

Proceedings2020, 47, 9; doi:10.3390/proceedings47010009 www.mdpi.com/journal/proceedings

Proceedings

The Neural Network Zoo †
Stefan Leijnen 1,2,* and Fjodor van Veen 1

1 The Asimov Institute, 3526 KS Utrecht, The Netherlands; fjodor@asimovinstitute.org
2 Artificial Intelligence Research Group, Utrecht University of Applied Sciences,

3584 CS Utrecht, The Netherlands
* Correspondence: stefan@asimovinstitute.org
† Conference Theoretical Information Studies (TIS), Berkeley, CA, USA, 2–6 June 2019.

Published: 12 May 2020

Abstract: An overview of neural network architectures is presented. Some of these architectures
have been created in recent years, whereas others originate from many decades ago. Apart from
providing a practical tool for comparing deep learning models, the Neural Network Zoo also
uncovers a taxonomy of network architectures, their chronology, and traces back lineages and
inspirations for these neural information processing systems.

Keywords: artificial intelligence; connectionism; neural information processing; neural networks;
deep learning; neural network architectures

1. Introduction

The past decade has witnessed a spectacular rise of interest in artificial intelligence, driven by
large volumes of data being available for machine learning, decreasing costs for data storage and
graphics processing units, and a technical and commercial infrastructure that allows for the
commodification of intelligent applications. Deep learning, a particular branch of artificial
intelligence that involves machine learning using multi-layered neural network models, is generally
considered a key technology for the recent success in artificial intelligence. In order to gain insight
into the interdependencies between these neural network models, and to support the discovery of
new types, we decided to create a taxonomy of neural networks, uncovering some of the inspirations
and underlying lineages of network architectures. This effort has resulted in the Neural Network
Zoo, shown in Figure 1. For each of the models depicted, we wrote a brief description that includes a
reference to the original publication.

2. Neural Network Architectures

2.1. Feed Forward Neural Networks

Feedforward neural networks, including perceptrons [1] and radial basis function networks [2],
transform patterns from input to output. They are the archetypical neural network, having layers that
consist of either input, hidden or output nodes. Nodes are connected between adjacent layers, which
can be fully connected (every neuron from one layer to every neuron in another layer). The minimal
network has two input cells and one output cell that can be used to model logic gates, for example.
Backpropagation is a common learning algorithm where the network is shown pairs input and
expected output, and the strength of the connections between nodes is updated based on the model’s
success in predicting. Theoretically, given infinite neurons in a single, nonlinear hidden layer, any
relation between input and output patterns can be learned. However, having multiple hidden layers
(thereby creating a deep network) can, in practice, lead to a more efficient learning process.

Proceedings 2020, 47, 9 2 of 6

Figure 1. An overview of neural network architectures [3].

2.2. Recurrent Neural Networks

Recurrent networks are feedforward networks with connections within layers. Therefore, they
are not stateless and the timing and order in which input is structured matters. This allows recurrent
networks to find structure in time [4]. They can also be used with data modalities that are time-
independent, such as images, by representing those as a sequence (e.g., of pixels). Training these
networks may yield vanishing (or exploding) gradients, where, depending on the activation
functions used, information gets lost (or amplified) over time, similar to how very deep feedforward
networks can lose information in depth.

2.3. Long Short-Term Memory

LSTMs [5] provide a resolution for the vanishing and exploding gradient problems, by
introducing gates and explicitly defined memory cells. Each node has a memory cell and three gates:

Proceedings 2020, 47, 9 3 of 6

Input, output, and forget. The function of these gates is to protect the loss of information by stopping
or allowing it to flow. The input gate determines how much of the information from the previous
layer is stored in the cell. The output gate determines what the next layer gets to know about the state
of this cell. The forget gate prevents new information from being ignored. Gated recurrent units [6]
are LSTMs with a different set of gates, making them faster but less expressive.

2.4. Autoencoders

Autoencoders [7] compress (encode) and regenerate (decode) information by transforming it
through a smaller hidden layer with symmetrical surrounding layers. The resemblance between
input and output can be used as a measure of success for the compression. Variational autoencoders
[8] share a similar architecture, but instead, learn an approximate probability distribution of the input
patterns grounded in Bayesian inference and modeling causal relations. Denoising autoencoders [9]
are yet another type of autoencoder, where the input data are processed through a random noise
filter (e.g., making an image grainy). The output is still compared to the original input image, so the
network learns to ignore some of the detailed features that are not causally relevant. Finally, sparse
autoencoders [10] do much of the inverse as they project information to a larger, rather than smaller,
hidden layer. This allows the network to focus on smaller features in compressing and reconstructing
the input data. To prevent information from being copied perfectly between layers, a filter is used for
the error that is being backpropagated.

2.5. Hopfield Networks and Boltzmann Machines

In Hopfield networks [11], each neuron is connected to all other neurons, and all neurons are
both input and output nodes. (Restricted) Boltzmann machines [12,13] are similar to the extent that
only some neurons are input neurons, while others are hidden. Restricted Boltzmann machines do
not have full connectivity between neurons, making them typically more efficient to be used for
learning, particularly when they are stacked on top of each other in a so-called deep belief
network [14]. Hopfield Networks and Boltzmann machines are trained by clamping the value of the
input neurons to the desired pattern, after which the weights are learned. Once trained, the network
will converge to one of the learned patterns and stay stable in one of these attractor states, in part due
to the total energy in the network being reduced incrementally during training, similar to the Ising
model. These network types are also called associative memories because they converge to the most
similar state compared to their input. Markov Chains [15], though not neural network architectures
themselves, are also included in this overview as they can be considered as predecessors.

2.6. Convolutional Networks

Convolutional networks [16] are deep learning architectures that typically contain convolutional
and pooling layers, used for approximate scanning of patterns that are often spatially correlated. As
such, they are useful for image processing, but they can be applied to other data modalities as well.
Deconvolutional layers [17] produce the inverse results and can, therefore, be used for image
generation. Deep convolutional inverse graphics networks [18] are yet another type that can be used
to (partially) generate images, being similar to variational autoencoders but equipped with
convolutional nodes for the encoding and decoding layers.

2.7. Generative Adversarial Networks

Generative adversarial networks [19] or GANs actually consist of two networks, one tasked with
generating data (the generator), the other with predicting whether the data have been generated or
not (the discriminator). The predictive success of the discriminator is used as an error gradient for
the generator. This setup aims for the discriminator to get better at distinguishing real data from
generated data, while the generator learns to become less predictable. This dynamical interplay can
be viewed as a kind of Turing test, or a neural correlate of the Minimax algorithm. The learning

Proceedings 2020, 47, 9 4 of 6

process is relatively difficult to balance since it will not converge when either the generator or the
discriminator is too successful at its respective task.

2.8. Liquid State Machines and Echo State Machines

Liquid State Machines [20] are not organized into neat layers, but rather, connections are
randomly drawn between neurons with threshold functions that allow for the accumulation of
activity over time, creating spiking activity patterns. Consequently, instead of using
backpropagation, the input neurons are activated and the activity signals are propagated forward
through the hidden neurons. The resulting propagation of signals itself is used for learning by a
separate observer network that produces the output. Echo State Machines [21] replace these spiking
neurons with the regular sigmoid activation neurons. Extreme Learning Machines [22] are similar
but do not have recurrent connections, allowing them to be trained fast using a learning algorithm
based on least-squares fit.

2.9. Deep Residual Networks

Another example of a network architecture that lacks structured layers are deep residual
networks [23], feedforward networks where connections can pass any number of hidden layers. This
makes them similar to recurrent neural networks but without the time preserving structure.

2.10. Neural Turing Machines and Differentiable Neural Computers

Neural Turing Machines [24] can be understood as an abstraction of LSTMs, and an attempt to
make neural networks more explainable. Instead of coding a memory cell into a neuron, the memory
is separated as a content-addressable memory where the neural network can write to and read from,
making them Turing complete. Differentiable Neural Computers [25] are a further abstraction, with
scalable memories. They also feature three attention mechanisms that allow the network to query the
similarity of input to the memory entries, the temporal relationship between two memory entries,
and whether a memory entry was recently updated.

2.11. Attention Networks

Attention networks [26] represent a class of networks rather than a particular architecture. They
employ an attention mechanism to prevent information from vanishing by separately storing
previous network states and switching attention between the states. This context can be visualized,
providing interesting insights into the correlations between input features and predictions.

2.12. Kohonen Networks

Kohonen networks [27], or self-organizing maps, utilize competitive learning to classify input
data without knowing the expected output, using an aesthetic objective function for successful
classification. After presenting an input pattern, the network assesses which of its nodes most closely
matches this input, and then adjusts them together with their neighboring nodes to further improve
the matching.

2.13. Capsule Networks

Capsule networks [28] provide a biologically plausible alternative to pooling layers. Neurons
are connected with a weight vector rather than a scalar value. This allows neurons to simultaneously
transfer multiple types of information, e.g., not only which feature is detected but also where it is
detected in a picture and what is its color and orientation. The learning algorithms are also
biologically inspired by Hebbian learning that places value on accurate predictions of output in the
next layer.

Proceedings 2020, 47, 9 5 of 6

3. Conclusions

Considered chronologically, the network architectures presented in this paper generally grow
in complexity, both in terms of numbers of layers and in types of neurons involved. We speculate
that this trend is caused by the field of neural information processing systems becoming increasingly
embraced by the engineering community, leading to a continued emphasis on practical applicability
over biological inspiration and plausibility. Time will tell if this trend is here to stay.

This overview of neural networks aims to provide a list of the most popular methods used in
deep learning, yet is far from complete. Moreover, new models will emerge. As they do, we will
welcome these strange beasts into the Neural Network Zoo.

References

1. Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain.
Psychol. Rev. 1958, 65, 386.

2. Broomhead, D.S.; Lowe, D. Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive
Networks; RSE-MEMO-4148; Royal Signals and Radar Establishment Malvern: Farnborough, UK, 1988.

3. The Neural Network Zoo. Available online: http://www.asimovinstitute.org/neural-network-zoo (accessed
on 10 April 2020).

4. Elman, J.L. Finding structure in time. Cogn. Sci. 1990, 14, 179–211.
5. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780.
6. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on

sequence modeling. arXiv 2014, arXiv:1412.3555.
7. Bourlard, H.; Kamp, Y. Auto-association by multilayer perceptrons and singular value decomposition.

Biol. Cybern. 1988, 59, 291–294.
8. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
9. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with

denoising autoencoders. In Proceedings of the 25th International Conference of Machine Learning,
Helsinki, Finland, 5–9 July 2008.

10. Ranzato, M.A.; Poultney, C.; Chopra, S.; Cun, Y.L. Efficient learning of sparse representations with an
energy-based model. In Proceedings of the NIPS, Vancouver, BC, Canada, 3–6 December 2007.

11. Hopfield, J.J. Neural Networks and physical systems with emergent collective computational abilities.
Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558.

12. Hinton, G.E.; Sejnowski, T.J. Learning and relearning in Boltzmann machines. Parallel Distrib. Process.
Explor. Microstruct. Cogn. 1986,1, 282-317.

13. Smolensky, P. Information Processing in Dynamical Systems: Foundations of Harmony Theory; No. CU-CS-321-
86; Colorado Univ at Boulder Dept of Computer Science: Boulder, CO, USA, 1986.

14. Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy layer-wise training of deep networks.
Adv. Neural Inf. Process. Syst. 2007, 19, 153.

15. Hayes, B. First links in the Markov chain. Am. Sci. 2013, 101, 252.
16. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.

Proc. IEEE 1998, 86, 2278–2324.
17. Zeiler, M.D.; Krishnan, D.; Taylor, G.W.; Fergus, R. Deconvolutional networks. In Proceedings of the 2010

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA,
13–15 June 2010.

18. Kulkarni, T.D.; Whitney, W.F.; Kohli, P.; Tenenbaum, J. Deep convolutional inverse graphics network.
In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12
December 2015.

19. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems,
Montreal, QC, Canada, 7–12 December 2014.

20. Maas, W.; Natschläger, T.; Markram, H. Real-time computing without stable states: A new framework for
neural computation based on pertubations. Neural Comput. 2002, 14, 2531–2560.

21. Jaeger, H.; Haas. H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless
communication. Science 2004, 304, 78–80.

Proceedings 2020, 47, 9 6 of 6

22. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing
2006, 70, 489–501.

23. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385.
24. Graves, A.; Wayne, G.; Danihelke, I. Neuralturing machines. arXiv 2014, arXiv:1410.5401.
25. Graves, A.; Wayne, G.; Reynolds, M.; Harley, T.; Danihelka, I.; Grabska-Barwińska, A.; Colmenarejo, S.G.;

Grefenstette, E.; Ramalho, T.; Agapiou, J. Hybrid computing using a neural network with dynamic external
memory. Nature 2016, 538, 471–476.

26. Jaderberg, M.; Simonyan, K.; Zisserman, A. SpatialTransformer Network. In Proceedings of the Advances
in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 2017–2025.

27. Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69.
28. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic Routing Between Capsules. In Proceedings of the Advances

in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3856–3866.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

