De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk

Terug naar zoekresultatenDeel deze publicatie

Hyper-spectral frequency selection for the classification of vegetation diseases

Rechten: Alle rechten voorbehouden

Hyper-spectral frequency selection for the classification of vegetation diseases

Rechten: Alle rechten voorbehouden

Samenvatting

Reducing the use of pesticides by early visual detection of diseases in precision agriculture is important. Because of the color similarity between potato-plant diseases, narrow band hyper-spectral imaging is required. Payload constraints on unmanned aerial vehicles require reduc-
tion of spectral bands. Therefore, we present a methodology for per-patch classification combined with hyper-spectral band selection. In controlled
experiments performed on a set of individual leaves, we measure the performance of five classifiers and three dimensionality-reduction methods with three patch sizes. With the best-performing classifier an error rate of 1.5%
is achieved for distinguishing two important potato-plant diseases.

OrganisatieNHL Stenden Hogeschool
AfdelingAcademie Technology & Innovation
LectoraatLectoraat Computervision & Data Science
PartnersNHL Hogeschool
Datum2017-05-17
TypeArtikel
TaalEngels

Op de HBO Kennisbank vind je publicaties van 26 hogescholen

De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk