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Abstract: An overview of neural network architectures is presented. Some of these architectures 
have been created in recent years, whereas others originate from many decades ago. Apart from 
providing a practical tool for comparing deep learning models, the Neural Network Zoo also 
uncovers a taxonomy of network architectures, their chronology, and traces back lineages and 
inspirations for these neural information processing systems. 
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1. Introduction 

The past decade has witnessed a spectacular rise of interest in artificial intelligence, driven by 
large volumes of data being available for machine learning, decreasing costs for data storage and 
graphics processing units, and a technical and commercial infrastructure that allows for the 
commodification of intelligent applications. Deep learning, a particular branch of artificial 
intelligence that involves machine learning using multi-layered neural network models, is generally 
considered a key technology for the recent success in artificial intelligence. In order to gain insight 
into the interdependencies between these neural network models, and to support the discovery of 
new types, we decided to create a taxonomy of neural networks, uncovering some of the inspirations 
and underlying lineages of network architectures. This effort has resulted in the Neural Network 
Zoo, shown in Figure 1. For each of the models depicted, we wrote a brief description that includes a 
reference to the original publication.  

2. Neural Network Architectures 

2.1. Feed Forward Neural Networks  

Feedforward neural networks, including perceptrons [1] and radial basis function networks [2], 
transform patterns from input to output. They are the archetypical neural network, having layers that 
consist of either input, hidden or output nodes. Nodes are connected between adjacent layers, which 
can be fully connected (every neuron from one layer to every neuron in another layer). The minimal 
network has two input cells and one output cell that can be used to model logic gates, for example. 
Backpropagation is a common learning algorithm where the network is shown pairs input and 
expected output, and the strength of the connections between nodes is updated based on the model’s 
success in predicting. Theoretically, given infinite neurons in a single, nonlinear hidden layer, any 
relation between input and output patterns can be learned. However, having multiple hidden layers 
(thereby creating a deep network) can, in practice, lead to a more efficient learning process. 
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Figure 1. An overview of neural network architectures [3]. 

2.2. Recurrent Neural Networks 

Recurrent networks are feedforward networks with connections within layers. Therefore, they 
are not stateless and the timing and order in which input is structured matters. This allows recurrent 
networks to find structure in time [4]. They can also be used with data modalities that are time-
independent, such as images, by representing those as a sequence (e.g., of pixels). Training these 
networks may yield vanishing (or exploding) gradients, where, depending on the activation 
functions used, information gets lost (or amplified) over time, similar to how very deep feedforward 
networks can lose information in depth. 

2.3. Long Short-Term Memory 

LSTMs [5] provide a resolution for the vanishing and exploding gradient problems, by 
introducing gates and explicitly defined memory cells. Each node has a memory cell and three gates: 
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Input, output, and forget. The function of these gates is to protect the loss of information by stopping 
or allowing it to flow. The input gate determines how much of the information from the previous 
layer is stored in the cell. The output gate determines what the next layer gets to know about the state 
of this cell. The forget gate prevents new information from being ignored. Gated recurrent units [6] 
are LSTMs with a different set of gates, making them faster but less expressive. 

2.4. Autoencoders 

Autoencoders [7] compress (encode) and regenerate (decode) information by transforming it 
through a smaller hidden layer with symmetrical surrounding layers. The resemblance between 
input and output can be used as a measure of success for the compression. Variational autoencoders 
[8] share a similar architecture, but instead, learn an approximate probability distribution of the input 
patterns grounded in Bayesian inference and modeling causal relations. Denoising autoencoders [9] 
are yet another type of autoencoder, where the input data are processed through a random noise 
filter (e.g., making an image grainy). The output is still compared to the original input image, so the 
network learns to ignore some of the detailed features that are not causally relevant. Finally, sparse 
autoencoders [10] do much of the inverse as they project information to a larger, rather than smaller, 
hidden layer. This allows the network to focus on smaller features in compressing and reconstructing 
the input data. To prevent information from being copied perfectly between layers, a filter is used for 
the error that is being backpropagated. 

2.5. Hopfield Networks and Boltzmann Machines 

In Hopfield networks [11], each neuron is connected to all other neurons, and all neurons are 
both input and output nodes. (Restricted) Boltzmann machines [12,13] are similar to the extent that 
only some neurons are input neurons, while others are hidden. Restricted Boltzmann machines do 
not have full connectivity between neurons, making them typically more efficient to be used for 
learning, particularly when they are stacked on top of each other in a so-called deep belief  
network [14]. Hopfield Networks and Boltzmann machines are trained by clamping the value of the 
input neurons to the desired pattern, after which the weights are learned. Once trained, the network 
will converge to one of the learned patterns and stay stable in one of these attractor states, in part due 
to the total energy in the network being reduced incrementally during training, similar to the Ising 
model. These network types are also called associative memories because they converge to the most 
similar state compared to their input. Markov Chains [15], though not neural network architectures 
themselves, are also included in this overview as they can be considered as predecessors. 

2.6. Convolutional Networks 

Convolutional networks [16] are deep learning architectures that typically contain convolutional 
and pooling layers, used for approximate scanning of patterns that are often spatially correlated. As 
such, they are useful for image processing, but they can be applied to other data modalities as well. 
Deconvolutional layers [17] produce the inverse results and can, therefore, be used for image 
generation. Deep convolutional inverse graphics networks [18] are yet another type that can be used 
to (partially) generate images, being similar to variational autoencoders but equipped with 
convolutional nodes for the encoding and decoding layers. 

2.7. Generative Adversarial Networks 

Generative adversarial networks [19] or GANs actually consist of two networks, one tasked with 
generating data (the generator), the other with predicting whether the data have been generated or 
not (the discriminator). The predictive success of the discriminator is used as an error gradient for 
the generator. This setup aims for the discriminator to get better at distinguishing real data from 
generated data, while the generator learns to become less predictable. This dynamical interplay can 
be viewed as a kind of Turing test, or a neural correlate of the Minimax algorithm. The learning 
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process is relatively difficult to balance since it will not converge when either the generator or the 
discriminator is too successful at its respective task. 

2.8. Liquid State Machines and Echo State Machines 

Liquid State Machines [20] are not organized into neat layers, but rather, connections are 
randomly drawn between neurons with threshold functions that allow for the accumulation of 
activity over time, creating spiking activity patterns. Consequently, instead of using 
backpropagation, the input neurons are activated and the activity signals are propagated forward 
through the hidden neurons. The resulting propagation of signals itself is used for learning by a 
separate observer network that produces the output. Echo State Machines [21] replace these spiking 
neurons with the regular sigmoid activation neurons. Extreme Learning Machines [22] are similar 
but do not have recurrent connections, allowing them to be trained fast using a learning algorithm 
based on least-squares fit. 

2.9. Deep Residual Networks 

Another example of a network architecture that lacks structured layers are deep residual 
networks [23], feedforward networks where connections can pass any number of hidden layers. This 
makes them similar to recurrent neural networks but without the time preserving structure. 

2.10. Neural Turing Machines and Differentiable Neural Computers 

Neural Turing Machines [24] can be understood as an abstraction of LSTMs, and an attempt to 
make neural networks more explainable. Instead of coding a memory cell into a neuron, the memory 
is separated as a content-addressable memory where the neural network can write to and read from, 
making them Turing complete. Differentiable Neural Computers [25] are a further abstraction, with 
scalable memories. They also feature three attention mechanisms that allow the network to query the 
similarity of input to the memory entries, the temporal relationship between two memory entries, 
and whether a memory entry was recently updated. 

2.11. Attention Networks 

Attention networks [26] represent a class of networks rather than a particular architecture. They 
employ an attention mechanism to prevent information from vanishing by separately storing 
previous network states and switching attention between the states. This context can be visualized, 
providing interesting insights into the correlations between input features and predictions. 

2.12. Kohonen Networks 

Kohonen networks [27], or self-organizing maps, utilize competitive learning to classify input 
data without knowing the expected output, using an aesthetic objective function for successful 
classification. After presenting an input pattern, the network assesses which of its nodes most closely 
matches this input, and then adjusts them together with their neighboring nodes to further improve 
the matching. 

2.13. Capsule Networks 

Capsule networks [28] provide a biologically plausible alternative to pooling layers. Neurons 
are connected with a weight vector rather than a scalar value. This allows neurons to simultaneously 
transfer multiple types of information, e.g., not only which feature is detected but also where it is 
detected in a picture and what is its color and orientation. The learning algorithms are also 
biologically inspired by Hebbian learning that places value on accurate predictions of output in the 
next layer. 
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3. Conclusions 

Considered chronologically, the network architectures presented in this paper generally grow 
in complexity, both in terms of numbers of layers and in types of neurons involved. We speculate 
that this trend is caused by the field of neural information processing systems becoming increasingly 
embraced by the engineering community, leading to a continued emphasis on practical applicability 
over biological inspiration and plausibility. Time will tell if this trend is here to stay. 

This overview of neural networks aims to provide a list of the most popular methods used in 
deep learning, yet is far from complete. Moreover, new models will emerge. As they do, we will 
welcome these strange beasts into the Neural Network Zoo. 
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