

MASTER’S THESIS

A Reference Architecture for Big Data Solutions

Introducing a model to perform predictive analytics of

enterprise data, combined with open data sources, using

big data technology

Author:

Bas Geerdink

Date:

August 30, 2013

Utrecht University of Applied Science

Faculty Science and Engineering

P.O. box 182

3500 AD UTRECHT

The Netherlands

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 2

ACKNOWLEGDEMENTS

This document is the result of a study Master of Informatics that took two years. The study was

a fantastic journey into the world of informatics, business-IT alignment, architecture, business

strategy, and other subjects. The study and this research project have taken a lot of my time

and energy, and I could not have done it without the help of people close to me.

First, I would like to express my gratitude to all of the people who participated in the project. My

lectors Raymond Slot and Norman Manley gave excellent guidance and spend a lot of time

reviewing my material. Teachers Kobus Smit and Bas van Gils have helped me tremendously

by providing useful feedback.

Then, my fellow students. We had a great time during the past two years and have pulled each

other through at some moments. I would like to thank you for all the moments of joy and pain!

I would like to express a big 'thank you' to the team of experts, whose contribution to this

research project was voluntary and mostly in their free time. Next to the stakeholders mentioned

in this document, I got a lot of ideas and inspiration from my colleagues at CSC and ING.

Thanks, guys!

My family and friends were important to me during my study. I would like to thank them for

standing by and encouraging me, although I would have liked to spend more time in the

evenings and weekends with them.

Finally, I would like to thank Loes, the love of my life. She was a pillar of support throughout the

last two years and always displayed understanding of the time and effort that went into this

research. I promise I will make up the lost time!

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 3

TABLE OF CONTENTS

Acknowlegdements ... 2

List of Tables & Figures .. 5

Abstract .. 7

1 Introduction .. 8

1.1 Problem statement .. 9

1.2 Research question .. 10

2 Literature Study ... 11

2.1 Business Intelligence .. 11

2.2 Big Data... 11

2.3 Open Data ... 15

2.4 Predictive Analytics ... 18

2.5 Reference Architectures .. 20

2.6 Summary ... 22

3 Research method ... 23

3.1 Literature Review .. 24

3.2 Development of Reference Architecture ... 24

3.3 Justification / Evaluation of Reference Architecture ... 26

3.4 Addition of Reference Architecture to the Knowledge Base 31

4 Findings and Discussion .. 32

4.1 Literature Review .. 32

4.2 Development of Reference Architecture ... 49

4.3 Results: the Big Data Solution Reference Architecture 57

4.4 Justification / Evaluation of Reference Architecture ... 80

5 Conclusion ... 83

5.1 Observations ... 83

5.2 Contribution ... 85

5.3 Future Research ... 86

6 References .. 88

Appendix I Literature Evaluation ... 98

I.I Components .. 98

I.II Architecture Principles .. 99

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 4

I.III Architectural Best Practices .. 100

Appendix II Results of Questionnaire .. 101

II.I Section 1: Introduction .. 101

II.II Section 2: Impressions of the Big Data Solution Reference Architecture 102

II.III Section 3: Quality of the Big Data Solution Reference Architecture 103

II.IV Section 4: Additional questions ... 104

Appendix III Options for Software Components .. 106

I.IV Importing Engine ... 106

I.V Processing Engine .. 107

I.VI Analytics Engine .. 111

I.VII Visualization Engine .. 113

I.VIII Management Engine ... 113

I.IX Distributed File System ... 114

I.X Distributed Database ... 115

I.XI Analytics Database ... 117

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 5

LIST OF TABLES & FIGURES

Figure 1: The convergence of hardware, application and data architectures to a stateless

"shared nothing" world is redefining the data foundation (Koff & Gustafson, 2011) 13

Figure 2: Classification of open data platforms (Braunschweig et al., 2012) 17

Figure 3: The role of reference architectures (Cloutier et al., 2010) 21

Figure 4: Information Systems Research Framework (Hevner et al., 2004) 23

Figure 5: The design of a reference architecture (Angelov et al., 2012) 24

Figure 6: Section 1, question 1 .. 29

Figure 7: Section 1, question 2 .. 29

Figure 8: Section 2, questions 1 to 4 ... 29

Figure 9: Section 2, questions 5 to 8 ... 30

Figure 10: Section 3, question 1 to 6 ... 31

Figure 11: Starfish architecture (Herodotou et al., 2011) .. 33

Figure 12: A conventional pipeline (top) compared to a streaming pipeline (bottom) (Law et al.,

1999) .. 33

Figure 13: Conceptual architecture of service oriented DSS (Demirkan & Delen, 2012) 34

Figure 14: Lambda Architecture diagram (Marz & Warren, 2013) .. 35

Figure 15: Big Data Enterprise Model (TechAmerica Foundation, 2012) 36

Figure 16: Hadoop environment of Karmasphere (Harris, 2012) .. 37

Figure 17: Big Data Refinery architecture (Hortonworks, 2012) ... 37

Figure 18: Big data solution architecture (Fujitsu, 2013) ... 38

Figure 19: Business Analytics Taxonomy (IDC, 2011) .. 39

Figure 20: Oracle Integrated Information Architecture Capabilities (Oracle, 2012) 39

Figure 21: SAS Intelligence Platform (SAS, 2010) .. 40

Figure 22: SAS in-memory analytics (SAS, 2013) .. 41

Figure 23: Single Unified Architecture (MicroStrategy, 2013) ... 41

Figure 24: Forrester Wave, Enterprise Hadoop Solutions, Q1 '12 (Forrester, 2012) 43

Figure 25: Big Data Architecture (Anuganti, 2012) .. 44

Figure 26: Big Data Landscape (Busa, 2013) ... 45

Figure 27: Reference Architecture for Big Data (Soares, 2012) ... 46

Figure 28: Architectural Framework of ArchiMate (The Open Group, 2012) 54

Figure 29: Components & Interfaces of the Big Data Solution Reference Architecture 61

Figure 30: Business Layer ... 64

Figure 31: Application Layer .. 65

Figure 32: Processing Engine ... 68

Figure 33: Technology Layer ... 70

Figure 34: Framework for the evolution of reference architectures (Angelov et al., 2012) 87

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 6

Table 1: The multi-dimensional space for reference architectures (derived from Angelov et al.,

2012) .. 26

Table 2: Format for Defining Architecture Principles (The Open Group, 2011) 56

Table 3: The multi-dimensional space for the Big Data Solution Reference Architecture of type

3 ... 57

Table 4: Examples of use cases for the Big Data Solution Reference Architecture 59

Table 5: Code frequency for Components & Interfaces .. 60

Table 6: Data sources that can be used in big data architectures .. 71

Table 7: Coding frequencies for Architectural Patterns ... 73

Table 8: Coding frequencies for Architecture Principles ... 75

Table 9: Loose coupling architecture principle .. 76

Table 10: Interoperability architecture principle ... 77

Table 11: Coding frequencies for Best Practices .. 78

Table 12: Average scores to quality criteria .. 81

Table 13: Average scores to quality criteria .. 84

Table 14: Hardware and software components in literature .. 98

Table 15: Architecture principles in literature .. 99

Table 16: Architectural best practices in literature .. 100

Table 17: Answers to question in section 1 ... 102

Table 18: Answers to questions 1 to 4 in section 2 ... 102

Table 19: Answers to questions 5 to 8 in section 2 ... 102

Table 20: Answers to questions 1 to 6 in section 3 ... 104

Table 21: Options for the Importing Engine component .. 106

Table 22: Options for the Data Preparation Engine component ... 107

Table 23: Options for the Data Exploration Engine component .. 108

Table 24: Options for the Batch Processing Engine component ... 109

Table 25: Options for the Stream Processing Engine component .. 110

Table 26: Options for the Log Processing Engine component .. 111

Table 27: Options for the Analytics Engine component .. 112

Table 28: Options for the Visualization Engine component .. 113

Table 29: Options for the Management Engine component .. 114

Table 30: Options for the Distributed File System component .. 115

Table 31: Options for the Distributed Database component ... 116

Table 32: Options for the Analytics Database component .. 117

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 7

ABSTRACT

This thesis describes a research project with the goal of creating a reference architecture for

big data solutions. Big data is an evolution of the field business intelligence and at the same

time a revolution in terms of the business value it can bring to organizations. Cloud computing

and other inventions make massive parallel processing of data across a large amount of

commodity PCs possible. Following the big data breakthroughs, the field of predictive analytics

has received a boost, since boundaries of performance and costs have dropped significantly.

Thanks to big data technology, organizations can now register, combine, process and analyze

data to answer questions that perceived unsolvable a few years ago. An important part of the

big data realm is open data. Anyone can obtain or access these data sources directly from the

internet, ready to be combined with enterprise data. Useful predictions are possible by

combining the internal data of an organization to open data and linking the datasets in a

meaningful way.

Making the right predictions is only possible when organizations choose the right technology.

All the technology options call for a reference architecture that provides guidance to architects

for creating big data solutions. This solution reference architecture is an abstraction of 'real'

solution architectures. It aims to give guidance to organizations that want to innovate using big

data technology, open data sources, and predictive analytics mechanisms for improving their

performance. The purpose of the reference architecture is to help with setting up a concrete

architecture for big data solutions.

The Big Data Solution Reference Architecture was developed and evaluated with one iteration

of Hevner’s Information Systems Research Framework. Angelov’s framework for analysis and

design of software reference architectures guided the creative design process. An extensive

literature study and a qualitative research study using grounded theory on transcribed

interviews with big data experts forms the basis of the theoretical model. The resulting reference

architecture consists of an abstract diagram of components and interfaces, two architectural

patterns, two architecture principles, and two architectural best practices.

Ten big data experts evaluated the final reference architecture by answering a questionnaire

that measured several quality criteria. Their answers give the indication that the created model

is a reasonably good reference architecture for big data solutions, with good practical usability.

This model is of scientific and non-scientific importance, since it is be the first empirically

reviewed solution reference architecture for big data technology.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 8

1 INTRODUCTION

The research field of business intelligence (BI) exists since the mid-1970s. The aim of BI is to

aid decision making in organizations, hence the name of systems in the BI-area is Decision

Support Systems. Organizations gather, process, and analyze enterprise data to gain insight in

the performance and success of internal business processes (Power, 2007).

Large organizations with few constraints on budget have since long analyzed extremely large

datasets. To name a few examples, the United States Department of Homeland Security

analyses computer systems and network traffic as part of its cyber-security program (U.S.

Department of Homeland Security, 2013), NASA simulates climate changes (Mangelsdorf,

2012), and CERN analyses gigantic datasets that are procured from its detectors in the Large

Hydron Collider when particles are collided at near-light speed (CERN, 2013). However, this

kind of data analyses was only attainable for a few organizations that have access to

supercomputers. Data in that size could only be processes in a reasonable amount of time

when using massive parallel-processing machines, for example the Titan system in the United

States or the JUQUEEN computer in Germany (Top 500 Supercomputers, 2012). BI in the

traditional way, using relational databases, OLAP cubes, and dedicated servers was not

powerful enough to process very large amounts of data, unstructured data, or multiple formats

of data in a reasonable amount of time.

However, in the past few years there were several technology breakthroughs in the BI

community. Thanks to cloud computing and the possibilities to use commodity hardware in

parallel, it is now possible to analyze very large datasets in a relatively short time for relatively

low costs. ‘Very large’ in this case means an order of magnitude 1000 more than before:

thousands of terabytes of data, thousands of servers to process and analyze the data.

According to McKinsey, “Big data refers to datasets whose size is beyond the ability of typical

database software tools to capture, store, manage, and analyze” (McKinsey Global Institute,

2011). The reported breakthroughs mark the start of a ‘big data’ era for ordinary organizations,

starting with Google who invented a paradigm to crawl internet sites and rank them for search

statistics using batch scripts that run across a multitude of ordinary PC components instead of

a supercomputer (Brin & Page, 1998).

Organizations in the public and private sectors now begin to see the benefits that exist in the

analysis of large datasets that reside in the organization when combined with open data

sources. With big data technology, organizations can now register, combine and process data

to make predictive analyses that where not possible a few years ago. Useful predictions are

possible by combining the internal data of an organization to open data and linking the datasets

in a meaningful way. For example, an organization that sells TVs could link its internal database

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 9

of TV models to an open dataset of TV reviews. It is possible to state the hypothesis that an

increase in positive reviews of a certain model will lead to more interest for the TV model, and

thus in more sales. The production department of the organization could prepare for that by

producing more TVs of that model.

These kind of predictions are only possible when organizations choose the right technology

and ask the right questions. This research project focusses on the components of solutions that

make these predictions possible. Its target is (architects of) organizations that want to innovate

using big data technology, open data sources, and predictive analytics mechanisms for

improving their performance.

This research project will greatly help organizations in their big data / open data projects. The

reference architecture, if proven successful, can be a solid basis for solutions that make use of

big data technology and open datasets to predict the future of an organization. The reference

architecture can serve as a guidance for architects working on big data projects. The reference

architecture will be of scientific and non-scientific importance, since it will be the first empirically

reviewed model for big data technology.

1.1 PROBLEM STATEMENT

The big data era has just begun; organizations are trying to find uses for the new possibilities.

Some business cases are eminent when searching for opportunities to analyze large datasets:

customer profiling using sales data, doing predictions of maintenance intervals of vehicles using

sensor data, etc. When combining big data technology with open data sources, the possibilities

for organizations are immense. To name a few: Twitter feeds can be used to gauge market

trends on which the prices of products can be based, and geospatial data of sickness can be

used to predict outbreaks of diseases.

The problem is that companies are eager to apply big data technology and use open data

sources, but are struggling to find a proper solution architecture for these projects. There is little

experience in the field, and there is almost no literature of renowned source. If only these

organizations could get some guidance in the form of a reference architecture, they would more

easily engage projects aimed at increasing their performance by creating IT systems that make

predictions of their enterprise data combined with open data. The results of this research project

will support architects in aligning strategy and direction to concrete implementations of

hardware and software technology.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 10

1.2 RESEARCH QUESTION

The research question is:

“What is a good reference architecture for a solution that is able to use big data

technology to perform predictive analyses of open data sources combined with

structured, semi-structured, and unstructured enterprise data?”

The word “good” implies that the research project has the ultimate goal of creating a high-quality

reference architecture. Good in itself is an abstract word. However, the model must be

scientifically measurable. Therefore, concrete criteria have to be set that can assess the

reference architecture. Paragraph 3.3.2 describes these criteria and the selection method.

The underlying business goals of this research question are:

 Organizations struggle with big data and open data projects. They require guidance for

working with the new technologies. A reference architecture provides this guidance in

the form of a model that can be adjusted and tailored for individual organizations;

 Creating a solution reference architecture gives insight into the workings of big data

technology in organizations.

This research question has the following sub-questions:

 Which architecture principles, patterns, and best practices are applicable when using

big data technology and open data sources to create a solution for predictive analysis

of enterprise data?

 Which components from the field of big data are good building blocks to create a

solution architecture capable of predictive analysis of enterprise data, and in what

configuration?

 In what way can open data sources help to perform predictive analytics of enterprise

data?

 Is Angelov’s framework useful to create a reference architecture for big data solutions?

 Is Hevner’s Information Systems Research Framework useful to create a reference

architecture for big data solutions?

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 11

2 LITERATURE STUDY

This chapter contains the results of an investigation of the existing literature in the fields of BI,

big data, open data, predictive analytics, and reference architectures.

2.1 BUSINESS INTELLIGENCE

Big data has a place in the research field of BI. Gartner defines BI as “an umbrella term that

includes the applications, infrastructure and tools, and best practices that enable access to and

analysis of information to improve and optimize decisions and performance” (Gartner, 2012).

The goal of BI is to support and improve decision-making. A good name of a BI system is a

decision support system (DSS).

Already in 1958, a conceptually designed BI system processed enterprise data (Luhn, 1958).

In 1967, Wilensky introduced the concept of an organization that shows intelligent behavior by

collecting and processing data (Wilensky, 1967). Howard Dresner (then a Gartner analyst)

introduced the expression “Business Intelligence” in 1989 as an umbrella-term for concepts,

technology, and methods to improve decision-making. Since then, BI is used in many

organizations, separately or as part of an information management program. For an extensive

history of BI, see (Power, 2007).

A typical architecture for BI solutions include extract, transformation, loading (ELT) modules, a

master data warehouse, a metadata warehouse, online analytics processing (OLAP),

dashboards, performance scorecards and/or reports including drill-down capacities (Howson,

2008). There is little theoretical work on BI, but there have been studies to the link to business

strategy (Rouibah & Ould-ali, 2002).

2.2 BIG DATA

Traditional BI has been around for a long time and there is still a big market for IT systems with

large data warehouses and reporting solutions. However, traditional BI cannot cope with the

demands of organizations to store and use ever more data, process data faster, and make

better predictions. ‘New’ data sources such as social media networks, on-line news, open data,

sensor data from the “internet of things”, log files, email, video, sound, images and file shares

offer huge opportunities for data analysis, which is simple too complex and demanding for

traditional BI (Ferguson, 2012). For example, a retailer of computer supplies may want to

analyze all actions on their web store, not just the sales transactions. Every mouse click is a

potential source of information, based on which the organization can make a decision (e.g.

promote products on sale). For these kind of requests, big data technology appears.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 12

2.2.1 Definition

Big data is the term that is used for the field of analysis of large datasets. The origin of the term

‘big data’ goes back as far as the 1990s (Lohr, 2013). The term became widespread with an

article in The Economist in 2010 (The Economist, 2010). The amount of data in organizations

is growing rapidly. Data production will be 44 times greater in 2020 than it was in 2009 and

there will be a 650% growth in enterprise data in the next five years (CSC, 2012). In the near

future, many machines and other devices will get an IP address and connect to the web in the

‘internet of things’, providing even more data to be accessed (Ashton, 2009). However, big data

is not just about size; after all, what is ‘big’ is relative and changes across the years. Other

aspects of big data are the speed of data (e.g. streaming media) and the different types and

formats of the data (e.g. non-relational, semi-structured, or unstructured content). Therefore,

the definition of big data according to Gartner is “high volume, velocity and/or variety information

assets that demand cost-effective, innovative forms of information processing that enable

enhanced insight, decision- making, and process automation” (Gartner, 2012). Doug Laney

introduced this “3V” definition in 2001 (Laney, 2001). IBS and IBM provide another definition:

“Big data is a term associated with new types of workloads that cannot be easily supported in

traditional environments”, which indicates the switch from traditional BI to big data and the

relativeness of the term (Ferguson, 2012). IDC expects the big data technology and services

market to grow in revenue from $6 billion in 2011 to $23.8 billion in 2016. This represents an

annual growth rate of 31.7% (Vesset, et al., 2012).

2.2.2 Shared-nothing

A report of CSC’s Leading Edge Forum described big data as both an evolution and a revolution

(Koff & Gustafson, 2011). The evolution is the technology, which has just evolved along the

years. The revolution is the business opportunities that have suddenly risen from this evolution

of technology. CSC gives a good explanation of one of the fundamental technological

breakthroughs in big data: the “shared nothing” architecture. The convergence of hardware,

application and data architectures to a stateless "shared nothing" world, where each computing

node is independent and self-contained is one of the fundamental differences of big data

compared to the old “shared-disk” or “shared-memory” technologies of SAN clusters, relational

databases and client-server applications, which rely on a central data store (Stonebreaker,

1986). Shared nothing systems are scalable because adding extra computers (nodes) will not

impact the general performance as in causing a bottleneck. Figure 1 gives a visual

representation of the developments that led to the shared nothing architecture.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 13

Figure 1: The convergence of hardware, application and data architectures to a stateless "shared nothing"
world is redefining the data foundation (Koff & Gustafson, 2011)

Big data has its origin in parallel computation algorithms developed in the 1980s. Leslie Valiant

made an important contribution, when he introduced the Bulk Synchronous Parallel (BSP)

bridging model for parallel algorithms (Valiant, A Bridging Model for Parallel Computation,

1990). This model suddenly increased in popularity when multi-core processors in commodity

hardware became commonplace and clusters of multiple computers could connect over the

internet (Valiant, A bridging model for multi-core computing, 2010). The research fields of

parallel computing, cluster computing, distributed computing and cloud computing all originate

from these ideas. More recently, Google used the BSP model to create Pregel, a system for

large-scale graph processing in which graphs represent social networks (Malewicz, et al.,

2010). Pregel in its turn forms the basis of the Apache Giraph framework. Facebook uses this

framework to analyze the social graph of users and their connections, which is an excellent

example of big data (Ching, 2013).

2.2.3 Batch Processing

Big data technology is for analyzing very large collections of data sets on shared nothing,

parallel-distributed commodity hardware. A breakthrough came in 2004, when Dean and

Ghemawat introduced the MapReduce programming paradigm (Dean & Ghemawat, 2004).

MapReduce is a way to make use of commodity hardware and massive parallelism to process

very large datasets in batches. Google used this paradigm to crawl internet sites and rank them

for search statistics using batch scripts (Brin & Page, 1998). Once this technology became

widespread, it became the basis of a new wave of innovative technologies to analyze data.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 14

Since a few years, it is possible to process data of a size that was previously not possible, at

an enormous speed.

2.2.4 Software

The world of big data technology has concentrated around a number of free and open-source

software (FOSS) components. A very important framework is the Apache Hadoop ecosystem,

which offers an implementation of the MapReduce algorithm and HDFS, a distributed file

system. The big data technology group includes more than MapReduce, for example the

underlying file system (e.g. GFS (Ghemawat, Gobioff, & Leung, 2003)) and database (e.g.

BigTable (Chang, et al., 2006) and HBase). There are a number of commercial products

available that provide enterprise solutions based on Hadoop, for example Cloudera,

Karmasphere, MapR, HortonWorks, and IBM InfoSphere BigInsights (Kolbielus, 2012). Other

examples of commercial big data products are Amazon Web Services Elastic MapReduce,

Infochimps Enterprise Cloud, EMC GreenPlum, Microsoft Windows Azure, and Google

BigQuery (Feinleib, 2012). Some system integrators such as CapGemini, Accenture, CSC, HP,

and Dell offer big data products and services to their clients.

2.2.5 NoSQL

Shared nothing architectures also form the basis of a relatively new type of lightweight, non-

relational database that are often part of a big data solution: NoSQL databases. The purpose

of these databases is to store unstructured and semi-structured data such as files, documents,

email, and social media. Carlo Strozzi coined the term “NoSQL” in 1998 when he developed a

database without a SQL interface (Lith & Mattson, 2010). In 2009, Eric Evans reintroduced the

term when he organized a meeting at Last.fm in San Francisco. Participants in the meeting

discussed several “open source, distributed, non-relational databases” databases: Voldemort,

Cassandra, HBase, Hypertable, and CouchDB (Evans, 2009). This was the beginning of the

NoSQL movement. Since then, databases with NoSQL-characteristics have won in popularity;

presently there are several variations and implementations (Edlich, 2013). In particular,

Google’s BigTable (Chang, et al., 2006) and Amazon’s Dynamo (DeCandia, et al., 2007) have

set the standard. Strozzi suggests renaming the NoSQL movement to “NoREL”, which would

be a better name for this database type since it abandons the relational model altogether

(Strozzi, 2012). There are certainly some drawbacks to NoSQL databases, for example an

increased rate of overhead and complexity, and a decreased reliability and consistency (Leavitt,

2010). However, these characteristics are an intended result of the design of NoSQL

databases; rather than the traditional relational databases which guarantee atomicity,

consistency, isolation, and durability (ACID) in transactions (Gray, 1981), NoSQL databases

are basically available, soft state, and eventually consistent (BASE), meaning that eventually

all data in a system will get updated and become consistent (Vogels, 2009). For a short

overview of NoSQL databases, see (Cattell, 2010).

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 15

2.2.6 Visualization

Big data can greatly benefit from visualization techniques. When analyzing very large amounts

of data, business users have to interpret the results. Text is difficult to process for people;

images and graphs are preferred over tables. Therefore, there is specialized software for big

data visualization. A good example an illustration of the human genome by the Circos tool,

showing location of genes implicated in disease, regions of with self-similarity and those with

structural variation within populations (Krzywinsk, et al., 2009).

2.2.7 Stream Processing

After MapReduce, several new technologies appeared that create even more possibilities for

organizations. An important technique is the streaming of high-speed data. Platforms such as

S4 (Neumeyer, Robbins, Nair, & Kesari, 2010), Twitter Storm, and Akka are capable of

processing enormous amounts of data in (near) real-time, by making use of clever algorithms

and the architecture principles that were already used for MapReduce: massive parallelism on

commodity hardware.

2.2.8 Data sources

Examples of big data sources are:

 Astronomical data;

 Climate data;

 Credit card transactions;

 Customer transactions in large supermarkets;

 Digital books;

 Enterprise email;

 Genetic information, e.g. the human genome;

 Health data, e.g. the combined heart pulse ratios of all patients in a hospital;

 Mouse-clicks on the web;

 RFID tags;

 Sensor data from machines, e.g. trains, airplanes, construction tools;

 Signals for intelligence analysis, e.g. used by ministries of defense;

 Social media sites, e.g. Twitter and Facebook.

2.3 OPEN DATA

Open datasets are datasets which are publicly available for use. The impact that open data can

have becomes apparent in the true story of Moneyball, where a baseball team becomes very

successful with a marginal budget by using statistical analysis of player data (Lewis, 2004).

This kind of “data-first thinking” is becoming more fashionable in commercial and governmental

organizations, again pleading for the need for a reference architecture that combines the

strength of open data sources and big data technology.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 16

2.3.1 Definition

As in free software, open data are ‘free’ as in ‘free speech’, not in ‘free beer’ (Stallman, The

Free Software Definition, 2013). According to opendefinition.org: “A piece of content or data is

open if anyone is free to use, reuse, and redistribute it — subject only, at most, to the

requirement to attribute and/or share-alike” (The Open Knowledge Foundation, 2009). The

European Commission wants to open up government data, because “information already paid

for by the public purse should not be paid for again each time it is accessed or used” (European

Commission, 2012). This research project extends the open data definition to incorporate

commercial open data sources, i.e. data is not free of charge. The reason for broadening the

scope is that otherwise the dataset would be too limited, and primarily originating from

governmental organizations. The reference architecture considers open data to be data that is

accessible for anyone, be it free or paid. This means that organizations who want to use Twitter

feeds, Facebook likes, financed sports data, and so forth, to combine with their enterprise data

in a big data solution will benefit from the resulting reference architecture. By extending the

open data definition, the reference architecture gets a wider scope and is suitable for more use

cases.

2.3.2 Repositories

Braunschweig et al. of the Technical University Dresden studied over fifty open data platforms

and found that, unsurprisingly, the current open data repositories vary greatly in size, domains,

technology, form, and purpose (Braunschweig, Eberius, Thiele, & Lehner, 2102). However, they

argue that the usefulness and appropriateness of open data sources is varied, and therefore

architects have to evaluate each source carefully before using it in an enterprise organization.

Subsequently, Braunschweig et al. created an overview of possible features of open data

platforms (sources) and datasets. They list requirements for a successful open data platform

and dataset, grouped into categories. For example, the API of a successful open data source

has the feature or requirement of fine-grain access and a successful dataset within that source

has indeed a granularity of raw data. The possible features and requirements formed the basis

of a classification model for open data platforms. Figure 2 contains a duplication of this model.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 17

Figure 2: Classification of open data platforms (Braunschweig et al., 2012)

Figure 2 contains four categories (or dimensions) for classification of open data sources: Level

of Integration, Form of Access, organization, and Technical Implementation. Each category

contains two or three options for classification. Each option has a certain value, e.g. a

“Collection of Links” is a lesser form of open data than “Integrated Database”. Braunschweig et

al. used this classification model for a survey of open data repositories. The website of the

University of Dresden contains the results of the survey are published at (The Open Data

Survey, 2013). The findings were not encouraging: most open data repositories do not

implement standards, do not use open APIs, and contain data in a non-machine readable

format.

2.3.3 Open Science Data

Open science data is open data acquired through scientific research. Open data is recognized

as an important contribution to science; however there is still reluctance to publish datasets free

for anyone to use (Murray-Rust, 2008). An example of open science data is the Human Genome

Project, which created a map of human DNA. The US government released the resulting data

to the private sector to stimulate the biotechnology industry (U.S. Department of Energy

Genome Program, 2012). The European Commission recommends open access of scientific

data (European Commission, 2012). Other examples of places where scientific open data

sources are located are http://linkedscience.org/data and http://data.uni-muenster.de.

2.3.4 Variations

Open datasets come in two basic variations: dynamic and static. Updates to a static open

dataset only happen occasionally. For example, the dates of public holidays are only updated

once a year. Updates to dynamic open datasets are regular and these datasets provide (near)

real-time information. For example, weather data is updated almost continuously. Users can

http://linkedscience.org/data
http://data.uni-muenster.de/

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 18

acquired open datasets in many ways: as downloadable content on servers connected to the

internet, written on CDs or DVDs, etc. Modern ways to publish data is via APIs or web services

using SOAP or REST protocols, to make machine-readable datasets. When exchanging open

data, these protocols are important as they determine the data format and data access method.

Common open data protocols are Microsoft’s OData (Microsoft, 2013), Google’s GData

(Google, 2012), and W3C’s RDF (W3C, 2004) and SPARQL (W3C, 2013). Data management

systems such as CKAN (The Open Knowledge Foundation, 2013) can help to open, store, and

distribute datasets. There are websites that host open data for small groups, communities,

commercial or governmental organizations, for example http://datahub.io.

2.3.5 Examples

Examples of governmental open data sources are http://publicdata.eu/, http://data.gov,

http://data.gov.uk, http://data.overheid.nl, and http://data.worldbank.org. Examples of

commercial open data sources are The World Bank, Twitter (microblogging), LinkedIn

(business network), Kadaster (the Dutch national land registry office), RDW (Dutch national

registration of cars), and OpenWeatherMap (weather data).

2.4 PREDICTIVE ANALYTICS

Predictive analytics is a complex field of research that has its origin in Artificial Intelligence.

2.4.1 Definition

The aim of predictive analytics is to predict the future based on historical data, possibly

combined with open data sources. By making use of clever algorithms, and statistical models,

people working on predictive analytics try to find trends in the data and then project these trends

to say meaningful things about the upcoming events. The results of predictive analytics always

contain uncertainties. Predictions and forecasts contain a certain amount of probability, for

example: “There is a chance of 67% that a customer buys book A if he has already bought book

B, if we offer book A for the price of X”. In sophisticated models, the probabilities spread out in

a function, for example a normal distribution. This helps organizations to make decisions and

to mitigate risks. Techniques from the fields of statistics and machine learning can be used or

combined; a predictive analysis engine or forecasting program can contain regression models

and/or neural networks, for example in time series forecasting (Zhang, 2003). Examples of

concrete prediction methods are autoregressive integrated moving average (ARIMA) and

machine learning. The concept of a model is crucial in predictive analytics; the model

determines the prediction based on the data. This model is constantly adjusted, tuned,

optimized, and trained depending on the environment and altering insights of the users.

Predictive analytics is not a new research field. There are already a number of success stories,

for example in insurance companies (Nyce, 2007). It has recently received more attention due

to the big data era, since it has become easier to analyze large amount of data in various forms.

http://datahub.io/
http://publicdata.eu/
http://data.gov/
http://data.gov.uk/
http://data.overheid.nl/
http://data.worldbank.org/

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 19

More data and more variations in data simply mean that more predictions are possible, with

more data sources. There are several free and open-source tools that can be used for predictive

analytics, including R, KNIME, Orange, and Weka. In addition, enterprise software vendors

such as Angoss, Alteryx, KXEN, Salford Systems, StatSoft, SAP, SAS, IBM, Tibco, and Oracle

provide solutions that help with analyzing data and predicting the future (Gualtieri, 2013).

2.4.2 Data Exploration and Discovery

A special case of predictive analytics and data mining is data exploration and discovery. Other

names for this research field are knowledge extraction and knowledge discovery. With big data,

it is possible to analyze and combine very many data from very many different sources.

Specialized software can identity relationships or clusters in those combinations of data sets,

which are invisible to the human eye (Fayyad U. M., Piatetsky-Shapiro, Smyth, & Uthurusamy,

1996). For example, by combining the family history of patients in a hospital with the diagnosis,

a computer program can identify if a certain disease has a genetic nature. Another purpose of

data exploration and discovery is the correlations between geographic data, email, video, and

other data sources in homeland security, to identify possible national security threats. With the

increasing use of the internet, a wealth of data is available that has real value in data exploration

and discovery use cases. For instance, web usage data, mouse clicks, and weblogs that

together determine the behavior of people possibly correlate to demographic data or healthcare

records.

The main difference between data exploration and discovery with other areas of predictive

analytics is that the order of data sources does not matter. In ‘normal’ predictive analytics, there

usually is a time sequence or transaction sequence, where in data exploration and discovery

the data is just ‘there’, in a random or unimportant order. In addition, data exploration and

discovery calls for a data-driven approach, whereas business questions or use cases drive

other methods of predictive analytics. In data exploration and discovery, there is no a priori

hypothesis for the results of the analysis.

There are several techniques and methods available from the fields of mathematics and

artificial intelligence that have a relation with data exploration and discovery, for example

association rule learning, spatial indices, affinity analysis, pattern recognition, and certain

machine learning algorithms (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). Some commercial

vendors (e.g. SAS and IBM) offer solutions specifically for data exploration and discovery

(Cheung, Resende, Lindner, & Saracco, 2012). K-means, decision trees, deep learning (multi-

layered neural networks) and random forests (weighted multiple decision trees based on

randomly selected sets of variables) are the most successful prediction algorithms.

2.4.3 Drawbacks

Predictive analytics is a research field that offers huge opportunities and interesting business

cases, but performing predictive analytics can be very difficult. There is some debate about the

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 20

practical use of predictive analytics, and the real-world possibilities. Recently there has been

discussion if a tool such as Google Trends can actually predict the stock market (Leinweber,

2013). The discussion shows that scientists are debating the worth of predictive analytics tools.

Nate Silver described the difficulties of performing predictive analytics in his book of 2012

(Silver, 2012). He argues that although we have the tools of statistics and analytics, humans

fail to get to the real meaning of (big) data because of our limited understanding of uncertainty

and probability. These observations must serve as a reminder to the fact that technology such

as big data may not be the key to predicting the future. A reference architecture for big data

and predictive analytics will be helpful, but the architects and business people using it must

concern themselves about the complexity of the research field.

2.4.4 Examples

Some examples of specific uses for predictive analytics are:

 Demand forecasting (e.g. in manufacturing, consultancy);

 Disease outbreak detection;

 Financial forecasting;

 Forensic analytics;

 Fraud detection (e.g. in credit card transactions, financial crimes in banks, claims, tax);

 Predicting customer behavior based on historical sales data;

 Predicting customer behavior based on social media sentiment analysis;

 Video analysis.

2.5 REFERENCE ARCHITECTURES

A reference architecture is an abstraction of ‘real’ architectures. There are various forms of

reference architectures: enterprise reference architectures, solution reference architectures,

information systems reference architectures, etc. This paragraph explains the concept of a

solution reference architecture, and the various possible implementations.

2.5.1 Definition

A solution reference architecture is a skeleton for a solution, where the elements are templates

or outlines for components. According to Muller, architects can use a reference architecture as

guidance to create a concrete architecture for their organization, business context and

technology (Muller, A Reference Architecture Primer, 2008). A solution reference architecture

contains hardware and components, patterns and best practices, principles, and presents itself

in a visually appealing way. Typically, proven existing architecture form the basis for a reference

architecture. According to the Rational Unified Process, a reference architecture is “in essence,

a predefined architectural pattern, or set of patterns, possibly partially or completely

instantiated, designed, and proven for use in particular business and technical contexts,

together with supporting artifacts to enable their use. Often, these artifacts are harvested from

previous projects.” (Reed, 2002) This definition targets, so it is applicable for this research.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 21

However, several authors have tried to generalize this definition. Cloutier et al. defined the true

purpose of reference architectures. Figure 3 contains a summary of their conclusions (Cloutier,

et al., 2010).

Figure 3: The role of reference architectures (Cloutier et al., 2010)

2.5.2 Framework for analysis and design

In 1996, the general framework for enterprise reference architectures GERAM was developed.

It contains an overview of the contents of a generic reference architecture (Bernus & Nemes,

1996). GERAM eventually evolved into a model with a methodology and enterprise-modelling

framework (IFIP–IFAC Task Force on Architectures for Enterprise Integration, 1999). Although

the model is very consistent, it is abstract is not as practical and hands-on as other frameworks.

Angelov et al. defined a more useful framework for the analysis and design of software

reference architectures (Angelov, Grefen, & Greefhorst, 2012). The framework contains

classifications of reference architectures, for different context of use of a reference architecture.

2.5.3 Varieties

A reference architecture can be either horizontal (industry-independent) or vertical (industry-

specific). Muller and Van de Laar researched architectural frameworks and architecture

methods, and found that these concepts are not domain specific, and thus horizontal, in

comparison to system and product line architectures. They argue that reference architectures

are similar to the system and product line architectures as they generally contain more domain

information, with the difference being mainly in the abstraction level; reference architectures

are abstract (Muller & Laar, Researching Reference Architectures and their relationship with

frameworks, methods, techniques, and tools, 2009). However, this research project aims for a

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 22

horizontal reference architecture, independent of industry or organization size. That provides

the risk that the reference architecture will become too general.

The aim of the Big Data Solution Reference Architecture is to be technology-independent. The

model will contain conceptual components, with a list of options as possible implementations.

These options are free and open-source projects such as Apache Hadoop and Cassandra, as

well as products and solutions of commercial big data vendors such as EMC, IBM, Microsoft,

Oracle, SAP, and SAS. The technology itself does not matter, the business value it brings does.

2.5.4 Examples

Examples of domain-specific, technology-independent reference architectures are AUTOSAR

for the automobile industry (AUTOSAR, 2013) and SAFE for federated enterprises, as part of

the MIKE2.0 standard for information management (McClowry, Rindler, & Simon, 2012).

The Dutch government used various reference architectures for different domains, for example:

 NORA for all government organizations (Goutier & Lieshout, 2010);

 GEMMA for local municipalities (KING - Kwaliteitsinstituut Nederlandse Gemeenten,

2011);

 ROSA for educational organizations (Ministry of Education, Culture and Science,

2012);

 The NICTIZ reference model for hospitals (Nictiz, 2013).

A solution reference architecture that is similar in scope and goal to the Big Data Solution

Reference Architecture is IBM’s SOA Solution Stack. IBM designed this reference architecture

for architects who are creating a service-oriented architecture solution. The model contains

elements from several layers like infrastructure, application, and business (Arsanjani, Zhang,

Ellis, Allam, & Channabasavaiah, 2007). In its broadest context, application platforms such as

Java EE and Microsoft SharePoint are domain-independent reference architectures; they

define the context for applications and provide tools, mechanisms, and best practices to help

developers create real solution architectures and software solutions.

2.6 SUMMARY

To summarize this literature study: the combined force of big data technology, predictive

analytics, and open data offers a wealth of possibilities for organizations that want to make

predictions about the future. There are plenty of free and open-source big data products and

frameworks. In addition, several commercial vendors offer big data products or as-a-service

platforms. Organizations will have to choose components for their big data solutions, and find

ways to approach the big data projects. A big data solution reference architecture will facilitate

and guide architects of these organizations.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 23

3 RESEARCH METHOD

This chapter describes the research method for the research project. The method contains

three models: Hevner’s Information Systems Research Framework, Angelov’s framework for

designing reference architectures, and Kazman’s Software Architecture Analysis Method

(SAAM). The latter two are interpretations of the elements Develop/Build and Justify/Evaluate

of Hevner’s model.

Hevner’s model (Hevner, March, Park, & Ram, 2004) is the de facto standard for creating

information systems artifacts. It is perfectly suited to structure the design of the Big Data

Solution Reference Architecture, since that is an information system artifact based on business

needs and existing literature (the knowledge base). Figure 4 contains and overview of Hevner’s

model.

Figure 4: Information Systems Research Framework (Hevner et al., 2004)

In Hevner’s framework, the business needs of the ‘environment’ identify new artifacts, such as

the new to be developed reference architecture. In the Big Data Solution Reference

Architecture case, the problem statement of this research proposal contains the business needs

(see paragraph 1.1). Next, a loop of develop, justify, develop, justify … creates the artifact,

using the existing knowledge base. Finally, executing the two steps in the bottom of the diagram

apply the artifact to the environment, and make it an addition to the knowledge base.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 24

The research project for a big data solution reference architecture executes all steps in Hevner’s

framework, with the exception of the application in the appropriate environment. The

assess/refine loop was completed once. More iterations would be desirable, as this would

increase the quality of the model over time; however, due to time restrains this was not possible.

In short, there were five steps in the research method. The numbers correspond to the blue

circles in Figure 4:

1. Problem statement (see paragraph 1.1) and literature review (see paragraph 3.1);

2. Development of reference architecture, using the existing knowledge base and the

expert interviews (see paragraph 3.2);

3. Justification / evaluation of reference architecture (see paragraph 3.3);

4. Addition of the reference architecture to the knowledge base (see paragraph 3.4).

The following paragraphs explain these steps in detail.

3.1 LITERATURE REVIEW

The first step in the research method is a literature review. By researching the existing

knowledge base of both scientific and non-scientific sources, the researcher got an overview of

the current state of affairs in BI, big data, open data, predictive analysis, and relevant reference

architectures. In Hevner’s model, the insights from the literature form a basis of the new

information system artifact. In the case of designing the Big Data Solution Reference

Architecture, the relevant literature was searched for elements that could be reused in the

model. For example, if the literature contains lists of software components for a big data

solution, these components could possibly be included in the reference architecture in an

abstract form.

3.2 DEVELOPMENT OF REFERENCE ARCHITECTURE

Angelov’s framework guided the development of the reference architecture. Figure 5 contains

an overview of the process.

Figure 5: The design of a reference architecture (Angelov et al., 2012)

The following paragraphs describe the steps in this process.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 25

3.2.1 Define “Why”, “Where” and “When”

Angelov’s model requires a clear statement on the following aspects of the reference, before

commencing the design of the model:

 The goal of the reference architecture (“Why”);

 The application context of the reference architecture (“Where”);

 The timing aspects of the reference architecture (“When”).

3.2.2 Classify the reference architecture

Next, the architecture type was classified using these “Why”, “Where” and “When” answers.

This gives the reference architecture a place amongst other reference architectures, in one of

the five types defined by Angelov et al.

3.2.3 Invite stakeholders (“Who”)

To gather more data for the creation of a reference architecture, the research conducted a

number of interviews with experts in big data, open data, and/or predictive analytics. The

interview data formed the basis for the reference architecture. Qualitative data analysis

techniques facilitated in acquiring the building blocks of the reference architecture.

3.2.4 Define “What” and “How”

The activity in this step was to define the following characteristics of the final reference

architecture:

 The concreteness of the described components;

 The representation, e.g. visually or text;

 The level of details.

To generate the model (the reference architecture) from the data, the researcher conducted

several iterations grounded theory. Grounded theory is “theory that was derived from data,

systematically gathered and analyzed through the research process. In this method, data

collection, analysis, and eventual theory stand in close relationship to one another.” (Corbin &

Strauss, 2008) A central process in grounded theory is coding, a practice where the researcher

processes the transcripts of interviews (or other sources such as diagrams, field notes, etc.) by

labelling text and categorizing the labels (codes). When working in iterations, with each iteration

the code base diminishes in size as the understanding of the researcher grows and codes group

or combine. For more explanation of grounded theory and the coding process, see chapter 22

of (Bryman & Bell, 2007).

Performing grounded theory as qualitative analysis of the interview data produced concepts

that were used in the creation of the reference architecture. The researcher transcribed and

coded the interview data using qualitative data analysis (QDA) software. For example, if a large

number of architects mention a type of database, it will be logical to include that database in

the reference architecture. The interview data, together with the literature, gave insight into

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 26

concepts such as hardware and software components, frameworks, architecture principles, and

best practices that could serve as generic components in a reference architecture. As such, the

concepts coming from the qualitative data analysis of the interviews forms the basis of a new

reference architecture, which is actually a conceptual model for organizations when they start

working with big data technology and open data sources.

3.2.5 Summary

Angelov et al. created a model for creation and classification of reference architectures, wherein

answers to questions are guiding the type of a reference architecture. The model consists of

dimensions, split up in sub-dimensions. Each sub-dimension has a code and is linked to one

question, with the exception of sub-dimension ‘Design (D)’ in dimension ‘Goal (G)’, which is

linked to four questions (D1 – D4). The model is summarized in Table 1; the first column lists

the dimensions of the types of reference architectures, the second column contains the codes

and names of the sub-dimensions and the third column contains the questions (sometimes with

codes) that are linked to the sub-dimensions. The downward-pointing arrows indicate the logical

dependencies in the model; e.g. the possible answers to the “where”, “who” and “when”

questions follow from the answer to the “why” question.

Dimension Sub-Dimension Question

Goal G1 Why

↓

Context C1 Where

Context C2 Who

Context C3 When

↓

Goal G2 D1: What

Goal G2 D2: Detail

Goal G2 D3: Concreteness

Goal G2 D4: How

Table 1: The multi-dimensional space for reference architectures (derived from Angelov et al., 2012)

3.3 JUSTIFICATION / EVALUATION OF REFERENCE ARCHITECTURE

After creating the Big Data Solution Reference Architecture, it was justified and evaluated

according to the research design. This is step 3 in Hevner’s Information Systems Research

Framework (see Figure 4). Angelov’s framework for analysis and design of reference

architectures offers a good method for analysis of a reference architecture. In Angelov’s

analysis method, dimensions of a reference architecture produce a classification of the model.

While this method is perfectly usable for any reference architecture, applying it to the Big Data

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 27

Solution Reference Architecture would not produce any new insights, since the model was

already created by setting the dimensions (see paragraph 3.2 and 4.2). Therefore, the outcome

is already defined: the reference architecture will be of type 3.

Since Angelov’s framework is not suitable for the justification/evaluation phase, a short

literature search was done to select a proper method for the analysis of the Big Data Solution

Reference Architecture. The following paragraphs describe the selected method and the

implications for the remainder of the research project/

3.3.1 Method

The goal of the research project is to create a ‘good’ reference architecture. ‘Good’ means that

big data architects and other potential users consider the model of high quality. As stated in the

research question (see paragraph 1.2), ‘good’ and ‘high-quality’ are not concrete and

measurable. Therefore, these terms were ramified into concrete criteria.

There are several methods of evaluating (reference) architectures using criteria. Most of these

methods target a specific type of architecture, for example software architectures or enterprise

architectures. There are no known, well-documented methods for evaluating reference solution

architectures, in contrary to the analysis of software architectures. Abowd et al. compared the

architecture analysis methods questionnaire, checklist, scenarios, metrics, and

prototype/simulation/experiment (Abowd, et al., 1997). They found that a questionnaire is most

suitable for evaluating general architectures, with ‘coarse’ level of detail, in an early phase.

These characteristics suit the Big Data Solution Reference Architecture perfectly. Accordingly,

the questionnaire method was chosen for the analysis of the model.

3.3.2 Criteria

Dobrica and Niemalä analyzed the quality attributes of the most widely used software

architecture analysis methods (Dobrica, Liliana & Niemalä, 2002). They found that the Software

Architecture Analysis Method (SAAM) (Kazman, Bass, Abowd, & Webb, 1994) and its

derivatives focus on the criteria maintainability, portability, modularity, and reusability.

Examples of criteria used with the ATAM method (Kazman, et al., 1998), which is a successor

of SAAM, are modifiability, security, performance, and availability. The criteria of SAAM

functioned in an evaluation of a software reference architecture by Graaf et al. They found that

the SAAM method and the provided criteria are suitable for evaluating a reference architecture

(Graaf, Dijk, & Deursen, 2005). Therefore, the SAAM criteria form the basis for the evaluation

of the Big Data Solution Reference Architecture. The criteria of portability was removed from

the list, since it only relates to software architectures (regarding elements such as software

compilers and platforms), which is too specific for the Big Data Solution Reference Architecture.

Two additions were made to the list of criteria: performance and scalability. A big data solution

relies on the speed of data processing (velocity), so the reference architecture has to be

intrinsically high-performing. Since big data is about scale and size (volume), the solution

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 28

architectures that spring from the reference architecture have to be scalable. Therefore, the

reference architecture in itself has to incorporate scalability as well.

To summarize, the five criteria for the evaluation of the Big Data Solution Reference

Architecture are:

 Maintainability: the ease with which the reference architecture and concrete

implementations of the reference architecture can be maintained in order to isolate and

correct defects or their cause, meet new requirements, make future maintenance

easier, or is able to cope with a changed environment. This is also known as robustness

or fitness;

 Modularity: the compartmentalization and interrelation of the parts of the reference

architecture, which allows the reference architecture and its components to be

manageable for the purpose of implementation and maintenance. This is also known

as partitioning or loose coupling;

 Reusability: the likelihood that the reference architecture and its components can be

used for other purposes and use cases. This is important for the model since it should

be flexible and generic;

 Performance: the amount of useful work accomplished by the reference architecture

compared to the time and resources used;

 Scalability: the ability of the reference architecture and its components to handle a

growing amount of work and its ability to be enlarged to accommodate that growth.

3.3.3 Questionnaire

To evaluate the Big Data Solution Reference Architecture, the researcher presented the model

to group of 50 big data specialists. The subject matter experts that were interviewed in step 3

were part of the invited group. Together with the reference architecture, this group was given a

questionnaire that targets the underlying criteria of a ‘good’ big data reference architecture, as

well as some additional characteristics. The researcher created the questionnaire on-line with

the software of Qualtrics and distributed it via a link in an email. Respondents could participate

anonymously in the survey. The questionnaire consists of four following sections. The following

sub-paragraphs contain the rationale behind these sections, and the contents of the

questionnaire.

3.3.3.1 Section 1: Introduction

The first section contains two closed multiple-choice questions that indicate the primary working

role and the level of knowledge and experience about big data and predictive analytics.

Answers to these questions can be used to filter the results, e.g. if a respondent would have no

knowledge and experience with big data the score would possibly not be relevant. Figure 6 and

Figure 7 display the questions and possible answers in this section, as presented to the

respondents on screen.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 29

Figure 6: Section 1, question 1

Figure 7: Section 1, question 2

3.3.3.2 Section 2: Impressions of the Big Data Solution Reference Architecture

This section contains eight closed multiple-choice questions that evaluated the general

characteristics of the reference architecture. The first four questions asked after the likeliness

that the respondent will use the elements of the Big Data Solution Reference Architecture in his

or her daily work. The scale for this question is: very unlikely (score 1), unlikely (score 2),

undecided (score 3), likely (score 4), and very likely (score 5). Answers to this question will give

an indication of the usefulness of the model. Figure 8 contains an overview of the questions 1

to 4, as displayed to the respondents on screen.

Figure 8: Section 2, questions 1 to 4

In the following four questions, respondents were asked to rate some aspects of the reference

architecture on a scale of ‘poor’ to ‘excellent’. Answers to these questions will provide an

indication of the meaning of potential user of the reference architecture. These answers serve

as basis for future improvements to the, in subsequent iterations of Hevner’s framework. Figure

9 gives an overview of these questions, as presented to the respondents.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 30

Figure 9: Section 2, questions 5 to 8

At the bottom of the section, a free text box offered the respondents the opportunity to give

explanatory remarks about their answers.

3.3.3.3 Section 3: Quality of the Big Data Solution Reference Architecture

The third section contains six questions that evaluate the quality of the reference architecture.

The questions and possible answers are displayed in a matrix, with the questions on the vertical

axis and the possible answers on the horizontal axis. Each question is a closed multiple-choice

question, related to one of the criteria (maintainability, modularity, reusability, performance, and

scalability). The criterion maintainability was evaluated by two questions: “Rate the reference

architecture […] on the ease with which it can cope with defects […]” and “Rate the reference

architecture […] on the ease with which it can meet new requirements […]” The other criteria

all have one related question, in the order of appearance as in the list above. There are five

possible answers to the questions (poor, fair, good, very good, and excellent) that correspond

to scores from 1 to 5. The combined view of scores on all criteria in section 3 gives an overview

of the quality of the Big Data Solution Reference Architecture. Figure 10 displays the questions

as presented to the respondents.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 31

Figure 10: Section 3, question 1 to 6

At the bottom of section 3, a text box again offers the respondents the opportunity to give

explanatory remarks about their answers.

3.3.3.4 Section 4: Additional questions

Finally, section 4 contains three open questions that are optional to answer:

 Is the reference architecture complete, or are any important components missing?

 What are the strong and weak points of the reference architecture?

 Please add any comments or questions in the text box below.

Answers to these questions can provide further insight in the perception of the Big Data Solution

Reference Architecture, and could contain valuable suggestions or possible improvements for

future work.

3.4 ADDITION OF REFERENCE ARCHITECTURE TO THE KNOWLEDGE BASE

In the fourth and final step of Hevner’s framework, the Big Data Solution Reference Architecture

will be published in a scientific journal. Next to that, the reference architecture will be actively

promoted in social media, conferences, seminars, and other media.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 32

4 FINDINGS AND DISCUSSION

The previous chapter describes the research method. This chapter contains the results of the

research project.

4.1 LITERATURE REVIEW

As a first step, the researcher searched the existing literature for big data architectures. Both

scientific and non-scientific sources were used to get an overview of work that has been done

on architectures considering big data, open data, and predictive analytics.

After the literature review, in line with the research method explained in paragraph 3.1, an

evaluation of the literature identified the usable elements for the Big Data Solution Reference

Architecture. Paragraph 4.1.4 contains a description of that analysis.

This literature review consists of three parts:

 Scientific sources, which lists peer-reviewed articles or journal proceedings (see

paragraph 4.1.1);

 Commercial sources, which lists white papers and non-peer reviewed articles from

commercial vendors (see paragraph 4.1.2);

 Private sources: blog posts, articles, and websites created by individuals (see

paragraph 4.1.3).

4.1.1 Scientific Sources

4.1.1.1 Herodotou et al.

In 2011, Herodotou et al. published a paper about Starfish, a self-tuning system for big data

analytics based on Hadoop (Herodotou, et al., 2011). The goal of Starfish is to get good

performance from Hadoop by automatically tuning the system. Figure 11 contains the

architecture of the Starfish ecosystem.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 33

Figure 11: Starfish architecture (Herodotou et al., 2011)

Starfish is interesting from an architectural point of view as Starfish has its place in a very logical

ecosystem of big data products and frameworks. It is clear to see that Herodotou et al. see the

big data landscape as a pipeline of data: data input on the left is processed and analyzed using

tools such as Hadoop, HDFS, Pig, Hive, and Oozie, and finally published in a database on the

right side of the diagram.

4.1.1.2 Law, Schroeder, Martin, & Temkin

An architecture that is interesting for appliance in a big data solution is the multi-threaded

streaming pipeline architecture for large structured data sets by Law et al. (Law, Schroeder,

Martin, & Temkin, 1999). In this architecture, data splits into smaller bits, which go into a

pipeline. In doing so, a system built on this architecture is able to process large amounts of

data. The architecture relies on techniques such as multithreading, data separability, and

caching. Figure 12 explains the core concept of the architecture.

Figure 12: A conventional pipeline (top) compared to a streaming pipeline (bottom) (Law et al., 1999)

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 34

Figure 12 shows a data pipeline for visualization use cases, e.g. computer simulation. While a

conventional pipeline just processes data in line with the “Pipes and Filters” pattern (Avgeriou

& Zdun, 2005), the streaming pipeline of Law et al. uses clever caching mechanisms and

parallelization on small data pieces to achieve better performance.

4.1.1.3 Demirkan & Delen

In the field of decision support systems (or commonly referred to as business intelligence; see

paragraph 2.1), efforts are carried out to research the options for organizations to use big data

technologies and predictive analytics. One of those studies by Demirkan and Delen produced

an interesting conceptual architecture, see Figure 13 (Demirkan & Delen, 2012).

Figure 13: Conceptual architecture of service oriented DSS (Demirkan & Delen, 2012)

The interesting notion about this diagram and about the article in general, is that there is no

MapReduce engine in the architecture. The reason for this is probably that the authors

approach the subjects of big data and predictive analytics from a BI perspective, and their aim

was to create a service-oriented architecture. However, many elements surface that are

common to other architectures. First, the architecture contains a pipeline of data. The left side

of the diagram contains the data input, which is imported (ETL), managed and eventually

displayed on the machines on the right. A second notion is the traditional approach to data

storage: a data warehouse, data marts, and OLAP are central in the architecture. That means

big data is not necessary Hadoop, HDFS, and NoSQL. Further, Demirkan & Delen point out

that all software components can exist in on the ‘cloud’, as a service. That is interesting when

creating the reference architecture, since the abstract components, architecture principles, and

best practices have to be in line with that approach.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 35

4.1.1.4 Marz & Warren

Marz and Warren introduced the concept of a Lambda Architecture for big data (Marz & Warren,

2013). Figure 14 contains a summary of this architecture.

Figure 14: Lambda Architecture diagram (Marz & Warren, 2013)

In a Lambda Architecture, big data solutions span three layers: the Speed layer, the Serving

Layer, and the Batch layer. Each layer has its own characteristics, and layer carries out a

specific type of computation. For example, the Batch layer is designed to run functions that can

be executed periodically (e.g. every day at night) and require a significant time to complete (e.g.

2 hours), such as a MapReduce job that processes all web clicks in a web store to determine

potential buyers’ behavior.

4.1.1.5 TechAmerica Foundation

The TechAmerica Foundation, which includes scientists of the Western Governors University

and North Carolina State University as well as analysts of IBM, SAP, and Amazon, examined

big data from a government perspective and created a “Big Data Enterprise Model”, replicated

in Figure 15 (TechAmerica Foundation, 2012). Although this model is not in a peer-reviewed

paper, the scientific nature and non-commercial goals of the framework justify the treatment of

this literature source as scientific.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 36

Figure 15: Big Data Enterprise Model (TechAmerica Foundation, 2012)

TechAmerica’s model clearly shows some components we already encountered in other

literature, for example MapReduce and dedicated databases. Interesting elements of the model

are the structured, semi-structured, and unstructured data sources on the left side of the

diagram, which serve both as input and as output to the architecture. To use them,

TechAmerica defined abstract components in the “Infrastructure” layer and “Connectors” and

“Analytic Applications” in the “Accelerators” layer. The interesting notion about this model is that

is does not focus on the technology, but rather on the functional aspects of the architecture,

something which can be maintained in the Big Data Solution Reference Architecture.

4.1.2 Commercial Sources

4.1.2.1 Karmasphere

Karmasphere presents an example of an existing domain-independent reference architecture

for big data, built on Hadoop. Figure 16 contains an overview of this reference architecture

(Harris, 2012).

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 37

Figure 16: Hadoop environment of Karmasphere (Harris, 2012)

Karmasphere is one of the companies who have built a commercial offering on top of a free

and open source software stack. Their reference architecture (or environment) contains generic

building blocks in a layered structure. The model is consistent and complete, but since it is

abstract and high-level, the practical is limited. More concrete implementation options, more

descriptive text, and examples of real-world usage would improve the model.

4.1.2.2 Hortonworks

Hortonworks names the Apache Hadoop framework a data refinery, in analogy with the oil

industry (Hortonworks, 2012). This principle results in a reference architecture as depicted in

Figure 17.

Figure 17: Big Data Refinery architecture (Hortonworks, 2012)

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 38

Hortonworks’ model is interesting because it is a very simple representation of a big data

reference architecture, in which many software components find a place that are also in the

other literature: structured and unstructured data sources, Hadoop, HBase, Hive, traditional BI,

various types of databases, etc. That makes the Big Data Refinery model an interesting basis

to build the Big Data Solution Reference Architecture on, although it would need concretization

and expanding.

4.1.2.3 Fujitsu

In 2013, Fujitsu published a white paper that presents “approaches” for creating big data

solutions (Fujitsu, 2013). Figure 18 contains the high-level overview of a typical big data solution

that is included in the paper.

Figure 18: Big data solution architecture (Fujitsu, 2013)

This paper is an extension to a white paper of 2012, in which Fujitsu elaborates on linked (open)

data and gives thoughts about the ways to exploit big data (Mitchell & Wilson, 2012). Fujitsu

identifies three platforms (data sources, analytics, and access) and four main steps (extract &

collect, clean & transform, analyze & visualize, decide & act) in the process of big data analysis.

There are four types of data in the diagram: various data, consolidated data, distilled essence,

and applied knowledge. By its simplicity, this reference solution architecture is very

understandable and applicable to many use cases. On the downside, the model combines high-

level components with detailed instructions for usage. For example, an in-memory database

(IMDB) apparently lives in multiple places, touched by several data flows.

4.1.2.4 McKinsey

McKinsey has not actually defined an architecture for big data, but their 2011 report contains a

list of technologies and abstract software components that are important for big data (McKinsey

Global Institute, 2011). The list includes obvious things such as MapReduce, but also highlights

several components on the outskirts of a big data architecture such as genetic algorithms,

neural networks, sentiment analysis, and predictive modeling. These concepts are included in

the analysis for the definitive reference architecture.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 39

4.1.2.5 IDC

In 2011, Philip Carter of IDC published a white paper that dives into the ‘future’ architectures of

big data analytics (Carter, 2011). Besides giving an interesting overview of the rise of analytics,

Carter describes a taxonomy of tools and components that make up a big data solution and

gives a list of big data technologies. Figure 19 contains a reproduction of the taxonomy.

Figure 19: Business Analytics Taxonomy (IDC, 2011)

This taxonomy contains components from traditional BI and the ‘new world’ of big data

analytics. What is interesting in this model is that Carter created a unique abstraction and

classification of real-world software components, thereby giving architects a conceptual

framework alike a reference architecture to work with. Further, the model focuses on the

business aspects of analytics, while at the same time providing a generic overview (not industry-

specific) of components.

4.1.2.6 Oracle

Software giant Oracle produced a holistic capability map that contains many big data

components (Oracle, 2012). Figure 20 contains an overview of the capability map.

Figure 20: Oracle Integrated Information Architecture Capabilities (Oracle, 2012)

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 40

The beauty and usefulness of Oracle’s model is in the pipeline approach (Data Acquire

Organize Analyze Decide), and the abstract components that are displayed. Oracle

elaborated on this model in their white paper of February 2013, in which an Information

Management and Big Data Solution Reference Architecture is presented (Oracle, 2013). In that

paper, Oracle identifies as key architecture principles: “treating data as an asset through a

value, cost, and risk lens, and ensuring timeliness, quality, and accuracy of data”.

4.1.2.7 SAS

Software vendor SAS has many products and service with big data technology. SAS focuses

mainly on the high-performance side of big data. Their technology stack includes in-memory

databases and in-memory analytics, aimed at doing analytics as close to the data as possible

(SAS, 2012). SAS adds two new dimensions to the “3V” model: Variability and Complexity.

According to SAS, the increasing amount of data and the increasing variety in usable data

sources results in an increasing amount of linking, matching, and transformation of data across

organizations and applications.

The SAS Intelligence Platform contains an overview of the SAS landscape (SAS, 2010). This

model is a reference architecture for organizations who want to use SAS products. Figure 21

contains a duplication of the SAS Intelligence Platform.

Figure 21: SAS Intelligence Platform (SAS, 2010)

The SAS Intelligence Platform is a combination of traditional BI and big data, the latter in the

form high-performance analytics tools. Since this model is from 2010, it is possible that it is

outdated and will be replace by a newer version soon. Typical big data components such as a

distributed file system and NoSQL database are missing. This is because SAS primarily uses

its own products, but also due to the age of the Intelligence Platform and the traditional BI point

of view. In several recent publications, SAS highlights its dedicated big data solutions. For

example, Figure 22 displays a model from SAS that is specific for in-memory big data analytics

(Mendelsohn, Chew, Kent, & Holmes, 2013). This model contains several modern big data tools

such as unstructured data sources, streaming data, Hadoop, and predictive analytics tooling.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 41

Nevertheless, the model is an unclear mixture of technology, business processes, and

industries.

Figure 22: SAS in-memory analytics (SAS, 2013)

4.1.2.8 MicroStrategy

According to MicroStrategy, its business intelligence architecture (see Figure 23) is capable of

big data analytics (MicroStrategy, 2012).

Figure 23: Single Unified Architecture (MicroStrategy, 2013)

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 42

The Single Unified Architecture is very broad and complete. MicroStrategy positions only its

own products in the platform, which makes the model very vendor-specific. The data in the

platform flows from bottom to top and passes several (optional) components. Remarkable is

that MapReduce is pictured as a “database”, instead of a batch-processing module. Further,

this is a typical example of seeing big data as an evolution of BI. The title of MicroStrategy’s

web page is literally “Big Data: Bigger, Faster, and More Efficient Business Intelligence”.

Compared to competitor SAS, MicroStrategy focuses on traditional BI and data warehousing

while SAS focuses on big data and real-time analytics with external data sources.

4.1.2.9 Gartner

Gartner introduced the “3V” model and published an article in which the effects of big data on

established architecture models, principles and patterns is investigated (Natis, Laney, &

Altman, 2012). In their report, they suggest some interesting recommendations:

 Make applications stateless to accommodate scaling and parallelism (potentially in the

cloud);

 The service-oriented architecture (SOA) model must be extended with advanced

patterns of separation of concerns;

 Big data architectures can benefit from event-driven architecture (EDA) when it comes

to handling data streams.

These recommendations point out that big data can benefit from established architecture

patterns and principles, but at the same time must extend the traditional paths that architects

take when creating solutions. Next to this specific paper, Gartner published a large set of

material on big data that dives deeper into the technology and methods of big data architecture

(Gartner, 2013).

4.1.2.10 Forrester

Similar to Gartner, Forrester also publishes a lot of content on the subject of big data (Forrester,

2013). In an interesting article, Forrester plotted the Enterprise Hadoop solutions on the axis of

‘strength of offering’ and ‘market presence’, resulting in the diagram duplicated in Figure 24

(Kolbielus, 2012).

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 43

Figure 24: Forrester Wave, Enterprise Hadoop Solutions, Q1 '12 (Forrester, 2012)

The remarkable point in the Forrester research is that the listed enterprise Hadoop solutions

include both free and open-source and commercial (proprietary) products. This poses an

interesting question that is related to the research question and that was addressed in the

interviews: is there a best practice or architecture principle to use free and open-source

software?

4.1.2.11 Others

There are more commercial organizations who have in some way or another published about

big data architecture. For example, Teradata has created a Unified Data Architecture (Teradata,

2013) and ThinkBig has defined their own Big Data Reference Architecture (Think Big Analytics,

2013). VMware published considerations for creating big data solutions, amongst which a

simple framework that can be viewed as a high-level reference architecture (Ibarra, 2012).

TDWI published an article about the integration of Hadoop into BI, in which a survey leads to

an interesting overview of big data technology and some trends and best practices (Russom,

2013). In a post of 2012, TDWI calls for new architectures and approaches for big data (Briggs,

2012). Forbes created a useful, up-to-date overview of the big data landscape (Feinleib, 2012).

CSC’s report on the big data (r)evolution contains an extensive overview of methods and

technologies (Koff & Gustafson, 2011). CapGemini has created a reference architecture for big

data but not published it; however, in a recent video Chief Technical Officer Manual Sevilla

explains that CapGemini’s Big Data Reference Architecture consists of a pipeline of five pillars,

or steps: Identifying, Acquiring, Organization, Analytics, and Acting (Sevilla, 2013). Computer

giant IBM published a series of articles and books about big data, both of their own products

(Zikopoulos, et al., 2013) and the FOSS stack (Eaton, deRoos, Deutsch, Lapis, & Zikopoulos,

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 44

2012). An interesting IBM resource is their article about data exploration and discovery, which

indicates that IBM believes in the power of this big data appliance (Cheung, Resende, Lindner,

& Saracco, 2012). Finally, O’Reilly published two short books about the ‘emerging architecture’

of real-time big data analytics (Barlow, 2013) and ‘current perspectives’ on big data (O'Reilly,

et al., 2012). All these bits and pieces contribute to the overall knowledge of big data

architecture.

4.1.3 Private Sources

4.1.3.1 Anuganti

A good example of a diagram that can be part of a Big Data Solution Reference Architecture is

Anuganti’s model (Anuganti, 2012), duplicated in Figure 25. Anuganti created this model based

on years of experience as a data architect, working for large enterprises in several industries.

Figure 25: Big Data Architecture (Anuganti, 2012)

Anuganti’s architecture is complex due to the many layers and software components involved.

However, it is a ‘pick and choose’ model where each component is optional. Anuganti created

a certain data pipeline through the model: data flows from the structured, semi-structured, and

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 45

unstructured data sources on the bottom left side of the diagram, to the Hadoop/HDFS cluster,

takes some sidesteps, to end up finally in the Reporting engine on the top right of the diagram.

4.1.3.2 Busa

Busa created an overview of the big data landscape, which is a complete big data reference

architecture (Busa, 2013). Figure 26 contains a duplication of the landscape.

Figure 26: Big Data Landscape (Busa, 2013)

Busa combines components from the BI practice with modern technology. His architecture

model is clear and concise but lacks the detail for a successful implementation. In addition, the

components are all concrete frameworks, which makes it difficult to make choices based on

abstractions (e.g. replace Mahout with R or SPSS) and makes the model very time-specific;

there are no guarantees that a software component that is the best choice on this moment

remains on top of the preferred stack in the future.

4.1.3.3 Joshi

InformationWeek published a blog post by Rajive Joshi in 2011, which highlights key design

challenges and principles of data-centric design in the big data era (Joshi, 2011). Joshi argues

that data-centric design, which is the practice of separating data from behavior, results in

loosely coupled systems connected via a data bus. Such an architecture pattern is suitable for

big data solutions, since it allows distributed systems to work independently and in parallel. A

data-centric design begins with adhering to some architecture principles, for example:

 Expose the data and metadata;

 Hide the behavior;

 Delegate data handling to a data bus;

 Explicitly define data-handling contracts.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 46

4.1.3.4 Kimball

Ralph Kimball, a renowned architect and founder of the Kimball Group and Kimball University,

published a whitepaper about best practices for big data (Kimball, 2012). In the whitepaper,

Kimball puts forward some interesting best practices, for example the notion to “Apply filtering,

cleansing, pruning, conforming, matching, joining, and diagnosing at the earliest touch points

possible” and “Perform big data prototyping on a public cloud and then move to a private cloud”.

Kimball’s best practices will be put forward in the interviews and potentially included in the Big

Data Solution Reference Architecture.

4.1.3.5 Soares

Director of Information Asset, LLC and former Director of Information Governance at IBM, Sunil

Soares, specializes in big data governance. He created a reference architecture for big data,

with the purposes of giving guidance to architects and showing organizations “how the pieces

fit together”, in training and consulting (Soares, 2012). The main diagram of the reference

architecture is duplicated in Figure 27.

Figure 27: Reference Architecture for Big Data (Soares, 2012)

Soares’ reference architecture is very extensive. In later editions, Soares added Business

Process Management (BPM) and created diagrams that show the interaction between different

parts of the reference architecture with a focus on data governance.

4.1.3.6 MIKE2.0

MIKE2.0 is an open framework for information management (McClowry, Rindler, & Simon,

2012). The contents are published on a website to which free contributions can be made, similar

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 47

to a wiki. Parts of the MIKE2.0 framework are solution offerings in the fields of BI, information

asset management, enterprise data management, enterprise content management, and others.

Solution offerings present options for solutions to common problems in the field of their subject.

The solution offerings contain technology and business solutions, for example design patterns,

guidance for processes, reference architectures, and other methods and techniques. A recent

addition is the Big Data Solution Offering (Rindler, McKnight, & McClowry, 2012). This solution

offering contains explanations of Hadoop, NoSQL, and other technologies, and gives insight in

the usage of these tools. Also, some best practices are given. Overall this source can be seen

as a reference architecture, as it gives guidance to big data architects. A strong point of the

model is that it is a part of the SAFE Architecture Framework. However, the relation is only

dimly explained and the mapping is very weak. The model could be improved by elaborating

more on big data architecture.

4.1.4 Evaluation

This chapter contains an overview of literature on the subject of big data architecture. Several

scientific, commercial and private sources contain useful diagrams or texts, from which

elements for a big data reference architecture can be distilled. Some notable big companies

are not listed as reference, for example Microsoft and SAP. Although these organizations

certainly offer big data products and services (e.g. SAP HANA and Microsoft Windows Azure

HDInsight), they have not published any material that is interesting for this research project.

In total, 27 literature sources were investigated. Most articles and websites mention several

aspects of big data architecture. It is not just about software; a solution architect should also

concern himself with business processes, infrastructure, patterns, principles, and best

practices. Big data architectures in literature points contain the following elements:

 Hardware and software components;

 Architecture principles;

 Best practices.

Table 14, Table 15 and Table 16 in Appendix I contain the scientific, commercial, and private

sources and the elements that were found. The tables list the literature sources at the top, in

the order of appearance in this document. The left side of the tables contain the elements of

(reference) architectures that were found in the articles, websites and books, sorted on the

number of appearances in column “Count”. A ‘V’ indicates a match; the architecture in the

source contains the listed component, principle, or best practice. In this way, by plotting the

components, principles, and best practices in a crosstab, the tables can be used for getting a

high-level overview of the literature on the subject of big data architecture. Obviously, the

sources are very different in nature and each has a specific topic or address a specific area of

the research field. Therefore, only counting the check-marks is a limited evaluation method of

the literature. However, the elements on the left side of the tables present a reasonable

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 48

collection of components, principles and best practices that could form the basis of a reference

architecture. The remainder of this paragraph highlights the findings from these tables.

First, the literature clearly defines the core of a big data architecture. Nearly all sources contain

the following components:

 A parallel batch-processing engine (e.g. Hadoop MapReduce);

 A distributed file system (e.g. HDFS);

 A NoSQL database.

Second, there is obviously more than MapReduce: data sources, data mining processes,

coordination and configuration engines, databases, monitoring, etc. In addition, traditional BI

systems and software components still seem to have a place in a big data architecture. All

these components play a role in the literature, some more than others. Several other

components are typical for a big data architecture, simply because they surface often in the

literature. The following components have a place in the majority of the literature that describes

a big data architecture:

 A querying engine;

 A predictive analytics engine;

 A statistical analysis or machine learning engine;

 A data importing / collecting / ETL engine;

 A real-time / stream / complex event-processing engine.

Third, several architecture principles exist in the articles and websites on big data. Loose

coupling, cloud computing, and scalability are popular principles in literature. There are several

principles about whom the literature sources disagree. For example, IBM, SAS, and Kimball

very strongly believe in the principle of “Close-to-source data processing”, which implicates that

data should be analyzed as early as possible to reduce storage costs and processing time. On

the contrary, MicroStrategy believes in retrieving and storing as many data as possible and

performing analytics at a relatively late stage. The researcher discussed these contradictions

with the experts in the interviews.

Fourth, for best practices there is only one item that truly stands out: the “data pipeline

approach”. This best practice indicates that a big data architecture is like a pipeline through

which data flows. Several literature sources point to another best practice that is in contract

with the pipeline approach, namely the “data exploration and discovery” method. This best

practice is actually a type of big data analytics where the data is not retrieved or imported, but

remains at its source and is approachable directly for analytical purposes (see paragraph 2.4.2).

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 49

Fifth, there seems to be more consensus about the hardware and software component than

about the principles and best practices. This indicates that people agree about big data

technology, but have yet to reach a common understanding about the approaches and patterns

in big data architecture. For example, TDWI considers the best practice of data governance

very important, but the majority of articles about big data best practices do not even mention it.

The components, architecture principles, and best practices found in literature were put forward

in the expert interviews to confirm their place in the final model. In this way, the literature review

in Hevner’s framework served to create a provisional model of the final Big Data Solution

Reference Architecture.

4.2 DEVELOPMENT OF REFERENCE ARCHITECTURE

At the beginning of this step, the researcher created a provisional model based on the literature

review. This provisional model is actually a list of elements that make up the reference

architecture. This provisional model formed the basis to work with from this step forward. For

example, the interview questions were based on the elements of the provisional model. The

provisional model of the reference architecture consists of the following elements, in

conformance with the categories highlighted in paragraph 4.1.4:

 Hardware and software components;

 Architecture principles;

 Best practices.

There are two sources for the Big Data Solution Reference Architecture: literature and

interviews with stakeholders. The question is: do these sources contain common elements? If

subject matter experts mention a component, architecture principle or other part of a reference

architecture often, and this component has a significant place in literature, it will get a place in

the reference architecture. This paragraph also explains the evaluation method of the reference

architecture. To make an objective evaluation, a list of acceptance criteria measures the fit of

an element in the reference architecture.

4.2.1 “Why”, “Where” and “When”

Answers to the “why”, “where” and “when” questions in Angelov’s model have to be stated

clearly to give meaning to the reference architecture, and to place it into context. This paragraph

explains the rationale behind the choices.

4.2.1.1 Why

The goal of the Big Data Solution Reference Architecture is to guide architects who want to

create a solution architecture that is capable of working with big data. Angelov et al. defined

two possible values for the Goal sub-dimension G1: standardization and facilitation. The Big

Data Solution Reference Architecture clearly aims at providing guidelines and inspiration for

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 50

the design of solutions. The main ambition is not to standardize concrete architectures or to

improve interoperability of existing components/systems. Thus, the goal of the Big Data

Solution Reference Architecture is facilitation.

4.2.1.2 Where

The context of the reference architecture is organizations who want to predict the future using

large datasets of enterprise data combined with open data sources. The reference architecture

is industry-independent but targets organizations of considerable size that have the resources

(time, money, and people) available to perform a big data project under architectural guidance.

Typically, an organization using the reference architecture has at least 100 employees and an

IT department of at least 10 employees. The intended recipient of the Big Data Solution

Reference Architecture is a lead architect who is able to make decisions about the concrete

solution architecture, architecture principles, and resources. Since the Big Data Solution

Reference Architecture must be industry-independent, the Context sub-dimension C1 gets the

value “multiple organizations”.

4.2.1.3 When

The reference architecture is time-independent. However, it is likely that the abstract hardware

and software components that are included in the reference architecture will be outdated in a

few years’ time. Therefore, the owner must maintain and update the reference architecture on

a regular basis. The C3 sub-dimension has two possible values: preliminary and classical. A

typical preliminary reference architecture is designed when no concrete components or other

parts of the reference architecture exist in practice. This is not the case for the Big Data Solution

Reference Architecture; there are several known big data solutions working in practice

(Anuganti, 2012) (CSC, 2012) (Joshi, 2011). Rather, the Big Data Solution Reference

Architecture takes the practical experience of a group of experts and uses that to give a “best

practice reference architecture”. Thus, the Context sub-dimension C3 gets the value “classical”.

4.2.2 Classify the reference architecture

According to the “why”, “where”, and “when” statements above, the reference architecture is of

“type 3”. Reference architectures of type 3 are facilitating, classical, designed for multiple

organizations and created by an independent organization.

4.2.3 Invite stakeholders (“Who”)

The Context sub-dimension C2 contains the list of stakeholders that were involved in the design

of the Big Data Solution Reference Architecture. There are two groups involved: requirements

Designers (D) and providers (R).

4.2.3.1 Designers

The first group of stakeholders in Angelov’s model is the designers of the reference architecture.

According to Angelov, an independent organization should design The Big Data Solution

Reference Architecture of type 3. That is the case, since the Hogeschool Utrecht is a research

organization and therefore has the freedom to be independent. The group of Designers consists

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 51

of one person: Bas Geerdink, researcher at the Hogeschool Utrecht and the author of this

thesis.

4.2.3.2 Requirements Providers

As stated by Angelov et al., the group of stakeholders that provides requirements must match

the type of reference architecture. In the case of the Big Data Solution Reference Architecture,

which is type 3, the requirements from software and user organizations determine the design

of the reference architecture.

Following these guidelines, a group of five stakeholders was identified and has been

interviewed in the months April and May of 2013. The group consists of subject matter experts

in the field of big data, from multiple organizations (software and user). Every expert elaborated

about his experience in the field of big data and explained the hardware and software

components, architecture principles, and best practices that he uses in big data projects.

The following stakeholders have been interviewed from software organizations:

 A chief technologist and data architect at ScaleIN;

 A big data pre-sales consultant at CSC;

 A software architect at Xebia.

The following stakeholders have been interviewed from user organizations:

 An enterprise solutions architect at 4Synergy;

 An application development consultant at Unisys.

At this point in time, the research processed with the conduction of the actual interviews. The

interviews were structured; each interview followed a fixed schedule of questions while leaving

room for side steps and digression (Bryman & Bell, 2007). In addition, the researcher used

elements of the provisional model and the acquired insights from the literature during the

interviews. The structured, guiding question list in the expert interviews was:

 Which hardware and software components would you consider important in a big data

architecture?

 What is the best way to integrate big data components?

 Which patterns and best practices would you adopt in a future big data solution?

 Are there any architectural principles that you use in big data projects?

 In which situations have you applied a big data solution?

As described in chapter 3, grounded theory and qualitative data analysis was used to process

the transcribed interview data. The following paragraph reveals the resulting codes and

categories.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 52

4.2.4 Define “What” and “How”

This paragraph describes the aspects of the reference architecture, and the rationale of the

choices. The values of the “what” and “how” dimensions follow from the classification of the Big

Data Solution Reference Architecture as type 3 in Angelov’s model.

4.2.4.1 D1: What is described?

According to Angelov’s model, type 3 reference architectures should consist of components,

interfaces, and policies/guidelines. Adhering to this model, the codes were categorized in the

following categories:

 Components & interfaces;

 Policies & guidelines:

o Architectural patterns;

o Architecture principles;

o Architectural best practices.

These categories match the provisional model, with the exception of the architectural patterns.

After reviewing the literature, interviewing the stakeholders and analyzing the transcripts with

grounded theory and using the provisional model, the coded transcripts pointed out that this

category is necessary for the reference architecture.

Components are business processes, software applications or frameworks, and hardware.

Interfaces are the functional relationships, technical connections, data flows, compositions, and

aggregations between these components.

Architectural patterns are proven solutions to recurring enterprise architecture problems. They

offer architects abstracted methods and techniques to work with, which have been applied in

similar problems by other experts in the field (Buschmann, Meunier, Rohnert, Sommerlad, &

Stal, 1996). In this regards they are similar to application architecture patterns in software

engineering, which have been more widely used in practices (Gamma, Helm, Johnson, &

Vlissides, 1994), (Fowler, 2002). Garlan and Shaw introduced some examples of architectural

patterns and called them “Common Architectural Styles”. Examples of their patterns are Pipes

and Filters (also known as the Data Flow pattern), Data Abstraction and Object-Oriented

Organization, and Layered Systems (Garlan & Shaw, 1994).

Architecture principles are “fundamental approaches, beliefs, or means for achieving a goal”

that give guidance to architects (Beijer & de Klerk, 2010). Architecture principles are very

important parts of any solution or enterprise architecture. Principles can be normative or

scientific. A normative principle is “a declarative statement that normatively prescribes a

property of something”, whereas a scientific principle is “a law or fact of nature underlying the

working of an artifact” (Proper & Greefhorst, 2011). The Big Data Solution Reference

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 53

Architecture will contain normative principles that give guidance to architects who are designing

big data solutions. In a sense, the normative architecture principles work as constraints to the

organization; they give a certain amount of freedom to work with, but specify absolute

boundaries for the solution.

Finally, architectural best practices describe other aspects that are important when creating a

big data architecture. These best practices give guidance in the processes in which architects

surely are involved: management, planning, estimating, budgeting, cooperation with internal

and external suppliers, and so forth.

4.2.4.2 D2: How detailed is it described?

Type 3 reference architectures prescribe semi-detailed components and policies/guidelines,

and aggregated or semi-detailed interfaces. That suits well with the Big Data Solution

Reference Architecture since it is supposed to be an industry-independent, generic reference

architecture. Angelov et al. suggest to measure the level of detail by counting the number of

elements (e.g. components, guidelines) or the number of aggregation levels (e.g. layers in an

enterprise architecture). The Big Data Solution Reference Architecture, with semi-detailed

components, interfaces and policies/guidelines, should not contain numerous elements at more

than two aggregation levels.

4.2.4.3 D3: How concrete is it described?

Reference architectures of type 3 should have abstract or semi-concrete elements. This implies

that the Big Data Solution Reference Architecture will describe its components, interfaces, and

policies/guidelines in a non-specific, abstract way. The components that surfaced from the

literature and interviews will become abstract concepts rather than concrete products or

frameworks in the reference architecture. This will keep the reference architecture high-level,

and keep the reference architecture simple because the number of components will be small.

The abstraction will be done in the iterative coding cycles of the transcribed interview data. For

example, if an expert mentions ‘MongoDB’ or ‘Cassandra’, both are coded as ‘NoSQL

database’. In the reference architecture, the abstract concept of a ‘NoSQL database’ is then

added to the list of components.

4.2.4.4 D4: How is it represented?

According to Angelov’s model, type 3 reference architectures have semi-formal element

specifications. The semi-formal representation requires well-defined notations of the elements

of the reference architecture. The different parts of the Big Data Solution Reference

Architecture are presented in different ways. The hardware and software components are

presented visually, in a diagram on one page. Additional text will explain the components in

detail, and their interfaces. The choice for the visual representation, aided by text, was made

because that is the standard in existing literature (for example, see the diagrams in paragraph

3.1) and because this representation will give an overview of the reference architecture in one

notion. The other elements of the reference architecture, e.g. the architecture principles and

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 54

best practices, will be represented as text, tables, or lists, since no good visual representation

is possible. The Big Data Solution Reference Architecture uses the following notations:

 ArchiMate 2.0 (The Open Group, 2012) for the components and interfaces;

 The Pattern Language of Avgeriou and Zdun (Avgeriou & Zdun, 2005) for the

architectural patterns;

 TOGAF 9.1 (The Open Group, 2011) for the architecture principles;

 No specific format for best practices.

The remainder of this paragraph elaborates on the choices for the representation of the

elements of the reference architecture.

4.2.4.4.1 Components & interfaces

The reference architecture depicts the components and interfaces in ArchiMate, because this

is a modelling language that provides a complete overview of the architecture of a solution.

Figure 28 summarizes the ArchiMate Framework.

Figure 28: Architectural Framework of ArchiMate (The Open Group, 2012)

As depicted in Figure 28, ArchiMate offers three layers of architecture. The Application layers,

where software components and interfaces sit, has connections to two architecture layers that

are very important in big data predictive analysis enterprise solutions: the Business layer with

business processes/functions and the Technology layer with infrastructure components. Each

layer defines three categories of components:

 Passive structure, which are concrete components that physically exist;

 Behavior, which are components that execute actions;

 Active structure, which are entities that are capable of performing behavior.

Since the literature and interviews with the subject matter experts indicate that big data

solutions consist of elements in the Application and Technology layers, ArchiMate is the

sensible choice for visual representation of the Big Data Solution Reference Architecture

components.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 55

Another option for the notation of components and interfaces is UML (ISO/IEC 19501:2005)

(Object Management Group, 2011). Since the Big Data Solution Reference Architecture allows

for creation of solution architectures, UML would be a logical choice for representation of the

components and interfaces. However, this notation focuses solely at software architecture

diagrams, in contrary to (for example) ArchiMate, which is primarily used for enterprise solution

design. UML is considered too technical for representing business processes (Wiering, et al.,

2004) and considered not accessible and understandable for managers and business

specialists (Lankhorst, 2004).

4.2.4.4.2 Architectural Patterns

Avgeriou and Zdun introduced their universal language for documenting architectural patterns

in 2005. They link architectural patterns to the common notion of views and viewpoints. For a

number of commonly used views such as the Layered View, the Data Flow View, the Data-

centered View, the User Interaction View, and the Component Interaction View, Avergiou and

Zdun presented patterns that match the views. For example, the Data Flow View contains the

patterns “Batch Sequential” and “Pipes and Filters”. Consequently, in their article gives an

excellent overview of reusable architectural patterns, linked to well-known views and viewpoints

and visualized in a unified way. These patterns serve as examples to ‘new’ patterns that might

emerge for the Big Data Solution Reference Architecture, but also as reference library of

reusable items for the reference architecture.

4.2.4.4.3 Architecture Principles

Architecture principles (definition: see paragraph 4.2.4.1) are a somewhat underexposed part

of solution architecture and enterprise architecture (Proper & Greefhorst, 2011). The best

representation found in literature is part of The Open Group’s TOGAF 9.1 framework

(Greefhorst & Proper, 2011). TOGAF lists four components of architecture principles, and

recommends a format for representing them (The Open Group, 2011). Each principle has four

attributes: Name, Statement, Rationale, and Implications. Table 2 contains a reproduction of

the template for the representation of a principle.

Name Should both represent the essence of the rule as well as be easy to remember. Specific

technology platforms should not be mentioned in the name or statement of a principle.

Avoid ambiguous words in the Name and in the Statement such as: "support", "open",

"consider", and for lack of good measure the word "avoid", itself, be careful with

"manage(ment)", and look for unnecessary adjectives and adverbs (fluff).

Statement Should succinctly and unambiguously communicate the fundamental rule. For the most

part, the principles statements for managing information are similar from one

organization to the next. It is vital that the principles statement be unambiguous.

Rationale Should highlight the business benefits of adhering to the principle, using business

terminology. Point to the similarity of information and technology principles to the

principles governing business operations. Also describe the relationship to other

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 56

principles, and the intentions regarding a balanced interpretation. Describe situations

where one principle would be given precedence or carry more weight than another for

making a decision.

Implications Should highlight the requirements, both for the business and IT, for carrying out the

principle - in terms of resources, costs, and activities/tasks. It will often be apparent

that current systems, standards, or practices would be incongruent with the principle

upon adoption. The impact to the business and consequences of adopting a principle

should be clearly stated. The reader should readily discern the answer to: "How does

this affect me?" It is important not to oversimplify, trivialize, or judge the merit of the

impact. Some of the implications will be identified as potential impacts only, and may

be speculative rather than fully analyzed.

Table 2: Format for Defining Architecture Principles (The Open Group, 2011)

4.2.4.4.4 Architectural Best Practices

Since the category of architectural best practices is very broad, there is no semi-formal notation

for the representation of its elements. Rather, each element will be explained in text and

supported by case studies, theories, and/or models from literature.

4.2.5 Summary

Table 1 in paragraph 3.2.2 summarized Angelov’s classification model for reference

architectures; it contains the dimensions, sub-dimensions and questions that determine the

type of a reference architecture. Paragraphs 4.2.1 to 4.2.4 contain the answers to the questions.

Table 3 contains the same data as Table 1, with the addition of column ‘Answer’, which contains

the answers to the questions for the Big Data Solution Reference Architecture, and column

‘Explanation’ which contains the reference to the paragraphs above.

Dimension Sub-

Dimension

Question Answer Explanation:

see paragraph

Goal G1 Why Facilitation 4.2.1

↓

Context C1 Where Multiple organizations 4.2.1

Context C2 Who Independent organization (D),

Software organizations (R),

User organizations (R)

4.2.3

Context C3 When Classical 4.2.1

↓

Goal G2 D1: What Components, interfaces,

policies/guidelines

4.2.4

Goal G2 D2: Detail Semi-detailed components

and policies/guidelines,

4.2.4

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 57

Aggregated or semi-detailed

interfaces

Goal G2 D3:

Concreteness

Abstract or semi-concrete

elements

4.2.4

Goal G2 D4: How Semi-formal element

specifications

4.2.4

Table 3: The multi-dimensional space for the Big Data Solution Reference Architecture of type 3

4.3 RESULTS: THE BIG DATA SOLUTION REFERENCE ARCHITECTURE

At this point in time, the reference architecture was designed. This paragraph contains the Big

Data Solution Reference Architecture that was created after investigating the literature,

interviewing the experts, using grounded theory to perform quantitative data analysis, and

determining the representations of the various elements. The reference architecture is a

guideline, not a prescription. Each element in the model is optional in the solution architecture

that is ultimately created. In analogy with creating an architecture for a house, the reference

architecture will contain the layout of the rooms, doors and windows, but omits the actual

physical descriptions of the wallpapers, latches, and window frames. The components are

integrated building blocks that can be deployed in a working state, with processes, policies, and

best practices on how to use it.

The reference architecture consists of categories, according to the elements that were defined

in the “what” question (dimension D1) of Angelov’s model. For all elements and sub-elements,

tables of coding frequencies are displayed. These tables consist of three columns: Code,

Cases, and Count. The Code columns contains the codes that were found in the category. The

Cases column contains the number of cases in which the code was used. This number has a

maximum of 5, since five interviews were taken. The Count column contains the total number

of times the code was used in the transcripts. The tables are all sorted: first on Cases, next on

Count.

The reference architecture can be used to create solutions for use cases of predictive analytics

using big data technology and open data sources. Table 4 contains a list of typical use cases.

The table is only a very small subset of all use cases, meant to give an appetite of the

possibilities; there are plenty example in the given industries and sectors such as telecom,

energy, education, and others. Each organization should find its own use case and purpose for

the reference architecture.

Industry Use Case

Defense A ministry of defense wants to build a system to collect and analyze signals, to

notice national security threats (SIGINT). The system predicts the chance that a

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 58

certain data source or communication contains hostile information that could harm

citizens.

Financial

Services

A national authority for financial markets wants to improve fraud detection of credit

card data. By using a sophisticated prediction engine, individual transactions can be

marked as likely to be fraud based on the behavior of clients.

Financial

Services

A large bank wants to offer a service to clients that predicts account balance. When

a client log in to his or her personal online banking website, a forecast of the

balance on the bank accounts in possession is shown on the screen. The forecast

is based on historical earnings and spending of the individual as well as the group

the person is in, based on social categorization. Forecasts can also include other

data sources such as the search behavior of the person on the internet; if the client

visited second-hand car sales pages it's likely he or she will buy a car in the near

future.

Government A local government organization with its own customer support helpdesk want to

predict the load of calls, and thereby the staffing needs of the helpdesk

Government A national law enforcement agency wants to predict crime threats by analyzing

sensory data, social media, web traffic and email records.

Healthcare A hospital wants to reduce re-hospitalization figures, and improve "patient flow" to

increase the quality of care and reduce costs. A prediction is made for each patient

that determines the risk of recurring illness once he or she is discharged from the

hospital. The prediction is based on historical data, patient profile, and the latest

illness research reports.

Healthcare A national health organization wants to predict outbreaks of diseases as soon as

possible, to distribute medication, and take other pre-emptive actions. Sources for

the predictions are hospital data, social media, illness records of companies, online

news feeds, and others.

Insurance An insurance company wants to forecast the amount of deaths and other indicators

of life insurance payments, to adjust policies and manage costs. The data used for

these predictions are customer profiles (including income, location, age, and sex),

historical data, and sources that contain indications of disease outbreaks such as

news feeds and social media.

Retail A manufacturer of mobile phones want to forecast the amount of sales for the

upcoming period, based on historical data, market trends, and sentiment of

(potential) customers.

Retail An e-commerce website wants to promote cross-selling of products by presenting

related products to potential customers. The prediction of products that are likely to

be interesting to the customer is performed by an analytics engine that takes

various sources as input: other clients' buying behavior, web traffic of the customer

from cookies, and price differentiation of products on sale.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 59

Oil and gas An oil refinery wants to predict machine failures to optimize costs and downtime.

The machines produce sensory data that can be used for analytics, as well as

working schedules and sales forecasts.

Transportation A railway company wants to lower the costs of maintenance on trains by improving

the predicted replacements of train parts, based on sensor data of the trains.

Transportation A national government wants to predict road traffic flows and congestions. These

predictions can be used to optimize digital road signs and send better routes to in-

car satnav systems. The predictions are based on actual traffic data, historical data,

Twitter feeds, public holidays, and other sources.

Table 4: Examples of use cases for the Big Data Solution Reference Architecture

The elements of the Big Data Solution Reference Architecture are described in the following

paragraphs.

4.3.1 Components & Interfaces

This category contains all components (business, software, and hardware) that are part of the

reference architecture, as well as the interfaces between them. In the interviews, stakeholders

were asked to identify the most important components given the business challenge of

predicting the future. Business processes (as business components), software and hardware

components, and other elements that the interviewee talked about, were captured immediately.

However, if an interviewee did not mention a component that was a critical part of the literature

(e.g. mentioned in 70% of the articles, see Table 14 in Appendix I), it was mentioned specifically

to the interviewee in questions such as: “Do you also know about [component]?”, “Have you

considered [component]?”, “The literature mentions [component], do you have any experience

with that?”

The literature (see paragraph 4.1) and expert interviews (see paragraph 4.2) point out one thing

very clearly: big data is largely about MapReduce. Abstracted, this means that the centerpiece

of a big data architecture is a parallel batch-processing engine. This is combined with a

distributed file system to allow large quantities of data to be processed. However, the reference

architecture not only aims at batch processing but also incorporates big data solutions that are

created for (near) real-time data processing.

Table 5 gives an overview of the codes and categories for the components and interfaces.

Code Cases Count

MapReduce Framework 5 19

NoSQL Database 5 16

Relational Database 5 7

ETL Framework 4 10

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 60

Query Engine 4 8

Distributed File System 4 7

Logging Framework 3 3

Unstructured Data 3 3

Machine Learning Framework 2 8

Configuration Management tool 2 4

Statistical Analysis Engine 2 4

Visualization tool 2 4

Real-time MapReduce engine 2 3

Structured Data 2 2

Graph Processing Engine 1 3

HBase 1 3

Bulk Synchronous Parallel (BSP) mode 1 2

In-memory Caching 1 2

Neural Network 1 2

Provisioning Engine 1 2

Analytics Engine 1 1

Data Discovery Engine 1 1

Data Mining Engine 1 1

OLAP Engine 1 1

Reporting engine 1 1

Table 5: Code frequency for Components & Interfaces

First, a selection was made of components and their relationships. All codes result in a abstract

component in the reference architecture, with the exception of “OLAP Engine”, and “Reporting

Engine”. These codes point to the traditional world of BI, which is not relevant for the Big Data

Solution Reference Architecture. Since the frequencies, both in terms of cases and overall

counts, are very low, the codes will not be represented as components in the Big Data Solution

Reference Architecture.

4.3.1.1 Overview

Using the knowledge gained in the literature and interviews, a visual representation in

ArchiMate was made of the components that make up the big data reference architecture.

Figure 29 displays the diagram.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 61

Figure 29: Components & Interfaces of the Big Data Solution Reference Architecture

The visual representation of the components and interfaces is semi-detailed and contains semi-

concrete elements, following the guidelines of Angelov et al. for a “type 3” reference architecture

(see paragraph 4.2.2). The level of detail can be measured from the number of layers and the

number of components. In the Big Data Solution Reference Architecture, both are reasonably

low: three layers and relatively small number of components.

The ArchiMate language allows for very complex diagrams, with architectures including

functions, interfaces, interactions, services, collaboration, devices, locations, etc. None of these

elements was used. Rather, the diagram is simple and includes only the following elements

(definitions from (The Open Group, 2012)):

 Business Process (): a behavior element that groups behavior based on an

ordering of activities. It is intended to produce a defined set of products or business

services;

 Data Object ():a passive element suitable for automated processing;

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 62

 Application Component (): a modular, deployable, and replaceable part of a

software system that encapsulates its behavior and data and exposes these through a

set of interfaces;

 Technology Artifact ():a physical piece of data that is used or produced in a

software development process, or by deployment and operation of a system;

 Network (): a communication medium between two or more devices;

 Node (): a computational resource upon which artifacts may be stored or deployed

for execution;

 System Software (): a software environment for specific types of components and

objects that are deployed on it in the form of artifacts.

Next to these components, the following ArchiMate relationships are used in the diagram

(definitions from (The Open Group, 2012)):

 Composition (): the composition relationship indicates that an object is

composed of one or more other objects. This relation is visualized as components

overlapping. For example, the Predict business process consists of four sub-

processes, amongst which Import Data;

 Used By (): the used by relationship models the use of services by processes,

functions, or interactions and the access to interfaces by roles, components, or

collaborations. For example, the Analytics Engine application component is used by

the Analyze Data process;

 Flow (): the flow relationship describes the exchange or transfer of, for

example, information or value between processes, function, interactions, and events.

For example, data flows between the Distributed Database and the Analytics Database

system software components;

 Realization (): the realization relationship links a logical entity with a more

concrete entity that realizes it, e.g. the Imported Data artifact is realized by the

Importing Engine;

 Specialization (): the specialization relationship indicates that an object is a

specialization of another object, e.g. the Open Data artifact is a specialization of the

Raw Data artifact;

 Assignment (): the assignment relationship links active elements (e.g.,

business roles or application components) with units of behavior that are performed by

them, or business actors with business roles that are fulfilled by them. For example,

the Analytics Data artifact is assigned to the Analytics Database.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 63

The size of the component blocks in the Application Layer give an indication of the “importance”,

the complexity, and the required amount of computer resources (memory, disk space, number

of frameworks, etc.) of the component. For example, the Processing Engine is displayed larger

than the Management Engine since it has more tasks, demands more resources and is

considered one of the core components of the big data solution.

The model focusses on “what” rather than “how”. The conceptual elements of the reference

architecture are all structures, residing in the left column of the diagram in Figure 28. The

structural character of the model was chosen on purpose, to give architects a clear guidance

while still presenting abstract components. The focus on “what” allows for an easy translation

of the abstract reference architecture to real physical components in the big data solutions that

are implementations of the model. The level of concreteness is apparent from the abstractness

of the components; no concrete components are listed but rather the templates or concepts.

For example, instead of including “HDFS”, the concept of a Distributed File System is used.

However, in the supporting text several options and examples are provided for the components,

to give architects a feel for the possibilities. The criteria for the components that are selected

for the architecture are scalability, ease of use, maturity, and level of support. The options are

presented in tables, which are alphabetically sorted by component name. Amongst the options

provided are commercial (proprietary) components and free and open-source (FOSS)

components. Commercial, proprietary solutions often have FOSS frameworks under the hood,

and one of the architectural best practices of this reference architecture is “Use free and open-

source software” (see paragraph 4.3.2.3.1). Therefore, architects using the reference

architecture are recommended to opt for FOSS.

A concept that sprouts from the literature and the interviews is to see big data analytics as a

data pipeline (also see the Architectural Patterns category in paragraph 4.3.2.1). In contrast to

other solution architectures where data ‘moves around’ between services, databases,

applications, objects, and so forth, big data is about getting a large dataset “streaming” through

a set of tools and frameworks to get insight and derive meaning, and ultimately take action. In

our research, the sources are enterprise data and open data, and the insight is a statement of

predictive analytics. Thus, one of the first choices was to represent the reference architecture

as a data pipeline. In the diagram, the data "flows" at the Application layer and the Technology

layer; the application components communicate and pass data to each other figuratively, while

the actual data flow happens in the infrastructure. As mentioned above, the reference

architecture aims at both batch processing and (near) real-time data processing solutions.

The remainder of this paragraph highlights various elements and aspects of the Big Data

Solution Reference Architecture, explaining and illustrating the most important components and

interfaces per layer.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 64

4.3.1.2 Business Layer

Figure 30: Business Layer

Prediction or forecasting is the main business problem that needs to be solved. The business

layer (see Figure 30) contains one main business process: “Predict”. This is the main goal of

the entire solution for which the reference architecture is used: to predict the future using

enterprise data, open data sources and big data technology. The business process is divided

into four sub-processes or business process steps: Import Data, Process Data, Analyze Data,

and Decide. All sub-processes can be triggered by users of a system, e.g. by the press on a

button, or it can be automatically triggered by an event or as part of a workflow. The sub-

processes have relationships to the application components in the Application Layer. All

relationships are “Used By” relations. This means that the processes use application

components, e.g. to analyze data, an actor (human or machine) uses the functions of a

visualization program.

An example of a business process that suits the reference architecture is: prediction of the

weather. To make a prediction, sensor and historical data has to be imported into a system,

processed (e.g. filtered, cleaned, normalized), and analyzed. Finally, a meteorologist can make

a decision about the weather forecast.

4.3.1.2.1 Import

The first step or cycle in the data pipeline is importing the data. The business process is

responsible for gathering all the relevant data to the business problem, from within the

organization and from external sources. This action can be triggered automatically or can be

executed manually. For example, a business owner who is interested in the forecasted

maintenance of trains in the upcoming month might initiate a procedure that gathers all sensor

data of the trains that are in working order.

4.3.1.2.2 Process

Once the data has been imported into a suitable repository, it has to be processed to make it

suitable for analysis. This business process takes care of data filtering, cleaning, enriching, etc.

Usually these actions are sequentially executed and automated. For example, an automatic

nightly batch in an e-commerce organization processes all sales records of the day, matches it

to historical data and market trends and produces a new dataset that can be used for cross-

selling purposes.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 65

4.3.1.2.3 Analyze

The data must be analyzed by a sophisticated algorithm, tool or process that predicts the future.

This business process analyses the data and makes it suitable for representation. The

underlying technology of this business process is statistics, artificial intelligence, etc. The type

of analysis that is performed to give insight depends on the use case. For example, in the case

of customer insight, the analysis can consist of market basket analysis (to identify cross-selling

opportunities), click-stream analysis to determine on-line behavior of potential customers, and

even real-time analysis of GPS locations of mobile users to determine whether they are in the

vicinity of a suitable shop. Another example is the use of neural networks to recognize patterns

in weather data or social media messages.

4.3.1.2.4 Decide

Finally, the business process Decide is used to make a decision about the data. This business

process is also known as business insight, actionable insights, actionable intelligence, etc.

Typically, a business user is looking at a visual representation, such as a graph, about the

prediction. The interpretation of the visuals can be a challenging and complex task. The people

using the technology have to be aware of the implications of working with predictive analytics.

For one, the outcomes of the “Analyze” function will be “fuzzy”. The big data systems will

produce figures such as “there is a chance of 52.3% that the workload on your customer support

helpdesk is above 40% during the next weekend”. This uncertainty is sometimes qualified as

the fourth “V” in the big data model: Veracity (next to Volume, Variety, and Velocity) (Schroeck,

Shockley, Smart, Romero-Morales, & Tufano, 2012).

In a sense, this step can also be named “Act”. However, a decision does not always imply an

action; after data analysis, doing nothing can be the best choice. The business process “Decide”

is not by definition a human action. The process to import, process, and analyze data, and

consequently make a decision, can be fully automated. In that case, a machine makes the

decision. An example of such a situation is the prediction of the weather on a website; the

produced forecasts are the result of a fully automated sequence of data gathering, analysis,

and visualization. An example of a human Decide action is a manager of an insurance

company, who decides to lower the price of a life insurance policy based on a graph of

predictions that cover the life insurance business.

4.3.1.3 Application Layer

Figure 31: Application Layer

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 66

The Application Layer, depicted in Figure 31, contains the core elements of the big data solution

from an Information Systems perspective. The components in this layer are applications,

software packages, frameworks, or products. The components are given the name of

“Engines”, as that closely represents what they do; each component converts raw input into

useful output, similar to a car engine, which is a machine that converts fuel into motion.

According to Wikipedia, “the field of computer science uses the term Engine to provide a mental

model of software components an order of magnitude more complex than an ordinary modules

of software, such as a libraries, platforms, SDKs or objects” (Wikipedia, 2013). The name

“Engine” also provides a link to “Software Engineering”, where this layer is all about: the

software has to be analyzed, build, integrated, configured, tested, implemented, and

maintained.

From the Importing Engine to the Visualization Engine, “Flow” relationships are visible that

indicate the data flow on the application level. The actual data is transferred in the Technology

Layer; however, when looking sec at the Application Layer it is safe to say the data flows from

one Application Component to another. Next to the “Flow” relations, the engines have

relationships with the data artifacts in the Technology Layer, as follows:

 The Importing Engine accesses Raw Data;

 The Importing Engine realizes Imported Data;

 The Processing Engine uses Imported Data;

 The Processing Engine realizes Processed Data;

 The Analytics Engine uses Processed Data;

 The Analytics Engine realizes Analytical Data;

 The Visualization Engine uses Analytical Data.

There are four components that are mapped one-to-one to the business processes of the

Business Layer, described in paragraph 4.3.1.2. Next to that, there is a “Raw Data” data object

and the component “Management Engine”, which are not directly related to a business process.

The following paragraphs describe these six components.

4.3.1.3.1 Raw Data

Raw data is open data from a source on the internet or enterprise data that resides somewhere

in the organization. This data can be in structured, semi-structured, or unstructured form.

Together, these data are characterized as multi-structured data.

4.3.1.3.2 Importing Engine

Raw data gets imported from its source and must be stored on a distributed file system. The

importing engine has the following tasks:

 Data Discovery;

 Data Mining;

 Data Collection;

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 67

 Data Loading;

 Data Acquisition;

 Data Ingestion.

In the traditional world of BI, this component is responsible for the extract, transform, and load

(ETL) of data. In the case of (near) real-time data analysis, this step is skipped; incoming data

is processed immediately once it arrives at the organization. Table 21 in Appendix III contains

a list of possible products and frameworks for importing data. However, this list far from

complete; options such as custom-made scripts or programs are also good solutions for getting

data into the file system.

4.3.1.3.3 Processing Engine

Imported data has to be processed to be ready for analysis. The Processing Engine, together

with the Analytics Engine, is the core of a big data solution for predictive analytics. It typically

contains MapReduce jobs, querying mechanisms, and other distributed parallel processing

tools. The Processing Engine retrieves the input data from a distributed file system and it writes

data to a distributed database after processing. The processing engine can run multiple

iterations with different configuration, e.g. if multiple MapReduce jobs are required to process

the data. The key to big data is distributed parallel processing. A “shared nothing” architecture

combined with a fast network is the key to processing huge volumes and varieties of data, with

high velocity. The processing engine is responsible for any and all of the following tasks:

 Data Transportation;

 Data Cleaning;

 Data Filtering;

 Data Serialization;

 Data Integration;

 Data Search;

 Data Querying;

 Data Transformation;

 Complex Event Processing;

 Log Processing.

Since this component contains many tasks and therefore many possible implementations, the

Processing Engine is further split up into categories. The categories are Processing Engines

with their own specialty. Each category is a possible implementation of the Processing Engine.

As with all other components, the categories are optional; e.g. the big data solution is not

required to include a Data Transformation Engine. There are five categories or Engines:

 Data Preparation Engine;

 Data Querying Engine;

 Batch Processing Engine;

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 68

 Stream Processing Engine;

 Log Processing Engine.

Figure 32: Processing Engine

The sub-components of the Processing Engine and their relationships are displayed in Figure

32. There are several “Flow” relations between the components, meaning that it’s possible that

data flows from one Engine to another. For example, the architecture could contain a Log

Processing Engine that collects log files, aggregates and filters them, and stores the result in a

distributed file system that is used by a Hadoop cluster. The remainder of this paragraph

explains the components in the Processing Engine in detail.

Data Preparation Engine

The tasks Transportation, Serialization, Cleaning, Filtering, and Integration of data fall under

the category of Data Preparation. Software is available that processes data in these ways. It is

for each organization to decide which tasks are required and which components will suit best.

Table 22 in Appendix III contains an overview of several options for the Data Preparation

Engine.

Data Exploration Engine

The Data Exploration Engine takes care of the tasks Data Search and Data Querying. There

are big data tools that are built for searching/crawling/indexing large datasets. Data Querying

is a task that makes life easier for big data developers. For efficient processing of multi-

structured data sources, a tool can be used that translates declarative queries to MapReduce

jobs. Examples of high-level languages that are suitable for this job are Jaql, Pig Latin, and

HiveQL. When interpreted by a search or query tool, the language queries are automatically

executed in parallel and distributed. For example, the HiveQL query “SELECT customerId,

orderNr FROM orders;” is processed by the Hive framework to create a MapReduce job

that outputs a list of orders. Table 23 in Appendix III contains a list of options for the Data

Exploration Engine.

Batch Processing Engine

The most widely used software framework for distributed parallel processing engine is Apache

Hadoop. This FOSS solution is incorporated in a number of commercial offerings. Some

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 69

organizations offer a Hadoop solution, e.g. a software suite that incorporates Hadoop. Other

companies offer distributions of the Hadoop stack, providing a managed ready-to-use

environment and support. Table 24 in Appendix III contains several of these options.

Stream Processing Engine

In case the big data solution has to analyze real-time or near real-time data streams, specialized

software must be used to process the incoming data streams. Table 25 of Appendix III lists the

options for stream processing software.

Log Processing Engine

A special category of Data Processing is the handling of log files. These machine-generated

data contain a wealth of information for an organization if analyzed in the correct way. Typically,

a software product collects log files in an organization and makes the logs available for

analytical processing. Table 26 in Appendix III contains a list of software components that are

specialized in processing log files.

4.3.1.3.4 Analytics Engine

The processed data must be analyzed to make useful predictions about the future. Using

techniques from the fields of statistics and artificial intelligence (such as neural networks,

genetic algorithms, and machine learning), this software actually performs the predictive

analytics calculations. Machines need to be trained to make correct predictions about the future.

The components in this engine have one or more of the following tasks:

 Simulation;

 Machine Learning;

 Genetic algorithms;

 Natural language processing;

 Statistical Analysis;

 Pattern recognition;

 Text analytics;

 Sentiment analysis;

 Geospatial analytics;

 Time-series forecasting;

 Video analytics;

 Voice analytics.

The analytics engine can be database-based, or in-memory. Table 27 in Appendix III contains

a list of possible options for the Analytics Engine component. Again, these are just some

options. Particular in the field of analytics and forecasting, components can be custom build or

derived from models such as ARIMA or regression analysis.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 70

4.3.1.3.5 Visualization Engine

A visualization engine is a software package that is capable of presenting the predictive data in

a useful way. Dashboards, reports, graphs, tagclouds, clustergrams, and history flows are

suitable for such tasks. Although many software vendors try to sell products or big data suites

with visualization engines, there is FOSS available that does the job. The SVG format, an open

World Wide Web Consortium (W3C) standard, is an XML-based format for drawing two-

dimensional graphical objects (W3C, 2013). Using JavaScript and tools like D3 that support

SVG rendering, it is possible to create beautiful and informational browser-based visuals.

Table 28 in Appendix III contains a list of options for the Visualization Engine. The tools

mentioned are only the software equivalents of the Visualization Engine. One could also think

about the component as a service or even a human action. For instance, the creation of

infographics is a manual job that is extremely well suited to present a lot of information in a

short overview.

4.3.1.3.6 Management Engine

The Management Engine is the director of all other components in the Application Layer. This

software has the following tasks:

 Storage and execution of the workflow across all components in the Application layer;

 Coordination of tasks that run in the Application layer;

 Provisioning of infrastructure, system software and information systems in the

Technology and Applications layers;

 Monitoring of infrastructure and applications.

It can also be argued that tasks such as data governance, data security, master data

management, and metadata management play a role in the Management Engine. However,

the expert interviews and resulting codes have not indicated these tasks to be important. Table

29 in Appendix III contains a list of the options for the Management Engine.

4.3.1.4 Technology Layer

Figure 33: Technology Layer

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 71

The Technology layer (see Figure 33) contains the low-level infrastructure and system software

that is needed for a big data solution. On two possible networks (Intranet and Internet), raw

data is hosted and three types of server clusters provide the ability to store the various types of

data. Outside of the network, four artifacts represent the data that is stored in the layer.

Data flows from the Distributed File System into the Distributed Database, and then into the

Analytics Database. This is represented by the ArchiMate “Flow” relationships between the

components, and follows the Pipes and Filters architectural pattern (see paragraph 4.3.2.1.1).

The data artifacts represent the actual data. The “Association” relationships with the system

software components indicate the location of the data files / tables, e.g. a set of imported sensor

data is stored on the distributed file system. The technology artifacts are realized by or used by

the application components in the Application Layer; for an explanation of the relationships, see

paragraph 4.3.1.3. The components in the Technology Layer are explained in detail in the

following paragraphs.

4.3.1.4.1 Intranet & Internet

The layer contains two networks (Intranet and Internet), with two artifacts that represent open

data and enterprise data, and three nodes that represent server clusters. The nodes (clusters)

are located on one network, or both networks. For example, a file cluster can be obtained as

infrastructure-as-a-service (IaaS) from a service provider in the cloud, while the database

cluster is a hybrid form (mixture) of on-premise and cloud-based servers, and the analytics

cluster resides on internal servers.

The network(s) should be fast. To allow distributed parallel processing, especially in the

Importing Engine and the Processing Engine, the supporting network of the software should be

able to handle huge amounts of data extremely efficient.

4.3.1.4.2 Raw Data

The Raw Data artifact consists of Open Data and Enterprise Data sources. Open data resides

on the internet, enterprise data on the intranet. Table 6 contains an overview of internal and

external data sources.

Type Structured Semi-structured Unstructured

Enterprise Data Relational databases File shares, log data

Open Data REST open data sources Social media sources

Table 6: Data sources that can be used in big data architectures

The reference architecture uses open data, so the interviews contained questions about the

way that external data sources should be connected to enterprise data. The interviews and

literature point out that a big data architecture should handle multiple types of data: structured,

semi-structured and unstructured. Together, this is referred to as multi-structured data. CSC’s

big data consultant Martijn Loderus has an interesting notion of treating all external data as

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 72

‘sensors’. Elaboration on this idea in a metaphorical way: a big data solution can be seen as an

instrument, or even an organism, that “feels” its way around in the surrounding environment

(open data), takes into account its own internal state (enterprise data), processes the combined

set (MapReduce) and eventually produces a meaningful advice (predictive analytics).

4.3.1.4.3 File Cluster

The file cluster is a big data solution that is capable of storing large amounts of data in a

distributed, fail-safe way. Table 30 in Appendix III contains a list of options for the Distributed

File System component.

4.3.1.4.4 Database Cluster

The database cluster is a hardware component that is capable of hosting a large, distributed

big data database. The database can store data in-memory or on disk. In-memory databases

load all data and the database applications (e.g. stored procedures, functions) into the RAM

memory of server, which has faster read and write access than a hard drive. This type of

databases can be used when speed is crucial for success of the use case, for example when

(near) real-time analysis has to be done.

The distributed database that runs on the cluster can be one of the following types:

 Relational (RDBMS): high-performing table-oriented databases with shared-disk or

shared-everything architecture. These databases are optimized for data quality and

ACID transactions, not for concurrency;

 NoSQL: databases with built-in scalability, optimized for storing distributed

unstructured data, with shared nothing architecture (see paragraph 2.2 for an

explanation). There are several types of NoSQL databases:

o Key-Value: a schema-less mechanism to store data of any kind;

o Document: mechanism used for storing semi-structured information. A

document is a package of data in any format, e.g. XML or JSON, which are

stored via unique keys in the database;

o Object: a database that stores objects as in object-oriented programming.

Table 31 in Appendix III contains a list of options for the Distributed Database component.

4.3.1.4.5 Analytics Cluster

The analytics cluster is a hardware component that stores the processed data. The database

that runs on the cluster is typically smaller but more sophisticated and specialized than the

distributed database on the database cluster, for example graph (NoSQL database with

element in hierarchical graph structures), neural network databases or data warehouses that

go beyond the traditional BI capabilities. There is certainly overlap with the databases in the

Database Cluster; most products cannot be place in only one category. Table 32 of Appendix

III lists some options for the Analytics Database.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 73

4.3.2 Policies & Guidelines

As part of the “what” dimension in Angelov’s framework, the policies and guidelines in the Big

Data Solution Reference Architecture consist of three sub-categories: architectural patterns,

architecture principles, and best practices.

4.3.2.1 Architectural Patterns

Architectural patterns “offer well-established solutions to architectural problems help to

document the architectural design decisions, facilitate communication between stakeholders

through a common vocabulary, and describe the quality attributes of a software system as

forces” (Avgeriou & Zdun, 2005). These architectural patterns are important to the working of

the reference architecture; they define the way the reference architecture is constructed and

the way the architects should work with the reference architecture. Table 7 contains the codes

that point to architectural patterns that were found in the expert interviews.

Code Cases Count

Data Pipeline 2 2

Cloud 1 3

Application layer is leading 1 2

Amdahl's Law 1 1

Use MapReduce to prepare data 1 1

Table 7: Coding frequencies for Architectural Patterns

The interview data shows that relatively few architectural patterns were mentioned. However,

these architectural patterns are important to the working of the reference architecture; they

actually define the way the reference architecture is constructed and the way the architects

should work with the reference architecture. In particular, the “Data Pipeline” code is important

to the construction of the reference architecture and to the architectures that will be created

from it. Together with code “Use MapReduce to prepare data” this forms the basis of patterns

“Pipes and Filters“ and “Batch Sequential”, as part of the “Data Flow View” (Avgeriou & Zdun,

2005). The Batch Sequential pattern is an excellent way to look at one MapReduce job, but is

no good guide for the entire data flow within a big data solution. The pattern is too simplistic

and too low-level to be a good candidate for the reference architecture. Therefore, the pattern

that was chosen as the one giving guidance to the data flow is the “Pipes and Filters” pattern.

Another architectural pattern that surfaces from the interviews is the “Layers” pattern. Codes

“Cloud” and “Application layer is leading” both indicate a layering in the architecture. Code

“Amdahl’s Law” is mentioned only once, and is not a clear indicator of a common pattern that

should be used in the Big Data Solution Reference Architecture. Therefore, this codes is not

used any further in the process of designing the reference architecture.

The following sub-paragraphs explain the the patterns “Pipes and Filters” and “Layers” in detail.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 74

4.3.2.1.1 Pattern 1: Pipes and Filters

Following the data analysis, the first architectural pattern included in the reference architecture

is the “Pipes and Filters” pattern. This pattern deals with how streams of data are successively

processed or transformed by components.

The definition of the Pipes and Filters pattern is as follows:

"Consider as in BATCH SEQUENTIAL the case where a complex task can be sub-divided into

a number of smaller tasks, which can be defined as a series of independent computations.

Additionally the application processes streams of data, i.e. it transforms input data streams into

output data streams. This functionality should not be realized by one monolithic component

because this component would be overly complex, and it would hinder modifiability and

reusability. Furthermore, different clients require different variations of the computations, for

instance, the results should be presented in different ways or different kinds of input data should

be provided. To reach this goal, it must be possible to flexibly compose individual sub-tasks

according to the client’s demands. In a PIPES AND FILTERS architecture a complex task is

divided into several sequential subtasks. Each of these sub-tasks is implemented by a

separate, independent component, a filter, which handles only this task. Filters have a number

of inputs and a number of outputs and they are connected flexibly using pipes but they are

never aware of the identity of adjacent filters. Each pipe realizes a stream of data between two

components. Each filter consumes and delivers data incrementally, which maximizes the

throughput of each individual filter, since filters can potentially work in parallel. Pipes act as

data buffers between adjacent filters. The use of PIPES AND FILTERS is advisable when little

contextual information needs to be maintained between the filter components and filters retain

no state between invocations. PIPES AND FILTERS can be flexibly composed. However,

sharing data between these components is expensive or inflexible. There are performance

overheads for transferring data in pipes and data transformations, and error handling is rather

difficult." (Avgeriou & Zdun, 2005)

Using the Pipes and Filters pattern implies that the architecture of a big data solution must be

built around a series of tasks. In the Big Data Solution Reference Architecture, all layers contain

an example of the division into tasks. The best example is the Application Layer, which consists

of the components Importing Engine, Processing Engine, Analytics Engine, and Visualization

Engine. Each component is independent and modular, and can be thought of as a filter. Data

flows or streams in a pipe between these components, represented by the “Flow” ArchiMate

relation.

The Pipes and Filters pattern matches best with the common form of predictive analytics, where

data is presented, imported and processed in a sequence. In case of data exploration and

discovery (or knowledge discovery) as explained in paragraph 2.4.2, there is less of a data flow.

In that case, the Importing Engine is probably not used, or only has the function of a throughput

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 75

engine that simply transfers the data without doing anything with it. The Processing Engine will

contain data exploration and/or stream processing engines, and the Processing Engine takes

the form of a high-performance machine learning, mathematical analytics, or pattern recognition

framework.

4.3.2.1.2 Pattern 2: Layers

Another architectural pattern that can be identified from the interviews is “Layers”, as part of the

“Layered View”. Codes “Cloud” and “Application layer is leading” both indicate a layering in the

architecture. The Layers pattern is closely connected to the architecture principle “Loose

coupling” (see paragraph 4.3.2.2.1).

The definition of the Layers pattern is:

“Consider a system in which high-level components depend on low-level components to

perform their functionality, which further depend on even lower-level components and so on.

Decoupling the components in a vertical manner is crucial in order to support modifiability,

portability, and reusability. On the other hand, components also require some horizontal

structuring that is orthogonal to their vertical subdivision. To achieve these goals, the system is

structured into layers so that each layer provides a set of services to the layer above and uses

the services of the layer below. Within each layer, all constituent components work at the same

level of abstraction and can interact through connectors. Between two adjacent layers, a clearly

defined interface is provided. In the pure form of the pattern, layers should not be by-passed:

higher-level layers access lower-level layers only through the layer beneath.” (Avgeriou & Zdun,

2005)

The Layers pattern is implemented in the Big Data Solution Reference Architecture by

representing the components of the architecture in the layers Business Layer, Application

Layer, and Technology Layer. This division follows TOGAF and ArchiMate and is a standard

partition of solution architectures (see paragraph 4.2.4.4).

4.3.2.2 Architecture Principles

As stated in paragraph 4.2.4.1, normative architecture principles will be identified that give

guidance to architects that create big data solutions. Table 8 contains the codes that were

categorized as “Architecture Principle” in the expert interviews.

Code Cases Count

Higher-level programming language 4 6

Linux 2 3

Loose coupling 2 2

Open standards 2 3

Web Architecture 1 2

Table 8: Coding frequencies for Architecture Principles

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 76

The frequent occurrence of the code “Higher-level programming language” shows that the

subject matter experts often refer to programming languages. Programming languages that

were specifically mentioned in the interviews are Java, Python, Scooby, and Scalding. This

could be an important notion for software developers or system administrators, but is not

suitable for the goal and scope of the Big Data Solution Reference Architecture as the principles

should be semi-detailed and abstract or semi-concrete according to “type 3” reference

architectures of Angelov’s model (see paragraph 4.2.2).

The code “Linux” indicates an architecture principle that implicates a preferred use of the Linux

operating system over other operating systems. While architects will agree to use Linux in a big

data solution, the reference architecture must be independent of the implementation of

components, and thus independent of operating system. Therefore, the code “Linux” will not be

translated into an architecture principle.

The code “Web Architecture” is only used in one interview, and therefore too weak to be

considered for usage in the reference architecture. The codes “Loose coupling” and “Open

standards” result in two principles: “Loose coupling” and “Interoperability”. These principles are

presented in the following sub-paragraphs, with the notation prescribed by TOGAF 9.1 (see

paragraph 4.2.4.4.3).

4.3.2.2.1 Principle 1: Loose coupling

Name Loose coupling

Statement Create a solution with loosely coupled building blocks, e.g. message-exchanging

software components instead of integrated frameworks

Rationale By loosely coupling the components, the modularity, reusability and modifiability of

the solution increases. Big data is a fast-moving field, where components are

developed, improved, and retired frequently. To be able to cope with the changing

requirements and components, the big data solution has to be flexible. If a building

block has to be replaced, upgraded, removed, or added, other building blocks should

be impacted as little as possible. By loosely coupling the components, these kind of

actions are relatively easy.

Implications Components of the solution such as software packages, frameworks, databases

should be selected based on their ability to be decoupled from the solution. That

means components should have clear service contracts,

data interfaces, and/or APIs that preferably rely on messaging.

Table 9: Loose coupling architecture principle

4.3.2.2.2 Principle 2: Interoperability

Name Interoperability

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 77

Statement Software and hardware should conform to defined standards that promote

interoperability for data, applications, and technology.

Rationale Standards help ensure consistency, thus improving the ability to manage systems

and improve user satisfaction, and protect existing IT investments, thus maximizing

return on investment and reducing costs. Standards for interoperability additionally

help ensure support from multiple vendors for their products, and facilitate supply

chain integration.

Implications Interoperability standards and industry standards will be followed unless there

is a compelling business reason to implement a non-standard solution.

 A process for setting standards, reviewing and revising them periodically, and

granting exceptions must be established.

 The existing IT platforms must be identified and documented.

Table 10: Interoperability architecture principle

4.3.2.3 Architectural Best Practices

Architectural best practices describe other aspects that are considered important when creating

a big data solution architecture. These best practices are aimed at processes in which architects

surely are involved: management, selection of components, planning, estimating, budgeting,

cooperation with internal and external suppliers, and so forth. The category Architectural Best

Practices consists of codes that indicate important concepts, methods, and techniques for

architects when working on big data solutions. Table 11 contains an overview of the codes.

Code Cases Count

Free and open-source 4 7

Highly skilled team 4 5

Individualization 4 4

Fuzzy Logic 3 5

Don't use commercial products 3 4

Agile development 2 6

Database type 2 5

Scalability 2 5

Top-down approach 2 5

Reference architecture is necessary 2 4

Use service providers 2 4

CAP Theorem 2 3

Get an overview 2 3

Manage the hype 2 3

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 78

Performance 2 2

Risk of obsolete technology 2 2

Industry-independent 1 4

Data quality 1 2

Filter data before use 1 2

Basic model 1 1

Bottom-up approach 1 1

Details matter 1 1

DevOps 1 1

Objectivity 1 1

Think in batch-processing 1 1

Use large files 1 1

Work cost-effective 1 1

Table 11: Coding frequencies for Best Practices

Two best practices were distilled from these codes: “Use free and open-source software” and

“Agile development”, which are explained in detail in the following sub-paragraphs.

4.3.2.3.1 Best Practice 1: Use free and open-source software

Most architectures that are addressed in the interviews and literature are based on FOSS

components. When asked specifically, the interviewed architects agree to the notion that free

and open-source software forms the core of big data. As mentioned in the literature study (see

paragraphs 2.2 and 4.1), there are commercial (proprietary) products and services available

that are based on the FOSS stack; for example, several large IT companies are trying to

solutionify Hadoop. However, as pointed out by the interviewed stakeholders, the free and

open-source community is leading in innovation when it comes to big data software

components. This notion is even supported by commercial organizations such as IBM

(Zikopoulos, et al., 2013). The FOSS products are simply better than the commercial ones in

terms of usability, modifiability, performance, reliability, and costs. Vendor lock-in is avoided,

and the architecture principles “Loose coupling” and “Interoperability” can be applied more

easily with FOSS.

Free and open-source (FOSS) in this reference model is software that is both free and open-

source, classified according to the definition of the Free Software Foundation. This definition

states that software can used, copied, changed, and distributed by anyone (Free Software

Foundation, 2013). The FOSS definition is tighter than the Open Source definition, which only

states that the software should be free of charge and the source code should be publicly

available and modifiable (The Open Source Initiative, 2008). The Open Source definition is only

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 79

applicable to practical applications, not to the social and political aspects (Stallman, Why Open

Source misses the point of Free Software, sd). In contrast, FOSS is about the liberty of software,

not about the price. The unfortunate event is that the word “free” in English speech has two

meanings, unlike for example French where there is libre and gratuit. This point is made clear

in Richard Stallman’s famous article in which he states: “think of “free speech,” not “free beer.””

(Stallman, The Free Software Definition, 2013). Examples of FOSS licenses are the GNU

(Lesser) Public License, the Apache Licenses, the Microsoft Public License, the Mozilla Public

Licenses, and the Intel Open Source License (Free Software Foundation, 2012).

Preferring FOSS components over proprietary software can have some impact on organization,

especially if this best practice is not implemented yet. With FOSS, organizations cannot rely on

support contracts and have to build up knowledge of the components in-house.

4.3.2.3.2 Best Practice 2: Agile development

The codes “Agile development’ and “DevOps” indicate a strong preference for agile

methodologies when it comes to creating big data solutions. There should be a strong

preference for agile methodologies when it comes to creating big data solutions. Architects

should be advised to create software and hardware iteratively, and release small changes to

an existing working solution. Examples of methodologies that have proven to be successful in

an “agile” way are Scrum (Schwaber, 1995), Kanban (Kniberg & Skarin, 2009), Lean

(Poppendieck & Poppendieck, 2003), and XP (Beck, Extreme Programming Explained:

Embrace Change, 2004). All these methods have in common that they strive for high-quality

working solutions by having small teams working collaboratively in short iterations, focusing on

the delivery of useful artifacts. In a certain sense, the Rational Unified Process (RUP) can also

be considered “agile” when applied in the correct way, although this methodology is usually not

thought of as a purely iterative but rather as a mixture of traditional “waterfall” and modern

“agile” approaches (Kruchten, 2003). Each organization should take their pick for a method, as

long as the principles in the Agile Manifesto (Beck, et al., 2001) are applied strictly. For some

organizations that are engaging a big data project, an agile way of working will already be in

place since agile is becoming the de-facto standard in software development (Dingsøyr, Nerur,

Balijepally, & Moe, 2012). If that is not the case, the introduction of agile development will

introduce some difficulties as a switch from traditional methodologies can be a cultural

challenge (Livari & Livari, 2011).

4.3.3 Summary

The Big Data Solution Reference Architecture is a model for creating solutions that make

predictions about the future using open data sources and structured, semi-structured, and

unstructured enterprise data. The reference architecture is usable for architects in “green field”

situations or in projects with an existing technology base. The reference architecture is generic

on purpose; any commercial or public organization can use it to apply in a typical big data use

case.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 80

The Big Data Solution Reference Architecture presents the following key points to architects:

 Create a big data solution that is derived from the components & interfaces diagram

presented in paragraph 4.3.1.1;

 Think of the big data solution as a pipeline, with components that act as filters;

 Divide the solution in layers;

 Make sure components are loosely coupled;

 Use open standards to enable interoperability;

 Use free and open-source software components where possible;

 Develop agile.

4.4 JUSTIFICATION / EVALUATION OF REFERENCE ARCHITECTURE

This paragraph contains a justification of the Big Data Solution Reference Architecture,

described in paragraph 4.3. This evaluation is part three of Hevner’s Information Systems

Research Framework (see Figure 4) and the method that was used is a questionnaire that

evaluated the quality criteria of a reference architecture, based on SAAM (see paragraph 3.3).

The following paragraphs describe the most interesting findings of the questionnaire, per

section. For an overview of the sections, see paragraph 3.3.3. Appendix II contains the full list

of the questionnaire results.

4.4.1 Sampling

The target population of the reference architecture is all big data architects. Of this population,

a representative group of 50 big data architects was selected as a representative sample. This

group was considered a representative sample of the population. The sampling was done by

selecting big data specialists from the personal network of the researcher. Of this sample, ten

respondents answered the questionnaire. The response rate is therefore 20%. The number of

respondents is considered not big enough to formulate definite conclusions about the quality of

the reference architecture, so any conclusions should be taken lightly as three is no full scientific

proof.

4.4.2 Section 1: Introduction

The respondents have several roles (manager, architect, developer, etc.), but all are related to

IT. All respondents are more or less experienced with big data and predictive analytics. Three

respondents use big data technology in their day-to-day work. This indicates a small but highly

skilled group of respondents.

4.4.3 Section 2: Impressions of the Big Data Solution Reference Architecture

The answers to the first four questions in section 2 indicate that the respondents are likely to

use the elements of the Big Data Solution Reference Architecture in their work. The mean score

on these questions is

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 81

The respondents give high scores to the goal and purpose of the reference architecture

(question 6). That is in line with the scores on the questions 1 to 4; if people are likely to use

the model, they find the model relevant in their work. The completeness, level of detail, and

concreteness of the model are regarded ‘fair’ on average. The answers to other questions

indicate that the respondents would like to see more elements, more detail, and more

concreteness. These characteristics of the reference architecture were set when determining

the type of the reference architecture according to Angelov’s framework (see paragraph 4.2).

Therefore, new versions of the reference architecture could be of a different type that allow for

more elements, detail, and concreteness.

The explaining remarks in section 2 give some criticism on the model: there is some repetition,

and some elements are considered too generic. These remarks are in line with the scores on

the questions in the questionnaire.

4.4.4 Section 3: Quality of the Big Data Solution Reference Architecture

The average scores that were assigned to the quality criteria are displayed in Table 13, with a

scale of 1 to 5.

Criterion Score

Maintainability 2.95

Modularity 3.10

Reusability 3.00

Performance 2.70

Scalability 2.70

Table 12: Average scores to quality criteria

The overall average quality score is 2.99 on a scale of 1 to 5. This score is very close to the

average of the 1 to 5 scale, 3. This indicates that the overall quality of the reference architecture

is ‘good’. The criterion that received the highest rating is modularity. That means the reference

architecture is flexible when it comes to selecting and replacing components. Respondents

rated the performance and scalability slightly less than average. An explanation for this rating

is that the model incorporates both batch and real-time processing. Even though big data is a

relatively new research field, batch processing is sometimes regarded as an old-fashioned and

low-performing technique.

The explaining remarks contain some additional feedback on the reference architecture, both

positive and negative.

4.4.5 Section 4: Additional questions

The answers to the questions in section 4 prove to be very helpful for the evaluation of the

model. The respondents clearly indicate that the reference architecture is too abstract and too

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 82

generic on many points. There are several compliments to the model: clear diagrams and

descriptions, layering, etc. The sections contain the following suggestions for improvements:

 Add caching mechanism. This could result in an additional component, a new

architecture pattern or an architectural best practice;

 Increase the amount of (near) real-time processing options;

 Add organizational elements: business/application functions in addition to concrete

components. This is a suggestion to add more components in the Behavior structure

in the ArchiMate diagram;

4.4.6 Summary

Ten big data experts out of a sample of 50 completed a questionnaire that investigated the

quality aspects of the Big Data Solution Reference Architecture. The results of the

questionnaire indicate that the reference architecture meets all of the quality criteria that were

defined in the research design: maintainability, modularity, reusability, performance, and

scalability. Moreover, the general impressions of the model are reasonably positive. There are

high scores on the likeliness that architects and other big data experts are going to use

elements of the model. Altogether, this indicates that the model can be qualified as a

‘reasonably good’ reference architecture. It will have its use in the architecture community, and

will probably be adopted once published. However, there is some criticism on the reference

architecture as well. Most importantly, respondents question the usability of the model. The

respondents give relatively low ratings to the performance, scalability, completeness, level of

detail, and the concreteness of the model. The reason for doubt on the usability is primarily due

to the level of abstraction; the model is considered too general, especially the architectural

patterns, architecture principles, and architectural best practices.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 83

5 CONCLUSION

This thesis describes a research project with the aim of creating a reference architecture for big

data solutions. The research question of the project was: “What is a good reference architecture

for a solution that is able to use big data technology to perform predictive analytics of open data

sources combined with structured and unstructured enterprise data?” To answer this research

question, the project consisted of the creation of a big data solution reference architecture

based on existing literature and expert interviews. A group of ten big data experts responded

to a questionnaire to evaluate and justify the model.

5.1 OBSERVATIONS

The research method used Hevner’s Information Systems Research Framework and Angelov’s

reference architecture creation framework for the design and analysis of the reference

architecture.

First, the researcher conducted an extensive literature review and created a provisional model

of the reference architecture. Using the knowledge gained in the literature study and the

provisional model, the researcher interviewed five big data experts and analyzed the

transcribed interview data using grounded theory and qualitative data analysis tools, thereby

producing a coded dataset. The derived coding categories of the dataset form the basis of the

contents of the reference architecture:

 Software components & interfaces;

 Policies & guidelines

o Architecture principles;

o Architecture patterns;

o Architectural best practices.

By presenting a questionnaire to a group of big data experts, the resulting reference architecture

was justified and evaluated. The quality of the model was ramified into five criteria:

maintainability, modularity, reusability, performance, and scalability. A group of ten people

completed the questionnaire was, out of a sample of 50. That is too little to make hard

classifications about the quality of the model. However, the questionnaire was only distributed

to people working with big data, and all respondents were more or less knowledgeable and

experienced in that area. This makes the results of the questionnaire fairly accurate, and gives

certain weight to the outcome. Nonetheless, the results should not be treated as scientific proof

but as indicative evidence.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 84

The results of the questionnaire indicate that big data architects will likely use the Big Data

Solution Reference Architecture in their work. Table 13 displays the average scores on the

quality criteria, on a scale of 1 to 5.

Criterion Score

Maintainability 2.95

Modularity 3.10

Reusability 3.00

Performance 2.70

Scalability 2.70

Table 13: Average scores to quality criteria

The overall average quality score is 2.99 on a scale of 1 to 5. This answers the main research

question; the created model is a ‘reasonably good’ reference architecture for a solution with big

data technology to perform predictive analytics of open data sources combined with structured,

semi-structured, and unstructured data sources.

The answers to the sub-questions of the main research question are as follows:

 Which architecture principles, patterns, and best practices are applicable when using

big data technology and open data sources to create a solution for predictive analysis

of enterprise data?

o The reference architecture contains two architecture principles, next to

architecture patterns and best practices, that architects are advised to adhere

to when creating a big data solution: Loose coupling and Interoperability;

 Which components from the field of big data are good building blocks to create a

solution architecture capable of predictive analysis of enterprise data, and in what

configuration?

o The reference architecture contains the most important components and

interfaces for a big data solution. These components are displayed as abstract

building blocks in a one-page overview and are explained in detail in the

supporting text;

 In what way can open data sources help to perform predictive analytics of enterprise

data?

o As stated in the reference architecture, open data sources can play an

imported role in a big data solution architecture. This surfaces in the structured

and unstructured data sources that are part of the reference architecture;

 Is Angelov’s framework useful to create a reference architecture for big data solutions?

o Angelov’s framework has greatly helped in designing the Big Data Solution

Reference Architecture. The framework gave guidance and structure to the

creative process. However, respondents of the survey gave criticism on the

level of detail and concreteness of the resulting model. Determining these

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 85

aspects was part of applying Angelov’s framework, after setting the type of the

reference architecture (see paragraph 4.2.4). The type of the reference

architecture is fundamental to its design. At the same time, the model could

benefit from more detail and concreteness. This is a contradiction; therefore,

Angelov’s framework may not be suitable for possible future improvements. If

Angelov’s framework is maintained, the type of the reference architecture

should be adjusted, which would lead to a completely new reference

architecture;

 Is Hevner’s Information Systems Research Framework useful to create a reference

architecture for big data solutions?

o Hevner’s model has proven to be an excellent guideline for creating a reference

architecture. All steps in the research design followed each other logically.

Working with the model was a pleasant way of performing this research project.

All steps were logical, clearly explained, and easy to execute.

5.2 CONTRIBUTION

Since the Big Data Solution Reference Architecture is a ‘good’ reference architecture for its

purpose, the question rises what this implies.

First, the model is unique in its kind. It is the first (and currently only) reference architecture for

big data, predictive analytics, and open data that is somewhat supported by scientific evidence.

This makes the model the best reference architecture for architects working in this area; all

other reference architectures are either commercial in intend or have been created by

individuals or organizations without evidence of the components. Most authors even fail to

explain the reasoning behind their model.

Another aspect that makes the Big Data Solution Reference Architecture unique is it

completeness. Most similar reference architectures only consist of a diagram of software

components. In contrast, the Big Data Solution Reference Architecture contains components &

interfaces, architectural patterns, architecture principles, and architectural best practices. All of

these elements are described in detail and are backed up by literature research and a

qualitative data analysis (grounded theory) of expert interviews.

The results of the questionnaire indicate that it is likely that big data experts will use the Big

Data Solution Reference Architecture in their daily work. That statement in itself is a strong

accomplishment; an important goal of the model is to have a place in real projects by big data

architects.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 86

Finally, by performing extensive literature research and interviewing subject matter experts, this

thesis has made an important contribution to the fields of big data, solution architectures,

reference architectures, BI, and predictive analytics. By documenting the findings, the

knowledge about these subjects has been enlarged and deepened.

To summarize, the Big Data Solution Reference Architecture is a new and unique model that

delivers a strong contribution to the community of architects and other people who are working

with big data technology, open data, and predictive analytics.

5.3 FUTURE RESEARCH

This paragraph contains suggestions for future research that would contribute to the scientific

community with the use of the Big Data Solution Reference Architecture.

An obvious future step is to create a solution architecture with guidance of the reference

architecture. By conducting one or more case studies with the model, its practical use and

quality can be investigated. An example of a case study is to create a solution architecture for

a bank, with the goal of combining open data sources (e.g. weather data) with enterprise data

(e.g. bank account balances) to produce a forecast (e.g. buying behavior of citizens in a

shopping area). Another example is to create an architecture in a government organization that

helps to predict the amount of violence in the upcoming weekend by combining holiday dates,

the football calendar, traffic data, weather data, and others.

The Big Data Solution Reference Architecture was only evaluated with ten respondents to the

questionnaire. A future research project could repeat the evaluation with a larger sample, to

gain more accurate insight into the quality of the reference architecture.

It would be interesting to see how the Big Data Solution Reference Architecture evolves over

time. Angelov et al. provided a framework for the evolution of reference architectures (see

Figure 34). For example, it is possible that the Big Data Solution Reference Architecture evolves

from type 3 to type 1 or variant 3.1.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 87

Figure 34: Framework for the evolution of reference architectures (Angelov et al., 2012)

Another iteration of Hevner’s Design Science framework could improve the model. As

suggested, the type of reference architecture according to Angelov’s framework could be

adjusted to increase the levels of concreteness and detail of the reference architecture. Another

option is to maintain a type 3 architecture, and design the model so that the concreteness and

detail are maximized within the boundaries of Angelov’s model. The third option is to step away

from Angelov’s framework and use another model to design an improved version of the

reference architecture.

Finally, a future research project could investigate the way in which organizations move from

traditional BI systems to modern big data analytics. It would be useful to see if the Big Data

Solution Reference Architecture can play a role in migration projects, e.g. by mapping the

existing BI software components to new systems in the target architecture.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 88

6 REFERENCES

Abowd, G., Bass, L., Clements, P., Kazman, R., Northrop, L., & Zaremski, A. (1997).

Recommended Best Industrial Practice for Software Architecture Evaluation. Software

Engineering Institute. Pittsburgh, PA, USA: Carnegie Mellon University.

Angelov, S., Grefen, P., & Greefhorst, D. (2012). A framework for analysis and design of

software reference architectures. (Elsevier, Ed.) Information and Software

Technology(54), 417-431.

Anuganti, V. (2012, November 30). Typical "Big" Data Architecture. Retrieved from Venu

Anuganti Blog: http://venublog.com/2012/11/30/typical-big-data-architecture/

Arsanjani, A., Zhang, L.-J., Ellis, M., Allam, A., & Channabasavaiah, K. (2007, March 28).

Design an SOA solution using a reference architecture. Retrieved from IBM:

http://www.ibm.com/developerworks/library/ar-archtemp/

Ashton, K. (2009, June 22). That 'Internet of Things' Thing. Retrieved from RFID Journal:

http://www.rfidjournal.com/articles/view?4986

AUTOSAR. (2013, March 15). 4.1. Retrieved from AUTOSAR: http://www.autosar.org

Avgeriou, P., & Zdun, U. (2005). Architectural Patterns Revisited – A Pattern Language. 10th

European Conference on Pattern Languages of Programs, (pp. 1-39). Irsee, Germany.

Barlow, M. (2013). Real-Time Big Data Analytics: Emerging Architecture. Sebastopol, CA, USA:

O'Reilly Media, Inc.

Beck, K. (2004). Extreme Programming Explained: Embrace Change (2nd ed.). Addison-

Wesley.

Beck, K., Beedle, M., Bennekum, A. v., Cockburn, A., Cunningham, W., Fowler, M., . . . Thomas,

D. (2001). Principles behind the Agile Manifesto. Retrieved from Manifesto for Agile

Software Development: http://agilemanifesto.org/

Beijer, P., & de Klerk, T. (2010). IT Architecture - Essential Practice for IT Business Solutions.

Lulu.com.

Bernus, P., & Nemes, L. (1996). A framework to define a generic enterprise reference

architecture and methodology. Computer Integrated Manufacturing Systems, 9(3), pp.

179-191.

Braunschweig, K., Eberius, J., Thiele, M., & Lehner, W. (2102). The State of Open Data - Limits

of Current Open Data Platforms. International World Wide Web Conference 2012.

Lyon, France.

Briggs, L. L. (2012, October 24). Big Data Calls for New Architecture, Approaches. Retrieved

from TDWI: http://tdwi.org/articles/2012/10/24/big-data-architecture-approaches.aspx

Brin, S., & Page, L. (1998). The Anatomy of a Large-Scale Hypertextual Web Search Engine.

Computer Networks and ISDN Systems, 30(3), 107-117.

Bryman, A., & Bell, E. (2007). Business Research Methods (2nd ed.). Oxford: Oxford University

Press.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 89

Busa, N. (2013, February 2). Big Data: A technology overview. Retrieved from Natalino Busa:

http://www.natalinobusa.com/2013/02/big-data-technology-overview.html

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pattern-Oriented

Software Architecture. Wiley.

Carter, P. (2011). Big Data Analytics: Future Architectures, Skills and Roadmaps for the CIO.

Singapore: IDC.

Cattell, R. (2010, December). Scalable SQL and NoSQL Data Stores. SIGMOD Record, 39(4),

pp. 12-27.

CERN. (2013). Data analysis. Retrieved from CERN:

http://public.web.cern.ch/public/en/research/DataAnalysis-en.html

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., . . . Gruber, R.

E. (2006). Bigtable: A Distributed Storage System for Structured Data. 7th USENIX

Symposium on Operating Systems Design and Implementation (OSDI), (pp. 205-218).

Seattle, WA, USA.

Cheung, S., Resende, L., Lindner, S., & Saracco, C. M. (2012, April 23). Developing a big data

application for data exploration and discovery. Retrieved from IBM:

http://www.ibm.com/developerworks/library/bd-exploration/

Ching, A. (2013, August 14). Scaling Apache Giraph to a trillion edges. Retrieved from

Facebook: https://www.facebook.com/notes/facebook-engineering/scaling-apache-

giraph-to-a-trillion-edges/10151617006153920

Cloutier, R., Mullet, G., Verma, D., Nilchiani, R., Hole, E., & Bone, M. (2010). The Concept of

Reference Architecture. Systems Engineering, 13(1), 14-26.

Corbin, J., & Strauss, A. (2008). Basics of Qualitative Research: Grounded Theory Procedures

and Techniques (3rd ed.). SAGE Publications, Inc.

CSC. (2012). Big Data Just Beginning to Explode. Retrieved from CSC:

http://www.csc.com/insights/flxwd/78931-

big_data_growth_just_beginning_to_explode

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., . . . Vogels,

W. (2007). Dynamo: Amazon's Highly Available Key-value Store. 21st ACM

Symposium on Operating Systems Principles (pp. 205-220). Stevenson, WA, USA:

ACM.

Demirkan, H., & Delen, D. (2012). Leveraging the capabilities of service-oriented decision

support systems: Putting analytics and big data in the cloud. Decision Support

Systems, 1-10. doi:10.1016/j.dss.2012.05.048

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of agile methodologies:

Towards explaining agile software development. The Journal of Systems and

Software(85), 1213-1221.

Dobrica, Liliana, & Niemalä, E. (2002, July). A Survey on Software Architecture Analysis

Methods. IEEE Transactions on Software Engineering, 28(7), pp. 638-653.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 90

Eaton, C., deRoos, D., Deutsch, T., Lapis, G., & Zikopoulos, P. (2012). Understanding Big Data

- Analytics for Enterprise Class Hadoop and Streaming Data. (S. Sit, Ed.) New York,

USA: McGraw-Hill.

Economist Intelligence Unit. (2011). Big data: Harnessing a game-changing asset. London, UK:

Economist Intelligence Unit Limited.

Edlich, S. (2013). List of NoSQL Databases. Retrieved from http://nosql-database.org/

European Commission. (2012, July 17). Commission recommendation of 17.7.2012 on access

to and preservation of scientific information. Brussels, European Union.

European Commission. (2012, July 7). Towards better access to scientific information: Boosting

the benefits of public investments in research. Brussels, European Union.

Evans, E. (2009, June 11). NOSQL meetup. Retrieved from Eventbrite:

http://nosql.eventbrite.com/

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R. (1996). Advances in

Knowledge Discovery and Data Mining. American Association for Artificial Intelligence.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996, Fall). From Data Mining to Knowledge

Discovery in Databases. AI Magazine, pp. 37-54.

Feinleib, D. (2012, July 6). The Big Data Landscape. Retrieved from Forbes:

http://www.forbes.com/sites/davefeinleib/2012/06/19/the-big-data-landscape/

Ferguson, M. (2012). Architecting A Big Data Platform for Analytics. IBM. Wilmslow, UK:

Intelligent Business Strategies. Retrieved from

http://www.ibmbigdatahub.com/whitepaper/architecting-big-data-platform-analytics

Forrester. (2013). Big Data. Retrieved from Forrester: http://www.forrester.com/Big-Data

Fowler, M. (2002). Patterns of Enterprise Application Architecture. Addison-Wesley.

Free Software Foundation. (2012, July 15). Various Licenses and Comments about Them.

Retrieved from Free Software Foundation: http://www.gnu.org/licenses/license-list.html

Free Software Foundation. (2013, June 18). The Free Software Definition, 1.122. Retrieved

from Free Software Foundation: http://www.gnu.org/philosophy/free-sw.html

Fujitsu. (2013). Solution Approaches for Big Data. Munich, Germany: FUJITSU Technology

Solutions GmbH.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley.

Garlan, D., & Shaw, M. (1994). An Introduction to Software Architecture. Pittsburgh, PA: School

of Computer Science, Carnegie Mellon University.

Gartner. (2012). Business Intelligence (BI). Retrieved from Gartner IT Glossary:

http://www.gartner.com/it-glossary/business-intelligence-bi/

Gartner. (2013). Big Data, Bigger Opportunities: Investing in Information and Analytics.

Retrieved from Gartner: http://www.gartner.com/technology/research/big-data/

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The Google File System. Proceedings of the

19th ACM Symposium on Operating Systems Principles (pp. 29-43). Boston Landing,

NY, USA: ACM.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 91

Google. (2012, April 27). Google Data APIs. Retrieved from Google Developers:

https://developers.google.com/gdata/

Goutier, H., & Lieshout, J. v. (2010, September 29). NORA, 3.0. Retrieved from e-overheid:

http://e-overheid.nl/onderwerpen/e-overheid/architectuur/nora-familie/nora

Graaf, B., Dijk, v. H., & Deursen, A. v. (2005). Evaluating an Embedded Software Reference

Architecture. Proceedings of the Ninth European Conference on Software Maintenance

and Reengineering (CSMR’05) (pp. 354-363). Manchester, UK: IEEE.

Gray, J. (1981). The Transaction Concept: Virtues and Limitations. VLDB '81 Proceedings of

the Seventh International Conference on Very Large Databases (pp. 144-154).

Cannes, France: Tandem Computers Incorporated.

Greefhorst, D., & Proper, E. (2011). Architecture Principles: The Cornerstones of Enterprise

Architecture. Springer.

Gualtieri, M. (2013, January 3). The Forrester Wave™: Big Data Predictive Analytics Solutions,

Q1 2013. Cambridge, MA, USA: Forrester. Retrieved from

http://www.forrester.com/The+Forrester+Wave+Big+Data+Predictive+Analytics+Solut

ions+Q1+2013/fulltext

Harris, D. (2012, February 6). What it really means when someone says ‘Hadoop’. Retrieved

from Gigaom: http://gigaom.com/2012/02/06/what-it-really-means-when-someone-

says-hadoop/

Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F. B., & Babu, S. (2011). Starfish:

A Self-tuning System for Big Data Analytics. 5th Conference on Innovative Data

Systems Research (CIDR '11) (pp. 261-272). Asilomar, California: Duke University.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004, March). Design Science in Information

Systems Research. MIS Quarterly, 28(1), pp. 75-105.

Hortonworks. (2012). Apache Hadoop: The Big Data Refinery. Sunnyvale, CA.

Howson, C. (2008). Successful Business Intelligence: Secrets to Making BI a Killer App.

Chicago: McGraw-Hill/Osborne.

Ibarra, F. (2012, August 28). 4 Key Architecture Considerations for Big Data Analytics.

Retrieved from VMware: http://blogs.vmware.com/vfabric/2012/08/4-key-architecture-

considerations-for-big-data-analytics.html

IEEE. (2013). IEEE Standards Association. Retrieved from IEEE - Advancing Technology for

Humanity: http://standards.ieee.org/

IFIP–IFAC Task Force on Architectures for Enterprise Integration. (1999, March). GERAM:

Generalised Enterprise Reference Architecture and Methodology. Retrieved from

Griffith University:

http://www.ict.griffith.edu.au/~bernus/taskforce/geram/versions/geram1-6-

3/v1.6.3.html

Joshi, R. (2011, March 26). A Model For The Big Data Era - Data-centric architecture is

becoming fashionable again. Retrieved from InformationWeek:

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 92

http://www.informationweek.com/development/architecture-design/a-model-for-the-

big-data-era/229301115

Kazman, R., Bass, L., Abowd, G., & Webb, M. (1994). SAAM: A Method for Analyzing the

Properties of Software Architectures. ICSE '94 Proceedings of the 16th international

conference on Software engineering (pp. 81-90). Sorrento, Italy: IEEE.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., & Carriere, J. (1998). The

Architecture Tradeoff Analysis Method. Proceedings of the Fourth IEEE International

Conference on Engineering of Complex Computer Systems (ICECCS) (pp. 68-78).

Monterey, CA, USA: IEEE.

Kimball, R. (2012, September). Newly Emerging Best Practices for Big Data. Retrieved from

Kimball Group: http://www.kimballgroup.com/2012/09/30/newly-emerging-best-

practices-for-big-data/

KING - Kwaliteitsinstituut Nederlandse Gemeenten. (2011). GEMMA. Retrieved from KING:

http://www.kinggemeenten.nl/king-kwaliteitsinstituut-nederlandse-gemeenten/e-

dienstverlening-verbeteren/gemma

Kniberg, H., & Skarin, M. (2009). Kanban and Scrum - making the most of both. InfoQ.

Retrieved from http://www.infoq.com/minibooks/kanban-scrum-minibook

Koff, W., & Gustafson, P. (2011). Data rEvolution. Retrieved from CSC Leading Edge Forum:

http://www.csc.com/lef/ds/84818-data_revolution

Kolbielus, J. G. (2012, February 2). The Forrester Wave™: Enterprise Hadoop Solutions, Q1

2012.

Kruchten, P. (2003). The Rational Unified Process: An Introduction (3rd ed.). Addison-Wesley.

Krzywinsk, M. I., Schein, J. E., Birol, I., Conners, J., Gascoyne, R., Horsman, D., . . . Marra, M.

A. (2009). Circos: An information aesthetic for comparative genomics. Genome

Research, 1639-1645. Retrieved from Circos: http://circos.ca/intro/genomic_data/

Laney, D. (2001, February 6). 3D Data Management: Controlling Data Volume, Velocity, and

Variety. Retrieved from Gartner: http://blogs.gartner.com/doug-

laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-

and-Variety.pdf

Lankhorst, M. M. (2004). Enterprise architecture modelling—the issue of integration. Advanced

Engineering Informatics(18), 205-216.

Law, C. C., Schroeder, W. J., Martin, M. K., & Temkin, J. (1999). A Multi-Threaded Streaming

Pipeline Architecture for Large Structured Data Sets. Proceedings of the conference

on Visualization '99 (pp. 225-232). San Francisco, CA, USA: IEEE Computer Society

Press.

Leavitt, N. (2010, February). Will NoSQL Databases Live Up to Their Promise? IEEE Computer,

43(2), pp. 12-14.

Leinweber, D. (2013, April 26). Big Data Gets Bigger: Now Google Trends Can Predict The

Market. Retrieved from Forbes:

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 93

http://www.forbes.com/sites/davidleinweber/2013/04/26/big-data-gets-bigger-now-

google-trends-can-predict-the-market/

Lewis, M. (2004). Moneyball: The Art of Winning an Unfair Game. New York: W. W. Norton &

Company.

Lith, A., & Mattson, J. (2010, June). Investigating storage solutions for large data - A comparison

of well performing and scalable data storage solutions for real time extraction and batch

insertion of data. Göteborg, Sweden.

Livari, J., & Livari, N. (2011). The relationship between organizational culture and the

deployment of agile methods. Information and Software Technolgy(53), 509-520.

Lohr, S. (2013, February 1). The Origins of ‘Big Data’: An Etymological Detective Story.

Retrieved from The New York Times: http://bits.blogs.nytimes.com/2013/02/01/the-

origins-of-big-data-an-etymological-detective-story/?_r=0

Luhn, H. P. (1958). A Business Intelligence System. IBM Journal, 314-319.

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., & Czajkowski, G.

(2010). Pregel: A System for Large-Scale Graph Processing. Proceedings of the 2010

ACM SIGMOD International Conference on Management of data (pp. 135-145).

Indianapolis, IN, USA: ACM.

Mangelsdorf, J. (2012, Spring). Supercomputing the Climate: NASA's Big Data Mission. CSC

World, pp. 10-13. Retrieved from

http://www.csc.com/cscworld/publications/81769/81773-

supercomputing_the_climate_nasa_s_big_data_mission

Marz, N., & Warren, J. (2013). Big Data - Principles and best practices of scalable realtime data

systems. Manning Publications Co.

McClowry, S., Rindler, A., & Simon, P. (2012, September 17). SAFE Architecture. Retrieved

from MIKE2.0: http://mike2.openmethodology.org/wiki/SAFE_Architecture

McKinsey Global Institute. (2011, June). Big data: The next frontier for innovation, competition,

and productivity.

Mendelsohn, A., Chew, M., Kent, P., & Holmes, S. (2013, May 1). Big Data - Dream IT. Build

IT. Realize IT. Retrieved from SAS Global Forum 2013:

http://support.sas.com/resources/papers/proceedings13/

Microsoft. (2013, January 18). OData V3 Protocol Specification. Retrieved from OData:

http://www.odata.org/

MicroStrategy. (2012). Architecture for Enterprise Business Intelligence: An Overview of the

MicroStrategy Platform Architecture for Big Data, Cloud BI, and Mobile Applications.

Tysons Corner, VA, USA: MicroStrategy. Retrieved from MicroStrategy:

http://www.microstrategy.com/software/business-intelligence/big-data

Ministry of Education, Culture and Science. (2012). ROSA. Retrieved from Rijksoverheid:

http://www.wikixl.nl/wiki/rosa

Mitchell, I., & Wilson, M. (2012). Linked data: Connecting and exploiting big data. London, UK:

Fujitsu.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 94

Muller, G. (2008, February 21). A Reference Architecture Primer. Retrieved from Gaudí System

Architecting: http://www.gaudisite.nl/info/ReferenceArchitecturePrimer.info.html

Muller, G., & Laar, P. v. (2009). Researching Reference Architectures and their relationship

with frameworks, methods, techniques, and tools. 7th Annual Conference on Systems

Engineering Research. Loughborough.

Murray-Rust, P. (2008, March). Open Data in Science. Serials Review, 34(1), 52-64.

Natis, Y. V., Laney, D., & Altman, R. (2012). The Nexus Effect: How Big Data Alters Established

Architecture Models. Stamford, USA: Gartner.

Neumeyer, L., Robbins, B., Nair, A., & Kesari, A. (2010). S4: Distributed Stream Processing

Platform. ICDMW 2010 IEEE International Conference on Data Mining Workshops (pp.

170-177). Sydney: ACM.

Nictiz. (2013). Referentiedomeinenmodel ziekenhuizen (RDZ). Retrieved from Nictiz:

http://www.nictiz.nl/page/Expertise/Specialistische-zorg/iZiekenhuis-

RDZ/Referentiedomeinenmodel

Nyce, C. (2007). Predictive Analytics. Malvern: American Institute for CPCU / Insurance

Institute of America.

Object Management Group. (2011, August). OMG Unified Modeling Language (OMG UML),

Infrastructure. Needham, MA, United States of America. Retrieved from

http://www.omg.org/spec/UML/2.4.1

Object Management Group. (2011, August). OMG Unified Modeling Language (OMG UML),

Superstructure. Needham, MA, United States of America. Retrieved from

http://www.omg.org/spec/UML/2.4.1

Oracle. (2012). Oracle Information Architecture: An Architect's Guide to Big Data. Retrieved

from http://www.oracle.com/technetwork/topics/entarch/articles/oea-big-data-guide-

1522052.pdf

Oracle. (2013). Information Management and Big Data: A Reference Architecture. Oracle.

Retrieved from http://www.oracle.com/technetwork/topics/entarch/articles/info-mgmt-

big-data-ref-arch-1902853.pdf

O'Reilly, T., Dumbill, E., Howard, J., Zwemer, M., Loukides, M., Slocum, M., . . . Hill, C. (2012).

Big Data Now: 2012 Edition. (M. Slocum, Ed.) Sebastopol, CA, USA: O'Reilly Media,

Inc.

Poppendieck, M., & Poppendieck, T. (2003). Lean Software Development: An Agile Toolkit.

Addison-Wesley.

Power, D. J. (2007, maart 10). A Brief History of Decision Support Systems, 4.0. Retrieved from

Decision Support Systems Resources: http://dssresources.com/history/dsshistory.html

Proper, E., & Greefhorst, D. (2011, February). Principles in an Enterprise Architecture Context.

Journal of Enterprise Architecture, pp. 8-16.

Reed, P. (2002, September 15). Reference Architecture: The best of best practices. Retrieved

from IBM developerWorks:

http://www.ibm.com/developerworks/rational/library/2774.html

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 95

Rindler, A., McKnight, W., & McClowry, S. (2012, November 4). Big Data Solution Offering.

Retrieved from MIKE2.0:

http://mike2.openmethodology.org/wiki/Big_Data_Solution_Offering

Rouibah, K., & Ould-ali, S. (2002). PUZZLE: a concept and prototype for linking business

intelligence to business strategy. Journal of Strategic Information Systems 11, 133-

152.

Russom, P. (2013). Integrating Hadoop Into Business Intelligence And Data Warehousing.

Renton, WA, USA: TDWI Research.

SAS. (2010, May). SAS 9.2 Intelligence Platform: Overview, Second Edition. Cary, NC, USA.

Retrieved from SAS:

http://support.sas.com/documentation/cdl/en/biov/63145/HTML/default/viewer.htm#a0

03069226.htm

SAS. (2012). Big Data Meets Big Data Analytics. Cary, NC, USA: SAS.

Schroeck, M., Shockley, R., Smart, J., Romero-Morales, D., & Tufano, P. (2012). Analytics: The

real-world use of big data - How innovative enterprises extract value from uncertain

data. Saïd Business School at the University of Oxford. Somers, NY: IBM Institute for

Business Value.

Schwaber, K. (1995). SCRUM Development Process. Proceesings of the OOPSLA'95

Workshop on Business Object Design and Implementation (pp. 1-23). Austin, TX, USA:

Springer.

Sevilla, M. (2013, May 30). Big Data Reference Architecture. CapGemini. Retrieved from

http://www.capgemini.com/resources/video/big-data-reference-architecture

Silver, N. (2012). The Signal and the Noise: Why So Many Predictions Fail - but Some Don't.

Penguin Press.

Soares, S. (2012, July 22). Big Data Reference Architecture. Retrieved from sunilsoares:

http://sunilsoares.wordpress.com/2012/07/22/big-data-reference-architecture-2/

Stallman, R. (2013, February 28). The Free Software Definition, 1.111. Retrieved from GNU:

https://www.gnu.org/philosophy/free-sw.html

Stallman, R. (n.d.). Why Open Source misses the point of Free Software. Retrieved from Free

Software Foundation: http://www.gnu.org/philosophy/open-source-misses-the-

point.html

Stonebreaker, M. (1986). The Case for Shared Nothing. Database Engineering, 9(1), 4-9.

Strozzi, C. (2012, March 20). NoSQL: A Relational Database Management System. Retrieved

from www.strozzi.it: http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql

TechAmerica Foundation. (2012). Demystifying Big Data - A Practical Guide To Transforming

The Business of Government. Washington, D.C.

Teradata. (2013). Teradata Unified Data Architecture - Give Any User Any Analytic on Any

Data. Dayton, Ohio: Teradata. Retrieved from http://www.teradata.com/products-and-

services/unified-data-architecture/

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 96

The Economist. (2010, February 25). Data, data everywhere. Retrieved from The Economist:

http://www.economist.com/node/15557443

The Open Data Survey. (2013). Retrieved from Technische Universität Dresden:

http://wwwdb.inf.tu-dresden.de/opendatasurvey/

The Open Group. (2011). Architecture Principles. Retrieved from TOGAF 9.1:

http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap23.html

The Open Group. (2012, January). ArchiMate 2.0 Specification. Berkshire, United Kingdom.

Retrieved from The Open Group:

http://www.opengroup.org/subjectareas/enterprise/archimate

The Open Knowledge Foundation. (2009, November). Defining the Open in Open Data, Open

Content and Open Services, 1.1. Retrieved from Open Definition:

http://opendefinition.org/

The Open Knowledge Foundation. (2013). CKAN, the world’s leading open-source data portal

platform. Retrieved from http://ckan.org/

The Open Source Initiative. (2008). The Open Source Definition (Annotated), 1.9. Retrieved

from Open Source Initiative: http://opensource.org/osd-annotated

Think Big Analytics. (2013). Big Data Reference Architecture. Retrieved from Think Big

Analytics: http://thinkbiganalytics.com/leading_big_data_technologies/big-data-

reference-architecture/

Top 500 Supercomputers. (2012, November). Retrieved from Top 500 Supercomputers:

http://www.top500.org/

U.S. Department of Energy Genome Program. (2012, July 31). Human Genome Project.

Retrieved from U.S. Department of Energy:

http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml

U.S. Department of Homeland Security. (2013). Cybersecurity. Retrieved from Homeland

Security: http://www.dhs.gov/topic/cybersecurity

Valiant, L. G. (1990, August). A Bridging Model for Parallel Computation. Communications of

the ACM, 33(8), 103-111.

Valiant, L. G. (2010). A bridging model for multi-core computing. Journal of Computer and

System Sciences(77), 154-166.

Vesset, D., Nadkarni, A., Olofson, K. W., Schubmehl, D., Flemin, M., Wardley, M., . . . Dialani,

M. (2012, December). Worldwide Big Data Technology and Services 2012–2016

Forecast. Retrieved from IDC: http://www.idc.com/getdoc.jsp?containerId=238746

Vogels, W. (2009, January). Eventually Consistent. Communications of the ACM, 52(1), pp. 40-

44.

W3C. (2004, February 10). Resource Description Framework (RDF) . Retrieved from W3C:

http://www.w3.org/RDF/

W3C. (2013). Scalable Vector Graphics (SVG). Retrieved from

http://www.w3.org/Graphics/SVG/

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 97

W3C. (2013, March 21). SPARQL 1.1 Overview. Retrieved from W3C:

http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/

Wiering, M., Bonsangue, M., Buuren, R. v., Groenewegen, L., Jonkers, H., & Lankhorst, M.

(2004). Investigating the mapping of an Enterprise Description Language into UML 2.0.

Electronic Notes in Theoretical Computer Science(101), 155-179.

Wikipedia. (2013, April 9). Software engine. Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/Software_engine

Wilensky, H. (1967). Organizational Intelligence: Knowledge and Policy in Government and

Industry. Basic Books.

Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model.

Neurocomputing(50), 159-175.

Zikopoulos, Z., Parasraman, K., Deutsch, T., Corrigan, D., Giles, J., & deRoos, D. (2013).

Harness the Power of Big Data - The IBM Big Data Platform. (R. B. Melnyk, Ed.) New

York: McGraw-Hill.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 98

APPENDIX I LITERATURE EVALUATION

This appendix contains three tables that contain a summary of the literature review. The

literature sources at the top are plot against elements of a (reference) architecture on the left.

A ‘V’ indicates a match; the architecture in the source contains the listed component, principle,

or best practice. Column ‘COUNT’ indicates the number of appearance in literature for a

component, principle or best practice. The tables are sorted descending by this column.

I.I COMPONENTS

Table 14: Hardware and software components in literature

Author: H
er

o
d

o
to

u

La
w

 e
t

al
.

D
em

ir
ka

n
 &

 D
el

en

M
ar

z
&

 W
ar

re
n

Te
ch

A
m

er
ic

a
Fo

u
n

d
at

io
n

K
ar

m
as

p
h

er
e

H
o

rt
o

n
w

o
rk

s

Fu
jit

su

M
cK

in
se

y

ID
C

O
ra

cl
e

SA
S

M
ic

ro
St

ra
te

gy

G
ar

tn
er

Fo
rr

es
te

r

Te
ra

d
at

a

Th
in

kB
ig

TD
W

I

C
SC

Fo
rb

es

V
M

w
ar

e

IB
M

O
'R

ei
lly

A
n

u
ga

n
ti

B
u

sa

So
ar

es

C
O

U
N

T

PER
CEN

TA
GE

Type: Sc
ie

n
ti

fi
c

Sc
ie

n
ti

fi
c

Sc
ie

n
ti

fi
c

Sc
ie

n
ti

fi
c

Sc
ie

n
ti

fi
c

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

P
ri

va
te

P
ri

va
te

P
ri

va
te

Component

Parallel batch-processing engine V 25

NoSQL database (key-value, graph, document) V 21

Predictive analytics engine V 21

Distributed fi le system V 20

Structured data sources V 20

Data importing / collecting / ETL engine V V V V V V V V V V V V V V V V V V V 19

Real-time / stream / complex event processing engine V V V V V V V V V V V V V V V V V V V 19

Reporting engine (traditional BI) V V V V V V V V V V V V V V V V V V V 19

Unstructured data sources V V V V V V V V V V V V V V V V V V 18

Visualization engine V V V V V V V V V V V V V V V V V V 18

Query engine V V V V V V V V V V V V V V V V V 17

Relational database V V V V V V V V V V V V V V V V V 17

OLAP data warehouse V V V V V V V V V V V V V V V V V 17

Semistructured data sources V V V V V V V V V V V V V V V 15

Data mining / integration / serialization engine V V V V V V V V V V V V V V V 15

Statistical analysis engine V V V V V V V V V V V V 12

External / open data sources V V V V V V V V V V V V 12

Coordination engine V V V V V V V V V V V 11

Machine learning engine V V V V V V V V V V V 11

Monitoring engine V V V V V V V V V V V 11

Workflow / orchestration / scheduling engine V V V V V V V V V V 10

Deployment / configuration / dependency engine V V V V V V V V V 9

Text indexing / NLP engine V V V V V V V V 8

Search engine V V V V V V V V 8

Log processing engine V V V V V V V V 8

Data cleaning / fi ltering / validation engine V V V V V V V V 8

Geospatial data analysis V V V V V 5

Sentiment analysis engine V V V V 4

Signal processing V V V 3

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 99

I.II ARCHITECTURE PRINCIPLES

Table 15: Architecture principles in literature

Author: H
er

o
d

o
to

u

La
w

 e
t

al
.

D
em

ir
ka

n
 &

 D
el

en

M
ar

z
&

 W
ar

re
n

Te
ch

A
m

er
ic

a
Fo

u
n

d
at

io
n

Fu
jit

su

M
cK

in
se

y

ID
C

SA
S

M
ic

ro
St

ra
te

gy

G
ar

tn
er

C
ap

G
em

in
i

TD
W

I

C
SC

V
M

w
ar

e

IB
M

O
'R

ei
lly

Jo
sh

i

K
im

b
al

l

M
IK

E2
.0

C
O

U
N

T

PER
CEN

TA
GE

Type: Sc
ie

n
ti

fi
c

Sc
ie

n
ti

fi
c

Sc
ie

n
ti

fi
c

Sc
ie

n
ti

fi
c

Sc
ie

n
ti

fi
c

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

P
ri

va
te

P
ri

va
te

P
ri

va
te

Principle

Cloud computing V V V V V V 6

Service orientation V V V V V 5

Loose coupling / modularity V V V V 4

Scalability V V V V 4

Open standards V V V V V 4

Close-to-source data processing V V V 3

Robust and fault-tolerant V V 2

Data separability V 1

Mappable input V 1

Result invariant V 1

Digital nervous system V 1

Data-centric design V 1

Platform-independence V 1

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 100

I.III ARCHITECTURAL BEST PRACTICES

Table 16: Architectural best practices in literature

Author: H
er

o
d

o
to

u

La
w

 e
t

al
.

D
em

ir
ka

n
 &

 D
el

en

M
ar

z
&

 W
ar

re
n

Fu
jit

su

M
cK

in
se

y

ID
C

O
ra

cl
e

SA
S

M
ic

ro
St

ra
te

gy

G
ar

tn
er

Fo
rr

es
te

r

Te
ra

d
at

a

Th
in

kB
ig

C
ap

G
em

in
i

TD
W

I

IB
M

O
'R

ei
lly

A
n

u
ga

n
ti

K
im

b
al

l

So
ar

es

M
IK

E2
.0

C
O

U
N

T

PER
CEN

TA
GE

Type: Sc
ie

n
ti

fi
c

Sc
ie

n
ti

fi
c

Sc
ie

n
ti

fi
c

Sc
ie

n
ti

fi
c

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

C
o

m
m

er
ci

al

P
ri

va
te

P
ri

va
te

P
ri

va
te

P
ri

va
te

Best practice

Data pipeline approach V V V V V V V V V V 10

Data governance V V V V 4

Data security / privacy management V V V V 4

Architecture layering V V V V 4

In-memory processing V V V V 4

Data exploration and discovery V V V V 4

(Master/Meta) data management V V V 3

Simulation V V V 3

Agile development V V V 3

Top-down analytics (by theory/hypothesis) V V 2

Sandbox mentality V V 2

Bottom-up analytics (by data) V V 2

Stateless applications V 1

Data audit, balance and control V 1

Information policy management V 1

Workload optimization V 1

Data caching V 1

Event-driven architecture V 1

Crowdsourcing V 1

Storytelling V 1

Structure around analytics V 1

Lifecycle management V 1

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 101

APPENDIX II RESULTS OF QUESTIONNAIRE

This appendix contains the full questionnaire and the results of the survey. For an explanation

of the contents of the questionnaire, see paragraph 3.3.3. The results are evaluated in

paragraph 4.4. Each section contains one or more questions. Answers to open questions are

displayed in bulleted lists. For each range of multiple-choice questions, a table is displayed that

contains the ‘raw’ scores on the questions.

For the multiple-choice questions in section 1, the possible answers are listed the column

‘Answer’ on the left side of the table, and the number of respondents who have selected that

answer to the question are displayed in column ‘Responses’. Finally, in the column ‘%’ the

number of responses is translated into a percentage.

For the multiple-choice questions in sections 2 and 3, the questions are listed in the column

‘Question’ on the left side of the table. The possible answers are listed in the following five

columns, since there are five possible answers. The values in the table cells indicate the

number of respondents who have selected the answer for the question.

II.I SECTION 1: INTRODUCTION

Please indicate your primary working role.

Answer Response %

1 Software architect 3 30%

2 Software developer 1 10%

3 Manager / supervisor / team lead 1 10%

4 Business analyst 0 0%

5 Business architect 0 0%

6 Data scientist 0 0%

7 Other, namely:

 tech lead and scrum master (1)

 IT Architect (1)

 Solutions Architect (1)

 enterprise architect (1)

 CIO (1)

5 50%

 TOTAL 10 100%

Give an estimation of your knowledge and experience with Big Data and predictive analytics.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 102

Answer Responses %

1 None. 0 0%

2 I've only heard some of these things. 0 0%

3 I've read some books/articles/blogs, have gone to some

presentations/seminars, but have no real-world experience.

3 30%

4 I've practiced with these topics, and have done some work with it. 4 40%

5 I use Big Data technology in my day-to-day work. 3 30%

 TOTAL 10 100%

Table 17: Answers to question in section 1

II.II SECTION 2: IMPRESSIONS OF THE BIG DATA SOLUTION REFERENCE
ARCHITECTURE

How likely is it that you are going to use the elements of the Big Data Reference Architecture

in your work, in the near future (1-2 years)?

Question Very
Unlikely

Unlikely Undecid
ed

Likely Very
Likely

Mean

1 Components & Interfaces 0 1 4 3 2 3.56

2 Architectural Patterns 0 2 4 3 1 3.22

3 Architecture Principles 0 4 2 2 2 3.11

4 Architectural Best

Practices

0 3 2 4 1 3.22

 TOTAL 0 10 12 12 6 3,28

Table 18: Answers to questions 1 to 4 in section 2

Please give a rating to the various aspects of the Big Data Solution Reference Architecture.

Question Poor Fair Good Very Good Excellent Mean

5 The goal and purpose of the

model

0 0 6 2 2 3.60

6 The completeness of the

model

1 3 5 1 0 2.60

7 The level of detail, e.g. the

number of components

0 5 2 3 0 2.80

8 The concreteness of the

elements, e.g. abstract

concepts vs. concrete

implementations

3 2 2 2 1 2.60

 TOTAL 4 10 9 8 3 2.90

Table 19: Answers to questions 5 to 8 in section 2

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 103

Provide any explaining remarks:

 there is quite some repetition in the architecture. in my opinion it could be possible to

remove some of the vervosity, by better naming the elements of each layer.

 Re. the Architectural patterns, principles and best practices: they all do make sense

but (at least for me) they are a bit obvious and not that big data specific.

 Missing risk/security aspects (the RA restricts itself to happy flows), which could be

covered by techniques such as abuse case modeling and, possibly, architectural risk

analysis.

 Ik vind het componentenmodel heel goed en de patterns ook hoewel het er weini zijn,

maar de achitectuur principes en de architectuur best practices heel beperkt en

algemeen en daardoor niet of nauwelijks interessant of bruikbaar. Daar zou ik graag

meer van zien.

II.III SECTION 3: QUALITY OF THE BIG DATA SOLUTION REFERENCE
ARCHITECTURE

Rate the reference architecture, or a concrete solution architecture as implementation, on:

Question Poor Fair Good Very

Good

Excellent Mean

1 the ease with which it can

cope with defects, e.g. be

adjusted to fix a bug in the

Analytics Engine

1 2 4 3 0 2.90

2 the ease with which it can

meet new requirements,

e.g. add a new data source

0 1 8 1 0 3.00

3 the ability to switch

components, e.g. replace

an implementation of the

Visualization Engine

0 1 7 2 0 3.10

4 the likelihood that it can be

used for multiple use cases

in different industries, e.g.

healthcare, finance,

government, oil & gas, etc.

0 2 6 2 0 3.00

5 the speed and performance

it can accomplish,

compared to similar models

1 2 6 1 0 2.70

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 104

or other BI / Big Data

architectures

6 the ability to scale when the

data are increased

significantly in volume,

velocity or variety

1 1 8 0 0 2.70

 TOTAL 3 9 39 9 0 2.90

Table 20: Answers to questions 1 to 6 in section 3

Provide any explaining remarks:

 the architecture is very abstract yet. I gave it good to many points but in fact in oreder

to answer properly the reference architecture should be further refined

 I think the model in general is too abstract to make any assumptions on the

characteristics.

 I do not have sufficient domain knowledge to accurately assess these quality criteria,

so in order to avoid statistical bias I have chosen "Good" as answer for each question.

 "The speed and performance" en "the ability to scale" en "ease to cope with defects"

snapte ik niet als eigenschappen van een referentie architectuur. Gaat het nu om

eigenschappen van een Big Data toepassing? Of om de onderhoudbaarheid en

kwaliteit van de referentiearchitectuur?

II.IV SECTION 4: ADDITIONAL QUESTIONS

Is the reference architecture complete, or are any important components missing?

 caching: reuse of data and results. multi-tenancy latency analysis: slow path, fast

path

 Well, a reference architecture can be very high level as well as rather detailed, so it is

difficult to answer this question. I consider this somewhat in between and do find it very

useful. It is useful for big data novices, and is useful for more advanced users as well.

 I'd like to add the more realtime (stream processing) elements. More and more BigData

is moving from batch oriented solutions to online.

 I'd rather discuss functions than components. In terms of functions the model seems

fairly complete However, I would like to see links to the organizational aspect of it. See

for example DAMA DMBOK

 2.2.3 => Je zou nog een schema kunnen toevoegen met verbindingen die er onderling

stappen die je er benoemd.. Data transportation,..enz.

 As indicated before, risk/security is not addressed.

 Ik mis een antwoord op de vraag wanneer je een Big Data oplossing zou moeten

willen? Daarmee samenhangend: wat zijn de kaders en de belangrijkste

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 105

uitgangspunten? De patterns zijn een krachtig hulpmiddel maar het zijn er jammer

genoeg maar twee. Zijn erniet meer?

 The model seems complete to me.

 For me the picture looks complete.

What are the strong and weak point of the reference architecture?

 strong: is abstract, layered weak: is abstract, layered :)

 Strong: component diagrams, mapped to tools. Clear description, good visualisations.

Week: architectural principles etc. seems rather generic (and from that perspective still

useful, but not that big data relevant).

 Weak: -too general Strong: -Good guideline for Big Data novices.

 Strpong point: simplicity Weak point: since you chose components rather than

functions, it is now harder to model things like: I am choosing to group two logical

components in 1 physical component

 Sterke punt dat het is gevisualiseerd is in de verschillende lagen die we tijdens lessen

hebben behandeld over architectuur. Ik snap de keuze van 'open data' in internet,

maar het zou ook natuurlijk in intranet kunnen vallen.., maar dat is een beetje geneuzel

van mij. De indruk die het bij mij achterlaat is dat het een goed model is.

 Strong: comprehensive and traceable use of generalisation and specification

techniques, abstraction Weak: contextual layer (as exists in Zachman

Framework/SABSA) seems a bit thin, traceability to business drivers is missing

(disclaimer: I am not a seasoned architect, so please take these comments with a

reasonable grain of salt, they are merely meant to help), risk/security aspects are not

addressed

 Sterk punt: keurig overzichtelijk ArchiMate model. Complimenten! Zwakke punt:

principes en best practices. De best practices vond ik veeeeeel te algemeen. Als je

het zo algemeen formuleert heeft het geen toegevoegde waarde in een

referentiearchitectuur voor Big Data.

 For me as technician, the architecture is very high level. This is a strong but also a

weak point. The architecture is a good starting point.

Please add any other comments or questions:

 it not quite clear to me the reason why processing and analysis are two different steps.

maybe you can explain it to me next time we meet.

 Soms heb je afkortingen genoemd, maar dan is het onbekend waar die afkorting voor

staan voor mijn: bijvoorbeeld: HDFS, SDK Ik hoop dat je er wat aan hebt en succes

ermee

 Goede eerste poging maar verdient nog wel een flinke verdiepingsslag om echt

bruikbaar te zijn als referentie architectuur.

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 106

APPENDIX III OPTIONS FOR SOFTWARE COMPONENTS

This appendix contains a series of tables that contain some options for the software

components of a big data solution architecture. The tables can be used to get an overview of

the free and open source software (FOSS) available, as well as the commercial/proprietary

offerings. The lists are by no means complete; products and frameworks change continually

and the big data environment is far from settled. Many components cannot be placed in one

category. In that case, the best match was picked based on the core functionalities of the

component. The tables are sorted alphabetically on the Name column.

I.IV IMPORTING ENGINE

Name Purpose License Description

Angoss

Knowledge-

SEEKER

Data Mining Proprietary Tool with data mining capabilities including data

preparation, profiling, decision tree design

functionality

Chukwa Data

Collection

Apache

(FOSS)

Data collection for distributed systems

IBM

InfoSphere

Data Explorer

Data

Discovery

Proprietary Federated navigation and discovery across a

broad range of applications, data sources and file

types

MuleSoft

Anypoint

Data

Integration

Proprietary SaaS integration tool

Pentaho Data

Integration

(Kettle)

Data

Integration

Proprietary Data integration platform

Rapid Miner Data Mining Affero

General

Public

License

(FOSS)

Tool for data mining, data Integration, analytical

ETL, and data analysis

Splunk Data

Collection

Proprietary Collection and indexing of machine-generated

data

Talend Open

Studio

Data

Collection,

Data Loading

Data

Acquisition

GNU

General

Public

License

(FOSS)

Loading, extraction, transformation and

processing of large and diverse data sets

Table 21: Options for the Importing Engine component

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 107

I.V PROCESSING ENGINE

I.II.I Data Preparation Engine

Name Purpose License Description

Angoss

Knowledge-

SEEKER

Data

Transformation

Proprietary Tool that allow users to extract, manipulate

and transform data to prepare it for modeling

Apache Avro Data Serialization Apache

(FOSS)

Data serialization system

Apache

Sqoop

Data

Transportation

Apache

(FOSS)

Transferring bulk data between Hadoop and

other (relational) databases

DataCleaner Data Cleaning GNU Lesser

General

Public

License

(FOSS)

Data quality analysis application

Google

Refine and

OpenRefine

Data Cleaning New BSD

(FOSS)

Tool for working with messy data, cleaning it

up, transforming it from one format into

another, extending it with web services, and

linking it to databases

Informatica

Vibe

Data Integration Proprietary A data management engine that can access,

aggregate, and manage data

Scribe Data Integration Proprietary Integration of customer data

Talend Open

Studio

Data Integration FOSS Loading, extraction, transformation and

processing of large and diverse data sets

Table 22: Options for the Data Preparation Engine component

I.II.II Data Exploration Engine

Name Purpose License Description

Apache Hive Querying Apache

(FOSS)

Tool for data summarization and adhoc querying

Apache Lucene Search Apache

(FOSS)

Tool with indexing and search technology, as well as

spellchecking, hit highlighting and advanced

analysis/tokenization capabilities

Apache Nutch Serach Apache

(FOSS)

Extensible and scalable web crawler software, based

on Lucene

Apache Pig Querying Apache

(FOSS)

High-level data-flow language and execution

framework for parallel computation

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 108

Apache Sorl Search Apache

(FOSS)

High performance search server, built using Lucene

Cloudera

Impala

Querying Apache

(FOSS)

Query engine that runs on Hadoop

ElasticSearch Search Apache

(FOSS)

Real-time search and analytics engine for the cloud,

based on Lucene

Google Big

Query

Search Proprietary Online web service for interactive analysis of massive

datasets

LGTE Search New BSD

(FOSS)

Information retrieval tool, developed at the Technical

University of Lisbon

MarkLogic

Search

Search Proprietary Big data search engine

Sphinx Search GNU

General

Public

License

(FOSS)

General-purpose search server

Xapian Search GNU

General

Public

License

(FOSS)

Probabilistic information retrieval library and full-text

search engine

Table 23: Options for the Data Exploration Engine component

I.II.III Batch Processing Engine

Name Purpose Licence Description

Amazon Elastic

MapReduce

Hadoop

Solution

Proprietary Hosted Hadoop framework running on the web-

scale infrastructure of Amazon Elastic Compute

Cloud (Amazon EC2) and Amazon Simple

Storage Service (Amazon S3)

Apache

Hadoop

MapReduce

MapReduce

Framework

Apache

(FOSS)

Framework that allows for the distributed

processing of large data sets across clusters of

computers using simple programming models

Cloudera Hadoop

Distribution

Proprietary Distribution of Hadoop and related projects

Datameer Hadoop

Solution

Proprietary Solution for data integration, data management,

and analytics on top of Hadoop

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 109

Disco MapReduce

Framework

BSD (FOSS) Lightweight framework for distributed computing

based on the MapReduce paradigm, developed

by Nokia

EMC

Greenplum HD

Hadoop

Solution

Proprietary Supported version of the Apache Hadoop stack

including HDFS, MapReduce, Hive, Pig, HBase,

and ZooKeeper

HortonWorks Hadoop

Distribution

Proprietary Distribution of Hadoop and related projects

IBM InfoSphere

BigInsights

Hadoop

Solution

Proprietary General big data platform, including Hadoop

InfoChimps

Cloud

Hadoop

Solution

Proprietary Suite of robust, scalable cloud-based big data

services

MapR Hadoop

Distribution

Proprietary Distribution of Hadoop and related projects

Microsoft

Windows

Azure

HDInsight

Hadoop

Solution

Proprietary Service that deploys and provisions Hadoop

clusters in the cloud, providing a software

framework designed to manage, analyze and

report on big data

Oracle Big

Data Appliance

Hadoop

Solution

Proprietary Integrated big data platform of hardware and

software, on top of Cloudera (including Hadoop),

Oracle NoSQL and R

Mortar Data Hadoop

Solution

Proprietary Hadoop-as-a-Service solution to work with Pig

and Python on Hadoop

Teradata

Appliance for

Hadoop

Hadoop

Solution

Proprietary Tightly integrated hardware/software stack,

optimized for enterprise-class big data storage

and refining

Qubole Hadoop

Solution

Proprietary Hadoop-as-a-Service running on Amazon AWS

Table 24: Options for the Batch Processing Engine component

I.II.IV Stream Processing Engine

Name Purpose License Description

Akka Programming

Framework

Apache (FOSS) A specialized framework for distributed,

parallel processing of large datasets,

programmed in the Scala language

Apache

Spark

Programming

Framework

Apache (FOSS) Cluster computing system for data analytics

with APIs in Pyton, Scala and Java,

developed by UC Berkeley AMPLab

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 110

Esper Complex

Event

Processing

GNU General

Public License

(FOSS)

Library for CEP

IBM

InfoSphere

Streams

Development

Platform

Proprietary Computing platform that allows user-

developed applications to quickly ingest,

analyze and correlate information as it arrives

from thousands of real-time sources

S4 Programming

Framework

Apache (FOSS) General-purpose, distributed, scalable, fault-

tolerant, pluggable platform that allows

programmers to develop applications for

processing continuous unbounded streams of

data

Software AG

Apama

Complex

Event

Processing

Proprietary Platform for CEP

TIBCO

StreamBase

Complex

Event

Processing

Proprietary Platform for CEP

Twitter Storm Programming

Framework

Eclipse Public

License (FOSS)

Distributed real-time computation framework

to reliably process unbounded streams of data

Table 25: Options for the Stream Processing Engine component

I.II.V Log Processing Engine

Name License Description

Apache

Flume

Apache (FOSS) Tool for collecting, aggregating, and moving large amounts of

log data

Fluentd Apache (FOSS) Tool to collect events and logs with abilities to add plug-ins

Kibana MIT License

(FOSS)

Scalable interface for Logstash and ElasticSearch with

search, graph, and analyze functions

Graylog2 GNU General

Public License

(FOSS)

Tool for log management

Loggly Proprietary Cloud-based log management service

Logscape Proprietary Log collecting and searching tool

Logstash Apache (FOSS) Tool for managing events and logs

Splunk Proprietary Tool that collects, indexes and harnesses all of the fast-

moving machine data generated by your applications, servers

and devices

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 111

Sumo Logic Proprietary Cloud-based log management solution

Table 26: Options for the Log Processing Engine component

I.VI ANALYTICS ENGINE

Name Purpose License Description

Actian

ParAccel

Analytics

(General, Multi-

purpose)

Proprietary Big data analytics database platform

Alteryx

Strategic

Analytics

Analytics

(General, Multi-

purpose)

Proprietary Analytics platform

Angoss

Knowledge-

STUDIO

Analytics

(General, Multi-

purpose)

Proprietary Cloud-based creation and execution of

analytical models

Apache Giraph Graph Processing Apache

(FOSS)

Iterative graph processing system built for

high scalability, developed at Facebook

Apache

Mahout

Machine Learning Apache

(FOSS)

Scalable machine learning framework

framework

Google

Analytics

Analytics

(General, Multi-

purpose)

Proprietary Cloud-based analytics framework with

visualization and API

Google Pregel Graph Processing Proprietary Framework that supports large-scale graph

processing

GraphLab Graph Processing Apache

(FOSS)

Software platform that enables advanced

analytics and machine learning on graphs

IBM SPSS Statistical

Analysis

Proprietary Statistical analysis of static data

KNIME Analytics

(General, Multi-

purpose)

GNU

General

Public

License

(FOSS)

Multi-purpose tool for data analysis

KXEN Analytics

(General, Multi-

purpose)

Proprietary Predictive analytics engine

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 112

Mathematica Mathematical

Analytics

Proprietary Integrated all-in-one platform for

computational data analysis

Oracle

Business

Analytics

Analytics

(General, Multi-

purpose)

Proprietary Predictive analytics engine

Orange Machine Learning GPL Data analysis tool with support for plug-ins,

developed by the University of Ljubljana

R Statistical

Analysis

GNU

General

Public

License

(FOSS)

Statistical analysis tool with options for plug-

ins

Salford

Systems SPM

Predictive

Modeling

Proprietary Software suite for analytics and data mining

platform for creating predictive, descriptive,

and analytical models from databases of

any size, complexity, or organization

SAP Analytics Analytics

(General, Multi-

purpose)

Proprietary Analytics tool on top of SAP HANA

SAS Analytics Analytics

(General, Multi-

purpose)

Proprietary Integrated environment for predictive and

descriptive modeling, data mining, text

analytics, forecasting, optimization,

simulation, experimental design and more

StatSoft

STATISTICA

Analytics

(General, Multi-

purpose)

Proprietary Integrated suite of analytics software

products

Teradata Aster

Big Analytics

Appliance

Analytics

(General, Multi-

purpose)

Proprietary Integrated hardware and software platform

for big data discovery and analytics

Weka Machine Learning GNU

General

Public

License

(FOSS)

Software for machine learning, developed

by the University of Waikato (New Zealand)

Table 27: Options for the Analytics Engine component

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 113

I.VII VISUALIZATION ENGINE

Name License Description

D3.js BSD License

(FOSS)

Library that uses JavaScript, HTML, SVG, and CSS for

rendering diagrams and charts

Datameer Proprietary Product that displays graphs, maps, tables, and other shapes

in a dashboard

Flot MIT (FOSS) Plotting library for jQuery

Gephi GNU General

Public License

(FOSS)

Network analysis and visualization software package

Google Charts Proprietary Web-based charting tool

IBM Cognos Proprietary Reporting and BI engine

QlikView Proprietary Reporting and BI engine

R GNU General

Public License

(FOSS)

Statistical analysis and visualization engine

Raphaël.js MIT (FOSS) JavaScript library for data visualization that works with SVG

Tableau Proprietary Visual analytics platform that offers interactive data

visualization

Visual.ly Proprietary Tool for generating infographics

Yellowfin Proprietary Reporting and BI engine

Zoomdata Proprietary Analytics platform with interactive visualizations

Table 28: Options for the Visualization Engine component

I.VIII MANAGEMENT ENGINE

Name Purpose License Description

Apache Ambari Provisioning,

Monitoring

Apache

(FOSS)

Tool for provisioning, managing, and

monitoring Apache Hadoop clusters which

includes support for Hadoop HDFS, Hadoop

MapReduce, Hive, HCatalog, HBase,

ZooKeeper, Oozie, Pig and Sqoop

Apache

Chukwa

Monitoring Apache

(FOSS)

Data collection system for monitoring large

distributed systems, built on top of HDFS and

Hadoop

Apache

Hadoop YARN

Resource

management

Apache

(FOSS)

Framework for job scheduling and Hadoop

cluster resource management

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 114

Apache Oozie Workflow Apache

(FOSS)

Workflow/coordination system to manage and

schedule Apache Hadoop jobs

Apache Whirr Provisioning Apache

(FOSS)

Set of libraries for running cloud services

Apache

Zookeeper

Coordination Apache

(FOSS)

Coordination service for distributed systems

Azkaban Workflow Apache

(FOSS)

Batch workflow job scheduler created at

LinkedIn to run their Hadoop Jobs

Chef Provisioning Apache

(FOSS)

Configuration management tool that uses a

Ruby domain-specific language (DSL) for

writing system configuration recipes or

cookbooks

Cloudera

Enterprise

Deployment

management

Propietary Tool for managing Hadoop deployments

Doozerd Coordination MIT

(FOSS)

Data store that can be used for storing and

acting on configuration data shared between

several machines.

Puppet Provisioning Apache

(FOSS)

Tool that manages the configuration of

servers declaratively

Table 29: Options for the Management Engine component

I.IX DISTRIBUTED FILE SYSTEM

Name License Description

Amazon S3 Proprietary Online file storage service, offered by Amazon Web

Services

Apache Hadoop

HDFS

Apache (FOSS) Distributed file system that provides high-throughput

access to application data

Ceph GNU Lesser

Public License

(FOSS)

Distributed object store and file system designed to provide

excellent performance, reliability and scalability

GlusterFS GNU General

Public License

(FOSS)

Distributed file system capable of scaling to several

petabytes and handling thousands of clients

Google GFS Proprietary Distributed file system, designed to provide efficient,

reliable access to data using large clusters of commodity

hardware

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 115

Lustre GNU General

Public License

(FOSS)

Parallel distributed file system, generally used for large-

scale cluster computing

Microsoft DFS Proprietary Set of client and server services that allow an organization

using Microsoft Windows servers to organize many

distributed file shares into a distributed file system

Table 30: Options for the Distributed File System component

I.X DISTRIBUTED DATABASE

Name Type License Description

10gen

MongoDB

NoSQL GNU

General

Public

License

(FOSS)

Document database

Amazon

DynamoDB

NoSQL Proprietary Cloud-based key-value store with integration

options to other Amazon services (Elastic

MapReduce, S3)

Amazon

SimpleDB

NoSQL Proprietary Cloud-based columnar database

Apache

Accumulo

NoSQL Apache

(FOSS)

Sorted, distributed key/value database that was

developed at the NSA, with cell-level security to

assign permissions to individual table cells

Apache

Cassandra

NoSQL Apache

(FOSS)

Scalable multi-master database with no single

points of failure

Apache

CouchDB

NoSQL Apache

(FOSS)

Document store

Apache HBase NoSQL Apache

(FOSS)

Scalable, distributed columnar database that

supports structured data storage for large tables

Basho Riak NoSQL Apache

(FOSS)

Key-value database

Couchbase

Server

NoSQL Apache

(FOSS)

Document store

Elasticsearch NoSQL Apache

(FOSS)

Document store build on top of Apache Lucene

EMC Pivotal

GreenPlum

Database

NoSQL Proprietary Shared-nothing database for massive parallel

processing

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 116

Google

BigTable

NoSQL Proprietary Cloud-based key-value store

HP Vertica

Analytic

Database

NoSQL Proprietary Grid-bases, column-oriented database on shared

nothing architecture

IBM DB2 Relational Proprietary Traditional RDBMS

Intersystems

Caché

NoSQL Proprietary Object database

Microsoft SQL

Server

Relational Proprietary Traditional RDBMS

Microsoft

Windows

Azure Table

Storage

NoSQL Proprietary Cloud-bases key-value store

MySQL Relational GNU

General

Public

License

(FOSS)

Traditional RDBMS

Oracle

Database

Relational Proprietary Traditional RDBMS

Oracle NoSQL NoSQL Proprietary Distributed key-value database

PostgreSQL Relational PostgreSQL

License

(FOSS)

Traditional RDBMS

Redis NoSQL BSD License

(FOSS)

Key-value store

SAND Analytic

Platform

NoSQL Proprietary Columnar big data analytics database platform

SAP Sybase Relational Proprietary Traditional RDBMS

Teradata

Database

Relational Proprietary Traditional RDBMS

Voldemort NoSQL Apache

(FOSS)

Key-value store

Table 31: Options for the Distributed Database component

Big Data Reference Architecture

© Utrecht University of Applied Sciences

 117

I.XI ANALYTICS DATABASE

Name Type License Description

Google Pregel Graph

Database

Proprietary Framework that supports large-scale graph

processing

IBM Netezza Data

Warehouse

Proprietary Integrated hardware and software solution for

high-performance data warehousing and advance

analytics applications

Kognitio WX2 In-memory

Database

Proprietary In-memory analytics database platform

Neo4j Graph

Database

Proprietary Embedded, disk-based, fully transactional Java

persistence engine that stores data structured in

graphs rather than in tables

SAP HANA In-memory

Database

Proprietary In-memory database for performing real-time

analytics

Objectivity

InfiniteGraph

Graph

Database

Proprietary Distributed, scalable graph database

HP Vertica

Analytic

Database

NoSQL Proprietary Grid-based, column-oriented analytic database

Table 32: Options for the Analytics Database component

