
Tackling Real World Complexity in a Software
Engineering Student Project - An Experience Report

Christian Köppe
HAN University of Applied Sciences,
Arnhem/Nijmegen, the Netherlands

christian.koppe@han.nl

Leo Pruijt
HU University of Applied Sciences, Utrecht, the

Netherlands
leo.pruijt@hu.nl

Abstract
Developing large-scale complex systems in student projects is not
common, due to various constraints like available time, student
team sizes, or maximal complexity. However, we succeeded to
design a project that was of high complexity and comparable to
real world projects. The execution of the project and the results
were both successful in terms of quality, scope, and student/teacher
satisfaction.

In this experience report we describe how we combined a vari-
ety of principles and properties in the project design and how these
have contributed to the success of the project. This might help other
educators with setting up student projects of comparable complex-
ity which are similar to real world projects.

Categories and Subject Descriptors K.3.2 [Computers and Edu-
cation]: Computer and Information Science Education —Computer
science education

General Terms Design, Education, Software Engineering Project

Keywords Realistic Projects, Design Principles

1. Introduction
In 2012, we ran a semester-project with a class of 25 third-year
students of the undergraduate CS program at HU University of
Applied Sciences in the Netherlands. The whole class had to de-
velop one open source tool for software architecture compliance
checking, which includes a high complexity and several architec-
tural challenges. Addressing these challenges and the complexity
required a good work division and a high level of collaboration be-
tween the student teams working on different parts of the system.

The project turned out to be successful. The results were beyond
our initial expectations: the developed tool worked well and was of
sufficient quality. It was applied (by the students themselves) at four
IT departments of industry partners, demonstrating its applicability
and relevance for professional software architects. Furthermore, the
students were highly satisfied with the project. They stated that they
had never worked so hard before in a project and that they never
had learned that much. 7 students of the group indicated that they

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted.
presented at SPLASH-E 2015, October 26, 2015, Pittsburgh, PA, USA.
Copyright is held by the owner/author(s).

want to continue working on the tool in their spare time after the
project. As teachers, we observed that the students grasped a variety
of architectural concepts and applied them on several cognitive
dimensions.

In this experience report we look back at the project and analyze
what factors of our project design contributed to its successfulness.
By sharing our experience we might help other educators to also
set up such a software engineering project of high complexity and
with motivated and satisfied students.

This paper is structured as follows: In Section 2 we provide
some background information on student projects in computer
science (and more specific software engineering) education and
discuss influential aspects of such projects. Section 3 gives an
overview of work that is addressing these aspects in various ways
and levels. In the following Section 4, we describe the design of
our project, hereby focusing on how we addressed the influential
aspects by combining several known approaches. The execution of
the project is presented in Section 5. In Sections 6 and 7, we present
the results of the project and evaluate them respectively. The paper
concludes with a summary of our experiences.

2. Student Projects in CS Education
The main intention of computer science (CS) education is to pre-
pare students as good as possible for their later work. To achieve
this goal, students need to acquire knowledge and skills relevant
for CS-related jobs. Ideally, these knowledge and skills can be ac-
quired in a way that helps the students to easily apply them in
their later workplaces. This means that not only basic CS top-
ics like programming in a specific language or working with re-
lational databases need to be taught to the students—discipline
knowledge and skills—but also software engineering practices
and general high-level skills, as communication, goal-setting, self-
management, and team work skills—the workplace knowledge and
skills. This is also emphasized in the Computer Science Curricula
2013 report by ACM/IEEE, where the knowledge areas explicitly
include social issues and professional practice as well as project
management with all its facets (the latter one as part of the soft-
ware engineering knowledge area) [7].

The necessary workplace knowledge and skills are in first in-
stance taught in apart courses, but also later in the program ad-
dressed in larger student projects. These projects form a common
way to integrate knowledge and skill acquisition and practice in a
larger and more complex setting, hereby striving to be as similar as
possible to real world projects.

However, most of these student projects are limited in scope
in order to fit the academic setting, and students will face other
problems when entering the working field and taking part in larger
projects with (much) more complexity [1, 20].

There are many interrelated aspects—or forces—that influence
the design of student projects (and the systems to-be-developed in
these projects):

• Teamwork - Students need to learn working in teams, as this is
what they likely will do in the work field. Successful teamwork
is dependent on many factors, like student motivation, level
of relevant expertise, student’s expectations, prior teamwork
experience etc.

• Complexity - Project tasks should ideally be in the “zone of
proximal development” (as defined by Vygotsky, see [2]). This
means that they should not be routine or impossible tasks, but
tasks the students are almost able to solve [2].

• Scope - Related to complexity, as scope—the quantitative as-
pect of complexity—of projects is also limited by the available
amount of time and manpower due to the educational setting.

• Independent vs. interdependent teams - Usually student project
teams work on independent standalone projects, but in compa-
nies even small teams most likely have to interact and cooperate
with other teams when developing complex (parts of) systems.

• Standalone system vs. part of larger system - Related to inter-
dependent teams is also the dependency of the to-be-developed
system with other new or existing systems. This translates to
negotiation of and adherence to interfaces, obligatory usage of
frameworks, protocols etc.

• Artificial vs. realistic projects - The purpose of student projects
is mostly the project itself and the skills and knowledge required
to realize it. This is different from projects where the purpose is
to realize a valuable system which will be used after the project
execution. Projects where the results actually will be used are
usually higher valued by students than throwaway-projects.

Many approaches as described in the literature address these
aspects partly, these are reviewed in Section 3. However, we think
that projects can be made more successful if most if not all of these
aspects are addressed appropriately. This is unlikely to be realistic
for projects in an early phase of the study, but projects situated in
later phases of the study could benefit from such holistic approach.

3. Survey of Prior Efforts
Oakley et al. describe best practices for team work projects in
general engineering education, which can also be applied to CSE
[15]. Their main findings are that students’ perception of how
successful a course was is correlated with the satisfaction on their
team experience. The team satisfaction increases with the amount
of instructor guidance on teamwork, is dependent on the size of
the teams (at least three to four), and the absence of slackers.
Research also shows that instructor-formed teams mostly perform
better than self-selected ones if the team members are diverse in
ability levels [14]. Instructor-formed teams have a higher chance
of diligent isolates (students who take over the tasks of others or
work alone) and social loafers (also called slackers of free-riders)
as suggested by Pieterse and Thompson [16]. This chance can be
lowered by using well designed peer ratings [14].

Another important factor for the success of a student project
is the student motivation. Furthermore important is how well
problems—technical and teamwork-related—are handled during
the project. Many of the real world problems only occur in larger
projects with larger teams and higher complexity [20].

There are many descriptions of successful approaches on how
to set up student projects of higher complexity as well as being
motivating for students. Some of these approaches cover holistic
aspects of real-world projects, while others focus more on either
technical issues or project management issues [1, 5, 20]. In the next

paragraphs we describe some of these approaches and pedagogic
styles which are also related to our project design.

Schocken [20] identified four guiding design principles which
can be applied to include a higher complexity in large-scale system
projects. These principles should be applied while respecting the
upper limit pedagogical value (related to Vygotsky’s concept of
Zone of Proximal Development): the students should be almost
able to solve the required tasks [2]. Otherwise the tasks will be
either routine or too complex. The four principles are:

• Modularity through decomposition of the target system into
smaller and partly independent parts,

• Abstraction by excluding all unnecessary details,
• Staging through decomposition of the required tasks (in relation

to the modularity), which allows a better planning, and
• Focus on the important aspects only.

Even though these principles were described by Schocken
for, and successfully applied in, a course on the development
of a general purpose computer system—including hardware and
software—we found these principles also in other project design
approaches (which are partly described below). We therefore think
that these principles are generally helpful in realizing more com-
plex and realistic software engineering student projects.

Many student projects used agile methods like Scrum (e.g. [4,
19]). Sanders reports positive experiences with using a modified
version of Scrum in student projects. Sanders states that “Scrum en-
forces individual responsibility, forces the team members to set and
achieve short term goals, gives the team a sense of ownership over
the project, and helps them produce more work in the same amount
of time. Scrum also forces students to monitor their progress, which
in turn, helps them improve their estimation skills.” [19]. Our as-
sumption is that agile methods in general have these properties and
are therefore suited for educational settings. They support the de-
sign principles of staging and focus. The standard short iterations
also ensure a continuous activity of the students [10].

There are reports on successful collaboration with real world
customers in student projects. In some cases the customers only
play the role to make the project seem more realistic, as in [5].
Katz reports on successful collaboration with a real customer [8].
The motivation of the customers is a specific need and the lack
of resources for running the project internally. We assume that
the success of customer collaboration projects is the highest when
it is the most realistic—a real world software system—and if it
is of long term value for the customer. This also improves the
motivation of students to work on the project, as the results will be
used afterwards. The open source approach addresses this aspect
implicitly, which might be another reason for its success.

Liu describes experiences with using open source systems for
student projects in order to expose the students to large, complex,
real-world software engineering projects [13]. An important tool
are issue trackers, as they help student teams to follow the process
(and therefore support the staging principle). In the educational
team open-source development process (named GROw) proposed
by Liu he suggests to cover the complete requirements specifica-
tion and design, but to let students implement only some features,
which limits the realized technical complexity in some ways. Süß
and Billingsley use a modular open source project [21] and the stu-
dents were given relatively clear features to implement, therefore
supporting modularity, abstraction, and focus.

Deursen et al. describe a project that combined open source and
real world customers [3]. Their students had to contribute to active
open source projects from GitHub. Their contributions needed to
be of a certain complexity, enforcing the students to actively work
with various aspects of software architecture.

Principle/Aspect Description
Modularity Decomposition into smaller and partly independent parts..
Abstraction Exclusion of unnecessary details.
Staging Decomposition into smaller tasks for a better planning.
Focus Not too many things at the same time.
Teamwork Working in teams and not in isolation.
Instructor Guidance Getting enough guidance from the instructors.
Real Customer Building a system that fulfills a real need.
Open Source The internals of the system are also visible for—and reusable by—others.
Continuous Integration Preventing a big-bang integration at the end and ensuring an ongoing focus on

the system as a whole.
Agile Process Working incrementally in short iterations.

Table 1: Overview of principles and properties relevant for student projects in CSE

Süß and Billingsley also used continuous integration practices
and automated metrics as approach [21]. According to their find-
ings, this allows to expose students to more realistic problems and
does not require significant additional staffing. However, Gestwicki
states that it requires significant time investment to maintain such
a system (the servers and their configuration) [4], so this approach
seems to be dependent on the institutional infrastructure possibili-
ties.

There also are reports on successful projects that do combine
some of the earlier mentioned approaches. Gestwicki used continu-
ous integration, test-driven development and an agile software pro-
cess for setting up an undergraduate game development studio [4].
Süß and Billingsley used a modular open source project and con-
tinuous integration to make a software project more realistic [21].
Pieterse et al. combined different approaches to integrate software
engineering, technical skills, and teamwork skills [17].

Table 1 provides an overview of all identified principles and
properties, covering the aspects of influence on the project design
as described in Section 3. In general, many of the described ap-
proaches are overlapping. However, we expect that using a com-
bination of different approaches while following the design princi-
ples as we did in our project design, it is possible to execute student
projects of real world complexity and with motivated and satisfied
students.

4. Project Design
During project design, we discussed which goals we have for the
project and what we need to do to achieve them. We wanted to
tackle a high complexity—both technical and process related—
in this project, where the complexity was higher than in other
described projects and approaches (see survey in section 2). Our
idea was to achieve this by combining the described approaches, so
that they support the guiding design principles (in varying degrees).
We hereby also built on the experience we made with a similar
project given a year earlier. Most of the initial ideas worked well,
while some had to be adapted during the execution. This will be
discussed in more detail in the following sections.

The project was a single semester project lasting 19 weeks.
There were 25 students and three instructors involved and it was
part of the third year of an undergraduate computer science pro-
gram. As stated before, the design of the project was initially based
on the experiences we made with earlier projects. The results of
these earlier projects, where 4 different teams developed 4 smaller-
scoped architecture compliance checking tools with a limited set of
requirements, were used to define a mature and demanding set of
requirements for the new tool.

As we wanted to give the students a real world experience, all
students had to collaborate to develop one tool. The teams were

carefully formed by the teachers, taking care of diversity in ability
levels as suggested by Oakley et al. [14]. We addressed the possible
issue of diligent isolates and slackers by using peer ratings at the
end of the project.

The design of the project followed the earlier described design
principles: modularity, abstraction, staging, and focus. We used the
designs of the earlier projects to define a modular start architecture
that enabled us to assign clear responsibilities for specific system
parts to different teams. The responsibilities were described in
abstract high-level terms and therefore open to diverse ways of
realization.

The main goal of the project was the development of an
open source tool for Software Architecture Compliance Checking
(SACC). (Software) Architecture Compliance Checking is defined
by Knodel and Popescu as “a measure to which degree the im-
plemented architecture in the source code conforms to the planned
architecture” [9]. Due to the implicit complexity of this domain, we
also considered the complexity of the tool to-be-developed as re-
alistic and similar to systems usually developed in larger projects.
Furthermore, having software architecture as application domain
of the tool and as area needed for implementing the tool likely
led to an improvement of knowledge acquisition in this area on
multiple levels. This is an application of the pedagogical pattern
MULTI-LEVEL ASSIGNMENT [12].

We divided the responsibilities into six main areas, each as-
signed to one student team of 4-5 members. These responsibili-
ties allowed the teams to work independently on the internal work-
ings of their components, but required the teams to communicate
with other teams about e.g. the required interfaces or coding style
guides. The six main areas are:

1. Architecture Definition (incl. mapping of physical elements to
logical architecture elements)

2. Source Code Analysis - Java

3. Source Code Analysis - C#

4. Architecture Validation (for the actual compliance check)

5. General GUI & Control (incl. application flow, Maven- and
Eclipse-plugins)

6. Graphics

Please note that the responsibilities were given to the students
in more detail. Some teams also got project-related responsibilities
like setting up a Version Control System or developing a test appli-
cation which was used as benchmark for this project. Teams 2 and
3 started together with setting up a design that made it easy to in-
clude other programming languages without having to modify the
general analysis mechanism.

Figure 1: The start architecture

Some students got clearly defined roles that also constrained the
communication ways. The architects of all teams were discussing
all system-wide issues with each other and shared the outcomes
afterwards with their teams. The project leaders (of the teams)
made planning decisions for their own teams, but with respect to
the overall progress of the total project.

Figure 1 gives an overview of the start architecture including
components and general interfaces. Please note that these interfaces
were not defined at this moment, as interface negotiation was an
important aspect of the project.

We decided to use OpenUP1 as software development process.
OpenUP includes many aspects of agile methods like incremental
and iterative working. This fits our project and supports the stag-
ing design principle. This was accompanied by weekly meetings,
which were intended for presentation of interim results, discus-
sions, making decisions, giving feedback, provision of feedback,
or teamwork guidance if necessary. The combination of having to
present interim results and getting new information needed for go-
ing on with the project was in our experience a good motivator for
ensuring a continuous activity of the students, as also suggested in
[10].

Initially we wanted to use continuous integration in combination
with test-driven development. This would have required setting up
a technical infrastructure, which is quite costly [4]. We therefore
decided to deploy a general integration process and to emphasize
test-driven development by letting the students write failing tests
first before they start to work on the implementation.

Some parts of the project included aspects of problem-based
learning (PBL), an instructional methodology intended to enhance
learning by requiring learners to solve authentic and ill-structured
problems [6]. We left it for example open how the general integra-
tion process could be designed best, how the source code analyzer
should be implemented, or what the best visualization algorithm
would be. These problems had to be explored by the students them-
selves while we as teachers only had the role of facilitator.

We found four industry partners that showed a high interest in
such a tool and were willing to participate in the project as real
customers. They offered to let the students apply the developed
tool in their companies, giving them the possibility to check the
architecture compliance of real commercial applications. This was
of value for the companies, also in long terms as the development
of the tool did not stop at the end of the project. Our idea was that
this will also increase the motivation of the students.

1 http://epf.eclipse.org/wikis/openup/

5. Project Execution
Beginning with the provided modular start architecture and the
team responsibilities of the identified six main areas, the student
teams first negotiated the interfaces between their own components
and the components of the other student teams. These interfaces
were shared and discussed with all students during a few sessions
so that all students were aware of the status of interface negotiation.
At the same time general decisions regarding the interfaces could
be made collaboratively, like naming issues or the question if data
transfer objects are used as protocol.

A first prototype of the system was implemented using service
stubs—based on the negotiated interfaces—which led to a com-
pletely integrated and partly executable architecture prototype. Af-
ter that, the student teams began to implement the stubs and de-
liver new versions at the end of each construction phase iteration.
If adaptations to the interfaces were necessary, they were first dis-
cussed in the weekly meeting with all students and after that inte-
grated in the system.

A group of students was asked to set up a version control system
(VCS) and an infrastructure that offers some of the features of con-
tinuous integration. After doing some research the students chose
for GIT and defined an underlying structure. This structure allowed
the teams to work independently on their own system parts and to
integrate them iteratively into one system. It was also decided to use
the public service GitHub2, which also meant that all source code
is visible to the outside world and not only to the students them-
selves. As this service is freely available and all configuration tasks
were done by the students themselves, it required only a small time
investment from the teachers for supervising this part. The issue-
tracking capabilities of GitHub were used for the registration of
bugs and features to be implemented and were also used for plan-
ning the iterations during the construction phase of OpenUP.

For testing purposes, one student team took the responsibility
to develop an application—initially in Java only—that included all
previously described possible architecture violations. This system
was then used for testing purposes and later accompanied with a
similar application written in C#. Another aspect of quality assur-
ance were code reviews, where teams had to publicly review the
code of other teams including suggestions for improvement.

All students and teachers participated in weekly meetings where
all relevant issues were discussed with the whole group and in many
cases also collaboratively decided. After that the teachers met with
the separate teams to discuss implementation issues only relevant
for the teams themselves. These meetings were also used to take
care of possible problems related to teamwork and to guide the
students with solving them if necessary.

6. Project Result
6.1 The HUSACCT tool
The tool was implemented in Java and covers the whole process of
(static) software architecture compliance checking. The size of the
main tool at the end of the project was 33.143 non-comment lines of
code in 486 classes and 98 packages (plus additional 70.896 ncloc
of code generated by ANTLR). The code for the unit-tests com-
prises 6.623 ncloc in 66 classes and 16 packages. The following
functionality has been implemented, the accompanying user inter-
faces are shown in Figure 2:

1. Defining an architecture - The logical architecture can be de-
fined in the tool, incl. architectural rules like e.g. Domain Layer
is not allowed to use View Layer or All classes in module
database have to implement the IDatabase interface.

2 https://github.com/

Figure 2: Screenshot HUSACCT - report and visualization of architecture violations

2. Analyzing an existing application - The source code of an exist-
ing Java or C# application is analyzed, then the physical struc-
ture of the application and dependencies between the system
parts can be examined in a dependency browser, switching be-
tween different levels (from packages to classes).

3. Mapping the defined architecture - Map the physical entities
found by analyzing to the defined logical modules.

4. Execute compliance check - The tool checks if there are vio-
lations against the earlier defined rules. The violations can be
analyzed using a violation browser or exported as report in dif-
ferent formats.

5. Graphical representation - The physical structure, the defined
architecture, and the result of the compliance checking includ-
ing all violations can be graphically examined. This includes
comfortable options like multi-zoom and optional hiding of sys-
tem parts.

Additional to the realized functionality of the tool itself, the stu-
dents also managed to develop an Eclipse-plugin. This plugin of-
fered jumping directly to the source code where a violation oc-
curred. Furthermore, an initial version of a Maven plugin was de-
veloped by one team, enabling that the software architecture com-
pliance check can be integrated in a build process.

The tool HUSACCT itself was developed further, based on this
result of this project, and is described in more detail in [18]. It
is open source and can be downloaded from http://husacct.
github.io/HUSACCT/. This site also contains the documentation
and an introduction video.

6.2 Tool Application in Companies
The tool was applied by the students in different companies, among
which RDW (the Dutch traffic authority), Belastingdienst (Dutch
tax and finance authority), and Schiphol Airport. The companies
provided an architecture description of one of their (sub-)systems
and its source code. This was then analyzed by the students, the
findings were summarized in a report and presented to the com-

pany’s architects. The students had hereby to explain and defend
their findings and possible suggestions for improvement given to
the architects.

7. Evaluation
We experienced the project as successful. The feedback we got
from the students at the end of the project was nearly completely
positive. The students reported on a high work pressure, but also
unanimously described it as the best project they did during their
whole study. We also asked the students to evaluate the project, but
the response was quite low (n=4). However, the results support our
feelings about the successfulness of the project, as the relation with
the professional practice was rated with an average of 8.3 and the
importance of the project for the students’ study with a 9.0 (on a
scale of 1 to 10, where the highest possible rate is 10).

All students passed the project with an average grade of 8 (on a
scale of 1 to 10). This grade is far above the usual average grades
of other courses and projects. 7 students (27% of the participants)
decided to work further on this project in their spare time and
during holidays. This high motivation right after the end of the
project can be seen as a clear indication that this project was highly
valued and motivating.

Table 2 gives a summary of how the earlier described principles
and properties were realized in our project. It also describes addi-
tional aspects that in our experience contributed to the success of
the project. The applied principles and approaches are evaluated in
more detail in the remainder of this section.

The usage of service stubs as dummy implementations of the
negotiated interfaces played an important role in the early iterations
of this project, as they offered an immediate integration of all
system parts. The interfaces followed the abstraction principle and
supported modularity, as they hid all details of the modules and
therefore allowed independent development of them. They also
supported staging, both on project level and on team level, as they
allowed that planning decisions could be made per team.

Staging was also realized by the application of OpenUP as de-
velopment process and its artifacts in this project. The definitions

Principle/Aspect Application in project
Modularity Modular architecture, where the modules have clearly defined responsibilities and interfaces. Each group was

responsible for one module and the negotiation of the interfaces with other modules.
Abstraction Only knowledge about the internals of the group’s own module/s is needed, as well as on the required and

provided interfaces of them.
Staging The first smaller tasks were the negotiation of the required and provided interfaces, which was followed by their

incremental implementation. All tasks were small enough to being finished in less than two weeks and therefore
always fitted into one iteration.

Focus Clear goals were defined per iteration. As the first goals were the negotiation of the interfaces, the students
could afterwards focus on implementing these interfaces one by one. Service stubs were used for the not yet
implemented interfaces so that less dependencies from other modules were present.

Teamwork The students had to work in teams of 4-5 students with a total of 6 teams. Besides the weekly meetings they
had to plan their activities themselves. As all teams worked on one system, the whole class also was seen as a
team with a common goal and collective ownership of the result.

Instructor
Guidance

Weekly meetings of the whole class where the instructors always were present and offered general guidance
plus additional meetings with each team and where all team-specific issues were discussed.

Real Customer Four well-known companies showed interest in the tool and offered the possibility to apply it at their location
using real production systems.

Open Source The project was openly hosted on GitHub. Knowing that everybody can see their code created in our experience
a higher awareness on code quality.

Continuous In-
tegration

One team was responsible for integrating and testing (using the unit tests provided by the other teams) all work
at the end of an iteration, leading to a well-tested system every two weeks.

Agile Process OpenUP as process with iterations of two weeks. The elaboration phase (with the architectural prototype as
milestone) lasted 2 iterations, as there was a strong focus in this project on architectural aspects. All students
had the role of team member, while one student of each team also fulfilled the role of architect. The architects
also discussed higher level issues in a smaller group.

Table 2: Summary of how the principles and properties were applied in the project.

of the work products to be delivered helped with planning the iter-
ations. Furthermore, OpenUP encourages incremental and iterative
working on a system as well as other agile practices like test-driven
development. Successful usage of agile methods in student projects
has been reported. In our believe OpenUP can be added to this list.

Schocken describes some concessions that help with realizing
the principle of focus: no exceptions, no efficiency, no special
features, and no design uncertainty. This might be valid for building
computer systems, but was different in our project. We consciously
included exception handling (and unit-testing) in our project in
order to increase the quality of the final tool. We also consciously
worked with a high level of design uncertainty as part of our
problem-based learning approach. This was because design and
architecture were skills to be improved in this project. We interpret
the focus principle in our case as having the students knowing at all
times what they have to do or what they have to discuss and decide.

The point that the tool had to be open source, and therefore
visible to the outside world, seemed to motivate the students to
regularly improve the code. That they were administrating the VCS
and handled the integration in an open and agreed on way by
themselves might have led to a higher commitment to the project.

There was a high amount of instructor guidance throughout the
whole project as also suggested by Oakley et al. [15], especially in
the weekly meetings with the whole class and with all teams. This
guidance comprised of supporting the students in making decisions.
Helping students with solving teamwork-related problems was sur-
prisingly rarely necessary. One reason could be the experience the
students had with many earlier teamwork assignments. We used
pattern mining of the students’ collaboration patterns [11] to create
an higher awareness of the students for possible problems and the
way these problems were solved earlier by the students themselves
or their peers. This combination of both instructor guidance and the
mining and application of the collaboration patterns worked in our
opinion complementary and intensifying.

The inclusion of the students in the decision making during the
project was in our opinion also a motivating factor. The fact that
they had to negotiate the interfaces between the modules them-
selves and had to collaborate with other teams to reach this goal
made them also the owners of the results. On the other hand were
they exposed to high technical complexity and additional, because
of the interface evolution, also to problems of project management,
planning and system integration.

The cooperation with the companies was made easier by the fact
that the students developed an open source tool and that in the fu-
ture another group of students will go on with further developing
and extending the tool (but likely in a different project setting than
the presented one, as some important aspects such as interface ne-
gotiation and the building of something new will be missing). So
it was seen as a long term investment by the companies, and not a
one-off project. The feedback of all companies was positive. They
valued the quality of the advice the students gave to the present
company employees (mostly software architects). This advice was
based on their findings when checking one or more of the com-
pany’s systems on their compliance with the intended architecture.
The involved software architects furthermore were impressed by
the high level on which the students discussed architectural issues
during the visits. Some students with jobs beside the university also
introduced the tool in the companies where they worked.

Important part of the project was the explorative character of the
project as part of the problem-based learning design. There were
many assignments included were students had to sort things out
by themselves and present the results to the group in the weekly
meetings. We assume that this sharing of self-acquired knowledge
led to a higher identification and commitment of the students.

The modularity and abstraction principles were realized in a
problem-based learning way: the students were only given some
high level requirements (as shown in Figure 1) and guidelines.
This required them to identify and evaluate possible solutions in a

collaborative way. We believe that this approach supported a better
acquisition of the technical skills.

8. Conclusion
In this paper we reported on a student software engineering project
that we experienced as successful. The design of this project com-
bined a variety of principles and properties, which was in our opin-
ion the reason for its success.

The four principles described by Schocken—modularity, ab-
straction, staging, and focus—were applied for addressing the high
complexity of the project. These principles were slightly adapted to
fit a software engineering project as described in Section 4. Addi-
tionally to these principles, we found that real-world projects where
also industry partners are involved are highly motivating for stu-
dents. If these real-world projects are also open source projects
which are publicly available and have a lifespan that extends the
students project, then an extra motivation, triggered by identifica-
tion of the students with the project, and a higher commitment to
the project was observed by us. Agile methods like OpenUP are
well suited for student projects and help students to experience and
handle a realistic project complexity.

We believe that explicitly addressing such variety and properties
can indeed help with realizing systems of larger-scale, real world
systems of higher complexity. This would make such projects sim-
ilar to projects the students will likely be involved in after their
study, and is therefore in our opinion a better preparation for their
later career.

Acknowledgements
First and most we want to thank all students who followed this
semester. We also want to thank Wiebe Wiersema, lector at the HU
University of Applied Sciences for his support during the semester.
Last, but not least, we want to thank the companies which helped
in making this a real project for the students.

References
[1] G. Bavota, A. De Lucia, F. Fasano, R. Oliveto, and C. Zottoli. Teach-

ing software engineering and software project management: an in-
tegrated and practical approach. In Proceedings of the 2012 In-
ternational Conference on Software Engineering, pages 1155–1164,
Zurich,Switzerland, June 2012. ISBN 978-1-4673-1067-3. URL
http://dl.acm.org/citation.cfm?id=2337223.2337375.

[2] J. Bennedsen and O. Eriksen. Applying and developing patterns
in teaching. In 33rd Annual Frontiers in Education, 2003. FIE
2003., volume 1, pages 2–7. IEEE, 2003. ISBN 0-7803-7961-6.
. URL http://ieeexplore.ieee.org/articleDetails.jsp?
arnumber=1263358.

[3] A. V. Deursen, A. Nederlof, and E. Bouwers. Teach-
ing Software Architecture: with GitHub!, 2013.
URL http://avandeursen.com/2013/12/30/
teaching-software-architecture-with-github/.

[4] P. Gestwicki. The entity system architecture and its application in
an undergraduate game development studio. In Proceedings of the
International Conference on the Foundations of Digital Games - FDG
’12, pages 73–80, New York, New York, USA, May 2012. ACM Press.
ISBN 9781450313339. . URL http://dl.acm.org/citation.
cfm?id=2282338.2282356.

[5] M. Gnatz, L. Kof, F. Prilmeier, and T. Seifert. A Practical Ap-
proach of Teaching Software Engineering. In Proceedings of the 16th
Conference on Software Engineering Education and Training, page
120, Mar. 2003. ISBN 0-7695-1869-9. URL http://dl.acm.org/
citation.cfm?id=794194.794947.

[6] W. Hung, D. Jonassen, and R. Liu. Problem-based learn-
ing. In J. Spector, J. G. van Merriënboer, M. Merrill,
and M. Driscoll, editors, Handbook of research on educa-
tional communications and technology, pages 1503–1581.

2007. URL http://faculty.ksu.edu.sa/Alhassan/
Handbookonresearchineducationalcommunication/
ER5849x_C038.fm.pdf.

[7] Joint Task Force on Computing Curricula ACM/IEEE. Computer
Science Curricula 2013: Curriculum Guidelines for Undergraduate
Degree Programs in Computer Science. ACM, Inc, Jan. 2013. ISBN
9781450323093. . URL http://dl.acm.org/citation.cfm?id=
2534860.

[8] E. P. Katz. Software Engineering Practicum Course Experience. In
2010 23rd IEEE Conference on Software Engineering Education and
Training, pages 169–172. IEEE, Mar. 2010. ISBN 978-1-4244-7052-
5. . URL http://dl.acm.org/citation.cfm?id=1796177.
1796659.

[9] J. Knodel and D. Popescu. A Comparison of Static Architecture Com-
pliance Checking Approaches. In Working IEEE/IFIP Conference on
Software Architecture (WICSA’07), pages 12–21. IEEE, Jan. 2007.
ISBN 0-7695-2744-2. . URL http://dl.acm.org/citation.
cfm?id=1264360.1264992.

[10] C. Köppe. Continuous Activity - A Pedagogical Pattern for Active
Learning. In Proceedings of the 16th European Conference on Pat-
tern Languages of Programs - EuroPLoP ’11, volume 2011, Irsee,
Germany, 2011. ACM Press. ISBN 9781450313025. . URL http:
//dl.acm.org/citation.cfm?doid=2396716.2396719.

[11] C. Köppe. Using pattern mining for competency-focused education. In
Proceedings of Second Computer Science Education Research Confer-
ence - CSERC ’12, pages 23–26, Wroclaw, Poland, 2012. ACM Press.
ISBN 9781450318587. . URL http://dl.acm.org/citation.
cfm?doid=2421277.2421280.

[12] C. Köppe and L. Pruijt. Improving Students’ Learning in Software
Engineering Education through Multi-Level Assignments. In Pro-
ceedings of Fourth Computer Science Education Research Confer-
ence, CSERC14, Berlin, Germany, 2014.

[13] C. Liu. Enriching software engineering courses with service-learning
projects and the open-source approach. In Proceedings of the 27th
international conference on Software engineering - ICSE ’05, page
613, New York, New York, USA, May 2005. ACM Press. ISBN
1595939632. . URL http://dl.acm.org/citation.cfm?id=
1062455.1062566.

[14] B. Oakley, R. M. Felder, R. Brent, and I. Elhajj. Turning Student
Groups into Effective Teams. Journal of Student Centered Learning, 2
(1):9–34, 2004. URL http://oxfordbrookes.ac.uk/services/
ocsld/resources/group_work/turnin_student_groups\
_into_effective_teams.pdf.

[15] B. A. Oakley, D. M. Hanna, Z. Kuzmyn, and R. M. Felder. Best Prac-
tices Involving Teamwork in the Classroom: Results From a Survey
of 6435 Engineering Student Respondents. IEEE Transactions on
Education, 50(3):266–272, Aug. 2007. ISSN 0018-9359. . URL
http://dl.acm.org/citation.cfm?id=2254939.2256197.

[16] V. Pieterse and L. Thompson. Academic alignment to reduce the
presence of ’social loafers’ and ’diligent isolates’ in student teams.
Teaching in Higher Education, 15(4):355–367, 2010.

[17] V. Pieterse, L. Thompson, L. Marshall, and D. M. Venter. An Intensive
Software Engineering Learning Experience. In Proceedings of the
2nd Computer Science Education Research Conference, CSERC 2012,
pages 47–54, Wroclaw, Poland, 2012.

[18] L. Pruijt, C. Köppe, J. van der Werf, and S. Brinkkemper. HUSACCT:
Architecture Compliance Checking with Rich Sets of Module and
Rule Types. In Proceedings of the 29th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2014), pages
1–4, 2014. ISBN 9781450330138. . URL http://dl.acm.org/
citation.cfm?id=2642937.2648624.

[19] D. Sanders. Using Scrum to manage student projects. J. Com-
put. Small Coll., 23(1):79, 2007. ISSN 1937-4771. URL http:
//portal.acm.org/citation.cfm?id=1289280.1289295.

[20] S. Schocken. Taming complexity in large-scale system projects. In
Proceedings of the 43rd ACM technical symposium on Computer
Science Education - SIGCSE ’12, page 409, New York, New York,

USA, Feb. 2012. ACM Press. ISBN 9781450310987. . URL
http://dl.acm.org/citation.cfm?id=2157136.2157259.

[21] J. G. Süβ and W. Billingsley. Using continuous integration of code
and content to teach software engineering with limited resources.

In Proceedings of the 2012 International Conference on Software
Engineering, pages 1175–1184, Zurich, Zwitserland, June 2012. ISBN
978-1-4673-1067-3. URL http://dl.acm.org/citation.cfm?
id=2337223.2337377.

