
Authors’ Final Version - © 2016 IEEE (ieeexplore.org)

Rule Type Based Reasoning On

Architecture Violations: A Case Study

Leo Pruijt, Wiebe Wiersema

Information Systems Architecture Research Group

HU University of Applied Sciences

Utrecht, The Netherlands

{leo.pruijt, wiebe.wiersema}@hu.nl

Jan Martijn E. M. van der Werf, Sjaak Brinkkemper

Department of Information and Computing Sciences

University Utrecht

Utrecht, The Netherlands

{ j.m.e.m.vanderwerf, s.brinkkemper}@uu.nl

Abstract—Software architecture compliance checking

(SACC) is an approach to monitor the consistency between the

intended and the implemented architecture. In case of static

SACC, the focus is mainly on the detection of dependencies that

violate architectural relation rules. Interpretation of reported

violations may be cumbersome, since the violations need to be

connected to architectural resolutions and targeted qualities such

as maintainability and portability. This paper describes an SACC

case study which shows that inclusion of different types of rules

in the SACC process enhances reasoning on architecture

violations, especially if a rule type is related to specific

architectural pattern. The SACC is performed with HUSACCT,

an SACC-tool that provides rich sets of module and rule types in

support of patterns such as layers, facade, and gateway. The case

system is a governmental system developed in C#, which follows

the .NET common application architecture. Even though the

system appeared to be well-structured, the SACC revealed that

10 of the 17 architectural rules were violated.

Keywords—Software architecture, modular architecture,

architecture compliance, architecture conformance

I. INTRODUCTION

The partitioning of an application into smaller units is an
important strategy to reduce complexity. Modularization
contributes to the manageability of the development process,
and it may contribute to quality attributes like maintainability,
reusability and portability [1]. A modular architecture
describes the modular elements, their form (properties and
relationships) and the rationale [2]. A modular element, or
module, is an implementation unit of software with a coherent
set of responsibilities [3]. Properties and relationships express
architectural rules. Properties are used to define constraints on
the modular element and its content. Relationships are used to
constrain how the different elements may interact or otherwise
may be related [2].

Ducasse and Pollet [4] make a distinction between the
conceptual, or intended, architecture that exists in human
minds or in the software documentation, and concrete, or
implemented, architecture that refers to the architecture derived
from source code. Architectural erosion is “the phenomenon
that occurs when the implemented architecture of a software
system diverges from its intended architecture” [6]. Software
Architecture Compliance Checking (SACC) is a means to

prevent or detect architectural erosion by comparison of the
intended architecture and the implemented architecture. In our
opinion, SACC may not only be used to enforce compliance to
the intended architecture, but also to maintain and improve the
intended architecture. Furthermore, SACC may increase the
architectural awareness and add to a better understanding of the
relationship between architecture design and code.

In [5], we introduced the term semantically rich modular
architecture (SRMA) that we use for an expressive modular
architecture description, composed of semantically different
types of modules (e.g., layers, subsystems, components), which
are constrained by different types of rules such as basic
dependency constraints (e.g., Is not allowed to use), constraints
related to layers, naming constraints. In practice and literature,
many architectures can be labeled as SRMA, since they contain
modules with different semantics. Since our research revealed
that SRMA support was limited in the set of studied SACC-
tools [5], we focused our work on this aspect. As results, we
have presented a meta model [6] and a tool, HUSACCT [7],
aimed on the provision of extensive and configurable SRMA
support. HUSACCT is applied in practice and also in education
at several universities in the Netherlands.

The objective of this case study is to explore, in the context
of an SACC of a professional system, whether the provided
SRMA support is suitable during the registration of the
intended architecture and the interpretation of detected
violations. Furthermore, we investigate the existence of
architecture erosion in this case. In line with these objectives,
we formulated the following research questions
1) Is SRMA support suitable within the context of the case?
2) Is SRMA support useful in the SACC process?
3) Is architecture erosion identifiable in this case?

The contribution of this paper is threefold. First, we present
the intended SRMA of a professional system and we report on
violations against rules. Second, we describe the interpretation
of the violations and we demonstrate how rule types may aid
architecture reasoning. Third, we answer the research questions
defined above.

This paper is outlined as follows. Section II introduces
HUSACCT and describes the procedure followed during the
case study. Section III introduces the case system and describes
its intended architecture. Section IV describes the compliance

Authors’ Final Version - © 2016 IEEE (ieeexplore.org)

check and presents, illustrates and interprets its results. Section
V discusses the key findings of the case study, the limitations,
and the related work. Section VI concludes this paper and
addresses future work.

II. SACC APPROACH

A. Introduction to HUSACCT

HUSACCT (HU Software Architecture Compliance Checking
Tool) is a tool that provides support to analyze implemented
architectures, define intended architectures, and execute
conformance checks [7]. Browsers, diagrams and reports are
available to study the decomposition style, uses style,
generalization style and layered style [3] of intended
architectures and implemented architectures. HUSACCT is
free-to-use and open source. It has been developed in Java and
analyzes Java and C# source code. The executable and source
code are downloadable at http://husacct.github.io/HUSACCT/.
User documentation and a video are accessible at the same site.

HUSACCT distinguishes itself from other tools by the
provision of extensive and configurable support of
semantically rich modular architectures (SRMAs). To enable
the provision of SRMA support, we have developed and
published the SRMACC metamodel [6], whereof the central
part is included in Fig. 1. It includes concepts and their
associations relevant to understand our approach. As shown in
the figure, an SRMA contains Modules of different
ModuleTypes, where AppliedRules, each of a certain RuleType,
may constrain the Modules. For a detailed discussion of the
complete metamodel, we refer to [6].

Basic SRMA support includes the provision of rich sets of
module and rule types and the functionality to check rules of
these types. In a previous publication [5], we identified
common module and rule types and discussed their grounding
in literature. During the development of HUSACCT, we aimed
at support of these common types. Currently HUSACCT
provides support for five common ModuleTypes and eleven
common RuleTypes.

Extensive semantic support of the module types and rule
types is provided in several ways during the definition of the

intended architecture. For example, in the following situations:
a) when a rule is created, only rule types are selectable that are
allowed for the type of the constrained module; b) when a
module is created, zero, one, or more applied rules will be
created, based on the default rule types associated to the
module type of the module; c) when an exception rule is
created, only rule types are selectable that are allowed as
exception the type of the main rule.

Finally, configurable support means that all rules are
accessible and that the following configuration options may be
applied: 1) generated default rules may be disabled (just as user
defined rules); 2) exceptions to generated default rules may be
specified (just as exceptions to user defined rules); 3) tool-users
may configure the default rule types per module type.

B. Procedure and Data Collection

First, prior to the actual compliance check, we have requested
and received a description of the intended modular architecture,
including the modules, the rules and the mapping of modules to
implemented software units.

Second, we had a preparing interview with the lead
developer, who acted as the software architect as well. We
were informed on the functionality of the system and on the
development organization. Furthermore, we discovered some
architectural rules missing in the documentation: two rules that
constrain the access of external systems, and one rule that
constrains the names of classes in a package.

Third, we installed HUSACCT on one of the organization’s
laptops, and we analyzed the source code (which took four
seconds). Next, we registered the intended architecture into the
tool. Finally, we activated the compliance check (which
finished within one second), and we studied its results. We
performed the two last steps iteratively, to fine-tune the
intended architecture and the mapping to the software units.

Fourth, we analyzed older versions of the system’s source
code, and we performed compliance checks on these versions.

Fifth, we gathered all the data files, needed to perform a
detailed analysis afterwards:

 workspace file that contains the intended architecture;

 intended architecture report;

 analysis reports, containing a table with dependencies and
a table with an abstracted overview of the dependencies
per dependency type and subtype;

 violation reports with an overview of violated and not-
violated rules, and with a table with reported violations;

 export files that contained a selection of the analyzed data
repository, namely all packages, classes, external systems,
and all dependencies.

Sixth, we analyzed the data and we have drawn up a report
for the client organization with our findings. The report
contained i.e. tables and graphics with the intended
architecture, violations per source code version, and for most
rules a description of the number and location of the classes
that caused the violations.

Seventh, we interviewed the system architect on the
validity and the interpretation of our findings.

Fig. 1. Part of SRMACC metamodel

http://husacct.github.io/HUSACCT/

Authors’ Final Version - © 2016 IEEE (ieeexplore.org)

Fig. 2. Overview modular architecture ServiceComponent

III. THE CASE AND ITS INTENDED ARCHITECTURE

A. The Case

The assessed system is an E-commerce system of a
governmental organization in the Netherlands, which is used
by citizens and organizations, for example to register or view
data, or to apply for a license. The system is developed in C#
and follows the .NET common application architecture
(MSDN 2009). The E-commerce system may be regarded as
one of a multitude of small to medium sized administrative
systems with different functionalities but similarities in the
modular architecture. The system is composed of: 1) multiple
web-based client applications for a variety of products and
services; 2) one server-side ServiceComponent, the central
component of the application that handles and coordinates
service request from web client applications; and 3) multiple
server-side plug-ins, which handle the specifics in processing
of the different products and services.

The architecture compliance check focuses on the central
ServiceComponent, which acts an application specific shell on
top of Commerce Server, Microsoft’s E-commerce system. The
following keywords provide an impression of the
responsibilities of ServiceComponent: product catalog
management, customer profile management, basket and
payment management, order management.

B. The Intended Architecture

An overview of the intended architecture of the
ServiceComponent is shown in Fig. 2 and Fig. 3. The
architecture has been established four years before the SACC.
Since then it has remained stable, while the number of products

and services, provided to customers of the organization via the
E-commerce system, has grown from fifteen to sixty.

The intended architecture of ServiceComponent can be
labeled as a Semantically Rich Modular Architecture (SRMA),
since it contains modules of five different types and rules of
eight different types. The first figure provides a high-level
overview. Three layers are distinguished, which have the

Fig. 3. UML component model ServiceComponent

Authors’ Final Version - © 2016 IEEE (ieeexplore.org)

following responsibilities: 1) the Service layer provides the
service interface to the web applications; 2) the Logic layer
contains the components responsible for the business logic of
the application; and 3) the Data layer is responsible for access
of the database and communication with infrastructural
services. Furthermore, two commonly used modules are
visible: Infrastructure, which contains utilities and other shared
functionality, and Business Entities, which contains data
transfer objects. The rules of a strict layered style apply here:
layers are not allowed to make use of higher level layers, and
layers are not allowed to skip a layer in their usage relations.
Consequently, the Service layer and Logic Layer are not
allowed to use infrastructural libraries that are abstracted by the
Data Layer.

More rules may be derived from Fig. 3, which provides an
overview of the modules and their intended usage relations in
the form of an UML component diagram. Identification of the
rules based on the component model in the architecture
document required interpretation, since an UML component
model contains uses dependencies, while constraints need to be
derived from the model as rules. The figure presented here is
an updated version of the originally received model and a set of
specified rules. Based on the first conformance checks it
seemed that some uses dependencies were missing in the
original component model, which was confirmed by the
architect. Conversely, several rules were added, mainly based
on additional information obtained in an interview of the
system’s architect.

The most relevant modules and rules are discussed below.
A full specification of the modules, the assigned software units
and the checked rules is provided in the next section.

 The Service layer is composed of four submodules, of
which only ServiceImplementation is allowed to use the
Logic layer, and more specific, only BusinessProcesses.
Furthermore, each submodule of Service is allowed to use
only one specified other module within Service.

 The Logic layer is composed of three encapsulated
modules, BusinessProcesses, BusinessComponents, and
Pipelines which may be used only via their interfaces.
Furthermore, it is visible that only BusinessComponents
and Pipelines are allowed to use Microsoft’s
CommerceServer.

 The Data layer is composed of two modules, which may be
used by a few modules only: DataAccess only by
BusinessComponents, and Serviceagent only by
BusinessProcesses and BusinessComponents. DataAccess
is the only module allowed to use library System.Data.

Nearly all modules in the three layers are allowed to use
Common, but module Common.Infrastructure may only be
used via its interface. For reasons of clarity, the graphical
model is simplified at this point, since (not visible in Fig. 2)
ServiceContracts, ServiceHost, Pipeline, and DataAccess are
exceptions, which are not allowed to use module Common.

IV. ARCHITECTURE COMPLIANCE CHECK

A. Intended architecture in HUSACCT

Defining an intended architecture starts with the specification
of the modules in the view Define intended architecture, visible
in Fig. 4. This view shows the modules in the module hierarchy
of the intended architecture of ServiceComponent. When a
module is added, a module type may be selected. As visible in
Fig. 4, all five supported module types are present in the
intended architecture: components, interfaces, layers,
subsystems, and external systems.

Rule definition is enabled from the same view as well.
Fig. 4 shows that two rules are defined for the selected module
BusinessProcesses. One rule is of type Facade convention,
which forbids usage of the component other than via its
interface(s). This rule is automatically generated, when a
module of type Component is created. The other rule is of type
“Is not allowed to use”, and it restricts the usage of module
Data.DataAccess.

A table with all rules, including their exceptions is provided
below. Table I shows that 17 rules of eight different types of
rules are included in the intended architecture. The table is
generated as part of the intended architecture report. This
report also contains a table with all modules, their type, and the
assigned software units per module, but for of reasons of space
this table is not included here.

Finally, assignment of implemented software units to the
intended modules is supported in this view too. Fig. 4 shows
that module BusinessProcesses has two assigned software units
in the implemented architecture. Software units can be
assigned easily, after source code analysis, by selection of units
provided in an overview. If the required knowledge is
available, the assignment of software units to modules in
HUSACCT can be completed in ten minutes, in a case like this
one.

Fig. 4. Intended Architecture as defined in HUSACCT

Authors’ Final Version - © 2016 IEEE (ieeexplore.org)

B. Architecture Violations

Activation of the compliance check starts up a process that
iterates through the rules, and for each rule it checks if there is
a class or dependency that violates the rule. Each type of rule
has its own checking algorithm that also takes the exceptions to
a rule into account.

An overview of the results of the SACC of the
ServiceComponent is presented in Table II. The table shows
that ten of the seventeen rules are violated, with a total of 654
violations of the rules. Since all violated rules are constraining
uses-relations, each violation represents a forbidden
dependency of a class on another class.

V. REASONING ON THE ARCHITECTURE AND THE VIOLATIONS

A. Reasoning on the Modular Architecture

In general, the ServiceComponent appeared to be well-

structured. We noted the following arguments:

 Layers are distinguished.

 Modules within the layers represent different types of
functionality, which are in most cases quite well
represented by the namespace names.

 The mapping of the intended architecture on the
implemented architecture (the implementation units in
the source) is in most cases straightforward, since the
intended modules map to one or two complete
namespaces only.

 In favor of the encapsulation of four modules,
interfaces are provided.

 Data.DataAccess, and Data.ServiceAgent are
implemented as gateways to reduce dependencies on
infrastructural libraries.

 The intended architecture has been stable through the
years, although the number of provided user services,
which are processed by the system, has grown the last

TABLE I. ALL RULES AND EXCEPTIONS

Id Exception From module Rule type To module Expression

1 Common.Infrastructure Facade convention

2 Common Is only allowed to use External

3 Data.DataAccess Is the only module allowed to use External.SystemData

4 Data Is not allowed to back call

5 Logic.BusinessComponents Facade convention

6 Logic.BusinessComponents Is not allowed to use Logic.BusinessProcesses

7 Logic.BusinessProcesses Is not allowed to use Data.DataAccess

8 Logic.BusinessProcesses Facade convention

9 Logic.Pipeline Is not allowed to use Data

10 Logic.Pipeline Is the only module allowed to use External.CommerceServer

Exception Logic.BusinessComponents Is allowed to use External.CommerceServer

11 Logic.Pipeline Facade convention

12 Logic Is not allowed to back call

13 Service.ServiceAgent Is only allowed to use Service.ServiceContracts

Exception Service.ServiceAgent Is allowed to use Common

Exception Service.ServiceAgent Is allowed to use External.System

14 Service.ServiceContracts.Messages Naming convention *Response

Exception Service.ServiceContracts.Messages Naming convention exception *Request

15 Service.ServiceContracts Is only allowed to use External

16 Service.ServiceImplementation Is only allowed to use Service.ServiceContracts

Exception Service.ServiceImplementation Is allowed to use Common

Exception Service.ServiceImplementation Is allowed to use Logic.BusinessProcesses

Exception Service.ServiceImplementation Is allowed to use External.System

17 Service Is not allowed to skip call

TABLE II. ALL VIOLATED RULES WITH THE NUMBERS OF REPORTED VIOLATIONS

Id Logical module from Rule type Logical module to Violations

1 Common.Infrastructure Facade convention Common.Infrastructure 496

2 Data.DataAccess Is the only module allowed to use External.SystemData 7

3 Data Is not allowed to back call Data 12

4 Logic.BusinessComponents Facade convention Logic.BusinessComponents 5

5 Logic.BusinessProcesses Is not allowed to use Data.DataAccess 3

6 Logic.BusinessProcesses Facade convention Logic.BusinessProcesses 6

7 Logic.Pipeline Is the only module allowed to use External.CommerceServer 3

8 Logic.Pipeline Facade convention Logic.Pipeline 81

9 Service.ServiceAgent Is only allowed to use Service.ServiceContracts 2

10 Service.ServiceImplementation Is only allowed to use Service.ServiceContracts 39

Total: 654

Authors’ Final Version - © 2016 IEEE (ieeexplore.org)

three years from 15 to 60 different services.

B. Facilities to Support Reasoning on Violations

To support reasoning on the impact of the violations, several
options are provided, from high-level overviews to a code
viewer to study the code construct that causes a violation. In
our experience, an overview of the violated rules, their types,
and the number of violations per rule, is a good starting point.
Table II provides such an overview. This table is part of the
Validate conformance view in the user interface and it is also
included in a generated document, the violation report.

The Validate conformance view can be used to study the
causes and, if needed, to dig to the source of a violation. If a
violated rule is selected in this view, the underlying violations
with their details are listed. A double click on a violation
activates the code viewer, which shows the source code of the
related from class and highlights the line which holds the
violating code construct.

In addition, the reported violations may be shown in
intended architecture diagrams, which show only modules
included in the defined intended architecture with their
dependencies, and in implemented architecture diagrams,
which show all packages and classes in the source. Intended
architecture diagrams are often easier to comprehend. They
show the logical type of each module, and they include fewer
elements, since one module in the intended architecture may
represent several software units in the code. Fig. 5 shows an
intended architecture diagram with the top-level modules and
the dependency relations between the assigned software units
in the implementation. A black, dashed arrow in the diagram
represents dependencies only. The related number indicates the
number of dependencies. A red, dotted arrow represents

violations and dependencies. The first related number indicates
the number of violations, while the second indicates the total
number of dependencies. Fig. 6 shows an intended architecture
diagram of the top level modules with their children. Only the
violating dependencies between the child modules are
included, since inclusion of all other dependency arrows result
in an unreadable diagram.

The diagrams provide an overview of the modules and their
types, the origin of the violations and the numbers of
violations. However, they do not show the cause(s) of a
violation, since violations of different rules, from different
types may be represented by a same red, dotted arrow. For

Fig. 5. Intended architecture diagram, top level modules

Fig. 6. Intended architecture diagram, top level modules with child modules; violations only

Authors’ Final Version - © 2016 IEEE (ieeexplore.org)

example, the arrow in Fig. 5 from Service to Logic might
represent violations to six different rules of two different rule
types. To browse relevant information, an arrow may be
selected in the diagram to activate a pop-up that lists the
represented violations (or dependencies) with their properties.

C. Analysis of the Reported Violations

Ten out of 17 architectural rules were reported to be violated in
the implemented architecture. We analyzed the violations per
rule to get an impression of the number of modules and number
of classes that caused the violations. Below, we list some of our
findings, sorted per type of rule.

 Facade conventions are related to the facade pattern [8].
Violations to this type of rule form the largest group of
violations (rule 1, 4, 6, and 8 in Table II). This type of
violations compromises the encapsulation of components
by direct usage of internal classes, thus bypassing the
component’s interface. In this case, the encapsulation is
compromised of all three components in the Logic layer
and of component Common.Infrastructure.

 In case of component PipeLine, the interface is
bypassed in 81 occasions by seven classes in three
different modules (BusinessProcesses,
BusinessComponents, and ExternalServiceAgent).

 The interface of component BusinessComponents is
bypassed in 5 occasions by two classes in module
BusinessProcesses and one in ExternalServiceAgent.

 The interface of component BusinessProcesses is
bypassed in 6 occasions by one class in module
ExternalServiceAgent.

 The interface of component Infrastructure is bypassed
in 496 occasions. A high number, so we studied the
causes in more depth. Twelve of the 31 classes of
Infrastructure are used in the violations. Five of the
twelve classes appeared to be shielded by an interface,
but seven were not. These seven were subject in 322
violations. Of these, 139 violations were usages of
three exception classes; each one specific for a
component in the logic and data layer.

 Back call rules are related to the layer pattern [9].
Violations are limited to rule 3 only. The twelve back calls
from layer Data to layer Logic are caused by one class in
Data.ExternalServiceAgents, which is using two different
classes of module Logic.Pipeline and two different classes
of module Logic.BusinessComponents.

 Is the only module allowed to use rules indicate the
application of the gateway pattern [10], a refinement of the
adapter pattern [8]. Two rules (2 and 7 in Table II) are of
this type and restrain usage of System.Data and
CommerceServer respectively. Rule 2 is violated by seven
different classes in Logic.BusinessComponents. Rule 7 is
violated by one class in Logic.BusinessProcesses and one
class in Data.ServiceAgent. The reported number of
violations is lower than in reality, since, in case of external
systems in combination of C#, only dependencies caused
by using statements are reported.

 Rules of the types Is only allowed to use, and Is not
allowed to use, restrict the responsibility of a module [3].
The violations to rule 5, 9, and 10) indicate that a module

has more implemented responsibilities than designed
responsibilities, with the risk of duplications and reduced
maintainability. The numbers of violating classes is
respectively 1, 1, and 5. Especially module
Service.ServiceImplementation requires attention, since it
exceeds its designed responsibilities substantially.

D. Interpretation of the Violations

We discussed the results of the SACC with the architect of the
system, based on the SACC report. We were interested in his
opinion on the validity and interpretation of our findings.

To start with the validity: the architect approved our
findings. Moreover, he asked if it is possible to include
HUSACCT in the build procedure of the software development
process, in order to prevent violations as reported. Since
HUSACCT can perform an SACC in batch mode too, the
answer was positive. Furthermore, the architect expressed the
intention to solve the reported violations when the
ServiceComponent would be extended or adjusted.

With respect to the interpretation of the findings, we
focused on the severity of the reported violations and on
possible adjustments of the intended architecture. The most
interesting opinions of the architect are summarized below.

1) Severity of the Violations
The violations of the two rules of type Is the only module
allowed to use (rule 1 and 8 in Table II) are severe. For
instance, effort has been devoted to enable replacement of
CommerceServer, so the usages by BusinessProcesses and
ServiceAgents are undermining this intention. In general,
skipping a gateway to an external system is severe; more
serious than bypassing an interface of an internal component.

The back call from Data to Logic (rule 2) is unexpected.
Violations of the layered model undermine the core of the
architecture and might have serious consequences. However,
the number of violations is small and in this case possibly
relatively simple to analyze and repair.

The violations caused by module ServiceImplementation
are very serious and will take a lot of effort to repair. The
module exceeds its responsibility by far, indicated by 39
violations to rule 10 of type Is only allowed to use.
ServiceImplementation makes use of BusinessComponents and
Pipeline, bypassing BusinessProcesses, with as consequence
that it duplicates responsibility of these components.
Furthermore, it violates the facade convention (rule 5) of
component BusinessProcesses. The violations may be the result
of convenience. For example, in a situation where a new
business process or a new business component is needed, a
developer might choose a short track.

Bypassing the interfaces of the three components in the
Logic layer (rule 4, 6, 7 in Table II) is problematic, but the
severity is not equal in all cases. In general, bypassing an
interface of a component in another layer is more serious than
bypassing an interface of a component in the same layer.
Consequently, the violations by Service.ServiceImplementation
and Data.ExternalServiceAgent are more serious than those
caused by the components within the Logic layer.

Authors’ Final Version - © 2016 IEEE (ieeexplore.org)

2) Adjustment of the Intended Architecture
The architecture is really intended, so will not be adjusted,
based on the SACC. However, an exception applies: the facade
convention of module Common.Infrastructure. The interface
classes of this component were added for reasons of testability
and should not be removed, but the facade convention rule
seems to be valid for only a part of the contained classes.

E. Architecture Erosion

To answer research question 3, we analyzed another version of
the source code, nearly three years older. Version 2 in Table III
represents the current version at the moment of the SACC
(May 2015), while version 1 was nearly three years older.
Table III shows that architecture compliance has decreased in
these three years, indicating architecture erosion. The number
of violated rules has increased (from seven in version 1 to ten
in version 2) as well as the number of violations (from 586 in
version 1 to 654 in version 2; an increase of 12 percent).
Exclusion of rule 3, because of its relatively very high number
of violations, results in an increase of 80 percent going from
version 1 to version 2.

Interestingly, nearly all rules show an increase in the
number of violations in version 2. For nine rules, the number of
violations increased, and for one rule the number of violations
stayed equal.

The system architect could not remind causes for the
increase in violations over the versions, since they had taken
place over the years. Finally, we looked for possible
correlations between rule type and fluctuations in the number
of violations, but we did not find a meaningful pattern.

VI. DISCUSSION

A. Answers to the Research Questions

The case study of the ServiceComponent within the
Ecommerce system has provided answers to the research
questions described in Section I.

1) Is SRMA support suitable within the context of the case?
To answer this question, we studied the fit between the types of
modules and rules in the intended architecture of the case
system and the sets of types provided by HUSACCT. We
concluded with an affirmative answer, based on the following

arguments.

 All five types of modules supported by HUSACCT are
included in the intended architecture of the case system:
Layer, Components with Interface, Subsystem, and
External system.

 Eight of the eleven types of rules supported by HUSACCT
are included in the intended architecture of the case system,
and six of them occur more than once. The three rule types
not used in this case are: Inheritance convention, Visibility
convention, and Must use. On further consideration, Must
use rules could have been added to all rules of the types Is
only allowed to use and Is the only module allowed to use .

 We did not encounter logical rules that could not be
included in the intended architecture within the tool, nor
logical rules that required a lot of rules at tool level.

 We did not encounter module types with semantics that do
not fit within the provided set of five module types.
However, we have put a potential new module type on our
think-list: Gateway, with as default rule type Is the only
module allowed to use.

2) Is SRMA support useful in the SACC process?
An affirmative answer to this question is based on the
arguments below.

 The semantical differences between the different modules
helped to comprehend the intended architecture and to
specify the architectural constraints. The module types and
rule types helped to express the main principles and
patterns of the case system’s modular architecture: layering,
implementation hiding of internal components, and hiding
of relevant external systems (gateway pattern).

 The rule types of the reported violated rules assisted to get
an impression of the severity of the violations. The case
system’s technical leader was able to express expectations
on the impact of certain violations, based on the type of rule
and the position and type of the affected module; without
studying the code.

 The provided extensive SRMA support saved time during
the definition of the intended architecture. For instance,
seven of the seventeen main rules were defined
automatically, based on the type of a created module.

3) Is architecture erosion identifiable in this case?
Yes, comparison of the recent version with a code version

TABLE III. ALL VIOLATED RULES WITH THE NUMBERS OF REPORTED VIOLATIONS IN TWO DIFFERENT VERSIONS

Id Logical module from Rule type Logical module to Violations

vs. 2

Violations

vs. 1

1 Data.DataAccess Is the only module allowed to use xLibraries.System.Data 7 3

2 Data Is not allowed to back call 12 0

3 Infrastructure.Infrastructure Facade convention 496 489

4 Logic.BusinessComponents Facade convention 5 2

5 Logic.BusinessProcesses Is not allowed to use Data.DataAccess 3 0

6 Logic.BusinessProcesses Facade convention 6 0

7 Logic.Pipeline Facade convention 81 77

8 Logic.Pipeline Is the only module allowed to use xLibraries.CommerceServer 3 1

9 Service.EdsServiceAgent Is only allowed to use Service.ServiceContracts 2 2

10 Service.ServiceImplementation Is only allowed to use Service.ServiceContracts 39 12

 Total: 654 586

Authors’ Final Version - © 2016 IEEE (ieeexplore.org)

nearly three years older, revealed an increase of 12 percent of
violations. The average increase of nine out of ten rules
(excluding rule 3) was even 80 percent.

Furthermore, we did not find a meaningful correlation between
the rule types and the fluctuations in violations.

B. Points for Improvement of HUSACCT

During the conduction of the SACC, we noted some points for
improvement of HUSACCT. The following are implemented.

 An intended architecture report was missing. We added one
that provides tabular overviews of all the modules, their
assigned code, and the defined rules with their exceptions.

 The violation report contained a table with all the violation
messages, but missed an overview of violations per rule.
We added an overview of the violated rules (as in Table II)
and an overview of the not-violated rules; also important.

 We missed the option in diagrams to view violations only,
so we added it to improve the comprehensibility of
diagrams with many elements.

The presented intended architecture diagrams are useful to
get an overview of the modules (with their types) that cause the
most violations. But, we missed an intended architecture
diagram that shows the modules (with their types) and the rules
(with their types). Such a type of diagram requires research, so
we have added it to our list of future work.

C. Threats to Validity

To reflect on the limitations of our study, we have made use of
the validity threats as described by Wohlin et al. [11]. It seems
to us that the most relevant limitations of our work are related
to the following types of threats: internal validity, and external
validity.

With respect to the internal validity, we need to mention
that we cannot guarantee that all dependencies and violations
present in the case system’s source code are reported. We have
ensured the validity of the C# code analysis functionality by
means of extensive automated tests, including (though
exceeding) the test cases within the benchmark test [12].
However, since many code variations are possible, some
variations may not be reported (especially not in case of usage
of external systems, as discussed before). Even though not all
individual usages of a class within another class will be
reported, chances are much smaller that not one of these
dependencies will be reported. One of the reasons why we
discussed most violations at rule level, or class level, and not at
the level of individual usages.

The validity can be threatened also by false positives;
incorrect violation messages. However, we think that is quite
unlikely. To ensure validity at this point, we have checked
some of the reported dependencies in code of the case system,
but not all (by far). Moreover, in accuracy tests with SACC-
tools [12], no false positives were detected at all.

With respect to the external validity, it is clear that our findings
cannot be generalized; e.g. the number of architectural
violations present in a software system. We have discussed one
case system of one organization in one country, written in C#,
and tested with HUSACCT. However, in our experience, and

as described in related work, it is quite common that
implemented architectures diverge from intended architectures.

D. Related Work

A survey of Nugroho and Chaudron [13] on design-code
correspondence revealed that design incompleteness is an
important source of non-correspondence. In line with their
finding, we noted that the architecture was not documented
during the main development of the system; only afterwards.

Several other case studies on the application of SACC are
published. Most interesting for comparison to this case study
are studies that mention different types of modules, rules, or
patterns. Buckley et al. [14] describe the results of five case
studies in four organizations. In all five cases, violations were
detected. In support of our approach, the paper describes that
the participating architects were trying to check the
conformance to architectural patterns like layers, and the usage
of facades to attain implementation hiding. Furthermore, the
participants expressed their wish to include the usage of
external components in the analysis.

Herold et al. [15] describe an interesting rule-based
approach to check if a system conforms to six architectural
patterns described in the reference architecture for the German
public administration. Two of their six patterns are related to
the uses style [3], and comparable to two rule types in our
approach (Facade convention, and Is the only module allowed
to use). All eight violations found in this case study are
violating rules of these two patterns. Two other patterns are
related to the decomposition style (a component should have: a
facade; an exception facade). In our approach, violations to
these types of rules are detected manually during the definition
of the intended architecture. Finally, two patterns focus on
restrictions regarding the implementation of component
facades (e.g., each method should be surrounded by a try-catch
clause). Conformance to these two patterns cannot be detected
in our approach. Although layers are present in the reference
architecture, no rules related to layers are checked in this case
study. In contrast, another case study from this research group
[16] focused on compliance to the layered architecture of a
case system. The compliance check revealed that five rules
were violated. In all cases because of back calls.

A comparison between our SRMACC-based approach and
other SACC approaches, like [17], [18], [19], [20] and [21] is
discussed in [6]. Furthermore, in [5] we reported on the results
of an SRMA-test on eight academic and commercial SACC-
tools. We demonstrated that the SRMA support of these tools
was limited. Only three1 of the eight tested tools in this study
were providing some kind of support for layers, components,
and facades. SAVE supported the graphical definition of
different types of modules, but provided no further support of
their semantics in the SACC process. Sonargraph Architect
supported the facade pattern explicitly. Structure101 supported
the concept of layering explicitly. Compared to these tools, our
approach adds extensive and configurable support of five

1 SAVE - version 1.7 - iese.fraunhofer.de;

Sonargraph Architect - version 7.0 - hello2morrow.com;

Structure101 - version 3.5 - structure101.com.

Authors’ Final Version - © 2016 IEEE (ieeexplore.org)

common module types and eleven rule types in a consistent
way, which allows extension of the set of types. Furthermore,
in our approach violations are communicated per rule with an
explicit rule type, to aid architecture reasoning.

VII. CONLCUSION

In this case study, we have applied a Software Architecture
Compliance Checking (SACC) approach that acknowledges
semantical differences between different types of modules and
rules in the intended architecture. In the previous sections, we
introduced the case system (a governmental application),
presented the intended architecture of this system, and we
described the number and causes of the detected violations of
ten of the seventeen rules. In addition, we described the
interpretation of the violations by the system’s software
architect.

Furthermore, we have demonstrated how the different rule
types aid architecture reasoning, and how the types of rules
indicate architectural measures or patterns in the intended
architecture. This knowledge is valuable during the
interpretation of the severity of violations.

We started the case study with a number of research
questions, which are finally answered as follows.

1) Is SRMA support suitable within the context of the case?
Yes, a suitable module or rule type could be assigned to all
modules and rules of the intended architecture of the case
system. Furthermore, the case’s intended architecture
appeared to contain modules of all five supported types,
and rules of eight of the eleven supported types.

2) Is SRMA support useful in the SACC process?
Yes, the differences in type between the modules and rules
help to comprehend the intended architecture, and they aid
reasoning on the severity of the detected violations.
Furthermore, since a part of the modules and rules is
generated automatically, based on semantic relations, time
is saved during the registration of the intended architecture.

3) Is architecture erosion identifiable in this case?
Yes, comparison with a nearly three years older code
version revealed an increase in the number of violated rules
and in the number of violations per rule.

In the course of the SACC process, we noticed a number of
points for improvement of HUSACCT, the used SACC-tool.
Several of these improvements have been implemented, but
one (an additional type of intended architecture diagram that
visualizes the different types of rules that constrain the
modules) requires proper research, so we have added it to our
list of future work. This list contains more items. For example,
we intend to perform more case studies, and we intend to study
how architects use HUSACCT. Furthermore, we intend to
study the effect of the inclusion of an SACC-tool in the
software development process of a professional organization.

REFERENCES

[1] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Commun. ACM, vol. 15, no. 12, pp. 1053–1058, Dec. 1972.

[2] D. E. Perry and A. L. Wolf, “Foundations for the Study of Software
Architecture,” ACM SIGSOFT Softw. Eng. Notes, vol. 17, pp. 40 – 52,
1992.

[3] P. Clements, F. Bachmann, L. Bass, D. Garlan, P. Merson, J. Ivers, R.
Little, and R. Nord, Documenting Software Architectures: Views and
Beyond. Pearson Education, 2010.

[4] S. Ducasse and D. Pollet, “Software Architecture Reconstruction: A
Process-Oriented Taxonomy,” IEEE Trans. Softw. Eng., vol. 35, no. 4,
pp. 573–591, 2009.

[5] L. Pruijt, C. Köppe, and S. Brinkkemper, “Architecture Compliance
Checking of Semantically Rich Modular Architectures: A Comparison
of Tool Support,” in 2013 IEEE International Conference on Software
Maintenance, 2013, pp. 220–229.

[6] L. Pruijt and S. Brinkkemper, “A metamodel for the support of
semantically rich modular architectures in the context of static
architecture compliance checking,” in WICSA 2014 Companion Volume,
2014, pp. 1–8.

[7] L. Pruijt, C. Köppe, J. M. van der Werf, and S. Brinkkemper,
“HUSACCT: Architecture Compliance Checking with Rich Sets of
Module and Rule Types,” in Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering - ASE ’14,
2014, pp. 851–854.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissedes, Design Patterns:
Elements of Reusable Object-Oriented Software. Pearson Education,
1995.

[9] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture: A System of Patterns, Volume
1. John Wiley & Sons, 1996.

[10] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, M. Mee, and R. Stafford,
Patterns of enterprise application architecture. Addison-Wesley,
Boston, MA, USA, 2003.

[11] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.
Wesslén, Experimentation in Software Engineering. Springer, 2012.

[12] L. Pruijt, C. Köppe, and S. Brinkkemper, “On the Accuracy of
Architecture Compliance Checking: Accuracy of Dependency Analysis
and Violation Reporting,” in 21st International Conference on Program
Comprehension, 2013, pp. 172–181.

[13] A. Nugroho and M. R. V. Chaudron, “A Survey of the Practice of
Design -- Code Correspondence amongst Professional Software
Engineers,” in First International Symposium on Empirical Software
Engineering and Measurement (ESEM 2007), 2007, pp. 467–469.

[14] J. Buckley, N. Ali, M. English, J. Rosik, and S. Herold, “Real-Time
Reflexion Modelling in Architecture Reconciliation: A Multi Case
Study,” Inf. Softw. Technol., vol. 61, pp. 107–123, 2015.

[15] S. Herold, M. Mair, A. Rausch, and I. Schindler, “Checking
Conformance with Reference Architectures: A Case Study,” in
Enterprise Distributed Object Computing Conference (EDOC), 2013,
pp. 71–80.

[16] C. Deiters, P. Dohrmann, S. Herold, and A. Rausch, “Rule-based
architectural compliance checks for enterprise architecture
management,” in Proceedings - 13th IEEE International Enterprise
Distributed Object Computing Conference, EDOC 2009, 2009, pp. 183–
192.

[17] G. C. Murphy, D. Notkin, and K. Sullivan, “Software reflexion models,”
ACM SIGSOFT Softw. Eng. Notes, vol. 20, no. 4, pp. 18–28, Oct. 1995.

[18] J. Knodel and D. Popescu, “A Comparison of Static Architecture
Compliance Checking Approaches,” in Working IEEE/IFIP Conference
on Software Architecture, 2007, pp. 12–21.

[19] J. Adersberger and M. Philippsen, “ReflexML: UML-based architecture-
to-code traceability and consistency checking,” in 5th European
Conference on Software Architecture, 2011, pp. 344–359.

[20] R. Koschke and D. Simon, “Hierarchical Reflexion Models,” in Working
Conference on Reverse Engineering, WCRE, 2003, pp. 36-45.

[21] R. Rahimi and R. Khosravi, “Architecture conformance checking of
multi-language applications,” Int. Conf. Comput. Syst. Appl., pp. 1–8,
May 2010.

