De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk

Deel deze publicatie

Using Machine Learning Algorithms to Forecastthe Sap Flow of Cherry Tomatoes in a Greenhouse

Open access

Rechten:

Using Machine Learning Algorithms to Forecastthe Sap Flow of Cherry Tomatoes in a Greenhouse

Open access

Rechten:

Samenvatting

This study focuses on forecasting tomato sap flow in relation to various climate and
irrigation variables. The proposed study utilizes different machine learning (ML) techniques, including linear
regression (LR), least absolute shrinkage and selection operator (LASSO), elastic net regression (ENR),
support vector regression (SVR), random forest (RF), gradient boosting (GB) and decision tree (DT). The
forecasting performance of different ML techniques is evaluated. The results show that RF offers the best
performance in predicting sap flow.

Organisatie
Afdeling
Lectoraat
Gepubliceerd inIEEE Acces Vol. 2021
Datum2021-11-10
Type
TaalEngels

Op de HBO Kennisbank vind je publicaties van 26 hogescholen

De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk