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Abstract
Species responding differently to climate change form ‘transient communities’, commu-
nities with constantly changing species composition due to colonization and extinction 
events. Our goal is to disentangle the mechanisms of response to climate change for ter-
restrial species in these transient communities and explore the consequences for biodiver-
sity conservation. We review spatial escape and local adaptation of species dealing with 
climate change from evolutionary and ecological perspectives. From these we derive spe-
cies vulnerability and management options to mitigate effects of climate change. From the 
perspective of transient communities, conservation management should scale up static sin-
gle species approaches and focus on community dynamics and species interdependency, 
while considering species vulnerability and their importance for the community. Spatially 
explicit and frequent monitoring is vital for assessing the change in communities and dis-
tribution of species. We review management options such as: increasing connectivity and 
landscape resilience, assisted colonization, and species protection priority in the context of 
transient communities.
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Introduction

The increase of greenhouse gas concentrations caused by human activities enhances the 
absorption of radiation in the atmosphere leading to an elevation of air temperatures and 
changing precipitation patterns (Suggitt 2017; Felton et  al. 2020). The land surface has 
warmed on average by 1.53 °C (1.38–1.68 °C) over approximately the last 120 years, with an 
acute warming observed from 1980 onwards (IPCC 2019). The last several years are also the 

Communicated by Dirk Sven Schmeller.

 *	 Peter Schippers 
	 Peter.Schippers@wur.nl

Extended author information available on the last page of the article

http://orcid.org/0000-0002-0206-6877
http://orcid.org/0000-0001-7733-148X
http://orcid.org/0000-0002-9795-2248
http://orcid.org/0000-0003-3208-8521
http://orcid.org/0000-0002-4227-7935
http://orcid.org/0000-0003-3808-2999
http://orcid.org/0000-0003-2256-4002
http://crossmark.crossref.org/dialog/?doi=10.1007/s10531-021-02241-4&domain=pdf


2886	 Biodiversity and Conservation (2021) 30:2885–2906

1 3

warmest ever recorded (IPCC 2019). Anthropogenic climate change has affected Earth’s biota 
on all continental territories (Foden,  2019; Hoffmann et al. 2019; Visser and Gienapp 2019). 
These changes affect species survival and colonization both directly and indirectly. This may 
disrupt food webs, change competitive interactions between species, and put major stress on 
species survival (Bowers and Harris 1994; Davis et al. 1998; Ings  2009; Visser and Gien-
app 2019). Species respond to climatic change by shifting their distributions and/or adapt-
ing and surviving in their changing habitats (Bonebrake,  2018; Foden et  al. 2019; Hulme 
2005; Parmesan 2006; Schippers et al. 2011), or else fail to adapt and become extinct (Keith  
2008; Tomiolo and Ward 2018) (Fig. 1). Species may adapt to new conditions through pheno-
typic plasticity (i.e., behavioural, morphological or physiological responses to environmental 
change) or by selection for beneficial and heritable traits (Lawler 2009; Visser 2008) (Fig. 1). 
Alternatively, ‘spatial escape’, a rearrangement in space, depends on species mobility, geo-
graphical possibilities and landscape connectivity (Schippers et al. 2011) (Fig. 1). This will 
only be successful if potential habitat becomes suitable for colonizing species, and if the col-
onizing species can deal with the community formed by both the resident and other newly 
colonizing species (Pearson and Dawson 2003). All in all, climate change triggers a cascade 
of processes inducing changes in species distribution and community composition (Fig.  2) 
and may cause local and even global extinction of species (Figs. 1, 2). We call these chang-
ing communities ‘transient’, i.e. communities with a constantly changing species composition 
and equilibrium. In this paper, we disentangle the mechanisms and consequences of climate 
change for terrestrial species in these ‘transient’ communities and explore the consequences 
for biodiversity conservation.

Fig. 1   Scheme describing cli-
matic impacts on species survival
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How does the increase of greenhouse gas emissions induce transient 
communities?

Direct effects of greenhouse gases

Greenhouse gases are not known to have any direct effects on terrestrial animal species at 
the projected concentrations. For terrestrial plants, however, the increase in atmospheric 
carbon dioxide is expected to enhance the internal CO2 concentration in leaves causing 
higher photosynthetic rates (Lloyd and Farquhar 2008; Zotz et  al. 2005). This decreases 
the water loss per unit carbon gain and thus increases the water use efficiency, enabling 
plants to survive drier conditions (Battipaglia et al. 2013; Lloyd and Farquhar 2008; Soh,  
2019; Zotz et al. 2005). Although the destiny of these assimilates is not always clear (Jiang,  
2020), this CO2 fertilisation effect is expected to stimulate plant growth and may result in a 
higher vegetation growth and cover (Drake et al. 1997; Schippers et al. 2015a). Moreover, 
plants differ in their response to CO2 elevation. For example, C3 and C4 plants differ with 
respect to their CO2 assimilation at various temperature levels; C3 plants (e.g. all woody 
vegetation and most other plants of the temperate and boreal zone) profit more from CO2 
fertilisation than C4 species (e.g. many tropical grasses) (Poorter 1993; Wand et al. 1999). 
Consequently, increased atmospheric CO2 favours tree cover in savannah systems at the 
cost of grasses (Bond et al. 2003). This example shows that increasing CO2 concentration 
can directly affect vegetation structure inducing habitat changes affecting species vital rates 
and ultimately their distribution and survival. Another effect of the increase in CO2 is that 
it changes the plant’s stoichiometry resulting in relatively low nutrient-carbon ratios of the 
plant’s tissue (Huang et al. 2015). Because herbivores are dependent on these nutrients, the 
low concentrations may affect their growth and reproduction (Yuan and Chen 2015) in turn 
altering the food web of the community (Welti et al. 2020).

Fig. 2   Factors affecting the 
number of species in transient 
communities, + predominantly 
an increasing effect of factor on 
introductions or extinctions, − 
predominantly a decreasing effect 
on introductions or extinctions

# Species in 
community

Species introduc�ons
+ Climate change
+ Landscape connec�vity
+ Species mobility
+ Assisted coloniza�on

Species ex�nc�ons
+ Climate change
+ Other human pressures
+ Species interac�ons
- Species adaptability
- Ecosystem resilience



2888	 Biodiversity and Conservation (2021) 30:2885–2906

1 3

Direct effects of climate change

Greenhouse gases absorb radiation in the thermal infrared range and therefore increase 
the atmospheric temperature. The temperature rise is affecting the Earth’s weather sys-
tem with changes in precipitation patterns as well as wind directions and speeds (IPCC 
2014), changing species habitats. Additionally, climate change gives rise to an increase 
in extreme weather events (Coumou and Rahmstorf 2012; IPCC 2014, 2019; Kendon 
et  al. 2014; Verboom et  al. 2010). Temperature is a strong determinant in the spatial 
distribution of species (Araujo et al. 2006; Green et al. 2008; Parmesan  1999; Waldock 
et al. 2018). Species have a specific temperature response with respect to survival and 
reproductive output. Especially the length and severity of winter in combination with 
species adaptations to the cold determine the poleward distribution and upper eleva-
tional limits of most species (Parmesan et al. 2000). In contrast, extreme summer tem-
peratures and droughts govern the lower elevational boundaries and the species distribu-
tion towards the equator (Franco  2006; Jiguet et al. 2006). It is important to note that 
species differ in the specific nature of their temperature tolerance and response, and 
consequently will respond differently to change.

Models predict that precipitation regimes will change due to climatic warming (IPCC 
2014, 2019). Decreases and increases in rainfall amount and frequency are expected in 
large parts of the world and recent studies suggest that the intensity of rainfall events is 
also changing (Felton et al. 2020; Myhre 2019). The anticipated magnitude of precipita-
tion change varies between climate change scenarios. In the Representative Concentra-
tion Pathways (RCP) 2.6 scenario (2 °C increase in 2100), local changes in precipita-
tion are expected between − 20 and + 20%. In the RCP 8.5 scenario (4.3  °C increase 
in 2100) precipitation changes between − 30 and + 60% are expected (IPCC 2014). 
Precipitation is the other important factor determining species distribution (Illan et al. 
2014). Especially plant species will be sensitive to changes in precipitation because the 
water uptake and transpiration determine their growth rate (Felton et al. 2020; Schippers 
et  al. 2015a; Wu et  al. 2011). In general, wetland species like amphibians will suffer 
from precipitation reduction (Griffiths et  al. 2010) whereas precipitation increase will 
stimulate the abundance of wetland species (Lawler et al. 2009). For specialists of dry 
ecosystems, we expect that reduced and increased precipitation both have a negative 
effect on their abundance because precipitation decrease in dry environment induces 
desertification and species loss (Zhang et al. 2020, 2019). Since there is a large varia-
tion in size, behaviour, morphology and physiology of community members we expect 
species to respond differently to temperature and precipitation change. This will drive 
community change (Williams and Jackson 2007) and induce transient communities. 
Although precipitation and temperature data enable researchers to predict the distribu-
tion of species (Harrison et al. 2006; Illan et al. 2014) it is not always clear whether this 
distribution is solely due to direct effects of both precipitation and temperature, or also 
due to biotic conditions such as co-determining species. Moreover, the predictions are 
based on extrapolation of regression models with relations based on data from the past 
in relatively constant conditions, these equations may not be valid for transient commu-
nities where species dynamics and interactions co-determines species presence.

Climate change gives rise to an increase in the frequency, duration and intensity of 
extreme weather events (Coumou and Rahmstorf 2012; Harvey et al. 2020; IPCC 2014, 
2019; Kendon et al. 2014; Verboom et al. 2010). Results of observational studies show 
that in many regions variation in precipitation is amplified, while more temperature 
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extremes are expected (Easterling et al. 2000). These extreme weather events may affect 
population survival (Lawson et  al. 2015). There is evidence that periods of high tem-
peratures and drought pose greatest risks on species survival, but also indirectly through 
forest fires (as we have seen recently in Australia in the 2019–2020 summer and more 
recently in the Pantanal, Brazil) and melting permafrost (Jorgenson  2010; Randerson  
2006).

Effects of biotic interactions

As argued above, increase of atmospheric concentrations of CO2 and attendant climatic 
changes affect species abundance and survival. In ecosystems, however, species are inter-
dependent through food webs (herbivory, predation, foraging), competition for resources, 
pollination, and complex interactions such as symbiotic and parasite-host interactions. 
In the food chain, some species are specialists (eating only a limited number of species) 
whereas others are generalists (able to switch between alternative food sources). Some ani-
mals moreover shape the environment for other animals, making nesting holes or building 
(termite) mounds, or keeping the grass short. Climate change thus not only affects species 
directly by changing their physical conditions, but also by changing their community struc-
ture (see Box 1 for an overview). For instance, precipitation and temperature change may 
alter the composition of plant species which in turn affects herbivore species reproduction 
and survival which then in turn impacts reproduction and survival of their predators (Hal-
pin 1997; Harvey 2015; Preston et al. 2008; Schleuning,  2016). These biotic changes may 
alter the suitability of a habitat for a species even if the abiotic conditions are not pushed 
beyond its tolerance levels (Brooker et al. 2007). Species respond to climate change in a 
unique, species-specific way with respect to adaptations and range shifts. Moreover, spe-
cies are linked by interspecific interactions, so the change in abundance in one species will 
affect presence and abundance of other species. Thus, direct effects of CO2 increase and 
changes in abiotic conditions induce biotic changes which affect community composition, 
thereby inducing changes in the presence and abundance of interacting species. Further-
more, newly colonizing species and species going extinct may disrupt the trophic structure 
and competitive relations in the community (Dunne and Williams 2009; Lurgi et al. 2012; 
Woodward et al. 2012).

Box 1: Examples of climate change affecting species interactions

•	 Plant-herbivore:

-	 Directions in range shift of host plant and butterfly host differ (Schweiger et al. 
2008)

-	 Phenological responses of host plant and butterfly host differ causing a mismatch 
with host plant availability (Cerrato et al. 2016) or detrimental cooling of microcli-
mate (Wallisdevries and Van Swaay 2006)

-	 Plant-herbivore interactions change due to changes in food quantity and quality (Zhu 
et al. 2015)
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•	 Host-parasitoid:

-	 Temporary escape from natural enemies in host butterfly under range expansion 
from resident parasitoid (Menendez et al. 2008)

-	 Increased parasitism from expanding generalist parasitoid on resident butterfly host 
(Gripenberg et al. 2011)

•	 Predator–prey

-	 Environmental change alters predator–prey interactions (Harmon et al. 2009)
-	 Adaptive phenological mismatches of birds and their food in a warming world (Both 

et al. 2006; Visser et al. 2009)

•	 Plant-pollinator:

-	 Phenological shifts caused by climate change disrupts plant and pollinator interac-
tions (Memmott et al. 2007)

•	 Plant competition:

-	 Competing peat-forming mosses respond differently to effects of enhanced precipita-
tion (Sonesson et al. 2002)

-	 Climate change affects competitive species interactions in an alpine plant commu-
nity (Klanderud 2005)

•	 Animal competition:

-	 Climate change alter the competitive interactions in forest birds (Wittwer et al. 2015)

•	 Community interactions:

-	 Contrasting responses across taxonomic realms of species with different thermal 
niches (Bowler,  2017)

-	 Plant-Herbivore-Parasitoid imbalances due to disruption of synchrony, divergence 
in thermal preferences (Hance et al. 2007)

-	 Tree species response is expected to codetermine bird distribution under climate 
change (Matthews et al. 2011)

-	 Precipitation change alters plant and invertebrate species interactions in Californian 
grasslands (Suttle et al. 2007)

Transient communities

So, climate change can trigger cascading extinctions and introductions of new species 
changing the community structure constantly (Alexander et al. 2015; Gilman et al. 2010). 
These changes in community structure can be abrupt when environmental variables pass 
certain tipping points and ecosystems flip to alternative states (Amigo 2020; Osland,  2020; 
Scheffer et al. 2001). Additionally, extinction debts (Butterfield et al. 2019; Rumpf,  2019; 
Tilman et  al. 1994) and time lags may exist between changes in climate and the direct 
and indirect responses of species. For these communities that have constantly changing 
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composition and structure we introduce the term’transient communities’. We expect that 
most communities have or will become transient and that many species that live in these 
communities have difficulty to survive the transient dynamics. In contrast to non-transient 
communities, transient communities have a high extinction and colonization rate resulting 
in a more dynamic species composition (Fig. 2).

In the past, due to slow environmental changes or even by neutral species replacement 
(Hubbell 2005), community composition changed slowly and was expected to be close to equi-
librium. Nowadays, however, climate change together with other human induced pressures 
result in fast environmental change (Travis 2003). As a result, equilibria are on the move which 
makes community dynamics largely unpredictable (Cenci and Saavedra 2019). This may 
induce “Novel Communities” census Hobbs  (2006); communities that did not exist previously 
and arise through human action, environmental change, and the impacts of the deliberate and 
inadvertent introduction of species from other regions (Hobbs et  al. 2006). The concept of 
Novel Communities suggests that this new state is semi-permanent. In contrast, the concept of 
transient communities emphasizes that these communities are changing constantly. So, when 
distinguishing new community states, we should be very aware of their temporary status.

Species responses to climate change

Rearrangement in space

Current climatic change is widely recognized as one of the main forces driving changes 
in the distribution of species. Mobile species from a wide range of taxa show distribution 
shifts resulting from climate change (Hickling et al. 2006; Hill et al. 2016; Mason et al. 
2015). Conditions generally become more suitable in the poleward direction whereas they 
become unsuitable in the equatorial direction (Thomas et  al. 2006). Similar changes are 
seen over elevational gradients (Kuhn and Gegout 2019). However, rearrangement in space 
requires the presence of suitable habitat, connectivity, species mobility, and successful 
population establishment (Schippers et al. 2011). This is especially problematic in human-
dominated landscapes where habitat is scarce and urban areas and infrastructure limit pop-
ulation expansion (Arevall et al. 2018; Opdam and Wascher 2004; Travis 2003). However, 
large natural barriers, such as seas and mountain ridges can also block poleward expansion 
for terrestrial species (Keith et al. 2011; Robillard et al. 2015; Roratto et al. 2015). In addi-
tion, range shifts can have genetic and evolutionary consequences (Excoffier et al. 2009; 
Lee-Yaw et al. 2018) such as loss of genetic diversity (Cobben et al. 2011), gene surfing 
(Demastes et al. 2019; Travis et al. 2007) and spatial sorting (Cobben et al. 2015; Shine 
et  al. 2011), which may hinder the possibility and flexibility to colonize in new habitat 
patches. There might also be positive effects of this spatial escape, because when a spe-
cies is more mobile than a parasite, a predator or a competing species, this species is, at 
least temporally, released from negative species interactions (Carrasco  2018; Menendez 
et al. 2008). Mountain species should move to higher altitude to escape climatic warming. 
Here distances are small compared to latitudinal migration, but lack of space at higher alti-
tudes can hinder these expansions (Essens et al. 2017). Successful rearrangements in space 
depend on species mobility and geographical conditions and are only effective if the new 
habitat is suitable for these immigrating species, including interactions in the new com-
munity, which itself consists of both novel and local species (Memmott et al. 2007; Preston 
et al. 2008; Tylianakis et al. 2008). So, species mobility is key for the persistence of species 
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that are not able to adapt (Arevall et al. 2018; Bourne et al. 2014; Cormont et al. 2011). 
Given the concept of transient communities mobility differences are a key factor driving 
community change. Furthermore, high mobility enables species not only to select for suit-
able abiotic conditions but also for suitable communities and biotic conditions.

Adaptation

Rapid adaptation to climatic changes is mostly associated with populations on the edge of 
the species range (Angert et al. 2020; Logan et al. 2019; Rehm et al. 2015). Species range 
expansions are expected at the poleward or uphill part of the species’ distribution where 
environmental constrains are released. At the equatorial or downhill end of the range habi-
tat is expected to become less suitable. Here, species can stay and adapt to the changing 
environment by phenotypic plasticity, selection, epigenetic changes or evolutionary adapta-
tion (Charmantier et al. 2008; Chown et al. 2007; Richards,  2017; van Asch et al. 2013).

Phenotypic plasticity is the ability of an organism to change its behaviour, morphology or 
physiology in response to stimuli or inputs from the environment. For example, the capacity 
for birds to lay their eggs earlier in the year as a response to higher temperatures. Phenotypic 
plasticity has been regarded as one of the most important mechanisms to cope with rapid cli-
mate change for many species, especially on the short term (Matesanz and Ramirez-Valiente 
2019; Merila 2012; Seebacher et al. 2015). Selection for suitable genotypes that are already 
present is an alternative way to deal with changing conditions. However, it is especially 
important at the core of the distribution range where the genetic diversity is high. There 
is growing evidence that epigenetics contribute to plant phenotypes, with important conse-
quences for adaptation to novel conditions and species distributions (Richards et al. 2017). 
Micro-evolutionary dynamics play an important role in the adaptation to climate change, 
increasing the ability of species to survive (Bourne et al. 2014). Genetic changes can occur 
through the selection of thermal performance related traits, such as changes in the critical 
thermal maximum (Skelly et al. 2007). However, these evolutionary changes may not come 
fast enough to keep up with the rate at which global climate change is occurring (Lasky 
2019; Nadeau and Urban 2019; Penuelas et  al. 2008). Moreover, the rate of evolutionary 
responses may decline through time (Kinnison and Hendry 2001), and antagonistic genetic 
correlations among traits can constrain evolution (Etterson and Shaw 2001). (Micro-) evo-
lutionary adaptations, including selection for increased phenotypic plasticity, take at least 
some generations, while the surge of new traits to be selected for can be expected to take 
even longer. So here we face the danger of Darwinian extinctions, meaning that in many 
cases we cannot expect that (micro-) evolutionary adaptations and selection will be fast 
enough to allow survival of populations (Holt 2003; Meester et al. 2018; Razgour  2019).

In the context of transient communities, species with high adaptability should be tol-
erant, plastic and/or genetically diverse with respect to abiotic climatic parameters, but 
should also be able to deal with the changed community structure and new biotic condi-
tions (Lenoir and Svenning 2015; Lindner,  2010; MacLean and Beissinger 2017).

Species traits and extinction rates

From the preceding sections, we can conclude that mobility and adaptability are key traits 
for species to deal with both abiotic and biotic change. We expect general extinction for 
species with low adaptability and mobility because these species cannot cope or escape. 
Local extinction is to be expected for species with low adaptability and high mobility 
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(Fig. 3). We expect, however, low extinction risks in species that combine high mobility 
with high adaptability (Fig. 3). Species with intermediate adaptability can survive in resil-
ient landscapes that can buffer impacts of climatic change by habitat heterogeneity (see 
paragraph “Increase ecosystem resilience”) while species with intermediate mobility sur-
vive in well-connected landscapes (Fig. 3).

Species conservation in transient communities

Because species differ in response to abiotic and biotic change, these changes induce tran-
sient communities with constantly changing species composition due to colonization and 
extinction events. Biodiversity management recommendations for climate change mitiga-
tion mostly ignore species interactions (Bonebrake et al. 2018; Heller and Zavaleta 2009). 
We showed that climate change induces transient communities, communities in which 
increase in CO2, abiotic and biotic changes affect complex interactions between species 
determining the survival and colonization of new species (Fig. 2). This may affect the suc-
cess of conservation approaches that focus on single species in specific locations. These 
approaches mostly use a static past situation as a reference and would be overlooking the 
consequences of species interactions and biotic change on species survival, as well as the 
spatial consequences of climate change (Brambilla 2020; Engelhardt et  al. 2020; Hobbs 
et  al. 2009). The expected outcome of these approaches may be too optimistic because 
they ignore the effects of codetermining species while a static approach ignores community 
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change. Instead, we show in the following paragraphs, that conservation measures should 
focus on climate change mitigation in the light of transient communities with constantly 
changing species composition and interactions.

Reduce greenhouse gas emissions

Greenhouse gas emission is the main driver determining climate and community changes. 
It enhances species movement to cooler locations (poleward, uphill) causing the coloniza-
tion of new species and the loss of established species in transient communities. Therefore 
the reduction of greenhouse gas emissions should have priority in every conservation man-
agement program because it mitigates the speed of change and species loss in communities 
(Warren et  al. 2018). This is even more important in transient communities because the 
interactions between species also determine survival. Slower climate change simply means 
less stress and dynamics for communities and provide time for species adaptation and spe-
cies movement.

Reduce other human pressures

Climate change is the result of global emissions that cannot be managed locally. In tran-
sient communities other human induced pressures, like disturbances, introduction of inva-
sive species and nutrient loads, generally exacerbate extinctions (Fig. 2), but occur on a 
more local scale and are often more manageable than global emissions. Moreover, these 
pressures may affect population sizes within the community which reduce species mobil-
ity and resilience (Fernandez-Chacon,  2014; Schippers et al. 2011; Wilson et al. 2010). 
Therefore, it is important to mitigate other human-induced factors to reduce the total pres-
sure on transient communities already under stress by climate change.

Increasing monitoring effort

Management thinker Peter Drucker is often quoted as saying that “you can’t manage what 
you can’t measure.” In transient communities we expect rapid change in species composi-
tion, abundance and distribution. To keep track of these changes, monitoring effort should 
be intensified. As it is impossible to measure all processes and interactions, setting up a 
monitoring programme for species composition, abundance and distribution is essential 
(O’Connor et al. 2020). The species composition, abundance and distribution merely serve 
as an indicator for the community status and serve as a proxy for the state of the interac-
tions. A way of quantifying the change of species composition in transient communities is 
the Biological Novelty Index (Schittko  2020). This index keeps track of functional changes 
in communities while taking the species abundance into account. We live in interesting 
times, and change is going to come in many expected and unexpected forms. Having moni-
toring schemes and action plans ready can help to prevent ecosystem collapse and/or large-
scale biodiversity loss due to a combination of climate change and other human-induced 
pressures. For example, when detecting invasive species, early detection and management 
measures can help stop the invasive species from spreading.
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Assess species vulnerability

It is important to assess which species are particularly vulnerable in terms of mobility and 
adaptability (see chapter 3). We expect species with low adaptability and mobility to be 
likely candidates for extinction globally, whereas species with low adaptability may only 
become extinct locally. This might initiate communities to become transient by cascading 
extinctions and new introductions in open niches. Assessing mobility is relatively easy, as 
the responsible traits are often visible, such as the possession of wings or airborne prop-
agules. Assessing species adaptability is, however, difficult because it is involving species 
genetics and plasticity with respect to temperature and precipitation. A large species distri-
bution range is likely an indicator of high adaptability and mobility, as it reflects a species’ 
tolerance to a variety of environmental conditions and biological constrains as well as the 
ability to reach suitable habitats.

Study species interactions

In the light of transient communities, species protection priority is not only determined by 
its own adaptability and mobility, but also by those of interacting species. Here, the food 
web, i.e. the competing, facilitating or otherwise interacting species co-determine the sur-
vival of species (Kaur and Dutta 2020; Van der Putten et al. 2010). So, knowledge about 
species interactions is crucial. If we consider species protection in transient communities, 
we should therefore also consider how important species are for the survival of other spe-
cies of the community. If many community members are strongly dependent on the pres-
ence of a certain species, the protection of such a keystone species is of utmost importance 
because the survival of many species depends on its presence. Clearly keystone species that 
are vulnerable to climatic change are priority candidates in conservation planning.

Protect species globally not locally

Current conservation practice is usually focused on protecting what is there (current spe-
cies distribution areas, biodiversity hotspots, nature reserves). Conservation professionals 
however should be aware of the fact that nowadays communities are becoming more and 
more transient, meaning that some species will go extinct locally, no matter how hard we 
try to save them, and new species will establish (Harrison et al. 2006) (Fig. 2). Rigid local 
species conservation aims with respect to species composition, such as the European Nat-
ura 2000 network, are therefore inadequate in the long run, since species composition will 
inevitably change locally (Harris et al. 2019; Kovac et al. 2018). It is better to evaluate spe-
cies presence and survival globally. Locally, it is useful to identify new potentially coloniz-
ing species from equatorial direction and vulnerable species living at the equatorial end of 
their distribution that may go extinct (Kuussaari 2009). In many cases it would be a waste 
of resources to focus on saving these latter populations.

Facilitate species to rearrange in space

In transient communities, the ecosystem functions of species that are disappearing can 
be taken over by new species. The most evident way to enhance species introductions to 
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transient communities is to protect, restore and increase landscape connectivity (Heller and 
Zavaleta 2009). This can be done in many ways, but halting large monoculture expanses 
and obstacles, while creating habitat corridors, steppingstones and green bridges (ecod-
ucts) seems crucial. More advanced ways to improve connectivity are creating extra habi-
tat in the overlapping area between current and predicted future habitat of vulnerable spe-
cies (Grashof-Bokdam et al. 2009; Ruter et al. 2014; Vos 2008). In the context of transient 
communities, the potential mobility of co-determining community members should also 
be considered. Therefore, steppingstones and green bridges should be suitable for sets of 
interacting species, taking into account the mobility traits of the weakest disperser. Rates 
of these poleward expansions are likely determined by the slowest species. Increasing land-
scape connectivity may also facilitate the expansion of invasive species using the same 
landscape network. It will be a challenge to make the network selective for wanted and 
unwanted species (Saura et al. 2014).

Models of species range shifts show that larger populations will have greater potential 
for colonization because they produce more dispersing individuals. (Schippers et al. 2011; 
Wilson et  al. 2010). So, maintaining high population size is also key for species mobil-
ity. In landscapes with large and permanent obstacles or when species are less mobile, it 
may be necessary to actively transport species poleward to new suitable habitats (‘assisted 
colonization’) (Heikkinen 2015; Hoegh-Guldberg et al. 2008; Richardson 2009). Richard-
son et al. (2009) developed a multi-criterium framework based on focal impact, collateral 
impact, feasibility and acceptability to evaluate the potential value and succes of assisted 
colonization (Richardson et  al. 2009). In the context of transient communities, we can 
transport a group of interacting species simultaneously to avoid unsuccessful introductions 
due to lack of facilitating species (e.g. prey or pollinators). On the other hand, introduction 
can be sequentially performed with the lowest trophic levels first, e.g. plants, herbivores, 
carnivores, parasites. Evidently, transported species might become invasive (Lunt  2013). 
However, assisted colonization has the advantage over connectivity improvements because 
transporting species can be selected which makes it possible to avoid species with invasive 
properties (Richardson et  al. 2009). More research on assisted colonization and species 
interactions is needed to facilitate successful poleward expansion of immobile species.

Increase ecosystem resilience

To reduce the species loss in transient communities we should improve the local resilience 
of populations (Cote and Darling 2010; Moritz and Agudo 2013; Prober 2012). This can be 
done by increasing habitat patch sizes, allowing for more robust populations (Fernandez-
Chacon et al. 2014; Verboom et al. 2001) that are less vulnerable to extinctions (Verboom 
et al. 2010) and better able to survive sub-optimal conditions. Population size also affects 
the potential for adaptive evolution, although here it’s less clear that a larger population 
is always superior because small or disjunct populations may adapt faster. Another way 
to preserve ecosystem resilience is by maintaining or improving the spatial and topo-
graphic heterogeneity of the landscape (Lawler et al. 2015; Maclean et al. 2017; Perovic 
2015; Schippers et al. 2015b; Suggitt,  2018). For example, by maximizing elevational and 
other environmental gradients, and adding blue or green infrastructure. The added value 
of such landscapes is that increased heterogeneity creates ecotones and edges. This allows 
for more species per functional group and genetic variation, both increasing ecosystem 
resilience (Anderson et al. 2014). Restoration of ecosystems should focus on creating both 
macro- and micro-refugia that help species to survive through short-term climatic extremes 
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(Harvey et al. 2020; Selwood and Zimmer 2020; Thakur et al. 2020). Given the concept 
of transient communities, it may be best to increase the resilience of the landscape with 
respect to keystone species that play an important role in the ecosystem.

Conclusion

Conservation efforts with respect to climate change often target individual species in 
response to abiotic climate change, but it is important to acknowledge that multiple inter-
actions in food webs and communities underpin the functioning of ecological communi-
ties (Early and Keith 2019; Naeem et al. 1999; Ponisio,  2019). From the perspective of 
transient communities, conservation management should, therefore, scale up single species 
approaches to focus on communities, and consider the vulnerability of species in relation 
to their function in the community. One of the major challenges in elucidating the effects 
of climate change on biodiversity is that responses invariably must focus on interactive 
effects rather than on individual species. Species do not exist in isolation, they interact in 
a complex array of ways with other species that cover variable scales from the levels of 
trophic chains to more diffuse effects at the level of communities and ecosystems. Ecolo-
gist Daniel Janzen (Janzen 1974) once argued that the “most insidious sort of extinction 
[is] the extinction of ecological interactions”, a point driven home more recently by Mem-
mott et  al. (2010), Memmott et  al. (2010) and Valiente-Banuet  (2015), Valiente-Banuet 
et al. (2015). Hence, science should identify crucial trophic and competitive or facilitative 
species interactions and value species interdependency and vulnerability with respect to 
climate change, while conservation efforts should shift from restoring the past to facilitat-
ing an unfolding a biodiversity-rich future.
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