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Abstract Nursing homes face ever-tightening healthcare
budgets and are searching for ways to increase the efficiency
of their healthcare processes without losing sight of the
needs of their residents. Optimizing the allocation of care
workers plays a key role in this search as care workers are
responsible for the daily care of the residents and account
for a significant proportion of the total labor expenses. In
practice, the lack of reliable data makes it difficult for nurs-
ing home managers to make informed staffing decisions.
The focus of this study lies on the ‘care on demand’ process
in a Belgian nursing home. Based on the analysis of real-life
‘call button’ data, a queueing model is presented which can
be used by nursing home managers to determine the num-
ber of care workers required to meet a specific service level.
Based on numerical experiments an 80/10 service level is
proposed for this nursing home, meaning that at least 80
percent of the clients should receive care within 10 minutes
after a call button request. To the best of our knowledge, this
is the first attempt to develop a quantitative model for the
‘care on demand’ process in a nursing home.
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1 Introduction

The Western world is facing an aging [26] and, in many
cases, a more dependent population [28]. Consequently, the
demand for long-term care is increasing and expected to
increase further over the next couple of decades [6, 12].
Moreover, the provision of long-term care is becoming more
complex as the prevalence of multimorbidity increases with
age [35]. Keeping pace with this rising, and increasingly
complex, demand has become a central issue for policy-
makers in both the U.S. and the countries of the European
Union [6, 7, 11, 12]. Under pressure of these developments,
long-term care facilities face the challenge of providing
high-quality care whereas budgets do not increase at the
same pace, or often even decrease.

Nursing homes are an important component of the long-
term care system for elderly people with disabilities [31].
Most nursing homes are searching for ways to further
streamline their (health)care and support activities1 with the
purpose of lowering costs while maintaining an appropriate
quality level of care. From a client-centered perspective, in
which the client’s needs and wishes are the starting point
for the delivery of care [2], ‘quality of care’ can be defined
as the extent to which needs and preferences of the nurs-
ing home residents are being met [25]. According to Moeke
et al. [24] an important aspect of client-centered care is that
nursing home residents do not want to adjust their lives to
the schedule of care workers, but want to have influence on
the moment (day and time) at which care will be delivered.
In practice, nursing homes face ever-tightening financial
constraints. Hence, they have to balance the need for client-

1From now on we use the term ‘healthcare activities’ instead of
‘(health)care and support activities’.
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centered care with a more efficient use of resources. As care
workers are the most prominent resource, staffing decisions
play an important role in the search for more efficiency.

When it comes to healthcare delivery in a nursing home
environment, a distinction should be made between two
types of healthcare activities. For some of the care activ-
ities it is possible, based on the needs and preferences of
the residents, to make a fairly detailed planning in advance.
Examples of this type of activities are ‘giving medicine’ and
‘help with getting out of bed in the morning’. These activ-
ities can be defined as ‘care by appointment’. On the other
hand, there are healthcare activities which are carried out
in response to random, unexpected demand such as assis-
tance with toileting. This type of activities can be defined as
‘care on demand’. The focus of this study lies on ‘care on
demand’ activities.

A considerable part of the ‘care on demand’ activities in
nursing homes consists of responding to requests of nurs-
ing home residents made through the use of call buttons.
Most nursing homes struggle with determining the appro-
priate number of care workers needed to respond to these
call button requests. The main reason for this is that a well-
founded quantitative approach is generally lacking. Staffing
decisions concerning ‘care on demand’ are often made with-
out a sound rational basis. In the ideal situation staffing
decisions are based on a quantification of the needs and
preferences of the nursing home residents, in other words
the demand, and the duration of the healthcare tasks asso-
ciated with these needs and preferences. Unfortunately, in
most nursing homes this type of information is not avail-
able. Even basic staffing information as information about
actual staffing hours is often of poor quality [18] or not
available at all [17]. Our experience is that the lack of
reliable data is a common problem in healthcare facili-
ties. However, it is a more pronounced problem in nursing
home facilities as they are often low-tech, paper based
organizations.

In this paper a queueing model is developed, using data of
a Belgian nursing home, to gain more insight in the ‘care on
demand’ process and its performance. Thereby, this study
provides better understanding of the number of resources
(i.e. the number of care workers) required to sufficiently
meet the needs of the nursing home residents regarding ‘care
on demand’. We analyze demand patterns over the course
of a day, whereas our main focus is on the night shift.
The reason for this is that the ‘care by appointment’ activ-
ities are scarce during the night, which minimizes the risk
that the ‘care on demand’ data is compromised by ‘care by
appointment’ tasks.

Clearly, this study addresses an issue of great societal rel-
evance. More specifically, in order to increase the efficiency
without loosing sight of the needs of residents, it should be
possible for nursing home managers to analyse and monitor

the performance of healthcare processes. From a scientific
point of view there is hardly any insight in demand pro-
cesses in nursing homes. To the best of our knowledge this
is the first endeavor to study ‘care on demand’ activities in
a nursing home setting using a queueing theoretic approach.

The paper is structured as follows. In the next section,
we outline and justify the study by looking at related litera-
ture. In addition, we describe the nursing home context and
its relation to queueing theory and propose a performance
measure for ‘care on demand’ in nursing homes. In Section
3, we analyze the ‘care on demand’ data of a single Belgian
nursing home. Based on this analysis we present a queueing
model in Section 4. In Section 5 the constructed queue-
ing model is used to analyze different scenarios. Finally,
in Section 6, we present our conclusions and directions for
future work.

2 Nursing home context

In this section the ‘care on demand’ process is described in
more detail. First, we justify the use of a queueing theoretic
approach. Next, we provide more insight into the empiri-
cal context regarding the ‘care on demand’ activities in a
Belgian nursing home. In the final subsection we define a
performance measure which can be used for assessing the
‘care on demand’ process.

2.1 A queueing theoretic approach

Waiting lines or queues occur whenever the demand for
a service exceeds the system’s capacity to provide that
service. From a client perspective, long queues have
a detrimental effect on the perceived quality of ser-
vice. Unfortunately, congestion is commonplace in many
areas of healthcare and has become an important issue
in the provision of healthcare services. In addition to
diminished patient satisfaction, waiting can have a seri-
ous impact on the well-being of patients or clients.
In the case of nursing home residents, excessive waiting for
care and/or support limits their freedom of living the life
they prefer as they are often in need of ongoing assistance
with activities in daily living.

Queueing theory is the mathematical study of waiting
lines or queues and can be useful in describing and ana-
lyzing healthcare processes [16], where ‘healthcare process’
refers to a set of activities and/or procedures that a client
takes part in to receive the necessary care. A growing num-
ber of studies shows that queueing models can be helpful in
assessing the performance of healthcare processes in terms
of waiting time and utilization of critical resources [10,
22]. The most common resources in a healthcare process
are physicians, care workers, beds, and (specialized) equip-
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ment. When it comes to the delivery of healthcare in a
nursing home setting, care workers can be regarded as the
most important resource as they are responsible for the daily
care and supervision of clients. Furthermore, they account
for a significant proportion of the total costs of nursing
home care [24].

By now, there is a considerable amount of literature on
queueing models for capacity decisions in hospitals. The
vast majority addresses issues related to medium and long-
term capacity decisions, with a strong emphasis on bed
occupancy, see e.g. [4, 5, 9, 13] and [10, 19, 22] for an
overview. The central issue typically is to determine the
required capacity (either in number of beds or staff) to
accomodate the randomly arriving demand. On the short-
term, randomly occuring patients needs lead to waiting for
care delivery. The literature on short-term performance for
clinical care is much more restrictive.

Mostly related to our setting are two studies propos-
ing models for nurse staffing levels in hospital wards.
Yankovic and Green [39] use a two-dimensional Markov
model to describe nursing workload due to admissions and
discharges in addition to the fluctuations in needs of patients
that arise while a patient occupies a bed. They determine
nurse staffing levels by evaluating the system performance
numerically. Furthermore, they demonstrate that admission
or discharge blocking caused by nurse shortage can have a
significant impact on system performances and show that
prespecified nurse-to-patient ratio policies cannot achieve a
consistently high service level. De Véricourt and Jennings
[8] study a similar model, but consider a fixed number of
patients. Their analysis is based on many-server asymp-
totics. Their results also suggest that nurse-to-patient ratio
policies cannot achieve a consistently high service level.
Our study differs by the fact that we validate the model
for short-term performance in a nursing home setting. Also,
the model assumptions in [8, 39] differ slightly from ours.
The performance analysis in [39] requires a more involved
numerical procedure, whereas our formulas can be eas-
ily implemented in a decision support tool. The study of
[8] considers an interesting asymptotic regime, which is
however less relevant for our practical setting. Although
queueing theory has been shown useful in assessing staffing
levels in hospitals, the use of queueing models in guiding
staffing decisions in a nursing home setting is still very
limited.

2.2 Empirical context

From a queueing theoretic perspective, healthcare processes
can be viewed as a system in which clients have to wait
for the care they need, receive the necessary care and then
depart [10]. The ‘care on demand’ process in a nursing home
can be described as follows: when a nursing home resident

needs care or support he/she pushes the call button in his/her
room and waits until a care worker is available. Next, the
available care worker moves to the room of the concerning
nursing home resident. When the required care or assistance
has been delivered, the resident leaves the ‘care on demand’
process (see Fig. 1). Queueing theory is an appropriate and
useful method for modeling and analyzing this ‘care on
demand’ process because it can handle the random charac-
ter of call button requests and the variability in duration of
healthcare tasks.

The Belgian nursing home under study provides long-
term residential care for up to 180 clients who are aged
65 and over. Although all residents need some assistance
with activities of daily living most of them are still largely
self-sufficient. There are six care-providing departments,
each of which are responsible for the care and support
of a fixed number of residents. This nursing home uses a
high-tech registration system for ‘care on demand’. In par-
ticular, every call button request is registered automatically
in a central data base. In addition, all care workers are
equiped with a keycard. Every time a care worker enters or
leaves the room of a resident, the keycard is swiped along
an electronic keypad, registering the timestamp and the
location.

In this study we focus on the ‘care on demand’ activities
during the night shift. The care is provided by only a small
number of care workers, as the total need for care or support
is limited during this period of the day. The assigned care
workers only have to handle call button requests which are
being received in a single call center.

2.3 Performance measure

In order to make it possible for nursing home managers
to monitor the performance of the ‘care on demand’ pro-
cess they need a performance measure and an objective. A
performance measure, as defined in this paper, refers to a
metric used to quantify the efficiency and/or effectiveness
of a process [27]. For ‘care on demand’ we find that from
the standpoint of the client, waiting for care and/or support
should be avoided as much as possible. Here, waiting refers
to the time between call request and the moment a care
worker is present, to be called response time. The response
time should be below some threshold for most of the
clients.

In line with other service sectors, such as call centers, we
propose to measure response times in terms of service lev-
els. Specifically, we define a targeted time window Y during
which a care worker should be present at the client. The
service level is defined as follows.

Definition The service level X/Y denotes that X % of the
clients has a response time at or below Y minutes.
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Fig. 1 The ‘care on demand’
queueing system

Based on Pareto’s principle, a typical value for X is 80.
Using a time window Y of 10 minutes then yields an 80/10
service level, meaning that in 80 % of the requests a care
worker is present at the client within 10 minutes after the
request is generated. The queueing model presented in this
paper can be used as a tool to measure the performance of
the ‘care on demand’ process and to determine the num-
ber of care workers required to meet a specific service
level. Although performance management is widely used
in the field of healthcare as a means to improve the qual-
ity and efficiency, this type of performance management for
‘care on demand’ processes in a nursing home context has
received hardly any attention.

2.4 Outline of results

In this subsection we outline the results obtained in Sec-
tions 3–5. First, from the data analysis we conclude that the
average demand patterns, i.e. call requests and care delivery
durations, are stable during the night. During the day, there
are some distinct peaks that are caused by ‘care by appoint-
ment’ activities. Different days of the week show similar
demand patterns. For call requests we conclude that the
interarrival times may be well approximated by an exponen-
tial distribution. For care delivery durations, the conclusions
are less affirmative.

Based on the data analysis, we propose an M/G/s queue-

ing model to determine service levels, where we also include
travel times. This results in Eq. 5 that expresses the tail
probability of the response time. We note that such an equa-
tion may be readily implemented in a decision support tool.
Moreover, we validated the queueing model with the actual
waiting time data. Some numerical experiments show that
an 80/10 service level would work well for this nursing
home facility.

3 Data analysis

To provide insight in the ‘care on demand’ activities, we
analyze the arrival process of call button requests and the
actual care delivery process.

3.1 The arrival process of call requests

In this study we analyze call button requests that are made
during a period of three months, ranging from February 1,
2013 till May 1, 2013. During this period in total 19,996
requests arrived. As a first indication Fig. 2 shows the num-
ber of arrivals per day. Observe that the number of arrivals
fluctuates over time: during March more call requests were
made than during February and April. Unfortunately, the
time window of the data set is restricted to three months
excluding the option to be conclusive about seasonal pat-

Fig. 2 Number of call requests
per day
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Fig. 3 Average number of call
requests per quarter
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terns. Given the state and mobility of residents, it seems
likely that these fluctuations occur naturally; this idea is fur-
ther supported by the huge variability in requests between
residents and for requests over time.

Figure 3 shows the average number of arrivals per quar-
ter. For instance, the first data point means that on average
1.6 call requests were made between 00:00 and 00:15. From
this figure it can be seen that around 8:30, 12:00, and 17:00
on average less were made than during surrounding peri-
ods. These are moments in which the residents enjoy a joint
activity like breakfast, lunch or diner, whereby they gener-
ate fewer calls. Moreover, it can be seen that the number
of arrivals during the night2 are fairly constant. In Fig. 4
a boxplot is given for the number of arrivals during each
15-minute interval. A data point that exceeds 1.5 times the
interquartile range is defined as outlier, and is drawn as a
circle. These boxplots confirm that the arrival rate over the
course of a full day is inhomogeneous.

For each day of the week a similar arrival pattern has
been observed, as shown in Fig. 5. Each line represents
another weekday; it can be seen that the arrival patterns cor-
respond with the overall arrival pattern, as shown in Fig. 3.
This suggests that there is no structural weekly-pattern.

A common way to deal with the daily cycle of call
requests is to consider intervals for which the number of
arrivals is relatively stable. A prominent example of such
a method is the stationary independent period-by-period
(SIPP) approach, where the arrival rate is averaged over the
staffing interval, see e.g. [14, 15]. We follow this method,
but restrict the analysis to staffing decisions overnight. The
two main reasons are that (i) the data are not compro-
mised by ‘care by appointment’ related data, and (ii) in
the day time, staff may not be solely dedicated to ‘care on
demand’.

2The term ‘night’ refers to the time period between 22:45 and 5:45.
This is the largest possible range in which the average number of
arrivals per quarter does not exceed 2.2.

To confirm statistically whether the arrivals are con-
stant during the night, i.e., between 22:45 and 5:45, the
Kolmogorov-Smirnov test is used. This is done by test-
ing for each combination of two 15-minute intervals the
null hypothesis that the number of arrivals originate from
the same underlying distribution. By using a significance
level of 0.05 and applying the Bonferroni correction for the
many tests that are done, this results in 0 out of 378 null
hypotheses to be rejected. However, the Bonferroni correc-
tion is known to be conservative. A more powerful testing
procedure is the positive false discovery rate (pFDR), intro-
duced by Storey [32, 33]. This procedure also results in 0
null hypotheses to be rejected. Hence, it can be assumed
that the arrival rate is constant during the night. In the
remaining part of this paper we consider call requests that
take place during this period, i.e. between 22:45 and 5:45.
Other time intervals of the day can be analyzed in a similar
way.

During the night, in total 3,891 call requests were made
with an average interarrival time of 9.37 minutes. The inter-
arrival time is here defined as the difference between the
arrival times of two consecutive call requests. The standard
deviation of the interarrival times is given by 9.83 and the
coefficient of variation equals 1.05. In Fig. 6 (left) a his-
togram of the interarrival times is shown. From this figure
it can be seen that the underlying distribution of the interar-
rival times corresponds with a right-tailed distribution. The
exponential distribution, Gamma distribution and hyperex-
ponential distribution have similar properties and are fitted
to the data. The parameters of the exponential distribution
and Gamma distribution are obtained by minimizing the
mean squared error between the empirical and theoretical
distribution, and the parameters of the hyperexponential dis-
tribution are obtained by using a three-moment fit, as given
by Tijms [34].

For each fitted distribution, the Kolmogorov-Smirnov
(KS) test is used to test the null hypothesis that the under-
lying distribution of the interarrival times is equal to the
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Fig. 4 Boxplots of the number
of call requests per quarter
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specified distribution. The estimated parameters and the p-
values of the KS tests are given in Table 1. These results
show that all of the fitted distributions are rejected, using
a significance level of 0.05. This is not surprising given
the considerable number of data points. To consider smaller
sample sizes, we also conducted the KS test for the 15-
minute intervals between 22:45 and 5:45 separately, result-
ing in 28 tests. On average, a 15-minute interval has 139
call button requests during these 3 months, which is a more
suitable sample size for statistical testing. Using the KS test
again and using a significance level of 0.05, the null hypoth-
esis that the underlying distribution of the interarrival times
is equal to the specified distribution is rejected for 11 inter-
vals for the exponential and hyperexponential distribution
and for all 28 intervals for the Gamma distribution. Based
on the above, we may conclude that the interarrival times
closely resemble an exponential distribution, but the match
is not perfect. This is also confirmed by the exponential
QQ-plot (which we omitted here).

In Fig. 6 a scaled probability density function (left) and
cumulative distribution function (right) are shown of the
interarrival times fitted with the exponential distribution.
The plots of the Gamma distribution and hyperexponen-
tial distribution are similar. Figure 6 visually shows a good

fit with the exponential distribution. Despite the fact that
each of the fitted distributions are rejected by some of the
KS tests, it seems practically useful to assume that the
interarrival times are exponentially distributed.

3.2 Duration of care delivery

Upon a call button request, delivery of care is assumed to
take place between the arrival and departure time of a care
worker at the room of the client that did a request. In Fig.
7 the average time for care delivery per quarter is plotted.
Clearly, between 6:45 and 9:45 these times are larger than
during other periods of the day. Around this time the res-
idents wake up and mainly receive ‘care by appointment’.
In practice, call requests around this time are often related
to the scheduled activities, which causes higher care deliv-
ery times. For each 15-minute interval the average care
delivery times are determined. Figure 8 shows for each
15-minute interval a boxplot of the average care delivery
times, each based on roughly 90 data points. These box-
plots show that the durations of care delivery are highly
variable during certain periods of the day. Moreover, the
average duration of care delivery is fairly stable across the
night.

Fig. 5 Average number of call
requests per weekday per
quarter. Each line represents a
different weekday
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Fig. 6 Scaled probability
density function (left) and
cumulative distribution function
(right) of the interarrival times
fitted with the exponential
distribution.
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To estimate the distribution of the care delivery times,
the same approach is used as in Section 3.1. The KS test
combined with the Bonferroni correction confirms that in
each combination of the 15-minute intervals between 22:45
and 5:45 the care delivery times originate from the same
underlying distribution. When using a significance level of
0.05, 0 out of 378 null hypotheses are rejected. The same
results are obtained when using positive false discovery
rates.

During the night, in total 3,863 care delivery times were
registered, with an average care delivery time of 2.56 min-
utes. The standard deviation of the care delivery times is
4.12 and the coefficient of variation is equal to 1.61. The
histogram in Fig. 9 shows that the underlying distribution
of the care delivery times is right-tailed. Obviously, a large
number of call requests have a care delivery time below 1
minute. Probably, these are either ‘false’ requests that do
not require assistance or are short questions. The coefficient
of variation of 1.61 indicates that the underlying distribu-
tion of the care delivery times shows considerable variation,
more than e.g. the exponential distribution. Nonetheless, the
exponential distribution, Gamma distribution and hyperex-
ponential distribution are fitted to the data; the estimated
parameters and the p-values of the KS tests are given in
Table 2. These parameters are estimated in the same way as
in Section 3.1. The null hypothesis is tested that the under-
lying distribution of the care delivery times is equal to the
specified distribution. At a significance level of 0.05, the
null hypothesis is rejected. As in Section 3.1, we carried out

Table 1 Parameters and p-values for different distributions fitted with
the interarrival times. The unit of time is minutes

Distribution Parameters p-value

Exponential λ̂ = 0.11 1.47e-11

Gamma k̂ = 0.91, θ̂ = 9.92 3.02e-13

Hyperexponential p̂1 = 0.14, p̂2 = 0.86, λ̂1 = 0.07, 1.47e-11

λ̂2 = 0.12

the KS test for the 15-minute intervals separately resulting
in 28 rejections out of 28 tests for all three distributions.

Based on the tests above, it is clear that the care delivery
times do not match well to any of the proposed distributions
from a statistical viewpoint. The hyperexponential distri-
bution has the highest p-value, which is an indication that
this distribution gives the best fit with the data compared
to the other fitted distributions. This is also confirmed by
plots of the scaled probability density function, cumula-
tive distribution function and QQ-plot made for each of the
distributions. Plots of the former two are given for the hyper-
exponential distribution in Fig. 9. These plots indicate that
the hyperexponential distribution might be of some practical
value. In that case, the parameters of the hyperexponential
distribution as given in Table 2 can be interpreted as fol-
lows: with probability p̂2 = 0.90, the client has a minor
request taken on average 1/μ̂2 = 1.79 minutes, whereas
with probability p̂1 = 0.10 the client has a large request
taking 1/μ̂1 = 9.28 minutes on average.

4 Queueing model

The number of call requests and care delivery times are key
ingredients for a model that may be applied to determine
staffing levels overnight. Such a model should be useful for
management at a strategic or tactical level. We approximate
the service level of the proposed model in Section 4.1 and
validate the model in Section 4.2.

4.1 Model and performance analysis

We identify three important features that the model should
obey:

(i) The random nature of call requests and service times
should be reflected in the model.

(ii) Time for traveling of care workers to a client should
be taken into account.
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Fig. 7 Average care delivery
time per quarter
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(iii) The model should be sufficiently simple to be useful
in practice.

Queueing models are the natural candidate in view of
feature (i). We note that detailed simulation models may
also capture the stochastic nature, but due to the limited
availability of data and process information we opt for
simple models that reflect the key characteristics of the
health delivery process. Such simple models demonstrate
the important principles for supporting staffing decisions on
a strategic or tactical level and are sufficiently simple to
implement.

Below, we discuss the elements of the queueing model.

Arrivals As discussed in Section 3.1, the interarrival times
overnight are well approximated by an exponential distri-
bution. The arrival of call requests are therefore assumed
to follow a Poisson process with rate λ. We note that the
number of residents is bounded, suggesting that a finite-
source queueing model may be applicable when we assume
that a resident does not generate any new calls when he/she
is waiting. However, closed queueing models are much
more difficult to analyze. Moreover, the number of residents
is large enough (180 residents), such that the difference

between open and closed models is negligible. For small-
scale living facilities having in the order of 10 residents,
some further analysis is required though, see also Remark 3.

Service times The time for care delivery is yet not entirely
clear from Section 3.2. Moreover, the time required for care
workers to react to call requests and travel to the correspond-
ing room may be considerable. We refer to this combination
as travel time. The service time S is then defined as S =
S1 + S2, with S1 the overall travel time and S2 the time for
care delivery. Unfortunately, information about travel times
can not be derived from the data; such durations also highly
depend on the local situation. In the light of (iii), we pro-
pose to use a two-phase hypoexponential distribution with
parameters γ1 �= γ2 for S1, that is the sum of two exponen-
tial durations. The first phase may be interpreted as time to
react (e.g. notice the call, finish current task) and the second
phase as actual traveling time. The two-phase hypoexponen-
tial distribution has coefficient of variation between 0.5 and
1, and the peak in probability mass is at a point larger than
zero if γ1, γ2 < ∞. We consider this approximation to be
reasonable. Note that the above implies that the full service
time S is general, as we did not yet make an assumption
for S2.

Fig. 8 Boxplots of the average
care delivery time per quarter
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Fig. 9 Scaled probability
density function (left) and
cumulative distribution function
(right) of the care delivery times
fitted with the hyperexponential
distribution
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Servers Let s be the number of servers, representing the
care workers. We assume that the care workers are dedicated
to ‘care on demand’ tasks. This is reasonable overnight
due to the limited ‘care by appointment’ activities. By day,
it depends on how the care process is organized whether
‘care on demand’ and ‘care by appointment’ are mixed or
separated.

The arguments above suggest to use the M/G/s queueing
model. At this point we like to make two relevant remarks.
First, the M/G/s model is intractable and for its analysis we
rely on approximations available in the literature. Second,
the waiting time in the M/G/s queue corresponds to the time
when a care worker is available to visit a client. In line with
the queueing literature, we refer to this as WQ. The time
that a client is actually waiting for a care worker includes
traveling time, i.e., the performance measure of interest is
R = WQ + S1, with R referring to response time.

We now first consider approximations for the waiting
time WQ in the M/G/s queue. An important point of refer-
ence is the M/M/s queue. As the coefficient of variation of
S2 is 1.61, see Section 3.2, and the coefficient of variation
of S1 is between 0.5 and 1, approximating the service time
S = S1 + S2 by an exponential random variable may not be
that bad (the coefficient of variation of S is likely not too far
off from 1).

We follow the approximation proposed by Whitt [37, 38]
and consider the probability of delay P(WQ > 0) and the
waiting time distribution separately. The probability of wait-

Table 2 Parameters and p-values for different distributions fitted to
the care delivery times. The unit of time is minutes

Distribution Parameters p-value

Exponential μ̂ = 0.43 2.24e-125

Gamma k̂ = 0.53, θ̂ = 4.78 1.56e-88

Hyperexponential p̂1 = 0.10, p̂2 = 0.90, μ̂1 = 0.11, 1.59e-45

μ̂2 = 0.56

ing in the M/G/s queue has been relatively well studied in
the literature, see e.g. [20, 37, 38] and references therein.
As noted in [38, p. 134] and [20, p. 371], the probability of
waiting in the M/M/s model is usually an excellent approx-
imation for the probability of waiting in the corresponding
M/G/s queue. Hence we have

P(WQ > 0) ≈ as

(s − 1)!(s − a)

[
s−1∑
i=0

ai

i! + as

(s − 1)!(s − a)

]−1

, (1)

where a = λES is the offered load. Let ρ = a/s denote
the load per care worker and assume that ρ < 1. In heavy
traffic, the conditional waiting time (WQ|WQ > 0) has an
exponential distribution. Moreover, for the M/M/s queue the
waiting time is also exponential. In line with [1, 20, 37]
we suggest a simple exponential approximation of the wait-
ing time given that the waiting time is positive. It remains
to specify the paramter of this exponential distribution.
We follow Whitt [37] and let the parameter coincide with
heavy-traffic analysis, yielding

P(WQ > t) ≈ P(WQ > 0)e−βt , (2)

with

β = 2

c2
A + c2

S

(1 − ρ)s. (3)

Here the squared coefficient of variation of the interarrival
times c2

A equals 1, because arrivals are assumed to follow a
Poisson process; the squared coefficient of variation of the
overall service time S is given by

c2
S = VarS

(ES)2
= VarS1 + VarS2

(ES1 + ES2)2
= 1/γ 2

1 + 1/γ 2
2 + 16.94

(1/γ1 + 1/γ2 + 2.56)2
,

assuming that S1 and S2 are independent and ES2 and VS2

follow from Section 3.2.
Now, we turn to the response time, which is the convolu-

tion of the waiting time with the travel time. Let FS1(·) be
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the distribution function of S1, which is given by, for t ≥ 0,

FS1(t) = 1 − 1

γ2 − γ1

(
γ2e

−γ1t − γ1e
−γ2t

)
. (4)

Conditioning on the waiting time, and combining the
results above provides an approximation for the quantity of
interest: for t ≥ 0,

P(R≤ t) = P(WQ =0)FS1(t)+
∫ t

0
FS1(t−u)dP(WQ ≤ u)

≈ (1 − P(WQ > 0))

[
1 − 1

γ2 − γ1

(
γ2e

−γ1t

− γ1e
−γ2t

)] + P(WQ > 0)

×
∫ t

0

(
βe−βu− βγ2

γ2 − γ1
e−γ1t e−u(β−γ1)

+ βγ1

γ2 − γ1
e−γ2t e−u(β−γ2)

)
du

= 1−(1−P(WQ >0))
1

γ2−γ1

(
γ2e

−γ1t−γ1e
−γ2t

)
+ P(WQ > 0)

( −γ1γ2

(β − γ1)(β − γ2)
e−βt

− βγ2

(γ2 − γ1)(β − γ1)
e−γ1t

+ βγ1

(γ2 − γ1)(β − γ2)
e−γ2t

)
, (5)

where we used Eqs. 4 and 2 in the second step and the
third step follows from basic calculus. Here P(WQ > 0) and
β are given by Eqs. 1 and 3, respectively. This simple for-
mula thus provides the approximate service level, i.e., the
fraction of clients that wait no longer than t minutes for
receiving care.

Remark 1 The most involved part in the performance anal-
ysis may be P(WQ > 0). A more elementary approximation
for this is due to Sakasegawa [29]

P(WQ > 0) ≈ ρ
√

2(s+1)−1.

As this approximation is mainly accurate for high loads, we
advocate to use Eq. 1.

Remark 2 Kimura also suggests an exponential distribu-
tion for the conditional waiting time, but proposes a refined
parameter β that is also exact in light traffic, see Equation
(5.12) of [20]. Since the more elementary β above suffices,
see also the next subsection, we advocate to use the simpler
one here.

Remark 3 Assuming that the number of residents is fixed at
N and that they do not generate any new calls during wait-
ing, the relevant model is in fact the finite-source M/G/s//N

system. For exponential service times the number of cus-
tomers in such a system is a birth-and-death process from
which the stationary distribution of the number of waiting
customers πi is easily derived, see for instance Kleinrock
[21]. The waiting time distribution is then

P(WQ > t) = e−sμt
n∑

k=s

(n − k)πk

n∑
i=0

(n − i)πi

k−s∑
j=0

(sμt)j

j ! .

This also leads to closed-form results, but the convolution
with the travel time is now more involved. For small-scale
living facilities, the M/M/s//N model is more appropriate.
Caution is required when the coefficient of variation is far
off from 1. In that case, a viable option is to rely on relations
between open and closed queueing systems, as in e.g. [30,
36].

4.2 Model validation

We validated the model using the time frame between
22:45 and 5:45 again. Most parameters can be derived from
Section 3. For this nursing home we assumed the number
of care workers fixed at three during the night. In practice,
the number of care workers is seldomly fixed throughout
the year due to illnesses, deficient scheduling during leaves,
and other care activities such as ‘care by appointment’. As
mentioned, the parameters γ1 and γ2 can not be estimated
directly as there is no data available for travel times. We
estimated the parameters γ1 and γ2 by minimizing the mean
squared error between the empirical cumulative distribution
function of the response times and P(R ≤ t) as presented in
Eq. 5. For s = 3, this yields γ̂1 = 2.87 and γ̂2 = 0.20. From
practical experience, these values seem to resemble the total
travel time reasonably well.

The probability density function (pdf) and the cumu-
lative distribution function (cdf) of the response time R

are displayed in Fig. 10 along with the empirical versions.
Because the response time is the convolution of WQ with
the travel time S1, it has no probability mass in zero. In
other words, every client has to wait at least until a care
worker is present in the room. Overall, the theoretical model
fits fairly well to the empirical distribution. For very small
response times, there is a difference in pdf. In particular, the
peak of the empirical distribution is shifted a little to the
right compared to our approximate queueing model. This
indicates that the two-phase phase hypoexponential assump-
tion for S1 may not be perfect. For the cdf, the largest
difference occurs for response time about twenty minutes,
although the differences are modest. For the empirical dis-
tribution also a small peak seems to emerge around this time
window.

To verify the approximation, we also simulated the finite
source M/G/s//N model with N = 180 residents. For the
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Fig. 10 Scaled probability
density function (left) and
cumulative distribution function
(right) of the empirical response
times with the response time
distribution based on the M/G/3
model
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travel time S1, we used the two-phase hypoexponential
distribution and for the care delivery time S2, we ran-
domly draw from the empirical data. The simulation results
(5,000,000 care requests and a warm-up period of 100,000
care requests) are very similar to the response-time approx-
imation. We compared the empirical distribution from the
simulation with the approximate theoretical distribution
function from Section 4.1. The mean relative error between
these distributions is 0,1495 %. We omitted the simulation
results in Fig. 10 as the lines for the simulation and the
approximation are indistinguishable.

Our experience is that nursing homes are not managed
based on service level agreements. However, a typical quan-
tity of interest is the fraction of clients that wait no longer
than ten minutes, which may be defined as the service level
(see Section 2.3). For both the approximate queueing model
and the data, this is slightly over 80 %. For such service lev-
els, the approximation is rather accurate. Our general con-
clusion is that for any practical purposes the M/G/s model
seems to suffice. More specifically, the service levels based
on our M/G/s approximation are not far off from the realized
service levels in the data. In the next section, we exploit the
queueing model to evaluate the impact of different practical
scenarios.

5 Numerical scenarios

In this section we use the approximate queueing model to
obtain insight in different nursing home scenarios. Specifi-
cally, we investigate the impact of care delivery times, call
requests and scale on the response time R. As introduced
in Section 2.3, we focus on the service level (SL) as our
performance measure. A SL of X/Y denotes that

P(R ≤ Y ) = X

100
,

that is, the response time is below Y minutes for X percent
of the clients. In the current situation an 80/10 SL is met

as the probability that the response time is larger than 10
minutes is slightly below 0.2.

In view of the changing landscape for long-term care,
nursing homes will increasingly face questions related to
capacity decisions and retaining nursing staff. As noted in
[3, 23], and references therein, elderly people living in long-
term care facilities have increasingly complex care needs.
This may manifest in longer durations of care delivery,
an increased number of call button requests, or both. In
turn, this will affect appropriate staffing levels. Below, we
briefly investigate the relations between service levels and
the intensity of care.

For all figures, we use the situation and parameters as
described in Section 4 as our basic scenario. In Fig. 11, we
plotted the response time Y for different service levels as
the mean duration of care delivery ES2 varies (left) or the
number of call requests λ varies (right). For example, for the
current situation the mean care delivery time is 2.56 minutes
and on average 1.6 call requests arrive per quarter. We can
read from the vertical axis that a 60 % SL is achieved at
roughly 5.2 minutes, i.e. P(R ≤ 5.2) � 0.6. The 70, 80
and 90 % service levels are achieved at approximately 6.7,
8.8, and 12.4 minutes. As such, for every mean care delivery
time (left) and arrivals of call requests (right), the impact
of different choices for the SL target may be read along the
vertical axis. For the SL displayed the difference between a
SL of 80 and 90 % is the largest, which resembles that the
target time is increasing faster as the fraction of clients that
should meet the response target increases. In other words,
the amount of extra capacity requirements are increasing as
the SL becomes more tight.

Reading Fig. 11 along the horizontal axis, you may see
the impact of increasing the mean time for care delivery
(left) and intensity of call requests (right). The impact on
the SL is rather modest as the parameters change slightly
(which is due to the relatively small load of the system).
Even if ES2 is 10 minutes, then in 80 % of the cases a care
worker is present within 15 minutes. Note that the impact is
largest for the 90 % SL.
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Fig. 11 The impact of mean
care delivery time (left) and
intensity of call requests per
quarter (right) on the response
time Y to achieve some fixed
service level
X ∈ {60, 70, 80, 90}
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Figure 12 shows the relation between the SL (for four
different target response times Y ) and mean care delivery
time. For instance, for the current mean care delivery time
of 2.56 minutes and a target time of 5 minutes the SL is
only 59 %, whereas the SL is 84, 94 and 98 % for target
times Y of 10, 15, and 20 minutes, respectively. From the
above it follows directly that a target time of 5 minutes is
not very useful. Even if the mean care delivery time is neg-
ligible, the SL is then still only 60 %. This is due to the
traveling time. Again, for a fixed mean care delivery time,
the SL for different response time targets may be read along
the vertical axis. Using these curves a target in the range
of 10-15 minutes seems appropriate. Reading Fig. 12 along
the horizontal axis, it can be seen which mean care delivery
times can be handled while maintaining a specified SL tar-
get. As an example, the mean care delivery time may rise up
to about 6 minutes to maintain an 80/10 SL. Based on the
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Fig. 12 The impact of mean care delivery time on the service level X

for different values of the response target Y ∈ {5, 10, 15, 20}

insights from the figures above, we advocate to use 80/10
SL for this particular situation.

Finally, we investigate the effect of scale. The mean care
delivery time is fixed as in the basic scenario. As starting
point, we assume that an 80/10 SL is desirable. We vary the
scale in terms of number of care workers (employees) and
let the arrival rate of call requests vary accordingly, such that
the 80/10 SL is met exactly. A difficult issue is the impact
of scale on traveling times. It seems natural that traveling
times increase as scale increases. To what extent this holds
strongly depends on the local condition as design of the
building and relative positions of different units. Moreover,
for longer distances other types of transport (e.g. scooters)
may be profitable, such that drawbacks related to scale may
be circumvented. Here, we consider four scenarios where
the mean travel time ES1 increases with 0, 10, 20, and 50 %
of the mean rate of call requests.
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Fig. 13 Impact of scale (number of employees) on utilization exclud-
ing traveling to achieve an 80/10 SL
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In Fig. 13 we illustrate the impact of scale on the utiliza-
tion for the four traveling time . The utilization is based on
times of care delivery and excludes travel times. The low
utilization follows from considerable travel times, requir-
ing overcapacity. When mean travel times remain constant
(factor is 0), we see that the utilization increases in a con-
cave manner. This is in line with the general concept of
economies of scale. At larger scale, the relative variability
in required care decreases and the utilization increases to
maintain the same SL. This effect however becomes weaker
when scale increases. Hence, ‘care on demand’ should not
be organized at a too small scale.

In case travel times increase with scale (factor larger than
0), there is a trade-off between traditional economies of
scale and impact of travel times. From Fig. 13, we see that
the optimal size depends on the specific factor and, there-
fore, on the local situation. In any case, the optimal number
of employees is at least two confirming that organizational
units for ‘care on demand’ should not be too small.

6 Conclusions and discussion

In this paper we made a first step in trying to understand
the real-life performance of the ‘care on demand’ process in
a Belgian nursing home facility using a queueing theoretic
approach. From a methodological point of view, the contri-
bution of this study is twofold. First, by using real-life data
we obtain insight in the number of call requests and care
delivery times for ‘care on demand’ activities. Secondly, we
developed a queueing model to support capacity decisions.
Based on numerical experiments, we propose an 80/10 ser-
vice level for this specific nursing home facility, meaning
that at least 80 % of the clients should receive care within 10
minutes after a call button request. Although we think that
an 80/10 service level will be suitable in many situations,
this may depend on the specific context.

From a practical perspective, this study provides a basis
on which it is possible to develop a staffing support tool
for ‘care on demand’ activities which would allow nursing
home managers to 1) determine the number of care work-
ers required to sufficiently meet the needs and preferences
of the nursing home residents when it comes to ‘care on
demand’ and 2) to better understand the implications of their
decisions (i.e. what-if scenarios). We think that such a tool
has the potential to make an important contribution in the
quest for more efficiency, without losing sight of the needs
of residents.

A model is never a complete representation of reality and
the queueing model presented in this paper is no excep-
tion. First of all, this study is limited in scope because it
only addresses the night care. A similar approach could be
taken for the ‘care on demand’ process during day time.

During day time, the amount of ‘care by appointment’ activ-
ities are much larger compared to the night, which may lead
to compromised ‘care on demand’ data. Moreover, data on
traveling times is lacking. Although travel times may vary
depending on the local situation, it would be of interest to
model this in more detail. Finally, we used an approxima-
tion for the queueing model. This approximation is expected
to work well in most nursing-home situations, but the accu-
racy may decrease when e.g. the number of clients is getting
very small.

Despite the fact that long-term elderly care will become
increasingly important in the next decades, the body of
operations research (OR) literature directed on this topic
is still very limited. Therefore we would like to challenge
researchers in the field of OR to put more emphasis on
research in long-term elderly care. Finding usable data will
be an important first step for future research in this promis-
ing field, as reliable and valid information is scarce and
seldomly collected. Nevertheless, the most important chal-
lenge for future research will be to not overemphasize the
importance of efficiency as the needs and preferences of
the clients should always be kept in mind when conducting
research in this area.
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