Integration Proprietary Integration of customer data 

Talend Open 

Studio 

Data Integration FOSS Loading, extraction, transformation and 

processing of large and diverse data sets 

Table 22: Options for the Data Preparation Engine component 

I.II.II Data Exploration Engine 

Name Purpose License Description 

Apache Hive Querying Apache 

(FOSS) 

Tool for data summarization and adhoc querying 

Apache Lucene Search Apache 

(FOSS) 

Tool with indexing and search technology, as well as 

spellchecking, hit highlighting and advanced 

analysis/tokenization capabilities 

Apache Nutch Serach Apache 

(FOSS) 

Extensible and scalable web crawler software, based 

on Lucene 

Apache Pig Querying Apache 

(FOSS) 

High-level data-flow language and execution 

framework for parallel computation 
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Apache Sorl Search Apache 

(FOSS) 

High performance search server, built using Lucene 

Cloudera 

Impala 

Querying Apache 

(FOSS) 

Query engine that runs on Hadoop 

ElasticSearch Search Apache 

(FOSS) 

Real-time search and analytics engine for the cloud, 

based on Lucene 

Google Big 

Query 

Search Proprietary Online web service for interactive analysis of massive 

datasets 

LGTE Search New BSD 

(FOSS) 

Information retrieval tool, developed at the Technical 

University of Lisbon 

MarkLogic 

Search 

Search Proprietary Big data search engine 

Sphinx Search GNU 

General 

Public 

License 

(FOSS) 

General-purpose search server 

Xapian Search GNU 

General 

Public 

License 

(FOSS) 

Probabilistic information retrieval library and full-text 

search engine 

Table 23: Options for the Data Exploration Engine component 

I.II.III Batch Processing Engine 

Name Purpose Licence Description 

Amazon Elastic 

MapReduce 

Hadoop 

Solution 

Proprietary Hosted Hadoop framework running on the web-

scale infrastructure of Amazon Elastic Compute 

Cloud (Amazon EC2) and Amazon Simple 

Storage Service (Amazon S3) 

Apache 

Hadoop 

MapReduce 

MapReduce 

Framework 

Apache 

(FOSS) 

Framework that allows for the distributed 

processing of large data sets across clusters of 

computers using simple programming models 

Cloudera Hadoop 

Distribution 

Proprietary Distribution of Hadoop and related projects 

Datameer Hadoop 

Solution 

Proprietary Solution for data integration, data management, 

and analytics on top of Hadoop 
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Disco MapReduce 

Framework 

BSD (FOSS) Lightweight framework for distributed computing 

based on the MapReduce paradigm, developed 

by Nokia 

EMC 

Greenplum HD 

Hadoop 

Solution 

Proprietary Supported version of the Apache Hadoop stack 

including HDFS, MapReduce, Hive, Pig, HBase, 

and ZooKeeper 

HortonWorks Hadoop 

Distribution 

Proprietary Distribution of Hadoop and related projects 

IBM InfoSphere 

BigInsights 

Hadoop 

Solution 

Proprietary General big data platform, including Hadoop 

InfoChimps 

Cloud 

Hadoop 

Solution 

Proprietary Suite of robust, scalable cloud-based big data 

services 

MapR Hadoop 

Distribution 

Proprietary Distribution of Hadoop and related projects 

Microsoft 

Windows 

Azure 

HDInsight 

Hadoop 

Solution 

Proprietary Service that deploys and provisions Hadoop 

clusters in the cloud, providing a software 

framework designed to manage, analyze and 

report on big data 

Oracle Big 

Data Appliance 

Hadoop 

Solution 

Proprietary Integrated big data platform of hardware and 

software, on top of Cloudera (including Hadoop), 

Oracle NoSQL and R 

Mortar Data Hadoop 

Solution 

Proprietary Hadoop-as-a-Service solution to work with Pig 

and Python on Hadoop 

Teradata 

Appliance for 

Hadoop 

Hadoop 

Solution 

Proprietary Tightly integrated hardware/software stack, 

optimized for enterprise-class big data storage 

and refining 

Qubole Hadoop 

Solution 

Proprietary Hadoop-as-a-Service running on Amazon AWS 

Table 24: Options for the Batch Processing Engine component 

I.II.IV Stream Processing Engine 

Name Purpose License Description 

Akka Programming 

Framework 

Apache (FOSS) A specialized framework for distributed, 

parallel processing of large datasets, 

programmed in the Scala language 

Apache 

Spark 

Programming 

Framework 

Apache (FOSS) Cluster computing system for data analytics 

with APIs in Pyton, Scala and Java, 

developed by UC Berkeley AMPLab 
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Esper Complex 

Event 

Processing 

GNU General 

Public License 

(FOSS) 

Library for CEP 

IBM 

InfoSphere 

Streams 

Development 

Platform 

Proprietary Computing platform that allows user-

developed applications to quickly ingest, 

analyze and correlate information as it arrives 

from thousands of real-time sources 

S4 Programming 

Framework 

Apache (FOSS) General-purpose, distributed, scalable, fault-

tolerant, pluggable platform that allows 

programmers to develop applications for 

processing continuous unbounded streams of 

data 

Software AG 

Apama 

Complex 

Event 

Processing 

Proprietary Platform for CEP 

TIBCO 

StreamBase 

Complex 

Event 

Processing 

Proprietary Platform for CEP 

Twitter Storm Programming 

Framework 

Eclipse Public 

License (FOSS) 

Distributed real-time computation framework 

to reliably process unbounded streams of data 

Table 25: Options for the Stream Processing Engine component 

I.II.V Log Processing Engine 

Name License Description 

Apache 

Flume 

Apache (FOSS) Tool for collecting, aggregating, and moving large amounts of 

log data 

Fluentd Apache (FOSS) Tool to collect events and logs with abilities to add plug-ins 

Kibana MIT License 

(FOSS) 

Scalable interface for Logstash and ElasticSearch with 

search, graph, and analyze functions 

Graylog2 GNU General 

Public License 

(FOSS) 

Tool for log management 

Loggly Proprietary Cloud-based log management service 

Logscape Proprietary Log collecting and searching tool 

Logstash Apache (FOSS) Tool for managing events and logs 

Splunk Proprietary Tool that collects, indexes and harnesses all of the fast-

moving machine data generated by your applications, servers 

and devices 
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Sumo Logic Proprietary Cloud-based log management solution 

Table 26: Options for the Log Processing Engine component 

I.VI ANALYTICS ENGINE 

Name Purpose License Description 

Actian 

ParAccel 

Analytics 

(General, Multi-

purpose) 

Proprietary Big data analytics database platform 

Alteryx 

Strategic 

Analytics 

Analytics 

(General, Multi-

purpose) 

 

Proprietary Analytics platform 

Angoss 

Knowledge-

STUDIO 

Analytics 

(General, Multi-

purpose) 

 

Proprietary Cloud-based creation and execution of 

analytical models 

Apache Giraph Graph Processing Apache 

(FOSS) 

Iterative graph processing system built for 

high scalability, developed at Facebook 

Apache 

Mahout 

Machine Learning Apache 

(FOSS) 

Scalable machine learning framework 

framework 

Google 

Analytics 

Analytics 

(General, Multi-

purpose) 

Proprietary Cloud-based analytics framework with 

visualization and  API 

Google Pregel Graph Processing Proprietary Framework that supports large-scale graph 

processing 

GraphLab Graph Processing Apache 

(FOSS) 

Software platform that enables advanced 

analytics and machine learning on graphs 

IBM SPSS Statistical 

Analysis 

Proprietary Statistical analysis of static data 

KNIME Analytics 

(General, Multi-

purpose) 

GNU 

General 

Public 

License 

(FOSS) 

Multi-purpose tool for data analysis 

KXEN Analytics 

(General, Multi-

purpose) 

Proprietary Predictive analytics engine 
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Mathematica Mathematical 

Analytics 

Proprietary Integrated all-in-one platform for 

computational data analysis 

Oracle 

Business 

Analytics 

Analytics 

(General, Multi-

purpose) 

Proprietary Predictive analytics engine 

Orange Machine Learning GPL  Data analysis tool with support for plug-ins, 

developed by the University of Ljubljana 

R Statistical 

Analysis 

GNU 

General 

Public 

License 

(FOSS) 

Statistical analysis tool with options for plug-

ins 

Salford 

Systems SPM 

Predictive 

Modeling 

Proprietary Software suite for analytics and data mining 

platform for creating predictive, descriptive, 

and analytical models from databases of 

any size, complexity, or organization 

SAP Analytics Analytics 

(General, Multi-

purpose) 

Proprietary Analytics tool on top of SAP HANA 

SAS Analytics Analytics 

(General, Multi-

purpose) 

Proprietary Integrated environment for predictive and 

descriptive modeling, data mining, text 

analytics, forecasting, optimization, 

simulation, experimental design and more 

StatSoft 

STATISTICA 

Analytics 

(General, Multi-

purpose) 

Proprietary Integrated suite of analytics software 

products 

Teradata Aster 

Big Analytics 

Appliance 

Analytics 

(General, Multi-

purpose) 

Proprietary Integrated hardware and software platform 

for big data discovery and analytics 

Weka Machine Learning GNU 

General 

Public 

License 

(FOSS) 

Software for machine learning, developed 

by the University of Waikato (New Zealand) 

Table 27: Options for the Analytics Engine component 

  



 

Big Data Reference Architecture   

 

 

© Utrecht University of Applied Sciences 

   113  

 

I.VII VISUALIZATION ENGINE 

Name License Description 

D3.js  BSD License 

(FOSS) 

Library that uses JavaScript, HTML, SVG, and CSS for 

rendering diagrams and charts 

Datameer Proprietary Product that displays graphs, maps, tables, and other shapes 

in a dashboard 

Flot MIT (FOSS) Plotting library for jQuery 

Gephi GNU General 

Public License 

(FOSS) 

Network analysis and visualization software package 

Google Charts Proprietary Web-based charting tool 

IBM Cognos Proprietary Reporting and BI engine 

QlikView Proprietary Reporting and BI engine 

R GNU General 

Public License 

(FOSS) 

Statistical analysis and visualization engine 

Raphaël.js MIT (FOSS) JavaScript library for data visualization that works with SVG 

Tableau Proprietary Visual analytics platform that offers interactive data 

visualization 

Visual.ly Proprietary Tool for generating infographics 

Yellowfin Proprietary Reporting and BI engine 

Zoomdata Proprietary Analytics platform with interactive visualizations 

Table 28: Options for the Visualization Engine component 

I.VIII MANAGEMENT ENGINE 

Name Purpose License Description 

Apache Ambari Provisioning, 

Monitoring 

Apache 

(FOSS) 

Tool for provisioning, managing, and 

monitoring Apache Hadoop clusters which 

includes support for Hadoop HDFS, Hadoop 

MapReduce, Hive, HCatalog, HBase, 

ZooKeeper, Oozie, Pig and Sqoop 

Apache 

Chukwa 

Monitoring Apache 

(FOSS) 

Data collection system for monitoring large 

distributed systems, built on top of HDFS and 

Hadoop 

Apache 

Hadoop YARN 

Resource 

management 

Apache 

(FOSS) 

Framework for job scheduling and Hadoop 

cluster resource management 
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Apache Oozie Workflow Apache 

(FOSS) 

Workflow/coordination system to manage and 

schedule Apache Hadoop jobs 

Apache Whirr Provisioning Apache 

(FOSS) 

Set of libraries for running cloud services 

Apache 

Zookeeper 

Coordination Apache 

(FOSS) 

Coordination service for distributed systems 

Azkaban Workflow Apache 

(FOSS) 

Batch workflow job scheduler created at 

LinkedIn to run their Hadoop Jobs 

Chef Provisioning Apache 

(FOSS) 

Configuration management tool that uses a 

Ruby domain-specific language (DSL) for 

writing system configuration recipes or 

cookbooks 

Cloudera 

Enterprise 

Deployment 

management 

Propietary Tool for managing Hadoop deployments 

Doozerd Coordination MIT 

(FOSS) 

Data store that can be used for storing and 

acting on configuration data shared between 

several machines. 

Puppet Provisioning Apache 

(FOSS) 

Tool that manages the configuration of 

servers declaratively 

Table 29: Options for the Management Engine component 

I.IX DISTRIBUTED FILE SYSTEM 

Name License Description 

Amazon S3 Proprietary Online file storage service, offered by Amazon Web 

Services 

Apache Hadoop 

HDFS 

 

Apache (FOSS) Distributed file system that provides high-throughput 

access to application data 

Ceph GNU Lesser 

Public License 

(FOSS) 

Distributed object store and file system designed to provide 

excellent performance, reliability and scalability 

GlusterFS GNU General 

Public License 

(FOSS) 

Distributed file system capable of scaling to several 

petabytes and handling thousands of clients 

Google GFS Proprietary Distributed file system, designed to provide efficient, 

reliable access to data using large clusters of commodity 

hardware 
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Lustre GNU General 

Public License 

(FOSS) 

Parallel distributed file system, generally used for large-

scale cluster computing 

Microsoft DFS Proprietary Set of client and server services that allow an organization 

using Microsoft Windows servers to organize many 

distributed file shares into a distributed file system 

Table 30: Options for the Distributed File System component 

I.X DISTRIBUTED DATABASE 

Name Type License Description 

10gen 

MongoDB 

NoSQL GNU 

General 

Public 

License 

(FOSS) 

Document database 

Amazon 

DynamoDB 

NoSQL Proprietary Cloud-based key-value store with integration 

options to other Amazon services (Elastic 

MapReduce, S3) 

Amazon 

SimpleDB 

NoSQL Proprietary Cloud-based columnar database 

Apache 

Accumulo 

NoSQL Apache 

(FOSS) 

Sorted, distributed key/value database that was 

developed at the NSA, with cell-level security to 

assign permissions to individual table cells 

Apache 

Cassandra 

NoSQL Apache 

(FOSS) 

Scalable multi-master database with no single 

points of failure 

Apache 

CouchDB 

NoSQL Apache 

(FOSS) 

Document store 

Apache HBase NoSQL Apache 

(FOSS) 

Scalable, distributed columnar database that 

supports structured data storage for large tables 

Basho Riak NoSQL Apache 

(FOSS) 

Key-value database 

Couchbase 

Server 

NoSQL Apache 

(FOSS) 

Document store 

Elasticsearch NoSQL Apache 

(FOSS) 

Document store build on top of Apache Lucene 

EMC Pivotal 

GreenPlum 

Database 

NoSQL Proprietary Shared-nothing database for massive parallel 

processing 
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Google 

BigTable 

NoSQL Proprietary Cloud-based key-value store 

HP Vertica 

Analytic 

Database 

NoSQL Proprietary Grid-bases, column-oriented database on shared 

nothing architecture 

IBM DB2 Relational Proprietary Traditional RDBMS 

Intersystems 

Caché 

NoSQL Proprietary Object database 

Microsoft SQL 

Server 

Relational Proprietary Traditional RDBMS 

Microsoft 

Windows 

Azure Table 

Storage 

NoSQL Proprietary Cloud-bases key-value store 

MySQL Relational GNU 

General 

Public 

License 

(FOSS) 

Traditional RDBMS 

Oracle 

Database 

Relational Proprietary Traditional RDBMS 

Oracle NoSQL NoSQL Proprietary Distributed key-value database 

PostgreSQL Relational PostgreSQL 

License 

(FOSS) 

Traditional RDBMS 

Redis NoSQL BSD License 

(FOSS) 

Key-value store 

SAND Analytic 

Platform 

NoSQL Proprietary Columnar big data analytics database platform 

SAP Sybase Relational Proprietary Traditional RDBMS 

Teradata 

Database 

Relational Proprietary Traditional RDBMS 

Voldemort NoSQL Apache 

(FOSS) 

Key-value store 

Table 31: Options for the Distributed Database component 

  



 

Big Data Reference Architecture   

 

 

© Utrecht University of Applied Sciences 

   117  

 

I.XI ANALYTICS DATABASE 

Name Type License Description 

Google Pregel Graph 

Database 

Proprietary Framework that supports large-scale graph 

processing 

IBM Netezza Data 

Warehouse 

Proprietary Integrated hardware and software solution for 

high-performance data warehousing and advance 

analytics applications 

Kognitio WX2 In-memory 

Database 

Proprietary In-memory analytics database platform 

Neo4j Graph 

Database 

Proprietary Embedded, disk-based, fully transactional Java 

persistence engine that stores data structured in 

graphs rather than in tables 

SAP HANA In-memory 

Database 

Proprietary In-memory database for performing real-time 

analytics 

Objectivity 

InfiniteGraph 

Graph 

Database 

Proprietary Distributed, scalable graph database 

HP Vertica 

Analytic 

Database 

NoSQL Proprietary Grid-based, column-oriented analytic database 

Table 32: Options for the Analytics Database component 

 


