De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk

Terug naar zoekresultatenDeel deze publicatie

Identification of new biomarker candidates for glucocorticoid induced insulin resistance using literature mining

Identification of new biomarker candidates for glucocorticoid induced insulin resistance using literature mining

Samenvatting

Background: Glucocorticoids are potent anti-inflammatory agents used for the treatment of diseases such as rheumatoid arthritis, asthma, inflammatory bowel disease and psoriasis. Unfortunately, usage is limited because of metabolic side-effects, e.g. insulin resistance, glucose intolerance and diabetes. To gain more insight into the mechanisms behind glucocorticoid induced insulin resistance, it is important to understand which genes play a role in the development of insulin resistance and which genes are affected by glucocorticoids. Medline abstracts contain many studies about insulin resistance and the molecular effects of glucocorticoids and thus are a good resource to study these effects. Results: We developed CoPubGene a method to automatically identify gene-disease associations in Medline abstracts. We used this method to create a literature network of genes related to insulin resistance and to evaluate the importance of the genes in this network for glucocorticoid induced metabolic side effects and anti-inflammatory processes. With this approach we found several genes that already are considered markers of GC induced IR, such as phosphoenolpyruvate carboxykinase (PCK) and glucose-6-phosphatase, catalytic subunit (G6PC). In addition, we found genes involved in steroid synthesis that have not yet been recognized as mediators of GC induced IR. Conclusions: With this approach we are able to construct a robust informative literature network of insulin resistance related genes that gave new insights to better understand the mechanisms behind GC induced IR. The method has been set up in a generic way so it can be applied to a wide variety of disease networks. © 2013 Fleuren et al.; licensee BioMed Central Ltd.

Toon meer
OrganisatieHanzehogeschool Groningen
Gepubliceerd inBiodata mining BioMed Central, Vol. 6, Uitgave: 1
Jaar2013
TypeArtikel
DOI10.1186/1756-0381-6-2
TaalEngels

Op de HBO Kennisbank vind je publicaties van 26 hogescholen

De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk