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Abstract 
Calcium phosphate and struvite crystallization has been widely studied for phosphate removal and 

recovery from urban wastewater. In this study, calcium phosphate and struvite crystallization were 

carried out in a fluidized-bed reactor. Experimental values of the P concentration ranged from 117-

1000 mg P/l in feed water and 37-457 mg P/l in the bottom of the reactor. Black-box approach to 

model the two processes was conducted using multiple linear regression. Pearson correlation analysis 

describes the correlations of experimental data generated for all parameters. With regard of inflow, 

chemicals dosing, pH, related ion concentrations, and molar ratio (Ca/P and NH4/P) were selected as 

independent variables. They are found to be significant through Pearson’s correlation analysis and 

knowledge of crystallization process. The output variable comprises P crystallization fraction. 

Consequently, the information used to generate model equations. Both models, calcium phosphate 

and struvite acquired R2 higher than 0.7 and low Std. Error (<10) allowing good prediction models. 

Experimental data and generated predicted values are close to each other. In addition, if applied in a 

realistic setting, the models show over-estimated values, which need to be considered in the economic 

analysis.  
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Abbreviations 
ACP = amorphous calcium phosphate 

DCPD = dicalcium phosphate dihydrate 

OCP = octacalcium phosphate 

TCP = tricalcium phosphate 

HAP = hydroxyapatite 

MAP = magnesium ammonium phosphate 

IAP = Ion activity product 

RSA = Response Surface Analysis 

 

α = ion activity 

𝛽 = supersaturation 

Ksp = solubility product  
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1. Introduction 

1.1. Introduction on nutrient recovery 

There has been a change in current societal production systems driven by limits in resource 

availability. The focus has shifted from residues treatment, such as wastewater treatment, toward 

resource recovery (Puyol et al., 2017). For example, there is a great potential to recover nutrients, 

such as nitrogen and phosphorus from human waste and transform them into renewable resources 

with a consistent supply. Human urine contributes 80% of the total nitrogen content and 40–50% of 

the total phosphate contribution to urban wastewater (Wilsenach & van Loosdrecht, 2006). Generally, 

phosphorus in wastewater is in accessible and usable forms, such as phosphate (PO4). Phosphorus (P) 

is important for maintaining all forms of life (Kok et al., 2018). Major processes such as photosynthesis, 

transmission of energy, cell division, development and fruit and crop quality rely on the availability of 

this nutrient. Although phosphorous may be replenished over geological time by the fluxes of the 

global biogeochemical cycle, its major source, phosphate rock, is a non-renewable resource. The latter 

because of its faster usage rate relative to its creation. Eventually, to stop the failure of agriculture, P 

will need to be recycled on large scales.  

The NEREUS Interreg2Seas project engages in regional challenges by stimulating the development of 

a green economy and the re-use of resources. More specifically, the project aims to increase the reuse 

of resources from the city’s wastewater (NEREUS Project Interreg 2 Seas, 2018). In an effort to speed 

up the reuse of resources, the project performs pilot tests for the recovery of water, energy and 

nutrients (nitrogen and phosphorus) from urban wastewater. The final goal of the NEREUS project is 

to develop a decision support tool (DST) to facilitate the multi-criteria, including technical, economic, 

environmental and social evaluation of resource recovery alternatives (processes and sequences of 

these). For this, the processes could potentially be used for resource recovery and need to be well 

understood.  
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Mathematical models can facilitate the understanding of a process, since they enable the prediction 

of their behavior when process conditions change (Estrada-Flores et al., 2006). When constructing a 

mathematical model of a given physical process, different ways of tackling the problem can be used 

(Bohlin, 1991). The two most common ways are: 1) process modelling based on complete knowledge 

of the system (white-box models) and 2) process identification on statistical information (black-box 

models). For many industrial processes, some exist, but incomplete knowledge concerning the system 

(Sohlberg, 1998). This implies that there is a grey zone between the white-box models and the black-

box models, which gives a third way of making models of engineering systems. Grey-box models apply 

systematic use of partial priori knowledge of the process and  experimental data (Sohlberg, 1998). 

Based on the availability of the knowledge and data, the step by step approach can be decided.  

In this thesis, black-box approach will be used to predict phosphorus recovery efficiency from urban 

wastewater. The approach requires significant parameters identification from Pearson correlation 

analysis and modelling via regression analysis. The modelled processes are calcium phosphate (CaPO4) 

and struvite (MgNH4PO4) crystallization, tested at the NEREUS pilot plant, operated by Southern 

Water, in United Kingdom. The phosphorus recovery is done by using a technology developed by 

RHDHV (Royal Haskonig DHV), namely, The Crystalactor®.  

The technology is a fluidized bed type crystallization technology for selective removal and recovery of 

components from water and wastewater. The Crystalactor® is a cylindrical reactor, partially filled with 

a suitable seed material like sand or minerals (Figure 1). The phosphate containing wastewater is 

pumped in an upward direction, maintaining the pellet bed in a fluidized state. By dosing a calcium or 

magnesium salt to the water and adjusting the pH, the solubility of calcium phosphate or struvite, also 

called magnesium ammonium phosphate (MAP) is exceeded and subsequently phosphate is 

crystallized on the seed material. The chemistry of the crystallization process is comparable to the 

conventional precipitation. 
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The pellets grow and move towards the reactor bottom. The phosphate covered grains are discharged 

from the bottom of the bed and replaced intermittently by fresh sand grains. The data used for 

identification represent process performance as well as recovered product quality provided by 

Southern Water. 

1.2. Research Questions 

How well can struvite and calcium phosphate recovery efficiency be modelled via a black-box 

approach? 

a. Which parameters are significant to black-box model struvite and calcium phosphate 

precipitation? 

b. How accurate are the obtained models (R2, Std. err.)? 

c. How promising is the best model to be used under realistic setting? 

Pellet discharge 

Effluent 

Feed water 

Chemicals 

Fluidized bed 

Figure 1: Representation of the Crystalactor® 
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1.3. Scope of the research 

In this research, mathematical models on both processes of calcium phosphate (CaPO4) and struvite 

(MgNH4PO4) crystallization are performed. Black-box modelling is applied by using regression analysis 

based on experimental data from pilot test carried out by Southern Water in United Kingdom. 

1.4. Scientific and societal relevance of the research project 

In the future, the society will face double environmental crises coming from lack of resources and 

excess waste, if current production and consumption patterns continue (Dobbs et al., 2011). The 

danger will be more severe because of climate change and growing population. For example, water 

scarcity becomes more problematic with nearly half the global population already living in potential 

water scarce areas for at least one month per year (Burek et al., 2016). According to Burek et. Al (2016) 

this could increase to some 4.8–5.7 billion in 2050. This will threaten the quality of the environment 

and the health of human beings. Transforming the management methods to solve sustainability 

questions is necessary.  

Water is a resource transport medium besides being a resource of its own. As people use drinking 

water and generate wastewater, many constituents such as chemicals and energy are added. 

Therefore, there are many opportunities for resource recovery and closed cycles in the urban water 

chain, particularly in wastewater (Van Der Hoek et al., 2016). Radical changes are required in the way 

waste and resources streams are organized. Although there is the growing persuasion that future 

regulations for the treatment of wastewater must be based on the principles of a circular economy. 

The technology is available (Neczaj & Grosser, 2018; Puyol et al., 2017; Velenturf & Purnell, 2017), still 

decisionmakers hesitate to make use of this because of economic, environmental and social 

uncertainties.  

In this case, resources recovery is part of the circular economy.  Nutrients such as phosphorus are 

crucial for agriculture and currently have not been regained from wastewater. As a result, these 

resources cannot be re-used in a very useful way (Agudelo-Vera et al., 2012).  
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This thesis is intended to provide support needed to help understanding the processes of recovering 

phosphorus from wastewater. Eventually, in large scale, it can serve as decision support tool (DST) to 

help advancing the implementation of resources recovery. May this thesis be useful for readers and 

further research about similar topic or any related field. 

2. Experimental Section 

2.1. Theory 
 

Nowadays phosphorus removal from wastewater has been of great concern. The recognized 

phosphorus removal technologies include chemical precipitation, biological phosphorus (P) removal, 

crystallization, tertiary filtration and ion exchange (Morse et al., 1998). Among them, crystallization 

processes stand out because they do not only achieve high P removal but also recover P from 

wastewater as useful products, including struvite and calcium phosphates. However, to predict the 

crystallization process is still a complex task. It is controlled by a combination of factors, such as 

thermodynamics of liquid-solid equilibrium, phenomena of mass transfer between solid and liquid 

phases, kinetics of reactions, and several physiochemical parameters (Corre et al., 2005). 

A crystallization or precipitation process is composed of two simultaneous processes: nucleation and 

crystal growth. Nucleation involves the formation of small units that later act as centers of 

crystallization. There are two kinds of nucleation, homogeneous (precipitation forms spontaneously) 

and heterogeneous (initiated by the presence of other particles). More practically, crystallization 

processes are operated with or without seed. In seeded process heterogeneous nucleation dominates, 

while in unseeded process homogeneous substantially accounts for nucleation (Song et al., 2006). The 

seed for a crystallization process acts as a substrate, on which nucleation and the following crystal 

growth can proceed. In addition, the system must be in a supersaturated state to allow the 

crystallization to transpire. Supersaturation can be expressed by the saturation index (SI), 

𝑆𝐼 = log [
𝐼𝐴𝑃

𝐾𝑠𝑝
] 
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where IAP is the ion activity product and Ksp is the solubility product. The calculation of SI of a solution 

is important to understand the crystallization process. 

Under proper physical and chemical environment, different kinds of calcium phosphates, such as ACP 

(amorphous calcium phosphate), DCPD (dicalcium phosphate dihydrate), OCP (octacalcium 

phosphate), TCP (tricalcium phosphate) and HAP (hydroxyapatite) may precipitate from saturated 

solutions (Song et al., 2002) (Table 1). Thus, the crystallization of calcium phosphate is complicated 

because it depends on the supersaturation and Ca/P of the various species (Montastruc et al., 2004) 

as well as concerns with the formation of several possible precursors and their transformation (Song 

et al., 2006). 

Table 1: Different calcium phosphate forms 

Calcium phosphate 
precipitate 

Chemical 
formula 

Ca/P 
ratio 

Environmental 
pHa 

Precipitate stage 
formation 

Amorphous calcium 
phosphate (ACP) 

Ca3(PO4)2  
1.18-2.5 5-11 ACP ⟶ ANYb 

Dicalcium phosphate 
dihydrate (DCPD) 

CaHPO4·2H2O 
1.0 <6.5 DCPD ⟶ OCP 

Tricalcium phosphate (TCP) 
𝛽-Ca3(PO4)2 

≐ 1.5 5-9 DCPD ⟶ 𝛽-TCP 

Octacalcium phosphate (OCP) 
Ca4H(PO4)2·5H2O  

1.3-1.5 6.5-8 DCPD ⟶ OCP ⟶ HAP 

Hydroxyapatite (HAP) Ca5(PO4)3OH 1.67 6.8-9 ACP ⟶ OCP ⟶ HAP 

a pH refers to the acidity/alkalinity of the environmental conditions required for precipitate formation to occur 
b where ANY is any other calcium phosphate precipitate other than ACP 

If phosphate is crystallized as hydroxyapatite (HAP), Ca5(PO4)3OH from a solution,  

5Ca2+ + 3PO4
3- + OH- ⇔ Ca5(PO4)3OH 

the SI with respect to HAP is defined as  

𝑆𝐼(𝐻𝐴𝑃) = log [
𝐼𝐴𝑃

𝐾𝑠𝑝 (𝐻𝐴𝑃)
] 

𝑆𝐼(𝐻𝐴𝑃) = log [
(𝛼Ca2+)5 × (𝛼PO4

3−)3 × (𝛼𝑂𝐻−)

𝐾𝑠𝑝  (𝐻𝐴𝑃)
] 
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where αx refers to the activity of ion x and Ksp(HAP) is the solubility product of HAP. Similarly, the SI 

for the precipitation of other calcium phosphate species will depend on the ions.  

As for struvite, it usually precipitates as stable white orthorhombic crystals in a 1:1:1 molar ratio 

according to the equation below, 

Mg2+ + NH4
+

 + + PO4
3- + 6H2O → MgNH4PO4 + 6H2O 

and the saturation can be expressed as 

𝑆𝐼 (𝑀𝐴𝑃) =
𝛼𝑀𝑔2+ ×  𝑁𝐻4

+ × 𝛼𝑃𝑂4
3−

𝐾𝑠𝑝(𝑀𝐴𝑃)
 

Thermodynamically, the metastable zone is defined as the critical zone of supersaturation of solution 

where crystallization is not governed by nucleation and thus avoids rapid and/or spontaneous 

precipitation. Crystallization in the metastable zone is heterogeneous (Ali & Schneider, 2006). In this 

pilot study using pellet reactor, the metastable zone technique is practiced. Primary nucleation was 

effectively minimized by the particular construction of the reactor and the choice of the appropriate 

degree of supersaturation. Dissolved phosphate and suspended micro-crystals from primary 

nucleation undesirably influence phosphorus recovery. The dissolved phosphate concentration is fixed 

by the solubility product, the ionic concentration of reagent and the process pH. In short, it can be 

said that the overall performance of crystallization is a function of supersaturation, pH and 

concentration of reactants.  

At a given pH and overdose, the degree of supersaturation depends only upon the phosphate 

concentration in the wastewater. The phosphate concentration at the bottom of the reactor has to be 

maintained below a critical value in order to prevent primary nucleation. Moreover, the mechanical 

strength of the crystals decreases with increased supersaturation. In practice, it has been observed 

that negligible nucleation occurs at a phosphate concentration of 25-125 mg/l P. This concentration is 

obtained in the pellet reactor by the correct selection of the circulation flow, irrespective of the 

phosphate concentration in the wastewater. 
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2.2. Materials and Methods 

Phosphorus recovery studied in this paper is based on calcium phosphate and struvite crystallization 

processes using fluidized bed reactor (The Crystalactor®) from urban wastewater. The unit consists of 

a pellet reactor with feed pump, an operational buffer tank, dosing equipment, a stripper tower and 

a dual media filter. Stripper tower is used to remove carbonic acid (H2CO3) in calcium phosphate route, 

thus no stripping tower would be used for struvite route. The pellet reactor is designed based on the 

basics presented in Table 2. 

Table 2: Basic designs of pellet reactor, The Crystalactor® 

pH range feed water 6.0-8.0 

pH stripping tower <4.0 

pH range effluent reactor 7-11 

Feed flow 8-24 l/h 

Recirculation flow 72-56 l/h 

Temperature Ambient 

 

The experimental data acquired from the pilot plant of Southern Water include among others feed 

flow, recirculation flow, P concentration, chemicals dosing flow, pH and temperature.  During the pilot 

trial samples were taken twice every day the reactor runs. The measurements were done at the inlet, 

bottom and outlet of the reactor, but details are not presented in this paper. 

The high [P] concentration ranged from 117-1000 mg P/l in feed water and 37-457 mg P/l at the 

bottom of the reactor. Trials were done by changing the process conditions for both processes as can 

be seen in Table 3. Variances were focused in changing the inflow (feed flow and recirculation) for 

calcium phosphate route and changing MgCl2 dosing flow and pH for struvite route. 
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Table 3: Experimental conditions of controlled crystallization in Southern Water pilot plant 

 Calcium phosphate Struvite 

Conditions Feed flow 8 l/h 

Recirculation flow 55 l/h 

Normal operations 

Feed flow 8 l/h 

Recirculation flow 70 l/h 

Normal operations resumed (at 50% 

MgCl2 dosing 500 ml/h) 

Feed flow 5.6 l/h 

Recirculation flow 70 l/h 

Operation without MgCl2 dosing 

and pH 8 in reactor 

Feed flow 6.8 l/h 

Recirculation flow 70 l/h 

Operation without MgCl2 dosing and 

pH 7.5 in (sludge reduction) 

Feed flow 10 l/h 

Recirculation flow 68 l/h 

Excess MgCl2 dosing at 25 rpm (218 

ml/h) to recover excess P at pH 7.5 

in reactor 

Feed flow 10 l/h 

Recirculation flow 70 l/h 

New experiment: improve P 

recovery at higher pH >8 in reactor 

(no excess MgCl2 dosing) 

 Slight excess MgCl2 dosing at higher 

pH>8 in reactor (to improve P 

recovery) 

Total data 76 data points (only 49 are valid 

for observation) 

37 data points (only 26 are valid for 

observation) 

Chemicals dosing • 30% HCl  

• 35% CaCl2 

• 50% NaOH  

• 30% MgCl2 

• 50% NaOH  

 

2.2.1. Regression Analysis 

Regression methods have been widely used for predictions and forecasting purposes (Bonen et al., 

1979; Catalina et al., 2013; Pauly, 1989; Tulleken, 1993). They are a set of statistical methods used for 

the estimation of relationships between a dependent variable and one or more independent variables. 

Specifically, correlation analysis is performed to provide insight to the key factors (parameters) 

influencing the phosphorus recovery. For these reasons, statistical analysis was chosen to be the 

technique for crystallization prediction of this study. SPSS® is used to determine the appropriate 

https://corporatefinanceinstitute.com/resources/knowledge/modeling/independent-variable/
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model for the system, identify significant process parameters and their interactions. The independent 

variables used were: 

• inflow (adding feed flow and recirculation flow) 

• chemical reagents dosing flow: NaOH, CaCl2 for calcium phosphate route and MgCl2 for 

struvite route 

• initial and final concentrations of P, Ca, Mg and NH4 

• Ca/P and Mg/P ratio 

• pH feed and effluent. 

The dependent variable would be phosphorus crystallization fraction. Correlation analysis of Pearson 

was performed to all the parameters to identify the significance. Pearson's correlation coefficient is 

the statistics test that measures the statistical relationship, or association, between two continuous 

variables. Pearson’s correlation produces a statistic that ranges from -1, indicating a perfect negative 

correlation, to +1, indicating a perfect positive correlation. A value of zero indicates no correlation at 

all. It is known as the best method of measuring the association between variables of interest because 

it is based on the method of covariance. The information from Pearson analysis describe the 

importance of the parameters to be taken into consideration. 

Later, the independent variables for the models were picked based on the theory behind 

crystallization process as well as the analysis from Pearson. Based on that information, multiple 

regression models could be generated. There are several methods to accomplish this by examining 

the interaction between the independent variables with respect to prediction. In this study, 

hierarchical regression was selected. The latter recognizes that theory should drive the statistical 

model and that the decision of what terms enter the regression model should be determined by 

theoretical concerns. Hierarchical regression adds terms (parameters) to the regression model in 

stages. At each stage, an additional term or terms are added to the model and the change in R2 is 

calculated. 
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The appropriateness of a model can be further assessed by the R2, Adjusted R2 and Std. Error. In 

general, the higher the R2, the better the model fits the data. However, chasing a high R2 value can 

lead to reduced precision and a lessened ability to make predictions. Other conditions to look at are 

the Adjusted R2 and Std. Error. The adjusted R2 is used to compare models with different numbers of 

predictors and Std. Error is wished to be minimal. 

In addition, when running a Multiple Regression, there are several assumptions (Table 4) that need to 

be checked, the data met for the analysis to be reliable and valid. The models qualify if they pass the 

assumptions check. 

Table 4: Assumptions in Multiple linear regression 

 Assumption Validity 

1 
Linearity between independent variables 

and dependent variables 

Relationship between the independent 

variables and the dependent variable can be 

characterized by a straight line. 

2 There is no multicollinearity in your data 

Variance Inflation Factor (VIF) scores to be 

well below 10 

Tolerance scores to be above 0.2 

3 The values of the residuals are independent 
Durbin-Watson value between 1 and 3 or 

close to 2 

4 The variance of the residuals is constant 
Residuals should look like a random array of 

dots 

5 
The values of the residuals are normally 

distributed 

The closer the dots lie to the diagonal line, the 

closer to normal the residuals are distributed 

6 
There are no influential cases biasing the 

model 
Cook’s Distance to be less than 1 

 

Next, model validation was performed by comparing the generated predicted values and actual 

values. Validation examines the model fit to the actual experimental data. Conclusions could be drawn 

by observing the model and residual summary. 
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3. Results and Discussions 

3.1. Correlation analysis 

Pearson’s correlation analysis describes the most important effects of the parameters to be 

considered in the models. Table 5 shows the correlation coefficients (r) and identifications of the 

significance (determined by p-values). p-values are not explicitly presented but value less 

than 0.05 and 0.01 identified as * and ** respectively are shown, indicating that the parameters in 

relation to P crystallization are statistically significant. Correlations analysis between the parameters 

was also performed and presented in Appendix 1 for calcium phosphate and Appendix 2 for struvite.  

Table 5: Pearson’s correlation coefficients of different parameters with P crystallized fraction in calcium phosphate and 
struvite processes 

 P crystallized fraction 

 Calcium Phosphate Struvite 

Feed flow -0.255 .a 

Recirculation flow -0.269 0.373 

Inflow -.311* 0.373 

NaOH dosing flow 0.050 0.303 

CaCL2 dosing flow -0.163 - 

MgCl2 dosing flow  - -0.195 

[Ca] in feed filtered 0.011 - 

[Mg] in feed total (unfiltered)  - .489* 

[NH4] in feed total (unfiltered) - -0.110 

[P] in feed filtered / unfiltered 0.265 0.225 

[Ca] in effl. reactor filtrated -0.067 - 

[Mg] in effl. Filter total (unfiltered) - -.465* 

[NH4] in effl. Filter total (unfiltered) - -0.252 

[P] in effl. reactor filtrated / unfiltered -.835** -.634** 

[Ca][/P] ratio feed + [Ca] dosing -.298* - 

NH4/P ration total (unfiltered) - -0.296 

pH feed -0.010 0.330 

pH effluent reactor .777** .412* 

*. Correlation is significant at the 0.05 level (2-tailed).  
**. Correlation is significant at the 0.01 level (2-tailed). 
.a Cannot be computed because at least one of the variables is constant 
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From Table 5, it can be said that Inflow, [P] in effluent, Ca/P ratio and pH effluent are significant for 

calcium phosphate crystallization process. As for struvite, Mg in feed, Mg in effluent, P in effluent and 

pH effluent are important. However, the parameters in the effluent can be disregarded as they are 

the outcome of the system and cannot be controlled, except for pH effluent. The pH of the effluent in 

this case is the same as the pH at the bottom of the reactor, in which the condition when the 

crystallization happens. That leaves Inflow, Ca/P ratio and pH effluent for calcium phosphate and Mg 

in feed and pH effluent for struvite process.  

Other parameters to observe are explained in this section. The overall performance of crystallization 

is a function of supersaturation, pH, and concentration of reactants. Therefore, it is logical to include 

chemicals dosing flow in the models. NaOH as pH adjusting agent and calcium or magnesium salts as 

the reactants. Above all, ion concentrations of P, Ca, NH4 Mg in feed are the key determination of the 

whole crystallization process and must be incorporated in the models. They may as well have an inflow 

(feed flow and recirculation flow) as it plays an important role in the crystallization performance. The 

up-flow velocity in the reactor pushed the sand in a fluidized state. Correlations between these 

parameters are also supported by the Pearson analysis in Appendix 1 and Appendix 2. It is important 

to note that Ca/P ratio can represent the total Ca and P in the reactor, thus, the same as CaCl2 dosing, 

Ca in feed and P in feed together. The same holds for NH4/P ratio, it represents NH4 in feed and P in 

feed. Those conclude the predictors for the models with two groups for each process (Table 6).  After 

considering what parameters are significant to P crystallization, multiple linear regression models 

were developed.  

Table 6: Predictors used for calcium phosphate and struvite process 

Group Calcium phosphate Struvite 

1 

• Inflow 

• NaOH dosing flow 

• CaCl2 dosing flow 

• Ca/P ratio 

• Inflow  

• NaOH dosing flow 

• MgCl2 dosing flow 

• [Mg] in feed 
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• pH feed 

• pH effluent 

• NH4/P ratio 

• pH feed 

• pH effluent 

2 

• Inflow  

• NaOH dosing flow 

• CaCl2 dosing flow 

• [P] in feed 

• [Ca] in feed 

• pH feed 

• pH effluent 

• Inflow 

• NaOH dosing flow 

• MgCl2 dosing flow 

• [Mg] in feed 

• [NH4] in feed 

• [P] in feed 

• pH feed 

• pH effluent 

 

3.2. Regression models 

3.2.1. Calcium Phosphate 

Initially, predictors used are inflow, Ca/P ratio and pH effluent (Group 1) or same predictors with 

replacing Ca/P with CaCl2 dosing, Ca in feed and P in feed (Group 2). In the second model, variable of 

NaOH dosing is entered and the third model, pH feed is added. Table 7 is summary of the results of 

the different models. It shows that model 6 from group 2 has the highest R2 and lowest Std. Error to 

be selected as the best model.  

 
Table 7: Model summary of given two groups for calcium phosphate 

 Model Summary 

 

Model R 

R 

Square 

Adjusted 

R Square 

Std. Error of 

the 

Estimate 

Change Statistics 

Group 

R Square 

Change F Change df1 df2 

Sig. F 

Change 

1 

1 .736 .542 .510 10.803 .542 16.948 3 43 .000 

2 .782 .611 .574 10.069 .069 7.501 1 42 .009 

3 .810 .656 .614 9.590 .044 5.296 1 41 .027 

2 

4 .737 .543 .487 11.052 .543 9.734 5 41 .000 

5 .855 .731 .690 8.585 .188 27.948 1 40 .000 

6 .889 .790 .752 7.681 .059 10.966 1 39 .002 
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 However, model 6 cannot directly be used because its validity further tested based on multiple linear 

regression assumptions in Table 4. The outcome appeared that assumptions of 1, 2 and 6 could not 

be met. Thus, adjustments were necessary for improvements. Assumption 1 does not strongly affect 

the reliability of the model but need to be pointed out that the relationship of the independent 

variables and dependent variable is not all linear. Assumption 2 concerns the highly correlated 

variables and found to be Inflow, P in feed and pH feed. Removing one of the variables or multiplying 

the variables could be done. Lastly, assumption 6 identified two outliers in the data, which need to be 

removed. The combinations of removing and multiplying highly correlated variables can be seen in 

Table 8 and followed by the generated models (Table 9).  

Table 8: Predictors of model improvements for model 6 

 

 

 

 

 

Table 9: List of model improvements for model 6 

Model Summary 

Model R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate Durbin-Watson 

6.1 .872 .760 .724 8.104 1.208 

6.2 .877 .769 .735 7.950 1.217 

6.3 .877 .768 .734 7.962 1.208 

6.4 .875 .766 .738 7.901 1.167 

6.5 .855 .731 .690 8.585 1.247 

6.6 .844 .713 .678 8.762 1.213 

 

 

Model Predictors 

6.1 Inflow, chemicals dosing, ca, pH effluent, (P feed*pH feed) 

6.2 Chemicals dosing, p feed, ca, pH effluent, (inflow*pH feed) 

6.3 Chemicals dosing, ca, pH feed, pH effluent, (inflow*P feed) 

6.4 Chemicals dosing, ca, pH effluent, (P feed*pH feed*inflow) 

6.5 Inflow, chemicals dosing, ca, p, pH effluent 

6.6 Chemicals dosing, ca, pH effluent, (inflow*P feed) 
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Looking at how the R2 are relatively high and similar, it can be difficult to determine which model is 

the best. In this case, the lowest Std. Error is considered to be the most important, so model 6.4 was 

selected. The model equation is shown below, and the full model descriptions along with its 

assumptions check are provided in Appendix 3. 

P crystallization (𝐶𝑎𝑃𝑂4)  =  −116.733 − 53.268𝑥1  +  10.519𝑥2  − .065𝑥3  +  27.504𝑥4  +  .001𝑥5 

The variables, x1, x2, x3, x4 and x5 in the equation denote actual values of respectively NaOH dosing, 

CaCl2 dosing, Ca in feed, pH effluent and (P feed*pH feed*inflow). 

3.2.2. Struvite 

Same procedures were applied to struvite process. In the first stage, predictors used are inflow, Mg in 

feed, NH4/P ratio and pH effluent (Group 1) or same predictors with replacing NH4/P with NH4 in feed 

and P in feed (Group 2). In the second and third models, chemicals dosing of NaOH and MgCl2 and pH 

feed are entered respectively. Table 10 is a summary of the results of the different models. It shows 

that model 2 from group 1 has the highest R2 and lowest Std. Error, as such to be selected as the best 

model.  

Table 10: Model summary of given two groups for struvite 

 

 

 
Model Summary 

 

Model R 

R 

Square 

Adjusted R 

Square 

Std. Error 

of the 

Estimate 

Change Statistics 

Group 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 

1 .839 .704 .648 9.919 .704 12.490 4 21 .000 

2 .873 .762 .686 9.362 .057 2.289 2 19 .129 

3 .874 .764 .672 9.571 .002 .177 1 18 .679 

2 

4 .847 .718 .647 9.924 .718 10.179 5 20 .000 

5 .877 .768 .678 9.479 .050 1.962 2 18 .169 

6 .885 .783 .681 9.444 .014 1.133 1 17 .302 
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In the validity check, assumption 1 and 5 may be violated but only need to be interpreted with caution 

as they do not badly influence the model. Full model descriptions and assumptions check are also 

provided in Appendix 4. There was no multicollinearity in the variables and no outliers were found in 

the model. The equation for model 2 is expressed as: 

P crystallization (struvite)

=  −243.273 +  .554𝑥1  − 10.204𝑥2  +  17.539𝑥3  +  .083𝑥4  − 7.348𝑥5  +  31.251𝑥6 

 

Where, x1, x2, x3, x4, x5 and x6 are inflow, NaOH dosing, MgCl2 dosing, Mg in feed, NH4/P ratio and pH 

effluent respectively. 

3.3. Validation 

The high coefficients of determination (R2 > 0.7) and low Std. Error (<10) of the chosen models 

confirming the relationship between the models and the dependent variable. Experimental data and 

generated predicted values are close to each other which is evident in Figure 2 for calcium phosphate 

(a) and struvite (b). In ANOVA tables of both processes (Appendix 3 and Appendix 4), the p-value (Sig.) 

associated with the F-value is very small (0.000). It can be concluded that the group of the 

independent variables reliably predict the dependent variable. 

The residuals (actual subtracts predicted values for each data point) of the models can provide 

information on how promising the models are. Positive residual indicates over-estimated number and 

in contrast, negative residual specify under-estimated number. In Table 11, both models give higher 

numbers of over-estimated over under-estimated values. Under-estimated prediction of crystallized 

phosphate in the industry is preferred as it does not give high expectation of the actual recovered 

product. In economic analysis, this should be taken into account.   
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Table 11: Residuals summary 

 Calcium phosphate Struvite 

Max 
26.8965 32.08225 

Min 
-25.4803 -16.4339 

Under-estimated count 
20 12 

Over-estimated count 
29 14 
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Figure 2: Distribution of experimentally determined data and model predicted values of P crystallization for a) calcium 
phosphate and b) struvite 
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Conclusion 

Black-box modelling of calcium phosphate and struvite crystallization in a fluidized-bed reactor was 

carried out using multiple linear regression analysis. The predictors are inflow, chemicals dosing, pH, 

related ion concentrations and molar ratio (Ca/P and NH4/P). They are found to be significant 

through Pearson’s correlation analysis and knowledge of crystallization process. Trial and error were 

done to obtain the best model for each process. Both models acquired R2 higher than 0.7 and Std. 

Error lower than 10 allowing good prediction models. Besides that, the models show over-estimated 

values if applied in realistic setting, which need to be considered in the economic analysis. 

Recommendations 

There are still many approaches one could do to draw coefficient for making prediction model. One 

example is by using response surface analysis (RSA). The model in this study might have weaknesses 

as not all the assumptions for multiple regression are met. RSA may generate better models for 

crystallization. Most of the time, after creating model, optimization is also performed. SPSS does not 

have this option. If there is another opportunity, Design Expert is recommended to do RSA and 

optimization. The software is specifically dedicated to performing design of experiments. 

In addition, making a grey-box models for crystallization may be possible when considering the 

combination of factors, such as thermodynamic and kinetic process. There are three theoretical 

approaches to model crystallizations: classical nucleation theory (CNT), kinetic approach, and the third 

category comprising of theories not directly derived from CNT or kinetic theory (Ostapienko et al., 

2019). Depending on the researcher’s main interest, those approaches can be applied. The complexity 

of the model increases with applying the knowledge of crystallization for calcium phosphate and 

struvite. 
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Appendices 

Appendix 1 
Pearson correlation analysis between different parameters for calcium phosphate route 

 Feed 
flow 

Recirculation 
flow 

Inflow 
NaOH 
dosing 
flow 

CaCL2 
dosing 

flow 

[P] in 
feed 

filtered 

[Ca] in feed 
filtered 

[P] in effl. 
reactor 
filtrated 

[Ca] in effl. 
reactor filtrated 

[Ca][/P] 
ratio feed + 
[Ca] dosing 

pH 
feed 

pH effluent 
reactor 

Feed flow 1 0.093 .290* .381** .688** -0.120 -0.165 0.158 0.259 0.248 0.149 -0.145 

Recirculation flow 0.093 1 .980** -.391** 0.224 -.853** 0.181 -0.086 .589** .693** .843** -.348* 

Inflow .290* .980** 1 -.300* .353* -.844** 0.138 -0.051 .621** .719** .841** -.364** 

NaOH 
dosing flow 

.381** -.391** -.300* 1 0.145 .560** -.358* 0.132 -0.089 -.505** -.373** .339* 

CaCL2 
dosing flow 

.688** 0.224 .353* 0.145 1 -0.226 -.289* 0.050 .370** .566** 0.209 -0.231 

[P] in feed 
filtered 

-0.120 -.853** -.844** .560** -0.226 1 -0.139 0.188 -.463** -.795** -.625** .344* 

[Ca] in feed 
filtered 

-0.165 0.181 0.138 -.358* -.289* -0.139 1 -0.124 0.029 .283* .422** 0.054 

[P] in effl. reactor 
filtrated 

0.158 -0.086 -0.051 0.132 0.050 0.188 -0.124 1 -0.153 -0.106 -0.228 -.730** 

[Ca] in effl. reactor 
filtrated 

0.259 .589** .621** -0.089 .370** -.463** 0.029 -0.153 1 .537** .680** -0.094 

[Ca][/P] 
ratio feed + [Ca] 

dosing 
0.248 .693** .719** -.505** .566** -.795** .283* -0.106 .537** 1 .577** -.365* 

pH feed 0.149 .843** .841** -.373** 0.209 -.625** .422** -0.228 .680** .577** 1 -0.152 

pH effluent 
reactor 

-0.145 -.348* -.364** .339* -0.231 .344* 0.054 -.730** -0.094 -.365* -0.152 1 

[P] crystallized 
fraction 

-0.255 -0.269 -.311* 0.050 -0.163 0.265 0.011 -.835** -0.067 -.298* -0.010 .777** 

*. Correlation is significant at the 0.05 level (2-tailed).  
**. Correlation is significant at the 0.01 level (2-tailed). 
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Appendix 2 
Pearson correlation analysis between different parameters for struvite route 

 Feed 
flow 

Recirculation 
flow 

Inflow 
NaOH 
dosing 
flow 

MgCl2 
dosing 
flow 

[Mg] in feed 
total 

(unfiltered) 

[NH4] in 
feed total 

(unfiltered) 

[P] in feed 
total 

(unfiltered) 

NH4/P 
ration total 
(unfiltered) 

[Mg] in effl. 
Filter total 
(unfiltered) 

[NH4] in 
effl. Filter 

total 
(unfiltered) 

[P] in effl. 
Filter total 
(unfiltered) 

pH in 
feed 

pH in 
effluent 
reactor 

Feed flow .a .a .a .a .a .a .a .a .a .a .a .a .a .a 

Recirculation 
flow 

.a 1 1.000** 0.067 -0.103 0.100 0.147 0.025 0.247 0.113 -0.024 -0.062 0.154 -0.097 

Inflow .a 1.000** 1 0.067 -0.042 0.114 0.016 0.151 -0.165 -0.293 0.193 0.007 0.338 -0.176 

NaOH dosing 
flow 

.a 0.067 0.067 1 -0.094 .651** -0.062 .392* -.481* 0.006 -0.161 0.155 0.307 -0.185 

MgCl2 dosing 
flow 

.a -0.103 -0.042 -0.094 1 -0.010 -0.358 -0.309 0.036 0.242 -0.265 -0.338 -.613** -.597** 

[Mg] in feed 
total 

(unfiltered) 
.a 0.100 0.114 .651** -0.010 1 -.508** -0.171 0.031 -0.007 -0.037 -0.259 0.099 -0.126 

[NH4] in feed 
total 

(unfiltered) 
.a 0.147 0.016 -0.062 -0.358 -.508** 1 .633** -0.041 0.128 -0.137 0.223 0.041 .392* 

[P] in feed 
total 

(unfiltered) 
.a 0.025 0.151 .392* -0.309 -0.171 .633** 1 -.728** -.446* 0.073 0.336 .545** 0.174 

NH4/P ration 
total 

(unfiltered) 
.a 0.247 -0.165 -.481* 0.036 0.031 -0.041 -.728** 1 .746** -0.334 -0.280 -.570** 0.047 

[Mg] in effl. 
Filter total 
(unfiltered) 

.a 0.113 -0.293 0.006 0.242 -0.007 0.128 -.446* .746** 1 -0.325 -0.061 -.544** -0.231 

[NH4] in effl. 
Filter total 
(unfiltered) 

.a -0.024 0.193 -0.161 -0.265 -0.037 -0.137 0.073 -0.334 -0.325 1 .476* .387* -0.143 

[P] in effl. 
Filter total 
(unfiltered) 

.a -0.062 0.007 0.155 -0.338 -0.259 0.223 0.336 -0.280 -0.061 .476* 1 0.366 -.407* 

pH in feed .a 0.154 0.338 0.307 -.613** 0.099 0.041 .545** -.570** -.544** .387* 0.366 1 0.202 

pH in effluent 
reactor 

.a -0.097 -0.176 -0.185 -.597** -0.126 .392* 0.174 0.047 -0.231 -0.143 -.407* 0.202 1 

*. Correlation is significant at the 0.05 level (2-tailed).  
**. Correlation is significant at the 0.01 level (2-tailed). 
.a Cannot be computed because at least one of the variables is constant.
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Appendix 3 
Full model descriptions for calcium phosphate  

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate Durbin-Watson 

6.4 .875a .766 .738 7.901 1.167 

 

 

ANOVA 

 Sum of Squares df Mean Square F Sig. 

 Regression 8392.549 5 1678.510 26.887 .000 

Residual 2559.519 41 62.427   

Total 10952.068 46    

 

Coefficients 

 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

Collinearity 

Statistics 

B Std. Error Beta Tolerance VIF 

 (Constant) -116.733 17.947  -6.504 .000   

NaOH 

dosing flow 

-53.268 8.972 -.795 -5.937 .000 .318 3.147 

CaCL2 

dosing flow 

10.519 5.042 .215 2.086 .043 .536 1.865 

[Ca] in feed filtered -.065 .020 -.302 -3.265 .002 .666 1.502 

pH effluent reactor 27.504 2.740 1.240 10.039 .000 .374 2.676 

PfeedxpHfeedxinflow .001 .000 .376 4.150 .000 .694 1.440 
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Appendix 4 
Full model descriptions for struvite 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate Durbin-Watson 

2 .873a .762 .686 9.362 1.730 

 

 

ANOVA 

 Sum of Squares df Mean Square F Sig. 

 Regression 5317.179 6 886.197 10.112 .000 

Residual 1665.167 19 87.640   

Total 6982.346 25    

 

Coefficients 

 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

Collinearity Statistics 

B Std. Error Beta Tolerance VIF 

 (Constant) -243.273 61.365  -3.964 .001   

Inflow l/h .554 .181 .372 3.071 .006 .853 1.172 

NaOH dosing flow 

l/h 

-10.204 10.326 -.209 -.988 .335 .279 3.580 

MgCl2 dosing flow 

l/h 

17.539 11.610 .227 1.511 .147 .558 1.793 

[Mg] in feed total 

(unfiltered) mg Mg/l 

.083 .022 .683 3.812 .001 .391 2.555 

NH4/P ration total 

(unfiltered) mol/mol 

-7.348 2.902 -.396 -2.532 .020 .512 1.952 

pH in effluent 

reactor 

31.251 7.094 .679 4.405 .000 .529 1.890 
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